
TMS320C2x/C2xx/C5x
Optimizing C Compiler

User’s Guide

Literature Number: SPRU024E
August 1999

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1999, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

The TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide tells you how
to use these compiler tools:

� Compiler
� Source interlist utility
� Optimizer
� Parser
� Library-build utility

The TMS320C2x/C2xx/C5x C compiler accepts American National Standards
Institute (ANSI) standard C source code and produces assembly language
source code for the TMS320C2x/C2xx/C5x devices. This user’s guide dis-
cusses the characteristics of the C compiler. It assumes that you already know
how to write C programs. The C Programming Language (second edition), by
Brian W. Kernighan and Dennis M. Ritchie (hereafter referred to as K & R),
describes C based on the ANSI C standard. You can use the Kernighan and
Ritchie book as a supplement to this manual.

Before you use the information about the C compiler in this User’s Guide, you
should read the TMS320C1x/C2x/ C2xx/C5x Code Generation Tools Getting
Started to install the C compiler tools.

How to Use This Manual

iv

How to Use This Manual

The goal of this book is to help you learn how to use the Texas Instruments C
compiler tools specifically designed for the TMS320C2x/C2xx/C5x devices.
This book is divided into three distinct parts:

� Introductory information , consisting of Chapter 1, provides an overview
of the TMS320C2x/C2xx/C5x development tools.

� Compiler description , consisting of Chapters 2, 5, 6, 7, and 8, describes
how to operate the C compiler and the shell program, and discusses
specific characteristics of the C compiler as they relate to the ANSI C spec-
ification. It contains technical information on the TMS320C2x/ C2xx/C5x
architecture and includes information needed for interfacing assembly
language to C programs. It describes libraries and header files in addition
to the macros, functions, and types they declare. Finally, it describes the
library-build utility.

� Reference material , consisting of Appendix B, provides a glossary.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample of C code:

ifdef NDEBUG

define assert

� In syntax descriptions, the instruction, command, or directive is in a bold
face font and parameters are in italics. Portions of a syntax that are in bold
face must be entered as shown; portions of a syntax that are in italics de-
scribe the type of information that should be entered. Here is an example
of a directive syntax:

#include “ filename”

The #include preprocessor directive has one required parameter, file-
name. The filename must be enclosed in double quotes or angle brackets.

How to Use This Manual / Notational Conventions

Related Documentation From Texas Instruments

vRead This First

� Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you specify the information within the brackets; you do
not enter the brackets themselves. Here is an example of a command that
has an optional parameter:

clist asmfile [outfile] [–options]

� The clist command has three parameters.

� The first parameter, asmfile, is required.

� The second and third parameters, outfile and –options, are optional.

� If you omit the outfile, the file has the same name as the assembly file
with the extension .cl.

� Options are preceded by a hyphen.

Related Documentation From Texas Instruments

The following books describe the TMS320C2x/C2xx/C5x and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, identify
the book by its title and literature number (located on the bottom-right corner
of the back cover).

TMS320C2x User’s Guide (literature number SPRU014) discusses the hard-
ware aspects of the ’C2x fixed-point digital signal processors. It de-
scribes pin assignments, architecture, instruction set, and software and
hardware applications. It also includes electrical specifications and pack-
age mechanical data for all ’C2x devices. The book features a section
with a ’C1x-to-’C2x DSP system migration.

TMS320C2xx User’s Guide (literature number SPRU127) discusses the
hardware aspects of the ’C2xx fixed-point digital signal processors. It de-
scribes pin assignments, architecture, instruction set, and software and
hardware applications. It also includes electrical specifications and pack-
age mechanical data for all ’C2xx devices. The book features a section
comparing instructions from ’C2x to ’C2xx.

TMS320C5x User’s Guide (literature number SPRU056) describes the
TMS320C5x 16-bit, fixed-point, general-purpose digital signal proces-
sors. Covered are its architecture, internal register structure, instruction
set, pipeline, specifications, DMA, and I/O ports. Software applications
are covered in a dedicated chapter.

Notational Conventions / Related Documentation From Texas Instruments

Related Documentation From Texas Instruments

vi

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-
erations of devices.

TMS320C2x Software Development System Technical Reference (liter-
ature number SPRU072) provides specific application and design in-
formation for using the TMS320C2x Software Development System
(SWDS) board.

TMS320C5x Software Development System Technical Reference (liter-
ature number SPRU066) provides specific application and design in-
formation for using the TMS320C5x Software Development System
(SWDS) board.

TMS320C2x C Source Debugger User’s Guide (literature number
SPRU070) tells how to use the ’C2x C source debugger with the ’C2x
emulator, software development system (SWDS), and simulator.

TMS320C5x C Source Debugger User’s Guide (literature number
SPRU055) tells you how to invoke the ’C5x emulator, EVM, and simulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints, and includes a tutorial that introduces basic debugger
functionality.

Related Documentation From Texas Instruments

viiRead This First

Related Documentation

The C Programming Language (second edition), by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey, 1988.

You may find these documents helpful as well:

American National Standard for Information Systems—Programming
Language C X3.159-1989 , American National Standards Institute
(ANSI standard for C)

Programming in C , Kochan, Steve G., Hayden Book Company

Trademarks

MS-DOS is a registered trademark of Microsoft Corp.

PC-DOS is a trademark of International Business Machines Corp.

SPARC is a trademark of SPARC International, Inc.

Sun-OS and Sun Workstation are trademarks of Sun Microsystems, Inc.

XDS is a trademark of Texas Instruments Incorporated.

Related Documentation / Trademarks

viii

Contents

ix

Contents

1 Introduction 1-1.
Provides an overview of the TMS320C2x/C2xx/C5x software development tools, specifically,
the optimizing C Compiler.

1.1 Software Development Tools Overview 1-2.
1.2 C Compiler Overview 1-5.

2 C Compiler Description 2-1.
Describes how to operate the C compiler and the shell program. Contains instructions for invok-
ing the shell program, which compiles, assembles, and links a C source file. Discusses the in-
terlist utility and compiler errors.

2.1 About the Shell Program 2-2.
2.2 Invoking the Compiler Shell 2-4.
2.3 Changing the Compiler’s Behavior With Options 2-6.

2.3.1 Frequently Used Options 2-13.
2.3.2 Specifying Filenames 2-15.
2.3.3 Changing How the Shell Program Interprets Filenames (–fa, –fc, and –fo

Options) 2-15.
2.3.4 Changing How the Shell Program Interprets and Names Extensions (–ea

and –eo Options) 2-16.
2.3.5 Specifying Directories 2-16.
2.3.6 Options That Overlook ANSI C Type Checking 2-17.
2.3.7 Runtime-Model Options 2-18.
2.3.8 Options That Control the Assembler 2-19.

2.4 Changing the Compiler’s Behavior With Environment Variables 2-20.
2.4.1 Setting Default Shell Options (C_OPTION) 2-20.
2.4.2 Specifying a Temporary File Directory (TMP) 2-21.

2.5 Controlling the Preprocessor 2-22.
2.5.1 Predefined Macro Names 2-22.
2.5.2 The Search Path for #include Files 2-23.
2.5.3 Changing the #include File Search Path With the –i Option 2-24.
2.5.4 Generating a Preprocessed Listing File (–pl Option) 2-25.
2.5.5 Creating Custom Error Messages with the #error and #warn Directives 2-26. . . .
2.5.6 Enabling Trigraph Expansion (–p? Option) 2-26.
2.5.7 Creating a Function Prototype Listing File (–pf Option) 2-26.

Contents

x

2.6 Using Inline Function Expansion 2-27.
2.6.1 Inlining Intrinsic Operators 2-27.
2.6.2 Controlling Inline Function Expansion (–x Option) 2-28.
2.6.3 Using the inline Keyword 2-28.
2.6.4 The _INLINE Preprocessor Symbol 2-31.

2.7 Using the Interlist Utility 2-33.
2.8 Understanding and Handling Compiler Errors 2-35.

2.8.1 Generating an Error Listing (–pr Option) 2-36.
2.8.2 Treating Code-E Errors as Warnings (–pe Option) 2-36.
2.8.3 Altering the Level of Warning Messages (–pw Option) 2-36.
2.8.4 An Example of How You Can Use Error Options 2-37.

2.9 Invoking the Tools Individually 2-38.
2.9.1 Invoking the Parser 2-39.
2.9.2 Parsing in Two Passes 2-41.
2.9.3 Invoking the Optimizer 2-41.
2.9.4 Invoking the Code Generator 2-43.
2.9.5 Invoking the Interlist Utility 2-45.

3 Optimizing Your Code 3-1.
Describes how to optimize your C code, including such features as software pipelining and loop
unrolling. Also describes the types of optimizations that are performed when you use the opti-
mizer.

3.1 Using the C Compiler Optimizer 3-2.
3.2 Using the –o3 Option 3-4.

3.2.1 Controlling File-Level Optimization (–oln Option) 3-4.
3.2.2 Creating an Optimization Information File (–onn Option) 3-5.

3.3 Performing Program-Level Optimization (–pm and –o3 Options) 3-6.
3.3.1 Controlling Program-Level Optimization (–opn Option) 3-6.
3.3.2 Optimization Considerations When Mixing C and Assembly 3-8.
3.3.3 Naming the Program Compilation Output File (–px Option) 3-9.

3.4 Special Considerations When Using the Optimizer 3-10.
3.4.1 Use Caution With asm Statements in Optimized Code 3-10.
3.4.2 Use Caution With the Volatile Keyword 3-10.
3.4.3 Use Caution When Accessing Aliased Variables 3-11.
3.4.4 Assume Functions Are Not Interrupts 3-11.

3.5 Automatic Inline Expansion (–oi Option) 3-12.
3.6 Using the Interlist Utility With the Optimizer 3-13.
3.7 Debugging Optimized Code 3-13.
3.8 What Kind of Optimization Is Being Performed? 3-14.

3.8.1 Cost-based Register Allocation 3-15.
3.8.2 Autoincrement Addressing 3-15.
3.8.3 Repeat Blocks 3-15.
3.8.4 Delays, Banches, Calls, and Returns 3-16.
3.8.5 Algebraic Reordering / Symbolic Simplification / Constant Folding 3-18.
3.8.6 Alias Disambiguation 3-18.

Contents

xiContents

3.8.7 Data-Flow Optimizations 3-18.
3.8.8 Branch Optimizations and Control-Flow Simplification 3-20.
3.8.9 Loop Induction Variable Optimizations and Strength Reduction 3-21.
3.8.10 Loop Rotation 3-21.
3.8.11 Loop Invariant Code Motion 3-21.
3.8.12 Inline Expansion of Runtime-Support Library Functions 3-21.

4 Linking C Code 4-1.
Describes how to link using a standalone program or with the compiler shell and how to meet
the special requirements of linking C code.

4.1 Invoking the Linker as an Individual Program 4-2.
4.2 Invoking the Linker With the Compiler Shell (–z Option) 4-4.
4.3 Disabling the Linker (–c Shell Option) 4-5.
4.4 Linker Options 4-6.
4.5 Controlling the Linking Process 4-8.

4.5.1 Linking With Runtime-Support Libraries 4-8.
4.5.2 Specifying the Type of Initialization 4-9.
4.5.3 Specifying Where to Allocate Sections in Memory 4-11.
4.5.4 A Sample Linker Command File 4-13.

5 TMS320C2x/C2xx/C5x C Language 5-1.
Discusses the specific characteristics of the TMS320C2x/C2xx/C5x C compiler as they relate
to the ANSI C specification.

5.1 Characteristics of TMS320C2x/C2xx/C5x C Language 5-2.
5.1.1 Identifiers and Constants 5-2.
5.1.2 Data Types 5-2.
5.1.3 Conversions 5-2.
5.1.4 Expressions 5-3.
5.1.5 Declarations 5-3.
5.1.6 Preprocessor 5-3.

5.2 Data Types 5-4.
5.3 Register Variables 5-6.
5.4 Pragma Directives 5-7.

5.4.1 The CODE_SECTION Pragma 5-7.
5.4.2 The DATA_SECTION Pragma 5-8.
5.4.3 The FUNC_EXT_CALLED Pragma 5-8.

5.5 The asm Statement 5-9.
5.6 Creating Global Register Variables 5-10.

5.6.1 When to Use a Global Register Variable 5-10.
5.6.2 Avoiding Corrupting Register Values 5-11.
5.6.3 Disabling the Compiler From Using AR6 and AR7 5-11.

5.7 Initializing Static and Global Variables 5-12.
5.7.1 Initializing Static and Global Variables With the const Type Qualifier 5-12.
5.7.2 Accessing I/O Port Space 5-13.

5.8 Compatibility with K&R C 5-14.
5.9 Compiler Limits 5-16.

Contents

xii

6 Runtime Environment 6-1.
Contains technical information on how the compiler uses the TMS320C2x/C2xx/C5x architec-
ture. Discusses memory and register conventions, stack organization, function-call conven-
tions, system initialization, and TMS320C2x/C2xx/C5x C compiler optimizations. Provides in-
formation needed for interfacing assembly language to C programs.

6.1 Memory Model 6-2.
6.1.1 Sections 6-3.
6.1.2 C System Stack 6-4.
6.1.3 Allocating .const to Program Memory 6-5.
6.1.4 Dynamic Memory Allocation 6-6.
6.1.5 Initialization of Variables 6-7.
6.1.6 Allocating Memory for Static and Global Variables 6-7.
6.1.7 Field/Structure Alignment 6-8.
6.1.8 Character String Constants 6-8.

6.2 Register Conventions 6-9.
6.2.1 Status Register Fields 6-11.
6.2.2 Stack Pointer, Frame Pointer, and Local Variable Pointer 6-11.
6.2.3 The TMS320C5x INDX Register 6-12.
6.2.4 Register Variables 6-12.
6.2.5 Expression Registers 6-13.
6.2.6 Return Values 6-13.

6.3 Function Structure and Calling Conventions 6-14.
6.3.1 How a Function Makes a Call 6-15.
6.3.2 How a Called Function Responds 6-15.
6.3.3 Special Cases for a Called Function 6-16.
6.3.4 Accessing Arguments and Local Variables 6-18.

6.4 Interfacing C with Assembly Language 6-19.
6.4.1 Using Assembly Language Modules With C Code 6-19.
6.4.2 Using Inline Assembly Language 6-22.
6.4.3 Accessing Assembly Language Variables From C Code 6-23.
6.4.4 Modifying Compiler Output 6-24.

6.5 Interrupt Handling 6-25.
6.5.1 General Points About Interrupts 6-25.
6.5.2 Using C Interrupt Routines 6-26.
6.5.3 Using Assembly Language Interrupt Routines 6-27.
6.5.4 TMS320C5x Shadow Register Capability 6-27.

6.6 Integer Expression Analysis 6-28.
6.6.1 Arithmetic Overflow and Underflow 6-28.
6.6.2 Integer Division and Modulus 6-28.
6.6.3 Long (32-Bit) Expression Analysis 6-28.
6.6.4 C Code Access to the Upper 16 Bits of 16-Bit Multiply 6-29.

6.7 Floating-Point Expression Analysis 6-30.

Contents

xiiiContents

6.8 System Initialization 6-31.
6.8.1 Runtime Stack 6-32.
6.8.2 Automatic Initialization of Variables 6-32.
6.8.3 Initialization Tables 6-33.
6.8.4 Autoinitialization of Variables at Runtime 6-34.
6.8.5 Initialization of Variables at Load Time 6-35.

7 Runtime-Support Functions 7-1.
Describes the header files included with the C compiler, as well as the macros, functions, and
types they declare. Summarizes the runtime-support functions according to category (header),
and provides an alphabetical reference of the runtime-support functions.

7.1 Libraries 7-2.
7.1.1 Linking Code With the Object Library 7-2.
7.1.2 Modifying a Library Function 7-3.
7.1.3 Building a Library With Different Options 7-3.

7.2 Header Files 7-4.
7.2.1 Diagnostic Messages (assert.h) 7-5.
7.2.2 Character-Typing and Conversion (ctype.h) 7-5.
7.2.3 Error Reporting (errno.h) 7-6.
7.2.4 Limits (float.h and limits.h) 7-6.
7.2.5 Inport/Outport Macros (ioports.h) 7-8.
7.2.6 Floating-Point Math (math.h) 7-9.
7.2.7 Nonlocal Jumps (setjmp.h) 7-9.
7.2.8 Variable Arguments (stdarg.h) 7-9.
7.2.9 Standard Definitions (stddef.h) 7-10.
7.2.10 General Utilities (stdlib.h) 7-10.
7.2.11 String Functions (string.h) 7-11.
7.2.12 Time Functions (time.h) 7-11.

7.3 Summary of Runtime-Support Functions and Macros 7-13.
7.4 Description of Runtime-Support Functions and Macros 7-20.

8 Library-Build Utility 8-1.
Describes the utility that custom-makes runtime-support libraries for the options used to com-
pile code. This utility can also be used to install header files in a directory and to create custom
libraries from source archives.

8.1 Invoking the Library-Build Utility 8-2.
8.2 Library-Build Utility Options 8-3.
8.3 Options Summary 8-4.

A Glossary A-1.
Defines terms and acronyms used in this book.

Figures

xiv

Figures

1–1 TMS320C2x/C2xx/C5x Software Development Flow 1-2.
2–1 The Shell Program Overview 2-3.
2–2 Compiler Overview 2-38.
3–1 Compiling a C Program With the Optimizer 3-2.
6–1 Stack Use During a Function Call 6-14.
6–2 Format of Initialization Records in the .cinit Section 6-33.
6–3 Autoinitialization at Run time 6-34.
6–4 Initialization at Load Time 6-35.

Tables

2–1 Shell Options Summary 2-7.
2–2 Predefined Macro Names 2-22.
2–3 Example Error Messages 2-36.
2–4 Selecting a Level for the –pw Option 2-37.
2–5 Parser Options and dspcl Options 2-40.
2–6 Optimizer Options and dspcl Options 2-42.
2–7 Code Generator Options and dspcl Options 2-44.
3–1 Options That You Can Use With –o3 3-4.
3–2 Selecting a Level for the –ol Option 3-4.
3–3 Selecting a Level for the –on Option 3-5.
3–4 Selecting a Level for the –op Option 3-7.
3–5 Special Considerations When Using the –op Option 3-7.
4–1 Run-Time-Support Source Libraries 4-2.
4–2 Sections Created by the Compiler 4-11.
5–1 TMS320C2x/C2xx/C5x C Data Types 5-5.
5–2 Absolute Compiler Limits 5-17.
6–1 Register Use and Preservation Conventions 6-10.
6–2 Status Register Fields 6-11.
7–1 Macros That Supply Integer Type Range Limits (limits.h) 7-6.
7–2 Macros That Supply Floating-Point Range Limits (float.h) 7-7.
7–3 Summary of Run-Time-Support Functions and Macros 7-14.
8–1 Summary of Options and Their Effects 8-4.

Examples

xvContents

Examples

2–1 How the Runtime-Support Library Uses the _INLINE Preprocessor Symbol 2-32.
2–2 An Interlisted Assembly Language File 2-34.
3–1 Repeat Blocks, Autoincrement Addressing, Parallel Instructions, Strength

Reduction, Induction Variable Elimination, Register Variables, and Loop
Test Replacement 3-16.

3–2 Delayed Branch, Call, and Return Instructions 3-17.
3–3 Data-Flow Optimizations 3-19.
3–4 Copy Propagation and Control-Flow Simplification 3-20.
3–5 Inline Function Expansion 3-22.
4–1 An Example of a Linker Command File 4-13.
5–1 Using the CODE_SECTION Pragma 5-7.
5–2 Using the DATA_SECTION Pragma 5-8.
6–1 TMS320C2x Code as a Called Function 6-16.
6–2 An Assembly Language Function 6-21.
6–3 Accessing a Variable Defined in .bss From C 6-23.
6–4 Accessing a Variable Not Defined in .bss From C 6-24.

Notes

xvi

Notes

Version Information 1-1.
Function Inlining Can Greatly Increase Code Size 2-27.
Using the –s Option With the Optimizer 2-34.
Symbolic Debugging and Optimized Code 3-13.
The _c_int0 Symbol 4-9.
TMS320C2x/C2xx/C5x Byte Is 16 Bits 5-5.
Avoid Disrupting the C Environment With asm Statements 5-9.
The Linker Defines the Memory Map 6-2.
Stack Overflow 6-5.
Using AR6 and AR7 as Global Register Variables 6-13.
Using the asm Statement 6-22.
Customizing Time Functions 7-12.
Writing Your Own Clock Function 7-27.
Writing Your Own Time Function 7-57.
TMS320C2x/C2xx/C5x Byte Is 16 Bits A-2.

1-1Introduction

Introduction

The TMS320C2x, TMS320C2xx, and TMS320C5x devices are members of
the TMS320 family of high-performance CMOS microprocessors optimized
for digital signal processing applications.

The TMS320C2x/C2xx/C5x DSPs are supported by a set of software develop-
ment tools, which includes an optimizing C compiler, an assembler, a linker,
an archiver, a software simulator, a full-speed emulator, and a software devel-
opment board.

This chapter provides an overview of these tools and introduces the features
of the optimizing C compiler. The assembler and linker are discussed in detail
in the TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

Note: Version Information

To use the TMS320C2x/C2xx/C5x C compiler, you must also have version
5.0 (or later) of the TMS320C1x/C2x/C2xx/C5x assembler and linker.

Topic Page

1.1 Software Development Tools Overview 1-2.

1.2 C Compiler Overview 1-5.

Chapter 1

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1–1 illustrates the TMS320C2x/C2xx/C5x software development flow.
The shaded portion of the figure highlights the most common path of software
development for C language programs. The unshaded portions represent pe-
ripheral functions that enhance the development process.

Figure 1–1. TMS320C2x/C2xx/C5x Software Development Flow

Assembler

Linker

Macro
library

Library of
object files

Hex conversion
utility

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C
source

files

TMS320C2x
TMS320C2xx
TMS320C5x

Executable
COFF

file

C compiler

Library-build
utility

Cross-reference
lister

Absolute lister

Debugging
tools

Run-time-
support
library

Software Development Tools Overview

1-3Introduction

The following list describes the tools that are shown in Figure 1–1.

� The C compiler accepts C source code and produces TMS320C2x,
TMS320C2xx, or TMS320C5x assembly language source code. A shell
program , an optimizer , and an interlist utility are included in the
compiler package.

� The shell program enables you to automatically compile, assemble,
and link source modules.

� The optimizer modifies code to improve the efficiency of C programs.

� The interlist utility interlists C source statements with assembly lan-
guage output.

Chapter 2 describes how to invoke and operate the compiler, the shell, the op-
timizer, and the interlist utility.

� The assembler translates assembly language source files into machine
language object files. The machine language is based on common object
file format (COFF). The TMS320C1x/C2x/C2xx/C5x Assembly Language
Tools User’s Guide explains how to use the assembler.

� The TMS320C1x/C2x/C5x Assembly Language Tools User’s Guide ex-
plains how to use the archiver. The linker combines object files into a
single executable object module. As it creates the executable module, it
performs relocation and resolves external references. The linker accepts
relocatable COFF object files and object libraries as input.

� The archiver allows you to collect a group of files into a single archive file,
called a library. Using the archiver, you can modify a library by deleting,
replacing, extracting, or adding members. One of the most useful applica-
tions of the archiver is building a library of object modules. Three object
libraries are shipped with the C compiler:

� rts25.lib contains ANSI standard run-time-support functions and
compiler-utility functions for the TMS320C2x.

� rts50.lib contains ANSI standard run-time-support functions and
compiler-utility functions for the TMS320C5x.

� rts2xx.lib contains ANSI standard run-time-support functions and
compiler-utility functions for the TMS320C2xx.

� The library-build utility allows you to build a customized run-time-sup-
port library. Standard run-time-support library functions are provided as
source code. These are located in rts.src. See Chapter 8, Library-Build
Utility, for more information.

Software Development Tools Overview

 1-4

� The hex conversion utility converts a COFF object file into TI-Tagged,
ASCII-hex, Intel, Motorola-S, or Tektronix object format. The converted
file can be downloaded to an EPROM programmer.

� The absolute lister is a debugging tool. It accepts linked object files as
input and creates .abs files as output. Once assembled, these .abs files
produce lists that contain absolute rather than relative addresses. See the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide for
more information about how to use the absolute lister.

� The cross-reference lister uses object files to produce a cross-reference
listing showing symbols, their definitions, and their references in the linked
source files. See the TMS320C1x/C2x/C2xx/C5x Assembly Language
Tools User’s Guide for more information about how to use the cross-refer-
ence lister.

� The main product of this development process is a module that you can
execute on a TMS320C2x/C2xx/C5x device . You can use one of several
debugging tools to refine and correct your code. Available products
include:

� An instruction-accurate software simulator
� An extended development system (XDS-510) emulator
� An evaluation module (EVM)

C Compiler Overview

1-5Introduction

1.2 C Compiler Overview

The TMS320C2x/C2xx/C5x C compiler is a full-featured optimizing compiler
that translates standard ANSI C programs into TMS320C2x/C2xx/C5x
assembly language source. The following list describes key characteristics of
the compiler:

� ANSI-standard C

The TMS320C2x/C2xx/C5x compiler fully conforms to the ANSI C stan-
dard as defined by the ANSI specification and described in the second edi-
tion of Kernighan and Ritchie’s The C Programming Language (K&R). The
ANSI C standard includes extensions to C that provide maximum
portability and increased capability.

� ANSI-standard run-time support

The compiler tools include a complete run time library for each device. All
library functions conform to the ANSI C library standard. The libraries in-
clude functions for string manipulation, dynamic memory allocation, data
conversion, timekeeping, trigonometry, and exponential and hyperbolic
functions. Functions for I/O and signal handling are not included because
these are target-system specific. For more information, see Chapter 7,
Run-Time-Support Functions.

� Assembly source output

The compiler generates assembly language source files that you can in-
spect easily, enabling you to see the code generated from the C source
files.

� COFF object files

The common object file format (COFF) allows you to define your system’s
memory map at link time. This maximizes performance by enabling you to
link C code and data objects into specific memory areas. COFF also sup-
ports source-level debugging.

� Compiler shell program

The compiler tools include a shell program used to compile, and link pro-
grams in a single step. For more information, see section 2.1, About the
Shell Program, on page 2-2.

� Flexible assembly language interface

The compiler has clear calling conventions, allowing you to easily write as-
sembly and C functions that call each other. For more information, see
Chapter 6, Run-Time Environment.

C Compiler Overview

 1-6

� Integrated preprocessor

The C preprocessor is integrated with the parser, allowing for faster com-
pilation. Standalone preprocessing or preprocessed listing is also avail-
able. For more information, see section 2.5, Controlling the Preprocessor,
on page 2-22.

� Optimization

The compiler uses an optimization pass that employs several advanced
techniques for generating efficient, compact code from C source. General
optimizations can be applied to any C code, and TMS320C2x/C2xx/C5x-
specific optimizations take advantage of the TMS320C2x/C2xx/C5x
architecture. For more information about the C compiler’s optimization
techniques, see Chapter 3, Optimizing Your Code.

� Code to initialized data into ROM

For standalone embedded applications, the compiler enables you to link
all code and initialization data into ROM, allowing C code to run from reset.

� Source interlist utility

The compiler tools include a utility that interlists your original C source
statements into the assembly language output of the compiler. Using this
utility, you can easily inspect the assembly code generated for each C
statement. For more information, see section 2.7, Using the Interlist Utility,
on page 2-33.

� Library-build utility

The compiler tools include a utility that lets you easily custom-build object
libraries from source for any combination of run time models or target
CPUs. For more information, see Chapter 8, Library-Build Utility.

2-1C Compiler Description

C Compiler Description

Translating your source program into code that the TMS320C2x/C2xx/C5x
can execute is a multistep process. You must compile, assemble, and link your
source files to create an executable object file. The TMS320C2x/C2xx/C5x
package contains a special shell program that enables you to execute all of
these steps with one command. This chapter provides a complete description
of how to use the dspcl shell to compile, assemble, and link your programs.

This chapter also describes the preprocessor, inline function expansion fea-
tures, and interlist utility:

Topic Page

2.1 About the Shell Program 2-2.

2.2 Invoking the Compiler Shell 2-4.

2.3 Changing the Compiler’s Behavior With Options 2-6.

2.4 Changing the Compiler’s Behavior
With Environment Variables 2-20.

2.5 Controlling the Preprocessor 2-22.

2.6 Using Inline Function Expansion 2-27.

2.7 Using the Interlist Utility 2-33.

2.8 Understanding and Handling Compiler Errors 2-35.

2.9 Invoking the Tools Individually 2-38.

Chapter 2

About the Shell Program

 2-2

2.1 About the Shell Program

The compiler shell program (dspcl) lets you compile, assemble, and optionally
link in one step. The shell runs one or more source modules through the
following:

� The compiler , which includes the parser, optimizer, and code generator,
accepts C source code and produces ’C2x, ’C2xx, ’C5x, assembly lan-
guage source code.

� The assembler generates a COFF object file.

� The linker links your files to create an executable object file. Use of the
linker is optional at this point. You can compile and assemble various files
with the shell and link them later. See Chapter 4, Linking C Code, for
information about linking the files in a separate step.

The shell compiles and assembles files by default. If you use the –z option,
dspcl will compile, assemble, and link your files. Figure 2–1 illustrates the
paths the shell follows as it both uses and omits the linker.

About the Shell Program

2-3C Compiler Description

Figure 2–1. The Shell Program Overview

Linker

C
source

files

Executable
COFF file

C Compiler

Parser

Optimizer
(optional)

Code
generator

Assembler

Assembler
source

COFF
object
files

With the –z Option

For a complete description of the assembler and the linker, see the
TMS320C2x/C2xx/C5x Assembly Language Tools User’s Guide. For informa-
tion about invoking the compiler tools individually, see section 2.9, Invoking the
Tools Individually, on page 2-38.

Invoking the Compiler Shell

 2-4

2.2 Invoking the Compiler Shell

To invoke the compiler shell, enter:

dspcl [options] filenames [–z] [linker options] [object files]]

dspcl is the command that runs the compiler and the assembler.

options affect the way the shell processes input files.

filenames are one or more C source files, assembly source files, or
object files.

–z is the option that runs the linker. See Chapter 4, Linking C
Code, for more information about invoking the linker.

linker options control the linking process.

object files name the object files that the compiler creates.

The –z option and its associated information (linker options and object files)
must follow all filenames and compiler options on the command line. You can
specify all other options (except linker options) and filenames in any order on
the command line. For example, if you wanted to compile two files named
symtab.c and file.c, assemble a third file named seek.asm, and suppress
progress messages (–q), you enter:

dspcl –q symtab file seek.asm

As dspcl encounters each source file, it prints the C filenames in square
brackets ([]) and assembly language filenames in angle brackets (< >). This
example uses the –q option to suppress the additional progress information
that dspcl produces. Entering the command above produces these mes-
sages:

[symtab]
[file]
<seek.asm>

Invoking the Compiler Shell

2-5C Compiler Description

The normal progress information consists of a banner for each compiler pass
and the names of functions as they are defined. The example below shows
the output from compiling a single module without the –q option:

$ dspcl symtab
[symtab]
TMS320C2x/2xx/5x ANSI C Compiler Version X.XX
Copyright (c) 1987–1995, Texas Instruments Incorporated

”symtab.c”: ==> main
”symtab.c”: ==> lookup

TMS320C2x/2xx/5x ANSI C Codegen Version X.XX
Copyright (c) 1987–1995, Texas Instruments Incorporated

”symtab.c”: ==> main
”symtab.c”: ==> lookup

DSP Fixed Point COFF Assembler Version X.XX
Copyright (c) 1987–1995, Texas Instruments Incorporated

PASS 1
PASS 2

No Errors, No Warnings

Changing the Compiler’s Behavior With Options

 2-6

2.3 Changing the Compiler’s Behavior With Options

Options control the operation of both the shell and the programs it runs. This
section provides a description of option conventions and an option summary
table. It also provides detailed descriptions of the most frequently used op-
tions, including options used for type-checking and assembling.

The following apply to the compiler options:

� Options are either single letters or two-letter pairs.

� Options are not case sensitive.

� Options are preceded by a hyphen.

� Single-letter options without parameters can be combined. For example,
–sgq is equivalent to –s –g –q.

� Two-letter pair options that have the same first letter can be combined. For
example, –pe, –pf, and –pk can be combined as –pefk.

� Options that have parameters, such as –uname and –idirectory, cannot
be combined. They must be specified separately.

� Options with parameters can have a space between the option and the
parameter or be right next to each other.

� Files and options can occur in any order except the –z option. The –z op-
tion must follow all other compiler options and precede any linker options.

You can define default options for the shell by using the C_OPTION enviro-
nment variable. For a detailed description of the C_OPTION environment
variable, see section 2.4.1, Setting Default Shell Options (C_OPTION), on
page 2-20.

Table 2–1 summarizes all shell and linker options. Use the page references
in the table to refer to more complete descriptions of the options.

For an online summary of all the shell and linker options, enter dspcl with no
parameters on the command line.

Changing the Compiler’s Behavior With Options

2-7C Compiler Description

Table 2–1. Shell Options Summary

(a) Options that control the compiler shell

Option Effect Page(s)

–@filename Interprets contents of a file as one extension to the
command line

2-13

–c Disables linking (negate –z) 2-13,
4-5

–d name[=def] Predefines name 2-13

–g Enables symbolic debugging 2-13

–i directory Defines #include search path 2-13

–k Keeps the assembly language (.asm) file 2-13

–n Compiles only 2-13

–q Suppresses progress messages (quiet) 2-13

–qq Suppresses all messages (super quiet) 2-13

–r <register> Reserves global register 2-13

–s Interlists optimizer comments (if available) and
assembly source statements; otherwise, interlists
C and assembly source statements

2-14;
2-33

–ss Interlists optimizer comments with C source and
assembly statements

2-14

–uname Undefines name 2-14

–v xx Determines processor: xx = 25, 2xx or 50 2-14

–z Enables linking 2-14

(b) Options that specify file and directory names

Option Effect Page

–fafilename Identifies assembly language file (default for .asm
or .s*)

2-15

–fcfilename Identifies C source file (default for .c or no extension) 2-15

–fofilename Identifies object file (default for .o*) 2-15

Changing the Compiler’s Behavior With Options

 2-8

Table 2–1. Shell Options Summary (Continued)

(c) Options that change the default file extensions

Option Effect Page

–eaextension Sets default extension for assembly files 2-16

–eoextension Sets default extension for object files 2-16

(d) Options that specify directories

Option Effect Page

–frdirectory Specifies object file directory 2-16

–fsdirectory Specifies assembly file directory 2-16

–ftdirectory Override TMP environment variable 2-16

(e) Options that overlook ANSI C type-checking

Option Effect Page

–tf Relaxes prototype checking 2-17

–tp Relaxes pointer combination 2-17

(f) Options that change the C run-time model

Option Effect Page

–ma Assumes variables are aliased 2-18

–mb Disables RPTK instruction 2-18

–ml No LDPK optimization 2-18

–mn Enables optimizations disabled by –g 2-18

–mp Generates prolog/epilog inline 2-18

–mr Lists register-use information 2-18

–ms Optimizes for code space 2-18

–mx Avoids ’C5x silicon bugs 2-18

Changing the Compiler’s Behavior With Options

2-9C Compiler Description

Table 2–1. Shell Options Summary (Continued)

(g) Options that control the parser

Option Effect Page

–p? Enables trigraph expansion 2-26

–pe Treats code-E errors as warnings 2-36

–pf Generates function prototype listing file 2-26

–pk Allows K&R compatibility

–pl Generates preprocessed listing (.pp file) 2-25

–pm Combines source files to perform program-level
optimization

3-6

–pn Suppresses #line directives in a .pp file 2-25

–po Preprocesses only 2-25

–pr Generates an error listing 2-36

–pw0 Disables all warning messages 2-36

–pw1 Enables serious warning messages (default) 2-36

–pw2 Enables all warning messages 2-36

–pxfilename Names the output file created when using the –pm
option

3-9

(h) Options that control the definition-controlled inline function expansion

Option Effect Page

–x0 Disables inline expansion of intrinsic operators 2-28

–x1 Enables inline expansion of intrinsic operators
(default)

2-28

–x2 or –x Defines the symbol _INLINE and invokes the
optimizer with –o2

2-28

Changing the Compiler’s Behavior With Options

 2-10

Table 2–1. Shell Options Summary (Continued)

(i) Options that control the assembler

Option Effect Page

–aa Enables absolute listing 2-19

–adname Defines variables from the command line 2-19

–ahcfilename Copies filename before any source statements from
the input file are assembled

2-19

–ahifilename Includes filename before any source statements
from the input file are assembled

2-19

–al Generates an assembly listing file 2-19

–ap Enables the ’C2x to ’C2xx or ’C5x port switch 2-19

–app Enables the ’C2x to ’C2xx port switch and defines
.TMS32025 and .TMS3202xx

2-19

–as Puts labels in the symbol table 2-19

–auname Undefines variables from the command line 2-19

–ax Generates the cross-reference file 2-19

Changing the Compiler’s Behavior With Options

2-11C Compiler Description

Table 2–1. Shell Options Summary (Continued)

(j) Options that control optimizations

Option Effect Page

–o0 Optimizes register usage 3-2

–o1 Uses –o0 optimizations and optimizes locally 3-2

–o2 or –o Uses –o1 optimizations and optimizes globally 3-2

–o3 Uses –o2 optimizations and optimizes the file 3-3

–oe Assumes no function in the module is called from an
interrupt routine, and that none of the routines in the
module are called recursively

3-11

–oisize Sets automatic inlining size (–o3 only) 3-12

–ol0 (–oL0) Informs the optimizer that your file alters a standard
library function

3-4

–ol1 (–oL1) Informs the optimizer that your file declares a stan-
dard library function

3-4

–ol2 (–oL2) Informs the optimizer that your file does not declare
or alter library functions. Overrides the –ol0 and –ol1
options (default).

3-4

–on0 Disables the optimization information file 3-5

–on1 Produces an optimization information file 3-5

–on2 Produces a verbose optimization information file 3-5

–op0 Specifies that the module contains functions and
variables that are called or modified from outside the
source code provided to the compiler

3-6

–op1 Specifies that the module contains variables modi-
fied from outside the source code provided to the
compiler but does not use functions called from out-
side the source code

3-6

–op2 Specifies that the module contains no functions or
variables that are called or modified from outside the
source code provided to the compiler (default)

3-6

–op3 Specifies that the module contains functions that are
called from outside the source code provided to the
compiler but does not use variables modified from
outside the source code

3-6

–os Interlists optimizer comments with assembly state-
ments

3-13

Changing the Compiler’s Behavior With Options

 2-12

Table 2–1. Shell Options Summary (Continued)

(k) Options that control the linker

Options Effect Page

–a Generates absolute executable output 4-6

–ar Generates relocatable executable output 4-6

–b Disables merge of symbolic debugging information 4-6

–c Autoinitializes variables at run time 4-6

–cr Initializes variables at reset 4-6

–eglobal_symbol Defines entry point 4-6

–ffill_value Defines fill value 4-6

–gglobal_symbol Keeps global_symbol global (overrides –h) 4-6

–h Makes global symbols static 4-6

–heap size Sets heap size (bytes) 4-6

–idirectory Defines library search path 4-6

–lfilename Supplies library or command filename 4-6

–mfilename Names the map file 4-6

–n Ignores all fill specifications in MEMORY directives 4-6

–ofilename Names the output file 4-7

–q Suppresses progress messages (quiet) 4-7

–r Generates relocatable nonexecutable output 4-7

–s Strips symbol table information and line number en-
tries from the output module

4-7

–stack size Sets stack size (bytes) 4-7

–usymbol Undefines symbol 4-7

–v0 Generates version 0 COFF format 4-7

–v1 Generates version 1 COFF format 4-7

–v2 Generates version 2 COFF format 4-7

–w Displays a message when an undefined output
section is created

4-7

–x Forces rereading of libraries 4-7

Changing the Compiler’s Behavior With Options

2-13C Compiler Description

2.3.1 Frequently Used Options

–@ filename Appends the contents of a file to the command line. You can
use this option to avoid limitations on command line length
imposed by the host operating system. Use a # or j; at the
beginning of a line in the command file to include comments.

–c Suppresses the linker and overrides the –z option, which
specifies linking. Use this option when you have –z specified
in the C_OPTION environment variable and you do not want
to link. For more information, see section 4.3, Disabling the
Linker (–c Shell Option), on page 4-5.

–dname[=def] Predefines the constant name for the preprocessor. This is
equivalent to inserting #define name def at the top of each
C source file. If the optional [=def] is omitted, the name is
set to 1.

–g Generates symbolic debugging directives that are used by
the C-source-level debuggers and enables assembly
source debugging in the assembler.

–idirectory Adds directory to the list of directories that the compiler
searches for #include files. You can use this option a
maximum of 32 times to define several directories. You
must separate –i options with spaces. If you do not specify
a directory name, the preprocessor ignores the –i option.
For more information, see section 2.5.3, Changing the
#include File Search Path With the –i Option, on page 2-24.

–k Retains the assembly language output from the compiler.
Normally, the shell deletes the output assembly language
file after assembling completes.

–n Compiles only. The specified source files are compiled but
not assembled or linked. This option overrides –z. The
output is assembly language output from the compiler.

–q Suppresses banners and progress information from all the
tools. Only source filenames and error messages are
output.

–qq Suppresses all output except error messages.

–rregister Reserves register globally so that the code generator and
optimizer cannot use it as a normal save-on-entry register.

Changing the Compiler’s Behavior With Options

 2-14

–s Invokes the interlist utility, which interweaves optimizer
comments or C source with assembly source. If the
optimizer is invoked (–on option), optimizer comments are
interlisted with the assembly language output of the
compiler. If the optimizer is not invoked, C source state-
ments are interlisted with the assembly language output of
the compiler, which allows you to inspect the code gener-
ated for each C statement. The –s option implies the –k op-
tion.

–ss Invokes the interlist utility, which interweaves original C
source with compiler-generated assembly language. If the
optimizer is invoked (–on option), this option might reorga-
nize your code substantially. For more information, see sec-
tion 2.7, Using the Interlist Utility, on page 2-33.

–uname Undefines the predefined constant name. This option
overrides any –d options for the specified constant.

–vxxx Specifies the target processor. Choices for xxx are 25 for a
’C2x processor, 2xx for a ’C2xx, or 50 for a ’C5x.

–z Runs the linker on the specified object files. The –z option
and its parameters follow all other options and parameters
on the command line. All arguments that follow –z are
passed to the linker. For more information, see section 4.1,
Invoking the Linker as an Individual Program, on page 4-2.

Changing the Compiler’s Behavior With Options

2-15C Compiler Description

2.3.2 Specifying Filenames

The input files that you specify on the command line can be C source files,
assembly source files, or object files. The shell uses filename extensions to
determine the file type.

Extension File Type

.c or none (.c is assumed) C source

.asm, .abs, or .s* (extension begins with s) Assembly source

.obj Object

Files without extensions are assumed to be C source files. The conventions
for filename extensions allow you to compile C files and optimize and
assemble assembly files with a single command.

For information about how you can alter the way that the shell interprets indi-
vidual filenames, see section 2.3.3 on page 2-15. For information about how
you can alter the way that the shell interprets and names the extensions of as-
sembly source and object files, see section 2.3.5 on page 2-16.

You can use wildcard characters to compile or assemble multiple files. Wild-
card specifications vary by system; use the appropriate form listed in your op-
erating system manual. For example, to compile all of the C files in a directory,
enter the following:

dspcl *.c

2.3.3 Changing How the Shell Program Interprets Filenames (–fa, –fc, and –fo
Options)

You can use options to change how the shell interprets your filenames. If the
extensions that you use are different from those recognized by the shell, you
can use the –fa, –fc, and –fo options to specify the type of file. You can insert
an optional space between the option and the filename. Select the appropriate
option for the type of file you want to specify:

–fafilename for an assembly language source file

–fcfilename for a C source file

–fofilename for an object file

For example, if you have a C source file called file.s and an assembly language
source file called assy, use the –fa and –fc options to force the correct
interpretation:

dspcl –fc file.s –fa assy

You cannot use the –fa, –fc, and –fo options with wildcard specifications.

Changing the Compiler’s Behavior With Options

 2-16

2.3.4 Changing How the Shell Program Interprets and Names Extensions (–ea and
–eo Options)

You can use options to change how the shell program interprets filename ex-
tensions and names the extensions of the files that it creates. The –ea and –eo
options must precede the filenames they apply to on the command line. You
can use wildcard specifications with these options. An extension can be up to
nine characters in length. Select the appropriate option for the type of exten-
sion you want to specify:

–ea[.] new extension for an assembly language file

–eo[.] new extension for an object file

The following example assembles the file fit.rrr and creates an object file
named fit.o:

dspcl –ea .rrr –eo .o fit.rrr

The period (.) in the extension and the space between the option and the
extension are optional. You can also write the example above as:

dspcl –earrr –eoo fit.rrr

2.3.5 Specifying Directories

By default, the shell program places the object, assembly, and temporary files
that it creates into the current directory. If you want the shell program to place
these files in different directories, use the following options:

–frdirectory Specifies a directory for object files. To specify an object file direc-
tory, type the directory’s pathname on the command line after the
–fr option:

dspcl –fr d:\object

–fsdirectory Specifies a directory for assembly files. To specify an assembly file
directory, type the directory’s pathname on the command line after
the –fs option:

dspcl –fs d:\assembly

–ftdirectory Specifies a directory for temporary intermediate files. The –ft op-
tion overrides the TMP environment variable. (For more informa-
tion, see section 2.4.2, Specifying a Temporary File Directory
(TMP), on page 2-21.) To specify a temporary directory, type the
directory’s pathname on the command line after the –ft option:

dspcl –ft c:\temp

Changing the Compiler’s Behavior With Options

2-17C Compiler Description

2.3.6 Options That Overlook ANSI C Type Checking

Following are options that you can use to overlook some of the strict ANSI C
type checking on your code:

–tf Overlooks type checking on redeclarations of prototyped func-
tions. In ANSI C, if a function is declared with an old-format decla-
ration and later declared with a prototype (as in the example be-
low), this generates an error because the parameter types in the
prototype disagree with the default argument promotions (which
convert float to double and char to int).

int func() /* old format */

int func(float a, char b) /* new format */

–tp Overlooks type checking on pointer combinations. This option has
two effects:

� A pointer to a signed type can be combined in an operation with
a pointer to the corresponding unsigned type:
int *pi;

unsigned *pu;

pi = pu; /* Illegal unless -tp used */

� Pointers to differently qualified types can be combined:
char *p;

const char *pc;

p = pc; /* Illegal unless -tp used */

The –tp option is especially useful when you pass pointers to
prototyped functions, because the passed pointer type would ordi-
narily disagree with the declared parameter type in the prototype.

Changing the Compiler’s Behavior With Options

 2-18

2.3.7 Run-Time-Model Options

–ma Assumes variables are aliased. The compiler assumes that
pointers may alias (point to) named variables and aborts register
optimizations when an assignment is made through a pointer.

–mb Disables the noninterruptible RPTK instruction for moving
structures.

–ml Disables an optimization that the code generator performs to
minimize the use of the LDPK instruction. This optimization can
cause small holes in the .bss section of a program. Using the –ml
option eliminates these holes entirely but at the expense of added
LDPK instructions in the code. This could be a preferable tradeoff
if your system uses a less expensive form of memory for program
memory space than it does for data memory space.

–mn Reenables the optimizations disabled by –g. If you use the –g
option to generate symbolic debugging information, many code
generator optimizations are disabled because they disrupt the
debugger.

–mr Lists register-use information. After the code generator compiles
each C statement, –mr lists register content tables as comments
in the assembly language file. The –mr option is useful for
inspecting code that is difficult to follow due to register tracking
optimizations.

–ms Optimizes for code space instead of for speed.

–mx Avoids ’C5x silicon bugs. Use of this switch is necessary when
preparing a program for use with ’C5x device versions earlier than
2.0 that implements interrupts or is compiled with optimization.

When the compiler is run with the OVLY and RAM status bits on,
certain compiled code sequences do not execute correctly when
both the code and the data reside in the 1K of on-chip RAM on the
’C51 or the same 2K block of the 9K of on-chip RAM on the ’C50.
Use a linker command file to set the program and data spaces so
that this conflict does not occur.

Changing the Compiler’s Behavior With Options

2-19C Compiler Description

2.3.8 Options That Control the Assembler

Following are assembler options that you can use with the shell:

–aa Invokes the assembler with the –a assembler option, which
creates an absolute listing. An absolute listing shows the ab-
solute addresses of the object code.

–adname Invokes the assembler with the –hc assembler option to tell
the assembler to copy the specified file for the assembly
module. The file is inserted before source file statements.
The copied file appears in the assembly listing files.

–ahc filename Invokes the assembler with the –hc assembler option to tell
the assembler to copy the specified file for the assembly
module. The file is inserted before source file statements.
The copied file appears in the assembly listing files.

–ahi filename Invokes the assembler with the –hi assembler option to tell
the assembler to include the specified file for the assembly
module. The file is included before source file statements.
The included file does not appear in the assembly listing files.

–al Invokes the assembler with the –l (lowercase L) assembler
option to produce an assembly listing file.

–ap Enables ’C2x to ’C2xx or ’C5x port switch. Use –ap with the
corresponding –v2xx or –v50 option.

–app Enables ’C2x to ’C2xx port switch and defines the
.TMS32025 and .TMS3202xx assembler symbols. Use –app
with the –v2xx option.

–as Invokes the assembler with the –s assembler option to put
labels in the symbol table. Label definitions are written to the
COFF symbol table for use with symbolic debugging.

–auname Invokes the assembler with the –u assembler option to unde-
fine the predefined constant name. The –au option overrides
the –ad option for the specified constant.

–ax Invokes the assembler with the –x assembler option to pro-
duce a symbolic cross-reference in the listing file.

For more information about assembler options, see the TMS320C6000
Assembly Language Tools User’s Guide.

Changing the Compiler’s Behavior With Environment Variables

 2-20

2.4 Changing the Compiler’s Behavior With Environment Variables

You can define environment variables that set certain software tool parame-
ters you normally use. An environment variable is a special system symbol
that you define and associate to a string in your system initialization file. The
compiler uses this symbol to find or obtain certain types of information.

When you use environment variables, default values are set, making each
individual invocation of the compiler simpler because these parameters are
automatically specified. When you invoke a tool, you can use command-line
options to override many of the defaults that are set with environment vari-
ables.

2.4.1 Setting Default Shell Options (C_OPTION)

You might find it useful to set the compiler, assembler, and linker shell default
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with
C_OPTION every time you run the shell.

Setting the default options with the C_OPTION environment variable is useful
when you want to run the shell consecutive times with the same set of options
and/or input files. After the shell reads the command line and the input file-
names, it looks for the C_OPTION environment variable and processes it.

The table below shows how to set the C_OPTION environment variable.
Select the command for your operating system:

Operating System Enter

DOS or OS/2 set C_OPTION=option1[;option2 . . .]

UNIX with C shell setenv C_OPTION ” option1 [option2 . . .]”

UNIX with Bourne or Korn
shell

C_OPTION=” option1 [option2 . . .]”
export C_OPTION

Environment variable options are specified in the same way and have the
same meaning as they do on the command line. For example, if you want to
always run quietly (the –q option), enable C source interlisting (the –s option),
and link (the –z option) for Windows, set up the C_OPTION environment vari-
able as follows:

set C_OPTION=–qs –z

Changing the Compiler’s Behavior With Environment Variables

2-21C Compiler Description

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These additional examples assume C_OPTION is set as shown above:

dspcl *c ; compiles and links
dspcl –c *.c ; only compiles
dspcl *.c –z lnk.cmd ; compiles and links using a
 ; command file
dspcl –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

For more information about shell options, see section 2.3, Changing the
Compiler’s Behavior With Options, on page 2-6. For more information about
linker options, see section 4.4, Linker Options, on page 4-6.

2.4.2 Specifying a Temporary File Directory (TMP)

The compiler shell program creates intermediate files as it processes your
program. By default, the shell puts intermediate files in the current directory.
However, you can name a specific directory for temporary files by using the
TMP environment variable.

Using the TMP environment variables allows use of a RAM disk or other file
systems. It also allows source files to be compiled from a remote directory
without writing any files into the directory where the source resides. This is
useful for protected directories.

The table below shows how to set the TMP environment variable. Select the
command for your operating system:

Operating System Enter

DOS or OS/2 set TMP=pathname

UNIX with C shell setenv TMP ” pathname”

UNIX with Bourne or Korn
shell

TMP=” pathname”
export TMP

Note: For UNIX workstations, be sure to enclose the directory name within quotes.

For example, to set up a directory named temp for intermediate files on your
hard drive for Windows, enter:

set TMP=c:\temp

Controlling the Preprocessor

 2-22

2.5 Controlling the Preprocessor

During compilation, your code is run through the preprocessor, which is part
of the parser. The shell program allows you to control the preprocessor with
macros and various other preprocessor directives.

This section describes specific features that control the TMS320C2x/C2xx/
C5x preprocessor. Refer to Section A12 of K&R for a general description of
C preprocessing. The TMS320C2x/C2xx/C5x C compiler includes standard
C preprocessing functions, which are built into the first pass of the compiler.
The preprocessor handles the following:

� Macro definitions and expansions

� #include files

� Conditional compilation

� Various other preprocessor directives (specified in the source file as lines
beginning with the # character)

The preprocessor produces self-explanatory error messages. The line
number and the filename where the error occurred are printed along with a
diagnostic message.

2.5.1 Predefined Macro Names

The compiler maintains and recognizes the predefined macro names listed in
Table 2–2.

Table 2–2. Predefined Macro Names

Macro Name Description

__LINE__ † Expands to the current line number

__FILE__ † Expands to the current source filename

__DATE__ † Expands to the compilation date in the form mm dd yyyy

__TIME__ † Expands to the compilation time in the form hh:mm:ss

_dsp Expands to 1 (identifies the TMS320C2x/C2xx/C5x compiler)

_TMS320C25 Expands to 1 under the –v25 option

_TMS320C2XX Expands to 1 under the –v2xx option

_TMS320C50 Expands to 1 under the –v50 option

_INLINE Expands to 1 under the –x or –x2 option; undefined otherwise

† Specified by the ANSI standard

Controlling the Preprocessor

2-23C Compiler Description

You can use the names listed in Table 2–2 the same manner as any other de-
fined name. For example:

printf (”%s %s” , _ _TIME _ _ , _ _ DATE _ _);

translates to a line such as:

printf (”%s %s” , ”Jan 14 1988”, ”13:58:17”);

2.5.2 The Search Path for #include Files

The #include preprocessor directive tells the compiler to read source state-
ments from another file. When specifying the file, you can enclose the filename
in double quotes or in angle brackets. The filename can be a complete path-
name, partial path information, or a filename with no path information.

� If you enclose the filename in double quotes (” ”), the compiler searches
for the file in the following directories in this order:

1) The directory that contains the current source file. The current source
file refers to the file that is being compiled when the compiler encoun-
ters the #include directive.

2) Directories named with the –i compiler

3) Directories set with the C_DIR environment variable

� If you enclose the filename in angle brackets (< >), the compiler searches
for the file in the following directories in this order:

1) Directories named with the –i option

2) Directories set with the C_DIR environment variable

See section 2.5.3, Changing the Include File Search Path with the –i Option,
on page 2-24 for information on using the –i option. For information on how
to use the C_DIR environment variable, see the TMS320C1x/C2x/C2xx/C5x
Code Generation Tools Getting Started Guide.

Controlling the Preprocessor

 2-24

2.5.3 Changing the #include File Search Path With the –i Option

The –i option names an alternative directory that contains #include files. The
format of the –i option is:

–i directory1 [–i directory2 ...]

You can use up to 32 –i options per invocation of the compiler; each –i option
names one directory. In C source, you can use the #include directive without
specifying any directory information for the file; instead, you can specify the
directory information with the –i option. For example, assume that a file called
source.c is in the current directory. The file source.c contains the following
directives statement:

#include ”alt.h”

Assume that the complete pathname for alt.h is:

UNIX /6xtools/files/alt.h

DOS or OS/2 c:\6xtools\files\alt.h

The table below shows how to invoke the compiler. Select the command for
your operating system:

Operating System Enter

DOS or OS/2 dspcl –ic:\dsp\files source.c

UNIX dspcl –i/dsp/files source.c

Controlling the Preprocessor

2-25C Compiler Description

2.5.4 Generating a Preprocessed Listing File (–pl Option)

The –pl option allows you to generate a preprocessed version of your source
file with a .pp extension. The compiler’s preprocessing functions perform the
following on the source file:

� Each source line ending in backslash (\) is joined with the following line.

� Trigraph sequences are expanded (if enabled with the –p? option).

� Comments are removed.

� #include files are copied into the file.

� Macro definitions are processed.

� Macros are expanded.

� All other preprocessing directives, including #line directives and condi-
tional compilation, are expanded.

These operations correspond to translation phases 1–3 specified in section
A12 of K&R.

The preprocessed output file contains no preprocessor directives other than
#line. The compiler inserts #line directives to synchronize line and file informa-
tion in the output files with input position from the original source files. You can
use the –pn option to suppress #line directives. See section 2.5.4.2, Remov-
ing the #line Directives From the Preprocessed Listing File (–pn Option) on
page 2-25 for more information.

2.5.4.1 Generating a Preprocessed Listing File Without Code Generation (–po Option)

The –po option performs only the preprocessing functions and writes out the
preprocessed listing file. The –po option is used instead of the –pl option. No
syntax checking or code generation occurs. The –po option is useful when
debugging macro definitions. The resulting listing file is a valid C source file
that you can rerun through the compiler.

2.5.4.2 Removing the #line Directives From the Preprocessed Listing File (–pn Option)

The –pn option suppresses line and file information in the preprocessed listing
file. The –pn option suppresses the #line directives in the .pp file generated
with the –po or –pl option:

Here is an example of a #line directive:

#line 123 file.c

The –pn option is useful when compiling machine generated source.

Controlling the Preprocessor

 2-26

2.5.5 Creating Custom Error Messages with the #error and #warn Directives

The standard #error preprocessor directive forces the compiler to issue a
diagnostic message and halt compilation. The compiler extends the #error di-
rective with a #warn directive. The #warn directive forces a diagnostic mes-
sage but does not halt compilation. The syntax of #warn is identical to that of
#error:

#error token-sequence

#warn token-sequence

2.5.6 Enabling Trigraph Expansion (–p? Option)

A trigraph is three characters that have a meaning (as defined by the ISO
646-1983 Invariant Code Set). On systems with limited character sets, these
characters cannot be represented. For example, the trigraph ??’ equates to
^. The ANSI C standard defines these sequences.

By default, the compiler does not recognize trigraphs. If you want to enable
trigraph expansion, use the –pg option. During compilation, trigraphs are
expanded to their corresponding single character. For more information about
trigraphs, see the ANSI specification, § 2.2.1.1.

2.5.7 Creating a Function Prototype Listing File (–pf Option)

When you use the –pf option, the preprocessor creates a file containing the
prototype of every function in all corresponding C files. Each function proto-
type file is named as its corresponding C file with a .pro extension.

Using Inline Function Expansion

2-27C Compiler Description

2.6 Using Inline Function Expansion

When an inline function is called, the C source code for the function is inserted
at the point of the call. This is known as inline function expansion. Inline func-
tion expansion is advantageous in short functions for the following reasons:

� It saves the overhead of a function call.

� Once inlined, the optimizer is free to optimize the function in context with
the surrounding code.

Inline function expansion is performed in one of the following ways:

� Intrinsic operators are expanded by default.

� Automatic inline expansion is performed on small functions that are
invoked by the optimizer with the –o3 option. For more information, see
section 3.5, Automatic Inline Expansion (–oi Option), on page 3-12.

� Definition-controlled inline expansion is performed when you invoke the
compiler with optimization (–x option) and the compiler encounters the
inline keyword in code.

Note: Function Inlining Can Greatly Increase Code Size

Expanding functions inline expands code size, and inlining a function that is
called in a number of places increases code size. Function inlining is optimal
for functions that are called only from a small number of places and for small
functions. If your code size seems too large, try compiling with the –oi0
option and note the difference in code size.

2.6.1 Inlining Intrinsic Operators

The compiler automatically expands the intrinsic operators of the target sys-
tem (such as abs) by default. This expansion happens whether or not you use
the optimizer and whether or not you use any compiler or optimizer options on
the command line. (You can defeat this automatic inlining by invoking the com-
piler with the –x0 option.) Functions that expand the intrinsic operators are:

� abs
� labs
� fabs

Using Inline Function Expansion

 2-28

2.6.2 Controlling Inline Function Expansion (–x Option)

The –x option controls the definition of the _INLINE preprocessor symbol and
some types of inline function expansion. There are three levels of expansion:

–x0 Causes no definition-controlled inline expansion. This option
overrides the default expansions of the intrinsic operator
functions, but it does not override the inline function expansions
described in section 3.5, Automatic Inline Expansion (–oisize
Option), on page 3-12.

–x1 Resets the default behavior. The intrinsic operators (abs, labs,
and fabs) are inlined wherever they are called. Use this option to
reset the default behavior from the command line if you have
used another –x option in an environment variable or command
file.

–x2 or –x Defines the _INLINE preprocessor symbol to be 1. If the
optimizer is not invoked with a separate command-line option,
this option invokes the optimizer at the default level (–o2).

2.6.3 Using the inline Keyword

Definition-controlled inline expansion is performed when you invoke the com-
piler with optimization and the compiler encounters the inline keyword in code.
Functions with local static variables or a variable number of arguments are not
inlined, with the exception of functions declared as static inline. In functions
declared as static inline, expansion occurs despite the presence of local static
variables. In addition, a limit is placed on the depth of inlining for recursive or
nonleaf functions. Inlining should be used for small functions or functions that
are called in a few places (though the compiler does not enforce this). You can
control this type of function inlining with the inline keyword.

The inline keyword specifies that a function is expanded inline at the point at
which it is called rather than by using standard calling procedures. The com-
piler performs inline expansion of functions declared with the inline keyword,
and can automatically inline small functions.

Using Inline Function Expansion

2-29C Compiler Description

For a function to be eligible for inlining:

� The function must be declared with the inline keyword, or
� The optimizer must be invoked using the –o3 switch, and

� The function is very small (controlled by the –oi switch), and
� The function is declared before it is called

A function may be disqualified from inlining if it:

� Returns a struct or union
� Has a struct or union parameter
� Has a volatile parameter
� Has a variable length argument list
� Declares a struct, union, or enum type
� Contains a static variable
� Contains a volatile variable
� Is recursive
� Contains # pragmas
� Has too large of a stack (too many local variables)

Using Inline Function Expansion

 2-30

2.6.3.1 Declaring a Function as Inline Within a Module

By declaring a function as inline within a module (with the inline keyword), you
can specify that the function is inlined within that module. A global symbol for
the function is created (code is generated), but the function is inlined only with-
in the module where it is declared as inline. The global symbol can be called
by other modules if they do not contain a static inline declaration for the func-
tion.

Functions declared as inline are expanded when the optimizer is invoked.
Using the –x2 option automatically invokes the optimizer at the default level
(–o2).

Use this syntax to define a function as inline within a module:

inline return-type function-name (parameter declarations) { function }

2.6.3.2 Declaring a Function as Static Inline

Declaring a function as static inline in a header file specifies that the function
is inlined in any module that includes the header. This names the function and
specifies to expand the function inline, but no code is generated for the func-
tion declaration itself. A function declared in this way can be placed in header
files and included by all source modules of the program.

Use this syntax to declare a function as static inline:

static inline return-type function-name (parameter declarations) { function}

Using Inline Function Expansion

2-31C Compiler Description

2.6.4 The _INLINE Preprocessor Symbol

The _INLINE preprocessor symbol is defined (and set to 1) if you invoke the
parser (or compiler shell utility) with the –x2 (or –x) option. It allows you to write
code so that it runs whether or not the optimizer is used. It is used by standard
header files included with the compiler to control the declaration of standard
C run-time functions.

Example 2–1 on page 2-32 illustrates how the run-time-support library uses
the _INLINE preprocessor symbol.

The _INLINE preprocessor symbol is used in the string.h header file to declare
the function correctly, regardless of whether inlining is used. The _INLINE pre-
processor symbol conditionally defines _ _INLINE so that strlen is declared
as static inline only if the _INLINE preprocessor symbol is defined.

If the rest of the modules are compiled with inlining enabled and the string.h
header is included, all references to strlen are inlined and the linker does not
have to use the strlen in the run-time-support library to resolve any references.
Otherwise, the run-time-support library code resolves the references to strlen,
and function calls are generated.

Use the _INLINE preprocessor symbol in your header files in the same way
that the function libraries use it so that your programs run, regardless of
whether inlining is selected for any or all of the modules in your program.

Functions declared as inline are expanded whenever the optimizer is invoked
at any level. Functions declared as inline and controlled by the _INLINE
preprocessor symbol, such as the run-time-library functions, are expanded
whenever the optimizer is invoked and the _INLINE preprocessor symbol is
equal to 1. When you declare an inline function in a library, it is recommended
that you use the _INLINE preprocessor symbol to control its declaration. If you
fail to control the expansion using _INLINE and subsequently compile without
the optimizer, the call to the function is unresolved.

In Example 2–1, there are two definitions of the strlen function. The first, in the
header file, is an inline definition. Note that this definition is enabled and the
prototype is declared as static inline only if _INLINE is true; that is, the module
including this header is compiled with the –x option.

The second definition, for the library, ensures that the callable version of strlen
exists when inlining is disabled. Since this is not an inline function, the _INLINE
preprocessor symbol is undefined (#undef) before string.h is included to gen-
erate a noninline version of strlen’s prototype.

Using Inline Function Expansion

 2-32

Example 2–1. How the Run-Time-Support Library Uses the _INLINE Preprocessor
Symbol

(a) string.h

/**/
/* STRING.H HEADER FILE */
/**/
typdef unsigned size_t

#if _INLINE
#define __INLINE static inline /* Declaration when inlining */
#else
#define __INLINE /*No declaration when not inlining */
#endif

__INLINE void *memcpy (void *_s1, const void *_s2, size_t _n);

#if _INLINE /* Declare the inlined function */

static inline void *memcpy (void *to, const void *from, size_t n)
{

register char *rto = (char *) to;
register char *rfrom= (char *) from;
register size_t rn;

for (rn = 0; rn < n; rn++) *rto++ =rfrom++;
return (to);

}

#endif /* _INLINE */

#undef __INLINE

(b) strlen.c

/**/
/* MEMCPY.C (rts2 xx .lib) */
/**/
#undef _INLINE /* Turn off so code will be generated */

#include <string.h>

void *memcpy (void *to, const void *from, size_t n)
{

register char *rto = (char *) to;
register char *rfrom = (char *) from;
register size_t rn;

for (rn = 0; rn < n; rn++) *rto++ =rfrom++;
return (to);

}

Using the Interlist Utility

2-33C Compiler Description

2.7 Using the Interlist Utility

The compiler tools include a utility that interlists C source statements into the
assembly language output of the compiler. The interlist utility enables you to
inspect the assembly code generated for each C statement. The interlist utility
behaves differently depending on whether or not the optimizer is used, and de-
pending on which options you specify.

The easiest way to invoke the interlist utility is to use the –s option. To compile
and run the interlist utility on a program called function.c, enter:

dspcl –s function

The –s option prevents the shell from deleting the interlisted assembly lan-
guage file. The output assembly file, function.asm, is assembled normally.

When you invoke the interlist utility without the optimizer, the interlist utility
runs as a separate pass between the code generator and the assembler. It
reads both the assembly and C source files, merges them, and writes the C
statements into the assembly file as comments.

Example 2–2 shows a typical interlisted assembly file.

Using the Interlist Utility

 2-34

Example 2–2. An Interlisted Assembly Language File

;>>>> main()
;>>>> int i, j;

* FUNCTION DEF : _main

_main:

SAR AR0,*+
SAR AR1,*
LARK AR0,3
LAR AR0,*0+,AR2

;>>>> i += j;
LARK AR2,1
MAR *0+
LAC *–
ADD *
SACL *+

;>>>> j = i + 123;
ADDK 123
SACL *,AR1

EPI0_1:
SBRK 4
LAR AR0,*
RET
.end

For information on how to invoke the interlist utility, outside of dspcl, refer to
section 2.9.5, Invoking the Interlist Utility, page 2-45.

Note: Using the –s Option With the Optimizer

Optimization makes normal source interlisting impractical because the opti-
mizer extensively rearranges your program. When you use the –s option, the
optimizer writes reconstructed C statements. The comments also include a
list of the allocated register variables. Occasionally the optimizer interlist
comments may be misleading because of copy propagation or assignment
of multiple or equivalent variables to the same register.

Understanding and Handling Compiler Errors

2-35C Compiler Description

2.8 Understanding and Handling Compiler Errors

One of the compiler’s primary functions is to detect and report errors in the
source program. When the compiler encounters an error in your program, it
displays a message in the following format:

“ file.c”, line n: [ECODE] error message

“ file.c” identifies the filename.

line n identifies the line number where the error occurs.

ECODE is a 4-character error code. A single upper-case letter
identifies the error class; a 3-digit number uniquely
identifies the error.

error message is the text of the message.

Errors in C code are divided into classes according to severity; these classes
are identified by the letters W, E, F, and I (upper-case i). The compiler also
reports other errors that are not related to C but prevent compilation. Exam-
ples of each level of error message are located in Table 2–3.

� Code-W errors are warnings resulting from a condition that is technically
undefined according to the rules of the language or that can cause unex-
pected results. The compiler continues running when this occurs.

� Code-E errors are recoverable, resulting from a condition that violates
the semantic rules of the language. Although these are normally fatal
errors, the compiler can recover and generate an output file if you use
the –pe option. See to section 2.8.2, Treating Code-E Errors as Warnings
(–pe Option), on page 2-36 for more information.

� Code-F errors are fatal, resulting from a condition that violates the syn-
tactic or semantic rules of the language. The compiler cannot recover and
does not generate output for code-F errors.

� Code-I errors are implementation errors, occurring when one of the
compiler’s internal limits is exceeded. These errors are usually caused by
extreme behavior in the source code rather than by explicit errors. In most
cases, code-I errors cause the compiler to abort immediately. Most
code-I messages contain the maximum value for the limit that was
exceeded. (Those limits that are absolute are also listed in section 5.9,
Compiler Limits, on page 5-16.)

� Other error messages , such as incorrect command line syntax or
inability to find specified files, are usually fatal. They are identified by the
symbol >> preceding the message.

Understanding and Handling Compiler Errors

 2-36

Table 2–3. Example Error Messages

Error Level Example Error Message

Code W ”file.c”, line 42:[W029] extra text after preprocessor directive ignored

Code E ”file.c”, line 66: [E055] illegal storage class for function ’f’

Code F ”file.c”, line 71: [F0108] structure member ’a’ undefined

Code I ”file.c”, line 99: [I011] block nesting too deep (max=20)

Other >> Cannot open source file ’mystery.c’

2.8.1 Generating an Error Listing (–pr Option)

Use the –pr option to generate an error listing. The error listing has the name
source.err, where source is the name of the C source file.

2.8.2 Treating Code-E Errors as Warnings (–pe Option)

A fatal error prevents the compiler from generating an output file. Normally,
code-E, -F, and -I errors are fatal, while -W errors are not. The –pe option
causes the compiler to treat code-E errors as warnings, so that the compiler
generates code for the file despite the error.

Using –pe allows you to bend the rules of the language, so be careful; as with
any warning, the compiler might not generate what you expect.

There is no way to specify recovery from code-F or -I errors. These errors are
always fatal.

See section 2.8.4, An Example of How You Can Use Error Options, for an ex-
ample of the –pe option.

2.8.3 Altering the Level of Warning Messages (–pw Option)

You can determine which levels of warning messages to display by setting the
warning message level with the –pw option. The number following –pw
denotes the level (0,1, or 2). Use Table 2–4 to select the appropriate level. See
section 2.8.4, An Example of How You Can Use Error Options, for an example
of the –pw option.

Understanding and Handling Compiler Errors

2-37C Compiler Description

Table 2–4. Selecting a Level for the –pw Option

If you want to … Use option

Disable all warning messages. This level is useful when you are
aware of the condition causing the warning and consider it innocuous.

–pw0

Enable serious warning messages. This is the default. –pw1

Enable all warning messages. –pw2

2.8.4 An Example of How You Can Use Error Options

The following example demonstrates how you can suppress errors with the
–pe option and/or alter the level of error messages with the –pw option. The
examples use this code segment:

int *pi; char *pc;

#if STDC
pi = (int *) pc;

#else
pi = pc;

#endif

� If you invoke the compiler with the –q option, this is the result:

[err]
”err.c ”, line3: [E104] operands of ’=’ point to different types

In this case, because code-E errors are fatal, the compiler does not gener-
ate code.

� If you invoke the compiler with the –pe option, this is the result:

[err]

”err.c”, line3: [E104] operands of ’=’ point to different types

In this case, the same message is generated, but because –pe is used,
the compiler ignores the error and generates an output file.

� If you invoke the compiler with the –pew2 option (combining –pe and
–pw2), this is the result:

[err.c]
”err.c”, line5: [W038] undefined preprocessor symbol ’STDC’

”err.c”, line8: [E122] operands of ’=’ point to different types

As in the previous case, –pe causes the compiler to overlook the error and
generate code. Because the –pw2 option is used, all warning messages
are generated.

Invoking the Tools Individually

 2-38

2.9 Invoking the Tools Individually

The TMS320C2x/C2xx/C5x C compiler offers you the versatility of invoking all
of the tools at once using dspcl, or invoking each tool individually. To satisfy
a variety of applications, you can invoke the compiler (parser, optimizer, and
code generator), the assembler, and the linker as individual programs. This
section also describes how to invoke the interlist utility outside dspcl.

� The compiler is composed of three distinct programs: the parser, the opti-
mizer, and the code generator.

Figure 2–2. Compiler Overview

C Source
File (.c)

.if File .opt File .asm File

Parser Optimizer Code
Generator

The input for the parser is a C source file. The parser reads the source file,
checks for syntax and semantic errors, and writes out an internal
representation of the program called an intermediate file. Section 2.9.1,
Invoking the Parser, on page 2-39 describes how to run the parser. The
parser, in addition, can be run in two passes: the first pass preprocesses
the code, and the second pass parses the code.

The optimizer is an optional pass that runs between the parser and the
code generator. The input is the intermediate file (.if) produced by the
parser. When you run the optimizer, you choose the level of optimization.
The optimizer performs the optimizations on the intermediate file and pro-
duces a highly efficient version of the file in the same intermediate file
format. Chapter 3, Optimizing Your Code, describes the optimizer.

The input for the code generator is the intermediate file produced by the
parser (.if) or the optimizer (.opt). The code generator produces an
assembly language source file. Section 2.9.4, Invoking the Code Genera-
tor, on page 2-43, describes how to run the code generator.

� The input for the assembler is the assembly language file produced by
the code generator. The assembler produces a COFF object file. The
assembler is described fully in the TMS320C1x/C2x/C2xx/C5x Assembly
Language Tools User’s Guide.

Invoking the Tools Individually

2-39C Compiler Description

� The inputs for the interlist utilit y are the assembly file produced by the
compiler and the C source file. The utility produces an expanded assem-
bly source file containing statements from the C file as assembly language
comments. section 2.7, Using the Interlist Utility, on page 2-33 and section
2.9.5, Invoking the Interlist Utility, on page 2-45 describe the use of the
interlist utility.

� The input for the linker is the COFF object file produced by the assembler.
The linker produces an executable object file. Chapter 4, Linking C Code,
describes how to run the linker. The linker is described fully in the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

2.9.1 Invoking the Parser

The first step in compiling a TMS320C2x/C2xx/C5x C program is to invoke the
C parser. The parser reads the source file, performs preprocessing functions,
checks syntax, and produces an intermediate file that can be used as input for
the code generator. To invoke the parser, enter the following:

dspac input file [output file] [options]

dspac is the command that invokes the parser.

input file names the C source file that the parser uses as input. If you
do not supply an extension, the parser assumes that the file’s
extension is .c. If you do not specify an input filename, the
parser prompts you for one.

output file names the intermediate file that the parser creates. If you do
not supply a filename for the output file, the parser uses the
input filename with the extension of .if.

options affect the operation of the parser. Each option for the stand-
alone parser has a corresponding dspcl option that performs
the same function. Table 2–5 on page 2-40 shows the parser
options, the dspcl shell options, and the corresponding func-
tions.

Invoking the Tools Individually

 2-40

Table 2–5. Parser Options and dspcl Options

dspac Options dspcl Options Effect

–dname [def] –dname [def] Predefine macro name

–e –pe Treat code-E errors as warnings

–f –pf Generate function prototype listing file

– i dir – i dir Define #include search path

–k –pk Allow K&R compatibility

– l (lowercase L) –pl Generate .pp file

–n –pn Suppress #line directives

–o –po Preprocess only

–q –q Suppress progress messages (quiet)

–tf –tf Relax prototype checking

–tp –tp Relax pointer combination

–uname –uname Undefine macro name

–v25 –v25 Enable use of TMS320C2x instructions

–v2xx –v2xx Enable use of TMS320C2xx instructions

–v50 –v50 Enable use of TMS320C5x instructions

–w –pw Suppress warning messages

–x –x2 Enable inlining of user functions (implies –o2)

–x0 –x0 Disable function inlining

–? –p? Enable trigraph expansion

When running dspac stand-alone and using –l to generate a preprocessed list-
ing file, you can specify the name of the file as the third filename on the com-
mand line. This filename can appear anywhere on the command line after the
names of the source file and intermediate file.

Invoking the Tools Individually

2-41C Compiler Description

2.9.2 Parsing in Two Passes

Compiling very large source programs on small host systems such as PCs can
cause the compiler to run out of memory and fail. You can avoid host memory
limitations by running the parser as two separate passes. The first pass can
preprocess the file, and the second pass can parse the file.

When you run the parser as one pass, it uses host memory to store both macro
definitions and symbol definitions simultaneously. When you run the parser as
two passes, these functions can be separated. The first pass performs only
preprocessing and memory is needed only for macro definitions. In the second
pass, there are no macro definitions and memory is needed only for the sym-
bol table.

The following example illustrates how to run the parser as two passes:

1) Run the parser with the –po option, specifying preprocessing only.

dspcl –po file.c

If you want to use the –d, –u, or –i options, use them on this first pass. This
pass produces a preprocessed output file called file.pp. For more
information about the preprocessor, see section 2.5, Controlling the Pre-
processor, on page 2-22.

2) Rerun the whole compiler on the preprocessed file to finish compiling it.

dspcl file.pp

You can use any other options on this final pass.

2.9.3 Invoking the Optimizer

Optimizing is an optional second step in compiling a TMS320C2x/C2xx/C5x
C program. After parsing a C source file, you can choose to process the inter-
mediate file with the optimizer. The optimizer improves the execution speed
and reduces the size of C programs. The optimizer reads the intermediate file,
optimizes it according to the level you choose, and produces an intermediate
file. The intermediate file has the same format as the original intermediate file,
but it enables the code generator to produce more efficient code.

Invoking the Tools Individually

 2-42

To invoke the optimizer, enter:

dspopt [input file [output file]] [options]

dspopt is the command that invokes the optimizer.

input file names the intermediate file produced by the parser. The
optimizer assumes that the extension is .if. If you do not speci-
fy an input file, the optimizer prompts you for one.

output file names the intermediate file that the optimizer creates. If you
do not supply a filename for the output file, the optimizer uses
the input filename with the extension .opt.

options affect how the the optimizer processes the input file. The
options that you use in stand-alone optimization are the same
as those used for dspcl. Table 2–6 shows the optimizer
options, the dspcl shell options, and the corresponding func-
tions. Section 3.1, Using the C Compiler Optimizer, on page
3-2 provides a detailed list of the optimizations performed at
each level.

Table 2–6. Optimizer Options and dspcl Options

dspopt Option dspcl Option Function

–a –ma Assume variables are aliased

–b –mb Disable the noninterruptible RPTK instruction for
moving structures

–gregister –rregister Reserve global register†

–hsize –olsize Control assumptions about library function calls

–in –oin Set automatic inlining size threshold (–o3 only)

– j –oe Assume no functions call, or are called by, inter-
rupt functions

–k –pk Allow K&R compatibility

–nn –onn Generate optimization information file (–o3 only)

–o0 –o0 Optimize at level 0; register optimization

–o1 –o1 Optimize at level 1; + local optimization

† The –g option tells the code generator that the register named is reserved for global use. See sec-
tion 5.6, Creating Global Register Variables, on page 5-10, for more information.

Invoking the Tools Individually

2-43C Compiler Description

Table 2–6. Optimizer Options and dspcl Options (Continued)

dspopt Option dspcl Option Function

–o2 or –o –o2 Optimize at level 2; + global optimization

–o3 –o3 Optimize at level 3; + file optimization

–q –q Suppress progress messages (quiet)

–s –s Interlist C source

–v25 –v25 Enable use of TMS320C2x instructions

–v2xx –v2xx Enable use of TMS320C2xx instructions

–v50 –v50 Enable use of TMS320C5x instructions

† The –g option tells the code generator that the register named is reserved for global use. See sec-
tion 5.6, Creating Global Register Variables, on page 5-10, for more information.

2.9.4 Invoking the Code Generator

The third step in compiling a TMS320C2x/C2xx/C5x C program is to invoke
the C code generator. The code generator converts the intermediate file pro-
duced by the parser into an assembly language source file. You can modify
this output file or use it as input for the assembler. The code generator pro-
duces re-entrant relocatable code, which, after assembling and linking, can be
stored in ROM.

To invoke the code generator as a stand-alone program, enter:

dspcg [input file [output file [tempfile]]] [options]

dspcg is the command that invokes the code generator.

input file names the intermediate file that the code generator uses as
input. If you do not supply an extension, the code generator
assumes that the extension is .if. If you do not specify an input
file, the code generator prompts you for one.

output file names the assembly language file that the code generator
creates. If you do not supply a filename for the output file, the
code generator uses the input filename with the extension
.asm.

Invoking the Tools Individually

 2-44

tempfile names a temporary file that the code generator creates and
uses. If you do not supply a filename for the temporary file, the
code generator uses the input filename with the extension
.tmp. The code generator deletes this file after using it.

options affect the way the code generator processes the input file.
Each option available for the stand-alone code generator
mode has a corresponding dspcl shell option that performs the
same function.

Table 2–7 shows the code generator options, the dspcl shell options, and their
corresponding functions.

Table 2–7. Code Generator Options and dspcl Options

dspcg Options dspcl Options Function

–a –ma Assume variables are aliased

–b –mb Disable the noninterruptible RPTK instruction
for moving structures

–gregister –rregister Reserve global register†

– l –ml Disable optimization for reducing LDPK
instructions

–n –mn Reenable optimizations disabled by symbolic
debugging

–o –g Enable C source level debugging

–q –q Suppress progress messages (quiet)

–r –mr List register use information

–s –ms Optimize for space instead of for speed

–v25 –v25 Enable use of TMS320C2x instructions

–v2xx –v2xx Enable use of TMS320C2xx instructions

–v50 –v50 Enable use of TMS320C5x instructions

–x –mx Avoid ’C5x silicon bugs

–z Retain the input file‡

† The –g option tells the code generator that the register named is reserved for global use. See sec-
tion 5.6, Creating Global Register Variables, on page 5-10, for more information.

‡ The –z option tells the code generator to retain the input file (the intermediate file created by the
parser). If you do not specify the –z option, the intermediate file is deleted.

Invoking the Tools Individually

2-45C Compiler Description

2.9.5 Invoking the Interlist Utility

The fourth step in compiling a TMS320C2x/C2xx/C5x C program is optional.
After you have compiled a program, you can run the interlist utility as a stand-
alone program. To run the interlist utility from the command line, the syntax is:

clist asmfile [outfile] [options]

clist is the command that invokes the interlist utility.

asmfile is the assembly language output from the compiler.

outfile names the interlisted output file. If you do not supply a filename
for the outfile, the interlist utility uses the assembly language
filename with the extension .cl.

options control the operation of the utility as follows:

–b removes blanks and useless lines (lines containing
comments and lines containing only { or }).

–q removes banner and status information.

–r removes symbolic debugging directives.

The interlist utility uses .line directives produced by the code generator to
associate assembly language code with C source. For this reason, you must
use the –g dspcl option to specify symbolic debugging when compiling the pro-
gram if you want to interlist it. If you do not want the debugging directives in
the output, use the –r interlist option to remove them from the interlisted file.

The following example shows how to compile and interlist function.c. To
compile, enter:

dspcl –gk –mn function

This compiles, produces symbolic debugging directives, and keeps the
assembly language file. To produce an interlist file, enter:

clist –r function

This creates an interlist file and removes the symbolic debugging directives.
The output from this example is function.cl.

 2-46

3-1

Optimizing Your Code

The compiler tools include an optimization program that improves the
execution speed and reduces the size of C programs by performing such tasks
as simplifying loops, software pipelining, rearranging statements and expres-
sions, and allocating variables into registers.

This chapter describes how to invoke the optimizer and describes which opti-
mizations are performed when you use it. This chapter also describes how you
can use the interlist utility with the optimizer and how you can profile or debug
optimized code.

Topic Page

3.1 Using the C Compiler Optimizer 3-2.

3.2 Using the –o3 Option 3-4.

3.3 Performing Program-Level Optimization
(–pm and –o3 Options) 3-6.

3.4 Special Considerations When Using the Optimizer 3-10.

3.5 Automatic Inline Expansion (–oi Option) 3-12.

3.6 Using the Interlist Utility With the Optimizer 3-13.

3.7 Debugging Optimized Code 3-13.

3.8 What Kind of Optimization Is Being Performed? 3-14.

Chapter 3

Using the C Compiler Optimizer

 3-2

3.1 Using the C Compiler Optimizer
The optimizer runs as a separate pass between the parser and the code
generator. Figure 3–1 illustrates the execution flow of the compiler with stand-
alone optimization.

Figure 3–1. Compiling a C Program With the Optimizer

C source
file (.c)

Code
generator

Parser Optimizer

.if file .asm file.opt file

The easiest way to invoke the optimizer is to use the dspcl shell program, spec-
ifying the –on option on the dspcl command line. The n denotes the level of
optimization (0, 1, 2, and 3), which controls the type and degree of optimiza-
tion:

� –o0

� Performs control-flow-graph simplification
� Allocates variables to registers
� Performs loop rotation
� Eliminates unused code
� Simplifies expressions and statements
� Expands calls to functions declared inline

� –o1

Performs all –o0 optimizations, plus:

� Performs local copy/constant propagation
� Removes unused assignments
� Eliminates local common expressions

� –o2

Performs all –o1 optimizations, plus:

� Performs loop optimizations
� Eliminates global common subexpressions
� Eliminates global unused assignments
� Converts array references in loops to incremented pointer form
� Performs loop unrolling

The optimizer uses –o2 as the default if you use –o without an optimization
level.

Using the C Compiler Optimizer

3-3Optimizing Your Code

� –o3

Performs all –o2 optimizations, plus:

� Removes all functions that are never called

� Simplifies functions with return values that are never used

� Inlines calls to small functions

� Reorders function declarations so that the attributes of called func-
tions are known when the caller is optimized

� Propagates arguments into function bodies when all calls pass the
same value in the same argument position

� Identifies file-level variable characteristics

If you use –o3, see section 3.2, Using the –o3 Option, on page 3-4 for
more information.

The levels of optimization described above are performed by the stand-alone
optimization pass. The code generator performs several additional opti-
mizations, particularly ’C6000-specific optimizations; it does so regardless of
whether or not you invoke the optimizer. These optimizations are always
enabled and are not affected by the optimization level you choose.

You can also invoke the optimizer outside dspcl; see section 2.9.3, Invoking
the Optimizer, on page 2-41 for information about invoking the optimizer as a
separate step.

Using the –o3 Option

 3-4

3.2 Using the –o3 Option

The –o3 option instructs the compiler to perform file-level optimization. You
can use the –o3 option alone to perform general file-level optimization, or you
can combine it with other options to perform more specific optimizations. The
options listed in Table 3–1 work with –o3 to perform the indicated optimization:

Table 3–1. Options That You Can Use With –o3

If you ... Use this option Page

Have files that redeclare standard library functions –oln 3-4

Want to create an optimization information file –onn 3-5

Want to compile multiple source files –pm 3-6

3.2.1 Controlling File-Level Optimization (–ol n Option)

When you invoke the optimizer with the –o3 option, some of the optimizations
use known properties of the standard library functions. If your file redeclares
any of these standard library functions, these optimizations become ineffec-
tive. The –ol (lowercase L) option controls file-level optimizations. The number
following the –ol denotes the level (0, 1, or 2). Use Table 3–2 to select the ap-
propriate level to append to the –ol option.

Table 3–2. Selecting a Level for the –ol Option

If your source file... Use this option

Declares a function with the same name as a standard library
function

–ol0

Contains but does not alter functions declared in the standard li-
brary

–ol1

Does not alter standard library functions, but you used the –ol0
or –ol1 option in a command file or an environment variable. The
–ol2 option restores the default behavior of the optimizer.

–ol2

Using the –o3 Option

3-5Optimizing Your Code

3.2.2 Creating an Optimization Information File (–on n Option)

When you invoke the optimizer with the –o3 option, you can use the –on option
to create an optimization information file that you can read. The number
following the –on denotes the level (0, 1, or 2). The resulting file has an .nfo
extension. Use Table 3–3 to select the appropriate level to append to the –on
option.

Table 3–3. Selecting a Level for the –on Option

If you... Use this option

Do not want to produce an information file, but you used the –on1
or –on2 option in a command file or an environment variable. The
–on0 option restores the default behavior of the optimizer.

–on0

Want to produce an optimization information file –on1

Want to produce a verbose optimization information file –on2

Performing Program-Level Optimization (–pm and –o3 Options)

 3-6

3.3 Performing Program-Level Optimization (–pm and –o3 Options)

You can specify program-level optimization by using the –pm option with the
–o3 option. With program-level optimization, all of your source files are
compiled into one intermediate file called a module. The module moves to the
optimization and code generation passes of the compiler. Because the com-
piler can see the entire program, it performs several optimizations that are
rarely applied during file-level optimization:

� If a particular argument in a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead
of the argument.

� If a return value of a function is never used, the compiler deletes the return
code in the function.

� If a function is not called, directly or indirectly, the compiler removes the
function.

To see which program-level optimizations the compiler is applying, use the
–on2 option to generate an information file. See section 3.2.2, Creating an Op-
timization Information File (–onn Option), on page 3-5 for more information.

3.3.1 Controlling Program-Level Optimization (–op n Option)

You can control program-level optimization, which you invoke with –pm –o3,
by using the –op option. Specifically, the –op option indicates if functions in
other modules can call a module’s external functions or modify a module’s ex-
ternal variables. The number following –op indicates the level you set for the
module that you are allowing to be called or modified. The –o3 option com-
bines this information with its own file-level analysis to decide whether to treat
this module’s external function and variable declarations as if they had been
declared static. Use Table 3–4 to select the appropriate level to append to the
–op option.

Performing Program-Level Optimization (–pm and –o3 Options)

3-7Optimizing Your Code

Table 3–4. Selecting a Level for the –op Option

If your module … Use this option

Has functions that are called from other modules and global vari-
ables that are modified in other modules

–op0

Does not have functions that are called by other modules but has
global variables that are modified in other modules

–op1

Does not have functions that are called by other modules or glob-
al variables that are modified in other modules

–op2

Has functions that are called from other modules but does not
have global variables that are modified in other modules

–op3

In certain circumstances, the compiler reverts to a different –op level from the
one you specified, or it might disable program-level optimization altogether.
Table 3–5 lists the combinations of –op levels and conditions that cause the
compiler to revert to other –op levels.

Table 3–5. Special Considerations When Using the –op Option

If your –op is... Under these conditions...
Then the –op
level...

Not specified The –o3 optimization level was specified Defaults to –op2

Not specified The compiler sees calls to outside functions
under the –o3 optimization level

Reverts to –op0

Not specified Main is not defined Reverts to –op0

–op1 or –op2 No function has main defined as an entry
point

Reverts to –op0

–op1 or –op2 No interrupt function is defined Reverts to –op0

–op1 or –op2 Functions are identified by the
FUNC_EXT_CALLED pragma

Reverts to –op0

–op3 Any condition Remains –op3

In some situations when you use –pm and –o3, you must use an –op option
or the FUNC_EXT_CALLED pragma. See section 3.3.2, Optimization Consid-
erations When Mixing C and Assembly, on page 3-8 for information about
these situations.

Performing Program-Level Optimization (–pm and –o3 Options)

 3-8

3.3.2 Optimization Considerations When Mixing C and Assembly

If you have any assembly functions in your program, you need to exercise cau-
tion when using the –pm option. The compiler recognizes only the C source
code and not any assembly code that might be present. Because the compiler
does not recognize the assembly code calls and variable modifications to C
functions, the –pm option optimizes out those C functions. To keep these func-
tions, place the FUNC_EXT_CALLED pragma (see section 5.4.3, The
FUNC_EXT_CALLED Pragma, on page 5-8) before any declaration or refer-
ence to a function that you want to keep.

Another approach you can take when you use assembly functions in your pro-
gram is to use the –opn option with the –pm and –o3 options (see section 3.3.1,
Controlling Program-Level Optimization, on page 3-6).

In general, you achieve the best results through judicious use of the
FUNC_EXT_CALLED pragma in combination with –pm –o3 and –op1 or
–op2.

If any of the following situations apply to your application, use the suggested
solution:

Situation Your application consists of C source code that calls assem-
bly functions. Those assembly functions do not call any C
functions or modify any C variables.

Solution Compile with –pm –o3 –op2 to tell the compiler that outside
functions do not call C functions or modify C variables.

If you compile with the –pm –o3 options only, the compiler
reverts from the default optimization level (–op2) to –op0. The
compiler uses –op0, because it presumes that the calls to the
assembly language functions that have a definition in C may
call other C functions or modify C variables.

Situation Your application consists of C source code that calls assem-
bly functions. The assembly language functions do not call C
functions, but they modify C variables.

Solution Try both of these solutions and choose the one that works
best with your code:

� Compile with –pm –o3 –op1.

� Add the volatile keyword to those variables that may be
modified by the assembly functions and compile with
–pm –o3 –op2.

See section 3.3.1 on page 3-6 for information about the –opn
option.

Performing Program-Level Optimization (–pm and –o3 Options)

3-9Optimizing Your Code

Situation Your application consists of C source code and assembly
source code. The assembly functions are interrupt service
routines that call C functions; the C functions that the assem-
bly functions call are never called from C. These C functions
act like main: they function as entry points into C.

Solution Add the volatile keyword to the C variables that may be modi-
fied by the interrupts. Then, you can optimize your code in one
of these ways:

� You achieve the best optimization by applying the
FUNC_EXT_CALLED pragma to all of the entry-point
functions called from the assembly language interrupts,
and then compiling with –pm –o3 –op2. Be sure that you
use the pragma with all of the entry-point functions. If you
do not, the compiler removes the entry-point functions
that are not preceded by the FUNC_EXT_CALL pragma.

� Compile with –pm –o3 –op3. Because you do not use the
FUNC_EXT_CALL pragma, you must use the –op3 op-
tion, which is less aggressive than the –op2 option, and
your optimization may not be as effective.

Keep in mind that if you use –pm –o3 without additional op-
tions, the compiler removes the C functions that the assembly
functions call. Use the FUNC_EXT_CALLED pragma to keep
these functions.

Use the –on2 option to generate an information file to see which program-level
optimizations the compiler is applying. See section 3.2.2, Creating an Optimi-
zaton Information File, on page 3-5 for more information.

3.3.3 Naming the Program Compilation Output File (–px Option)

When you specify whole program compilation with the –pm option, you can
use the –px filename option to specify the name of the output file. If you specify
no assembly (–n shell option), the default file extension for the output file is
.asm. If you allow assembly (default shell behavior), the default file extension
for the output file is .obj. If you specify linking, you must name the output file
with the –o option after the –z option, or the name of the output file is the default
a.out.

Special Considerations When Using the Optimizer

 3-10

3.4 Special Considerations When Using the Optimizer

The optimizer is designed to improve your ANSI-conforming C programs while
maintaining their correctness. However, when you write code for the optimizer,
you should note the following special considerations to ensure that your pro-
gram performs as you intend.

3.4.1 Use Caution With asm Statements in Optimized Code

You must be extremely careful when using asm (inline assembly) statements
in optimized code. The optimizer rearranges code segments, uses registers
freely, and can completely remove variables or expressions. Although the
compiler never optimizes out an asm statement (except when it is
unreachable), the surrounding environment where the assembly code is
inserted can differ significantly from the original C source code. It is usually
safe to use asm statements to manipulate hardware controls such as interrupt
masks, but asm statements that attempt to interface with the C environment
or access C variables can have unexpected results. After compilation, check
the assembly output to make sure your asm statements are correct and main-
tain the integrity of the program.

3.4.2 Use Caution With the Volatile Keyword

The optimizer analyzes data flow to avoid memory accesses whenever possi-
ble. If you have code that depends on memory accesses exactly as written in
the C code, you must use the volatile keyword to identify these accesses. A
variable qualified with a volatile keyword is allocated to an uninitialized section.
The compiler will not optimize out any references to volatile variables.

In the following example, the loop waits for a location to be read as 0xFF:

unsigned int *ctrl;
while (*ctrl !=0xFF);

In this example, *ctrl is a loop-invariant expression, so the loop is optimized
down to a single memory read. To correct this, declare ctrl as:

volatile unsigned int *ctrl

Use Caution With asm Statements in Optimized Code

3-11Optimizing Your Code

3.4.3 Use Caution When Accessing Aliased Variables

Aliasing occurs when you can access a single object in more than one way,
such as when two pointers point to the same object or when a pointer points
to a named object. Aliasing can disrupt optimization, because any indirect ref-
erence could potentially refer to any other object. The optimizer analyzes the
code to determine where aliasing can and cannot occur, then optimizes as
much as possible while still preserving the correctness of the program. The op-
timizer behaves conservatively. If there is a chance that two pointers are point-
ing to the same object, the optimizer assumes that the pointers point to the
same object.

The compiler assumes that if the address of a local variable is passed to a func-
tion, the function might change the local variable by writing through the pointer.
This makes its address unavailable for use elsewhere after returning. For ex-
ample, the called function cannot assign the local variable’s address to a glob-
al variable or return the local variable’s address.

3.4.4 Assume Functions Are Not Interrupts

The –oe option assumes that none of the functions in the module are inter-
rupts, can be called by interrupts, or can be otherwise executed in an asynch-
ronous manner. This enables the optimizer to do certain variable allocation op-
timizations. The –oe option automatically invokes the optimizer at level 2.

The –oe option also presumes that none of the modules are called recursively
(directly or indirectly). Be careful not to combine the use of –oe with modules
containing recursive functions.

Automatic Inline Expansion (–oi Option)

 3-12

3.5 Automatic Inline Expansion (–oi Option)

The optimizer automatically inlines small functions when it is invoked with the
–o3 option. A command-line option, –oisize, specifies the size of the functions
inlined. When you use –oi, specify the size limit for the largest function to be
inlined. You can use the –oisize option in the following ways:

� If you set the size parameter to 0 (–oi0), all size-controlled inlining is dis-
abled.

� If you set the size parameter to a nonzero integer, the compiler inlines
functions based on size. The optimizer multiplies the number of times the
function is inlined (plus 1 if the function is externally visible and its declara-
tion cannot be safely removed) by the size of the function. The optimizer
inlines the function only if the result is less than the size parameter. The
compiler measures the size of a function in arbitrary units; however, the
optimizer information file (created with the –on1 or –on2 option) reports
the size of each function in the same units that the –oi option uses.

The –oisize option controls only the inlining of functions that are not explicitly
declared as inline. If you do not use the –oisize option, the optimizer inlines
very small functions. The –x option controls the inlining of functions declared
as inline (see section 2.6.3.1 on page 2-30).

Using the Interlist Utility With the Optimizer

3-13Optimizing Your Code

3.6 Using the Interlist Utility With the Optimizer

You control the output of the interlist utility when running the optimizer (the –on
option) with the –os and –ss options.

� The –os option interlists optimizer comments with assembly source state-
ments.

� The –ss and –os options together interlist the optimizer comments and the
original C source with the assembly code.

When you use the –os option with the optimizer, the interlist utility does not run
as a separate pass. Instead, the optimizer inserts comments into the code,
indicating how the optimizer has rearranged and optimized the code. These
comments appear in the assembly language file as comments starting with ;**.
The C source code is not interlisted, unless you use the –ss option also.

The interlist utility can affect optimized code because it might prevent some
optimization from crossing C statement boundaries. Optimization makes
normal source interlisting impractical, because the optimizer extensively rear-
ranges your program. Therefore, when you use the –os option, the optimizer
writes reconstructed C statements.

3.7 Debugging Optimized Code

Ideally, you should debug a program in an unoptimized form and reverify its
correctness after it has been optimized. You can use the debugger with opti-
mized code, but the optimizer’s extensive rearrangement of code and the
many-to-one allocation of variables to registers often makes it difficult to corre-
late source code with object code.

Note: Symbolic Debugging and Optimized Code

If you use the –g option to generate symbolic debugging information, many
code generator optimizations are disabled because they disrupt the debug-
ger. If you want to use symbolic debugging and still generate fully optimized
code, use the –mn option. –mn re-enables the optimizations disabled by –g.

Using the Interlist Utility With the Optimizer / Debugging Optimized Code

What Kind of Optimization Is Being Performed?

 3-14

3.8 What Kind of Optimization Is Being Performed?

The TMS320C2x/C2xx/C5x C compiler uses a variety of optimization tech-
niques to improve the execution speed of your C programs and to reduce their
size. Optimization occurs at various levels throughout the compiler.

Most of the optimizations described here are performed by the separate op-
timizer pass that you enable and control with the –o compiler options (see sec-
tion 3.1, Using the Compiler Optimizer, on page 3-2). However, the code gen-
erator performs some optimizations, which you cannot selectively enable or
disable.

Following are the optimizations performed by the compiler. These optimiza-
tions improve any C code:

Optimizations Page

Cost-based register allocation 3-15

Autoincrement addressing 3-15

Repeat Blocks 3-15

Delays, branches, calls, and returns 3-16

Algebraic reordering, symbolic simplification, constant folding 3-18

Alias disambiguation 3-18

Data flow optimizations
� Copy propagation
� Common subexpression elimination
� Redundant assignment elimination

3-18

Branch optimizations and control-flow simplification 3-20

Loop induction variable optimizations and strength reduction 3-21

Loop rotation 3-21

Loop-invariant code motion 3-21

Inline expansion of run-time-support library functions 3-21

What Kind of Optimization Is Being Performed?

3-15Optimizing Your Code

3.8.1 Cost-based Register Allocation

The optimizer, when enabled, allocates registers to user variables and com-
piler temporary values according to their type, use, and frequency. Variables
used within loops are weighted to have priority over others, and those vari-
ables whose uses do not overlap may be allocated to the same register.

3.8.2 Autoincrement Addressing

For pointer expressions of the form *p++, the compiler uses efficient
TMS320C2x/C2xx/C5x autoincrement addressing modes. In many cases,
where code steps through an array in a loop, such as for (i = 0; i < n; ++i) a[i]...,
the loop optimizations convert the array references to indirect references
through autoincremented register variable pointers. See Example 3–1.

3.8.3 Repeat Blocks

The TMS320C2x/C2xx/C5x supports zero-overhead loops with the RPTB (re-
peat block) instruction. With the optimizer, the compiler can detect loops con-
trolled by counters and generate them using the efficient repeat forms. The it-
eration count can be either a constant or an expression. For the TMS320C2x,
which does not have a repeat block instruction, the compiler allocates an AR
as the loop counter and implements the loop with a BANZ instruction. See
Example 3–1 and Example 3–5.

What Kind of Optimization Is Being Performed?

 3-16

Example 3–1. Repeat Blocks, Autoincrement Addressing, Parallel Instructions, Strength
Reduction, Induction Variable Elimination, Register Variables, and Loop
Test Replacement

int a[10], b[10];
scale(int k)
{
 int i;
 for (i = 0; i < 10; ++i)
 a[i] = b[i] * k;

. . .

TMS320C2x/C2xx/C5x C Compiler Output:

_scale:
. . .
LRLK AR6,_a ; AR6 = &a[0]
LRLK AR5,_b ; AR5 = &b[0]
LACK 9
SAMM BRCR ; BRCR = 9
LARK AR2,–3+LF1 ; AR2 = &k
MAR *0+,AR5
RPTB L4–1 ; repeat block 10 times
LT *+,AR2 ; t = *AR5++
MPY * ,AR6 ; p = t * *AR2
SPL *+,AR5 ; *AR6++ = p

L4:
. . .

Induction variable elimination and loop test replacement allow the compiler to rec-
ognize the loop as a simple counting loop and then generate a repeat block.
Strength reduction turns the array references into efficient pointer autoincrements.

3.8.4 Delays, Banches, Calls, and Returns

The TMS320C5x provides a number of of delayed branch, call, and return
instructions. Three of these are used by the compiler: branch unconditional
(BD), call to a named function (CALLD), and simple return (RETD). These
instructions execute in two fewer cycles than their nondelayed counterparts.
They execute two instructions words after they enter the instruction stream.
Sometimes it is necessary to insert a NOP after a delayed instruction to ensure
proper operation of the sequence. This is one word of code longer than a
nondelayed sequence, but it is still one cycle faster. Note that the compiler
emits a comment in the instruction sequence where the delayed instruction
executes. See Example 3–2.

What Kind of Optimization Is Being Performed?

3-17Optimizing Your Code

Example 3–2. Delayed Branch, Call, and Return Instructions

main()
{
 int i0, i1;

 while (input(&i0) && input(&i1))
 process(i0, i1);
}

TMS320C2x/C2xx/C5x C Compiler Output:
_main:

SAR AR0,*+ ; function prolog
POPD *+ ; save AR0 and return address
SAR AR1,* ; begin to set up local frame
BD L2 ; begin branch to loop control
LARK AR0,3 ; finish setting up local frame
LAR AR0,*0+

*** B L2 OCCURS ; branch to loop control
L1: ; loop body

LARK AR2,2 ; AR2 = &i1
MAR *0+
LAC *–,AR1 ; ACC = *AR2, AR2 = &i0
SACL *+,AR2 ; stack ACC
CALLD _process ; begin call
LAC * ,AR1 ; ACC = *AR2
SACL *+ ; stack ACC

*** CALL _process OCCURS ; call occurs
SBRK 2 ; pop stack

L2: ; loop control
MAR * ,AR5 ; AR5 = &i0
LARK AR5,1
CALLD _input ; begin call
MAR *0+,AR1
SAR AR5,*+ ; stack AR5

*** CALL _input OCCURS ; call occurs
MAR *– ; clear stack
BZ EPI0_1 ; quit if _input returns 0
MAR * ,AR4 ; AR4 = &i1
LARK AR4,2
CALLD _input ; begin call
MAR *0+,AR1
SAR AR4,*+ ; stack AR4

*** CALL _input OCCURS ; call occurs
MAR *–,AR2 ; clear stack
BNZ L1 ; continue if _input returns !0

EPI0_1:
MAR * ,AR1 ; function epilog
SBRK 4 ; clear local frame
PSHD *– ; push return address on hardware stack
RETD ; begin return
LAR AR0,* ; restore AR0
NOP ; necessary, no PSHD in delay slot

*** RET OCCURS ; return occurs
. . .

What Kind of Optimization Is Being Performed?

 3-18

3.8.5 Algebraic Reordering / Symbolic Simplification / Constant Folding

For optimal evaluation, the compiler simplifies expressions into equivalent
forms requiring fewer instructions or registers. For example, the expression (a
+ b) – (c + d) takes six instructions to evaluate; it can be optimized to ((a + b)
– c) – d, which takes only four instructions. Operations between constants are
folded into single constants. For example, a = (b + 4) – (c + 1) becomes a = b
– c + 3. See Example 3–3.

3.8.6 Alias Disambiguation

Programs written in the C language generally use many pointer variables.
Frequently, compilers are unable to determine whether or not two or more I
(lowercase L) values (symbols, pointer references, or structure references)
refer to the same memory location. This aliasing of memory locations often
prevents the compiler from retaining values in registers because it cannot be
sure that the register and memory continue to hold the same values over time.
Alias disambiguation is a technique that determines when two pointer expres-
sions cannot point to the same location, allowing the compiler to freely opti-
mize such expressions.

3.8.7 Data-Flow Optimizations

Collectively, the following three data-flow optimizations replace expressions
with less costly ones, detect and remove unnecessary assignments, and avoid
operations that produce values already computed. The optimizer performs
these data-flow optimizations both locally (within basic blocks) and globally
(across entire functions). See Example 3–3 and Example 3–4.

� Copy propagation

Following an assignment to a variable, the compiler replaces references to
the variable with its value. The value could be another variable, a constant,
or a common subexpression. This may result in increased opportunities
for constant folding, common subexpression elimination, or even total
elimination of the variable. See Example 3–3 and Example 3–4.

� Common subexpression elimination

When the same value is produced by two or more expressions, the com-
piler computes the value once, saves it, and reuses it. See Example 3–3.

� Redundant assignment elimination

Often, copy propagation and common subexpression elimination opti-
mizations result in unnecessary assignments to variables (variables with
no subsequent reference before another assignment or before the end of
the function). The optimizer removes these dead assignments. See
Example 3–3.

What Kind of Optimization Is Being Performed?

3-19Optimizing Your Code

Example 3–3. Data-Flow Optimizations

simp(int j)
{

int a = 3;
int b = (j * a) + (j * 2);
int c = (j << a);
int d = (j >> 3) + (j << b);

call(a,b,c,d);
...

}

TMS320C2x/C2xx/C5x C Compiler Output:

_simp:
. . .

* b = j * 5;

LARK AR2,–3+LF1 ; AR2 = &j
MAR *0+
LT * ; t = *AR2
MPYK 5 ; p = t * 5
ADRK 4–LF1 ; AR2 = &b
SPL * ; *AR2 = p

* call(3, b, j << 3, (j >> 3) + (j << b));

LT * ; t = *AR2 (b)
SBRK 4–LF1 ; AR2 = &j
LACT * ,AR1 ; ACC = j << b
SACL * ,AR2 ; save off ACC on TOS (top of stack)
SSXM ; need sign extension for right shift
LAC * ,12,AR1 ; high ACC = j >> 3
ADD * ,15 ; add TOS to high ACC
SACH *+,1,AR2 ; stack high ACC
LAC * ,3,AR1 ; ACC = j << 3
SACL *+,AR2 ; stack ACC
ADRK 4–LF1 ; AR2 = &b
LAC * ,AR1 ; ACC = b
SACL *+ ; stack ACC
CALLD _call ; call begins
LACK 3 ; ACC = 3
SACL *+ ; stack ACC

*** CALL _call OCCURS ; call occurs

. . .

The constant 3, assigned to a, is copy propagated to all uses of a; a becomes a dead variable
and is eliminated. The sum of multiplying j by 3 (a) and 2 is simplified into b = j * 5, which is recog-
nized as a common subexpression. The assignments to c and d are dead and are replaced with
their expressions. These optimizations are performed across jumps.

What Kind of Optimization Is Being Performed?

 3-20

3.8.8 Branch Optimizations and Control-Flow Simplification

The compiler analyzes the branching behavior of a program and rearranges
the linear sequences of operations (basic blocks) to remove branches or
redundant conditions. Unreachable code is deleted, branches to branches are
bypassed, and conditional branches over unconditional branches are simpli-
fied to a single conditional branch. When the value of a condition can be deter-
mined at compile time (through copy propagation or other data flow analysis),
a conditional branch can be deleted. Switch case lists are analyzed in the
same way as conditional branches and are sometimes eliminated entirely.
Some simple control-flow constructs can be reduced to conditional instruc-
tions, totally eliminating the need for branches. See Example 3–4.

Example 3–4. Copy Propagation and Control-Flow Simplification

fsm()
{

enum { ALPHA, BETA, GAMMA, OMEGA } state = ALPHA;
int *input;

while (state != OMEGA)
switch (state)
{

case ALPHA: state = (*input++ == 0) ? BETA: GAMMA; break;
case BETA : state = (*input++ == 0) ? GAMMA: ALPHA; break;
case GAMMA: state = (*input++ == 0) ? GAMMA: OMEGA; break;

}
}

TMS320C2x/C2xx/C5x C Compiler Output:

_fsm:
. . .

*
* AR5 assigned to variable ’input’
*

LAC *+ ; initial state == ALPHA
BNZ L5 ; if (input != 0) go to state GAMMA

L2:
LAC *+ ; state == BETA
BZ L4 ; if (input == 0) go to state GAMMA
LAC *+ ; state == ALPHA
BZ L2 ; if (input == 0) go to state BETA
B L5 ; else go to state GAMMA

L4:
LAC *+ ; state == GAMMA
BNZ EPI0_1 ; if (input != 0) go to state OMEGA

L5:
LARP AR5

L6:
LAC *+ ; state = GAMMA
BZ L6 ; if (input == 0) go to state GAMMA

EPI0_1: ; state == OMEGA
. . .

The switch statement and the state variable from this simple finite state machine example
are optimized completely away, leaving a streamlined series of conditional branches.

What Kind of Optimization Is Being Performed?

3-21Optimizing Your Code

3.8.9 Loop Induction Variable Optimizations and Strength Reduction

Loop induction variables are variables whose value within a loop is directly
related to the number of executions of the loop. Array indices and control vari-
ables for loops are very often induction variables. Strength reduction is the
process of replacing costly expressions involving induction variables with
more efficient expressions. For example, code that indexes into a sequence
of array elements is replaced with code that increments a pointer through the
array. Loops controlled by incrementing a counter are written as
TMS320C2x/C2xx/C5x repeat blocks or by using efficient decrement-and-
branch instructions. Induction variable analysis and strength reduction
together often remove all references to your loop control variable, allowing it
to be eliminated entirely. See Example 3–1 and Example 3–5.

3.8.10 Loop Rotation

The compiler evaluates loop conditionals at the bottom of loops, saving a
costly extra branch out of the loop. In many cases, the initial entry conditional
check and the branch are optimized out.

3.8.11 Loop Invariant Code Motion

This optimization identifies expressions within loops that always compute the
same value. The computation is moved in front of the loop, and each occur-
rence of the expression in the loop is replaced by a reference to the precom-
puted value. See Example 3–5.

3.8.12 Inline Expansion of Run–Time-Support Library Functions

The compiler replaces calls to small run-time-support functions with inline
code, saving the overhead associated with a function call, as well as providing
increased opportunities to apply other optimizations. See Example 3–5.

What Kind of Optimization Is Being Performed?

 3-22

Example 3–5. Inline Function Expansion

#include <string.h>
struct s { int a,b,c[10]; };
struct t { int x,y,z[10]; };

proc_str(struct s *ps, struct t *pt)
{

. . .
 memcpy(ps,pt,sizeof(*ps));

. . .
}
_proc_str:

. . .

TMS320C2x/C2xx/C5x C Compiler Output:

*
* AR5 assigned to variable ’memcpy_1_rfrom’
* AR6 assigned to variable ’memcpy_1_rto’
* BRCR assigned to temp var ’L$1’
*

. . .

LARK AR2,–3+LF1 ; AR2 = &ps
MAR *0+
LAR AR6,*– ; AR6 = ps, AR2 = &pt
LAR AR5,* ,AR5 ; AR5 = pt
LACK 11
SAMM BRCR ; repeat 12 times
RPTB L4–1
LAC *+,AR6 ; *ps++ = *pt++
SACL *+,AR5
NOP ; must have 3 words in repeat block

L4:
. . .

The compiler finds the intermediate file code for the C function memcpy() in the inline library
and copies it in place of the call. Note the creation of variables memcpy_1_from and
memcpy_1_to, corresponding to the parameters of memcpy. (Often, copy propagation can
eliminate such assignments to parameters of inlined functions when the arguments are not
referenced after the call.)

4-1

Linking C Code

The C compiler and assembly language tools provide two methods for linking
your programs:

� You can compile individual modules and link them together. This method
is especially useful when you have multiple source files.

� You can compile and link in one step by using dspcl. This method is useful
when you have a single source module.

This chapter describes how to invoke the linker with each method. It also
discusses special requirements of linking C code, including the run-time-sup-
port libraries, specifying the type of initialization, and allocating the program
into memory. For a complete description of the linker, see the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

Topic Page

4.1 Invoking the Linker as an Individual Program 4-2.

4.2 Invoking the Linker With the Compiler Shell (–z Option) 4-4.

4.3 Disabling the Linker (–c Shell Option) 4-5.

4.4 Linker Options 4-6.

4.5 Controlling the Linking Process 4-8.

Chapter 4

Invoking the Linker as an Individual Program

 4-2

4.1 Invoking the Linker as an Individual Program

This section shows how to invoke the linker in a separate step after you have
compiled and assembled your programs. This is the general syntax for linking
C programs in a separate step:

dsplnk {–c|–cr } filenames [-options] [–o name.out] –l libraryname [lnk.cmd]

lnk6x is the command that invokes the linker.

–c | –cr are options that tell the linker to use special conventions
defined by the C environment. When you use dsplnk, you
must use –c or –cr. The –c option uses automatic variable
initialization at runtime; the –cr option uses variable initiali-
zation at load time.

filenames are names of object files, linker command files, or archive
libraries. The default extension for all input files is .obj; any
other extension must be explicitly specified. The linker can
determine whether the input file is an object or ASCII file
that contains linker commands. The default output file-
name is a.out, unless you use the –o option to name the
output file.

options affect how the linker handles your object files. Options can
appear anywhere on the command line or in a linker com-
mand file. (Options are discussed in section 4.4)

–o name.out The –o option names the output file.

–l libraryname (lowercase L) Identifies the appropriate archive library
containing C run-time-support and floating-point math
functions. (The –l option tells the linker that a file is an ar-
chive library.) If you are linking C code, you must use a run-
time-support library. You can use the libraries included
with the compiler, or you can create your own run-time-
support library. If you have specified a run-time-support
library in a linker command file, you do not need this
parameter.

lnk.cmd contains options, filenames, directives, or commands for
the linker.

Table 4–1. Run-Time-Support Source Libraries

Library Name Library Source Contents

rts25.lib TMS320C2x runtime support

rts2xx.lib TMS320C2xx runtime support

rts50.lib TMS320C5x runtime support

Invoking the Linker as an Individual Program

4-3Linking C Code

When you specify a library as linker input, the linker includes and links only
those library members that resolve undefined references. For example, you
can link a C program consisting of modules prog1, prog2, and prog3 (the
output file is named prog.out), enter:

dsplnk –c prog1 prog2 prog3 –o prog.out –l rts25.lib

The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS directives in the linker
command file to customize the allocation process. For more information, see
the TMS320C2x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

Invoking the Linker With the Compiler Shell (–z Option)

 4-4

4.2 Invoking the Linker With the Compiler Shell (–z Option)

The options and parameters discussed in this section apply to both methods
of linking; however, when you link while compiling, the linker options must fol-
low the –z option (see section 2.2, Invoking the C Compiler Shell, on page 2-4).

By default, the compiler does not run the linker. However, if you use the –z op-
tion, a program is compiled, assembled, and linked in one step. When using
–z to enable linking, remember that:

� The –z option divides the command line into compiler options (the options
before –z) and linker options (the options following –z).

� The –z option must follow all source files and other compiler options on the
command line or be specified with the C_OPTION environment variable.

All arguments that follow –z on the command line are passed on to the linker.
These arguments can be linker command files, additional object files, linker
options, or libraries. For example, to compile and link all the .c files in a directo-
ry, enter:

dspcl –sq *.c –z c.cmd –o prog.out –l rts25.lib

First, all of the files in the current directory that have a .c extension are com-
piled using the –s (interlist C and assembly code) and –q (run in quiet mode)
options. Second, the linker links the resulting object files by using the c.cmd
command file. The –o option names the output file, and the –l option names
the run-time-support library.

The order in which the linker processes arguments is important. The compiler
passes arguments to the linker in the following order:

1) Object filenames from the command line

2) Arguments following the –z option on the command line

3) Arguments following the –z option from the C_OPTION environment
variable

Disabling the Linker (–c Shell Option)

4-5Linking C Code

4.3 Disabling the Linker (–c Shell Option)

You can override the –z option by using the –c shell option. The –c option is
especially helpful if you specify the –z option in the C_OPTION environment
variable and want to selectively disable linking with the –c option on the
command line.

The –c linker option has a different function than, and is independent of, the
–c shell option. By default, the compiler uses the –c linker option when you use
the –z option. This tells the linker to use C linking conventions (autoinitializa-
tion of variables at runtime). If you want to initialize variables at load time, use
the –cr linker option following the –z option.

Linker Options

 4-6

4.4 Linker Options

All command-line input following the –z shell option is passed to the linker as
parameters and options. The following are options that control the linker along
with detailed descriptions of their effects.

–a Produces an absolute, executable module. This is the
default; if neither –a nor –r is specified, the linker acts as
if –a is specified.

–ar Produces a relocatable, executable object module

–b Disables merging of symbolic debugging information

–c Autoinitializes variables at runtime. See section 6.8.4 on
page 6-34, for more information.

–cr Initializes variables at load time. See section 6.8.5 on
page 6-35, for more information.

–e global_symbol Defines a global_symbol that specifies the primary entry
point for the output module

–f fill_value Sets the default fill value for holes within output sections;
fill_value is a 16-bit constant

–g global_symbol Defines global_symbol as global even if the global sym-
bol has been made static with the –h linker option

–h Makes all global symbols static

–heap size Sets heap size (for dynamic memory allocation) to size
words and defines a global symbol that specifies the
heap size. Default is 1K words.

–i directory Alters the library-search algorithm to look in directory be-
fore looking in the default location. This option must ap-
pear before the –l linker option. The directory must follow
operating system conventions.

–l libraryname (lower case L) Names an archive library file or linker com-
mand filename as linker input. The libraryname is an ar-
chive library name and must follow operating system
conventions.

–m filename Produces a map or listing of the input and output sec-
tions, including holes, and places the listing in filename.
The filename must follow operating system conventions.

–n Ignores all fill specifications in memory directives. Use
this option in the development stage of a project to avoid
generating large .out files, which can result from using
memory directive fill specifications.

Linker Options

4-7Linking C Code

–o filename Names the executable output module. The filename
must follow operating system conventions. If the –o op-
tion is not used, the default filename is a.out.

–q Requests a quiet run (suppresses the banner and prog-
ress information)

–r Retains relocation entries in the output module

–s Strips symbol table information and line number entries
from the output module

–stack size Sets the C system stack size to size words and defines
a global symbol that specifies the stack size. Default is
1K words.

–u symbol Places the unresolved external symbol symbol into the
output module’s symbol table

–v0 Generates version 0 COFF format

–v1 Generates version 1 COFF format

–v2 Generates version 2 COFF format

–w Displays a message when an undefined output section
is created

–x Forces rereading of libraries. Resolves back references

For more information on linker options, see the Linker Description chapter in
the TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

Controlling the Linking Process

 4-8

4.5 Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special require-
ments apply when linking C programs. You must:

� Include the compiler’s run-time-support library
� Specify the type of initialization
� Determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an
example of the standard default linker command file.

For more information about how to operate the linker, see the TMS320C1x/
C2x/C2xx/C5x Assembly Language Tools User’s Guide.

4.5.1 Linking With Run-Time-Support Libraries

You must link all C programs with a run-time-support library. The library con-
tains standard C functions as well as functions used by the compiler to manage
the C environment. You must use the –l linker option to specify which
TMS320C2x/C2xx/C5x run-time-support library to use. The –l option also tells
the linker to look at the –i options and then the C_DIR environment variable
to find an archive path or object file. To use the –l linker option, type on the com-
mand line:

dsplnk {–c | –cr } filenames –l libraryname

Generally, you should specify the library as the last name on the command line
because the linker searches libraries for unresolved references in the order
that files are specified on the command line. If any object files follow a library,
references from those object files to that library are not resolved. You can use
the –x linker option to force the linker to reread all libraries until references are
resolved. Whenever you specify a library as linker input, the linker includes and
links only those library members that resolve undefined references.

Three versions of the standard run-time-support library are included with the
compiler: rts25.lib for TMS320C2x programs, rts2xx.lib for TMS320C2xx
programs, and rts50.lib for TMS320C5x programs.

You must link all C programs with an object module called boot.obj. When a
C program begins running, it must execute boot.obj first. The boot.obj file con-
tains code and data to initialize the run-time environment; the linker automati-
cally extracts boot.obj and links it when you use –c or –cr and include rts25.lib,
rts2xx.lib or rts50.lib in the link.

Controlling the Linking Process

4-9Linking C Code

Note: The _c_int0 Symbol

One important function contained in the run-time-support library is _c_int0.
The symbol _c_int0 is the starting point in boot.obj; if you use the –c or –cr
linker option, _c_int0 is automatically defined as the entry point for the
program. If your program begins running from reset, you should set up the
reset vector to branch to _c_int0 so that the processor executes boot.obj first.

The boot.obj module contains code and data for initializing the run-time envi-
ronment. The module performs the following tasks:

1) Sets up the stack

2) Processes the run-time initialization table and autoinitializes global
variables (when using the –c option)

3) Calls main

4) Calls exit when main returns

Chapter 7 describes additional run-time-support functions that are included in
the library. These functions include ANSI C standard run-time support.

4.5.2 Specifying the Type of Initialization

The C compiler produces data tables for initializing global variables. Section
6.8.3, Initialization Tables, on page 6-33 discusses the format of these tables.
These tables are in a named section called .cinit. The initialization tables are
used in one of the following ways:

� Global variables are initialized at run time. Use the –c linker option (see
section 6.8.4, Autoinitialization of Variables at Run Time, on page 6-34).

� Global variables are initialized at load time. Use the –cr linker option (see
section 6.8.5, Initialization of Variables at Load Time, on page 6-35).

Controlling the Linking Process

 4-10

When you link a C program, you must use either the –c or –cr linker option.
These options tell the linker to select initialization at run time or load time.
When you compile and link programs, the –c linker option is the default. If
used, the –c linker option must follow the –z option. (See section 4.2, Invoking
the Linker With the Compiler Shell, on page 4-4. The following list outlines the
linking conventions used with –c or –cr:

� The symbol _c_int0 is defined as the program entry point; it identifies the
beginning of the C boot routine in boot.obj. When you use –c or –cr, _c_int0
is automatically referenced, ensuring that boot.obj is automatically linked
in from the run-time-support library.

� The .cinit output section is padded with a termination record so that the
loader (load time initialization) or the boot routine (run time initialization)
knows when to stop reading the initialization tables.

� When using initializing at load time (the –cr linker option), the following
occur:

� The linker sets the symbol cinit to –1. This indicates that the initializa-
tion tables are not in memory, so no initialization is performed at run
time.

� The STYP_COPY flag (010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into memory.
The linker does not allocate space in memory for the .cinit section.

� When autoinitializing at run time (–c linker option), the linker defines the
symbol cinit as the starting address of the .cinit section. The boot routine
uses this symbol as the starting point for autoinitialization.

Controlling the Linking Process

4-11Linking C Code

4.5.3 Specifying Where to Allocate Sections in Memory

The compiler produces relocatable blocks of code and data. These blocks,
called sections, are allocated in memory in a variety of ways to conform to a
variety of system configurations.

The compiler creates two basic kinds of sections: initialized and uninitialized.
Table 4–2 summarizes the sections.

Table 4–2. Sections Created by the Compiler

(a) Initialized sections

Name Contents

.cinit Tables for explicitly initialized global and static variables

.const String literals, and global and static const variables that are explicitly
initialized

.switch Jump tables for large switch statements

.text Executable code and floating-point constants

(b) Uninitialized sections

Name Contents

.bss Global and static variables

.stack Software stack

.sysmem Dynamic memory area for malloc functions (heap)

When you link your program, you must specify where to allocate the sections
in memory. In general, initialized sections are linked into ROM or RAM; unini-
tialized sections are linked into RAM. Though the .const section can be placed
in ROM because it is never written to, it must be configured as data memory
because of how it is accessed (see subsection 6.1.3, Allocating .const to Pro-
gram Memory, on page 6-5, for details). See section 6.1.1, Sections, on page
6-3, for a complete description of how the compiler uses these sections. The
linker provides MEMORY and SECTIONS directives for allocating sections.

Controlling the Linking Process

 4-12

The following table shows the type of memory and the page designation each
section type requires:

Section Type of Memory Page

.text ROM or RAM 0

.cinit ROM or RAM 0

.const ROM or RAM 1

.switch ROM or RAM 0

.bss RAM 1

.stack RAM 1

.sysmem RAM 1

For more information about allocating sections into memory, refer to the linker
chapter of the TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s
Guide.

Controlling the Linking Process

4-13Linking C Code

4.5.4 A Sample Linker Command File

Example 4–1 shows a typical linker command file that links a C program. The
command file in this example is named link.cmd and lists several linker op-
tions:

–c Tells the linker to use autoinitialization at run time.

–m Tells the linker to create a map file; the map file in this example
is named example.map.

–o Tells the linker to create an executable object module; the
module in this example is named example.out.

Example 4–1. An Example of a Linker Command File

/**/
/ Linker command file link.cmd
/**/

–c /* ROM autoinitialization model */
–m example.map /* Create a map file */
–o example.out /* Output file name */

main.obj /* First C module */
sub.obj /* Second C module */
asm.obj /* Assembly language module */
–l rts25.lib /* Runtime–support library */
–l matrix.lib /* Object library */

MEMORY
{
 PAGE 0 : PROG: origin = 30h, length = 0EFD0h
 PAGE 1 : DATA: origin = 800h length – 0E800h
}
SECTIONS
{
 .text > PROG PAGE 0
 .cinit > PROG PAGE 0
 .switch > PROG PAGE 0
 .bss > DATA PAGE 1
 .const > DATA PAGE 1
 .sysmem > DATA PAGE 1
 .stack > DATA PAGE 1
}

Next, the command file lists all the object files to be linked. This C program con-
sists of two C modules, main.c and sub.c, which were compiled and
assembled to create two object files called main.obj and sub.obj. This example
also links in an assembly language module called asm.obj.

One of these files must define the symbol main because boot.obj calls main
as the start of your C program. All of these single object files are linked.

Controlling the Linking Process

 4-14

Finally, the command file lists all the object libraries that the linker must search.
(The libraries are specified with the –l linker option.) Because this is a C pro-
gram, the run-time-support library (rts25.lib, rts2xx.lib, or rts50.lib) must be
included. This program uses several routines from an archive library called
matrix.lib, so it is also named as linker input. Note that only the library members
that resolve undefined references are linked.

To link the program, enter:

dsplnk link.cmd

The MEMORY directive and possibly the SECTIONS directive might require
modification to work with your system. Refer to the linker chapter of the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide for infor-
mation on these directives.

5-1TMS320C2x/C2xx/C5x C Language

TMS320C2x/C2xx/C5x C Language

The TMS320C2x/C2xx/C5x C compiler supports the C language standard
that was developed by a committee of the American National Standards Insti-
tute (ANSI) to standardize the C programming language.

ANSI C supersedes the de facto C standard that is described in the first edition
of The C Programming Language by Kernighan and Ritchie. The ANSI stan-
dard is described in the American National Standard for Information Sys-
tems—Programming Language C X3.159–1989. The second edition of The
C Programming Language is based on the ANSI standard. ANSI C encom-
passes many of the language extensions provided by current C compilers and
formalizes many previously unspecified characteristics of the language.

Topic Page

5.1 Characteristics of TMS320C2x/C2xx/C5x C Language 5-2.

5.2 Data Types 5-4.

5.3 Register Variables 5-6.

5.4 Pragma Directives 5-7.

5.5 The asm Statement 5-9.

5.6 Creating Global Register Variables 5-10.

5.7 Initializing Static and Global Variables 5-12.

5.8 Compatibility with K&R C 5-14.

5.9 Compiler Limits 5-16.

Chapter 5

Characteristics of TMS320C2x/C2xx/C5x C Language

 5-2

5.1 Characteristics of TMS320C2x/C2xx/C5x C Language
The ANSI standard identifies certain features of the C language that are
affected by characteristics of the target processor, run-time environment, or
host environment. For efficiency or practicality, these characteristics can differ
among standard compilers. This section describes how these characteristics
are implemented for the TMS320C2x/C2xx/C5x C compiler.

The following list identifies all such cases and describes the behavior of the
TMS320C2x/C2xx/C5x C compiler in each case. Each description also in-
cludes a reference to more information. Many of the references are to the for-
mal ANSI standard or to the second edition of The C Programming Language
by Kernighan and Ritchie (K&R).

5.1.1 Identifiers and Constants

� The first 100 characters of all identifiers are significant. Case is significant;
uppercase and lowercase characters are distinct for identifiers. These
characteristics apply to all identifiers, internal and external.

(ANSI 3.1.2, K&R A2.3)

� The source (host) and execution (target) character sets are assumed to
be ASCII. There are no multibyte characters.

 (ANSI 2.2.1, K&R A12.1)

� Hex or octal escape sequences in character or string constants may have
values up to 32 bits. (ANSI 3.1.3.4, K&R A2.5.2)

� Character constants with multiple characters are encoded as the last
character in the sequence. For example,

’abc’ == ’c’ (ANSI 3.1.3.4, K&R A2.5.2)

5.1.2 Data Types

� For information about the representation of data types, see section 5.2,
Data Types, on page 5-5. (ANSI 3.1.2.5, K&R A4.2)

� The type size_t, which is the result of the sizeof operator, is unsigned int.
(ANSI 3.3.3.4, K&R A7.4.8)

� The type ptrdiff_t, which is the result of pointer subtraction, is int.
(ANSI 3.3.6, K&R A7.7)

5.1.3 Conversions

� Float-to-integer conversions truncate toward zero.
(ANSI 3.2.1.3, K&R A6.3)

� Pointers and integers can be freely converted.
(ANSI 3.3.4, K&R A6.6)

Characteristics of TMS320C2x/C2xx/C5x C Language

5-3TMS320C2x/C2xx/C5x C Language

5.1.4 Expressions

� When two signed integers are divided and either is negative, the quotient
is negative, and the sign of the remainder is the same as the sign of the
numerator. The slash mark (/) is used to find the quotient and the percent
symbol (%) is used to find the remainder. For example:

10 / –3 == –3, –10 / 3 == –3

10 % –3 == 1, –10 % 3 == –1 (ANSI 3.3.5, K&R A7.6)

� A right shift of a signed value is an arithmetic shift; that is, the sign is
preserved. (ANSI 3.3.7, K&R A7.8)

5.1.5 Declarations

� The register storage class is effective for all character, short, integer, and
pointer types. (ANSI 3.5.1, K&R A8.1)

� Structure members are not packed into words (with the exception of bit
fields). Each member is aligned on a 16-bit word boundary.

(ANSI 3.5.2.1, K&R A8.3)

� A bit field defined as an integer is signed. Bit fields are packed into words
beginning at the low-order bits, and do not cross word boundaries.

(ANSI 3.5.2.1, K&R A8.3)

5.1.6 Preprocessor

The preprocessor ignores any unsupported #pragma directive.
(ANSI 3.8.6, K&R A12.8)

The following pragmas are supported:

� CODE_SECTION
� DATA_SECTION
� FUNC_EXT_CALLED

For more information on pragmas, see section 5.4 on page 5-7.

Data Types

 5-4

5.2 Data Types

� All integral types (char, short, int, and their unsigned counterparts) are
equivalent types and are represented as 16-bit binary values.

� Long and unsigned long types are represented as 32-bit binary values.

� Signed types are represented in 2s-complement notation.

� The type char is a signed type, equivalent to int.

� Objects of type enum are represented as 16-bit values; the type enum is
equivalent to int in expressions.

� All floating-point types (float, double, and long double) are equivalent and
are represented in the TMS320C2x/C2xx/C5x’s 32-bit floating-point
format.

� Longs and floats are stored in memory with the least significant word at
the lower address.

Table 5–1 lists the size, representation, and range of each scalar data type.

Data Types

5-5TMS320C2x/C2xx/C5x C Language

Table 5–1. TMS320C2x/C2xx/C5x C Data Types

Range

Type Size Representation Minimum Maximum

char, signed char 16 bits ASCII –32768 32767

unsigned char 16 bits ASCII 0 65535

short 16 bits 2s complement –32768 32767

unsigned short 16 bits binary 0 65535

int, signed int 16 bits 2s complement –32768 32767

unsigned int 16 bits binary 0 65535

long, signed long 32 bits 2s complement –2147483648 2147483647

unsigned long 32 bits binary 0 4294967295

enum 16 bits 2s complement –32768 32767

float 32 bits TMS320C2x/C2xx/C5x 1.19209290e–38 3.4028235e+38

double 32 bits TMS320C2x/C2xx/C5x 1.19209290e–38 3.4028235e+38

long double 32 bits TMS320C2x/C2xx/C5x 1.19209290e–38 3.4028235e+38

pointers 16 bits binary 0 0xFFFF

Many of the range values are available as standard macros in the header file
limits.h, which is supplied with the compiler. For more information, see section
7.2.4, Limits (float.h and limits.h), on page 7-6.

Note: TMS320C2x/C2xx/C5x Byte Is 16 Bits

By ANSI C definition, the sizeof operator yields the number of bytes required
to store an object. ANSI further stipulates that when sizeof is applied to char,
the result is 1. Since the TMS320C2x/C2xx/C5x char is 16 bits (to make it
separately addressable), a byte is also 16 bits. This yields results you may
not expect; for example, sizeof (int) = = 1 (not 2). TMS320C2x/C2xx/C5x
bytes and words are equivalent (16 bits).

Register Variables

 5-6

5.3 Register Variables

The C compiler uses up to two register variables within a function. You must
declare the register variables in the argument list or in the first block of the
function. Register declarations in nested blocks are treated as normal vari-
ables.

The compiler uses AR6 and AR7 for register variables:

� AR6 is assigned to the first register variable.
� AR7 is assigned to the second variable.

The address of the variable is placed into the allocated register to simplify
access. Thus, 16-bit types (char, short, int, and pointers) may be used as reg-
ister variables.

Setting up a register variable at run time requires approximately four instruc-
tions per register variable. To use this feature efficiently, use register variables
only if the variable will be accessed more than twice.

The optimizer also creates register variables, but it uses them in a different
way.

Pragma Directives

5-7TMS320C2x/C2xx/C5x C Language

5.4 Pragma Directives

Pragma directives tell the compiler’s preprocessor how to treat functions. The
TMS320C2x/C2xx/C5x C compiler supports the following pragmas:

� CODE_SECTION
� DATA_SECTION
� FUNC_EXT_CALLED

Two of these pragmas use the arguments func and symbol. These arguments
must have file scope; that is, you cannot define or declare them inside the body
of a function. You must specify the pragma outside the body of a function, and
it must occur before any declaration, definition, or reference to the func or sym-
bol argument. If you do not follow these rules, the compiler issues a warning.

5.4.1 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in a section
named section name. The syntax of the pragma is:

#pragma CODE_SECTION (symbol, ”section name”);

The CODE_SECTION pragma is useful if you have code objects that you want
to link into an area separate from the .text section.

Example 5–1 demonstrates the use of the CODE_SECTION pragma.

Example 5–1. Using the CODE_SECTION Pragma

(a) C source file

#pragma CODE_SECTION(fn, ”my_sect”)

int fn(int x)
{
 return c;
}

(b) Assembly source file

.file ”CODEN.c”

.sect ”my_sect”

.global _fn

.sym _fn,_fn,36,2,0

.func 3

Pragma Directives

 5-8

5.4.2 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in a section
named section name. The syntax of the pragma is:

#pragma DATA_SECTION (symbol, “section name”);

The DATA_SECTION pragma is useful if you have data objects that you want
to link into an area separate from the .bss section.

Example 5–2 demonstrates the use of the DATA_SECTION pragma.

Example 5–2. Using the DATA_SECTION Pragma
(a) C source file

#pragma DATA_SECTION(bufferB, ”my_sect”)
char bufferA[512];
char bufferB[512];

(b) Assembly source file

.global _bufferA

.bss _bufferA,512,4

.global _bufferB
_bufferB: .usect ”my_sect”,512,4

5.4.3 The FUNC_EXT_CALLED Pragma

When you use the –pm option, the compiler uses program-level optimization.
When you use this type of optimization, the compiler removes any function
that is not called, directly or indirectly, by main. You might have C functions that
are called by hand-coded assembly instead of main.

The FUNC_EXT_CALLED pragma specifies to the optimizer to keep these C
functions or any other functions that these C functions call. These functions
act as entry points into C.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_EXT_CALLED (func);

The argument func is the name of the C function that you do not want removed.

When you use program-level optimization, you may need to use the
FUNC_EXT_CALLED pragma with certain options. See section 3.3.2, Opti-
mization Considerations When Using Mixing C and Assembly, on page 3-8.

The asm Statement

5-9TMS320C2x/C2xx/C5x C Language

5.5 The asm Statement

The TMS320C2x/C2xx/C5x C compiler can embed ’C6000 assembly lan-
guage instructions or directives directly into the assembly language output of
the compiler. This capability is an extension to the C language—the asm state-
ment. The asm statement provides access to hardware features that C cannot
provide. The asm statement is syntactically like a call to a function named
asm, with one string constant argument:

asm(” assembler text”) ;

The compiler copies the argument string directly into your output file. The
assembler text must be enclosed in double quotes. All of the usual character
string escape codes retain their definitions. For example, you can insert a
.string directive that contains quotes:

asm(”STR: .string \” abc\ ””);

The inserted code must be a legal assembly language statement. Like all
assembly language statements, the line of code inside the quotes must begin
with a label, a blank, a tab, or a comment (asterisk or semicolon). The compiler
performs no checking on the string; if there is an error, the assembler detects
it. For more information about the assembly language statements, see the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

The asm statements do not follow the syntactic restrictions of normal C state-
ments. Each can appear as a statement or a declaration, even outside of
blocks. This is useful for inserting directives at the very beginning of a com-
piled module.

Note: Avoid Disrupting the C Environment With asm Statements

Be careful not to disrupt the C environment with asm statements. The com-
piler does not check the inserted instructions. Inserting jumps and labels into
C code can cause unpredictable results in variables manipulated in or
around the inserted code. Directives that change sections or otherwise affect
the assembly environment can also be troublesome.

Be especially careful when you use the optimizer with asm statements.
Although the optimizer cannot remove asm statements, it can significantly
rearrange the code order near them and cause undesired results.

Creating Global Register Variables

 5-10

5.6 Creating Global Register Variables

The TMS320C2x/C2xx/C5x compiler extends the C language by adding a
special convention to the register keyword to allow the allocation of global reg-
isters. In this special case, the register keyword is treated as a storage class
modifier. The declaration must appear before any function definitions. This
special declaration has the form:

register type AR6
or
register type AR7

The two registers R6 and R7 are normally save-on-entry registers; type cannot
be float or long. When you use the allocation declaration at file level, the regis-
ter is permanently reserved from any other use by the optimizer and code gen-
erator for that file. You cannot assign an initial value to the register. You can
use a #define statement to assign a meaningful variable name to the register
and use the variable normally; for example:

register struct data_struct *AR6
#define data_pointer (AR6)

data_pointer–>element;
data_pointer++;

5.6.1 When to Use a Global Register Variable

There are two reasons that you would be likely to use a global register variable:

� You are using a global variable throughout your program, and it would sig-
nificantly reduce code size and execution speed to assign this variable to
a register permanently.

� You are using an interrupt service routine that is executed so frequently
that it would significantly reduce execution speed if the routine did not
have to save and restore the register(s) it uses every time it is executed.

You should consider carefully the implications of assigning a global register
variable. Registers are a precious resource to the compiler, and using this fea-
ture indiscriminately may result in less efficient code.

You should also carefully consider how code with a globally declared register
variable interacts with other code, including library functions, that does not rec-
ognize the restriction placed on the register.

Creating Global Register Variables

5-11TMS320C2x/C2xx/C5x C Language

5.6.2 Avoiding Corrupting Register Values

Because the two registers you are allowed to use for global register variables
are normally save-on-entry registers, a normal function call and return does
not affect the value in the register and neither does a normal interrupt. How-
ever, when you mix code that has a globally declared register variable with
code that does not have the register reserved, it is possible for the value in the
register to become corrupted. To avoid corrupting the register values, you
must follow these rules:

� You cannot access a global register variable in an interrupt service routine
unless you recompile all code, including all libraries, to reserve the
register.

� Functions that alter global register variables cannot be called by functions
that are not aware of the global register. You must be careful if you pass
a pointer to a function as an argument. If the passed function alters the
global register variable and the called function saves the register, the
value in the register is corrupted.

� You must save the global register on entry into a module that uses it, and
you must restore the register at exit.

� The longjmp() function restores global register variables to the values
they had at the setjmp() location. If this presents a problem in your code,
you must unarchive the source for longjmp from rts.src and modify it.

5.6.3 Disabling the Compiler From Using AR6 and AR7

The –rregister shell option and the corresponding –gregister option for the
optimizer and code generator (if you are invoking the tools individually) pre-
vent the compiler from using the named register. This lets you reserve the
named register in modules (such as the run-time-support libraries) that do not
have the global register variable declaration if you need to compile the
modules to prevent some of the above occurrences.

You can disable the compiler’s use of AR6 and AR7 completely so that you
can use AR6 and/or AR7 in your interrupt functions without preserving them.
If you disable the compiler from using AR6 and AR7, you must compile all code
with the –r option(s) and rebuild the run-time-support library. For example, the
following command rebuilds the rts25.lib library to not use AR6 and AR7:

dspmk –rAR6 –rAR7 –o –v25 rts.src –l rts25.lib

Initializing Static and Global Variables

 5-12

5.7 Initializing Static and Global Variables

The ANSI C standard specifies that static and global (extern) variables without
explicit initializations must be initialized to 0 before the program begins
running. This task is typically performed when the program is loaded. Because
the loading process depends heavily on the specific environment of the target
application system, the compiler itself makes no provision for preinitializing
variables. It is up to your application to fulfill this requirement.

If your loader does not preinitialize variables, you can use the linker to prein-
itialize the variables to 0 in the object file. For example, in the linker command
file, use a fill value of 0 in the .bss section:

SECTIONS
{

...

.bss: {} = 0x00;

...
}

Because the linker writes a complete load image of the zeroed .bss section
into the output COFF file, this method can have the unwanted effect of
significantly increasing the size of the output file.

5.7.1 Initializing Static and Global Variables With the const Type Qualifier

Static and global variables with the type qualifier const are handled differently
than other types of static and global variables.

The const static and global variables without explicit initializations are similar
to other static and global variables because they may not be preinitialized to
0 (for the same reasons discussed above). For example:

const int zero; /* may not be initialized to zero */

However, const, global, and static variables’ initializations are different be-
cause they are declared and initialized in a section called .const. For example:

const int zero = 0; /* guaranteed to be zero */

which corresponds to an entry in the .const section:

.sect .const
_zero

.word 0

The feature is particularly useful for declaring a large table of constants
because neither time nor space is wasted at system startup to initialize the
table. Additionally, the linker can be used to place the .const section in ROM.

Initializing Static and Global Variables

5-13TMS320C2x/C2xx/C5x C Language

5.7.2 Accessing I/O Port Space

The ioport keyword enables access to the I/O port space of the
TM320C2x/C2xx/C5x devices. The keyword has the form:

ioport type port hex_num

ioport is the keyword that indicates this is a port variable.

type must be char, short, int, or the unsigned variable.

port hex_num refers to the port number. The hex_num is a hexadecimal
number.

All declarations of port variables must be done at the file level. Port variables
declared at the function level are not supported.

For example, the following code declares the I/O port as unsigned port 10h,
writes a to port 10h, then reads port 10h into b:

ioport unsigned port10; /* variable to access I/O port 10h */

int func ()
{
 ...

 port10 = a; /* write a to port 10h */
 ...

 b = port10; /* read port 10h into b */
 ...
}

The use of port variables is not limited to assignments. Port variables can be
used in expressions like any other variable. Following are examples:

call(port10); /* read port 10h and pass to call */

a = port10 + b; /* read port 10h, add b, assign to a */

port10 += a; /* read port 10h, add a, write to port 10h */

Compatibility with K&R C

 5-14

5.8 Compatibility with K&R C

The ANSI C language is a superset of the de facto C standard defined in Ker-
nighan and Ritchie’s The C Programming Language. Most programs written
for other non-ANSI compilers correctly compile and run without modification.

There are subtle changes, however, in the language that can affect existing
code. Appendix C in The C Programming Language (second edition, referred
to in this manual as K&R) summarizes the differences between ANSI C and
the first edition’s C standard (the first edition is referred to in this manual as
K&R C).

To simplify the process of compiling existing C programs with the ’C6000 ANSI
C compiler, the compiler has a K&R option (–pk) that modifies some semantic
rules of the language for compatibility with older code. In general, the –pk op-
tion relaxes requirements that are stricter for ANSI C than for K&R C. The –pk
option does not disable any new features of the language such as function pro-
totypes, enumerations, initializations, or preprocessor constructs. Instead,
–pk simply liberalizes the ANSI rules without revoking any of the features.

The specific differences between the ANSI version of C and the K&R version
of C are as follows:

� The integral promotion rules have changed regarding promoting an
unsigned type to a wider signed type. Under K&R C, the result type was
an unsigned version of the wider type; under ANSI, the result type is a
signed version of the wider type. This affects operations that perform dif-
ferently when applied to signed or unsigned operands; namely, compari-
sons, division (and mod), and right shift:

unsigned short u;
int i;
if (u < i) ... /* SIGNED comparison, unless –pk used
*/

� ANSI prohibits combining two pointers to different types in an operation.
In most K&R compilers, this situation produces only a warning. Such
cases are still diagnosed when –pk is used, but with less severity:

int *p;
char *q = p; /* error without –pk, warning with –pk */

Even without –pk, a violation of this rule is a code-E (recoverable) error.
You can use –pe, which converts code-E errors to warnings, as an alterna-
tive to –pk.

� External declarations with no type or storage class (only an identifier) are
illegal in ANSI but legal in K&R:

a; /* illegal unless –pk used */

Compatibility with K&R C

5-15TMS320C2x/C2xx/C5x C Language

� ANSI interprets file scope definitions that have no initializers as tentative
definitions. In a single module, multiple definitions of this form are fused
together into a single definition. Under K&R, each definition is treated as
a separate definition, resulting in multiple definitions of the same object
(and usually an error). For example:

int a;
int a; /* illegal if –pk used, OK if not */

Under ANSI, the result of these two declarations is a single definition for
the object a. For most K&R compilers, this sequence is illegal, because a
is defined twice.

� ANSI prohibits, but K&R allows, objects with external linkage to be
redeclared as static:

extern int a;
static int a; /* illegal unless –pk used */

� Unrecognized escape sequences in string and character constants are
explicitly illegal under ANSI but ignored under K&R:

char c = ’\q’; /* same as ’q’ if –pk, error if not */

� ANSI specifies that bit fields must be of type integer or unsigned. With
–pk, bit fields can be legally defined with any integral type. For example:

struct s
{

short f : 2; /* illegal unless –pk used */
};

� K&R syntax allows a trailing comma in enumerator lists:

enum { a, b, c, }; /* illegal unless –pk used */

� K&R syntax allows trailing tokens on preprocessor directives:

#endif NAME /* illegal unless –pk used */

Compiler Limits

 5-16

5.9 Compiler Limits

Due to the variety of host systems that the TMS320C2x/C2xx/C5x C compiler
supports and the limitations of some of these systems, the compiler might not
be able to successfully compile source files that are excessively large or com-
plex. Most of these conditions are detected by the parser. When the parser
detects such a condition, it issues a code-I diagnostic message indicating the
condition that caused the failure. Usually, the message also specifies the max-
imum value for whatever limit was exceeded. The code generator also has
compilation limits, but fewer than the parser.

In general, exceeding any compiler limit prevents continued compilation, so
the compiler aborts immediately after printing the error message. Simplify the
program to avoid exceeding a compiler limit.

Many compiler tables have no absolute limits and are limited only by the
amount of memory available in the host system. Table 5–2 specifies the limits
that are absolute. All of the absolute limits equal or exceed those required by
the ANSI C standard.

On smaller host systems such as PCs, the optimizer may run out of memory.
If this occurs, the optimizer terminates and the shell continues compiling the
file with the code generator. This results in a file compiled with no optimization.
The optimizer compiles one function at a time, so the most likely cause of this
is a large or extremely complex function in your source module. To correct the
problem, your options are:

� Do not optimize the module in question.

� Identify the function that caused the problem and break it down into
smaller functions.

� Extract the function from the module and place it in a separate module that
can be compiled without optimization so that the remaining functions can
be optimized.

Compiler Limits

5-17TMS320C2x/C2xx/C5x C Language

Table 5–2. Absolute Compiler Limits

Description Limits

Filename length 512 characters

Source line length 16K characters (See Note 1)

Length of strings built from # or ## 512 characters (See Note 2)

Macros predefined with–d 64

Macro parameters 32 parms

Macro nesting 32 levels (See Note 3)

#include search paths 64 paths (See Note 4)

#include file nesting 64 levels

Conditional inclusion (#if) nesting 64 levels

Nesting of struct, union, or prototype
declarations

20 levels

Function parameters 48 parms

Array, function, or pointer derivations on
a type

12 derivations

Aggregate initialization nesting 32 levels

Static initializers 1500 per initialization (approximately)

Local initializers 150 levels (approximately)

Nesting of if statements, switch state-
ments, and loops

1500 per initialization (approximately)

Global symbols 2000 PCs
10000 All others
(See Note 5)

Block scope symbols visible at any point 500 PCs. . .
1000 All others. .

Notes: 1) This limit reflects the number of characters after splicing of \ lines. This limit also
applies to any single macro definition or invocation.

2) This limit reflects the number of characters before concatenation. All other charac-
ter strings are unrestricted.

3) This limit includes argument substitutions.

4) This limit includes –i and C_DIR directories.

5) May be further limited by available system memory.

Compiler Limits

 5-18

Table 5–2. Absolute Compiler Limits (Continued)

Description Limits

Number of unique string constants 400 PCs
1000 All others

Number of unique floating-point con-
stants

400 PCs. .
1000 All others. .

Notes: 1) This limit reflects the number of characters after splicing of \ lines. This limit also
applies to any single macro definition or invocation.

2) This limit reflects the number of characters before concatenation. All other charac-
ter strings are unrestricted.

3) This limit includes argument substitutions.

4) This limit includes –i and C_DIR directories.

5) May be further limited by available system memory.

6-1Run-Time Environment

Run-Time Environment

This chapter describes the TMS320C2x/C2xx/C5x C run-time environment.
To ensure successful execution of C programs, it is critical that all run-time
code maintain this environment. It is also important to follow the guidelines in
this chapter if you write assembly language functions that interface with C
code.

Topic Page

6.1 Memory Model 6-2.

6.2 Register Conventions 6-9.

6.3 Function Structure and Calling Conventions 6-14.

6.4 Interfacing C With Assembly Language 6-19.

6.5 Interrupt Handling 6-25.

6.6 Integer Expression Analysis 6-28.

6.7 Floating-Point Expression Analysis 6-30.

6.8 System Initialization 6-31.

Chapter 6

Memory Model

 6-2

6.1 Memory Model

The TMS320C2x/C2xx/C5x C compiler treats memory as two linear blocks of
program memory and data memory:

� Program memory contains executable code.

� Data memory contains external variables, static variables, and the
system stack.

Each block of code or data generated by a C program is placed into a contig-
uous block in the appropriate memory space.

Note: The Linker Defines the Memory Map

The linker, not the compiler, defines the memory map and allocates code and
data into target memory. The compiler assumes nothing about the types of
memory available, about any locations not available for code or data (holes),
or about any locations reserved for I/O or control purposes. The compiler
produces relocatable code that allows the linker to allocate code and data
into the appropriate memory spaces.

For example, you can use the linker to allocate global variables into fast
internal RAM or to allocate executable code into internal ROM. You can allo-
cate each block of code or data individually into memory, but this is not a
general practice (an exception to this is memory-mapped I/O, although you
can access physical memory locations with C pointer types).

Memory Model

6-3Run-Time Environment

6.1.1 Sections

The compiler produces relocatable blocks of code and data called sections.
The sections can be allocated into memory in a variety of ways to conform to
a variety of system configurations. For more information about COFF sections,
see the introductory COFF information in the TMS320C1x/C2x/C2xx/C5x
Assembly Language Tools User’s Guide.

The TMS320C2x/C2xx/C5x compiler creates the following types of sections:

� Initialized sections contain data tables or executable code. The C
compiler creates the following initialized sections:

� The .text section contains all the executable code as well as floating-
point constants.

� The .cinit section contains tables for initializing variables and
constants.

� The .const section contains string constants, and the declaration
and initialization of global and static variables (qualified by const) that
are explicitly initialized.

� The .switch section contains tables for switch statements.

� Uninitialized sections reserve space in memory (usually RAM). A
program can use this space at run time for creating and storing variables.
The compiler creates the following uninitialized sections:

� The .bss section reserves space for global and static variables.
When you specify the –c linker option, at program startup time, the C
boot routine copies data out of the .cinit section (which can be in ROM)
and stores it in the .bss section.

� The .stack section allocates memory for the C system stack. This
memory passes arguments to functions and to allocates space for
local variables.

� The .sysmem section reserves space for dynamic memory alloca-
tion. The reserved space is utilized by calloc, malloc, and realloc func-
tions. If a C program does not use these functions, the compiler does
not create the .sysmem section.

The assembler creates the default sections .text, .bss, and .data. The C
compiler, however, does not use the .data section. You can instruct the com-
piler to create additional sections by using the CODE_SECTION and
DATA_SECTION pragmas (see sections 5.4.1, The CODE_SECTION
Pragma, on page 5-7 and 5.4.2, The DATA_SECTION Pragma, on page 5-8).

Memory Model

 6-4

The linker takes the individual sections from different modules and combines
sections with the same name to create output sections. The complete program
is made up of these output sections, which include the assembler’s .data
section. You can place these output sections anywhere in the address space
as needed in order to meet system requirements.

The .text, .cinit, and .switch sections are usually linked into either ROM or
RAM, and must be in program memory (page 0). The .const section can also
be linked into either ROM or RAM but must be in data memory (page 1). The
.bss, .stack, and .sysmem sections should be linked into RAM, and must be
in data memory (page 1). The following table shows the type of memory and
page designation each section type requires:

Section Type of Memory Page

.text ROM or RAM 0

.cinit ROM or RAM 0

.switch ROM or RAM 0

.const ROM or RAM 1

.bss RAM 1

.stack RAM 1

.sysmem RAM 1

For more information about allocating sections into memory, see the
TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

6.1.2 C System Stack

The C compiler uses the software stack to:

� Allocate local variables
� Pass arguments to functions
� Save the processor status
� Save function return address
� Save temporary results
� Save registers

The run-time stack grows up from low addresses to higher addresses. The
compiler uses two auxiliary registers to manage this stack:

AR1 is the stack pointer (SP). It points to the current top of the stack
or to the word that follows the current top of the stack.

AR0 is the frame pointer (FP). It points to the beginning of the current
frame. Each function invocation creates a new frame at the top
of the stack, from which local and temporary variables are
allocated.

Memory Model

6-5Run-Time Environment

The C environment manipulates these registers automatically. If you write
assembly language routines that use the run-time stack, be sure to use these
registers correctly. For more information about using these registers, see sec-
tion 6.2, Register Conventions, on page 6-9. For more information about the
stack, see section 6.3, Function Calling Conventions, on page 6-14.

The linker sets the stack size, creates a global symbol, __STACK_SIZE, and
assigns it a value equal to the stack size in bytes. The default stack size is 1K
bytes. You can change the size of the stack at link time by using the –stack
option with the linker. For more information, see section 4.4, Linker Options,
on page 4-6.

At system initialization, SP is set to a designated address for the bottom of the
stack. This address is the first location in the .stack section. Since the position
of the stack depends on where the .stack section is allocated, the actual
address of the stack is determined at link time. If you allocate the stack as the
last section in memory (highest address), the stack has unlimited space for
growth (within the limits of system memory).

Note: Stack Overflow

The compiler provides no means to check for stack overflow during compila-
tion or at run time. A stack overflow will disrupt the run-time environment,
causing your program to fail. Be sure to allow enough space for the stack to
grow.

6.1.3 Allocating .const to Program Memory

If your system configuration does not support allocating an initialized section
such as .const to data memory, then you must allocate the .const section to
load in program memory and run in data memory. At boot time, copy the .const
section from program to data memory. The following sequence shows how you
can perform this task:

First, modify the boot routine using the following steps:

1) Extract boot.asm from the source library:

dspar –x rts.src boot.asm

2) Edit boot.asm and change the CONST_COPY flag to 1:

CONST_COPY .set 1

3) Assemble boot.asm:

dspa –v<target> boot.asm

4) Archive the boot routine into the object library:

dspar –r rts<target>.lib boot.obj

Memory Model

 6-6

Next, link with a linker command file that contains the following entries:

MEMORY
{
 PAGE 0 : PROG : ...
 PAGE 1 : DATA : ...
}

SECTIONS
{
 ...
 .const : load = PROG PAGE 1, run = DATA PAGE 1
 {
 /* GET RUN ADDRESS */
 __const_run = .;
 /* MARK LOAD ADDRESS */
 *(.c_mark)
 /* ALLOCATE .const */
 *(.const)
 /* COMPUTE LENGTH */
 __const_length = .– __const_run;
 }
 ...
}

Your linker command file can substitute the name PROG with the name of a
memory area on page 0, and DATA with the name of a memory area on page 1.
The rest of the command file must use the names as above. The code in
boot.asm that is enabled when you change CONST_COPY to 1 depends on
the linker command file using these names in this manner. To change any of
the names, you must edit boot.asm and change the names in the same way.

6.1.4 Dynamic Memory Allocation

Dynamic memory allocation is not a standard part of the C language. The run-
time-support library supplied with the TMS320C2x/C2xx/C5x compiler con-
tains several functions (such as malloc, calloc, and realloc) that allow you to
allocate memory dynamically for variables at run time.

Memory is allocated from a global pool, or heap, that is defined in the .sysmem
section. You can set the size of the .sysmem section by using the –heap size
option with the linker command. The linker also creates a global symbol,
__SYSMEM_SIZE, and assigns it a value equal to the size of the heap in
bytes. The default size is 0x400 bytes. For more information on the –heap
option, see section 4.4, Linker Options, on page 4-6.

Memory Model

6-7Run-Time Environment

Dynamically allocated objects are not addressed directly (they are always
accessed with pointers) and the memory pool is in a separate section (.sys-
mem); therefore, the dynamic memory pool can have a size limited only by the
amount of available memory in your system. To conserve space in the .bss
section, you can allocate large arrays from the heap instead of defining them
as global or static. For example, instead of a definition such as:

struct big table[100];

use a pointer and call the malloc function:

struct big *table
table = (struct big *)malloc(100*sizeof(struct big));

6.1.5 Initialization of Variables

The C compiler produces code that is suitable for use as firmware in a
ROM-based system. In such a system, the initialization tables in the .cinit
section (used for initialization of globals and statics) are stored in ROM. At
system initialization time, the C boot routine copies data from these tables (in
ROM) to the initialized variables in .bss (RAM).

In situations where a program is loaded directly from an object file into memory
and run, you can avoid having the .cinit section occupy space in memory. A
loader can read the initialization tables directly from the object file instead of
from ROM and perform the initialization directly at load time (instead of at run
time). You can specify this to the linker by using the –cr linker option. For more
information on system initialization, see section 6.8, System Initialization, on
page 6-31.

6.1.6 Allocating Memory for Static and Global Variables

A unique, contiguous space is allocated for each external or static variable that
is declared in a C program. The linker determines the address of the space.
The compiler ensures that space for these variables is allocated in multiples
of words so that each variable is aligned on a word boundary.

The C compiler expects global variables to be allocated into data memory by
reserving space for them in .bss. Variables declared in the same module are
allocated into a single, contiguous block of memory.

Memory Model

 6-8

6.1.7 Field/Structure Alignment

When the compiler allocates space for a structure, it allocates as many words
as are needed to hold all of the structure’s members. In an array of structures,
each structure begins on a word boundary.

All nonfield types are aligned on word boundaries. Fields are allocated as
many bits as requested. Adjacent fields are packed into adjacent bits of a word,
but they do not overlap words. If a field would overlap into the next word, the
entire field is placed into the next word. Fields are packed as they are encoun-
tered with the least significant bits of the structure word are filled first.

6.1.8 Character String Constants

In C, a character string constant is used in one of the following ways:

� To initialize an array of characters. For example:

char s[] = ”abc”;

When a string is used as an initializer, it is simply treated as an initialized
array, each character being a separate initializer. For more information
about initialization, see section 6.8, System Initialization, on page 6-31.

� In an expression. For example:

strcpy (s, ”abc”);

When a string is used in an expression, the string itself is defined in the
.const section with the .string assembler directive, along with a unique
label that points to the string the terminating 0 byte is also included. For
example, the following lines define the string abc, and the terminating byte
(the label SL5 points to the string):

.sect .const
SL5 .string ”abc”, 0

String labels have the form SLn, where n is a number assigned by the
compiler to make the label unique. The number begins at 0 and is in-
creased by 1 for each string defined. All strings used in a source module
are defined at the end of the compiled assembly language module.

The label SLn represents the address of the string constant. The compiler
uses this label to reference the string in the expression.

If the same string is used more than once within a source module, the
string is not duplicated in memory. All uses of an identical string constant
share a single definition of the string.

Because strings are stored in the .const section (possibly in ROM) and
shared, it is bad practice for a program to modify a string constant. The
following code is an example of incorrect string use:

const char *a = ”abc”
a[1] = ’x’; /* Incorrect! */

Register Conventions

6-9Run-Time Environment

6.2 Register Conventions

Strict conventions associate specific registers with specific operations in the
C environment. If you plan to interface an assembly language routine to a C
program. You must understand and follow these register conventions.

The register conventions dictate both how the compiler uses registers and how
values are preserved across function calls. There are two types of register
variable registers, save on call and save on entry. The distinction between
these two types of register variable registers is the method by which they are
preserved across calls. It is the called function’s responsibility to preserve
save-on-entry register variables, and the calling function’s responsibility to
preserve save-on-call register variables.

The compiler uses registers differently, depending on whether or not you use
the optimizer (–o option). The optimizer uses additional registers for register
variables (variables defined to reside in a register rather than in memory).
However, the conventions for preserving registers across function calls are
identical with or without the optimizer.

The following table summarizes how the compiler uses the TMS320C2x/C2xx/
C5x registers and shows which registers are defined to be preserved across
function calls.

Register Conventions

 6-10

Table 6–1. Register Use and Preservation Conventions

(a) TMS320C2x, TMS320C2xx, and TMS320C5x conventions

Register Usage Preserved by Call

AR0 Frame pointer Yes

AR1 Stack pointer Yes

AR2 Local variable pointer No

AR2–AR5 Expression analysis No

AR6–AR7 Register variables Yes

Accumulator Expression analysis / return values No

P Expression analysis No

T Expression analysis No

(b) TMS320C5x-only conventions

Register Usage Preserved by Call

INDX Shadows AR0 Yes

ACCB Expression analysis No

TREG1 Expression analysis No

BRCR Loop counter No

PASR/PAER Block repeat registers No

Register Conventions

6-11Run-Time Environment

6.2.1 Status Register Fields

Table 6–2 shows all of the status fields used by the compiler. Presumed value
is the value the compiler expects in that field upon entry to, or return from, a
function. A dash in this column indicates that the compiler does not expect a
particular value. The modified column indicates if code generated by the
compiler ever modifies this field.

Table 6–2. Status Register Fields

(a) TMS320C2x, TMS320C2xx and TMS320C5x fields

Field Name Presumed Value Modified

ARP Auxiliary-register pointer 1 Yes

C Carry – Yes

DP Data page – Yes

OV Overflow – Yes

OVM Overflow mode 0 No

PM Product shift mode 0 No

SXM Sign-extension mode – Yes

TC Test-control bit – Yes

(b) TMS320C5x-only fields

Field Name Presumed Value Modified

BRAF Block-repeat active flag – Yes

NDX Index-register enable bit 0 No

TRM Enable multiple TREGs 0 No

6.2.2 Stack Pointer, Frame Pointer, and Local Variable Pointer

The compiler creates and uses its own software stack for saving the function
return addresses, allocating local (automatic) variables, and passing argu-
ments to functions. The internal hardware stack is not used to save the function
return address except in cases where the compiler can be certain the call
depth (the number of function invocations on the stack at the same time) does
not exceed eight levels. When a function requires local storage, it creates its
own working space (local frame) from the stack. The local frame is allocated
during the function’s entry sequence and deallocated during the return
sequence.

Three registers, the stack pointer (SP), the frame pointer (FP), and the local
variable pointer (LVP), manage the stack and the local frame.

Register Conventions

 6-12

Register AR1 is dedicated as the stack pointer. The compiler uses the SP in
the conventional way: the stack grows towards higher addresses, and the SP
points to the next available word on the stack.

Register AR0 is dedicated as the frame pointer. The FP points to the beginning
of the local frame for the current function. The first word of the local frame,
which is directly pointed to by the FP, is used as a temporary memory location
to allow register-to-register transfers and is essential to creating reentrant C
functions.

Register AR2 is dedicated as the local variable pointer. All objects stored on
the local frame, including arguments, are referenced indirectly through the
LVP. See section 6.3.4, Accessing Arguments and Local Variables, on page
6-18, for information on how the LVP is used to access objects on the frame.

6.2.3 The TMS320C5x INDX Register

On the TMS320C5x, the *0+ addressing mode adds the INDX register, not
AR0, into the AR register indicated by the ARP (auxiliary-register pointer-field
of status register ST0). The compiler presumes the NDX bit of the status
register PMST is 0, which means that changes to the register AR0 are shad-
owed in INDX. This also means that the INDX register must be preserved
across calls just as AR0 is. For code executing with NDX = 0, preserving AR0
preserves INDX as well. If, however, you write an assembly routine that
changes the NDX bit to 1, both AR0 and INDX must be preserved explicitly.

6.2.4 Register Variables

Register variables are local variables or compiler temporaries defined to
reside in a register rather than in memory. The way the compiler uses registers
for register variables differs depending on whether you use the optimizer.

6.2.4.1 Register Variables When the Optimizer is Not Used

When the optimizer is not used, the compiler allocates registers for up to two
variables declared with the register keyword. You must declare the variables
in the argument list or in the first block of the function. Register declarations
in nested blocks are treated as normal variables.

The compiler uses AR6 and AR7 for these register variables. AR6 is allocated
to the first variable, and AR7 is allocated to the second register variable.

The address of the variable is placed into the allocated register to simplify
access. Only 16-bit types (char, short, int, and pointers) can be used as
register variables.

Register Conventions

6-13Run-Time Environment

Setting up a register variable at run time requires approximately four instruc-
tions per register variable. To use this feature efficiently, use register variables
only if the variable is accessed more than twice.

6.2.4.2 Register Variables When the Optimizer is Used

When the optimizer is used, all user register declarations are ignored. The
optimizer decides which variables or compiler temporaries are allocated to
registers. The optimizer allocates the variables, not their addresses, directly
to registers. The optimizer can allocate the registers AR5, AR6, and AR7 for
register variables. Because AR5 is not preserved across function calls, it is
used for variables that overlap any calls.

Because the register use for variables depends on whether or not you use the
optimizer, you should avoid writing code that depends on specific registers
allocated to specific variables.

Note: Using AR6 and AR7 as Global Register Variables

If you have disabled the compiler from using AR6 and AR7 with the –r option,
AR6 and AR7 are not available for use as register variables. See section
5.6.3, Disabling the Compiler From Using AR6 and AR7 on page 5-11, for
more information.

6.2.5 Expression Registers

The compiler uses registers not being used for register variables to evaluate
expressions and store temporary results. The contents of the expression reg-
isters are not preserved across function calls. Any register that is being used
for temporary storage when a call occurs is saved to the local frame before the
function is called. This prevents the called function from saving and restoring
expression registers.

6.2.6 Return Values

When a value of any scalar type (integer, pointer, or floating point) is returned
from a function, the value is placed in the accumulator when the function
returns.

Sixteen-bit types (char, short, int, or pointer) are loaded into the accumulator
with correct sign extension.

Function Structure and Calling Conventions

 6-14

6.3 Function Structure and Calling Conventions

The C compiler imposes a strict set of rules on function calls. Except for special
run-time-support functions, any function that calls or is called by a C function
must follow these rules. Failure to adhere to these rules can disrupt the C envi-
ronment and cause a program to fail.

Figure 6–1 illustrates a typical function call. In this example, parameters are
passed to the function, and the function uses local variables. This example
also shows allocation of a local frame for the called function. Functions that
have no arguments passed on the stack and no local variables do not allocate
a local frame.

Figure 6–1. Stack Use During a Function Call

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Caller’s local
frame

SP
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Push Arguments,
Call Function

Return
address

Allocate
Local Frame

Before
CALL

argumentn

argument1

FP
Old
FP

SPÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

FP

SP

FP
Caller’s local

frame
Caller’s local

frame

Argumentn
�

�

�

Argument 1

Argumentn
�

�

�

Argument 1

Return
address

Old FP

Low

High

Local frame

Temporary
location

Function Structure and Calling Conventions

6-15Run-Time Environment

6.3.1 How a Function Makes a Call

A function (parent function) performs the following tasks when it calls another
function (child function). Be aware that the ARP must be set to AR1.

1) The caller pushes the arguments on the stack in reverse order (the right-
most declared argument is pushed first, and the leftmost is pushed last).
This places the leftmost argument at the top of the stack when the function
is called.

2) The caller (parent) calls the function (child).

3) The caller presumes that upon return from the function, the ARP will be
set to AR1.

4) When the called function is complete, the caller pops the arguments off the
stack with the following instruction:

SBRK n (n is the number of argument words that were pushed)

6.3.2 How a Called Function Responds

A called function (child function) must perform the following tasks. On function
entry, the ARP is presumed to be set to SP (AR1).

1) Pop the return address off the hardware stack and push it onto the soft-
ware stack.

2) Push the FP onto the software stack.

3) Allocate the local frame.

4) If the function modifies AR6 or AR7, push them on the stack. Any other
registers may be modified without preserving them.

5) Execute the code for the function.

6) If the function returns a scalar value, place in the accumulator. Load 16-bit
integer and pointer return values into the accumulator with the proper sign
extension.

7) Set the ARP to AR1.

8) Restore AR6 and/or AR7, if they were saved.

9) Deallocate the local frame.

10) Restore the FP.

11) Copy the return address from the software stack and push it onto the hard-
ware stack.

12) Return.

Function Structure and Calling Conventions

 6-16

Example 6–1 is an example of TMS320C2x code that performs the tasks listed
in section 4.3.2.

Example 6–1. TMS320C2x Code as a Called Function

; presume ARP = AR1 (SP)
POPD *+ ; pop return address, push on software stack
SAR AR0,*+ ; push AR0 (FP)
SAR AR1,* ; *SP = SP
LARK AR0,SIZE ; FP = size of frame
LAR AR0,*0+ ; FP = SP, SP += size ==> allocate frame
SAR AR6,*+ ; push AR6
SAR AR7,*+ ; push AR7

... ; code for the function

MAR *,AR1 ; set ARP = SP
MAR *– ; point to saved AR7
LAR AR7,*– ; pop AR7
LAR AR6,*– ; pop AR6
SBRK SIZE+1 ; deallocate frame, point to saved FP
LAR AR0,*– ; pop FP
PSHD * ; push return address on hardware stack
RET ; return

6.3.3 Special Cases for a Called Function

There are four special cases for a called function:

� Returning a structure
� Not moving the return address to the software stack
� Not allocating a frame
� Using the TMS320C5x RETD instruction

These cases are explained in the following sections.

Function Structure and Calling Conventions

6-17Run-Time Environment

6.3.3.1 Returning a structure

If the function returns a structure, the caller (parent function) allocates space
for the structure and then passes the address of the return space to the called
function (child function) as an additional and final argument on the stack. To
return a structure, the called function then copies the structure to the memory
block pointed to by this argument. If the caller does not use the return value,
the value of the argument is 0. This directs the called function not to copy the
return structure.

In this way, the caller can accurately tell the called function where to return the
structure. For example, in the statement s = f(), where s is a structure and f is
a function that returns a structure, the caller can simply pass the address of
s as the last argument and call f. Function f then copies the return structure
directly into s, performing the assignment automatically.

You must be careful to properly declare functions that return structures, both
at the point where they are called (so the caller passes the address of the
return space as the last argument) and where they are defined (so the function
knows to copy the result).

6.3.3.2 Not moving the return address to the software stack

If this function calls no other functions, or if the only functions called are from
a list of run-time-support functions the compiler knows will not exceed a call
depth of 8, then there is no need to pop the return address off of the hardware
stack and push it on the software stack. Steps 2 and 12 of section 6.3.2, How
a Called Function Responds, on page 6-15, are omitted.

6.3.3.3 Not allocating a local frame

If there are no local variables, no arguments, no use of the temporary location
pointed to by AR0, the code is not being compiled to run under the debugger,
and the function does not return a structure, there is no need to allocate a local
frame. Steps 3, 4, 10, and 11 of section 6.3.2, How a Called Function
Responds, on page 6-15, are omitted. If the return address is saved on the
software stack and no registers are saved on the stack, step 10 is replaced by
a MAR *– to point the SP to the saved return address.

Function Structure and Calling Conventions

 6-18

6.3.3.4 Using the TMS320C5x RETD instruction

The debugger expects the compiler to generate the frame as described above.
When generating code for the ’C5x that will not be run under the debugger, the
compiler switches steps 2 and 3 of section 6.3.2, How a Called Function
Responds, on page 6-15, as well as steps 11 and 12. This occurs because a
PUSHD instruction cannot go in the delay slots (the two words following a
delayed instruction) of a RETD, but a LAR AR0,* can. For the case above, the
last three instructions would be changed as follows:

PSHD *– ; push return address on hardware stack
RETD ; return delayed
LAR AR0,* ; restore FP
NOP ; fill delay slots of RETD

If the return address is not saved on the stack, which means a PSHD will not
be generated, the RETD will be moved two words from the end of the function.

6.3.4 Accessing Arguments and Local Variables

In general terms, the compiler performs the first local access, initializing LVP
(AR2) by loading it with the offset of the variable relative to the FP, then a MAR
*0+ instruction adds in the FP. Subsequent accesses are performed by adding
or subtracting the difference between the address of the current local variable
LVP is pointing to and the next one. Because the LVP is not preserved across
calls, it must be reinitialized after a call.

Arguments are always at negative offsets from the FP, and locals are always
at positive offsets from the FP.

Interfacing C with Assembly Language

6-19Run-Time Environment

6.4 Interfacing C with Assembly Language

The following are ways to use assembly language with C code:

� Use separate modules of assembled code and link them with compiled C
modules (see section 6.4.1, Using Assembly Language Modules With C
Code). This is the most versatile method.

� Use inline assembly language, embedded directly in the C source (see
section 6.4.2, Using Inline Assembly Language, on page 6-22).

� Use assembly language variables in C source (see section 6.4.3, Access-
ing Assembly Language Variables From C, on page 6-23.

� Modify the assembly language code that the compiler produces (see sec-
tion 6.4.4, Modifying Compiler Output, on page 6-24).

6.4.1 Using Assembly Language Modules With C Code

Interfacing C with assembly language functions is straightforward if you follow
the calling conventions defined in section 6.3, Function Structure and Calling
Conventions, on page 6-14 and the register conventions defined in section
6.2, Register Conventions, on page 6-9. C code can access variables and call
functions defined in assembly language, and assembly code can access C
variables and call C functions.

Follow these guidelines to interface assembly language and C:

� All functions, whether they are written in C or assembly language, must
follow the register conventions outlined in section 6.2, Register Conven-
tions, on page 6-9.

� You must preserve any dedicated registers modified by a function. Dedi-
cated registers include:

AR0 (FP)
AR1 (SP)
AR6
AR7
INDX (TMS320C5x only)

If you use the stack normally, you do not need to explicitly preserve the SP.
In other words, you are free to use the stack inside a function as long as
you pop everything you pushed before your function exits.

You can use all other registers freely used without preserving their con-
tents.

Interfacing C with Assembly Language

 6-20

When using only the ’C5x: if your assembly routine does not change the
NDX bit of status register PMST from 0 to 1, then the INDX register
shadows AR0; preserving AR0 preserves INDX as well. If your routine
does change the NDX bit, then both AR0 and INDX must be preserved
explicitly.

� If you change any of the status register fields for which Table 6–2 on page
6-11 shows a presumed value, you must ensure that value is restored. Be
especially careful that you ensure that the ARP is AR1.

� Interrupt routines must save all the registers they use. (For more informa-
tion, see section 6.5, Interrupt Handling, on page 6-25.)

� When you call a C function from assembly language, push any arguments
onto the stack in reverse order. Pop them off after calling the function.

� When you call C functions, remember that only the dedicated registers
listed above are preserved. C functions can change the contents of any
other register.

� Longs and floats are stored in memory with the least significant word at
the lower address.

� Functions must return values in the accumulator. 16-bit integer values and
pointers must be loaded in the accumulator with proper sign extension.

� No assembly module should use the .cinit section for any purpose other
than autoinitialization of global variables. The C startup routine in boot.c
assumes that the .cinit section consists entirely of initialization tables.
Disrupting the tables by putting other information in .cinit causes unpre-
dictable results.

� The compiler adds an underscore (_) to the beginning of all identifiers
(that is, labels). In assembly language modules, you must use an under-
score prefix for all objects that are to be accessible from C. For example,
a C object named x is called _x in assembly language. Identifiers that are
used only in assembly language modules can use any name that does not
begin with an underscore without conflicting with a C identifier.

� Any object or function declared in assembly language that is accessed or
called from C must be declared with the .global directive in the assembler.
This declares the symbol as external and allows the linker to resolve refer-
ences to it.

Likewise, to access a C function or object from assembly language,
declare the C object with .global. This creates an undeclared external
reference that the linker resolves.

Interfacing C with Assembly Language

6-21Run-Time Environment

Example 6–2 illustrates a C function called main, which calls an assembly
language function called asmfunc. The asmfunc function takes its single argu-
ment, adds it to the C global variable called gvar, and returns the result.

Example 6–2. An Assembly Language Function

(a) C program

extern int asmfunc(); /* declare external asm function */
int gvar; /* define global variable */

main()
{
 int i;

 i = asmfunc(i); /* call function normally */
}

(b) Assembly language program

_asmfunc:
 POPD *+ ; Move return address to C stack
 SAR AR0, *+ ; Save FP
 SAR AR1, * ; Save SP
 LARK AR0, 1 ; Size of frame
 LAR AR0, *0+, AR2 ; Set up FP and SP

 LDPK _gvar ; Point to gvar
 SSXM ; Set sign extension
 LAC _gvar ; Load gvar
 LARK AR2, –3 ; Offset of argument
 MAR *0+ ; Point to argument
 ADD *, AR0 ; Add arg to gvar
 SACL _gvar ; Save in gvar

 LARP AR1 ; Pop off frame
 SBRK 2
 LAR AR0, * ; Restore frame pointer
 PSHD * ; Move return addr to C2x stack
 RET

In the C program in Example 6–2, the extern declaration of asmfunc is
optional, since the return type is int. Like C functions, you need to declare
assembly functions only if they return noninteger values or pass noninteger
parameters.

Further, in Example 6–2 it is not necessary to move the return address from
the hardware stack to the software stack, because asmfunc makes no calls.
The code is in the example to illustrate how it is accomplished.

Interfacing C with Assembly Language

 6-22

6.4.2 Using Inline Assembly Language

Within a C program, you can use the asm statement to inject a single line of
assembly language into the assembly language file that the compiler creates.
A series of asm statements places sequential lines of assembly language into
the compiler output with no intervening code.

Note: Using the asm Statement

The asm statement lets you access features of the hardware that would be
otherwise inaccessible from C. When you use the asm statement, be careful
not to disrupt the C environment. The compiler does not check or analyze the
inserted instructions.

Inserting jumps or labels into C code may produce unpredictable results by
confusing the register-tracking algorithms that the code generator uses.

Do not change the value of a C variable. You can, however, safely read the
current value of any variable.

Do not use the asm statement to insert assembler directives that would
change the assembly environment.

The asm statement is also useful for inserting comments in the compiler out-
put. You can simply start the assembly code string with an asterisk (*) as shown
below:

asm(”**** this is an assembly language comment”);

Interfacing C with Assembly Language

6-23Run-Time Environment

6.4.3 Accessing Assembly Language Variables From C Code

It is sometimes useful for a C program to access variables defined in assembly
language. Accessing uninitialized variables from the .bss section or from a
named section is straightforward:

1) Use the .bss or .usect directive to define the variable.
2) Use the .global directive to make the definition external.
3) Precede the name with an underscore in assembly language.
4) In C, declare the variable as extern, and access it normally.

Example 6–3 shows how you can access a variable defined in .bss.

Example 6–3. Accessing a Variable Defined in .bss From C

(a) C program

extern int var; /* External variable */
var = 1; /* Use the variable */

(b) Assembly language program

* Note the use of underscores in the following lines

.bss _var,1 ; Define the variable

.global _var ; Declare it as external

You may not always want a variable to be in the .bss section. A common situa-
tion is a lookup table defined in assembly language that you do not want to put
in RAM. In this case, you must define a pointer to the object and access it indi-
rectly from C.

You must first define the object. It is helpful, but not necessary, to put it in its
own initialized section. Declare a global label that points to the beginning of
the object, and then the object can be linked anywhere into the memory space.
To access it in C, you must declare the object as extern and not precede it with
an underscore. Then you can access the object normally.

Interfacing C with Assembly Language

 6-24

Example 6–4 shows an example that accesses a variable that is not defined
in .bss.

Example 6–4. Accessing a Variable Not Defined in .bss From C

(a) C program

extern float sine[]; /* This is the object */
f = sine[4]; /* Access sine as normal array*/

(b) Assembly language program

.global _sine ; Declare variable as external

.sect ”sine_tab” ; Make a separate section
_sine: ; The table starts here

.float 0.0

.float 0.015987

.float 0.022145

6.4.4 Modifying Compiler Output

You can inspect and change the assembly language output produced by the
compiler by compiling the source and then editing the output file before assem-
bling it. The C interlist utility is useful for inspecting compiler output. For
information on the interlist utility, see section 2.7, Using the Interlist Utility, on
page 2-33. The warnings in section 6.4.2 about disrupting the C environment
also apply to the modification of compiler output.

Interrupt Handling

6-25Run-Time Environment

6.5 Interrupt Handling

As long as you follow the guidelines in this section, you can interrupt and return
to C code without disrupting the C environment. When the C environment is
initialized, the startup routine does not enable or disable interrupts. Interrupts
are disabled if the system is initialized via a hardware reset. If your system
uses interrupts, you must handle any required enabling or masking of inter-
rupts. Such operations have no effect on the C environment and are easily
incorporated with asm statements or by callling an assembly language func-
tion.

6.5.1 General Points About Interrupts

� An interrupt routine can perform any task performed by any other function,
including accessing global variables, allocating local variables, and calling
other functions.

� When an interrupt routine is entered, the run-time-support function
I$$SAVE is called to save the complete context of the interrupted function.
All registers are saved. Upon return from the interrupt routine, the run-
time-support function I$$REST is called to restore the environment and
return to the interrupted function.

� The name c_int0 is the C entry point; this name is reserved for the system
reset interrupt. This special interrupt routine initializes the system and
calls the function main. Because it has no caller, c_int0 does not save any
registers.

� To associate an interrupt routine with an interrupt, a branch must be placed
in the appropriate interrupt vector. You can use the assembler and linker
to do this by creating a simple table of branch instructions with the .sect
assembler directive. For information on where the interrupt vector table is
located, consult the user’s guide for the device you are targeting.

Interrupt Handling

 6-26

6.5.2 Using C Interrupt Routines

You can handle interrupts directly with C functions by using one of two conven-
tions:

� Any function with the name c_intd, where d is a digit 0–9, is presumed to
be an interrupt routine. The name c_int0 is reserved for the system reset
interrupt; do not use this name for any other function. For example:

void c_int1()
{
 ...
}

� Or, you can use the interrupt keyword. For example:

interrupt void isr()
{
 ...
}

Using one of these conventions defines an interrupt routine. When the
compiler encounters one of these routines, it generates code that allows the
function to be activated from an interrupt trap. This method provides more
functionality than the standard C signal mechanism. This does not prevent
implementation of the signal function, but it does allow these functions to be
written entirely in C.

When handling interrupts with C functions, remember the following:

� An interrupt routine must be of type void, and it should be declared with
no arguments.

� The compiler does not save all the device registers. The compiler saves
only those registers listed in Table 6–1.

� You must handle any special masking of interrupts via the IMR register.
You can use inline assembly language to enable or disable the interrupts
and modify the IMR register without corrupting the C environment.

� An interrupt routine can be called by normal C code, but it is inefficient to
do so because all the registers are preserved by a calling C function.

� An interrupt routine can handle a single interrupt or multiple interrupts. The
compiler does not generate code that is specific to a certain interrupt,
except for c_int0, which is the system reset interrupt.

� None of the interrupt routines nor any of the functions they call can be
compiled with the –oe shell option (optimizer option –j). The –oe option
assumes that none of the functions in the module are interrupts, can be
called by interrupts, or can be otherwise executed in an asynchronous
manner, so compiling programs containing interrupt routines with this
option negates their use.

Interrupt Handling

6-27Run-Time Environment

6.5.3 Using Assembly Language Interrupt Routines

You can handle Interrupts with assembly language code as long as you follow
the same register conventions the compiler. Keep the following points in mind:

� The word pointed to by the SP (AR1) may be in use by the compiler. It must
be saved.

� The interrupt routine must preserve the registers from Table 6–1 and
status bits from Table 6–2 on page 6-11 that it modifies.

� If the interrupt routine calls a C function, it must preserve all registers listed
in Table 6–1 on page 6-10 that are not preserved by a call. Any other
register can be modified by the C routine.

� Remember to precede the symbol name with an underscore. For
example, refer to c_int0 as _c_int0.

6.5.4 TMS320C5x Shadow Register Capability

The TMS320C5x device automatically saves certain registers upon an inter-
rupt trap in a set of internal shadow registers. See the TMS320C5x User’s
Guide for more information. If an interrupt is not nested (that is, does not reen-
able interrupts so that this interrupt routine is itself interruptible), then using the
shadow register capability is the best way to preserve those registers.

If none of the interrupts you have written in C are nested, then you can take
advantage of the shadow register capability by modifying an assembly time
flag in the source of the I$$SAVE/I$$RESTORE routines that the compiler
uses to preserve registers, as follows:

1) Unarchive the source from source library

dspar –x rts.src saverest.asm

2) Change the NEST flag in the source to 0

NEST .set 0

3) Reassemble

dspa –v50 saverest.asm

4) Archive the new object file into the object library

dspar –r rts50.lib saverest.obj

Integer Expression Analysis

 6-28

6.6 Integer Expression Analysis

This section describes some special considerations for you to remember when
evaluating integer expressions.

6.6.1 Arithmetic Overflow and Underflow

The TMS320C2x/C2xx/C5x produces a 32-bit result even when 16-bit values
are used as data operands; thus, arithmetic overflow and underflow cannot be
handled in a predictable manner. If code depends on a particular type of over-
flow/underflow handling, there is no assurance that this code will execute
correctly. Generally, it is a good practice to avoid such code because it is not
portable.

6.6.2 Integer Division and Modulus

The TMS320C2x/C2xx/C5x does not directly support integer division, so all
division and modulus operations are performed through calls to run-time-sup-
port routines. These functions push the right-hand portion (divisor) of the
operation onto the stack and then place the left-hand portion (dividend) into
the 16 LSBs of the accumulator. The function places the result in the accumu-
lator.

6.6.3 Long (32-Bit) Expression Analysis

Long expression analysis operations in C are performed with function calls
that do not follow the standard C calling conventions. These functions work
together with the compiler to maximize speed and minimize code space. The
operations are:

� Left shift by a variable
� Right shift by a variable
� Division
� Modulus
� Multiplication

Integer Expression Analysis

6-29Run-Time Environment

6.6.4 C Code Access to the Upper 16 Bits of 16-Bit Multiply

The following method provides access to the upper 16 bits of a 16-bit multiply
in C language. For example:

� Signed results:

intm1, m2;
intresult;

result = ((long) m1 * (long) m2) >> 16;

� Unsigned results:

unsigned m1, m2;
unsigned result;

result = ((unsigned long) m1 * (unsigned long) m2) >>
16;

Both result statements are implemented by the compiler without making a
function call to the 32-bit multiply routine.

Floating-Point Expression Analysis

 6-30

6.7 Floating-Point Expression Analysis

The TMS320C2x/C2xx/C5x C compiler represents floating-point values as
IEEE single-precision numbers. Both single-precision and double-precision
floating-point numbers are represented as 32-bit values; there is no difference
between the two formats.

The TMS320C2x/C2xx/C5x run-time-support library, rts.src, contains a
custom-coded set of floating-point math functions that support:

� Addition, subtraction, multiplication, and division

� Comparisons (>, <, >=, <=, ==, !=)

� Conversions from integer or long to floating-point and floating-point to inte-
ger or long, both signed and unsigned

� Standard error handling

These functions do not follow standard C calling conventions. Instead, the
compiler pushes the arguments onto the run-time stack and generates a call
to a floating-point function. The function pops the arguments, performs the
operation, and pushes the result onto the stack.

Some floating-point functions expect integer or long arguments or return
integer or long values. For floating-point functions, all integers are passed and
returned in the 16 LSBs of the accumulator, and all longs are passed and
returned in all 32 bits of the accumulator.

System Initialization

6-31Run-Time Environment

6.8 System Initialization

Before you can run a C program, you must create the C run-time environment.
The C boot routine performs this task using a function called c_int0. The run-
time-support source library, rts.src, contains the source to this routine in a
module named boot.asm.

To begin running the system, the c_int0 function can be branched to or called,
but it is usually vectored to by reset hardware. You must link the c_int0 function
with the other object modules. This occurs automatically when you use the –c
or –cr linker option and include rts25.lib, rts2xx.lib, or rts50.lib as one of the
linker input files.

When C programs are linked, the linker sets the entry point value in the execut-
able output module to the symbol _c_int0. This does not, however, set the
hardware to automatically vector to c_int00 at reset (see the).

The c_int0 function performs the following tasks to initialize the environment:

1) It defines a section called .stack for the system stack and sets up the initial
stack pointers.

2) It initializes global variables by copying the data from the initialization
tables in the .cinit section to the storage allocated for the variables in the
.bss section. If you are initializing variables at load time (–cr option), a
loader performs this step before the program runs (it is not performed by
the boot routine). For more information, see section 6.8.2, Automatic Init-
ialization of Variables, on page 6-32.

3) It calls the function main to run the C program.

You can replace or modify the boot routine to meet your system requirements.
However, the boot routine must perform the operations listed above to
correctly initialize the C environment.

System Initialization

 6-32

6.8.1 Run-time Stack

The run-time stack is allocated in a single contiguous block of memory and
grows up from low addresses to higher addresses. Register AR1 usually
points to the next available word in the stack (top of the stack plus one word).
The compiler can use this word as a temporary memory location, so it must
be saved by interrupt routines.

The code does not check to see if the run-time stack overflows. Stack overflow
occurs when the stack grows beyond the limits of the memory space that was
allocated for it. Be sure to allocate adequate memory for the stack.

The stack size can be changed at link time by using the –stack linker option
on the linker command line and specifying the stack size as a constant directly
after the option.

6.8.2 Automatic Initialization of Variables

Some global variables must have initial values assigned to them before a C
program starts running. The process of retrieving these variables’ data and
intializing the variables with the data is called autoinitialization.

The compiler builds tables in a special section called .cinit that contains data
for initializing global and static variables. Each compiled module contains
these initialization tables. The linker combines them into a single table (a single
.cinit section). The boot routine or a loader uses this table to initialize all the
system variables.

Global variables are either autoinitialized at run time or at load time (see sec-
tions 6.8.4, Autoinitialization of Variables at Run Time, on page 6-34 and 6.8.5,
Initialization of Variables at Load Time, on page 6-35).

System Initialization

6-33Run-Time Environment

6.8.3 Initialization Tables

The tables in the .cinit section consist of variable-size initialization records.
Each variable that must be autoinitialized has a record in the .cinti section.
Figure 6–2 shows the format of the .cinit section and the initialization records.

Figure 6–2. Format of Initialization Records in the .cinit Section

Initialization record 1

Initialization record n

Initialization record 2

Initialization record 3

.cinit section

Size in
bytes

Pointer to
variable
 in .bss

Initialization
data

Initialization record

•
•
•

An initialization record contains the following information:

1) The first field (word 0) of an initialization record is the size (in words) of the
initialization data for the variable.

2) The second field (word 1) contains the starting address of the area within
the .bss section where the initialization data must be copied.

3) The third field (words 2 through n) contains the data that is copied into the
.bss section to initialize the variable.

Each variable that must be autoinitialized has an initialization record. For
example, suppose two initialized variables are defined in C as follows:

int i = 23;
int a[5] = { 1, 2, 3, 4, 5 };

The initialization tables appear as follows:

.sect ”.cinit” ; Initialization section
* Initialization record for variable i

.word 1 ; Length of data (1 word)

.word _i ; Address in .bss

.word 23 ; Data to initialize i
* Initialization record for variable a

.word 5 ; Length of data (5 words)

.word _a ; Address in .bss

.word 1,2,3,4,5 ; Data to initialize a

The .cinit section must contain only initialization tables in this format. If you
interface assembly language modules to your C program, do not use the .cinit
section for any other purpose.

System Initialization

 6-34

When you use the –c or –cr linker option, the linker combines the .cinit
sections from all the C modules and appends a null word to the end of the
composite .cinit section. This terminating record appears as a record with a
size field of 0, marking the end of the initialization tables.

The const-qualified variables are initialized differently; see section 5.7.1, Ini-
tializing Static and Global Variables With the const Type Qualifier, on page
5-12.

6.8.4 Autoinitialization of Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization.
To use this method, invoke the linker with the –c option.

Using this method, the .cinit section is loaded into memory along with all the
other initialized sections. The linker defines a special symbol called cinit that
points to the beginning of the initialization tables in memory. When the program
begins running, the C boot routine copies data from the tables (pointed to by
.cinit) into the specified variables in the .bss section. This allows initialization
data to be stored in ROM and copied to RAM each time the program starts.

Figure 6–3 illustrates autoinitialization at run time. Use this method in any sys-
tem where your application runs from code burned into ROM.

Figure 6–3. Autoinitialization at Run Time

Boot
routine

Object file Memory

.bss
section
(RAM)

Initialization
tables
(ROM)

.cinit
section Loader

cinit

System Initialization

6-35Run-Time Environment

6.8.5 Initialization of Variables at Load Time

Initialization of variables at load time enhances performance by reducing boot
time and by saving the memory used by the initialization tables. To use this
method, invoke the linker with the –cr option.

When you use the –cr linker option, the linker sets the STYP_COPY bit in the
.cinit section’s header. This tells the loader not to load the .cinit section into
memory. (The .cinit section occupies no space in the memory map.) The linker
also sets the cinit symbol to –1 (normally, cinit points to the beginning of the
initialization tables). This indicates to the boot routine that the initialization
tables are not present in memory; accordingly, no run time initialization is per-
formed at boot time.

A loader (which is not part of the compiler package) must be able to perform
the following tasks to use initialization at load time:

� Detect the presence of the .cinit section in the object file

� Determine that STYP_COPY is set in the .cinit section header, so that it
knows not to copy the .cinit section into memory

� Understand the format of the initialization tables

Figure 6–4 illustrates the initialization of variables at load time.

Figure 6–4. Initialization at Load Time

Object file Memory

.bss
section

.cinit
section Loader

 6-36

7-1Run-Time-Support Functions

Run-Time-Support Functions

Some of the tasks that a C program performs (such as I/O, dynamic memory
allocation, string operations, and trigonometric functions) are not part of the
C language itself. However, the ANSI C standard defines a set of run-time-sup-
port functions that perform these tasks. The TMS320C2x/C2xx/C5x C compil-
er implements the complete ANSI standard library except for those facilities
that handle exception conditions and locale issues (properties that depend on
local language, nationality, or culture). Using the ANSI standard library
ensures a consistent set of functions that provide for greater portability.

In addition to the ANSI-specified functions, the TMS320C2x/C2xx/C5x run-
time-support library includes routines that give you processor-specific com-
mands and direct C language I/O requests.

A library build utility is provided with the code generation tools that lets you
create customized run-time-support libraries. The use of this utility is covered
in Chapter 8, Library-Build Utility.

Topic Page

7.1 Libraries 7-2.

7.2 Header Files 7-4.

7.3 Summary of Run-Time-Support Functions and Macros 7-13.

7.4 Descriptions of Run-Time-Support Functions and Macros 7-20.

Chapter 7

Libraries

 7-2

7.1 Libraries

The following libraries are included with the TMS320C2x/C2xx/C5x C com-
piler:

� rts25.lib, rts2xx.lib and rts50.lib—run-time-support object libraries. The
libraries do not contain functions involving signals and locale issues. They
do contain the following:

� ANSI C standard library
� System startup routine, _c_int00
� Functions and macros that allow C to access specific instructions

� rts.src—run-time-support source library. The run-time-support object
libraries are built from the C and assembly source contained in the rts.src
library.

7.1.1 Linking Code With the Object Library

When you link your program, you must specify the object library as one of the
linker input files so that references to the I/O and run-time-support functions
can be resolved.

You should specify libraries last on the linker command line because the linker
searches a library for unresolved references when it encounters the library on
the command line. You can also use the –x linker option to force repeated
searches of each library until the linker can resolve no more references.

When a library is linked, the linker includes only those library members re-
quired to resolve undefined references. For more information about linking,
see the TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide.

There is one header file, values.h, in rts.src. It is not a standard header, but
allows you to customize the functions. It contains definitions necessary for re-
compiling the trigonometric and transcendental math functions.

Libraries

7-3Run-Time-Support Functions

7.1.2 Modifying a Library Function

You can inspect or modify library functions by using the archiver to extract the
appropriate source file or files from the source libraries. For example, the fol-
lowing command extracts two source files:

dspar –x rts.src atoi.c strcpy.c

To modify a function, extract the source as in the previous example. Make the
required changes to the code, recompile, and then reinstall the new object file
or files into the library:

dspar –r rts25.lib atoi.obj strcpy.obj

You can also build a new library this way, rather than rebuilding back into
rts25.lib. For more information about the archiver, see the TMS320C1x/C2x/
C2xx/C5x Assembly Language Tools User’s Guide.

7.1.3 Building a Library With Different Options

You can create a new library from rts.src by using the library-build utility,
dspmk. For example, use this command to build a short, optimized run-time-
support library:

dspmk ––u –o2 –x –ms rts.src –l rtsf.lib

The ––u option tells the dspmk utility to use the header files in the current direc-
tory, rather than extracting them from the source archive. The use of the
optimizer (–o2) and inline function expansion (–x) options does not affect com-
patibility with code compiled with these options. The –ms option tells the com-
piler to ignore code speed and generate the shortest possible code.

For more information on the library-build utility, see Chapter 8.

Header Files

 7-4

7.2 Header Files

Each run-time-support function is declared in a header file. Each header file
declares the following:

� A set of related functions (or macros)
� Any types that you need to use the functions
� Any macros that you need to use the functions

These are the header files that declare the run-time-support functions:

assert.h limits.h stddef.h

ctype.h math.h stdlib.h

errno.h setjmp.h string.h

float.h stdarg.h time.h

ioports.h

In order to use a run-time-support function, you must first use the #include
preprocessor directive to include the header file that declares the function. For
example, the isdigit function is declared by the ctype.h header. Before you can
use the isdigit function, you must first include ctype.h:

#include <ctype.h>
.
.
.
val = isdigit(num);

You can include headers in any order. You must include a header before you
reference any of the functions or objects that it declares.

Sections 7.2.1, Diagnostic Messages (assert.h), on page 7-5 through 7.2.12,
Time Functions (time.h), on page 7-11 describe the header files that are
included with the C compiler. Section 7.3, Summary of Run-Time-Support
Functions and Macros, on page 7-13, lists the functions that these headers
declare.

Header Files

7-5Run-Time-Support Functions

7.2.1 Diagnostic Messages (assert.h)

The assert.h header defines the assert macro, which inserts diagnostic failure
messages into programs at run time. The assert macro tests a run-time
expression.

� If the expression is true (nonzero), the program continues running.

� If the expression is false, the macro outputs a message that contains the
expression, the source file name, and the line number of the statement
that contains the expression; then, the program terminates (using the
abort function).

The assert.h header refers to another macro named NDEBUG (assert.h does
not define NDEBUG). If you have defined NDEBUG as a macro name when
you include assert.h, then assert is turned off and disabled. If NDEBUG is not
defined, then assert is enabled.

The assert function is listed in Table 7–3 (a) on page 7-14.

7.2.2 Character-Typing and Conversion (ctype.h)

The ctype.h header declares functions that test (type) and convert characters.

The character-typing functions test a character to determine whether it is a
letter, a printing character, a hexadecimal digit, etc. These functions return a
value of true (a nonzero value) or false (0). Character-typing functions have
names in the form isxxx (for example, isdigit).

The character conversion functions convert characters to lower case, upper
case, or ASCII and return the converted character. Character-conversion
functions have names in the form toxxx (for example, toupper).

The ctype.h header also contains macro definitions that perform these same
operations. The macros run faster than the corresponding functions. The
typing macros expand to a lookup operation in an array of flags (this array is
defined in ctype.c). The macros have the same name as the corresponding
functions, but each macro is prefixed with an underscore (for example,
_isdigit). Use the function version, if an argument passed that has side effects.

The character typing and conversion functions are listed in Table 7–3 (b) page
7-14.

Header Files

 7-6

7.2.3 Error Reporting (errno.h)

Errors can occur in a math function if invalid parameter values are passed to
the function or if the function returns a result that is outside the defined range
for the type of the result. When this happens, a variable named errno is set to
the value of one of the following macros:

� EDOM, for domain errors (invalid parameter)
� ERANGE, for range errors (invalid result)

C code that calls a math function can read the value of errno to check for error
conditions. The errno variable is declared in errno.h and defined in errno.c.

7.2.4 Limits (float.h and limits.h)

The float.h and limits.h headers define macros that expand to useful limits and
parameters of the TMS320C2x/C2xx/C5x’s numeric representations.
Table 7–1 and Table 7–2 list these macros and their limits.

Table 7–1. Macros That Supply Integer Type Range Limits (limits.h)

Macro Value Description

CHAR_BIT 16 Maximum number of bits for the smallest
object that is not a bit field

SCHAR_MIN –32768 Minimum value for a signed char

SCHAR_MAX 32767 Maximum value for a signed char

UCHAR_MAX 65535 Maximum value for an unsigned char

CHAR_MIN SCHAR_MIN Minimum value for a char

CHAR_MAX SCHAR_MAX Maximum value for a char

SHRT_MIN –32768 Minimum value for a short int

SHRT_MAX 32767 Maximum value for a short int

USHRT_MAX 65535 Maximum value for an unsigned short int

INT_MIN –32768 Minimum value for an int

INT_MAX 32767 Maximum value for an int

UINT_MAX 65535 Maximum value for an unsigned int

LONG_MIN –2147483648 Minimum value for a long int

LONG_MAX 2147483647 Maximum value for a long int

ULONG_MAX 4294967295 Maximum value for an unsigned long int

Header Files

7-7Run-Time-Support Functions

Table 7–2. Macros That Supply Floating-Point Range Limits (float.h)

Macro Value Description

FLT_RADIX 2 Base or radix of exponent representation

FLT_ROUNDS 1 Rounding mode for floating-point addition (rounds toward
integer)

FLT_DIG
DBL_DIG
LDBL_DIG

6 Number of decimal digits of precision for a float, double, or
long double

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

24 Number of base-FLT_RADIX digits in the mantissa of a float,
double, or long double

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

–125 Minimum negative integer such that FLT_RADIX raised to
that power minus 1 is a normalized float, double, or long
double

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

128 Maximum integer such that FLT_RADIX raised to that power
is a representative finite float, double, or long double

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

1.19209290E-07F Minimum positive float, double, or long double number x
such that 1.0 + x ≠ 1.0

FLT_MIN
DBL_MIN
LDBL_MIN

1.17549435E-38F Minimum positive float, double, or long double

FLT_MAX
DBL_MAX
LDBL_MAX

3.40282347E+38F Maximum positive float, double, or long double

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

–37 Minimum negative integer such that 10 raised to that power
is in the range of normalized floats, doubles, or long doubles

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

38 Maximum positive integer such that 10 raised to that power
is in the range of finite floats, doubles, or long doubles

Key to prefixes:
FLT_ applies to type float.
DBL_ applies to type double.
LDBL_ applies to type long double.

Header Files

 7-8

7.2.5 Inport/Outport Macros (ioports.h)

The ioports.h header defines two macros and their associated functions,
which are used to access the TMS320C2x/C2xx/C5x I/O ports. The macros
are the easiest way to access the I/O ports and include:

� inport, a macro that reads a value from the specified port and returns the
value via the pointer ret

� outport, a macro that writes a value to the specified port and has no return
value

The functions include:

� _inport x , functions that access the port of the same number and return
that value as an int. These functions follow this syntax:

_inport x () where 0 ≤ x ≤ 15

� _outport<x>, functions that access the port of the same number and have
no return value. These functions follow this syntax:

_outport x (int value) where 0 ≤ x ≤ 15

� _in_port, a function that reads an int from the specified port and returns
the value the function follows this syntax:

_in_port (int port)

� _out_port , a function that writes the output to the specified port and has
no return value. This function follows this syntax:

_out_port (int port, int value)

The _PSWITCH setting determines which method is used to implement the
inport and outport macros. If _PSWITCH is set to 0 (the default), a switch state-
ment is used that selects the correct _inportx or _outportx function. The 0 set-
ting works well when the port number is a constant, because the compiler opti-
mizes the switch statement into a simple call to the required function. However,
if the port number is a variable, the entire switch remains as you wrote it. There-
fore, when the port number is a variable, set _PSWITCH to 1 to call the correct
_in_port or _out_port function. The macros always work, regardless of the val-
ue of _PSWITCH.

The inport and outport macros are listed in Table 7–3 (c) on page 7-14.

Header Files

7-9Run-Time-Support Functions

7.2.6 Floating-Point Math (math.h)

The math.h header defines several trigonometric, exponential, and hyperbolic
math functions. These functions are listed in Table 7–3 (d) on page 7-15. The
math functions expect double-precision floating-point arguments and return
double-precision floating-point values. Except where all trigonometic func-
tions use angles expressed as radians.

The math.h header also defines one macro named HUGE_VAL. The math
functions use this macro to represent out-of-range values. When a function
produces a floating-point return value that is too large to be represented, it
returns HUGE_VAL instead.

For all math.h functions, domain and range errors are handled by setting errno
to EDOM or ERANGE, as appropriate. The function input/outputs are rounded
to the nearest legal value.

7.2.7 Nonlocal Jumps (setjmp.h)

The setjmp.h header defines a type and a macro and declares a function for
bypassing the normal function call and return discipline. These include:

� jmpbuf, an array type suitable for holding the information needed to
restore a calling environment

� setjmp, a macro that saves its calling environment in its jmp_buf argument
for later use by the longjmp function

� longjmp, a function that uses its jmp_buf argument to restore the program
environment

The nonlocal jump macro and function are listed in Table 7–3 (e) on page 7-16.

7.2.8 Variable Arguments (stdarg.h)

Some functions can have a variable number of arguments whose types can
differ. Such functions are called variable-argument functions. The stdarg.h
header declares macros and a type that help you to use variable-argument
functions:

� The macros are va_start, va_arg, and va_end. These macros are used
when the number and type of arguments may vary each time a function
is called.

� The type va_list is a pointer type that can hold information for va_start,
va_end, and va_arg.

Header Files

 7-10

A variable-argument function can use the macros declared by stdarg.h to step
through its argument list at run time when the function knows the number and
types of arguments actually passed to it. You must ensure that a call to a
variable-argument function has visibility to a prototype for the function in order
for the arguments to be handled correctly. The variable argument functions are
listed in Table 7–3 (f) page 7-16.

7.2.9 Standard Definitions (stddef.h)

The stddef.h header defines types and macros. The types are:

� ptrdiff_t, a signed integer type that is the data type resulting from the
subtraction of two pointers

� size_t, an unsigned integer type that is the data type of the sizeof operator.

The macros are:

� NULL, a macro that expands to a null pointer constant(0)

� offsetof(type, identifier), a macro that expands to an integer that has type
size_t. The result is the value of an offset in bytes to a structure member
(identifier) from the beginning of its structure (type).

These types and macros are used by several of the run-time-support
functions.

7.2.10 General Utilities (stdlib.h)

The stdlib.h header defines a macro and types and declares several functions.
The macro is named RAND_MAX, and it returns the largest value returned by
the rand() function.The types are:

� div_t, a structure type that is the type of the value returned by the div
function

� ldiv_t, a structure type that is the type of the value returned by the ldiv
function

The functions are:

� Memory management functions that allow you to allocate and deallocate
packets of memory. These functions can use 1K words of memory by
default. You can change this amount at link time by invoking the linker with
the –heap option.

� String conversion functions that convert strings to numeric repre-
sentations

Header Files

7-11Run-Time-Support Functions

� Searching and sorting functions that allow you to search and sort arrays

� Sequence-generation functions that allow you to generate a pseudo-
random sequence and allow you to choose a starting point for a sequence

� Program-exit functions that allow your program to terminate normally or
abnormally

� Integer-arithmetic that is not provided as a standard part of the C language

The general utility functions are listed in Table 7–3 (g) on page 7-16.

7.2.11 String Functions (string.h)

The string.h header declares standard functions that perform the following
tasks with character arrays (strings):

� Move or copy entire strings or portions of strings
� Concatenate strings
� Compare strings
� Search strings for characters or other strings
� Find the length of a string

In C, all character strings are terminated with a 0 (null) character. The string
functions named strxxx all operate according to this convention. Additional
functions that are also declared in string.h allow you to perform corresponding
operations on arbitrary sequences of bytes (data objects), where a 0 value
does not terminate the object. These functions are named memxxx.

When you use functions that move or copy strings, be sure that the destination
is large enough to contain the result. The string functions are listed in
Table 7–3 (h) on page 7-17.

7.2.12 Time Functions (time.h)

The time.h header defines a macro and several types and declares functions
that manipulate dates and time. The functions deal with several types of time:

� Calendar time represents the current date (according to the Gregorian
calendar) and time.

� Local time is the calendar time expressed for a specific time zone.

� Daylight saving time is a variation of local time.

The time.h header declares one macro, CLK_TCK, which is the number per
second of the value returned by the clock function.

The types are:

Header Files

 7-12

� clock_t, an arithmetic type that represents time

� time_t, an arithmetic type that represents time

� tm, a structure that holds the components of calendar time, called broken-
down time. The structure has the following members:

int tm_sec; /* seconds after the minute (0–59) */
int tm_min; /* minutes after the hour (0–59) */
int tm_hour; /* hours after midnight (0–23) */
int tm_mday; /* day of the month (1–31) */
int tm_mon; /* months since January (0–11) */
int tm_year; /* years since 1900 (0–99) */
int tm_wday; /* days since Saturday (0–6) */
int tm_yday; /* days since January 1 (0–365) */
int tm_isdst; /* Daylight Saving Time flag */

tm_isdst can have one of three values:

� A positive value if daylight saving time is in effect
� Zero if daylight saving time is not in effect
� A negative value if the information is not available

The time functions and macros are listed in Table 7–3 (i) on page 7-19.

Note: Customizing Time Functions

All of the time functions depend on the clock and time functions, which you
must customize for your system.

Summary of Run-Time-Support Functions and Macros

7-13Run-Time-Support Functions

7.3 Summary of Run-Time-Support Functions and Macros

Table 7–3 summarizes the run-time-support header files (in alphabetical
order) provided with the TMS320C2x/C2xx/C5x ANSI C compiler. Most of the
functions described are per the ANSI standard and behave exactly as
described in the standard.

The functions and macros listed in Table 7–3 are described in detail in section
7.4, Description of Run-Time-Support Functions and Macros on page 7-20 .
For a complete description of a function or macro, see the indicated page.

A superscripted number is used in the following descriptions to show expo-
nents. For example, xy is the equivalent of x to the power y.

Summary of Run-Time-Support Functions and Macros

 7-14

Table 7–3. Summary of Run-Time-Support Functions and Macros
(a) Error message macro (assert.h)

 Macro Description Page

void assert (int expr);‡ Inserts diagnostic messages into programs 7-22

(b) Character typing and conversion functions (ctype.h)

Function Description Page

int isalnum (int c); Tests c to see if it is an alphanumeric-ASCII
character

7-34

int isalpha (int c); Tests c to see if it is an alphabetic-ASCII character 7-34

int isascii (int c); Tests c to see if it is an ASCII character 7-34

int iscntrl (int c); Tests c to see if it is a control character 7-34

int isdigit (int c); Tests c to see if it is a numeric character 7-34

int isgraph (int c); Tests c to see if it is any printing character except a
space

7-34

int islower (int c); Tests c to see if it is a lowercase alphabetic ASCII
charcter

7-34

int isprint (int c); Tests c to see if it is a printable ASCII character
(including a space)

7-34

int ispunct (int c); Tests c to see if it is an ASCII punctuation character 7-34

int isspace (int c); Tests c to see if it is an ASCII space bar, tab
(horizontal or vertical), carriage return, form feed, or
new line character

7-34

int isupper (int c); Tests c to see if it is an uppercase ASCII alphabetic
character

7-34

int isxdigit (int c); Tests c to see if it is a hexadecimal digit 7-34

char toascii (int c); Masks c into a legal ASCII value 7-58

char tolower (int char c); Converts c to lowercase if it is uppercase 7-59

char toupper (int char c); Converts c to uppercase if it is lowercase 7-59

Note: Functions in ctype.h are expanded inline if the –x option is used.

(c) Inport/outport macros (ioports.h)

Macro Description Page

int inport (int port, int *ret); Returns a value from the specified port via the point-
er ret

7-33

void outport (int port, int value); Writes a value to the specified port and has no return
value

7-33

Summary of Run-Time-Support Functions and Macros

7-15Run-Time-Support Functions

(d) Floating-point math functions (math.h)

Function Description Page

double acos (double x); Returns the arc cosine of x 7-21

double asin (double x); Returns the arc sine of x 7-21

double atan (double x); Returns the arc tangent of x 7-23

double atan2 (double y, double x); Returns the arc tangent of y/x 7-23

double ceil (double x); Returns the smallest integer ≥ x; expands inline if
–x is used

7-26

double cos (double x); Returns the cosine of x 7-27

double cosh (double x); Returns the hyperbolic cosine of x 7-28

double exp (double x); Returns ex 7-30

double fabs (double x); Returns the absolute value of x 7-30

double floor (double x); Returns the largest integer � x; expands inline if
–x is used

7-31

double fmod (double x, double y); Returns the exact floating-point remainder of x/y 7-31

double frexp (double value, int *exp); Returns f and exp such that .5 � |f| � 1 and value
is equal to f × 2exp

7-32

double ldexp (double x, int exp); Returns x × 2exp 7-35

double log (double x); Returns the natural logarithm of x 7-36

double log10 (double x); Returns the base-10 logarithm of x 7-36

double modf (double value, double *ip); Breaks value into a signed integer and a signed
fraction

7-41

double pow (double x, double y); Returns xy 7-41

double sin (double x); Returns the sine of x 7-45

double sinh (double x); Returns the hyperbolic sine of x 7-45

double sqrt (double x); Returns the nonnegative square root of x 7-46

double tan (double x); Returns the tangent of x 7-56

double tanh (double x); Returns the hyperbolic tangent of x 7-57

Summary of Run-Time-Support Functions and Macros

 7-16

(e) Nonlocal jumps macro and function (setjmp.h)

Function or Macro Description Page

int setjmp (jmp_buf env); Saves calling environment for use by longjmp; this
is a macro

7-44

void longjmp (jmp_buf env, int _val); Uses jmp_buf argument to restore a previously
saved environment

7-44

(f) Variable argument macros (stdarg.h)

Macro Description Page

type va_arg (va_list, type); Accesses the next argument of type type in a
variable-argument list

7-59

void va_end (va_list); Resets the calling mechanism after using va_arg 7-59

void va_start (va_list, parmN); Initializes ap to point to the first operand in the
variable-argument list

7-59

(g) General functions (stdlib.h)

Function Description Page

void abort (void); Terminates a program abnormally 7-20

int abs (int i); Returns the absolute value of val; expands inline
unless –x0 is used

7-20

int atexit (void (*fun)(void)); Registers the function pointed to by fun, called
without arguments at program termination

7-23

double atof (const char *st); Converts a string to a floating-point value; expands
inline if –x is used

7-24

int atoi (register const char *st); Converts a string to an integer 7-24

long atol (register const char *st); Converts a string to a long integer value; expands
inline if –x is used

7-24

void *bsearch (register const void *key,
register const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *,const void *));

Searches through an array of nmemb objects for
the object that key points to

7-25

void *calloc (size_t num, size_t size); Allocates and clears memory for num objects,
each of size bytes

7-26

div_t div (register int numer, register int denom); Divides numer by denom producing a quotient and
a remainder

7-29

void exit (int status); Terminates a program normally 7-30

void free (void *packet); Deallocates memory space allocated by malloc,
calloc, or realloc

7-31

Summary of Run-Time-Support Functions and Macros

7-17Run-Time-Support Functions

(g) General functions (stdlib.h)(Continued)

Function PageDescription

long labs (long i); Returns the absolute value of i; expands inline
unless –x0 is used

7-20

ldiv_t ldiv (register long numer,
register long denom);

Divides numer by denom 7-29

int ltoa (long val, char *buffer); Converts val to the equivalent string 7-36

void *malloc (size_t size); Allocates memory for an object of size bytes 7-37

void minit (void); Resets all the memory previously allocated by
malloc, calloc, or realloc

7-39

void qsort (void *base, size_t nmemb,
size_t size, int (*compar) ());

Sorts an array of nmemb members; base points to
the first member of the unsorted array, and size
specifies the size of each member

7-42

int rand (void); Returns a sequence of pseudorandom integers in
the range 0 to RAND_MAX

7-43

void *realloc (void *packet, size_t size); Changes the size of an allocated memory space 7-43

void srand (unsigned int seed); Resets the random number generator 7-43

double strtod (const char *st, char **endptr); Converts a string to a floating-point value 7-55

long strtol (const char *st, char **endptr, int base); Converts a string to a long integer 7-55

unsigned long strtoul (const char *st,
char **endptr, int base);

Converts a string to an unsigned long integer 7-55

(h) String functions (string.h)

Function Description Page

void *memchr (const void *cs, int c, size_t n); Finds the first occurrence of c in the first n charac-
ters of cs; expands inline if –x is used

7-37

int memcmp (const void *cs, const void *ct,
size_t n);

Compares the first n characters of cs to ct;
expands inline if –x is used

7-38

void *memcpy (void *s1, const void *s2,
register size_t n);

Copies n characters from s1 to s2 7-38

void *memmove (void *s1, const void *s2,
size_t n);

Moves n characters from s1 to s2 7-38

void *memset (void *mem, register int ch,
register size_t length);

Copies the value of ch into the first length charac-
ters of mem; expands inline if –x is used

7-39

char *strcat (char *string1, const char *string2); Appends string2 to the end of string1 7-46

char *strchr (const char *string, int c); Finds the first occurrence of character c in s;
expands inline if –x is used

7-47

Summary of Run-Time-Support Functions and Macros

 7-18

(h) String functions (string.h)(Continued)

Function PageDescription

int strcmp (register const char *string1,
register const char *s2);

Compares strings and returns one of the following
values: <0 if string1 is less than string2; 0 if string1
is equal to string2; >0 if string1 is greater than
string2. Expands inline if –x is used.

7-47

int strcoll (const char *string1,
const char *string2);

Compares strings and returns one of the following
values: <0 if string1 is less than string2; 0 if string1
is equal to string2; >0 if string1 is greater than
string2.

7-47

char *strcpy (register char *dest,
register const char *src);

Copies string src into dest; expands inline if –x is
used

7-48

size_t strcspn (register const char *string,
const char *chs);

Returns the length of the initial segment of string
that is made up entirely of characters that are not
in chs

7-48

char *strerror (int errno); Maps the error number in errno to an error mes-
sage string

7-49

size_t strlen (const char *string); Returns the length of a string 7-50

char *strncat (char *dest, const char *src,
register size_t n);

Appends up to n characters from src to dest 7-50

int strncmp (const char *string1,
const char *string2, size_t n);

Compares up to n characters in two strings;
expands inline if –x is used

7-51

char *strncpy (register char *dest,
register const char *src, register size_t n);

Copies up to n characters from src to dest;
expands inline if –x is used

7-52

char *strpbrk (const char *string,
const char *chs);

Locates the first occurrence in string of any char-
acter from chs

7-53

char *strrchr (const char *string, int c); Finds the last occurrence of character c in string;
expands inline if –x is used

7-53

size_t strspn (register const char *string,
const char *chs);

Returns the length of the initial segment of string,
which is entirely made up of characters from chs

7-54

char *strstr (register const char *string1,
const char *string2);

Finds the first occurrence of string2 in string1 7-54

char *strtok (char *str1, const char *str2); Breaks str1 into a series of tokens, each delimited
by a character from str2

7-56

Summary of Run-Time-Support Functions and Macros

7-19Run-Time-Support Functions

(i) Time-support functions (time.h)

Function Description Page

char *asctime (const struct tm *timeptr); Converts a time to a string 7-21

clock_t clock (void); Determines the processor time used 7-27

char *ctime (const time_t *timer); Converts calendar time to local time 7-28

double difftime (time_t time1, time_t time0); Returns the difference between two calendar
times

7-28

struct tm *gmtime (const time_t *timer); Converts local time to Greenwich Mean Time 7-32

struct tm *localtime (const time_t *timer); Converts time_t value to broken down time 7-35

time_t mktime (register struct tm *tptr); Converts broken down time to a time_t value 7-40

size_t strftime (char *out, size_t maxsize,
const char *format, const struct tm *time);

Formats a time into a character string 7-49

time_t time (time_t *timer); Returns the current calendar time 7-57

abort

7-20

7.4 Description of Run-Time-Support Functions and Macros

This section describes the run-time-support functions and macros. A super-
scripted number is used in the following descriptions to show exponents. For
example, xy is the equivalent of x to the power y.

Abortabort

Syntax #include <stdlib.h>

void abort (void);

Defined in exit.c in rts.src

Description The abort function usually terminates a program with an error code. The
TMS320C2x/C2xx/C5x implementation of the abort function calls the exit
function with a value of 0, and is defined as follows:

void abort ()
{
 exit(0);
}

This makes the abort function equivalent to the exit function.

Absolute Valueabs/labs

Syntax #include <stdlib.h>

int abs (int j);
long int labs (long int k);

Defined in abs.c in rts.src

Description The C compiler supports two functions that return the absolute value of an
integer:

� The abs function returns the absolute value of an integer j.
� The labs function returns the absolute value of a long integer k.

Since int and long int are functionally equivalent types in TMS320C2x/C2xx/
C5x C, the abs and labs functions are also functionally equivalent. The abs and
labs functions are expanded inline unless the –x0 option is used. For more
information, see Section 2.6, Using Inline Function Expansion, on page 2-27.

Example int x = –5;

int y = abs (x); /* abs returns 5 */

asin

7-21 Run-Time-Support Functions

Arc Cosineacos

Syntax #include <math.h>

double acos (double x);

Defined in acos.c in rts.src

Description The acos function returns the arc cosine of a floating-point argument x, which
must be in the range [–1,1]. The return value is an angle in the range [0,π]
radians.

Example double realval, radians;

realval = 0.0;
radians = acos(realval); /* acos return π/2 */
return (radians);

Convert Internal Time to Stringasctime

Syntax #include <time.h>

char *asctime (const struct tm *timeptr);

Defined in asctime.c in rts.src

Description The asctime function converts a broken-down time into a string with the
following form:

Mon Jan 11 11:18:36 1988 \n\0

The function returns a pointer to the converted string.

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, Time Functions, on page 7-11.

Arc Sineasin

Syntax #include <math.h>

double asin (double x);

Defined in asin.c in rts.src

Description The asin function returns the arc sine of a floating-point argument x, which
must be in the range [–1,1]. The return value is an angle in the range [–π/2,π/2]
radians.

Example double realval, radians;

realval = 1.0;

radians = asin(realval); /* asin returns π/2 */

assert

7-22

Insert Diagnostic Information Macroassert

Syntax #include <assert.h>

void assert (int expr);

Defined in assert.h as a macro

Description The assert macro tests an expression; depending upon the value of the
expression, assert either issues a message and aborts execution or continues
execution. This macro is useful for debugging.

� If expr is false, the assert macro writes information about the call that failed
to the standard output and aborts execution.

� If expr is true, the assert macro does nothing.

The header file that defines the assert macro refers to another macro,
NDEBUG. If you have defined NDEBUG as a macro name when the assert.h
header is included in the source file, then the assert macro is defined to have
no effect.

If NDEBUG is not defined when assert.h is included, the assert macro is
defined to test the expression and, if false, write a diagnostic message includ-
ing the source filename, line number, and test of expression.

The assert macro is defined with the printf function, which is not included in the
library. To use assert, you must do one of the following:

� provide your own version of printf
� modify assert to output the message by other means.

Example In this example, an integer i is divided by another integer j. Since dividing by
0 is an illegal operation, the example uses the assert macro to test j before the
division. If j = = 0 assert issues a message and aborts the program.

int i, j;
assert(j);
q = i/j;

atexit

7-23 Run-Time-Support Functions

Polar Arc Tangentatan

Syntax #include <math.h>

double atan (double x);

Defined in atan.c in rts.src

Description The atan function returns the arc tangent of a floating-point argument x. The
return value is an angle in the range [–π/2,π/2] radians.

Example double realval, radians;

realval = 1.0;
radians = atan(realval); /* return value = 0 */

Cartesian Arc Tangentatan2

Syntax #include <math.h>

double atan2 (double y, double x);

Defined in atan.c in rts.src

Description The atan2 function returns the arc tangent of y/x. The function uses the signs
of the arguments to determine the quadrant of the return value. Both argu-
ments cannot be 0. The return value is an angle in the range [–π,π] radians.

Example atan2 (1.0, 1.0) /* returns π/4 */

atan2 (1.0, –1.0) /* returns 3 π/4 */

atan2 (–1.0, 1.0) /* returns −π/4 */

atan2 (–1.0, –1.0) /* returns –3 π/4 */

Register Function Callec by Exit()atexit

Syntax #include <stdlib.h>

void atexit (void (*fun)(void));

Defined in exit.c in rts.src

Description The atexit function registers the function that is pointed to by fun, to be called
without arguments at normal program termination. Up to 32 functions can be
registered.

When the program exits through a call to the exit function, a call to abort, or
a return from the main function, the functions that were registered are called
without arguments in reverse order of their registration.

atof/atoi/atol

7-24

Convert String to Numberatof/atoi/atol

Syntax #include <stdlib.h>

double atof (const char *st);
int atoi (const char *st);
long int atol (const char *st);

Defined in atof.c and atoi.c, in rts.src

Description Three functions convert strings to numeric representations:

� The atof function converts a string to a floating-point value. Argument st
points to the string; the string must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The atoi function converts a string to an integer. Argument st points to the
string; the string must have the following format:

[space] [sign] digits

� The atol function converts a string to a long integer. Argument st points to
the string; the string must have the following format:

[space] [sign] digits

The space is indicated by a space (character), a horizontal or vertical tab, a
carriage return, a form feed, or a new line. Following the space is an optional
sign, and the digits that represent the integer portion of the number. The frac-
tional part of the number follows, then the exponent, including an optional sign.

The first character that cannot be part of the number terminates the string.

Since int and long are functionally equivalent in TMS320C2x/C2xx/C5x C, the
atoi and atol functions are also functionally equivalent.

The functions do not handle any overflow resulting from the conversion.

Example int i;

double d;

i = atoi (“–3291”); /* i = –3291 */

d = atof (“1.23e–2); /* d = .0123 */

bsearch

7-25 Run-Time-Support Functions

Array Searchbsearch

Syntax #include <stdlib.h>

void *bsearch (const void *key, const void *base, size_t nmemb,
size_t size, int (*compar)(const void *, const void *));

Defined in bsearch.c in rts.src

Description The bsearch function searches through an array of nmemb objects for a mem-
ber that matches the object that key points to. Argument base points to the first
member in the array; size specifies the size (in bytes) of each member.

The contents of the array must be in ascending order. If a match is found, the
function returns a pointer to the matching member of the array; if no match is
found, the function returns a null pointer (0).

Argument compar points to a function that compares key to the array ele-
ments. The comparison function should be declared as:

int cmp(const void *ptr1, const void *ptr2);

The cmp function compares the objects that prt1 and ptr2 point to and returns
one of the following values:

< 0 if *ptr1 is less than *ptr2
0 if *ptr1 is equal to *ptr2

> 0 if *ptr1 is greater than *ptr2

Example #include <stdlib.h>

#include <stdio.h>

int list [] = {1, 3, 4, 6, 8, 9};
int diff (const void *, const void *0;

main()
{

int key = 8;
int p = bsearch (&key, list, 6, 1, idiff);

/* p points to list[4] */
}
int idiff (const void *il, const void *i2)
{

return *(int *) i1 – *(int *) i2;
}

calloc

7-26

Allocate and Clear Memorycalloc

Syntax #include <stdlib.h>

void *calloc (size_t num, size_t size);

Defined in memory.c in rts.src

Description The calloc function allocates size bytes (size is an unsigned integer or size_t)
for each of nmemb objects and returns a pointer to the space. The function ini-
tializes the allocated memory to all 0s. If it cannot allocate the memory (that
is, if it runs out of memory), it returns a null pointer (0).

The memory that calloc uses is in a special memory pool or heap, defined in
an uninitialized named section called .sysmem in memory.c. The constant
__SYSTEM_SIZE defines the heap as 1K words. You can change this amount
at line time by invoking the linker while the _heap option and specifying the
desired size of the heap directlyafter the option. For more information, see sec-
tion 6.1.4, Dynamic Memory Allocation, on page 6-6.

Example This example uses the calloc routine to allocate and clear 20 bytes.

prt = calloc (20,2); /*Allocate and clear 20 bytes */

Ceilingceil

Syntax #include <math.h>

double ceil (double x);

Defined in ceil.c in rts.src

Description The ceil function returns a floating-point number that represents the smallest
integer greater than or equal to x. The ceil function is inlined if the –x2 option
is used.

Example double answer;

answer = ceil(3.1415); /* answer = 4.0 */

answer = ceil(–3.5); /* answer = –3.0 */

cos

7-27 Run-Time-Support Functions

Processor Timeclock

Syntax #include <time.h>

clock_t clock (void);

Defined in clock.c in rts.src

Description The clock function determines the amount of processor time used. It returns
an approximation of the processor time used by a program since the program
began running. The time in seconds is the return value divided by the value
of the macro CLOCKS_PER_SEC.

If the processor time is not available or cannot be represented, the clock func-
tion returns the value of –1.

Note: Writing Your Own Clock Function

The clock function is target-system specific, so you must write your own
clock function. You must also define the CLOCKS_PER_SEC macro accord-
ing to the units of your clock so that the value returned by clock() (number
of clock ticks) can be divided by CLOCKS_PER_SEC to produce a value in
seconds.

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, Time Function (time.h) on page 7-11.

Cosinecos

Syntax #include <math.h>

double cos (double x);

Defined in cos.c in rts.src

Description The cos function returns the cosine of a floating-point number x. The angle x
is expressed in radians. An argument with a large magnitude might produce
a result with little or no significance.

Example double radians, cval; /* cos returns cval */

radians = 3.1415927;

cval = cos(radians); /* return value = –1.0 */

cosh

7-28

Hyperbolic Cosinecosh

Syntax #include <math.h>

double cosh (double x);

Defined in cosh.c in rts.src

Description The cosh function returns the hyperbolic cosine of a floating-point number x.
A range error occurs (errno is set to the value of EDOM) if the magnitude of
the argument is too large.

Example double x, y;

x = 0.0;
y = cosh(x); /* return value = 1.0 */

Calendar Timectime

Syntax #include <time.h>

char *ctime (const time_t *timer);

Defined in ctime.c in rts.src

Description The ctime function converts the calendar time (pointed to by timer) to local time
in the form of a string. This is equivalent to:

asctime(localtime(timer))

The function returns the pointer returned by the asctime function.

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, Time Functions (time.h), on page
7-11.

Time Differencedifftime

Syntax #include <time.h>

double difftime (time_t time1, time_t time0);

Defined in difftime.c in rts.src

Description The difftime function calculates the difference between two calendar times,
time1 minus time0. The return value is expressed in seconds.

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, Time Functions (time.h), on page
7-11.

div/ldiv

7-29 Run-Time-Support Functions

Divisiondiv/ldiv

Syntax #include <stdlib.h>

div_t div (int numer, denom);
ldiv_t ldiv (long numer, denom);

Defined in div.c in rts.src

Description Two functions support integer division by returning numer (numerator) divided
by denom (denominator). You can use these functions to determine both the
quotient and the remainder in a single operation.

� The div function performs integer division. The input arguments are inte-
gers; the function returns the quotient and the remainder in a structure of
type div_t. The structure is defined as follows:

typedef struct
{

int quot; /* quotient */
int rem; /* remainder */

} div_t;

� The ldiv function performs long integer division. The input arguments are
long integers; the function returns the quotient and the remainder in a
structure of type ldiv_t. The structure is defined as follows:

typedef struct
{

long int quot; /* quotient */
long int rem; /* remainder */

} ldiv_t;

If the division produces a remainder, the sign of the quotient is the same as the
algebraic quotient, and the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient. The sign of the
remainder is the same as the sign of numer.

Because ints and longs are equivalent types in TMS320C2x/C2xx/C5x C,
these functions are also equivalent.

Example int 1 = –10

int j = 3;

div_t result = div (i, j) ; /* result.quot == –3 */

/* result.rem == –1 */

exit

7-30

Normal Terminationexit

Syntax #include <stdlib.h>

void exit (int status);

Defined in exit.c in rts.src

Description The exit function terminates a program normally. All functions registered by the
atexit function are called in reverse order of their registration.

You can modify the exit function to perform application-specific shutdown
tasks. The unmodified function simply runs in an infinite loop until the system
is reset.

The exit function cannot return to its caller.

The TMS320C2x/C2xx/C5x implementation of the abort function makes it
equivalent to the exit function.

Exponentialexp

Syntax #include <math.h>

double exp (double x);

Defined in exp.c in rts.src

Description The exp function returns the exponential function of real number x. The return
value is the number ex. A range error occurs if the magnitude of x is too large.

Example double x, y;

x = 2.0;
y = exp(x); /* y = 7.38905, which is e**2 */

Absolute Valuefabs

Syntax #include <math.h>

double fabs (double x);

Defined in fabs.c in rts.src

Description The fabs function returns the absolute value of a floating-point number x. The
fabs function is expanded inline unless the –x0 option is used.

Example double x, y;

x = –57.5;
y = fabs(x); /* return value = +57.5 */

free

7-31 Run-Time-Support Functions

Floorfloor

Syntax #include <math.h>

double floor (double x);

Defined in floor.c in rts.src

Description The floor function returns a floating-point number that represents the largest
integer less than or equal to x. The floor function is expanded inline if the –x
option is used.

Example double answer;

answer = floor(3.1415); /* answer = 3.0 */
answer = floor(–3.5); /* answer = –4.0 */

Floating-Point Remainderfmod

Syntax #include <math.h>

double fmod (double x, double y);

Defined in fmod.c in rts.src

Description The fmod function returns the exact floating-point remainder of x divided by y.
If y==0, the function returns 0.

Example double x, y, r;

x = 11.0;
y = 5.0;
r = fmod(x, y); /* fmod returns 1.0 */

Deallocate Memoryfree

Syntax #include <stdlib.h>

void free (void *packet);

Defined in memory.c in rts.src

Description The free function deallocates memory space (pointed to by packet) that was
previously allocated by a malloc, calloc, or realloc call. This makes the memory
space available again. If you attempt to free unallocated space, the function
takes no action and returns. For more information, see section 6.1.4, Dynamic
Memory Allocation, on page 6-6.

Example This example allocates ten bytes and then frees them.

char *x;
x = malloc(10); /* allocate 10 bytes */
free(x); /* free 10 bytes */

frexp

7-32

Fraction and Exponentfrexp

Syntax #include <math.h>

double frexp (double value, int *exp);

Defined in frexp30.asm in rts.src

Description The frexp function breaks a floating-point number into a normalized fraction
(f) and the integer power of 2. The function returns f and exp such that
0.5–|f|<1.0 and value ==f x 2 exp. The frexp function stores the power is stored
in the int pointed to by exp. If value is 0, both parts of the result are 0.

Example double fraction;

int exp;

fraction = frexp(3.0, &exp);

/* after execution, fraction is .75 and exp is 2 */

Greenwich Mean Timegmtime

Syntax #include <time.h>

struct tm *gmtime (const time_t *timer);

Defined in gmtime.c in rts.src

Description The gmtime function converts a calendar time (pointed to by timer) into Coordi-
nated Universal Time (represented as a broken-down time). The name gmtime
has historical significance as Greenwich Mean Time.

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, Time Functions (time.h), on page
7-11.

inport/outport

7-33 Run-Time-Support Functions

Get or Send Data To or From a TMS320C2x/C2xx/C5x I/O Portinport/outport

Syntax #include <ioports.h>

inport (int port, int *ret);
outport (int port, int value);

Defined in ioports.asm in rts.src

Description The following macros are used for accessing the TMS320C2x/C2xx/C5x I/O
ports.

� The inport macro reads a value from the specified port and returns the
value via the pointer ret.

� The outport macro writes a value to the specified port and has no return
value.

These routines are implemented as macros, not functions; you cannot use
them in expressions. This is an example of the incorrect use of the macro:

call (inport (1, &i)); /* Incorrect use of macro*/

Instead, the macro must be used as below:

inport (1, &i);
call (i); /* Correct use */

The port number must be a value between 0 and 15, inclusive. Using any other
value as a port number results in undefined behavior.

If you normally use these macros with a constant port number, set _PSWITCH,
a constant defined in ioports.h, to 0 (the default). If you normally use these
macros with a variable port number, set _PSWITCH to 1. The macros always
work, regardless of the value of _PSWITCH.

For additional information on I/O ports, refer to the TMS320C2x User’s Guide,
the TMS320C2xx User’s Guide, or the TMS320C5x User’s Guide.

isxxx

7-34

Character Typingisxxx

Syntax #include <ctype.h>

int isalnum (int c); int islower (int c);

int isalpha (int c); int isprint (int c);

int isascii (int c); int ispunct (int c);

int iscntrl (int c); int isspace (int c);

int isdigit (int c); int isupper (int c);

int isgraph (int c); int isxdigit (int c);

Defined in isxxx.c and ctype.c in rts.src
Also defined in ctype.h as macros

Description These functions test a single argument c to see if it is a particular type of char-
acter —alphabetic, alphanumeric, numeric, ASCII, etc. If the test is true , the
function returns a nonzero value; if the test is false, the function returns 0. All
of the character-typing functions are expanded inline if the –x option is used.
The character-typing functions include:

isalnum identifies alphanumeric ASCII characters (tests for any charac-
ter for which isalpha or isdigit is true).

isalpha identifies alphabetic ASCII characters (tests for any character
for which islower or isupper is true).

isascii identifies ASCII characters (characters 0–127).

iscntrl identifies control characters (ASCII characters 0–31 and 127).

isdigit identifies numeric characters (0–9).

isgraph identifies any nonspace character.

islower identifies lowercase alphabetic ASCII characters.

isprint identifies printable ASCII characters, including spaces (ASCII
characters 32–126).

ispunct identifies ASCII punctuation characters.

isspace identifies ASCII spacebar, tab (horizontal or vertical), carriage
return, form feed, and newline characters.

isupper identifies uppercase ASCII alphabetic characters.

isxdigit identifies hexadecimal digits (0–9, a–f, A–F).

The C compiler also supports a set of macros that perform these same func-
tions. The macros have the same names as the functions but are prefixed with
an underscore; for example, _isascii is the macro equivalent of the isascii
function. In general, the macros execute more efficiently than the functions.

localtime

7-35 Run-Time-Support Functions

See abs/labs on page 7-20labs

Multiply by a Power of Twoldexp

Syntax #include <math.h>

double ldexp (double x, int exp);

Defined in ldexp.c in rts.src

Description The ldexp function multiplies a floating-point number x by 2exp and returns
(x × 2)exp. The exponent (exp) can be a negative or a positive value. A range
error may occur if the result is too large.

Example double result;

result = ldexp(1.5, 5); /* result is 48.0 */
result = ldexp(6.0, –3); /* result is 0.75 */

See div/ldiv on page 7-29ldiv

Local Timelocaltime

Syntax #include <time.h>

struct tm *localtime (const time_t *timer);

Defined in localtime.c in rts.src

Description The localtime function converts a calendar time (pointed to by timer) into a
broken-down time, which is expressed as local time. The function returns a
pointer to the converted time.

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, Time Functions (time.h), on page
7-11.

log

7-36

Natural Logarithmlog

Syntax #include <math.h>

double log (double x);

Defined in log.c in rts.src

Description The log function returns the natural logarithm of a real number x. A domain er-
ror occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 2.718282;
y = log(x); /* Return value = 1.0 */

Common Logarithmlog10

Syntax #include <math.h>

double log10 (double x);

Defined in log10.c in rts.src

Description The log10 function returns the base-10 logarithm of a real number x. A domain
error occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 10.0;
y = log(x); /* Return value = 1.0 */

See setjmp/longjmp on page 7-44longjump

Convert Long Integer to ASCIIltoa

Syntax #include <stdlib.h>

int ltoa (long val, char *buffer);

Defined in ltoa.c in rts.src

Description The ltoa function converts a long integer val to the equivalent ASCII string and
writes it into buffer. If the input number val is negative, a leading minus sign
is output. The ltoa function returns the number of characters placed in the
buffer.

Example int i;

char s[10];
i = ltoa (–92993L, s); /* i = 6, s = ”–92993”*/

memchr

7-37 Run-Time-Support Functions

Allocate Memorymalloc

Syntax #include <stdlib.h>

void *malloc (size_t size);

Defined in memory.c in rts.src

Description The malloc function allocates space for an object of size bytes and returns a
pointer to the space. If malloc cannot allocate the packet (that is, if it runs out
of memory), it returns a null pointer (0). This function does not modify the
memory it allocates.

The memory that malloc uses is in a special memory pool or heap. The
constant __SYSTEM_SIZE defines the size of the heap as 1K words. You can
change this amount at link time by invoking the linker with the -heap option and
specifying the desired size of the heap directly after the option. For more
information, see section 6.1.4, Dynamic Memory Allocation, on page 6-6.

Example This example allocates free space for a structure.

struct xyz *p;
p = malloc (sizeof (struct xyz));

Find First Occurrence of Bytememchr

Syntax #include <string.h>

void *memchr (const void *es, int c, size_t n);

Defined in memchr.c in rts.src

Description The memchr function finds the first occurrence of c in the first n characters of
the object that es points to. If the character is found, memchr returns a pointer
to the located character; otherwise, it returns a null pointer (0).

The memchr function is similar to strchr, except that the object that memchr
searches can contain values of 0 and c can be 0. The memchr function is
expanded inline when the –x option is used.

memcmp

7-38

Memory Comparememcmp

Syntax #include <string.h>

int memcmp (const void *cs, const void *ct, size_t n);

Defined in memcmp.c in rts.src

Description The memcmp function compares the first n characters of the object that ct
points to with the object that cs points to. The function returns one of the follow-
ing values:

< 0 if *cs is less than *ct
0 if *cs is equal to *ct

> 0 if *cs is greater than *ct

The memcmp function is similar to strncmp, except that the objects that
memcmp compares can contain values of 0. The memcmp function is
expanded inline when the –x option is used.

Memory Block Copy — Nonoverlappingmemcpy

Syntax #include <string.h>

void *memcpy (void *s1, const void *s2, size_t n);

Defined in memcpy.c in rts.src

Description The memcpy function copies n characters from the object that s2 points to into
the object that s1 points to. If you attempt to copy characters of overlapping
objects, the function’s behavior is undefined. The function returns the value
of s1.

The memcpy function is similar to strncpy, except that the objects that memcpy
copies can contain values of 0. The memcpy function is expanded inline when
the –x option is used.

Memory Block Copy — Overlappingmemmove

Syntax #include <string.h>

void *memmove (void *s1, const void *s2, size_t n);

Defined in memmove.c in rts.src

Description The memmove function moves n characters from the object that s2 points to
into the object that s1 points to; the function returns the value of s1. The
memmove function correctly copies characters between overlapping objects.

minit

7-39 Run-Time-Support Functions

Duplicate Value in Memorymemset

Syntax #include <string.h>

void *memset (void *mem, int ch, size_t length);

Defined in memset.c in rts.src

Description The memset function copies the value of ch into the first length characters of
the object that mem points to. The function returns the value of mem. The
memset function is expanded inline when the –x option is used.

Reset Dynamic Memory Poolminit

Syntax #include <stdlib.h>

void minit (void);

Defined in memory.c in rts.src

Description The minit function resets all the space that was previously allocated by calls
to the malloc, calloc, or realloc functions.

The memory that minit uses is in a special memory pool or heap. The constant
__SYSTEM_SIZE defines the size of the heap as 1K words. You can change
this amount at link time by invoking the linker with the –heap option specifying
the desired size of the heap directly after the option. For more information, see
section 6.1.4, Dynamic Memory Allocation, on page 6-6.

Note: No Previously Allocated Objects Are Available After minit

Calling the minit function makes all the memory space in the heap available
again. Any objects that you allocated previously will be lost; do not try to
access them.

mktime

7-40

Convert to Calendar Timemktime

Syntax #include <time.h>

time_t *mktime (struct tm *timeptr);

Defined in mktime.c in rts.src

Description The mktime function converts a broken-down time, expressed as local time,
into proper calendar time. The timeptr argument points to a structure that holds
the broken-down time.

The function ignores the original values of tm_wday and tm_yday and does not
restrict the other values in the structure. After successful completion of time
conversions, tm_wday and tm_yday are set appropriately and the other com-
ponents in the structure have values within the restricted ranges. The final
value of tm_mday is not sent until tm_mon and tm_year are determined.

The return value is encoded as a value of type time_t. If the calendar time
cannot be represented, the function returns the value –1.

For more information about the functions and types that the time.h header
declares and defines, see subsection 7.2.12, Time Functions (time.h), on
page 7-11.

Example This example determines the day of the week that July 4, 2001 falls on.

#include <time.h>
static const char *const wday[] = {

”Sunday”, ”Monday”, ”Tuesday”, ”Wednesday”,
”Thursday”, ”Friday”, ”Saturday” };

struct tm time_str;

time_str.tm_year = 2001 – 1900;
time_str.tm_mon = 7;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = 1;

mktime(&time_str); /* After calling this function,
 time_str.tm_wday contains the day of
 the week for July 4, 2001 */

printf (”result is %s\n”, wday[time_str.tm_wday]);

pow

7-41 Run-Time-Support Functions

Signed Integer and Fractionmodf

Syntax #include <math.h>

double modf (double value, double *iptr);

Defined in modf.c in rts.src

Description The modf function breaks a value into a signed integer and a signed fraction.
Each of the two parts has the same sign as the input argument. The function
returns the fractional part of the value and stores the integer part as a double
at the object pointed to by iptr.

Example double value, ipart, fpart;

value = –3.1415;

fpart = modf(value, &ipart);

/* After execution, ipart contains –3.0, */
/* and fpart contains –0.1415. */

Raise to a Powerpow

Syntax #include <math.h>

double pow(double x, double y);

Defined in pow.c in rts.src

Description The pow function returns x raised to the power y. A domain error occurs if x =

0 and y ≤ 0, or if x is negative and y is not an integer. A range error occurs if
the result is too large to represent.

Example double x, y, z;

x = 2.0;
y = 3.0;
z = pow(x, y); /* return value = 8.0 */

qsort

7-42

Array Sortqsort

Syntax #include <stdlib.h>

void qsort (void *base, size_t nmemb, size_t size, int (*compar)
(const void *, const void *));

Defined in qsort.c in rts.src

Description The qsort function sorts an array of nmemb members. Argument base points
to the first member of the unsorted array; argument size specifies the size of
each member.

This function sorts the array in ascending order.

Argument compar points to a function that compares key to the array ele-
ments. The comparison function should be declared as:

int cmp(ptr1, *ptr2)
void *ptr1, *ptr2;

The cmp function compares the objects that ptr1 and ptr2 point to and returns
one of the following values:

< 0 if *ptr1 is less than *ptr2
0 if *ptr1 is equal to *ptr2

> 0 if *ptr1 is greater than *ptr2

Example In the following example, a short list of integers is sorted with qsort.

#include <stdlib.h>

int list[] = {3, 1, 4, 1, 5, 9, 2, 6};
int idiff (const void *, const void *);

main()
{

qsort (list, 8, 1, idiff);
/* after sorting, list[]=={ 1, 1, 2, 3, 4, 5, 6, 9} */

}

int idiff (const void *i1, const void *i2)
{

return *(int *)i1 – *(int *)i2;

realloc

7-43 Run-Time-Support Functions

Random Integerrand/srand

Syntax #include <stdlib.h>

int rand (void);
void srand (unsigned int seed);

Defined in rand.c in rts.src

Description Two functions work together to provide pseudorandom sequence generation:

� The rand function returns pseudorandom integers in the range
0—RAND_MAX. For the TMS320C2x/C2xx/C5x C compiler, the value of
RAND_MAX is 2147483646 (231 –2).

� The srand function sets the value of the seed so that a subsequent call to
the rand function produces a new sequence of pseudorandom numbers.
The srand function does not return a value.

If you call rand before calling srand, rand generates the same sequence it
would produce if you first called srand with a seed value of 1. If you call srand
with the same seed value, rand generates the same sequence of numbers.

Change Heap Sizerealloc

Syntax #include <stdlib.h>

void *realloc (void *packet, size_t size);

Defined in memory.c in rts.src

Description The realloc function changes the size of the allocated memory pointed to by
packet to the size specified in bytes by size. The contents of the memory space
(up to the lesser of the old and new sizes) is not changed.

� If packet is 0, realloc behaves like malloc.

� If packet points to unallocated space, function takes no action and returns.

� If the space cannot be allocated, the original memory space is not
changed, and realloc returns 0.

� If size is 0 and packet is not null, realloc frees the space packet points to.

If the entire object must be moved to allocate more space, realloc returns a
pointer to the new space. Any memory freed by this operation is deallocated.
If an error occurs, the function returns a null pointer (0).

The memory that realloc uses is in a special memory pool or heap. The
constant __SYSTEM_SIZE defines the size of the heap as 1K words. You can
change this amount at link time by invoking the linker with the –heap option
specifying the desired size of the heap directly after the option. For more
information, see section 6.1.4, Dynamic Memory Allocation, on page 6-6.

setjmp/longjmp

7-44

Nonlocal Jumpssetjmp/longjmp

Syntax #include <setjmp.h>

int setjmp (jmp_buf env);
void longjmp (jmp_buf env, int returnval);

Defined in setjmp.asm in rts.src

Description The setjmp.h header defines a type and a macro and declares a function for
bypassing the normal function call and return discipline:

� The jmp_buf type is an array type suitable for holding the information
needed to restore a calling environment.

� The setjmp macro saves its calling environment in the jmp_buf argument
for later use by the longjmp function.

If the return is from a direct invocation, the setjmp macro returns the value
0. If the return is from a call to the longjmp function, the setjmp macro re-
turns a nonzero value.

� The longjmp function restores the environment that was saved in the
jmp_buf argument by the most recent invocation of the setjmp macro. If
the setjmp macro was not invoked, or if it terminated execution irregularly,
the behavior of longjmp is undefined.

After longjmp is completed, the program execution continues as if the cor-
responding invocation of setjmp had just returned returnval. The longjmp
function does not cause setjmp to return a value of 0 even if returnval is 0. If
returnval is 0, the setjmp macro returns the value 1.

Example These functions are typically used to effect an immediate return from a deeply
nested function call:

#include <setjmp.h>

jmp_buf env;

main()
{

int errcode;

if ((errcode = setjmp(env)) == 0)
nest1();

else
switch (errcode)

. . .
}

. . .
nest42()
{

if (input() == ERRCODE42)
/* return to setjmp call in main */

longjmp (env, ERRCODE42);
. . .

}

sprintf

7-45 Run-Time-Support Functions

Sinesin

Syntax #include <math.h>

double sin (double x);

Defined in sin.c in rts.src

Description The sin function returns the sine of a floating-point number x. The angle x ex-
pressed in radians. An argument with a large magnitude can produce a result
with little or no significance.

Example double radian, sval; /* sval is re-

turned by sin */

radian = 3.1415927;
sval = sin(radian) ; /* sin returns –1.0 */

Hyperbolic Sinesinh

Syntax #include <math.h>

double sinh (double x);

Defined in sinh.c in rts.src

Description The sinh function returns the hyperbolic sine of a floating-point number x. A
range error occurs if the magnitude of the argument is too large.

Example double x, y;

x = 0.0;
y = sinh(x); /* return value = 0.0 */

Write Streamsprintf

The run-time-support functions supplied with the TMS320C2x/C2xx/C5x C
compiler do not include I/O functions such as sprintf. However, since the time
function uses sprintf, a minimal version of sprintf() is supplied that performs
only the formatting required by time(). See the description of ti_sprintf on page
7-58 for more information.

sqrt

7-46

Square Rootsqrt

Syntax #include <math.h>

double sqrt (double x);

Defined in sqrt.c in rts.src

Description The sqrt function returns the nonnegative square root of a real number x. A
domain error occurs if the argument is negative.

Example double x, y;

x = 100.0;
y = sqrt(x); /* return value = 10.0 */

See rand/srand on page 7-43srand

Concatenate Stringsstrcat

Syntax #include <string.h>

char *strcat (char *string1, char *string2);

Defined in strcat.c in rts.src

Description The strcat function appends a copy of string2 (including a terminating null
character) to the end of string1. The initial character of string2 overwrites the
null character that originally terminated string1. The function returns the value
of string1. The strcat function is expanded inline when the –x option is used
string1 must be large enough to contain the entire string.

Example In the following example, the character strings pointed to by *a, *b, and *c are
assigned to point to the strings shown in the comments. In the comments, the
notation \0 represents the null character:

char *a, *b, *c;
.
.
.

/* a ––> ”The quick black fox\0” */
/* b ––> ”jumps over \0” */
/* c ––> ”the lazy dog.\0” */

strcat (a,b);
/* a ––> ”The quick black fox jumps over \0” */
strcat (a,c);
/* a ––> ”The quick black fox jumps over the lazy dog.\0” */

strcmp/strcoll

7-47 Run-Time-Support Functions

Find First Occurrence of a Characterstrchr

Syntax #include <string.h>

char *strchr (const char *string, char c);

Defined in strchr.c in rts.src

Description The strchr function finds the first occurrence of c in string. If strchr finds the
character, it returns a pointer to the character; otherwise, it returns a null point-
er (0). The strchr function is expanded inline when the –x option is used.

Example char *a = ”When zz comes home, the search is on for z’s.”;

char *b;

char the_z = ’z’;

b = strchr(a,the_z);

After this example, b points to the first z in zz.

String Comparestrcmp/strcoll

Syntax #include <string.h>

int strcoll (const char *string1, const char *string2);
int strcmp (const char *string1, const char *string2);

Defined in strcmp.c in rts.src

Description The strcmp and strcoll functions compare string2 with string1. The functions
are equivalent; both are supported to provide compatibility with ANSI C. The
strcmp function is expanded inline when the –x option is used.

The functions return one of the following values:

< 0 if *string1 is less than *string2
0 if *string1 is equal to *string2

> 0 if *string1 is greater than *string2

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why ask why”;

if (strcmp(stra, strb) > 0)
{

/* statements here will be executed */
}

if (strcoll(stra, strc) == 0)
{

/* statements here will be executed also */
}

strcpy

7-48

String Copystrcpy

Syntax #include <string.h>

char *strcpy (char *string1, const char *string2);

Defined in strcpy.c in rts.src

Description The strcpy function copies string2 (including a terminating null character) into
string1. If you attempt to copy strings that overlap, the function’s behavior is
undefined. The function returns a pointer to string1. The strcpy function is ex-
panded inline when the –x option is used.

Example In the following example, the strings pointed to by *a and *b are two separate
and distinct memory locations. In the comments, the notation \0 represents
the null character:

char *a = ”The quick black fox”;
char *b = ” jumps over ”;

/* a ––> ”The quick black fox\0” */
/* b ––> ” jumps over \0” */

strcpy(a,b);

/* a ––> ” jumps over \0” */
/* b ––> ” jumps over \0” */

Find Number of Unmatching Charactersstrcspn

Syntax #include <string.h>

size_t strcspn (const char *string, const char *chs);

Defined in strcspn.c in rts.src

Description The strcspn function returns the length of the initial segment of string1, which
is made up entirely of characters that are not in string2. If the first character
in string1 is in string2, the function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strcspn(stra,strb); /* length = 0 */
length = strcspn(stra,strc) ; /* length = 9 */

strftime

7-49 Run-Time-Support Functions

String Errorstrerror

Syntax #include <string.h>

char *strerror (int errno);

Defined in strerror.c in rts.src

Description The strerror function returns the string “string error”. This function is supplied
to provide ANSI compatibility.

Format Timestrftime

Syntax #include <time.h>

size_t *strftime (char *out, size_t maxsize, const char *format,
 const struct tm *time);

Defined in strftime.c in rts.src

Description The strftime function formats a time (pointed to by time) according to a format
string and returns the formatted result in the string out. Up to maxsize charac-
ters can be written to out. The format parameter is a string of characters that
tells the strftime function how to format the time; the following list shows the
valid characters and describes what each character expands to.

%a The abbreviated weekday name (Mon, Tue, . . .)

%A The full weekday name

%b The abbreviated month name (Jan, Feb, . . .)

%B The locale’s full month name

%c The date and time representation

%d The day of the month as a decimal number (0–31)

%H The hour (24-hour clock) as a decimal number (00–23)

%I The hour (12-hour clock) as a decimal number (01–12)

%j The day of the year as a decimal number (001–366)

%m The month as a decimal number (01–12)

%M The minute as a decimal number (00–59)

%p The locale’s equivalent of either A.M. or P.M.

%S The second as a decimal number (00–50)

strlen

7-50

%U The week number of the year (Sunday is the first day of the week)
as a decimal number (00–52)

%x The date representation

%X The time representation

%y The year without century as a decimal number (00–99)

%Y The year with century as a decimal number

%Z The time zone name, or by no characters if no time zone exists

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, page 7-11.

Find String Lengthstrlen

Syntax #include <string.h>

size_t strlen (const char *string);

Defined in strlen.c in rts.src

Description The strlen function returns the length of string. In C, a character string is termi-
nated by the first byte with a value of 0 (a null character). The returned result
does not include the terminating null character. The strlen function is expand-
ed inline when the –x option is used.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strlen(stra); /* length = 13 */
length = strlen(strb); /* length = 26 */
length = strlen(strc); /* length = 7 */

Concatenate Stringsstrncat

Syntax #include <string.h>

char *strncat (char *dest, const char *src, size_t n);

Defined in strncat.c in rts.src

Description The strncat function appends up to n characters of src (including a terminating
null character) to dest. The initial character of src overwrites the null character
that originally terminated dest; strncat appends a null character to the result.
The function returns the value of dest.

strncmp

7-51 Run-Time-Support Functions

Example In the following example, the character strings pointed to by *a, *b, and *c were
assigned the values shown in the comments. In the comments, the notation
\0 represents the null character:

char *a, *b, *c;
size_t size = 13;
.
.
.

/* a––> ”I do not like them,\0” */;
/* b––> ” Sam I am, \0” */;
/* c––> ”I do not like green eggs and ham\0” */;

strncat (a,b,size);

/* a––> ”I do not like them, Sam I am, \0” */;
/* b––> ” Sam I am, \0” */;
/* c––> ”I do not like green eggs and ham\0” */;

strncat (a,c,size);

/* a––> ”I do not like them, Sam I am, I do not like\0” */;
/* b––> ” Sam I am, \0” */;
/* c––> ”I do not like green eggs and ham\0” */;

Compare Stringsstrncmp

Syntax #include <string.h>

int strncmp (const char *string1, const char *string2, size_t n);

Defined in strncmp.c in rts.src

Description The strncmp function compares up to n characters of string2 with string1. The
function returns one of the following values:

< 0 if *string1 is less than *string2
0 if *string1 is equal to *string2

> 0 if *string1 is greater than *string2

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why not?”;

size_t size = 4;

if (strncmp(stra, strb, size) > 0)
{

/* statements here will get executed */
}

if (strncmp(stra, strc, size) == 0)
{

/* statements here will get executed also */
}

strncpy

7-52

String Copystrncpy

Syntax #include <string.h>

char *strncpy (const char *dest, const char *src, size_t n);

Defined in strncpy.c in rts.src

Description The strncpy function copies up to n characters from src into dest. If src is n
characters long or longer, the null character that terminates src is not copied.
If you attempt to copy characters from overlapping strings, the function’s be-
havior is undefined. If src is shorter than n characters, strncpy appends null
characters to dest so that dest contains n characters. The function returns the
value of dest.

Example Note that strb contains a leading space to make it five characters long. Also
note that the first five characters of strc are an I, a space, the word am, and
another space, so that after the second execution of strncpy, stra begins with
the phrase I am followed by two spaces. In the comments, the notation \0 rep-
resents the null character.

char *stra = ”she’s the one mother warned you of”;
char *strb = ” he’s”;
char *strc = ”I am the one father warned you of”;
char *strd = ”oops”;
size_t length = 5;

strncpy (stra,strb,length);

/* stra––> ” he’s the one mother warned you of\0” */;
/* strb––> ” he’s”;\0” */;
/* strc––> ”I am the one father warned you of\0” */;
/* strd––> ”oops\0” */;

strncpy (stra,strc,length);

/* stra––> ”I am the one mother warned you of\0” */;
/* strb––> ” he’s”;\0” */;
/* strc––> ”I am the one father warned you of\0” */;
/* strd––> ”oops\0” */;

strncpy (stra,strd,length);

/* stra––> ”oops\0” */;
/* strb––> ” he’s”;\0” */;
/* strc––> ”I am the one father warned you of\0” */;
/* strd––> ”oops\0” */;

strrchr

7-53 Run-Time-Support Functions

Find Any Matching Characterstrpbrk

Syntax #include <string.h>

char *strpbrk (const char *string, const char *chs);

Defined in strpbrk.c in rts.src

Description The strpbrk function locates the first occurrence in string of any character in
chs. If strpbrk finds a matching character, it returns a pointer to that character;
otherwise, it returns a null pointer (0).

Example char *stra = ”it wasn’t me”;

char *strb = ”wave”;

char *a;

a = strpbrk (stra,strb);

After this example, a points to the w in wasn’t.

Find Last Occurrence of a Characterstrrchr

Syntax #include <string.h>

char *strrchr (const char *string, int c);

Defined in strrchr.c in rts.src

Description The strrchr function finds the last occurrence of c in string. If strrchr finds the
character, it returns a pointer to the character; otherwise, it returns a null point-
er (0). The strrchr function is expanded inline if the –x option is used.

Example char *a = ”When zz comes home, the search is on for z’s”;

char *b;

char the_z = ’z’;

After this example, *b points to the z near the end of the string.

strspn

7-54

Find Number of Matching Charactersstrspn

Syntax #include <string.h>

size_t *strspn (const char *string, const char *chs);

Defined in strspn.c in rts.src

Description The strspn function returns the length of the initial segment of string, which is
entirely made up of characters in chs. If the first character of string is not in chs,
the strspn function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strcspn(stra,strb); /* length = 3 */
length = strcspn(stra,strc) ; /* length = 0 */

Find Matching Stringstrstr

Syntax #include <string.h>

char *strstr (const char *string1, const char *string2);

Defined in strstr.c in rts.src

Description The strstr function finds the first occurrence of string2 in string1 (excluding the
terminating null character). If strstr finds the matching string, it returns a pointer
to the located string; if it does not find the string, it returns a null pointer. If
string2 points to a string with length 0, strstr returns string1.

Example char *stra = ”so what do you want for nothing?”;

char *strb = ”what”;

char *ptr;

ptr = strstr(stra,strb);

The pointer *ptr now points to the w in what in the first string.

strtod/strtol/strtoul

7-55 Run-Time-Support Functions

Convert String to Numeric Valuestrtod/strtol/
strtoul

Syntax #include <stdlib.h>

double strtod (const char *test, char **endptr);
long int strtol (const char *test, char **endptr, int base);
unsigned long int strtoul (const char *test, char **endptr, int base);

Defined in strtod.c in rts.src, strtol.c in rts.src and strtoul.c in rts.src

Description Three functions convert ASCII strings to numeric values. For each function,
argument test points to the original string. Argument endptr points to a pointer;
the functions set this pointer to point to the first character after the converted
string. The functions that convert to integers also have a third argument, base,
which tells the function what base to interpret the string in.

� The strtod function converts a string to a floating-point value. The string
must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The function returns the converted string; if the original string is empty or
does not have the correct format, the function returns a 0. If the converted
string would cause an overflow, the function returns �HUGE_VAL; if the
converted string would cause an underflow, the function returns 0. If the
converted string causes an overflow or an underflow, errno is set to the
value of ERANGE.

� The strtol function converts a string to a long integer. The string must have
the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The strtoul function converts a string to an unsigned long integer. The
string must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The space is indicated by a space bar, horizontal or vertical tab, carriage re-
turn, form feed, or new line. Following the space is an optional sign and digits
that represent the integer portion of the number. The fractional part of the num-
ber follows, then the exponent, including an optional sign.

The first unrecognized character terminates the string. The pointer that endptr
points to is set to point to this character.

strtok

7-56

Break String Into Tokenstrtok

Syntax #include <string.h>

char *strtok (char *str1, const char *str2);

Defined in strtok.c in rts.src

Description Successive calls to the strtok function break str1 into a series of tokens, each
delimited by a character from str2. Each call returns a pointer to the next token.
The first call to strtok uses the string str1. Successive calls use a null pointer
as the first argument. The value of str2 can change at each invocation. It is im-
portant to note that str1 is altered by the strtok function.

Example After the first invocation of strtok in the example below, the pointer stra points
to the string excuse\0 because strtok has inserted a null character where the
first space used to be. In the comments, the notation \0 represents the null
character.

char *stra = ”excuse me while I kiss the sky”;
char *ptr;

ptr = strtok (stra,” ”); /* ptr ––> ”excuse\0” */
ptr = strtok (0,” ”); /* ptr ––> ”me\0” */
ptr = strtok (0,” ”); /* ptr ––> ”while\0” */

Tangenttan

Syntax #include <math.h>

double tan (double x);

Defined in tan.c in rts.src

Description The tan function returns the tangent of a floating-point number x. The angle
x is expressed in radians. An argument with a large magnitude may produce
a result with little or no significance.

Example double x, y;

x = 3.1415927/4.0;
y = tan(x); /* return value = 1.0 */

time

7-57 Run-Time-Support Functions

Hyperbolic Tangenttanh

Syntax #include <math.h>

double tanh (double x);

Defined in tanh.c in rts.src

Description The tanh function returns the hyperbolic tangent of a floating-point number x.

Example double x, y;

x = 0.0;
y = tanh(x); /* return value = 0.0 */

Timetime

Syntax #include <time.h>

time_t time (time_t *timer);

Defined in time.c in rts.src

Description The time function determines the current calendar time, represented in sec-
onds since 12:00 A.M., Jan 1, 1900. If the calendar time is not available, the
function returns –1. If timer is not a null pointer, the function also assigns the
return value to the object that timer points to.

For more information about the functions and types that the time.h header
declares and defines, see section 7.2.12, Time Functions (time.h), on page
7-11.

Note: Writing Your Own Time Function

The time function is target-system specific, so you must write your own time
function.

ti_sprintf

7-58

Special Version of sprintfti_sprintf

Syntax #include <stdlib.h>

int ti_sprintf (char *s, const char *format, ...);

Defined in tsprintf.c in rts.src

Description The ti_sprintf function is a minimal version of sprintf() that supports only those
functions required by time(). Specifically, ti_sprintf supports only the following
conversions:

% [0] [digits] (s | d)

0 if present, indicates that the field will be padded with 0s instead of
blanks.

digits if present, indicate the minimum width of the field in characters. If the
argument that corresponds to the conversion is smaller than this
width, the argument is right justified in the field and the field padded
with 0s or blanks (depending on whether 0 is used as above).

s | d specifies the argument’s type. An s indicates that the argument is of
type char *; a d indicates that the argument is of type int.

You can alter the ti_sprintf function by extracting the function from rts.src, mak-
ing changes to the code, and recompiling the run-time-support library. The
ti_sprintf function is fully commented to make alterations easier. To extract
ti_sprintf.c from the rts.src library, enter the following command at the com-
mand line:

dspar –x rts.src tsprintf.c

Convert to ASCIItoascii

Syntax #include <ctype.h>

int toascii (int c);

Defined in toascii.c in rts.src

Description The toascii function ensures that c is a valid ASCII character by masking the
lower seven bits. There is also an equivalent macro call _toascii.

va_arg/va_end/va_start

7-59 Run-Time-Support Functions

Convert Casetolower/toupper

Syntax #include <ctype.h>

int tolower (int c);
int toupper (int c);

Defined in tolower.c in rts.src
toupper.c in rts.src

Description Two functions convert the case of a single alphabetic character c into upper-
case or lowercase:

� The tolower function converts an uppercase argument to lowercase. If c
is already in lowercase, tolower returns it unchanged.

� The toupper function converts a lowercase argument to uppercase. If c is
already in uppercase, toupper returns it unchanged.

The functions have macro equivalents named _tolower and _toupper.

Example tolower (’A’) /* returns ’a’ */

tolower (’+’) /* returns ’+’ */

Variable-Argument Macros/Functionsva_arg/va_end/
va_start

Syntax #include <stdarg.h>

typedef char *va_list ;
va_arg (ap, type);
void va_end (ap);
void va_start (ap, parmN);
va_list *ap

Defined in stdarg.h as macros

Description Some functions are called with a varying number of arguments that have vary-
ing types. Such a function, called a variable-argument function, can use the
following macros to step through its argument list at run time. The ap parame-
ter points to an argument in the variable-argument list.

� The va_start macro initializes ap to point to the first argument in an argu-
ment list for the variable-argument function. The parmN parameter points
to the right-most parameter in the fixed, declared list.

� The va_arg macro returns the value of the next argument in a call to
a variable-argument function. Each time you call va_arg, it modifies ap
so that successive arguments for the variable-argument function can be
returned by successive calls to va_arg (va_arg modifies ap to point to
the next argument in the list). The type parameter is a type name; it is
the type of the current argument in the list.

va_arg/va_end/va_start

7-60

� The va_end macro resets the stack environment after va_start and
va_arg are used.

You must call va_start to initialize ap before calling va_arg or va_end.

Example int printf (char *fmt, ...)

{
va_list ap;

 va_start(ap, fmt);
.

 .
 .
/* Get next arg, an integer */

i = va_arg(ap, int);
/* Get next arg, a string */
 s = va_arg(ap, char *);
/* Get next arg, a long */

l = va_arg(ap, long);
.
.
.

va_end(ap) /* Reset */
}

8-1

Library-Build Utility

When using the C compiler, you can compile your code under a number of dif-
ferent configurations and options that are not necessarily compatible with one
another. Since it would be cumbersome to include all possible combinations
in individual run-time-support libraries, this package includes the source file,
rts.src, that contains all run-time-support functions.

You can build your own run-time-support libraries by using the dspmk utility de-
scribed in this chapter and the archiver described in the TMS320C1x/C2x/
C2xx/C5x Assembly Language Tools User’s Guide.

Topic Page

8.1 Invoking the Library-Build Utility 8-2.

8.2 Library-Build Utility Options 8-3.

8.3 Options Summary 8-4.

Chapter 8

Invoking the Library-Build Utility

 8-2

8.1 Invoking the Library-Build Utility

The dspmk utility runs the shell program on each source file in the archive to
compile and/or assemble it. Then, the utility collects all the object files into the
object library. All tools must be placed in your PATH. The utility ignores and dis-
ables the environment variables TMP, C_OPTION, and C_DIR.

The syntax for invoking the library –build utility is:

dspmk [options] src_arch1 [–lobj.lib1] [src_arch2 [–lobj.lib2]] ...

dspmk is the command that invokes the utility.

options affect how the library –build utility treats your files. Options can ap-
pear anywhere on the command line or in a linker command file.
(Options are discussed in section 8.2 and 8.3.)

src_arch is the name of a source archive file. For each source archive
named, dspmk builds an object library according to the runtime
model specified by the command-line options.

–lobj.lib is the optional object library name. If you do not specify a name
for the library, dspmk uses the name of the source archive and
appends a .lib suffix. For each source archive file specified, a
corresponding object library file is created. You cannot build an
object library from multiple source archive files.

Library-Build Utility Options

8-3Library-Build Utility

8.2 Library-Build Utility Options

Most of the options that are included on the command line correspond directly
to options of the same name used with the compiler, assembler, linker, and
shell. The following options apply only to the library-build utility.

––c Extracts C source files contained in the source archive from the
library and leaves them in the current directory after the utility has
completed execution.

––h Uses header files contained in the source archive and leaves
them in the current directory after the utility completes execution.
Use this option to install the run-time-support header files from the
rts.src archive that is shipped with the tools.

––k Overwrite files. By default, the utility aborts any time it attempts to
create an object file when an object file of the same name already
exists in the current directory, regardless of whether you specified
the name or the utility derived it.

––q Suppresses header information (quiet).

––u Does not use the header files contained in the source archive
when building the object library. If the desired headers are already
in the current directory, there is no reason to reinstall them. This
option also gives you flexibility in modifying run-time-support func-
tions to suit your application.

––v Prints progress information to the screen during execution of the
utility. Normally, the utility operates silently (no screen messages).

Options Summary

 8-4

8.3 Options Summary

The other options you can use with the library-build utility correspond directly
to the options that the compiler uses. Table 8–1 lists these options.

Table 8–1. Summary of Options and Their Effects

(a) Options that control the compiler shell

Option Effect

–g Enables symbolic debugging

–rregister Reserves global register

–vxx Specifies target processor TMS320Cxx (25, 50, 2xx)

(b) Options that control the parser

Option Effect

–pk Makes code K&R compatible

–pw Suppresses warning messages

–p? Enables trigraph expansion

(c) Options that control the optimizer

Option Effect

–o0 Compiles with optimization; register optimization

–o1 Compiles with optimization; + local optimization

–o2 (or –o) Compiles with optimization; + global optimization

–o3 Compiles with optimization; + file optimization
Note that dspmk automatically sets –oI0 and –op0.

–oe Assumes no calls by interrupts

–ox (equivalent to –x2) Defines _INLINE + above + invoke optimizer (at –o2
if not specified differently)

(d) Options that control definition-controlled inline function expansion

Option Effect

–x1 Enables intrinsic function inlining

–x2 (or –x) Defines _INLINE + above + invoke optimizer (at –o2
if not specified differently)

Options Summary

8-5Library-Build Utility

(e) Options that control the runtime model

Option Effect

–ma Assumes aliased variables

–mb Avoids RPTK for structure moves

–ml Disables LDPK optimization

–mn Enables optimization disabled by –g

–ms Optimizes for space instead of for speed

–mx Avoids ’C5x silicon bugs

(f) Options that overlook type checking

Options Effect

–tf Overlooks relax prototype checking

–tp Overlooks relax pointer combination checking

(g) Options that control the assembler

Option Effect

–ap Enables ’C2x to ’C2xx or ’C5x port switch

–app Enables ’C2x to ’C2xx port switch and defines
.TMS32025 and .TMS3202XX

–as Keeps labels as symbols

(h) Options that change default file extensions

Options Effect

–ea[.] Sets default extension for assembly files

–eo[.] Sets default extension for object files

 8-6

A-1

Appendix A

Glossary

A
ANSI: See American National Standards Institute.

absolute address: An address that is permanently assigned to a memory
location.

aliasing: The ability for a single object to be accessed in more than one way,
such as when two pointers point to the same object. It can disrupt opti-
mization because any indirect reference could refer to any other object.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

American National Standards Institute (ANSI): An organization that es-
tablishes standards voluntarily followed by industries.

archive library: A collection of individual files grouped into a single file by
the archiver.

archiver: A software program that collects several individual files into a
single file called an archive library. With the archiver you can add, delete,
extract, or replace members of the archive library.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions, direc-
tives, and macro directives. The assembler substitutes absolute opera-
tion codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assignment statement: A statement that initializes a variable with a value.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before program execution begins.

autoinitialization at runtime: An autoinitialization method used by the link-
er when linking C code. The linker uses this method when you invoke the
linker with the –c option. The linker loads the .cinit section of data tables
into memory, and variables are initialized at runtime.

Appendix A

Glossary

 A-2

B

block: A set of statements that are grouped together within braces and
treated as an entity.

.bss section: One of the default COFF sections. You can use the .bss direc-
tive to reserve a specified amount of space in the memory map that can
later be used for storing data. The .bss section is uninitialized.

byte: Traditionally, a sequence of eight adjacent bits operated upon as a
unit. However, the TMS320C2x/C2xx/C5x byte is 16 bits.

Note: TMS320C2x/C2xx/C5x Byte Is 16 Bits

By ANSI C definition, the sizeof operator yields the number of bytes required
to store an object. ANSI further stipulates that when sizeof is applied to char,
the result is 1. Since the TMS320C2x/C2xx/C5x char is 16 bits (to make it
separately addressable), a byte is also 16 bits. This yields results you may
not expect; for example, sizeof (int) = = 1 (not 2). TMS320C2x/C2xx/C5x
bytes and words are equivalent (16 bits).

C

C compiler: A software program that translates C source statements into
assembly language source statements.

C optimizer: See optimizer.

code generator: A compiler tool that takes the file produced by the parser
or the optimizer and produces an assembly language source file.

COFF: See common object file format.

command file: A file that contains linker options and names input files for
the linker.

comment: A source statement (or portion of a source statement) that docu-
ments or improves readability of a source file. Comments are not com-
piled, assembled, or linked; they have no effect on the object file.

common object file format (COFF): A system of object files configured ac-
cording to a standard developed by AT&T. These files are relocatable in
memory space.

constant: A type whose value cannot change

Glossary

A-3Glossary

cross-reference listing: An output file created by the assembler that lists
the symbols it defined, what line they were defined on, which lines refer-
enced them, and their final values.

D

.data section: One of the default COFF sections. The .data section is an in-
itialized section that contains initialized data. You can use the .data direc-
tive to assemble code into the .data section.

direct call: A function call where one function calls another using the name
of the function.

directive: A special-purpose command that controls the actions and func-
tions of a software tool (as opposed to an assembly language instruction,
which control the actions of a device).

dynamic memory allocation: A technique used by several functions (such
as malloc, calloc, and realloc) to dynamically allocate memory for vari-
ables at run time. This is accomplished by defining a large memory pool
(heap) and using the functions to allocate memory from the heap.

E

emulator: A hardware development system that duplicates TMS320C2x,
TMS320C2xx, or TMS320C5x operation.

entry point: The point in target memory where execution starts.

environment variable: A system symbol that you define and assign to a
string. Enviroment variables are often included in batch files, for
example, .cshrc.

executable module: A linked object file that can be executed in a target sys-
tem.

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

external symbol: A symbol that is used in the current program module but
defined or declared in a different program module.

Glossary

 A-4

F

field: For the TMS320C2x, TMS320C2xx, and TMS320C5x, a software-
configurable data type whose length can be programmed to be any value
in the range of 1–16 bits.

file_leve optimization: A level of optimization where the compiler uses the
information that it has about the entire file to optimize your code (as op-
posed to program_level optimization, where the compiler uses informa-
tion that it has about the entire program to optimize your code).

function inlining: The process of inserting code for a function at the point
of call. This saves the overhead of a function call and allows the optimizer
to optimize the function in the context of the surrounding code.

G

global symbol: A symbol that is either defined in the current module and
accessed in another, or accessed in the current module but defined in
another.

H

hex-conversion utility: A utility that converts COFF object files into one of
several standard ASCII hexadecimal formats, suitable for loading into an
EPROM programmer.

high-level language debugging: The ability of a compiler to retain sym-
bolic and high-level language information (such as type and function
definitions) so that a debugging tool can use this information.

I

indirect call: A function call where one function calls another function by giv-
ing the address of the called function.

initialization at load time: An initialization method used by the linker when
linking C code. The linker uses this method when you invoke the linker
with the –cr option. This method initializes variables at load time instead
of run time.

initialized section: A COFF section that contains executable code or data.
An initialized section can be built up with the .data, .text, or .sect directive.

Glossary

A-5Glossary

integrated preprocessor: The C preprocessor is integrated with the parser,
allowing for faster compilation. Stand-alone preprocessing or a prepro-
cessed listing is also available.

interlist utility: A utility that inserts as comments your original C source
statements into the assembly language output from the assembler. The
C statements are inserted next to the equivalent assembly instructions.

K
K&R C: Kernighan and Ritchie C, the de facto standard as defined in the first

edition of The C Programming Language (K&R). Most K&R C programs
written for earlier, non-ANSI C compilers should correctly compile and
run without modification.

L
label: A symbol that begins in column 1 of an assembly source statement

and corresponds to the address of that statement. A label is the only
assembler statement that can begin in column 1.

linker: A software program that combines object files to form an object mod-
ule that can be allocated into system memory and executed by the
device.

listing file: An output file created by the assembler that lists source
statements, their line numbers, and their effects on the section prgram
counter (SPC).

loader: A device that loads an executable module into system memory.

M
macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The process of inserting source statements into your
code in place of a macro call.

map file: An output file created by the linker that shows the memory configu-
ration, section composition, section allocation, symbol definitions, and
the addresses at which the symbols were defined for your program.

Glossary

 A-6

memory map: A map of target-system memory space that is partitioned into
functional blocks.

O

object file: An assembled or linked file that contains machine-language ob-
ject code.

object library: An archive library made up of individual object files.

operand: An argument of an assembly language instruction, assembler di-
rective, or macro directive that supplies information to the operation per-
formed by the instruction or directive.

optimizer: A software tool that improves the execution speed and reduces
the size of C programs.

options: Command-line parameters that allow you to request additional or
specific functions when you invoke a software tool.

output module: A linked, executable object file that is downloaded and
executed on a target system.

output section: A final, allocated section in a linked, executable module.

P

parser: A software tool that reads the source file, performs preprocessing
functions, checks syntax, and produces an intermediate file that can be
used as input for the optimizer or code generator.

partial linking: The linking of a file that will be linked again.

pragma: A preprocessor directive that provides directions to the compiler
about how to treat a particular statement.

preprocessor: A software tool that interprets macro definitions, expands
macros, interprets header files, interprets conditional compilation, and
acts upon preprocessor directives.

Glossary

A-7Glossary

R
raw data: Executable code or initialized data in an output section.

relocation: A process in which the linker adjusts all the references to a
symbol when the symbol’s address changes.

runtime environment: The runtime parameters in which your program
must function. These parameters are defiend by the memory and regis-
ter conventions, stack organization, function call conventions, and sys-
tem initialization.

runtime-support functions: Standard ANSI functions that perform tasks
that are not part of the C language (such as memory allocation, string
conversion, and string searches).

runtime-support library: A library file, rts.src, that contains the source for
the runtime-support functions as well as for other functions and routines.

S
section: A relocatable block of code or data that will ultimately be

contiguous with other sections in the memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header
points to the section’s starting address, contains the section’s size, etc.

shell program: A utility that lets you compile, assemble, and optionally link
in one step. The shell runs one ore more source modules through the
compiler (including the parser, optimizer, and code generator), the as-
sembler, and the linker.

sign extend: To fill the unused MSBs of a value with the value’s sign bit.

source file: A file that contains C code or assembly language code that is
compiled or assembled to form an object file.

stand-alone preprocessor: A software tool that expands macros, # include
files, and conditional compilation as an independent program. It also per-
forms integrated preprocessing, which includes parsing of instructions.

static variable: A variable whose scope is confined to a function or a pro-
gram. The values of static variables are not discarded when the function
or program is exited; the previous values are resumed when the function
or program is reentered.

Glossary

 A-8

storage class: Any entry in the symbol table that indicates how to access
a symbol.

structure: A collection of one or more variables grouped together under a
single name.

symbol: A string of alphanumeric characters that represents an address or
a value.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

symbolic debugging: The ability of a software tool to retain symbolic infor-
mation so that it can be used by a debugging tool such as a simulator or
an emulator.

T
target system: The system on which the object code you have developed

is executed.

target memory: Physical memory in a TMS320C2x-, TMS320C2xx-, or
TMS320C5x-based system into which executable object code is loaded.

.text section: One of the default COFF sections. The .text section that is ini-
tialized contains executable code. You can use the .text directive to as-
semble code into the .text section.

trigraph sequence: A 3-character sequence that has a meaning (as de-
fined by the ISO 646–1983 Invariant Code Set). These characters can-
not be represented in the C character set and are expanded to one char-
acter. For example, the tragraph ??’ is expanded to ^.

U
uninitialized section: A COFF section that reserves space in the memory

map but that has no actual contents. These sections are built up with the
.bss and .usect directives.

unsigned value: A value that is treated as a nonnegative number, regard-
less of its actual sign.

V
variable: A symbol representing a quantity that can assume any of a set of

values.

A-1

TOKEN REFERENCE SEE (ALSO) . . .
assembly language interfacing C with assembly language

C compiler compiler

C language ANSI C

C language interfacing C with assembly language

C language K&R

clist command interlist utility

dspac command parser

dspac command preprocessor

dspcg command code generator

dspcl command compiler

dsplnk command linker

dspmk command library-build utility

dspopt command optimizer

common object file format COFF

diagnostic messages
NDEBUG macro

NDEBUG macro

environment variable C_DIR

environment variable C_OPTION

environment variable TMP

extensions
filename

filename extensions

files
intermediate

temporary files

files, listing listing files

files, output listing files

files, temporary temporary files

intermediate files temporary files

Kerrigan & Ritchie C K&R

output files listing files

parameters
function

function parameters

parameters
macro

macros, parameters

 A-2

TOKEN SEE (ALSO) . . .REFERENCE

parser preprocessor

pointer frame FP register

pointer frame frame pointer

pointer stack SP register

pointer stack stack pointer

string constants constants, string

sprintf function ti_sprintf function

system stack stacks

time functions, ti_sprintf ti_sprintf function

tm structure broken-down time

Index

Index-1

Index

A
–a linker option 4-6
–aa shell option 2-19
abort function 7-20
.abs extension 2-15
abs function 7-20

expanding inline 2-28
absolute compiler limits 5-17
absolute listing, creating 2-19
absolute value 7-20, 7-30
accessing arguments in a function 6-18
accessing local variables in a function 6-18
accumulator 6-10, 6-13
acos function 7-21
–ad shell option 2-19
–ahc shell option 2-19
–ahi shell option 2-19
–al shell option 2-19
aliasing 3-11
allocate memory

sections 4-11
alternate directories for include files 2-24
ANSI C 1-5

compatibility with K&R C 5-14 to 5-15
overlooking type-checking 2-17
TMS320C2x/C2xx/C5x differs from 5-2 to 5-3

–ap assembler option 2-19
–app assembler option 2-19
append file contents to command line
–ar linker option 4-6
AR0 (FP) 6-4
AR1 (SP) 6-4, 6-32
AR6 5-11, 6-13
AR7 5-11, 6-13

arc cosine 7-21
arc sine 7-21
arc tangent 7-23
archive library

linking 4-8
archiver 1-3
arguments 6-18

promotions 2-17
–as shell option 2-19
ASCII conversion functions 7-24
asctime function 7-21, 7-28
asin function 7-21
.asm extension 2-15
asm statement

and C language 6-22
described 5-9
in optimized code 3-10
masking interrupts 6-26

assembler 1-1, 1-3, 2-38
options 2-19

assembler control 2-19
assembly language

See also interfacing C with assembly language
imbedding in C programs 5-9
interrupt routines 6-27
modules 6-19 to 6-21

assembly listing file
creating 2-19

assert function 7-22
assert.h header 7-5, 7-14

summary of functions 7-14
atan function 7-23
atan2 function 7-23
atexit function 7-23, 7-30
atof function 7-24
atoi function 7-24
atol function 7-24

Index

Index-2

–au shell option 2-19
autoinitialization

at runtime 6-34
initialization tables 6-33
of constants 6-32
of variables 6-7, 6-32
types of 4-9

–ax shell option 2-19

B
–b interlist option 2-45
–b linker option 4-6
banners

suppressing 2-13
base 10 logarithm 7-36
bit addressing 6-8
bit fields 5-3, 5-15
block

memory allocation 4-11
block scope symbols

maximum number of 5-17
boot.obj 4-8, 4-10, 4-13
broken-down time 7-11, 7-28, 7-40
bsearch function 7-25
.bss section 6-3

allocating in memory 4-11

C
C compiler 1-3

See also compiler
overview 1-5

C entry point 6-25
.c extension 2-15, 2-39
C language

See also ANSI C; interfacing C with assembly
language; K&R

characteristics 5-2 to 5-3
integer expression analysis 6-28
interrupt routine functions 6-25
interrupt routines 6-26

––c library-build utility option 8-3
–c linker option 4-2, 4-9, 6-4
–c shell option 2-13

how shell and linker options differ 4-5

C preprocessor 2-22
C source statements and assembly language 2-33
_c_int00

described 4-10
C_OPTION environment variable 2-20
calendar time 7-11, 7-28, 7-40, 7-57
called function 6-15 to 6-18
calloc function 7-26, 7-31, 7-39

dynamic memory allocation 6-6
ceil function 7-26
character

constants 5-15
conversion functions, summary of 7-14
string constants 6-8

character sets 5-2
character typing conversion functions 7-5

isalnum 7-34
isalpha 7-34
isascii 7-34
iscntrl 7-34
isdigit 7-34
isgraph 7-34
islower 7-34
isprint 7-34
ispunct 7-34
isspace 7-34
isupper 7-34
isxdigit 7-34
toascii 7-58
tolower 7-59
toupper 7-59

.cinit section 6-3, 6-33
allocating in memory 4-11
use during autoinitialization 4-10

.cl extension 2-45
clist command 2-45

See also interlist utility
CLK_TCK macro 7-11, 7-27
clock function 7-27
clock_t type 7-11
code generator 2-38, 2-43 to 2-44

invoking 2-43 to 2-44
options 2-44

code-E error messages 2-35
code-F error messages 2-35
code-I error messages 2-35
code-W error messages 2-35
CODE_SECTION pragma 5-7

Index

Index-3

COFF 1-3, 1-5, 6-3

command file, linker 4-13
example 4-13

common logarithm 7-36

common object file format. See COFF

compare strings 7-51

compatibility with K&R C 5-14 to 5-15

compiler 1-5
description 2-1 to 2-46
error handling 2-35
invoking 2-4
limits 5-16 to 5-18

absolute 5-17
optimizer 2-38, 3-2 to 3-3
options 2-6, 2-13 to 2-46

–@ 2-13
–c 2-13
–d 2-13
–g 2-13, 3-13
–i 2-13, 2-24
–k 2-13
–n 2-13
–q 2-5, 2-13
–qq 2-13
–r 2-13, 5-11
–s 2-14
–ss 2-14
–u 2-14
–v 2-14
–z 2-2, 2-14

overview 1-5 to 1-7, 2-3, 2-38
running as separate passes 2-38 to 2-46
sections 4-11

compiling C code 2-2
with the optimizer 3-2 to 3-3

concatenate strings 7-46, 7-50

.const section 5-12, 6-3, 6-34
allocating in memory 4-11
allocating to program memory 6-5

const type qualifier 5-12

constants 5-2
.const section 5-12
character 5-2

escape sequences in 5-15
floating-point, maximum number of unique 5-18
string 5-2

escape sequences in 5-15
maximum number of unique 5-18

conversions 5-3, 7-5
C language 5-2

copy file
–ahc assembler option 2-19

cos function 7-27
cosh function 7-28
cosine 7-27
–cr linker option 4-2, 4-9, 6-7
cross-reference listing

creating 2-19
ctime function 7-28
ctype.h header 7-5

summary of functions 7-14

D
–d shell option 2-13

overriding with –u 2-14
data memory 6-2
.data section 6-3
data types 5-2, 5-4 to 5-5
DATA_SECTION pragma 5-8
__DATE__ 2-22
daylight savings time 7-11
debugging optimized code 3-13
declarations 5-3
dedicated registers 6-12, 6-19
#define

–d shell option 2-13
defining variables in assembly language 6-23
diagnostic information 7-22
diagnostic messages 7-5

assert 7-22
NDEBUG macro. See NDEBUG macro

difftime function 7-28
directories

specifying 2-16
div function 7-29
div_t type 7-10
division 5-3
division and modulus 6-28
_dsp 2-22
dspac command 2-39

See also parser; preprocessor
dspcg command 2-43

See also code generator

Index

Index-4

dspcl command 1-5, 2-4
See also compiler

dsplnk command 4-2
See also linker

dspmk command 8-2
See also library-build utility

dspopt command 2-41
See also optimizer

dynamic memory allocation
described 6-6

E
–e linker option 4-6

–ea shell option 2-16

EDOM macro 7-6

entry points
system reset 6-25

enumerator list
trailing comma 5-15

environment variable
See also C_DIR; C_OPTION; TMP
C_DIR 2-23
C_OPTION 2-20
TMP 2-21

–eo shell option 2-16

EPROM programmer 1-4

ERANGE macro 7-6

errno.h header 7-6

error
creating listing 2-36
message macro 7-14
messages from the preprocessor 2-22

#error directive 2-26

error handling 2-35 to 2-37, 5-14
using error options 2-37

error message macros 7-14
assert 7-22

error messages
code-E 2-35
code-F 2-35
code-I 2-35
code-W 2-35
general 2-35

error options 2-37

error reporting 7-6

errors treated as warnings 2-36
escape sequences 5-2, 5-15
exit function 7-20, 7-23, 7-30
exp function 7-30
exponential math function 7-9, 7-30
expression analysis

floating-point 6-30
integers 6-28

expression registers 6-13
expressions 5-3
extensions

abs 2-15
asm 2-15
c 2-15
filename. See filename extensions
nfo 3-5
obj 2-15
s 2-15
specifying 2-15

external declarations 5-14
external variables 6-7

F
–f linker option 4-6
–fa shell option 2-15
fabs function 7-30

expanding inline 2-28
fatal errors 2-35

increasing the threshold of 2-36
–fc shell option 2-15
field manipulation 6-8
file

copy 2-19
include 2-19

__FILE__ 2-22
file-level optimization 3-4
filename

extension specification 2-15
specifications

maximum length 5-17
specifying 2-15

files
intermediate. See temporary files
listing. See listing files
output. See listing files
temporary. See temporary files

Index

Index-5

float.h header 7-6

floating-point
expression analysis 6-30
math functions 7-9

acos 7-21
asin 7-21
atan 7-23
atan2, 7-23
ceil 7-26
cos 7-27
cosh 7-28
exp 7-30
fabs 7-30
floor 7-31
fmod 7-31
frexp 7-32
ldexp 7-35
log 7-36
log10, 7-36
modf 7-41
pow 7-41
sinh 7-45
sqrt 7-46
tan 7-56
tanh 7-57

remainder 7-31
summary of functions 7-15 to 7-17

floor function 7-31

fmod function 7-31

–fo shell option 2-15

format time 7-49

FP register 6-4

–fr shell option 2-16

frame pointer 6-4, 6-11 to 6-12

free function 7-31

frexp function 7-32

–fs shell option 2-16

–ft shell option 2-16

FUNC_EXT_CALLED pragma
described 5-8
use with –pm option 3-8

function
alphabetic reference 7-20
call 6-15

conventions 6-14 to 6-18
using the stack 6-4

general utility 7-16
inlining 2-27 to 2-32
parameters

maximum number of 5-17
prototype

overlooking type-checking 2-17

G
–g linker option 4-6

–g shell option 2-13, 3-13

general utility functions 7-10
abort 7-20
abs 7-20
atexit 7-23
atof 7-24
atoi 7-24
atol 7-24
bsearch 7-25
calloc 7-26
div 7-29
exit 7-30
free 7-31
labs 7-20
ldiv 7-29
ltoa 7-36
malloc 7-37
minit 7-39
qsort 7-42
rand 7-43
realloc 7-43, 7-45
srand 7-43
strtod 7-55
strtol 7-55
strtoul 7-55
ti_sprintf 7-58

global symbols
maximum number of 5-17

global variables 5-12, 6-7
reserved space 6-3

gmtime function 7-32

gregorian time 7-11

Index

Index-6

H
––h library-build utility option 8-3
–h linker option 4-6
header files 7-4 to 7-12

assert.h header 7-5
ctype.h header 7-5
errno.h header 7-6
float.h header 7-6
limits.h header 7-6
math.h header 7-9
setjmp.h header 7-9
stdarg.h header 7-9
stddef.h header 7-10
stdlib.h header 7-10
string.h header 7-11
time.h header 7-11

heap
described 6-6
reserved space 6-3

–heap linker option 4-6, 7-37
hex conversion utility 1-4
HUGE_VAL 7-9
hyperbolic

cosine 7-28
math function 7-9
sine 7-45
tangent 7-57

I
–i linker option 4-6
–i shell option 2-13, 2-23, 2-24

maximum number of 2-24
identifiers 5-2
#if maximum nesting 5-17
.if extension 2-39
implementation errors 2-35
implementation-defined behavior 5-2 to 5-3
#include

files 2-22, 2-23
search paths 2-23

–i shell option 2-13
maximum file nesting 5-17
maximum search paths 5-17

include files 2-19
#include preprocessor directive 7-4

INDX register 6-12
shadow register capability 6-27

initialization
at load time 6-35
of variables 6-7
types 4-9

initialization tables 6-33

initialized sections 6-3
allocating in memory 4-11

initializers
local maximum number 5-17

initializing global variables 5-12

initializing static variables 5-12

_INLINE 2-22
preprocessor symbol 2-31

inline
declaring functions as 2-28
expansion 2-27 to 2-32
keyword 2-28

inline assembly construct (asm) 6-22

inline assembly language 6-22

inlining
automatic expansion 3-12

integer division 7-29

integer expression analysis 6-28
division and modulus 6-28
overflow and underflow 6-28

interfacing C and assembly language 6-19
asm statement 6-22
assembly language modules 6-19 to 6-21

interlist utility 1-3, 1-6, 2-33
invoking 2-14, 2-45
options 2-45

–b 2-45
–q 2-45
–r 2-45

used with the optimizer 3-13

intermediate files
See also temporary files
code generator 2-43
optimizer 2-42
parser 2-39

interrupt handling 6-25 to 6-27

intrinsic operators 2-27, 2-28

inverse tangent of y/x 7-23

Index

Index-7

invoking the
C compiler 2-4
C compiler tools individually 2-38
code generator 2-43
interlist utility 2-33, 2-45
library-build utility 8-2
linker 4-2
optimizer 2-41
parser 2-39

ioport keyword 5-13
isalnum function 7-34
isalpha function 7-34
isascii function 7-34
iscntrl function 7-34
isdigit function 7-34
isgraph function 7-34
islower function 7-34
isprint function 7-34
ispunct function 7-34
isspace function 7-34
isupper function 7-34
isxdigit function 7-34
isxxx function 7-5, 7-34

J
jump function 7-16
jump macro 7-16

K
––k library-build utility option 8-3
–k shell option 2-13
Kernighan & Ritchie C. See K&R

L
–l library-build utility option 8-2
–l linker option 4-2, 4-8
label, retaining 2-19
labs function 7-20

expanding inline 2-28
ldexp function 7-35
ldiv function 7-29
ldiv_t type 7-10

libraries 7-2

library-build utility 1-3, 1-6, 8-1 to 8-6
optional object library 8-2
options 8-3

limits
absolute compiler 5-17
compiler 5-16 to 5-18
floating-point types 7-6
integer types 7-6

limits.h header 7-6

#line directive 2-25

__LINE__ 2-22

linker 1-3, 2-39
command file 4-13 to 4-14

example 4-13
disabling 4-5
invoking individually 4-2
options 4-6 to 4-7

–a 4-6
–ar 4-6
–b 4-6
–e 4-6
–f 4-6
–g 4-6
–h 4-6
–heap 4-6
–i 4-6
–l 4-6
–m 4-6
–n 4-6
–o 4-7
–q 4-7
–r 4-7
–s 4-7
–stack 4-7
–u 4-7
–v0 4-7
–v1 4-7
–v2 4-7
–w 4-7
–x 4-7

suppressing 2-13

linking
C code 4-1 to 4-12
individually 4-2
object library 7-2
with run-time-support libraries 4-8
with the shell program 4-4

Index

Index-8

listing file 2-25
assembly language

–k shell option 2-13
register use (–mr option) 2-18

creating cross-reference 2-19

load time initialization 6-35

loader 5-12

local initializers maximum number 5-17

local time 7-11, 7-28, 7-40

local variable pointer 6-11 to 6-12, 6-18

local variables 6-18

localtime function 7-35

log function 7-36

log10 function 7-36

longjmp function 7-44

ltoa function 7-36

M
–m linker option 4-6

–ma runtime-model option 2-18

macros
alphabetic reference 7-20
definitions 2-22 to 2-23
expansions 2-22 to 2-23
maximum defined with –d 5-17
maximum nesting level 5-17
parameters

maximum number 5-17

malloc function 7-31, 7-37, 7-39
dynamic memory allocation 6-6

math.h header 7-9
summary of functions 7-15 to 7-17

–mb runtime-model option 2-18

memchr function 7-37

memcmp function 7-38

memcpy function 7-38

memmove function 7-38

memory
data 6-2
program 6-2

memory management functions
calloc 7-26
free 7-31
malloc 7-37
minit 7-39
realloc 7-43, 7-45

memory model 6-2 to 6-8
allocating variables 6-7
autoinitialization at run time 6-7
dynamic memory allocation 6-6
field manipulation 6-8
initialization at load time 6-7
sections 6-3
stack 6-4
structure packing 6-8

memory pool 7-37
reserved space 6-3

memset function 7-39
minit function 7-39

mktime function 7-40
–ml run-time-model option 2-18
–mn run-time-model option 2-18, 3-13
modf function 7-41

modifying compiler output 6-24
modulus 6-28
–mr runtime-model option 2-18

–ms runtime-model option 2-18
multibyte characters 5-2
–mx runtime-model option 2-18

N
–n linker option 4-6
–n shell option 2-13

natural logarithm 7-36
NDEBUG macro 7-5, 7-22
nesting maximum number of

#include files 5-17
conditional inclusion (#if) 5-17
declarations 5-17
macro levels 5-17

.nfo extension 3-5

nonlocal jump function and macro 7-9
summary of 7-16

nonlocal jumps 7-44

NULL macro 7-10

Index

Index-9

O

–o linker option 4-7

–o shell option 3-2

.obj extension 2-15

object library
linking code with 7-2

–oe shell option 3-11

offsetof macro 7-10

–oi shell option 3-12

–ol shell option 3-4

–on shell option 3-5

–op shell option 3-6 to 3-8

optimization
algebraic reordering 3-18
alias disambiguation 3-18
autoincrement addressing 3-15
branch optimizations 3-20
calls 3-16
common subexpression elimination 3-18
constant folding 3-18
control flow simplification 3-20
copy propagation 3-18
cost-based register allocation 3-15
delayed branches 3-16
inline function expansion 3-21
loop induction variable optimizations 3-21
loop invariant code motion 3-21
loop rotation 3-21
redundant assignment elimination 3-18
repeat blocks 3-15
strength reduction 3-21
symbolic simplification 3-18

optimizations
controlling the level of 3-6
file-level 3-4
information file options 3-5
levels 3-2
list of 3-14 to 3-22
program-level 3-6

optimized code
debugging 3-13

optimizer 1-3, 2-41 to 2-43
and interrupts 3-11
invoking 2-41
invoking with shell options 3-2
options 2-42
parser output 2-42
special considerations 3-10

aliasing 3-11
volatile keyword 3-10

use with debugger 2-18
options 2-6 to 2-19

assembler 2-19
code generator 2-44
conventions 2-6
general 2-13 to 2-46
interlist utility 2-45
linker 4-6 to 4-7
optimizer 2-42
parser 2-40
run-time-model 2-18 to 2-20
summary table 2-7

output files. See listing files
overflow

arithmetic 6-28
runtime stack 6-32

P
–p? parser option 2-25
packing structures 6-8
parameters

function. See function parameters
macros. See macros, parameters

parser 2-38, 2-39 to 2-40
See also preprocessor
options 2-39, 2-40

parsing in two passes 2-41
–pe parser option 2-36
–pk parser option 5-15
–pl parser option 2-25
–pm shell option 3-6
–po parser option 2-41
pointer

frame. See FP register; frame pointer
stack. See SP register; stack pointer

pointer combinations 5-14
port ’C2x assembly code to ’C2xx 2-19
port ’C2x assembly code to ’C2xx or ’C5x 2-19

Index

Index-10

port variables
ioport keyword 5-13

pow function 7-41

power 7-41

#pragma directive 5-3

pragma directives
CODE_SECTION 5-7
DATA_SECTION 5-8
FUNC_EXT_CALLED 5-8

predefined names 2-22 to 2-23
–ad assembler option 2-19
DATE 2-22
_dsp 2-22
FILE 2-22
_INLINE 2-22
LINE 2-22
TIME 2-22
_TMS320C25 2-22
_TMS320C2xx 2-22
_TMS320C50 2-22

preinitialized 5-12

preprocessed listing file 2-25

preprocessor 2-22 to 2-26
#error directive 2-26
#warn directive 2-26
error messages 2-22
_INLINE symbol 2-31
symbols 2-22

preprocessor directives 2-22
C language 5-3
trailing tokens 5-15

processor time 7-27

program memory 6-2

program termination functions
abort (exit) 7-20
atexit 7-23
exit 7-30

program-level optimization
controlling 3-6
performing 3-6

prototype functions 2-17
nesting of declarations

maximum number of 5-17
pseudorandom 7-43

ptrdiff_t 5-2

ptrdiff_t type 7-10

–pw parser option 2-36

Q
––q library-build utility option 8-3

–q interlist option 2-45

–q linker option 4-7

–q shell option 2-5, 2-13

–qq shell option 2-13

qsort function 7-42

R
–r interlist option 2-45

–r linker option 4-7

–r shell option 2-13, 5-11

rand function 7-43

RAND_MAX macro 7-10

realloc function 6-6, 7-31, 7-39, 7-43, 7-45

recoverable errors 2-35

register conventions 6-9 to 6-13
register variables 5-6

register storage class 5-3

register variables 5-6, 6-12, 6-13
C language 5-6
global 5-10
used with optimizer 6-13
used without optimizer 6-12

registers
accumulator 6-10, 6-13
during function calls 6-15 to 6-18
frame pointer (FP) 6-4, 6-11 to 6-12
INDX 6-12
local variable pointer (LVP) 6-11 to 6-12, 6-18
stack pointer (SP) 6-4, 6-11 to 6-12
use

conventions 6-10
information (–mr option) 2-18

related documentation, vii

RETD instruction 6-18

return values 6-13

RPTK instruction 2-18

rts.src 7-10

rts25.lib 1-3

rts2xx.lib 1-3

rts50.lib 1-3

Index

Index-11

run-time environment 6-1 to 6-36
defining variables in assembly language 6-23
floating-point expression analysis 6-30
function call conventions 6-14 to 6-18
inline assembly language 6-22
integer expression analysis 6-28
interfacing C with assembly language 6-19 to

6-24
interrupt handling 6-25 to 6-27
memory model

allocating variables 6-7
dynamic memory allocation 6-6
field manipulation 6-8
RAM model 6-7
ROM model 6-7
sections 6-3
structure packing 6-8

modifying compiler output 6-24
register conventions 6-9 to 6-13
stack 6-4
system initialization 6-31 to 6-36

run time initialization 6-34

run-time-model options 2-18 to 2-20
–ma 2-18
–mb 2-18
–ml 2-18
–mn 2-18, 3-13
–mr 2-18
–ms 2-18
–mx 2-18

run-time-support
functions

introduction 7-1
summary 7-13

libraries 7-2, 8-1
linking C code 4-2, 4-8
rts.src 8-1

macros summary 7-13

S

.s extension 2-15

–s linker option 4-7

–s shell option 2-14, 2-33

searches 7-25

sections 6-3
allocating memory 4-11
.bss 6-3
.cinit 6-4, 6-33
created by the compiler 4-11
.data 6-3
.stack 6-3
.sysmem 6-3
.text 6-3

setjmp function 7-44
setjmp.h header 7-9

summary of functions and macros 7-16
shell program 1-3, 2-4 to 2-12

overview 2-2
summary of options 2-6

shift 5-3
sinh function 7-45
size_t 5-2
size_t type 7-10
software development tools 1-2 to 1-4
sorts 7-42
source file

extensions 2-15
source line

maximum length 5-17
SP register 6-4
sprintf function. See ti_sprintf function
sqrt function 7-46
square root 7-46
srand function 7-43
–ss shell option 2-14
–ss shell option 3-13
stack 6-4, 6-32

overflow of runtime stack 6-32
reserved space 6-3

–stack linker option 4-7
stack management 6-4
stack pointer 6-4, 6-11 to 6-12, 6-32
.stack section 6-3

allocating in memory 4-11
__STACK_SIZE constant 6-5
static inline functions 2-30
static variables 5-12, 6-7

reserved space 6-3
status register fields 6-11
stdarg.h header 7-9

summary of macros 7-16

Index

Index-12

stddef.h header 7-10
stdlib.h header 7-10

summary of functions 7-16
strcat function 7-46
strchr function 7-47
strcmp function 7-47
strcoll function 7-47
strcpy function 7-48
strcspn function 7-48
strerror function 7-49
strftime function 7-49
string constants. See constants, string
string copy 7-52
string functions 7-11, 7-17

memchr 7-37
memcmp 7-38
memcpy 7-38
memmove 7-38
memset 7-39
strcat 7-46
strchr 7-47
strcmp 7-47
strcoll 7-47
strcpy 7-48
strcspn 7-48
strerror 7-49
strlen 7-50
strncat 7-50
strncmp 7-51
strncpy 7-52
strpbrk 7-53
strrchr 7-53
strspn 7-54
strstr 7-54
strtok 7-56

string.h header 7-11
summary of functions 7-17

strlen function 7-50
strncat function 7-50
strncmp function 7-51
strncpy function 7-52
strpbrk function 7-53
strrchr function 7-53
strspn function 7-54
strstr function 7-54
strtod function 7-55
strtok function 7-56

strtol function 7-55

strtoul function 7-55

structure members 5-3

structure packing 6-8

structures
nesting of declarations

maximum number of 5-17

STYP_CPY flag 4-10

suppress
all output except error messages 2-13
warning messages 2-36

.switch section 6-3
allocating in memory 4-11

symbol table
creating labels 2-19

symbolic cross-reference 2-19

symbolic debugging 2-45
directives 2-13

symbols
block scope

maximum visible at any point 5-17
defined by the assembler 2-19
global

maximum number of 5-17
undefined by the assembler 2-19

.sysmem section 6-3
allocating in memory 4-11

__SYSMEM_SIZE 6-6
memory management 7-10

system constraints
__STACK_SIZE 6-5
__SYSMEM_SIZE 6-6

system initialization 6-31 to 6-36
autoinitialization 6-32
initialization tables 6-33
stack 6-32

system stack 6-4
See also stacks

T
tan function 7-56

tangent 7-56

tanh function 7-57

target processor 2-14

Index

Index-13

temporary files
code generator 2-43
optimizer 2-42
parser 2-39

tentative definition 5-15

.text section 6-3
allocating in memory 4-11

–tf option, shell 2-17

The C Programming Language 5-14 to 5-15

ti_sprintf function 7-58

time function 7-57

time functions 7-11, 7-14
asctime 7-21
clock 7-27
ctime 7-28
difftime 7-28
gmtime 7-32
localtime 7-35
mktime 7-40
strftime 7-49
summary of 7-19
ti_sprintf. See ti_sprintf function
time 7-57

time.h header 7-11, 7-14
summary of functions 7-19

__TIME__ 2-22

time_t type 7-11

tm structure 7-11
See also broken-down time

TMP environment variable 2-21

_TMS320C25, 2-22

TMS320C2x/C2xx/C5x C language, compatibility
with ANSI C language 5-14 to 5-15

_TMS320C2xx 2-22

_TMS320C50, 2-22

toascii function 7-58

tokens 7-56

tolower function 7-59

toupper function 7-59

trailing comma, enumerator list 5-15

trailing tokens, preprocessor directives 5-15

translation phases 2-25

trigonometric math function 7-9

trigraph sequences 2-25

type-checking, overlooking 2-17

U
––u library-build utility option 8-3
–u linker option 4-7
–u shell option 2-14
undefine predefined names, –au assembler

option 2-19
underflow 6-28
uninitialized sections 6-3

allocating in memory 4-11
.bss 6-3

unions, nesting of declarations, maximum number
of 5-17

V
––v library-build utility option 8-3
–v shell option 2-14
–v0 linker option 4-7
–v1 linker option 4-7
–v2 linker option 4-7
va_arg function 7-59
va_end function 7-59
va_start function 7-59
variable allocation 6-7
variable argument functions and macros 7-9

va_arg 7-59
va_end 7-59
va_start 7-59

variable argument macros, summary of 7-16
variable argument function 7-59
variables

register
global 5-10

volatile 3-10

W
–w linker option 4-7
#warn directive 2-26
warning messages 2-35, 5-14

suppressing 2-36
wildcards

use 2-15

X
–x linker option 4-7

Index

Index-14

Z
–z shell option 2-2, 2-4, 2-14

overriding with –c option 4-5
overriding with –n option 2-13

