
Application Report
SPRA482

Digital Signal Processing Solutions February 1999

Programmable Double Biquad Filter for
Tone Detection on Fixed Point DSPs

Digital Signal Processing Solutions

Abstract
The filters described here are user programmable double biquad filters for tone detection. The
filters are implemented on the Texas Instruments (TIä) TMS320C2xx digital signal processor
(DSP). The filter program includes an energy estimation stage. Examples of applications are
CPTD (call progress tone detection), fax tone detection, answer tone detection, etc. for telephony
or modem.

Contents

Introduction ..2

Filter Structure and Difference Equations ..2

Description of the Tone Detection Procedure ..3

Description of Filter Programs..5
initFilt.c ...5
Biquad.asm...5
Summary of Programmable Parameters...8

Interface Between High Level Programs and the Filter Program ...10

Processor Resources Used By Filter Programs...11

Reference ..11

Appendix A. Source Code...11
FILE: BIQUAD.ASM..11
FILE: INITFILT.C...18
FILE: FILTERS.H ..21

Appendix B. Glossary..23

Figures
Figure 1. Transposed Form Cascade Structure for N=4 ...2
Figure 2. Stages of the Tone Detection Operation..3
Figure 3. Example of Filter Design for Dial Tone Detector ..4
Figure 4. Flow Chart of the Decision Stage in the Detection Process...8
Figure 5. Cadence Check for Busy Tone Detection ..10

Tables
Table 1. Bit Masks For The Different Filters..7
Table 2. Scale Factors and Corresponding Right Shift of the Input Sample ...9
Table 3. Detection Thresholds and Corresponding Energy Fraction...9
Table 4. Processor Resources Required for the Tone Detection Module ...11

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 2

Introduction
The aim of this report is to describe tone detection by means of a programmable
passband filter in combination with an energy estimation stage. The filtering operation
described below allows the detection of single frequencies (with a tolerance band of ±x%)
or a frequency band (e.g., tones used in the telephone net: dial tone, busy tone, etc.). All
parameters related to the tone detection process are user programmable. These
parameters include filter coefficients, scale factors and detection thresholds. The
following sections describe the filter structure used for passband filtering , the different
steps involved in the detection process, the software carrying out these operations, the
interface between filter programs and application S/W layer and processor resources
required.

Filter Structure and Difference Equations
This section gives a theoretical overview of the IIR filter used in the tone detection
process. The filter structure implemented here is the so-called transposed form cascade
structure, which is shown in Figure 1.

Figure 1. Transposed Form Cascade Structure for N=4

x[n] +

z-1

z-1

+

+

y1[n]
+

z-1

z-1

+

+

d11[n]

y[n]

d12[n]

d21[n]

d22[n]

b10

b11

b12

-a11

-a12

b20

b21

b22

-a21

-a22

The corresponding difference equations are:

[] []

[] [] [] []

[] [] []

[]
é ù

[]

y x

y b y n d n

d n b y n a y n d n

d n b y n a y n

i
N

y n y n

i i i i

i i i i i i

i i i i i

N

0 0

0 1 1

1 1 1 1 2

2 2 1 2

1 2

1

1

1 2
1

2

=

= + -

= - + -

= -

=
+é

êê
ù

úú

=

-

-

-

+

, ,...,

()/

(equation 1)

x[n] denotes the filter input, yi[n] is the filter output after the filter stage i and y[n] the
global filter output. By means of a filter design tool using the filter structure shown in
Figure 1 we can determine the filter coefficients of a double biquad filter (N=4) for the
desired passband. An example of filter design will be given in the next section.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 3

Description of the Tone Detection Procedure
The tone detection procedure can be divided into different stages as shown in Figure 2.

Figure 2. Stages of the Tone Detection Operation

Scale x[n]

Energy estimation
based on

|y[n]|

Energy estimation
based on

|x[n]|

Decisionx[n]
y[n]

First the main filtering operation is carried out. This consists of bandpass filtering the
scaled input signal. This is followed by an energy estimation by means of exponential
filters based on the filtered signal and the global signal.

The exponential filters are given by:

[] ()

[] () []

FilterOut n y n FilterOut n

TotOut n x n TotOut n

= + - -

= + - -

a a

a a

[] []

[]

1 1

1 1
(equation 2)

The last stage consists of the decision whether a tone has been detected or not. The
detection criteria is specified as follows

[]FilterOut n Threshold TotOut n[] ´ ³ (equation 3)

The bandpass filter is a double biquad filter based on equation 1. The filter coefficients
have to be previously determined by means of a filter design tool. The bandpass filter is
characterized by seven parameters: the sampling frequency, the lower and upper
stopband frequencies and the lower and upper passband frequencies, as well as the
passband ripple and the stopband ripple.

An example of filter design is shown in Figure 3. The filter coefficients generated by the
design tool are stored in a C-header file, Filters.h . Before running the filter for the first
time, initialization routines contained in the file initFilt.c have to be executed. The
different programs and the interface C-Assembly language will be described in the
following sections.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 4

Figure 3. Example of Filter Design for Dial Tone Detector

Sampling frequency Fs=9.6kHz
Lower stopband frequency=365Hz
Lowerpassband frequency=425Hz
Upper passband frequency=455Hz
Upper stopband frequency=515Hz

Passband ripple=0.1
Stopband ripple=0.03

INFINITE IMPULSE RESPONSE (IIR),ELLIPTIC BANDPASS FILTER
UNQUANTIZED COEFFICIENTS, FILTER ORDER = 4
SAMPLING FREQUENCY = 9.600 KILOHERTZ

I A(I,1) A(I,2) B(I,0) B(I,1) B(I,2)

1 -1.903748 .990570 .144363 -.270309 .144363
2 -1.913757 991089 .141541 -.275604 .141541

/* DialFilter*/
/* Quantized coefficients: Q14 */
/* Coefficients for 1stbiquad */
#define Dial1_B0 2365
#define Dial1_B1 -4428
#define Dial1_B2 2365
#define Dial1_A1 31191
#define Dial1_A2 -16229

/* Coefficients for 2ndbiquad */
#define Dial2_B0 2319
#define Dial2_B1 -4515
#define Dial2_B2 2319
#define Dial2_A1 31356
#define Dial2_A2 -16238

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 5

Description of Filter Programs
This section deals with the filter programs and the parameters that have to be determined
before running the filter. All parameters that directly influence detection are
programmable. These parameters include the filter coefficients, the scale factor for the
input sample applied to the filter and the detection threshold. They can be found in the file
Filters.h , given in Appendix A. This file is used by the initialization routine initFilt.c ,
described below. As an example, a filter for dial and busy tone detection is implemented.

initFilt.c

This routine initializes the filter variables with the fixed parameter values. All variable
names are chosen according to the following convention: FilterName Variable.

Example: filter name=Dial, variable=Threshold -> variable name=DialThreshold.

Each filter has the following variables:
---Filter[14]: Array of fourteen elements for filter coefficients and delays
---Shift: Scale factor for input sample
---Threshold: Factor used in the decision stage (cf. equation 3)
---In: Input to the exponential filter after bandpass filtering (|y[n]|)
---Out: Output of the exponential filter applied to decision stage
where --- stands for the filter name.

The elements of ---Filter[14] for a double biquad as shown in Figure 1 are:
---Filter[0]=d11

---Filter[1]=d12

---Filter[2]=d21

---Filter[3]=d22

---Filter[4]=b10

---Filter[5]=b11

---Filter[6]=-a11

---Filter[7]=-a12

---Filter[8]=b12

---Filter[9]=b21

---Filter[10]=b22

---Filter[11]=-a21

---Filter[12]=-a22

---Filter[13]=b22

The delays d11 through d22 are initialized to zero. The elements ---Filter[4] through ---
Filter[13] are initialized with the filter coefficients specified in Filters.h . Likewise ---Shift
and ---Threshold are set to the specified parameter values. The input and the output of
the exponential filters are initialized to zero.

Biquad.asm

The file biquad.asm contains different stages of the filtering operation described in
Figure 2. Several filters may be implemented in parallel. Currently, examples of dial tone
and fax tone detection are implemented. The routine that calls the filters is named CPTD.
This routine is called in the sample interrupt at Fs (sampling frequency), which implies
that the filter design has been previously carried out with the same sampling frequency.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 6

In the tone detection process, the absolute value of the input sample is first computed for
the estimation of the global energy. In case of M (1<M£4) filters being implemented in
parallel, the exponential filter is based on the sum of M+1 absolute values of the input
samples in order to reduce the computational load (MIPS). This means that the input of
exponential filter for the global energy is now given by:

[] []x n x iM
i

M

+

=

= å1
0

(equation 4)

After that, frequency filtering is carried out for each filter. Prior to the filtering operation,
the input sample has to be scaled and the pointers to the filter coefficients and delays
have to be set up. This is done by means of a macro Filter with the argument Name,
where Name may be (for example) Dial. First the input sample is right shifted by the
amount 16-NameShift, i.e. a parameter value of 16 means no shift, 15 means a right shift
by 1, 14 means right shift by 2 and so on. After scaling, AR0 is set to point to the first filter
delay (NameFilter[0]) and AR1 to the first filter coefficient (NameFilter[4]). The PREG
output shift is set to 1 (spm 1) and the sign extension mode is set (ssxm). Before the call
of the basic filtering routine BIQUAD , the current ARP has to be set to AR1 (pointer to
filter coefficients). BIQUAD performs the cascaded IIR filter according to equation 1
(N=4). This routine is called for each filter. For the fixed-point computation all filter
coefficients are in Q14 format, the input sample and filter delays are assumed to be in
Q15 format. The output of each filter is the input of the corresponding exponential filter for
energy estimation in the passband.

These inputs of the exponential filters, after frequency filtering, are given by:

[] []y n y iM
i

M

+

=

= å1
0

(equation 5)

As now only one exponential filter is called once every M samples, the complete routine
uses about (M-1)*50 cycles less than the computation of all exponential filters in parallel
(MIPS and memory occupation are given in more detail later).

Finally the exponential filters are computed and a decision is made whether there is
enough energy in the specified passband or not. For the energy estimation in the different
passbands a macro called TestOut with the argument Name (the same as for the macro
Filter) is used.

The output of the exponential filter is calculated as specified by equation 2 with a=1/64.
Then the output is compared to the output of the exponential filter for the global input:

()NameThreshold NameOut TotOut´ ³ ´ Þ16 Detection (equation 6)

The global filter output is multiplied by 16 to allow more precision for the detection
threshold. For instance, if the energy in the passband should be more than half of the
global energy for detection, then the NameThreshold must be set to 32. Increasing the
threshold means increasing the passband for detection.

In case of detection, a bit is set in the variable CptdFilter for each passband. Table 1
gives an example of bit masks for four different filters.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 7

Table 1. Bit Masks For The Different Filters

Name Value of CptdFilter

Filter1 1

Filter2 2

Filter3 4

Filter4 8

The variable CptdFilter can be used in a program on the upper level for a timing check.
The interface between C-programs and the filter program in assembly language will be
described in the next section.

To enhance tone detection some more tests are carried out. The energy comparison is
not executed if the global energy does not exceed a minimum threshold specified by the
variable MinEng . This threshold sets the absolute value for the minimum input signal
level that will be taken into account.

Another point is the fast detection of energy transitions such as off/on and on/off
transitions for the busy tone. Due to the group delay of the passband filters, the
comparison of energies (equation 6) may still result in detection even if there is no signal
at the input any more. This is why an adaptive threshold test is carried out to detect
energy transitions on/off. In fact if the output of the exponential filter for global energy
estimation falls below the half of the maximum value determined during a detection
phase then the decision result is non-detection:

TotOut TotMax£ ´ Þ05. No Detection (equation 7)

The different steps involved in the detection phase are summarized in the flow chart
below. The decision stage is executed separately for each filter.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 8

Figure 4. Flow Chart of the Decision Stage in the Detection Process

Decision Stage

Global energy >
min. thres.

Global energy > 0.5*
max. global energy

Inband energy *
Threshold >
global energy

Global energy >
max. energy

Max. = global energy

Set bit mask in
variables Detect and

CptdFilter

Reset bit mask in
variables Detect and

CptdFilter

Reset filter delays,
exponential filter output

and max. energy

Return to calling
function

Bit mask set in
variable Detect ?

YN

YN

Y

N

N

Y

Y

N

Summary of Programmable Parameters

The parameters which are user programmable are the filter coefficients, scale factor,
detection threshold and minimum energy threshold.

Filter Coefficients

The filter coefficients have to be generated by a design tool based on the cascade
structure shown in Figure 1 (filter order N=4). The next step consists of quantizing the
filter coefficients to obtain Q14 format. This means that all coefficients have to be
multiplied by 214. In addition to that, all coefficients ai1, ai2 have to be multiplied by –1.
Then these values have to be defined in the file Filters.h . The steps to generate the
quantized filter coefficients are illustrated in . Each filter contains 14 elements, four filter
delays and ten filter coefficients. Initialization is carried out as described previously.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 9

Scale Factor

The scale factor specifies the shift that is applied to the input sample before bandpass
filtering. This shift has to be set in the file Filters.h by means of a constant called
NameScale. The scale factor may be set to a value of 16 or less. 16-Scale Factor
specifies the right shift applied to the input sample before the frequency filtering stage.
Possible values for the scale factor and the corresponding right shift are given in Table 2.

Table 2. Scale Factors and Corresponding Right Shift of the Input Sample

Scale Factor 16 15 14 13 12 11 10 9 8 7 6 5 4

right shift 0 1 2 3 4 5 6 7 8 9 10 11 12

Common values for the scale factor are 14, 15 or 16, depending on the amplification of
the input stage. It is important not to saturate the frequency or exponential filters.

Detection Threshold

The detection threshold specifies the minimum amount of energy that has to be present
in the passband of the corresponding filter in comparison to the global energy. In other
words the inband energy must be greater than a specified fraction of the global energy,
typically:

InbandEnergy GlobalEnergy³ ´05. (equation 8)

where the energy fraction equals 0.5. The comparison carried out after the exponential
filters is given by equation 6. The minimum fraction of energy for detection is then given
by 16 divided by the detection threshold. Different values for the detection threshold and
the corresponding energy fraction are given in Table 3.

Table 3. Detection Thresholds and Corresponding Energy Fraction

Detection Threshold 16 24 32 40 48

Energy Fraction 1 2/3 ½ 2/5
1/3

The smaller the energy fraction required for detection the larger the passband of the
corresponding filter. A common value for the detection threshold is 32.

Minimum Energy Threshold

The minimum energy threshold specifies the minimum absolute signal level that may be
detected. The minimum signal level typically takes values between –43 dBm and
–48 dBm. The minimum energy threshold is hardware dependent, as the signal level at
the input of the A/D converter is determined by an analog amplification stage.
Consequently it has to be determined experimentally. In order to set the minimum energy
threshold, the variable TotOut has to be monitored while injecting a signal at the input.
TotOut contains the output of the exponential filter for the global energy that will be
compared to the minimum energy threshold during the decision stage. So if a continuous
signal of the minimum signal level that shall be detected is injected at the input, TotOut
will take the value that equals the minimum energy threshold. The value obtained in this
way can then be set in Filters.h and copied to the variable MinEng during the
initialization phase.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 10

Interface Between High Level Programs and the Filter
Program

In this section the interface between a C program executing the main task and the filter
program executed in the sample interrupt will be described.

The detection result of the tone detection procedure can be used by high level application
S/W in order to carry out a timing check. For this purpose two variables are needed,
which have to be referenced as external variables in the C program: CptdFilter and
Tim0 . CptdFilter contains the bit mask of the corresponding filter in case of detection
(Table 3) and zero in case of no detection. Tim0 is a timer that is incremented in the
sample interrupt. The maximum value is 7fff hex, which corresponds to 4 seconds at
8 kHz.

All filters used in the program have to be initialized with the parameter values specified in
the file Filters.h . This is done by the function Init---() that can be found in the file initFilt.c
(where --- stands for the filter name). The routine InitTot() has to be called in order to
initialize the exponential filter for global energy estimation.

An example of a C program which carries out the cadence check of the busy tone is
given in Figure 5. The program main() calls a function for dialing which may include dial
tone detection. After that the routine CadenceCheck is called, which checks the
presence of a tone in the passband of the filter Dial (bit mask set in CptdFilter) and then
carries out a timing check concerning the on/off sequence of the signal as shown in
Figure 5:

Figure 5. Cadence Check for Busy Tone Detection

Busy tone on:
Min. and max. timing

Busy tone off:
Min. and max. timing

Tolerance concerning the timing is taken into account in the program by the constant
values BusyMin and BusyMax which correspond to nominal timing –x% and nominal
timing +x%, respectively.

The function CadenceCheck indicates busy tone detection by a return value of 1.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 11

Processor Resources Used By Filter Programs
Table 4 summarizes the memory occupation (RAM and ROM) as well as computational
load (MIPS) utilized by the filter functions contained in the file biquad.asm .

Table 4. Processor Resources Required for the Tone Detection Module

RAM ROM MIPS

80 words 500 words (biquad.asm)

300 words (initFilt.c)

4.5 (at 9.6 kHz)

3.8 (at 8 kHz)

RAM space is reserved for all filter variables in the file biquad.asm . The section
containing these variables is called Filter . In the linker command file this section has to
be put in a RAM block so as to be contained within one memory page (128 words).

In combination with the V22bis modem on the TMS320C2xx all filters are executed at a
sampling rate of 8 kHz.

Reference
DFDP3/plus Digital Filter Design Package Instruction Manual; Atlanta Signal Processing
Inc., 1991

Appendix A. Source Code

FILE: BIQUAD.ASM
**
** File: BIQUAD.ASM **
** **
** Author: Katrin Matthes **
** **
** Description: **
** Implementation of programmable **
** double biquad filter with **
** detection stage (exponential **
** filters) **
**

NUMFILTER .set 2; example of implementation:
; Dial/Busy tone and fax tone detector

.def CPTD

.def TMP

.def _CptdFilter

.ref FromAD,ForDA

.def _TotIn, _TotOut

.def _MinEng

.def _FiltFunc

.def _InitFiltFunc
 .def _DialShift,_DialIn,_DialOut,_DialThreshold,_DialFilter

.if NUMFILTER >=2

.def _FaxShift,_FaxIn,_FaxOut,_FaxThreshold,_FaxFilter

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 12

.elseif NUMFILTER >=3
 .def _Filt3Shift,_Filt3In,_Filt3Out,_Filt3Threshold,_Filt3Filter

.elseif NUMFILTER >=4
 .def _Filt4Shift,_Filt4In,_Filt4Out,_Filt4Threshold,_Filt4Filter

.endif

.mmregs

;--------------------------------
;
; BIQUAD
; INDEXED
; y(n)=B0x(n)+d1(n-1)
; d1(n)=B1x(n)-A1y(n)+d2(n-1)
; d2(n)=B2x(n)-A2y(n)
;
; INPUT:
; TMP contains scaledinput sample
; ARP -> AR1 AR0 -> DNM1
; AR1 -> B0 PM=1 (<<1)
; SSXM
; OUTPUT
; ARP -> AR1 AR0 -> DNM1
; AR1 -> B0
; MODIFIED
; AR0, AR1
;
; 42 cycles
;----------------------------------
; DATA ORGANIZATION:
;D1NM1 .BSS ; AR0
;D2NM1 .BSS
;B0 .BSS ; AR1
;B1 .BSS
;A1 .BSS
;A2 .BSS
;B2 .BSS
BIQUAD
; all filter coefficients Q14
;*
;* SECOND-ORDER FILTER SECTION
;*

ldp #TMP
LT TMP ;GET SCALED INPUT
MPY *+,ar0 ;P = B0* INPUT
lac *+,15,ar1 ;AC= Z-1
MPYA *+,ar0 ;AC= Z-1 + (B0* INPUT)

; ;P = B1 * INPUT
ldp #Output
SACH Output,1 ;Save in OUTPUT
LTP Output ;AC= B1 * INPUT
ADD *-,15,ar1 ;AC= Z-2 + (B1* INPUT)
MPY *+ ;P = A1* OUTPUT
APAC
MPY *+,ar0 ;AC= Z-2 + (B1*INPUT)+(A1*OUTPUT)

; ;P = A2 * OUTPUT
SACH *+,1,ar1 ;Save in Z-1
Ldp #TMP

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 13

LTP TMP ;AC= A2 * OUTPUT
MPY *+,ar0 ;P = B2* INPUT
APAC ;AC= (B2 *INPUT)+(A2 * OUTPUT)

 SACH *+,1,ar1 ;Save in Z-2

Ldp #Output
lac Output
ldp #TMP
sacl TMP

LT TMP ;GET SCALED INPUT
MPY *+,ar0 ;P = B0* INPUT
Lac *+,15,ar1 ;AC= Z-1
MPYA *+,ar0 ;AC= Z-1 +(B0* INPUT)

; ;P = B1* INPUT
ldp #Output
SACH Output,1 ;Save in OUTPUT
LTP Output ;AC= B1 * INPUT
ADD *-,15,ar1 ;AC= Z-2 +(B1* INPUT)
MPY *+ ;P = A1 * OUTPUT
APAC
MPY *+,ar0 ;AC= Z-2 +(B1*INPUT)+(A1*OUTPUT)

; ;P = A2 * OUTPUT
SACH *+,1,ar1 ;Save in Z-1
ldp #TMP
LTP TMP ;AC= A2 * OUTPUT
MPY *+,ar0 ;P = B2* INPUT
APAC ;AC= (B2 *INPUT) + (A2 * OUTPUT)
SACH *+,1,ar1 ;Save in Z-2
ret

;------------------
;
; macro for a filter
; 25 cycles
;
;-----------------
Filter .macro Name

.NEWBLOCK
ldp #_:Name:Shift
lt _:Name:Shift
LDPK #FromAD
LACT FromAD ;load input sample with specified

;shift
LDPK #TMP

; MULTIPLY INPUT BY GAIN
SACH TMP

; SET POINTERS
LAR AR0,#_:Name:Filter
spm 1
MAR *,AR0 ; AR0 -> d1(n-1)
LARK AR1,#4
MAR *,AR1
MAR *0+,AR1 ; AR1 -> B0

CALL BIQUAD

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 14

ldp #Output
lac Output ; accumulate absolute value

; of 5 input samples
abs

; ldp #_:Name:In
add _:Name:In
sacl _:Name:In
sub #MaxVal
blz $1
lac #MaxVal
sacl _:Name:In

$1
.endm

;------------------
;
; CPTD FILTER
; 85 cycles per filter + 40 cycles
; = 4 * 85 + 40 (max) = 380
;------------------
CPTD

SPM 1
sovm

; DIAL TONE
ldp #FromAD
lac FromAD ; accumulate absolute value

; of 5 input samples
abs
ldp #_TotIn
add _TotIn
sacl _TotIn
sub #MaxVal
blz no_clip
lac #MaxVal
sacl _TotIn

no_clip
Filter Dial
.if NUMFILTER >= 2
Filter Fax
.elseif NUMFILTER >= 3
Filter Filt4
.elseif NUMFILTER >= 4
Filter Filt3
.endif

ldp #_FiltFunc
lac _FiltFunc
cala

rovm
ret

;-----------------
; Inits FiltFunc
; called by InitDial()
;-----------------

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 15

_InitFiltFunc
ldp #_FiltFunc
lac #TotExp
sacl _FiltFunc
zac
sacl TotMax
sacl Detect
ret

;---
; Macro for calculation of the exponential filter based
; on the sum of 5 ABS(input sample)
; Comparison of the global output to the filtered (biquad)
; output
; if (global <=factor * filtered) then DETECTION
;
; This comparison is not carried out if
; 1) the minimum global energy is below the threshold
; MinEng
; 2) the energy after filtering is below the noise
; threshold of the filter
; 3) the global energy decreases to 0.5* Max, indicating a
; transition on/off
;
; 40 cycles
;---
TestOut .macro Name

.newblock
ldp #_:Name:Out
zalr _:Name:Out ; ROUNDING
add _:Name:In,16-6 ; 1/64
SUB _:Name:Out,16-6
SACH _:Name:Out

Lac _TotOut ; check min. thres.
Sub _MinEng
blez $4

lac _TotOut,1 ; TotOut > 0.5*TotMax ?
sub TotMax ; detection: ON/OFF transition
blez $3
lac _:Name:Out ; noise due to filter
sub #:Name:Min
blez $4

lac _TotOut,4
; Totout<<4- (factor * FilterOut)<<1

lt _:Name:Threshold ; Detection test
mpy _:Name:Out
spac
BLZ $1

; UNDER THRESHOLD
$3

lac Detect
and #:Name:Mask
bz $4
lar AR0,#_:Name:Filter

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 16

mar *,ar0
zac
sacl *+ ; clear D11(N-1)
sacl *+ ; clear D12(N-1)
sacl *+ ; clear D21(N-1)
sacl * ; clear D22(N-1)
sacl _:Name:Out
sacl TotMax

$4
LALK #~:Name:Mask
and Detect
sacl Detect
ldp #_CptdFilter
AND _CptdFilter
B $2

; OVER THRESHOLD
$1

lac _TotOut
sub TotMax
blez $5
lac _TotOut ; look for maximum
sacl TotMax

$5
LALK #:Name:Mask
or Detect
sacl Detect
OR _CptdFilter

$2
SACL _CptdFilter
zac
sacl _:Name:In

.endm

;-------------------
; exponential filter for global signal
;-------------------
TotExp

lac #DialExp
sacl _FiltFunc
zalr _TotOut ; ROUNDING
ldp #_TotIn
add _TotIn,16-6 ; 1/64
LDPK #_TotOut
SUB _TotOut,16-6
SACH _TotOut
Ldp #_TotIn
zac
sacl _TotIn
ret

;-------------------
; exponential filter for signal after Dialfilter
;-------------------
DialExp

.if NUMFILTER >= 2
lac #FaxExp
.else

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 17

lac #TotExp
.endif
sacl _FiltFunc
TestOut Dial
ret

;-------------------
; exponential filter for signal after Faxfilter
;-------------------

.if NUMFILTER >=2
FaxExp

.if NUMFILTER >= 3
lac #Filt3Exp
.else
lac #TotExp
.endif
sacl _FiltFunc
TestOut Fax
ret
.endif

;-------------------
; exponential filter for signal after Filt3 filter
;-------------------

.if NUMFILTER >=3
Filt3Exp

.if NUMFILTER >=4
lac #Filt4Exp
.else
lac #TotExp
.endif
sacl _FiltFunc
TestOut Filt3
ret
.endif

;-------------------
; exponential filter for signal after Filt4 filter
;-------------------

.if NUMFILTER >=4
Filt4Exp

lac #TotExp
sacl _FiltFunc
TestOut Filt4
ret
.endif

_CptdFilter .usect "Filter",1
Output .usect "Filter",1
_TotIn .usect "Filter",1
_TotOut .usect "Filter",1
_DialFilter .usect "Filter",14
_DialIn .usect "Filter",1
_DialOut .usect "Filter",1
_DialShift .usect "Filter",1
_DialThreshold .usect "Filter",1

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 18

.if NUMFILTER >=2
_FaxFilter .usect "Filter",14
_FaxIn .usect "Filter",1
_FaxOut .usect "Filter",1
_FaxShift .usect "Filter",1
_FaxThreshold .usect "Filter",1

.elseif NUMFILTER >=3
_Filt3Filter .usect "Filter",14
_Filt3In .usect "Filter",1
_Filt3Out .usect "Filter",1
_Filt3Shift .usect "Filter",1
_Filt3Threshold .usect "Filter",1

.elseif NUMFILTER >=4
_Filt4Filter .usect "Filter",14
_Filt4In .usect "Filter",1
_Filt4Out .usect "Filter",1
_Filt4Shift .usect "Filter",1
_Filt4Threshold .usect "Filter",1

.endif
_MinEng .usect "Filter",1
_FiltFunc .usect "Filter",1
Detect .usect "Filter",1
TotMax .usect "Filter",1
TMP .usect "Filter",1

MaxVal .set 7fffh
DialMin .set 90h
FaxMin .set 5ah
Filt3Min .set 55h
Filt4Min .set 55h
DialMask .set 0001h
FaxMask .set 0002h
Filt3Mask .set 0004h
Filt4Mask .set 0008h

FILE: INITFILT.C
/***/
/* File: INITFILT.C */
/* */
/* Author: Katrin Matthes */
/* */
/*Routine initializes all CPTD Filters for double biquad */
/* Memory Organization: */
/* NameFilter: */
/* D11(N-1) */
/* D12(N-1) */
/* D21(N-1) */
/* D22(N-1) */
/* B10 */
/* B11 */
/* A11 */
/* A12 */
/* B12 */
/* B20 */
/* B21 */

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 19

/* B22 */
/* A21 */
/* A22 */
/***/

#include "Filters.h"

extern int DialFilter[14];
extern int DialThreshold;
extern int DialIn, DialOut, TotIn, TotOut, DialShift;
#if NUMFILTER >=2
extern int FaxFilter[14];
extern int FaxThreshold;
extern int FaxIn, FaxOut, FaxShift;
#elif NUMFILTER >=3
extern int Filt3Filter[14];
extern int Filt3Threshold;
extern int Filt3In, Filt3Out, Filt3Shift;
#elif NUMFILTER >=4
extern int Filt4Filter[14];
extern int Filt4Threshold;
extern int Filt4In, Filt4Out, Filt4Shift;
#endif

extern int MinEng;
int InitFiltFunc(void);

void InitTot(void)
{

MinEng=MinThres;
TotIn=0;
TotOut=0;
InitFiltFunc();

}

void InitDial(void)
{

DialFilter[0]=0;
DialFilter[1]=0;
DialFilter[2]=0;
DialFilter[3]=0;
DialFilter[4]=Dial1_B0;
DialFilter[5]=Dial1_B1;
DialFilter[6]=Dial1_A1;
DialFilter[7]=Dial1_A2;
DialFilter[8]=Dial1_B2;
DialFilter[9]=Dial2_B0;
DialFilter[10]=Dial2_B1;
DialFilter[11]=Dial2_A1;
DialFilter[12]=Dial2_A2;
DialFilter[13]=Dial2_B2;

DialThreshold=DialThres;
DialIn=0;
DialOut=0;
DialShift=DialScale;

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 20

}

#if NUMFILTER >= 2

void InitFax (void)
{

FaxFilter[0]=0;
FaxFilter[1]=0;
FaxFilter[2]=0;
FaxFilter[3]=0;
FaxFilter[4]=Fax1_B0;
FaxFilter[5]=Fax1_B1;
FaxFilter[6]=Fax1_A1;
FaxFilter[7]=Fax1_A2;
FaxFilter[8]=Fax1_B2;
FaxFilter[9]=Fax2_B0;
FaxFilter[10]=Fax2_B1;
FaxFilter[11]=Fax2_A1;
FaxFilter[12]=Fax2_A2;
FaxFilter[13]=Fax2_B2;

FaxThreshold=FaxThres;
FaxIn=0;
FaxOut=0;
FaxShift=FaxScale;

}

#elif NUMFILTER >= 3

void InitFilt3 (void)
{

Filt3Filter[0]=0;
Filt3Filter[1]=0;
Filt3Filter[2]=0;
Filt3Filter[3]=0;
Filt3Filter[4]=Filt3_1_B0;
Filt3Filter[5]=Filt3_1_B1;
Filt3Filter[6]=Filt3_1_A1;
Filt3Filter[7]=Filt3_1_A2;
Filt3Filter[8]=Filt3_1_B2;
Filt3Filter[9]=Filt3_2_B0;
Filt3Filter[10]=Filt3_2_B1;
Filt3Filter[11]=Filt3_2_A1;
Filt3Filter[12]=Filt3_2_A2;
Filt3Filter[13]=Filt3_2_B2;

Filt3Threshold=Filt3Thres;
Filt3In=0;
Filt3Out=0;
Filt3Shift=Filt3Scale;

}

#elif NUMFILTER >= 4

void InitFilt4 (void)
{

Filt4Filter[0]=0;
Filt4Filter[1]=0;

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 21

Filt4Filter[2]=0;
Filt4Filter[3]=0;
Filt4Filter[4]=Filt4_1_B0;
Filt4Filter[5]=Filt4_1_B1;
Filt4Filter[6]=Filt4_1_A1;
Filt4Filter[7]=Filt4_1_A2;
Filt4Filter[8]=Filt4_1_B2;
Filt4Filter[9]=Filt4_2_B0;
Filt4Filter[10]=Filt4_2_B1;
Filt4Filter[11]=Filt4_2_A1;
Filt4Filter[12]=Filt4_2_A2;
Filt4Filter[13]=Filt4_2_B2;

Filt4Threshold=Filt4Thres;
Filt4In=0;
Filt4Out=0;
Filt4Shift=Filt4Scale;

}

#endif

FILE: FILTERS.H
/*************************************/
/* File: FILTERS.H */
/* Author: Katrin Matthes */
/* */
/* Include file containing */
/* filter coefficients for */
/* double biquad filters */
/*************************************/

#define NUMFILTER 2
/* define number of filters executed in parallel */

/* Dial Filter*/
/* All coefficients Q14 */
/* Coefficients for 1st biquad */
#define Dial1_B0 539
#define Dial1_B1 -914
#define Dial1_B2 539
#define Dial1_A1 30507
#define Dial1_A2 -16092
/* Coefficients for 2nd biquad */
#define Dial2_B0 4602
#define Dial2_B1 -9029
#define Dial2_B2 4602
#define Dial2_A1 30881
#define Dial2_A2 16118

#define DialScale 15 /*input sample >> 1*/

/* threshold for dial tone detection */
#define DialThres 0x28 /* 0x31 */

/* Fax Filter 1100 Hz */

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 22

/* Coefficients for 1st biquad */
#define Fax1_B0 1209
#define Fax1_B1 -999
#define Fax1_B2 1209
#define Fax1_A1 20049
#define Fax1_A2 -15773
/* Coefficients for 2nd biquad */
#define Fax2_B0 4616
#define Fax2_B1 -7426
#define Fax2_B2 4616
#define Fax2_A1 21726
#define Fax2_A2 -15806

#define FaxScale 15 /* input sample >>1 */

/* threshold for answer tone detection */
#define FaxThres 0x25 /*0x2a*/

/* Filt3 Filter xxx Hz */
/* Coefficients for 1st biquad */
#define Filt3_1_B0 0
#define Filt3_1_B1 0
#define Filt3_1_B2 0
#define Filt3_1_A1 0
#define Filt3_1_A2 0
/* Coefficients for 2nd biquad */
#define Filt3_2_B0 0
#define Filt3_2_B1 0
#define Filt3_2_B2 0
#define Filt3_2_A1 0
#define Filt3_2_A2 0

#define Filt3Scale 15 /* input sample >>1 */

/* threshold for Filt3 detection */
#define Filt3Thres 0x18 /*0x38*/

/* Filt4 Filter xxx Hz */
/* Coefficients for 1st biquad */
#define Filt4_1_B0 0
#define Filt4_1_B1 0
#define Filt4_1_B2 0
#define Filt4_1_A1 0
#define Filt4_1_A2 0
/* Coefficients for 2nd biquad */
#define Filt4_2_B0 0
#define Filt4_2_B1 0
#define Filt4_2_B2 0
#define Filt4_2_A1 0
#define Filt4_2_A2 0

#define Filt4Scale 15 /* input sample >>1 */

/* threshold for Filt4 detection */
#define Filt4Thres 0x20 /*0x38*/

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 23

#define MinThres 0x110
/* minimum detection threshold */

/* min. and max. timing for cadence check: busy tone */
#define BusyMin 42
/* value * 10ms, BusyMax+20ms to account for filter delay*/
#define BusyMax 57

/* Masks for the different Filters*/
#define DialMask 0x0001
#define FaxMask 0x0002
#define Filt3Mask 0x0004
#define Filt4Mask 0x0008

/* initialization routines for the implemented filters */
void InitTot(void);
void InitDial(void);
#if NUMFILTER >=2
void InitFax(void);
#elif NUMFILTER >=3
void InitFilt3(void);
#elif NUMFILTER >=4
void InitFilt4(void);
#endif

Appendix B. Glossary
CPTD Call Progress Tone Detection

 IIR Infinite Impulse Response

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 24

TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3457-0972
Domestic 0120-81-0026

Fax
International +81-3-3457-1259
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Application Report
SPRA482

Programmable Double Biquad Filter for Tone Detection on Fixed Point DSPs 25

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright Ó 1999 Texas Instruments Incorporated

