
TMS320C2x Evaluation Module

Addendum to the
 TMS320C2x C Source Debugger

User’s Guide

Literature Number: SPRU085
Reprinted October 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

iii

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and
can radiate radio frequency energy and has not been tested for compliance with the limits of com-
puting devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide rea-
sonable protection against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case the user at his own
expense will be required to take whatever measures may be required to correct this interference.

TRADEMARKS

MS-DOS and MS-Windows are registered trademarks of Microsoft Corp.

PC-DOS is a trademark of International Business Machines Corp.

iv

 Contents

v

Contents

1 Installing the Evaluation Module and the C Source Debugger 1-1.
Lists the hardware and software you’ll need to install the EVM and C source debugger; provides
installation instructions for PC systems running MS-DOS or PC-DOS.

1.1 What You’ll Need 1-2.
Hardware checklist 1-2.
Software checklist 1-3.

1.2 Step 1: Installing the EVM Board in Your PC 1-4.
Preparing the EVM board for installation 1-4.
Setting the EVM board into your PC 1-6.

1.3 Step 2: Installing the Debugger Software 1-7.
1.4 Step 3: Setting Up the Debugger Environment 1-8.

Invoking the new or modified batch file 1-9.
Modifying the PATH statement 1-9.
Setting up the environment variables 1-9.
Identifying the correct I/O switches 1-10.

1.5 Invoking the Debugger 1-12.
Selecting the screen size (–b option) 1-13.
Clearing memory (–c option) 1-13.
Identifying additional directories (–i option) 1-13.
Identifying the port address (–p option) 1-13.
Loading the symbol table only (–s option) 1-14.
Identifying a new initialization file (–t option) 1-14.
Loading without the symbol table (–v option) 1-14.
Ignoring D_OPTIONS (–x option) 1-14.

1.6 Exiting the Debugger 1-14.
1.7 Installation Error Messages 1-15.
1.8 Using the Debugger With Microsoft Windows 1-15.

2 New Features of the TMS320C2x C Source Debugger 2-1.
Describes the new features of the ’C2x C source debugger.

2.1 Zooming the Active Window 2-2.
2.2 Defining Your Own Command Strings 2-3.
2.3 Entering Operating-System Commands (DOS Only) 2-5.

Entering a single command from the debugger command line 2-5.
Entering several commands from a system shell 2-6.

Contents

vi Contents

2.4 Recording Information From the Display Area 2-6.
2.5 Additional Batch File Features 2-7.

Echoing strings in a batch file 2-7.
Controlling command execution in a batch file 2-8.

2.6 Patch Assembly 2-10.
Additional information about modifying assembly language code 2-12.

2.7 Using Additional MEMORY Windows 2-12.
2.8 Displaying Data in Alternative Formats 2-14.

Changing the default format for specific data types 2-14.
Changing the default format with ?, MEM, DISP, and WA 2-16.

2.9 Associating Sound With Error Messages 2-16.

3 Documentation Errors in the TMS320C2x C Source Debugger User’s Guide 3-1.
Describes documentation errors or modifications in the TMS320C2x C Source Debugger
User’s Guide.

3.1 Entering Text in a Dialog Box 3-2.
3.2 Filling a Block of Memory 3-3.
3.3 Identifying Breakpoints That Are Set 3-4.
3.4 Resizing a Window 3-4.
3.5 Moving a Window 3-5.
3.6 Using SCONFIG Files 3-5.
3.7 Setting the Characteristics of a Memory Range 3-5.
3.8 Using the ?, DISP, MEM, and WA Commands 3-7.

 Tables

vii

Tables

1–1 EVM Board Switch Settings 1-5.
1–2 Your Switch Settings 1-5.
1–3 Identifying Nondefault I/O Address Space 1-10.
1–4 Summary of Debugger Options 1-12.
2–1 Predefined Constants for Use With Conditional Commands 2-8.
2–2 Display Formats for Debugger Data 2-14.
2–3 Data Types for Displaying Debugger Data 2-15.

viii Contents

 Running Title—Attribute Reference

1-1

Chapter 1

Installing the Evaluation Module
and the C Source Debugger

This chapter helps you install the ’C2x evaluation module (EVM) and the C
source debugger on a PC running MS-DOS or PC-DOS. You can also use the
debugger with MS-Windows.

Topic Page

1.1 What You’ll Need 1-2
Hardware checklist 1-2
Software checklist 1-3

1.2 Step 1: Installing the EVM Board in Your PC 1-4
Preparing the EVM board for installation 1-4
Setting the EVM board into your PC 1-6

1.3 Step 2: Installing the Debugger Software 1-7

1.4 Step 3: Setting Up the Debugger Environment 1-8
Invoking the new or modified batch file 1-9
Modifying the PATH statement 1-9
Setting up the environment variables 1-9
Identifying the correct I/O switches 1-10

1.5 Invoking the Debugger 1-12
Selecting the screen size (–b option) 1-13
Clearing memory (–c option) 1-13
Identifying additional directories (–i option) 1-13
Identifying the port address (–p option) 1-13
Loading the symbol table only (–s option) 1-14
Identifying a new initialization file (–t option) 1-14
Loading without the symbol table (–v option) 1-14
Ignoring D_OPTIONS (–x option) 1-14

1.6 Exiting the Debugger 1-14

1.7 Installation Error Messages 1-15

1.8 Using the Debugger With Microsoft Windows 1-15

What You’ll Need

1-2 Installing the Evaluation Module and the C Source Debugger

1.1 What You’ll Need

The following checklists detail items that are shipped with the ’C2x C source
debugger and EVM and additional items you’ll need to use these tools.

Hardware checklist

host An IBM PC/AT or 100% compatible ISA/EISA-based PC with a
hard-disk system and a 1.2M floppy-disk drive

memory Minimum of 640K; in addition, if you are running under Microsoft
Windows, you’ll need at least 256K of extended memory.

display Monochrome or color (color recommended)

slot One 16-bit slot

EVM board
power requirements

Approximately 1.5 amperes @ 5 volts (15 watts)

optional hardware A Microsoft-compatible mouse

An EGA- or VGA-compatible graphics display card and a large mon-
itor. The debugger has several options that allow you to change the
overall size of the debugger display. If you have an EGA- or
VGA-compatible graphics card, you can take advantage of some of
these larger screen sizes. These larger screen sizes are most effec-
tive when used with a large (17” or 19”) monitor. (To use a larger
screen size, you must invoke the debugger with an appropriate op-
tion. For more information about options, refer to Section 1.5.)

miscellaneous
materials

Blank, formatted disks

 What You’ll Need

1-3

Software checklist

operating system MS-DOS or PC-DOS (version 3.0 or later)
Optional: Microsoft Windows (version 3.0 or later)

software tools TMS320 fixed-point family DSP (’C1x/’C2x/’C5x) assembler and
linker
Optional: TMS320C2x/C5x C compiler

required files † evmrst.exe resets the EVM

† c2xevm.out runs on the ’C2x, allowing the target processor and the
debugger to communicate.

optional files † evminit.cmd is a file that contains debugger commands. The version
of this file that’s shipped with the debugger defines a ’C2x memory
map. If this file isn’t present when you invoke the debugger, then all
memory is invalid at first. When you first start using the EVM, this
memory map should be sufficient for your needs. Later, you may
want to define your own memory map. For information about setting
up your own memory map, refer to the Defining a Memory Map
chapter in the TMS320C2x C Source Debugger User’s Guide.

† init.clr is a general-purpose screen configuration file. If this file isn’t
present when you invoke the debugger, the debugger uses the de-
fault screen configuration.

† The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration.

For information about these files and about setting up your own
screen configuration, refer to the Customizing the Debugger Display
chapter in the TMS320C2x C Source Debugger User’s Guide.

† Included as part of the debugger package

Step 1: Installing the EVM Board in Your PC

1-4 Installing the Evaluation Module and the C Source Debugger

1.2 Step 1: Installing the EVM Board in Your PC

This section contains the hardware installation information for the EVM.

Preparing the EVM board for installation

Before you install the EVM board, you must be sure that the board’s switches
are set to correctly identify the I/O space that the board can use. The EVM
board has two switches that identify your system’s I/O address space. You can
change these switch settings to identify the I/O address space that the EVM
uses in your system.

Figure 1–1 shows where these switches are on the EVM board and identifies
the switch numbers.

Figure 1–1. EVM Board I/O Switches

 1 2

on

off

default switch settings

’C2x

’C2x EVM

Switches are shipped in the default settings shown here and described in
Table 1–1. If you use an I/O space that differs from the default, change the
switch settings. Table 1–1 shows you how to do this.

In most cases, you can leave the switch settings in the default position.
However, you must ensure that the EVM I/O address space does not conflict
with other bus settings. For example, if you’ve installed a bus mouse in your
system, you may not be able to use the default switch settings for the I/O
address space—the mouse might use this space. Refer to your PC technical
reference manual and your other hardware-board manuals to see if there are
any I/O space conflicts. If you find a conflict, use one of the settings in
Table 1–1.

default

 Step 1: Installing the EVM Board in Your PC

1-5

Table 1–1.EVM Board Switch Settings

Switch #

Address Range 1 2

0x0240–0x025F on on

0x0280–0x029F on off

0x0320–0x033F off on

0x0340–0x035F off off

Some of the other installation steps require you to know which switch settings
you used. If you reset the I/O switches, note the modified settings here for later
reference.

Table 1–2.Your Switch Settings

Switch #

Address Range 1 2

Step 1: Installing the EVM Board in Your PC

1-6 Installing the Evaluation Module and the C Source Debugger

Setting the EVM board into your PC

After you’ve prepared the EVM board for installation, follow these steps.

Step 1: Turn off your PC’s power and unplug the power cord.

Step 2: Remove the cover of your PC.

Step 3: Remove the mounting bracket from an unused 16-bit slot.

Step 4: Install the EVM board in a 16-bit slot (see Figure 1–2).

Figure 1–2. EVM Board Installation

mounting bracket

EVM board

16-bit slot

rear of computer

Step 5: Tighten down the mounting bracket.

Step 6: Replace the PC cover.

Step 7: Plug in the power cord and turn on the PC’s power.

 Step 2: Installing the Debugger Software

1-7

1.3 Step 2: Installing the Debugger Software

This section explains the process of installing the debugger software on a
hard-disk system.

1) Make a backup copy of each disk. (If necessary, refer to the DOS manual
that came with your computer.)

2) On your hard disk or system disk, create a directory named c2xhll. This
directory will contain the debugger software.

MD C:\C2XHLL

3) Insert a product disk into drive A. Copy the debugger software onto the
hard disk or system disk.

COPY A:*.* C:\C2XHLL*.* /V

Repeat this step for each product disk.

4) You must set up to use the correct executable file according to whether or
not you plan to use Microsoft Windows. If you plan to use Microsoft Win-
dows, delete evm2x.exe from your hard disk and change the name of
evm2xw.exe to evm2x.exe:

DEL EVM2X.EXE
REN EVM2XW.EXE EVM2X.EXE

If you do not plan to use Microsoft Windows, delete evm2xw.exe from your
hard disk:

DEL EVM2XW.EXE

Step 3: Setting Up the Debugger Environment

1-8 Installing the Evaluation Module and the C Source Debugger

1.4 Step 3: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

� Modify the PATH statement to identify the c2xhll directory.
� Define environment variables so that the debugger can find the files it

needs.
� Identify any nondefault I/O space used by the EVM.

Not only must you do these things before you invoke the debugger for the first
time, you must do them any time you power up or reboot your PC.

You can accomplish these tasks by entering individual DOS commands, but
it’s simpler to put the commands in a batch file. You can edit your system’s
autoexec.bat file; in some cases, modifying the autoexec may interfere with
other applications running on your PC. So, if you prefer, you can create a sepa-
rate batch file that performs these tasks.

Figure 1–3 (a) shows an example of an autoexec.bat file that contains the sug-
gested modifications (highlighted in bold type). Figure 1–3 (b) shows a sample
batch file that you could create instead of editing the autoexec.bat file. (For the
purpose of discussion, assume that this sample file is named initdb.bat.) The
subsections following the figure explain these modifications.

Figure 1–3. DOS-Command Setup for the Debugger

(a) Sample autoexec.bat file to use with the debugger and EVM

DATE

TIME

ECHO OFF

PATH=C:\DOS;C:\C2XTOOLS; C:\C2XHLL

SET D_DIR=C:\C2XHLL

SET D_SRC=;C:\C2XCODE

SET D_OPTIONS=–P 280

CLS

PATH statement

Environment
variables and
I/O space

(b) Sample initdb.bat file to use with the debugger and EVM

PATH=C:\C2XHLL;%PATH%

SET D_DIR=C:\C2XHLL

SET D_SRC=C:\C2XCODE

SET D_OPTIONS=–P 280

PATH statement

Environment
variables and
I/O space

 Step 3: Setting Up the Debugger Environment

1-9

Invoking the new or modified batch file

� If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

AUTOEXEC

� If you create an initdb.bat file, you must invoke it before invoking the
debugger for the first time. If you are using Microsoft Windows, invoke
initdb.bat before entering Microsoft Windows. You’ll need to invoke
initdb.bat any time that you power-up or reboot your PC. To invoke this file,
enter:

INITDB

Modifying the PATH statement

Define a path to the debugger directory. The general format for doing this is:

PATH=C:\C2XHLL

This allows you to invoke the debugger without specifying the name of the
directory that contains the debugger executable file.

� If you are modifying an autoexec that already contains a PATH statement,
simply include ;C:\c2xhll at the end of the statement as shown in
Figure 1–3 (a).

� If you are creating an initdb.bat file, use a different format for the PATH
statement:

PATH=C:\C2XHLL;%PATH%

The addition of ;%path% ensures that this PATH statement won’t undo
PATH statements in any other batch files (including the autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables, named D_DIR, D_SRC, and D_OPTIONS. The rest of
the subsection tells you how to set up these environment variables. The format
for doing this is the same for both the autoexec.bat and initdb.bat files.

� Set up the D_DIR environment variable to identify the c2xhll directory:

SET D_DIR=C:\C2XHLL

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (evmrst, evminit.cmd, etc.) that the
debugger needs.

Step 3: Setting Up the Debugger Environment

1-10 Installing the Evaluation Module and the C Source Debugger

� Set up the D_SRC environment variable to identify any directories that
contain program source files that you’ll want to look at while you’re debug-
ging code. The general format for doing this is:

SET D_SRC=pathname1;pathname2...

For example, if your ’C2x programs were in a directory named c2xsrc on
drive C, the D_SRC setup would be:

SET D_SRC=C:\C2XSRC

� You can use several options when you invoke the debugger. If you use the
same options over and over, it’s convenient to specify them with
D_OPTIONS. The general format for doing this is:

SET D_OPTIONS= [object filename] [debugger options]

This tells the debugger to load the specified object file and use the speci-
fied options each time you invoke the debugger. These are the options that
you can identify with D_OPTIONS:

–b –bb –c –i pathname

–p port address –s –t filename –v

For more information about options, see Section 1.5. Note that you can
override D_OPTIONS by invoking the debugger with the –x option.

Identifying the correct I/O switches

Refer to your entries in Table 1–2 (page 1-5). If you didn’t modify the I/O
switches, skip this step.

If you modified the I/O switch settings, you must use the debugger’s –p option
to identify the I/O space that the EVM is using. You can do this each time you
invoke the debugger, or you can specify this information by using the
D_OPTIONS environment variable. Table 1–3 lists the nondefault I/O switch
setting and the appropriate line that you can add to the autoexec.bat or
initdb.bat file.

Table 1–3. Identifying Nondefault I/O Address Space

switch # Add this line to the

Address Range 1 2 batch file

0x0280–0x029F on off SET D_OPTIONS=–p 280

0x0320–0x033F off on SET D_OPTIONS=–p 320

0x0340–0x035F off off SET D_OPTIONS=–p 340

 Step 3: Setting Up the Debugger Environment

1-11

Note: I/O Address Space

1) The ’C2x EVM uses 96 bytes of the PC I/O space.

2) If you didn’t note the I/O switch settings, you may use a trial-and-error ap-
proach to find the correct –p setting. If you use the wrong setting, you’ll
see this error message when you try to invoke the debugger:

CANNOT INITIALIZE THE EVM ! !
– Check I/O configuration

If you plan to use the EVM for running other host applications (for example, a
modem), you must first load a valid object file into the EVM. To do this, invoke
the debugger and load the object file:

evm2x filename

Once you have entered the debugging environment and the object file has
been loaded, exit the debugger:

QUIT

At the DOS prompt, reset the EVM by entering the evmrst command:

EVMRST

If you decide to change your I/O switch settings, you can specify a different I/O
space by entering the –p option following evmrst. The evmrst command also
reads the D_OPTIONS environment variable in your autoexec.bat or initdb.bat
file. You can override D_OPTIONS by entering evmrst followed by the –x op-
tion.

Notes:

� Never reset the ’C2x EVM with evmrst unless you have first loaded a
valid object file to the EVM.

� If you plan to use the debugger with the EVM, you don’t need to reset the
EVM with evmrst before invoking the debugger.

Invoking the Debugger

1-12 Installing the Evaluation Module and the C Source Debugger

1.5 Invoking the Debugger

Here’s the basic format for the command that invokes the debugger:

evm2x [filename] [–options]

evm2x is the command that invokes the debugger.

filename is an optional parameter that names an object file that the debug-
ger will load into memory during invocation. The debugger looks
for the file in the current directory; if the file isn’t in the current di-
rectory, you must supply the entire pathname. If you don’t supply
an extension for the filename, the debugger assumes that the ex-
tension is .out.

–options supply the debugger with additional information (Table 1–4 sum-
marizes the available options).

In a DOS environment, you can also specify filename and option information
with the D_OPTIONS environment variable (see Setting up the environment
variables, page 1-9). Table 1–4 lists the debugger options and specifies
which debugger tools use the options; the subsections following the table de-
scribe the options.

Table 1–4.Summary of Debugger Options

Option Brief description

–b[b] Select the screen size

–c Clear memory

–i pathname Identify additional directories

–p port address Identify the port address

–s Load the symbol table only

–t filename Identify a new initialization file

–v Load without the symbol table

–x Ignore D_OPTIONS

 Invoking the Debugger

1-13

Selecting the screen size (–b option)

By default, the debugger uses an 80-character-by-25-line screen. You can use
one of the options below to specify a different screen size.

Option Description Display

none 80 characters by 25 lines Default display

–b 80 characters by 43 lines Any EGA or VGA display

–bb 80 characters by 50 lines VGA only

Clearing memory (–c option)

The –c option sets the memory reserved for uninitialized data to all zeros.

Identifying additional directories (–i option)

The –i option identifies additional directories that contain your source files.
Replace pathname with an appropriate directory name. You can specify sever-
al pathnames; use the –i option as many times as necessary. For example:

evm2x –i pathname1 –i pathname2 –i pathname3 . . .

Using –i is similar to using the D_SRC environment variable (see Setting up
the environment variables, page 1-9). If you name directories with both –i and
D_SRC, the debugger first searches through directories named with –i. The
debugger can track a cumulative total of 20 paths (including paths specified
with –i, D_SRC, and the debugger USE command).

Identifying the port address (–p option)

The –p option identifies the I/O port address that the debugger uses for com-
municating with the EVM. If you used the default switch settings, you don’t
need to use the –p option. If you used nondefault switch settings, you must
use –p . Refer to your entries in the Your Settings table, page 1-5; depending
on your switch settings, replace port address with one of these values:

Switch 1 Switch 2 Option

on on –p 240 (optional)

on off –p 280

off on –p 320

off off –p 340

If you didn’t note the I/O switch settings, you can use a trial-and-error approach
to find the correct –p setting. If you use the wrong setting, you will see an error
message when you invoke the debugger.

Invoking the Debugger / Exiting the Debugger

1-14 Installing the Evaluation Module and the C Source Debugger

Loading the symbol table only (–s option)

If you supply a filename when you invoke the debugger, you can use the –s
option to tell the debugger to load only the file’s symbol table (without the file’s
object code). This is similar to the debugger’s SLOAD command.

Identifying a new initialization file (–t option)

The –t option allows you to specify an initialization command file that will be
used instead of evminit.cmd. If –t is present on the command line, the file spe-
cified by filename will be invoked as the command file instead of evminit.cmd.

Loading without the symbol table (–v option)

The –v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory space.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger
environment.

Ignoring D_OPTIONS (–x option)

The –x option tells the debugger to ignore any information supplied with
D_OPTIONS. For more information about D_OPTIONS, refer to page 1-10.

1.6 Exiting the Debugger

To exit the debugger and return to the operating system, enter this command:

quit

You don’t need to worry about where the cursor is or which window is
active—just type. If a program is running, press ESC to halt program execution
before you quit the debugger.

If you are running the debugger under Microsoft Windows, you can also exit
the debugger by selecting the exit option from the Microsoft Windows menu
bar.

 Installation Error Messages / Using the Debugger With Microsoft Windows

1-15

1.7 Installation Error Messages

While invoking the debugger, you may see the following message:

CANNOT INITIALIZE THE EVM ! !
– Check I/O configuration

To determine the problem, follow these actions:

� Check the EVM board to be sure it is installed snugly.

� Ensure your port address is set correctly:

� Check to be sure the –p option used with the D_OPTIONS environ-
ment variable matches the I/O address defined by your switch settings
(refer to Your Switch Settings, Table 1–2, and Identifying Nondefault
I/O Address Space, Table 1–3).

� Check to see if you have a conflict in address space with another bus
setting. If you have a conflict, change the switches on your board to
one of the alternate settings in Table 1–1. Modify the –p option of the
D_OPTIONS environment variable to reflect the change in your switch
settings.

1.8 Using the Debugger With Microsoft Windows

If you’re using Microsoft Windows, you can freely move or resize the debugger
display on the screen. If the resized display is bigger than the debugger re-
quires, the extra space is not used. If the resized display is smaller than re-
quired, the display is clipped. Note that when the display is clipped, it can’t be
scrolled.

You may want to create an icon to make it easier to invoke the debugger from
within the Microsoft Windows environment. Refer to your Microsoft Windows
manual for details.

You should run Microsoft Windows in either the standard mode or the 386
enhanced mode to get the best results.

1-16 Installing the Evaluation Module and the C Source Debugger

 Running Title—Attribute Reference

2-1

Chapter 2

New Features of the
TMS320C2x C Source Debugger

This chapter describes new debugger features that are not documented in the
TMS320C2x C Source Debugger User’s Guide.

Topic Page

2.1 Zooming the Active Window 2-2

2.2 Defining Your Own Command Strings 2-3

2.3 Entering Operating-System Commands (DOS Only) 2-5
Entering a single command from the debugger command line 2-5
Entering several commands from a system shell 2-6

2.4 Recording Information From the Display Area 2-6

2.5 Additional Batch File Features 2-7
Echoing strings in a batch file 2-7
Controlling command execution in a batch file 2-8

2.6 Patch Assembly 2-10
Additional information about modifying assembly language code 2-12

2.7 Using Additional MEMORY Windows 2-12

2.8 Displaying Data in Alternative Formats 2-14
Changing the default format for specific data types 2-14
Changing the default format with ?, MEM, DISP, and WA 2-16

2.9 Associating Sound With Error Messages 2-16

Zooming the Active Window

2-2 New Features of the TMS320C2x C Source Debugger

2.1 Zooming the Active Window

The easiest way to resize the active window is to zoom it. Zooming a window
makes it as large as possible so that it takes up the entire display (except for
the menu bar) and hides all the other windows. Unlike the SIZE command,
zooming is not affected by the window’s position in the display.

To “unzoom” a window, repeat the same steps you used to zoom it. This will
return the window to its prezoom size and position.

There are two basic ways to zoom or unzoom a window:

� By using the mouse
� By using the ZOOM command

1) Point to the upper left corner of the window. This corner is highlighted—
here’s what it looks like:

COMMAND

>>>

Copyright (c) 1990, 1992

TMS320C2x Revision 1

Loading sample.out

go main

upper left corner
(highlighted)

2) Click the left mouse button.

zoom You can also use the ZOOM command to zoom/unzoom the window. The
format for this command is:

zoom

For more information about the active window or manipulating windows, see
The Debugger Display chapter in the TMS320C2x C Source Debugger User’s
Guide.

 Defining Your Own Command Strings

2-3

2.2 Defining Your Own Command Strings

The debugger provides a shorthand method of entering often-used com-
mands or command sequences. This processing is called aliasing. Aliasing
enables you to define an alias name for the command(s) and then enter the
alias name as if it were a debugger command.

To do this, use the ALIAS command. The syntax for this command is:

alias [alias name [, “command string”]]

The primary purpose of the ALIAS command is to associate the alias name
with the debugger command you’ve supplied as the command string. How-
ever, the ALIAS command is versatile and can be used in several ways:

� Aliasing several commands. The command string can contain more
than one debugger command—just separate the commands with semi-
colons.

For example, suppose you always began a debugging session by loading
the same object file, displaying the same C source file, and running to a
certain point in the code. You could define an alias to do all these tasks at
once:

alias init,”load test.out;file source.c;go main”

Now you could enter init instead of the three commands listed within the
quote marks.

� Supplying parameters to the command string. The command string
can define parameters that you’ll supply later. To do this, use a percent
sign and a number (%1) to represent the parameter that will be filled in
later. The numbers should be consecutive (%1, %2, %3) unless you plan
to reuse the same parameter value for multiple commands.

For example, suppose that every time you filled an area of memory, you
also wanted to display that block in the MEMORY window:

alias mfil,”fill %1, %2, %3, %4;mem %1”

Then you could enter:

mfil 0xff80,1,0x18,0x1122

The first value (0xff80) would be substituted for the first FILL parameter
and the MEM parameter (%1). The second, third, and fourth values would
be substituted for the second, third, and fourth FILL parameters (%2, %3,
and %4).

Defining Your Own Command Strings

2-4 New Features of the TMS320C2x C Source Debugger

� Listing all aliases. To display a list of all the defined aliases, enter the
ALIAS command with no parameters. The debugger will list the aliases
and their definitions in the COMMAND window.

For example, assume that the init and mfil aliases had been defined as
shown in the previous two examples. If you entered:

alias

you’d see:

Alias Command
–––
INIT ––> load test.out;file source.c;go main
MFIL ––> fill %1,%2,%3,%4;mem %1

� Finding the definition of an alias. If you know an alias name but are not
sure of its current definition, enter the ALIAS command with just an alias
name. The debugger will display the definition in the COMMAND window.

For example, if you had defined the init alias as shown in the first example
above, you could enter:

alias init

Then you’d see:

”INIT” aliased as ”load test.out; file source.c;go main”

� Nesting alias definitions. You can include a defined alias name in the
command string of another alias definition. This is especially useful when
the command string would be longer than the debugger command line.

� Redefining an alias. To redefine an alias, re-enter the ALIAS command
with the same alias name and a new command string.

� Deleting aliases. To delete a single alias, use the UNALIAS command:

unalias alias name

To delete all aliases, enter the UNALIAS command with an asterisk
instead of an alias name:

unalias *

Note that the * symbol does not work as a wildcard.

 Defining Your Own Command Strings / Entering Operating-System Commands (DOS Only)

2-5

Note: Limitations of Alias Definitions

� Alias definitions are lost when you exit the debugger. If you want to reuse
aliases, define them in a batch file.

� Individual commands within a command string are limited to an expand-
ed length of 132 characters. The expanded length of the command
includes the length of any substituted parameter values.

2.3 Entering Operating-System Commands (DOS Only)

The debugger provides a simple method of entering DOS commands without
explicitly exiting the debugger environment. To do this, use the SYSTEM com-
mand. The format for this command is:

system [DOS command [, flag]]

The SYSTEM command behaves in one of two ways, depending on whether
or not you supply an operating-system command as a parameter:

� If you enter the SYSTEM command with a DOS command as a parameter,
then you stay within the debugger environment.

� If you enter the SYSTEM command without parameters, the debugger
opens a system shell. This means that the debugger will blank the debug-
ger display and temporarily exit to the operating-system prompt.

Use the first method when you have only one command to enter; use the
second method when you have several commands to enter.

Entering a single command from the debugger command line

If you need to enter only a single DOS command, supply it as a parameter to
the SYSTEM command. For example, if you want to copy a file from another
directory into the current directory, enter:

system copy a:\backup\sample.c sample.c

If the DOS command produces a display of some sort (such as a message),
the debugger will blank the upper portion of the debugger display to show the
information. In this situation, you can use the flag parameter to tell the debug-
ger whether or not it should hesitate after displaying the results of the DOS
command. Flag may be a 0 or a 1:

0 The debugger immediately returns to the debugger environment after
the last item of information is displayed.

1 The debugger does not return to the debugger environment until you
press . (This is the default.)

Entering Operating-System Commands (DOS Only) / Recording Information From the Display Area

2-6 New Features of the TMS320C2x C Source Debugger

In the preceding example, the debugger would open a system shell to display
the following message:

1 File(s) copied
Type Carriage Return To Return To Debugger

The message would be displayed until you pressed .

If you wanted the debugger to display the message and then return immediate-
ly to the debugger environment, you could enter the command in this way:

system copy a:\backup\sample.c sample.c,0

Entering several commands from a system shell

If you need to enter several commands, enter the SYSTEM command without
parameters. The debugger will open a system shell and display the DOS
prompt. At this point, you can enter any DOS command.

When you are finished entering commands and are ready to return to the
debugger environment, enter:

exit

Note: Memory Limitation When Using a System Shell

Available memory may limit the DOS commands that you can enter from a
system shell. For example, you would not be able to invoke another version
of the debugger.

2.4 Recording Information From the Display Area

The information shown in the display area of the COMMAND window can be
written to a log file. The log file is a system file that contains commands you’ve
entered, their results, and error or progress messages. To record this informa-
tion in a log file, use the DLOG command.

Log files can be executed by using the TAKE command. When you use DLOG
to record the information from the COMMAND window display area, the de-
bugger automatically precedes all error or progress messages and command
results with a semicolon to turn them into comments. This way, you can easily
re-execute the commands in your log file by using the TAKE command.

� To begin recording the information shown in the COMMAND window dis-
play area, use:

dlog filename

This command opens a log file called filename that the information is re-
corded into.

 Recording Information From the Display Area / Additional Batch File Features

2-7

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [,{a | w}]

The optional parameters of the DLOG command control how the log file is
created and/or used:

� Creating a new log file. If you use the DLOG command without one of
the optional parameters, the debugger creates a new file that it records the
information into. If you are recording to a log file already, entering a new
DLOG command and filename closes the previous log file and opens a
new one.

� Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
options; you will lose the contents of an existing file if you don’t use the ap-
pend (a) option.

2.5 Additional Batch File Features

Echoing strings in a batch file

When executing a batch file, you can display a string to the COMMAND win-
dow by using the ECHO command. The syntax for the command is:

echo string

This displays the string in the COMMAND window display area.

For example, you may want to document what is happening during the execu-
tion of a certain batch file. To do this, you could use the following line in your
batch file to indicate that you are creating a new memory map for your device:

echo Creating new memory map

(Notice that the string should not be in quotes.)

Additional Batch File Features

2-8 New Features of the TMS320C2x C Source Debugger

When you execute the batch file, the following message appears:

.

.
Creating new memory map
.
.

Note that any leading blanks in your string are removed when the ECHO com-
mand is executed.

Controlling command execution in a batch file

In batch files, you can control the flow of debugger commands. You can
choose to conditionally execute debugger commands or set up a looping situa-
tion by using IF/ELSE/ENDIF or LOOP/ENDLOOP, respectively.

� To conditionally execute debugger commands in a batch file, use the
IF/ELSE/ENDIF commands. The syntax is:

if Boolean expression
debugger command
debugger command
.
.
[else
debugger command
debugger command
.
.]
endif

The debugger includes some predefined constants for use with IF. These
constants evaluate to 0 (false) or 1 (true). Table 2–1 shows the constants
and their corresponding tools.

Table 2–1.Predefined Constants for Use With Conditional Commands

Constant Debugger Tool

$$SWDS$$ software development system

$$SIM$$ simulator

$$EVM$$ evaluation module

If the Boolean expression evaluates to true (1), the debugger executes all
commands between the IF and ELSE or ENDIF. Note that the ELSE por-
tion of the command is optional. (See the Basic Information About C
Expressions chapter in the TMS320C2x C Source Debugger User’s
Guide for more information about expressions and expression analysis.)

 Additional Batch File Features

2-9

One way you can use these predefined constants is to create an initializa-
tion batch file that works for any debugger tool. This is useful if you are us-
ing, for example, both the SWDS and the EVM. To do this, you can set up
the following batch file:

if $$SWDS$$
echo Invoking initialization batch file for SWDS.
use \c2xhll
take dbinit.cmd
.
.
endif

if $$EVM$$
echo Invoking initialization batch file for EVM.
use \c2xhll
take evminit.cmd
.
.
endif
.
.

In this example, the debugger will execute only the initialization com-
mands that apply to the debugger tool that you invoke.

� To set up a looping situation to execute debugger commands in a batch
file, use the LOOP/ENDLOOP commands. The syntax is:

loop expression
debugger command
debugger command
.
.
endloop

These looping commands evaluate in the same method as in the run
conditional command expression. (See the Basic Information About C
Expressions chapter in the TMS320C2x C Source Debugger User’s
Guide for more information about expressions and expression analysis.)

� If you use an expression that is not Boolean, the debugger evaluates
the expression as a loop count. For example, if you wanted to execute
a sequence of debugger commands ten times, you would use the fol-
lowing:

loop 10
step
.
.
endloop

Additional Batch Files Features / Patch Assembly

2-10 New Features of the TMS320C2x C Source Debugger

The debugger treats the 10 as a counter and executes the debugger
commands ten times.

� If you use a Boolean expression, the debugger executes the com-
mands repeatedly as long as the expression is true. This type of ex-
pression has one of the following operators as the highest precedence
operator in the expression:

> >= <
<= == !=
&& || !

For example, if you want to continuously trace some register values,
you can set up a looping expression like the following:

loop !0
step
? PC
? AR0
endloop

The IF/ELSE/ENDIF and LOOP/ENDLOOP commands work with the follow-
ing conditions:

� You can use conditional and looping commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You can’t nest conditional and looping commands within the same batch
file.

2.6 Patch Assembly

You can modify the code in the disassembly window on a statement-by-state-
ment basis. The method for doing this is called patch assembly. Patch
assembly provides a simple way to temporarily correct minor problems by
allowing you to change individual statements and instruction words.

You can patch-assemble code by using a command or by using the mouse.

patch Use the PATCH command to identify the address of the statement you want
to change and the new statement you want to use at that address. The format
for this command is:

patch address, assembly language statement

 Patch Assembly

2-11

For patch assembly, use the right mouse button instead of the left. (Clicking
the left mouse button sets a software breakpoint.)

1) Point to the statement that you want to modify.

2) Click the right button. The debugger will open a dialog box so that you can
enter the new statement. The address field will already be filled in; clicking
on the statement defines the address. The statement field will already be
filled in with the current statement at that address (this is useful when only
minor edits are necessary).

Patch assembly may, at times, cause undesirable side effects:

� Patching a multiple-word instruction with an instruction of lesser length will
leave “garbage” or an unwanted new instruction in the remaining old in-
struction fragment. This fragment must be patched with either a valid in-
struction or a NOP, or else unpredictable results may occur when running
code.

� Substituting a larger instruction for a smaller one will partially or entirely
overwrite the following instruction; you will lose the instruction and may be
left with another fragment.

If you want to insert a large amount of new code or if you want to skip over a
section of code, you can use a different patch assembly technique:

� To insert a large section of new code, patch a branch instruction to go to
an area of memory not currently in use. Using the patch assembler, add
new code to this area of memory, and branch back to the statement follow-
ing the initial branch.

� To skip over a portion of code, patch a branch instruction to go beyond that
section of code.

Effects of Patch Assembly

The patch assembler changes only the disassembled assembly
language code—it does not change your source code. After
determining the correct solution to problems in the disassembly, edit
your source file, recompile or reassemble it, and reload the new
object file into the debugger.

Patch Assembly / Using Additional MEMORY Windows

2-12 New Features of the TMS320C2x C Source Debugger

Additional information about modifying assembly language code

When using patch assembly to modify code in the disassembly window, keep
these things in mind:

� Directives. You cannot use directives (such as .global or .word).

� Expressions. You can use constants, but you cannot use arithmetic
expressions. For example, an expression like 12 + 33 is not valid in patch
assembly, but a constant such as 12 is allowed.

� Labels. You cannot define labels. For example, a statement such as the
following is not allowed:

LOOP: B LOOP

However, an instruction can refer to a label as long as the label is defined in
a COFF file that is already loaded.

� Constants. You can use hexadecimal, octal, decimal, and binary
constants. The syntax to input constants is the same as that for the DSP
assembler. (Refer to the TMS320 Fixed-Point DSP Assembly Language
Tools User’s Guide.)

� Error messages. The error messages for the patch assembler are the
same as the corresponding DSP assembler error messages. Refer to the
TMS320 Fixed-Point DSP Assembly Language Tools User’s Guide for a
detailed list of these messages.

2.7 Using Additional MEMORY Windows

The main way to observe memory contents is to view the display in a
MEMORY window. Four MEMORY windows are available. The default win-
dow, labeled MEMORY, is described in The Debugger Display chapter. Three
additional windows are called MEMORY1, MEMORY2, and MEMORY3. No-
tice that the default window does not have an extension number in its name;
this is because MEMORY1, MEMORY2, and MEMORY3 are pop-up windows
that can be opened and closed throughout your debugging session. Having
four windows allows you to view four different memory ranges.

The amount of memory that you can display is limited by the size of the individ-
ual MEMORY windows (which is limited only by the screen size). During a de-
bugging session, you may need to display different areas of memory within a
window or create an additional MEMORY window.

 Using Additional MEMORY Windows

2-13

To create an additional MEMORY window or to display another range of
memory in the current window, use the MEM command.

� Creating a new MEMORY window.

If the default MEMORY window is the only MEMORY window open and
you want to open another MEMORY window, enter the MEM command
with the appropriate extension number:

mem[#] address

For example, if you want to create a new memory window starting at ad-
dress 0x8000, you would enter:

mem1 0x8000

This displays a new window, MEMORY1, showing the contents of memory
starting at the address 0x8000.

The ’C2x has separate data, program, and I/O spaces. By default, the
MEMORY window shows data memory. If you want to display program
memory, you can enter the MEM command like this:

mem[#] address@prog

The @prog suffix identifies the address as a program memory address. To
display I/O space, use the @io suffix. You can also use @data to display
data memory. However, if you are displaying data memory, the @data is
unnecessary since data memory is the default.

� Displaying a new memory range in the current MEMORY window.

Displaying another block of memory identifies a new starting address for
the memory range shown in the current MEMORY window. The debugger
displays the contents of memory at address in the first data position in your
MEMORY window. The end of the range is defined by the size of the win-
dow.

If the only MEMORY window open is the default MEMORY window, you
can view different memory locations by entering:

mem address

To view different memory locations in the optional MEMORY windows, use
the MEM command with the appropriate extension number on the end. For
example:

To do this. . . Enter this. . .

View the block of memory starting at address
0x8000 in the MEMORY1 window

mem1 0x8000

View another block of memory starting at address
0x002f in the MEMORY2 window

mem2 0x002f

Using Additional MEMORY Windows / Displaying Data in Alternative Formats

2-14 New Features of the TMS320C2x C Source Debugger

You can close and reopen additional MEMORY windows as often as you like.

� Closing an additional MEMORY window.

Closing a window is a two-step process:

1) Make the appropriate MEMORY window the active window.

2) Press F4 .

Remember, you cannot close the default MEMORY window.

� Reopening an additional MEMORY window.

To reopen an additional MEMORY window after you’ve closed it, enter the
MEM command with its appropriate extension number.

2.8 Displaying Data in Alternative Formats
By default, all data is displayed in its natural format. This means that:

� Integer values are displayed as decimal numbers.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

However, any data displayed in the COMMAND, MEMORY, WATCH, or DISP
window can be displayed in a variety of formats.

Changing the default format for specific data types

To display specific types of data in a different format, use the SETF command.
The syntax for this command is:

setf [data type, display format]

The display format parameter identifies the new display format for any data of
type data type. Table 2–2 lists the available formats and the corresponding
characters that can be used as the display format parameter.

Table 2–2.Display Formats for Debugger Data

Display Format Parameter Display Format Parameter

Default for the data type * Hexadecimal x

ASCII character (bytes) c Octal o

Decimal d Valid address p

Exponential floating point e ASCII string s

Decimal floating point f Unsigned decimal u

Table 2–3 lists the C data types that can be used for the data type parameter.
Only a subset of the display formats applies to each data type, so Table 2–3
also shows valid combinations of data types and display formats.

 Displaying Data in Alternative Formats

2-15

Table 2–3.Data Types for Displaying Debugger Data

Valid Display Formats

Data Type c d o x e f p s u Default Display Format

char √ √ √ √ √ ASCII (c)

uchar √ √ √ √ √ Decimal (d)

short √ √ √ √ √ Decimal (d)

int √ √ √ √ √ Decimal (d)

uint √ √ √ √ √ Decimal (d)

long √ √ √ √ √ Decimal (d)

ulong √ √ √ √ √ Decimal (d)

float √ √ √ √ Exponential floating point (e)

double √ √ √ √ Exponential floating point (e)

ptr √ √ √ √ Address (p)

Here are some examples:

� To display all data of type short as an unsigned decimal, enter:

setf short, u

� To return all data of type short to its default display format, enter:

setf short, *

� To list the current display formats for each data type, enter the SETF
command with no parameters:

setf

You’ll see a display that looks something like this:

Display Format Defaults
Type char: ASCII
Type unsigned char: Decimal
Type int: Decimal
Type unsigned int: Decimal
Type short: Decimal
Type unsigned short: Decimal
Type long: Decimal
Type unsigned long: Decimal
Type float: Exponential floating point
Type double: Exponential floating point
Type pointer: Address

� To reset all data types back to their default display formats, enter:

setf *

Displaying Data in Alternative Formats / Associating Sound With Error Messages

2-16 New Features of the TMS320C2x C Source Debugger

Changing the default format with ?, MEM, DISP, and WA

You can also use the ?, MEM, DISP, and WA commands to show data in alter-
native display formats. (The ? and DISP commands can use alternative
formats only for scalar types, arrays of scalar types, and individual members
of aggregate types.)

Each of these commands has an optional display format parameter that works
in the same way as the display format parameter of the SETF command.

When you don’t use a display format parameter, data is shown in its natural
format (unless you have changed the format for the data type with SETF).

Here are some examples:

� To watch the PC in decimal, enter:

wa pc,,d

� To display memory contents in octal, enter:

mem 0x0,o

� To display an array of integers as characters, enter:

disp ai,c

The valid combinations of data types and display formats listed for SETF also
apply to the data displayed with DISP, ?, WA, and MEM. For example, if you
want to use display format e or f, the data that you are displaying must be of
type float or type double. Additionally, you cannot use the s display format
parameter with the MEM command.

For more information about using the DISP, ?, WA, and MEM commands, refer
to the Managing Data chapter of the TMS320C2x C Source Debugger User’s
Guide.

2.9 Associating Sound With Error Messages

You can associate a beeping sound with the display of error messages. To do
this, use the SOUND command. The format for this command is:

sound on | off

By default, no beep is associated with error messages (SOUND OFF). The
beep is helpful if the COMMAND window is hidden behind other windows.

 Running Title—Attribute Reference

3-1

Chapter 3

Documentation Errors in the TMS320C2x
C Source Debugger User’s Guide

This chapter identifies and corrects the documentation errors or modifications
in the TMS320C2x C Source Debugger User’s Guide.

Topic Page

3.1 Entering Text in a Dialog Box 3-2

3.2 Filling a Block of Memory 3-3

3.3 Identifying Breakpoints That Are Set 3-4

3.4 Resizing a Window 3-4

3.5 Moving a Window 3-5

3.6 Using SCONFIG Files 3-5

3.7 Setting the Characteristics of a Memory Range 3-5

3.8 Using the ?, DISP, MEM, and WA Commands 3-7

Entering Text in a Dialog Box

3-2
Documentation Errors in the TMS320C2x C Source Debugger User’s Guide

3.1 Entering Text in a Dialog Box

The Entering parameters in a dialog box subsection has changed. The follow-
ing information replaces it.

Many of the debugger commands have parameters. When you execute these
commands from pulldown menus, you must have some way of providing
parameter information. The debugger allows you to do this by displaying a
dialog box that asks for this information.

Entering text in a dialog box is much like entering commands on the command
line. For example, the Add entry on the Watch menu is equivalent to entering
the WA command. This command has three parameters:

wa expression [,[label] [, display format]]

When you select Add from the Watch menu, the debugger displays a dialog
box that asks you for this parameter information. The dialog box looks like this:

Label

Expression

Format

Watch Add

<<OK>> <C ancel>

You can enter an expression just as you would if you were to type the WA com-
mand; then press TAB or . The cursor moves down to the next parameter:

Label

Expression

Format

Watch Add

<<OK>> <C ancel>

MY_VAR

When the dialog box displays more than one parameter, you can use the arrow
keys to move from parameter to parameter. You can omit entries for optional
parameters, but the debugger won’t allow you to skip required parameters.

In the case of the WA command, the two parameters, label and format, are op-
tional. If you want to enter a parameter, you may do so; if you don’t want to use
these optional parameters, don’t type anything in their fields—just continue to
the next parameter.

 Entering Text in a Dialog Box / Filling a Block of Memory

3-3

Modifying text in a dialog box is similar to editing text on the command line:

� When you display a dialog box for the first time during a debugging ses-
sion, the parameter fields are empty. When you bring up the same dialog
box again, though, the box displays the last values that you entered. (This
is similar to having a command history.) If you want to use the same value,
just press TAB or to move to the next parameter.

� You can edit what you type (or values that remain from a previous entry)
in the same way that you can edit text on the command line. (See the How
to type in and enter commands subsection in the TMS320C2x C Source
Debugger User’s Guide.)

When you’ve entered a value for the final parameter, point and click on <OK>
to save your changes, or <Cancel> to discard your changes; the debugger
closes the dialog box and executes the command with the parameter values
you supplied.

3.2 Filling a Block of Memory

On page 9-10 of the TMS320C2x C Source Debugger User’s Guide, the basic
syntax for the FILL command is shown incorrectly; the correct syntax is as fol-
lows:

fill address, page, length, data

� The address parameter identifies the first address in the block.

� The page is a 1-digit number that identifies the type of memory (program,
data, or I/O) to fill:

To fill this type of
memory

Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

� The length parameter defines the number of words to fill.

� The data parameter is the value that is placed in each word in the block.

For example, to fill program memory locations 0x10FF–0x110D with the value
0xABCD, you would enter:

fill 0x10ff,0,0xf,0xabcd

Identifying Breakpoints That Are Set / Resizing a Window

3-4
Documentation Errors in the TMS320C2x C Source Debugger User’s Guide

3.3 Identifying Breakpoints That Are Set

On page 10-2 of the TMS320C2x C Source Debugger User’s Guide, it was
documented that breakpointed statements are highlighted with a BP> label
and are shown in a brighter, heavier font. Breakpointed statements are now
highlighted with a > character, along with the bright, heavy font:

DISASSEMBLY
00fc bf80 > meminit: LACC #5555h
00fe bf90 ADD #6666h
0100 bf90 ADD #777h

FILE: sample.c
00044
00045 > meminit();
00046 for (i=0; i < 0x50000; i++)
00047 {
00048 call(i);

A breakpoint is set at
this C statement;

notice how the line is
highlighted.

A breakpoint is also
set at the associated

assembly language
statement (it’s

highlighted, too).

3.4 Resizing a Window

On page 5-21 of the TMS320C2x C Source Debugger User’s Guide, the in-
formation about using the keyboard to size a window has changed. You have
only two debugger options for specifying the screen size (see page 1-13). As
a result, the following information replaces the SIZE, method 1 section in the
user’s guide:

SIZE, method 1: Use the width and length parameters. Valid values for the
width and length depend on the screen size and the window position on the
screen. If the window is in the upper left corner of the screen, the maximum
size of the window is the same as the screen size minus one line. (The extra
line is needed for the menu bar.) For example, if the screen size is 80 charac-
ters by 25 lines, the largest window size is 80 characters by 24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, as
described on page 2-2.

 Moving a Window / Using SCONFIG Files / Setting the Characteristics of a Memory Range

3-5

3.5 Moving a Window

On page 5-23 of the TMS320C2x C Source Debugger User’s Guide, the in-
formation about using the keyboard to move a window has changed. You have
only two debugger options for specifying the screen size (see page 1-13). As
a result, the following information replaces the MOVE, method 1 section in the
user’s guide:

MOVE, method 1: Use the X position and Y position parameters. You can
move a window by defining a new XY position for the window’s upper left cor-
ner. Valid X and Y positions depend on the screen size and the window size.
X positions are valid if the X position plus the window width in characters is less
than or equal to the screen width in characters. Y positions are valid if the Y
position plus the widow height is less than or equal to the screen height in lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 would be valid in this example.

3.6 Using SCONFIG Files

The file created by the SSAVE command in this version of the debugger saves
positional, screen size, and video mode information that was not saved by
SSAVE in previous versions of the debugger. The format of this new informa-
tion is not compatible with the old format. Do not use the SCONFIG files from
previous debugger versions; if you attempt to load an earlier version’s
SCONFIG file, the debugger will issue an error message and stop the load.

3.7 Setting the Characteristics of a Memory Range

With the EVM, SWDS, or simulator, you can set the memory specifications for
program memory, data memory, or I/O space. The following information cor-
rects areas of the TMS320C2x C Source Debugger User’s Guide:

� On page 7-6, the MA command has a parameter called type. The type can
be any of the keywords listed in the table; types IPORT, OPORT, and
IOPORT are not restricted to the simulator.

Setting the Characteristics of a Memory Range

3-6
Documentation Errors in the TMS320C2x C Source Debugger User’s Guide

� In the syntax description for the MS command (page 9-9), the page param-
eter information should be as follows:

� The page is a 1-digit number that identifies the type of memory (pro-
gram, data, or I/O) to save:

To save this type of
memory

Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

� The syntax for the ADDR command (page 12-7), has changed:

addr address[@prog | @data | @io]
addr function name

By default, the address parameter is treated as a program-memory ad-
dress. However, you can follow it with @prog to identify program memory,
@data to identify data memory, or @io to identify I/O space.

� The syntax for the EVAL command (page 12-15), has changed:

eval expression[@prog | @data | @io]
e expression[@prog | @data | @io]

If the expression identifies an address, you can follow it with @prog to
identify program memory, @data to identify data memory, or @io to identi-
fy I/O space. Without the suffix, the debugger treats an address expres-
sion as a data-memory location.

� In the syntax description for the FILL command (page 12-16), the page pa-
rameter information should be as follows:

� The page is a 1-digit number that identifies the type of memory (pro-
gram, data, or I/O) to fill:

To fill this type of
memory

Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

 Using the ?, DISP, MEM, and WA Commands

3-7

3.8 Using the ?, DISP, MEM, and WA Commands

The descriptions for the ?, DISP, MEM, and WA commands have changed.
The following information replaces the information in the TMS320C2x C
Source Debugger User’s Guide.

Evaluate Expression?

Syntax ? expression[@prog | @data | @io] [, display format]

Menu selection none

Description The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The expression can be any
C expression, including an expression with side effects; however, you cannot
use a string constant or function call in the expression.

If the expression identifies an address, you can follow it with @prog to identify
program memory, @data to identify data memory, or @io to identify I/O space.
Without the suffix, the debugger treats an address expression as a data-
memory location.

If the result of expression is not an array or structure, then the debugger
displays the results in the COMMAND window. If expression is a structure or
array, ? displays the entire contents of the structure or array; you can halt long
listings by pressing ESC .

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

Open DISP Windowdisp

Syntax disp expression[@prog | @data | @io] [, display format]

Menu selection none

Description The DISP command opens a DISP window to display the contents of an array,
structure, or pointer expressions to a scalar type (of the form *pointer). If the
expression is not one of these types, then DISP acts like a ? command.

Using the ?, DISP, MEM, and WA Commands

3-8
Documentation Errors in the TMS320C2x C Source Debugger User’s Guide

If the expression identifies an address, you can follow it with @prog to identify
program memory, @data to identify data memory, or @io to identify I/O space.
Without the suffix, the debugger treats an address expression as a data-
memory location.

Once you open a DISP window, you may find that a displayed member is itself
an array, structure, or pointer:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x0000

You can display the additional data (the data pointed to or the members of the
array or structure) in another DISP window by using the DISP command again,
using the arrow keys to select the field and then pressing F9 , or pointing the
mouse cursor to the field and pressing the left mouse button. You can have up
to 120 DISP windows open at the same time.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

The display format parameter can be used only when you are displaying a
scalar type, an array of scalar type, or an individual member of an aggregate
type.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0
disp *(float *)123
disp *(char *)0x111

This shows memory in the DISP window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other
locations are offset from that location.

 Using the ?, DISP, MEM, and WA Commands

3-9

Modify MEMORY Window Displaymem

Syntax mem [#] expression [, display format]

Menu selection none

Description The MEM command identifies a new starting address for the block of memory
displayed in the MEMORY window. The optional extension number (#) opens
an additional MEMORY window allowing you to view a separate block of
memory. The debugger displays the contents of memory at expression in the
first data position in the MEMORY window. The end of the range is defined by
the size of the window. The expression can be an absolute address, a symbolic
address, or any C expression.

You can display program, data, or I/O memory:

� By default, the MEMORY window displays data memory. Although it is not
necessary, you can explicitly specify data memory by following the expres-
sion parameter with a suffix of @data.

� You can display the contents of program memory by following the expres-
sion parameter with a suffix of @prog . When you do this, the MEMORY
window’s label changes to MEMORY [PROG] so that there is no confusion
about the type of memory being displayed.

� You can display the contents of the I/O space by following the expression
parameter with a suffix of @io. When you do this, the MEMORY window’s
label changes to MEMORY [IO] so that there is no confusion about the
type of memory being displayed.

When you use the optional display format parameter, memory will be dis-
played in one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point u Unsigned decimal

f Decimal floating point

Using the ?, DISP, MEM, and WA Commands

3-10
Documentation Errors in the TMS320C2x C Source Debugger User’s Guide

Add Item to WATCH Windowwa

Syntax wa expression[@prog | @data | @io] [,[label] [, display format]]

Menu selection W atch→Add

Description The WA command displays the value of expression in the WATCH window. If
the WATCH window isn’t open, executing WA opens the WATCH window. The
expression parameter can be any C expression, including an expression that
has side effects.

If the expression identifies an address, you can follow it with @prog to identify
program memory, @data to identify data memory, or @io to identify I/O space.
Without the suffix, the debugger treats an address expression as a data-
memory location.

WA is most useful for watching an expression whose value changes over time;
constant expressions provide no useful function in the watch window. The la-
bel parameter is optional. When used, it provides a label for the watched entry.
If you don’t use a label, the debugger displays the expression in the label field.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

If you want to use a display format parameter without a label parameter, just
insert an extra comma. For example:

wa PC,,d

