TMS320 DSP DESIGNER'S NOTEBOOK

TMS320C2x/C5x EVM AIC Initialization and Configuration

APPLICATION BRIEF: SPRA221

Thomas G. Horner, P.E. Digital Signal Processing Products Semiconductor Group

Texas Instruments March 1993

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents

Abstract7	
Design Problem 8	;
Solution 8	
Figures	
Figure 1. Timing Diagrams10)
Tables	
Table 1. Primary Data Word Commands8	;
Table 2. Secondary Data Word Commands8	;
Examples	
Example 1. TMS320C26 Program 11	
Example 2. TMS320C50 Program	

TMS320C2x/C5x EVM AIC Initialization and Configuration

Abstract

Texas Instruments' TMS320C2x and TMS320C5x Evaluation Modules (EVMs) come with TMS320C26/TMS320C51 DSPs interfaced by the serial port to a TLC32046 Wide-Band Analog Interface Circuit (AIC) with the AIC providing the frame sync pulses and shift clocks. The AIC is a configurable device that uses the serial port to download commands from the DSP. The communications protocol uses an interleaving technique that will not disrupt normal output of the DAC.

This document discusses the issues involved in initializing a TMS320C2x/TMS320C5x fixed-point EVM. Lengthy code listings for the TMS320C26/TMS320C51 are included.

Design Problem

What are the issues in initializing a TMS320C2x/TMS320C5x fixed-point EVMs?

Solution

Texas Instruments' TMS320C2x and TMS320C5x EVMs come with TMS320C26/TMS320C51 DSPs interfaced by the serial port to a TLC32046 Wide-Band Analog Interface Circuit (AIC) with the AIC providing the frame sync pulses and shift clocks. The AIC is a configurable device that uses the serial port to download commands from the DSP. The communications protocol uses an interleaving technique that will not disrupt normal output of the DAC.

There are primary and secondary transmit data word formats. The primary data word is the normal data output format and the secondary data word carries configuration data to the AIC. Both data word formats use bits 0 – 1 to send commands to the AIC, while bits 2 – 16 are for either the data word (Primary) or configuration word (Secondary). A list of the functions is shown in Table 1 (Primary) and Table 2 (Secondary):

Table 1. Primary Data Word Commands

D1	D0	Function
0	0	Normal Output
0	1	Increase Sample Rate
1	0	Decrease Sample Rate
1	1	Initiate Secondary Communications

Table 2. Secondary Data Word Commands

D1	D0	Function
0	0	Update TA/RA Registers
0	1	Update TA'/RA' Registers
1	0	Update TB/RB Registers
1	1	Update Control Register

The timing between the Primary and Secondary data words is fairly tight for the TMS320C26. This design note is intended to clarify the technique required when reconfiguring the AIC using either the TMS320C2x or TMS320C5x EVMs.

The DSP and AIC use separate oscillators to generate their respective Master Clocks which introduces an additional constraint in the timing between the Primary and Secondary data words due to the potential phase offset between the two CLKs.

TMS320C26 Master Clock = 40.000 MHz TMS320C26 Instruction Cycle = 10 MHz

TMS320C50 Master Clock = 20.000 MHz TMS320C50 Instruction Cycle = 20 MHz

AIC Master Clock = 10.368 MHz AIC Shift Clock = 2.592 MHz

> = 3.86 TMS320C26 Instruction Cycles = 7.72 TMS320C50 Instruction Cycles

The maximum AIC conversion frequency is 25 kHz, which gives a minimum period of 40 µsec between data samples. When the Primary data word command bits are set to 11b, the Secondary transmit frame sync pulse goes LOW FOUR AIC SHIFT CLOCKS after the end of the Primary transmission. This timing allows the secondary command communications to occur between normal data communications to the DAC on the AIC. To correctly reconfigure the AIC, the secondary command word must be written to the DSP's Serial Port Transmit Register (DXR) before the secondary frame sync pulse goes low. If the TRANSMIT interrupt is used to control writes to the DSP DXR during AIC configuration, the XINT signal occurs approximately 15 (TMS320C26) or 154 (TMS320C50) instruction cycles before the FSX goes LOW to signal start of transmission (best case - assuming that the DSP and AIC Master Clocks are in phase). If the Master Clocks are not in phase (high probability), then there will be 2 - 3 fewer instruction cycles available before FSX goes low again. The diagram in Figure 1 shows the timing between the Primary and Secondary AIC transmissions and the TMS320C26 and TMS320C50 XINT signal. Note that the TMS320C26 XINT occurs after all 16 bits have been shifted out of the transmit shift register (SXR), while in the TMS320C50, XINT occurs after the contents of the data register (DXR) are loaded into the SXR at the beginning of the transmission. This difference in serial port operation makes the timing on the TMS320C50 much easier to meet.

Software Examples:

The following software shows an example of how to reconfigure the AIC by writing to the AIC control register. This technique can be used for any secondary communications to the AIC. There is a latency of approximately 10/17 instruction cycles (TMS320C26/TMS320C51) from XINT to writing to the DXR.

Example 1. TMS320C26 Program

```
TMS320C26 PROGRAM
                                                                                                                                                                          Offefh ; Define constants for AIC
AIC_RESET_LO
                                                                                                                 .set
                                                                                                                  .set
AIC_RESET_HI
                                                                                                                                                                                     010h
AIC_SETUP
                                                                                                                                                                                     03h
                                                                                                                    .set
AIC_CONTROL
                                                                                                                       .set
                                                                                                                                                                                     0277h
 ; Primary Transmit Data Word Format
                                         d12
                                                  |d10 d6 d2
                           d14 | d8 | d4 | d0
                            v v v v v v v v
                           xxxxxxxxxxxxx11b
                                                                                                                                                                        Signals secondary Xmit mode
  ; Secondary Transmit Data Word Format
                                                                                                                                                                                 Secondary Command Syntax
                                                                                                                                                                                                    (d1/d0 indicate mode)
                                            TA RA
                           xx10010xx1001000b
                                                                                                                                                                                TA and RA counter setup example
                                                                                                                                                                                                    valid range: 4-63
                                 | TB | RB |
                           x100100x10010010b
                                                                                                                                                                                TB and RB counter setup example
                                                                                                                                                                                                      valid range: 15-127
                                                                        ctrl |
                            xxxxxx1010110111b
                                                                                                                                                                         Control word setup example
                                                                                      ||||| (0/1)
                                                                                      \left| \begin{array}{c} \\ \end{array} \right| = \left( \begin{array}{c} \\ \end{array} \right) = \left( \begin{array}
                                                                                                    | | \rangle d3 = (out/in) loopback function
                                                                                                                    \ d4 = (no/yes) Aux input pins
                                                                                                                        ____ d5 = (no/yes) RX & TX synchronous
                                                                                                                                     _{---} d7/d6 = Gain 0/0 = 1
                                                                                                                                                                                                                                                                0/1 = 2
                                                                                                                                                                                                                                                                1/0 = 4
                                                                                                                                                                                                                                                                1/1 = 1
                                                                                                                                                                   d8 = don't care
                                                                                                                                                               d9 = (out/in) second order sin x/x filter
                                                MEMORY DEFINITION
                                                                                                                                                                                                                              ; Reserve RAM for operands
                              .bss
                                                                                                                        AIC_CNTL, 1 ; AIC control temp memory
```


; —			
; :	INTERRUPT	VECTORS	
,	.sect	"ext_vecs"	<pre>;Section for external ;interrupt vectors</pre>
	B B B	START INTO INT1 INT2	<pre>;Processor Reset ;External Interrupt #0 ;External Interrupt #1 ;External Interrupt #2</pre>
	.sect	"int_vecs" ;Se	ection for internal interrupt vectors
	В В В В	TINT RINT XINT TRAP	;Timer Interrupt ;Serial Port Receive Interrupt ;Serial Port Transmit Interrupt ;S/W Trap
;—— ; ;—	CODE		
	.text		;Section for program code
STAI	RT		
	dint		;Global interrupt disable
;—	——— INITIA	LIZE SERIAL POR	T
	ldpk fort sfsm rtxm	0 0	;Set for 16-bit word operation ;Set for frame sync control ;Set for external Xmit frame sync
;—	——— INITIA	LIZE TLC32046 A	AIC
	ldpk lalk sacl out rptk	AIC_CNTL AIC_RESET_LO AIC_CNTL AIC_CNTL, PA2 20	;Force AIC RESET low ;Keep LO for 2 usec
	nop		; (Spec=800 nsec min)
	ork sacl	AIC_RESET_HI AIC_CNTL AIC_CNTL, PA2	;Set AIC RESET high
	ldpk lack sacl eint zac	0 020h IMR	;Enable transmit interrupt ;Enable global interrupts ;Dummy Xmit to synchronize the


```
; TMS320C26 and AIC
   sacl
              DXR
   lalk
              AIC_SETUP
                          ;Signal secondary Xmit mode
   idle
   lalk
                          ;Send control word
              AIC CONTROL
   idle
   dint
                           ;Disable interrupts to reconfig
                           ; serial port
   lack
              010h
                           ; Enable serial port RECEIVE interrupts
   sacl
              IMR
                           ; REC = IMR b4
   eint
                           ; Enable global interrupts
    ---- MAIN ROUTINE
MAIN
   idle
   b
              MAIN
; INTERRUPT SERVICE ROUTINES
                          ;SERIAL PORT RECEIVE INTERRUPT
RINT
   ldpk
   lac
              DRR, 4
                          ;Read latest AIC input w/ 16x gain
                           ; Echo to AIC output
   sacl
              DXR
   eint
                           ;Re-enable GLOBAL interrupt
                           Return to MAIN
   ret
                          ;SERIAL PORT TRANSMIT INTERRUPT
TIIX
   sacl
              DXR
                          ;Write to DXR register
   eint
   ret
;----- UNUSED INTERRUPT TRAPS
              idle ;External Interrupt #0
INT0
INT1
              idle
                          ;External Interrupt #1
                          ;External Interrupt #2
INT2
              idle
              idle
                          ;Timer Interrupt
TINT
;RINT
              idle
                         ;Serial Port Receive Interrupt
;XINT
              idle
                          ;Serial Port Transmit Interrupt
TRAP
              idle
                          ;S/W Trap
              .end
```

NOTE:

The TMS320C5x EVM requires the following command be incorporated into the EVMINIT.CMD file to force the TMS320C50 into microprocessor mode:

E PMST=0x08

In addition, whenever the processor is RESET from within the Debugger and software reloaded, you need to issue the following command to get the TMS320C50 back into microprocessor mode:

?PMST=0x08

Example 2. TMS320C50 Program

```
TMS320C50 PROGRAM
                                     ;Define constants for AIC
AIC RESET LO
                .set
                         0ffefh
AIC_RESET_HI
                           010h
                 .set
AIC_SETUP
                 .set
                            03h
AIC_CONTROL
                 .set
                          0277h
; Primary Transmit Data Word Format
     d12
;
      |d10 d6 d2
   d14 | d8 | d4 | d0
    v v v v v v v v
                          Signals secondary Xmit mode
   xxxxxxxxxxxxx11b
 Secondary Transmit Data Word Format
                          Secondary Command Syntax
;
                            (d1/d0 indicate mode)
      TA | RA |
   xx10010xx1001000b
                          TA and RA counter setup example
                           valid range: 4-63
     | TB | RB |
   x100100x10010010b
                          TB and RB counter setup example
                           valid range: 15-127
          | ctrl |
   xxxxxx1010110111b
                        Control word setup example
                                (0/1)
                    _____ d2 = (out/in) A/D highpass filter
                    _____ d3 = (out/in) loopback function
                     _{---} d4 = (no/yes) Aux input pins
                     _____ d5 = (no/yes) RX & TX synchronous
                     _{---} d7/d6 = Gain 0/0 = 1
                                        0/1 = 2
                                        1/0 = 4
                                        1/1 = 1
                           d8 = don't care
                           d9 = (out/in) second order sin
                               x/x filter
```



```
MEMORY DEFINITION
                           ; Reserve RAM for operands
    .bss
                AIC_CNTL,1 ;AIC control temp memory
     INTERRUPT VECTORS
   .sect
                "vectors"
                           ;Section for external interrupt vectors
                START
                           ;Processor Reset
   В
   В
                INT0
                           ;External Interrupt #0
   В
                INT1
                           ;External Interrupt #1
   В
                INT2
                           ;External Interrupt #2
                TINT
   В
                           ;Timer Interrupt
   В
                RINT
                           ;Serial Port Receive Interrupt
   В
                XINT
                          ;Serial Port Transmit Interrupt
   В
               TRINT
                          ;TDM Serial Port Receive Interrupt
                TXINT
                           ;TDM Serial Port Transmit Interrupt
   В
   В
                INT3
                           ;External Interrupt #3
                +10*16
                           ;Reserved space - 10 words
   .space
                TRAP
                           ;S/W Trap
   В
                NMI
                           ;Non-maskable external interrupt
    CODE
                           ;Section for program code
   .text
START
               #0
INTM
                          ;Initialize data pointer
   ldp
                          ;Global interrupt disable.
   setc
   splk
               #0h,IMR
                          ;Clear interrupt mask register
;----- SETUP S/W WAIT-STATE GENERATOR
               #08, CWSR
   splk
                                ;Normal wait-state mapping,
                                ;I/O space=64K
                            ;Prog/Data space=0 wait-states
   splk
               #0, PDWSR
   splk
                #05555h, IOWSR ;I/O space=1 wait-states
   ---- INITIALIZE SERIAL PORT
   ldp
                #0
               #08h, SPC
   splk
                                 ;DBL=0 (b1): loopback mode disabled
                                 ;FO=0 (b2): 16-bit word operation
                                 ;FSM=1 (b3): frame sync control
                                 ;MCM=0 (b4): external CLKX
                                 ;TXM=0 (b5): external FSX
```



```
;XRST=0 (b6): Xmit RESET
                                  ;RRST=0 (b7): Rec RESET
                #0c0h, SPC
                                 ;XRST=1 (b6): Xmit ENABLE
   opl
                                 ;RRST=2 (b7): Rec ENABLE
       — INITIALIZE TLC32046 AIC
    ldp
                AIC_CNTL
   lacc
                #AIC_RESET_LO ; Force AIC RESET low
   sacl
                AIC_CNTL
   out
                AIC_CNTL, PA2
   rpt
                #40
                                 ;Keep LO for 2 usec
                                 ;(Spec=800 nsec min)
   nop
                #AIC_RESET_HI ;Set AIC RESET high
   or
   sacl
                AIC CNTL
   out
                AIC_CNTL, PA2
   ldp
                #0
   opl
                #020h,IMR
                               ; Enable Xmit interrupt bit
   opl
                #0h,IFR
                              ;Clear pending interrupts.
                              ;Global interrupt enable.
                INTM
   clrc
   lacl
                #0
                              ;Dummy Xmit for synchronization
   sacl
                DXR
   lacc
                #AIC_SETUP ;Signal secondary Xmit mode
   idle
   lacc
                #AIC_CONTROL ;Send control word
   idle
   setc
                              ;Global interrupt disable.
                INTM
                              ; Enable serial port RECEIVE interrupts
   lacl
                #010h
   sacl
                IMR
                              ; REC = IMR b4
   opl
                #0h, IFR
                              ;Clear pending interrupts.
   clrc
                              ;Global interrupt enable.
                INTM
; — MAIN ROUTINE
MAIN
   idle
   b
                MAIN
; INTERRUPT SERVICE ROUTINES
RINT
                              ;SERIAL PORT RECEIVE INTERRUPT
                #0
   ldp
                DRR, 4
   lacc
                              ;Read latest AIC input w/ 16x gain
   samm
                DXR
                              ; Echo to AIC output
                               ;Return to MAIN w/ interrupt enable
   rete
XINT
                               ;SERIAL PORT TRANSMIT INTERRUPT
                DXR
   samm
   rete
;----- UNUSED INTERRUPT TRAPS
```


INTO	idle	· Erst come] Tot comment #0
INIU	idie	External Interrupt #0;
INT1	idle	;External Interrupt #1
INT2	idle	External Interrupt #2
TINT	idle	Timer Interrupt;
;RINT	idle	Serial Port Receive Interrupt
;XINT	idle	Serial Port Transmit Interrupt;
TRINT	idle	;TDM Serial Port Receive Interrupt
TXINT	idle	;TDM Serial Port Transmit Interrupt
INT3	idle	External Interrupt #3
TRAP	idle	;S/W Trap
NMI	idle	;Non-maskable external interrupt
	.end	