
Graphics Library Programming Guide 17-1

Chapter 17

17. Feedback

This chapter describes methods used to get hardware feedback during the
drawing process. Because this is a special topic with limited applications, you
may want to skip this chapter on the first reading.

• Section 17.1, “Feedback on IRIS-4D/GT/GTX Systems,” describes
feedback on those systems.

• Section 17.2, “Feedback on the Personal IRIS and IRIS Indigo,” describes
feedback on those systems.

• Section 17.3, “Feedback on IRIS-4D/VGX, SkyWriter, and RealityEngine
Systems,” describes feedback on those systems.

• Section 17.4, “Feedback Example,” demonstrates feedback.

• Section 17.5, “Additional Notes on Feedback,” discusses additional
information.

Feedback is a system-dependent mechanism that uses the Geometry Pipeline
to do calculations and to return the results of those calculations to the user
process. From a hardware point of view, the net result of most Graphics
Library calls is to send a series of commands and data down the Geometry
Pipeline. In the pipeline, points are first transformed, clipped, and scaled, then
lighting calculations are performed and colors are computed. Next, the points,
lines, and polygons are scan-converted, and finally, pixels in the bitplanes are
set to the appropriate values.

Note: Feedback is different on each IRIS-4D Series system. Avoid using the
feedback mechanism unless it is absolutely necessary.

There are, however, a few places where feedback might be valuable. If you
have code that draws an object on the screen, and you would like to draw the

17-2 Feedback

same picture on a plotter with a different resolution than that of the screen, you
can change only the viewport() subroutine (which controls the scaling of
coordinates) so that it scales to your plotter coordinates, and then draw the
picture in feedback mode. The transformed data returned to your process can
often be interpreted and used to drive a plotter. feedback() puts the system
into feedback mode, and any set of graphics subroutines can then be issued,
followed by endfeedback() . All the commands and data that come out of the
Geometry Engine subsection are as a result stored in a buffer supplied when
the initial call to feedback() was made.

When the system is put into feedback mode, the Graphics Library commands
send exactly the same information into the front of the pipeline, but the
pipeline is short-circuited, and the results of some of the calculations are
returned before the standard drawing process is complete. The pipeline can be
broken down into many distinct stages, the first of which is composed of
Geometry Engine™ processors. The Geometry Engines transform, clip, and
scale vertices to screen coordinates, and do the basic lighting calculations. In
feedback mode, the raw output from the Geometry Engines is sent back to the
host process, and no further calculations are done.

The hardware that makes up the Geometry Engine subsection of the pipeline
is different on the various IRIS workstation models. The command and data
format differs and certain calculations are done on some systems and not on
others. In spite of object code compatibility, the results of feedback are not
compatible. If you use feedback, your code must be written differently for
every system, and each time a new system is introduced, it will probably have
to be modified.

Almost all feedback-type calculations can easily be done in portable host
software. After a feedback session, the feedback buffer can contain any or all
of the following data: points, lines, moves, draws, polygons, character move,
passthrough() , z-buffer , linestyle() , setpattern() , linewidth() , and
lsrepeat() values.

On the IRIS-4D/VGX, Iris Indigo, and Personal IRIS, feedback() returns
32-bit floating point values instead of 16-bit integers. On all other IRIS-4D
Series systems, feedback() returns 16-bit integers.

In feedback mode, all the graphical subroutines are transformed, clipped, and
scaled by the viewport, and all lighting calculations are done. Because of
clipping, more or fewer vertices might appear in the feedback buffer than were
sent in. A three-sided polygon can come out with up to nine sides. due to

Graphics Library Programming Guide 17-3

clipping against all six clipping planes—even more side if user -defined
arbitrary clipping planes are enabled (see Chapter 8).

Figure 17-1 shows the effect clipping has on feedback.

Figure 17-1 Effects of Clipping on Feedback

The sequence:

becomes:

2

3

4

1

a)

A

B

C

bgnline(<A>)
bgnline()
bgnline(<C>)
endline

bgnline(<1>)
bgnline(<2>)
bgnline(<3>)
bgnline(<4>)
endline

The sequence:

becomes:

2

3

4

1
b) A

B

C

bgnpolygon(<A>)
bgnpolygon()
bgnpolygon(<C>)
endpolygon

bgnpolygon(<1>)
bgnpolygon(<2>)
bgnpolygon(<3>)
bgnpolygon(<4>)
bgnpolygon(<5>)
bgnpolygon(<6>)
endpolygon

5

6

17-4 Feedback

Because the length of the output is not generally predictable from the input,
passthrough marks divisions in the input data. For example if you send this
sequence:

v3f(A);
passthrough(1);
v3f(B);
passthrough(2);
v3f(C);
passthrough(3);
v3f(D);

the parsed information in the feedback buffer might look like this:

transformed point (X)
passthrough (1)
passthrough (2)
transformed point (Y)
passthrough (3)

Point X is the transformed version of point A, and point Y is the transformed
version of point C. Points B and D must have been clipped out.

The feedback data types are in the file gl/feed.h for your reference. All returned
information is raw and system-specific.

17.1 Feedback on IRIS-4D/GT/GTX Systems

Feedback data occurs in groups of 8n+2 shorts, where n is the number of
vertices involved, as shown in Table 17-1.

Short # Data

1 <data type>

2 <count>

3 through (count+2) <vertex data>

Table 17-1 IRIS-4D/G/GT/GTX Feedback Data

Graphics Library Programming Guide 17-5

The vertex data is always arranged in groups of 8 (so count is a multiple of 8)
and contain the values:

x, y, zhigh, zlow, r, g, b, alpha

x is the screen (not window) x-coordinate, y-1024 is the screen y-coordinate,
(zhigh<<16)+zlow is the z-coordinate, and, r, g, b, and alpha are the red, green,
blue, and alpha values.

By the time the data makes it through the geometry hardware, all the
transformations have been done to it, including translations to put the data in
the proper window. In the IRIS-4D/GT/GTX, the hardware screen
y-coordinates begin at 1024 (for the bottom of the screen) and increase to 2047.
Thus, 1024 must be subtracted to get what you would consider the screen
y-coordinate.

24 bits of z-coordinate data is returned in two 16-bit chunks. The two chunks
must be concatenated to get the full 24 bits of data. Finally, the red, green, blue,
and alpha values are the colors that would be written into the frame buffer at
the vertex. In RGB mode, all values vary between 0 and 255; in color map
mode, the color index is sent as the red value and is in the range
0 to 4095. In color map mode, the values in the green, blue and alpha
components are meaningless.

There are five possible kinds of data type: FB_POINT, FB_LINE , FB_POLYGON,
FB_CMOV, and FB_PASSTHROUGH.

FB_POINT 24
x1, y1, zhigh1, zlow1, r1, g1, b1, alpha1
x2, y2, zhigh2, zlow2, r2, g2, b2, alpha2
x3, y3, zhigh3, zlow3, r3, g3, b3, alpha3

FB_LINE and FB_POLYGON are similar. FB_CMOV and FB_PASSTHROUGH always
have 8 shorts of data as follows:

FB_CMOV 8
x1, y1, zhigh1, zlow1, r1, g1, b1, alpha1
value, junk, junk, junk, junk, junk, junk, junk

17-6 Feedback

17.2 Feedback on the Personal IRIS and IRIS Indigo

The Personal IRIS and IRIS Indigo has the following feedback tokens defined
in gl/feed.h:

FB_POINT
FB_MOVE
FB_DRAW
FB_POLYGON
FB_CMOV
FB_PASSTHROUGH
FB_ZBUFFER
FB_LINESTYLE
FB_SETPATTERN
FB_LINEWIDTH
FB_LSREPEAT

Each group of feedback data begins with one of the above tokens to indicate
data type. Vertex data for points, lines, and polygons always appears in groups
of six floating-point values:

x, y, z, r, g, b

x and y are screen (not window) coordinates, z is the z value, and r, g, b are the
red, green, and blue (RGB) values.

The RGB values are the colors that would be written into the frame buffer at
the vertex. In RGB mode, all values vary between 0 and 255. In color map
mode, the r value is the color index (between 0 and 4095) and the g and b values
are ignored.

If a move, draw, or point (as in this example) comes out of the Geometry
Pipeline, the returned data consists of seven floats:

FB_POINT
x, y, z, r, g, b

For polygons, feedback data includes a count number as well as the data type
number. This number indicates how many of the next float values apply to the
polygon. There are six for each vertex, so this number is always a multiple of
six (6, 12, etc.).

Graphics Library Programming Guide 17-7

For example, the returned data for a triangle consists of 20 floats:

FB_POLYGON 18.0
x1, y1, z1, r1, g1, b1
x2, y2, z2, r2, g2, b2
x3, y3, z3, r3, g3, b3

The 18.0 indicates three vertices with six values in each; the 18 values follow.

FB_CMOV returns only three floats of data:

FB_CMOV
x, y, z

The rest of the commands (FB_PASSTHROUGH, FB_ZBUFFER, FB_LINESTYLE,
FB_SETPATTERN, FB_LINEWIDTH, FB_LSREPEAT) return only one float. For
example, FB_PASSTHROUGH returns:

FB_PASSTHROUGH
value

17.3 Feedback on IRIS-4D/VGX, SkyWriter, and RealityEngine Systems

The IRIS-4D/VGX and SkyWriter systems return 32-bit floating point numbers
in feedback mode. The feedback data is in the following format:

<data type> <count> <count words of data>

There are five data types: FB_POINT, FB_LINE , FB_POLYGON, FB_CMOV, and
FB_PASSTHROUGH. The actual values of these data types are defined in gl/feed.h.
Following is the feedback format:

FB_POINT, count (9.0), x, y, z, r, g, b, a, s, t.
FB-LINE, count (18.0), x1, y1, z1, r1, g1, b1, a1, s1, t1, x2,
y2, z2, r2, g2, b2, a2, s2, t2.
FB_POLYGON, count (27.0), x1, y1, z1, r1, g1, b1, a1, s1, t1,
x2, y2, z2, r2, g2, b2, a2, s2, t2, x3, y3, z3, r3, g3, b3,
a3, s3, t3.
FB_PASSTHROUGH, count (1.0), passthrough.
FB-CMOV, count (3.0), x, y, z.

The x and y values are in floating point screen coordinates, the z value is the
floating point transformed z. Red, green, blue, and alpha are floating point
values ranging from 0.0 to 255.0 in RGB mode. In color map mode, the color

17-8 Feedback

index is stored in the red value and ranges from 0.0 to 4095.0. The green, blue,
and alpha values are undefined in color map mode. The s and t values are in
floating point texture coordinates.

RealityEngine returns the following feedback data for points, lines, and
triangles:

x,y,z /* position */
r,g,b,a /* color */
s,t,u,q /* texture */

17.4 Feedback Example

The following program transforms some simple geometric figures and the
results are returned in a buffer.

In this example, feedback() puts the system to into feedback mode, and tells
the system to return all data into the buffer (either fbuf or sbuf, depending on
the machine type). In addition, the 110 indicates that the size of the buffer is
110 data items. If more than 110 items of data are generated, only the first 110
are saved. The geometry is drawn (in feedback mode), and endfeedback()

ends the feedback session. endfeedback() returns the total number of items
returned in the buffer. If an overflow occurs, the system returns a error. Finally,
the loop at the end prints out the contents of the feedback buffer.

#include <stdio.h>
#include <string.h>
#include <gl/gl.h>

#define BUFSIZE 110

float vert[3][2] = {
{0.1, 0.2},
{0.7, 0.4},
{0.2, 0.7}

};

void drawit()
{

pushmatrix();
color(WHITE);
bgnpolygon();

v2f(vert[0]);

Graphics Library Programming Guide 17-9

v2f(vert[1]);
v2f(vert[2]);

endpolygon();
translate(0.1, 0.1, 0.0);
color(RED);
bgnline();

v2f(vert[0]);
v2f(vert[1]);
v2f(vert[2]);

endline();
translate(0.1, 0.1, 0.0);
color(GREEN);
bgnpoint();

v2f(vert[0]);
v2f(vert[1]);
v2f(vert[2]);

endpoint();
popmatrix();

}
/* feedback buffer is an array of floats on Personal Iris and
VGX */
Boolean floatfb()
{

char model[12];
Boolean isPI, isVGX;
gversion(model);
isPI = (strncmp(&model[4], “PI”, 2) == 0);
isVGX = (strncmp(&model[4], “VGX”, 3) == 0);
return (isPI || isVGX);

}

main()
{

short sbuf[BUFSIZE];
float fbuf[BUFSIZE];
void *buf;
long i, count;
Boolean hasfloatfb;
foreground();
prefsize(400, 400);
winopen(“feedback”);
color(BLACK);
clear();
ortho2(0.0, 1.0, 0.0, 1.0);
hasfloatfb = floatfb();
drawit();

17-10 Feedback

if (hasfloatfb)
buf = fbuf;

else
buf = sbuf;

feedback(buf, BUFSIZE);
drawit();
count = endfeedback(buf);
if (count == BUFSIZE) {

printf(“Feedback buffer overflow\n”);
return 1;

}
else

printf(“Got %d items:\n”, count);
for (i = 0; i < count; i++) {

if (hasfloatfb)
 printf(“%.2f”, fbuf[i]);
else

 printf(“%d”, sbuf[i]);
if (i % 8 == 7)

printf(“\n”);
else

printf(“\t”);
}
printf(“\n”);
sleep(10);
gexit();
return 0;

}

17.5 Additional Notes on Feedback

Any graphics subroutines can be called between feedback() and
endfeedback() , but only subroutines generating points, lines, polygons,
cmovs, or passthroughs can generate values in the feedback buffer. If, for
example, you are writing code to generate both a display and data for a plotter,
certain data can be lost (polygon patterning, for example). If it is necessary to
use this information in the plotting package, you should encode it somehow
into passthrough() commands.

Also note that subroutines such as curve() , patch() , and mesh() , generate
feedback buffer data, because they are converted in the graphics pipeline into
a series of lines or polygons.

