Chapter 19

Using the GL in a Networked Environment

Network transparency is a built-in feature of the GL that allows a process on
one IRIS workstation to display graphics either locally or over the network on
a remote IRIS workstation.

19.1 Introduction

The network-transparent feature of the GL lets systems share the work load for
graphics applications and lets servers without graphics capabilities use
graphical tools.

For example, consider running a flight simulation to test a new aircraft design.
You want to run a complex mechanical analysis with a simultaneous real-time
animation. The mechanical analysis requires a “number-crunching” system
and the animation requires a fast graphics display system. The two systems
can share the work load, each doing the task for which it is best suited, in a
client-server relationship, resulting in a more balanced work load and better
overall performance.

The client/server model of the network-transparent GL allows remote display
of graphics output. In the above example, a 4Server, acting as the client,
performs the calculations for the mechanical analysis and sends the graphics
calls over the network to an IRIS-4D workstation, acting as the graphics server,
to display the flight animation.

Graphics Library Programming Guide 19-1

19-2

19.1.1

19.1.2

Protocol

Network transparency is based on the Distributed GL (DGL) protocol that is
built into the shared GL. The DGL protocol has two parts:

« acall mechanism built into the shared GL

= agraphics server to service requests made by DGL clients

In this chapter, the client application, which is linked with the shared GL, is
called the DGL client and the graphics server is called the DGL server. In the
DGL client, the DGL protocol sends tokens in a byte stream to the graphics
server over the Ethernet® or other communication medium. The graphics
server decodes the byte stream and calls the GL subroutines to display the
graphics.

There is a separate product for running GL applications on non-IRIS hosts; see
the documentation that comes with that option for more information.

Writing GL Programs to Use Network Transparent Features

Existing GL programs do not contain any calls that specifically invoke the DGL
server. However, these programs can still be run remotely without modifying
the source code, simply by relinking them with the shared GL (-lgl_s) and by
linking with the Sun library (-Isun) if the Network Information Service (NIS)
is desired.

Writing a network-transparent GL program is no different than writing a
standalone GL program, except for optimizing performance.

Graphics calls are buffered from the client to the server, so you must flush the
buffer periodically. The subroutine gflush() flushes the client buffer so GL
calls can be received by the server.

gflush

The DGL client buffers calls to GL subroutines for efficient block transfer to the
graphics server. The subroutine gflush() explicitly flushes the
communication buffers and delivers all the untransmitted graphics data that
is in the buffer to the graphics server.

Using the GL in a Networked Environment

GL subroutines that return data implicitly flush the communication buffers. In
most programs, the implicit flushing that is performed by subroutines that
return data is usually sufficient.

Note: All programs that are run over the network must call gflush() if the
last command is a drawing command. No drawing is guaranteed to
happen until gflush() s called.

The following situation illustrates a typical use of gflush()

A program calls some Graphics Library subroutines that are buffered and not
flushed. The program then either computes or blocks for a while, waiting for
non-graphic I/0. gflush() must be called if the results of the buffered GL
subroutines are to be seen on the host display before and during the pause.

Another reason for using gflush() is to reduce display jerkiness. If the client
is computing data and then sending the data to the graphics server without
implicit or explicit flushes, the data will arrive at the graphics server in large
batches. The server may process this data very quickly and then wait for the
next large batch of data. The rapid processing of GL subroutines followed by
a pause results in an undesirable “jerky” appearance. In these cases it is
probably bestto call gflush() periodically. For example, a logical place to call
gflush() s after every swapbuffers() call.

Note: Performing too many flushes can adversely effect performance.

finish

finish() is useful when there are large network and pipeline delays.

finish() blocks the client process until all previous subroutines execute. First,
the communication buffers on the client machine are flushed. On the graphics
server, all unsent subroutines are forced down the Geometry Pipeline to the
bitplanes, then a final token is sent and the client process blocks until the token
goes through the pipeline and an acknowledgment is sent to the graphics
server and forwarded to the client process.

The following example illustrates a typical use of finish()
A client calls GL subroutines to display an image. The subroutines all fit into
the server’s network buffers and the image takes 30 seconds to render. The

client wants to wait until the image is completely displayed on the server’s
monitor before a message can be displayed on the client’s terminal. gflush()

Graphics Library Programming Guide 19-3

19-4

19.1.3

19.14

flushes the buffers, but does not wait for the server to process the buffers.
finish() flushes the buffers and waits not only for the server to process all the
graphics subroutines, but for the Geometry Pipeline to finish as well.

Establishing a Connection

To establish a connection, the client must have permission to connect to the
graphics server. Permission is verified as it is for X clients. See the xhost man
page for more information about client authentication procedures.

A server connection is established according to these rules:

1. If any of the following environment variables is defined, the server name
is the value of the defined variable highest in the following list:

1. DISPLAY
2. DGLSERVER
3. REMOTEHOST
2. If none of these environment variables are defined, then the server name

is set to the client’s hostname.

Note: The environment variables DGLTYPE and DGLTSOCKET are used for
Silicon Graphics internal debugging purposes.

Using rlogin

If you use rlogin to log in remotely to an IRIS workstation, REMOTEHOST is
defined. If DGLSERVER is undefined, the DGL protocol by default establishes
a connection back to the last remote system where you ran rlogin. For example,
if you rlogin from system A to system B and then rlogin from system B to
system C, REMOTEHOST is set to B on system C. In this example the default
graphics connection is B.

Using the GL in a Networked Environment

19.2 Limitations and Incompatibilities

The network-transparent GL has a few limitations and incompatibilities with
the previous releases of the GL that was used strictly for local imaging. These
limitations may prevent a GL application from executing properly only when
remote connections are used.

19.2.1 The callfunc Routine

The callfunc() subroutine does not function in a GL program that is run
remotely. Any references to callfunc() will result in a run-time error when
executing the program.

19.2.2 Pop-up Menu Functions

A maximum of 16 unique callback functions are supported. Freeing pop-up
menus does not free up callback functions. If you use too many callback
functions, you get the client error:

dgl error (pup): too many callbacks

19.2.3 Interrupts and Jumps

You cannot interrupt the execution of a remotely called GL subroutine or
pop-up menu callback function without returning back to that subroutine
before calling another subroutine. This illegal condition typically results when
you set an alarm or timer interrupt to go off and then block the program with
aqgread() call. If the signal handler does not return to the gread() |,
unpredictable results are likely (for example, it does a longjmp(3C) to some
non-local location).

Graphics Library Programming Guide 19-5

19.3

19-6

Using Multiple Server Connections

19.3.1

Connections to multiple graphics servers from one GL client program are
supported and there are mechanisms for creating, multiplexing, and
destroying server connections. You can use GL or mixed-model (X Window
System and GL) subroutines for managing multiple server connections. Server
processes normally reside on different server machines, but they can also
reside on the same machine.

There are advantages to using multiple graphics servers, for example, some
applications may require multiple windows, each with very high resolution
graphics. Multiple windows on the same server must share one screen’s
resolution; however, with the network transparent feature of the GL, an
application can control multiple servers, each of which can devote its full
screen resolution to its windows.

Another possible application for multiple servers is improving performance
when displaying multiple views of complex objects. If multiple views are
displayed on multiple servers, performance is linearly increased by the
number of servers. For example, an application can create a display list for a
car on each of the servers that includes material and lighting parameters. Each
server is given a different set of viewing parameters and then used to display
the object.

A slight variation of the previous example is to have each server display a
different representation of the object. For example, one server displays a
depth-cued wireframe mesh of the car, another server displays a flat shaded
polygonal representation of the car, and a third server displays a smooth
shaded lighted surface representation of the car. If the display list for each of
these representations is very large, multiple servers can eliminate or reduce
paging, because each server needs only the display list for its representation.

Establishing and Closing Multiple Network Connections

The subroutines dglopen() anddgiclose() allow a GL program to open and
close graphics connections to server machines. You don’t have to use these
subroutines if your application is running on a single server because there is a
default connection procedure, but you must use them if you are connecting to
multiple servers.

Using the GL in a Networked Environment

Using dglopen to Open a Connection

dglopen() opens a connection to a graphics server, and makes it the current
connection. After a connection is established, all graphics preferences, input,
and output are directed to that connection.

Communication remains enabled over the connection either until the
connection is closed, or until a different connection is opened. A remote
connection is closed by calling dgiclose() ~ with the server identifier returned
by dglopen() . A different connection is selected by calling a subroutine that
takes a graphics window identifier as an input parameter. The server
connection associated with that graphics window identifier becomes the
current connection.

To establish a connection, the client host must have permission to connect to
the graphics server. Permission is verified as it is for X clients (see the xhost
man page for more information about client authentication procedures).

To open a connection, you call dglopen() with a pointer to the server name
(svname) and the type of connection you want.

Specify the server name as follows:

[[username]password@]hostname[:server[.screen]]

The username and password parameters are ignored; they are included for
compatibility only. The hostname must be an Internet host name recognized by
gethostbyname. If the connection succeeds, dglopen() returns the server
identifier, a non-negative integer. Otherwise, dglopen() indicates a failure by
returning a negative integer, the absolute value of which indicates the reason
for failure.

Two types of connections are supported:

< DGLLOCAL is a direct connection to the local graphics hardware. This
type of connection is not supported on client systems without IRIS
graphics hardware.

e DGLTSOCKET is a TCP/IP socket connection to a remote host.

Because you can mimic the behavior of a remote connection by using a
DGLTSOCKET connection on a single machine, you can use the
DGLTSOCKET connection during the development process to debug a
remote application without connecting to another machine.

Graphics Library Programming Guide 19-7

19-8

The following sequence of events occurs when a DGLTSOCKET connection is
attempted:

1. The service sgi-dgl is looked up in /etc/services to get a port number. If the
service is not found, then an error occurs.

2. The server’s name is looked up in /etc/hosts or by the Network
Information Service (NIS) to get an Internet address. If the host is not
found, then an error occurs.

3. An Internet stream socket is created and some of its options are set.

4. A connection to the server machine is attempted with a small time-out. If
the connection is refused, the timeout is doubled and the connection
retried. If after several tries, the connection is still refused, an error occurs.

5. Asuccessful connection is made and the server’s Internet daemon
invokes a copy of the graphics server. The graphics server process inherits
the socket for communicating with the client program.

6. The graphics server uses the X authentication model to verify the login.
Authentication is accomplished by the same mechanism as for X clients.
See xhost(1) for more details.

7. The server process’s group and user ID are changed according to the
entry in /etc/passwd.

Using dglclose to Close a Connection

To destroy a graphics server process and its connection, call dgiclose() with
the server identifier returned by dglopen() . This terminates the graphics server
process, freeing system resources, for example, open windows, that had been
allocated and closes the graphics connection, freeing associated system
resources on the client machine. Calling dgiclose() with a negative server
identifier closes all graphics server connections.

After dgiclose() , there is no current connection. In order to resume
rendering, you have to select another valid connection by calling a routine that
takes a graphics window id as a parameter (such as winset) or you have to
open another connection with dglopen() . Although it is not necessary, it is
recommended that dgliclose(-1) be called before exiting a GL application.
This ensures that the graphics server processes exit cleanly.

Using the GL in a Networked Environment

19.3.2 Graphics Input

Each graphics server has its own keyboard, mouse, and optional dial and
button box. The graphics input subroutines gtest() , gread() , qdevice() ,
getvaluator() , setvaluator() ,and noise() execute on the current
graphics server. The client program can therefore solicit input from multiple
keyboards and mice. For most programs, it will make sense to get input from
only one graphics server. In all cases, the programmer must make sure that the
connection to the current graphics server is set correctly when graphics input
is solicited.

19.3.3 Local Graphics Data

Each server process runs a separate copy of the GL and has its own local set of
graphics data. For example, linestyles, patterns, fonts, materials, lights, and
display list objects are local to each graphics server. When graphics data is
defined, it is defined only on the current graphics server; other servers do not
define it. You must be careful to reference local graphics data only on the server
where it is defined. If a display list or font is used on multiple servers, it must
be defined on each server.

19.3.4 Sample Program - Multiple Connections on a Local Host

This sample program illustrates how to establish multiple connections on a
local host to solicit multiple graphics input.

#ndude <sttioh>
#ndude <gigh>

#ndude <gldevioel>
#ndude <sysypesh>
#indude <systimeh>

seticvoid DoLoop();

l{ongmﬁ(rtargc char*argV)
inti;
longwidl, wic2,
fd_setreadfds;
longgl fdll, gl fo2;
intrfound;

Graphics Library Programming Guide 19-9

dgopen (", DGLTSOCKET), force socketconnecion o local host
widl=winopen(\Win 1),

QuieviceINPUTCHANGE),

quieviceL EFTMOUSE),

quevice(ESCKEY);

Cevice(REDRAW),

RGBmode);

goonfigy);

cpack(OxiOOf);

dear();

finish();

dglopen (*, DGLTSOCKET); /*foroe socket connection tolocal host*/
wid2=winopen(Win 2,
opevice(INPUTCHANGE);
qdevice(LEFTMOUSE);
OdeVice(ESCKEY);
odevice(REDRAW);

RGBmodke);
goortig)
qack(;
dear()

finishy);

FD_ZERO@readts),

winset (widlL);

if(@_fol =cgetid() <0){
printi(‘bad fle descriptor %6, gl fol);

} exi-1);

winset (wic2);

if(@_fd2=qgetid() <0){
printi(‘bad fle descriptor %o, gl fo2);

} exi(-1);

whie(1){
FD_SET(d 2, &reas),
FD_SET(gl fol1, &readlds);
round=select (gettiablesize(), &reaids, 0,0, 0);
printitselectriound =%, nfound);

19-10 Using the GL in a Networked Environment

i(FD_ISSET(d._ i, &reacliis){

winsetiwidy);
DoLoop);
}
if(FD_ISSET(g fd2, &readfds)){
i i),
DoLoop);
}
}
}
staticvoid DoL.oop()
{
longdev;
shortval,
Wwhie (gest){
dev=qread(&vl),
switch(dev){
case INPUTCHANGE:
Pt INPUTCHANGE: wid =%’ val);
break;
case LEFTMOUSE:
printiLEFTMOUSE; val =%6c, val)
bresk;
case REDRAW:
Pt REDRAW: wid =%’ val);
winset{val),
dear()
finish();
break;
case ESCKEY:
gexi();
exit-1);
}
}
}

Graphics Library Programming Guide

19-11

19.4

19-12

Configuration of the Network Transparent Interface

19.4.1

The DGL protocol software consists of two parts: a client library and a graphics
server daemon. The client library is built into the shared GL (/usr/lib/libgl_s.a)
and the graphics server daemon is /usr/etc/dgld. The DGL protocol gets an
Internet port number from /etc/services, which has an entry for sgi-dgl (see
services(4)).

inetd

The graphics server daemon for TCP socket connections is automatically
started by inetd(1M). inetd reads its configuration file to determine which
server programs correspond to which sockets. The standard configuration file,
/usr/etc/inetd.conf, has an entry for sgi-dgl. When a request for a connection is

made:

1. The service sgi-dgl is looked up in /etc/services to get a port number. If the
service is not found, then an error occurs.

2. The server’s name is looked up in /etc/hosts or by the Network
Information Service (NIS) to get an Internet address. If the host is not
found, then an error occurs.

3. An Internet stream socket is created and some of its options are set.

4. A connection to the server machine is attempted with a small timeout
allowance. If the connection is refused, the timeout is doubled and the
connection retried. If after several tries, the connection is still refused, an
error occurs.

5. A successful connection is made and the server’s Internet daemon
invokes a copy of the DGL graphics server. The graphics server process
inherits the socket for communicating with the DGL client program.

6. The graphics server uses the X authentication model to verify the login.
Authentication is accomplished by the same mechanism as for X clients
(see xhost(1)).

7. The server process’s group and user ID are changed according to the

entry in /etc/passwd.

Using the GL in a Networked Environment

19.4.2 dgld

The dgld daemon is the server for remote graphics clients. The server provides
both a subprocess facility and a networked graphics facility. dgld is started by
inetd when a remote request is received.

Local connections are not controlled by dgld; instead, a client program running
on an IRIS host calls GL subroutines directly on the host machine. No
authentication is performed for local connections.

TCP socket connections are serviced by the Internet server daemon inetd. inetd
listens for connections on the port indicated in the sgi-dgl service specification.
When a connection is found, inetd starts dgld as specified by the file
/usr/etc/inetd.conf and gives it the socket.

19.5 Error Messages

Error messages are output to a message file. The message file defaults to stderr.
Error messages have the following format:

pgm-name error (routine-name): error-text
pgm-name is either dgl for client errors or dgld for server errors.

routine-name is the name of the system service or internal routine that failed
or detected the error.

error-text is an explanation of the error.

Graphics Library Programming Guide 19-13

19.5.1 Connection Errors

Table 19-1 lists the internally generated error values (defined in <errno.h>) that
are reported when a connection fails.

Error Value Explanation

ENODEV type is not a valid connection type
EACCESS login incorrect or permission denied
EMFILE too many graphics connections are

currently open

ENOPROTOOPT DGL service not found in /etc/services
EPROTONOSUPPORT DGL version mismatch
ERANGE invalid or unrecognizable number

representation

ESRCH window manager is not running on the
graphics server

Table 19-1 Error Values

19.5.2 Client Errors

Client error messages are output to stderr. For example, if NIS is not enabled
and /etc/hosts does not include an entry for the server host foobar, the following
error message is output when a connection to is requested:

dgl error (gethostbyname): can’t get name for foobar
If the client detects a condition that is fatal, it exits with an errno value that best

indicates the condition. If a system call or service returns an error number
(errno or h_errno), this number is used as the exit number.

19-14 Using the GL in a Networked Environment

Table 19-2 lists all exit values that are internally generated (not the result of a
failed system call or service).

Exit Value Explanation
ENOMEM out of memory
EIO read or write error

Table 19-2 DGL Client Exit Values

The EIO value, accompanied by the message

dgl error (comm): read returned O

usually means that communication with the server has been interrupted or
was not successfully established. The configuration of the server machine
should be checked (see Section 19.4).

19.5.3 Server Errors

Server error messages are output to stderr by default. For example, if /etc/hosts
does not include an entry for the client host, the following error messages are
be output:

dgld error (gethostbyaddr): can’t get name for 59000002
dgld error (comm_init): fatal error 1

The standard inetd.conf file runs the graphics server with the I and M options.
The | option informs the graphics server that it was invoked from inetd and
enables output of all error messages to the system log file maintained by
syslogd(1M). The M option disables all message output to stderr.

If the DGL server is not working properly, check the system log file for error

messages. Each entry in the SYSLOG file includes the date and time, identifies
the program as dgld, and includes the process identification number (PID) for
the server process. The rest of the error message is the text of the error message.

Graphics Library Programming Guide 19-15

1954

Exit Status

When the dgld graphics server exits, the exit status indicates the reason for the
exit. A normal exit has an exit status of zero. A normal exit occurs when either
the client calls dglclose() or when zero bytes are read from the graphics
connection. The latter case can occur when the client program exits without
calling dgiclose() or terminates abnormally.

A non-zero exit status implies an abnormal exit. If the graphics server program
detects a condition that is fatal, it exits with an errno value that best indicates
the condition. If a system call or service returned an error number (errno or
h_errno), this number is used as the exit number.

Table 19-3 lists all exit values that are internally generated (not the result of a

failed system call or service).

Exit Value Explanation

0 normal exit

ENODEV invalid communication connection type
ENOMEM out of memory

EINVAL invalid command line argument
ETIMEDOUT connection timed out

EACCESS login incorrect or permission denied
EIO read or write error

ENOENT invalid Graphics Library routine number
ENOPROTOOPT dgl/tcp service not found in /etc/services
ERANGE invalid or unrecognizable number

representation

Table 19-3 DGL Server Exit Value

Using the GL in a Networked Environment

