Matrix Multiplication with
theTMS32010 and
TMS32020

APPLICATION REPORT: SPRA0O0OS

Author: Charles Crowell
Digital Signal Processing — Semiconductor Group

Digital Signal Processing Solutions
1989

‘9 TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

Matrix Multiplication with
theTMS32010 and TMS32020

Abstract

This report is on matrix multiplication with the TMS32010 and
TMS32020. Matrix multiplication is useful in applications, such as
graphics, numerical analysis, or high-speed control. Because of
the high speed of the multiply/accumulate operations and fast data
I/O, both processors can multiply in microseconds large matrices
with their sizes only limited by the internal data memory. Programs
are included in the report to illustrate matrix multiplication on both
processors.

Matrix Multiplication with theTMS32010 and TMS32020 5

*i’
SPRA008

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

6 Matrix Multiplication with theTMS32010 and TMS32020

INTRODUCTION

Matrix multiplication is useful in applications such as
graphics, numerical analysis, or high-speed control. The
purpose of this application report is to illustrate matrix
multiplication on two digital signal processors, the
TMS32010 and TMS32020.

Both the TMS32010 and TMS32020 can multiply any
two matrices of size M xN and N x P. The programs for
the TMS32010 and TMS32020, included in the appendices,
can multiply large matrices and are only limited by the
amount of internal data RAM available. Assuming a 200-ns
cycle time, the TMS32010 and TMS32020 can calculate
[1x3] x [3x3]in 5.4 microseconds.

Before discussing the two versions of implementing a
matrix multiplication algorithm, a brief review of matrix
multiplication is presented along with three examples of
graphics applications.

MATRIX MULTIPLICATION

The size of a matrix is defined by the number of rows
and columns it contains. For example, the followingisa 5 X3
-matrix since it contains five rows and three columns.

ajy a2 a3

2] a2 a3

A= a3} a3 a33
a41 ay2 243

as) as2 as3

Any two matrices can be multiplied together as long
as the second matrix has the same number of rows as the
first has of columns. This condition is called conformability.
For example, if a matrix A is an M x N matix and a matrix
B is an N x P matrix, then the two can be multiplied together
with the resulting matrix being of size M xP.

)] el

MxN =2x2 NxP =2xl1 MxP = 2x1

Example: (3)(4) + (4)(6) = 36

Given the two conformable matrices A and B, the
elements of C = A xB are given by:

g [
Cy = ar X by
ij k=1 ik kj

fori =1,..,Mandj = 1,..,P

Q12 FORMAT

Applications often require multiplication of mixed
numbers. Since the TMS32010 and TMS32020 implement
fixed-point arithmetic, the programs in the appendices assume
a Q12 format, i.e., 12 bits follow an assumed binary point.
The bits to the right of the assumed binary point represent
the fractional part of the number and the four bits to the left
represent the integer part of the number. An example of Q12
format is as follows:.

0001110111100000 = 1.866
ASSUMED BINARY POINT

0000.110111100000 = 0.866 in Q12
X 0000.100000000000 = 0.5 in Q12

00000000.011011110000000000000000 = 0.433 in Q24

The result of a Q12 by Q12 multiplication is a number
in a Q24 format that can easily be converted to Q12 by a
logical left-shift of four. The first four bits will be lost as
well as the last twelve, but these bits are insignificant for
Q12. Note that the programs in the appendices provide no
protection against overflow; therefore, the design engineer
should implement a format that best fits the application.

GRAPHICS APPLICATIONS

Operations in graphics applications, such as translation,
scaling, or rotation, require matrix manipulations to be
performed in a limited amount of time. Therefore, the
TMS32010 and TMS32020 processors are ideal for these
applications. Graphics applications, such as scaling and
rotation of points in a coordinate system, require
multiplication of matrices. Translation is typically
implemented by addition of two matrices. However, when
points are represented in a homogeneous coordinate system,
translation can be implemented by multiplication. In a
homogeneous coordinate system, a point P(x,y) is
represented as P(X,Y,1). This type of coordinate system is
desirable since it relates translation with scaling and rotation.

Translation can be defined as the moving of a point
or points in a coordinate system from one location to another
without rotating. This is accomplished by adding a
displacement value Dy to the X coordinate of a point and
adding a displacement value Dy to the Y coordinate, thus
moving the point from one location to another. Figure 1
shows both addition and multiplication methods of translation
and an example of each.

Similar to translation, scaling can be implemented by
matrix multiplication. Points can be scaled by multiplying

v Rotation of the coordinates of a point (or points) about
i an angle theta can also be accomplished by a matrix
- multiplication. The following set of equations results with
- the matrix multiplication required to rotate an object about
N any angle.
- ®
L o P(7.3)
L P2.2» v

A 'l 'l [A i i " (XNEw, YNEw'

ADDITION METHOD

[Xnew YNew! = Xop Youp! + [Dx Dyl f
where Dy = 6and D, = 1 . XoLp, Yoo}
o
MULTIPLICATION METHOD
3

1 o 0
[Xnew Ynew 1] = [Xowp Yoo 1] el 0 1] x

Dy Dy 1 XoLp = r cos¢
where Dy, = 5and D, = 1 YoLp = r sing

XNEw = T c0s {©+¢) = r cosp cosO — r sing sinG
Figure 1. Translation of Coordinates Ynew = T 8in (©+¢) = r coso sinO + r sing cos®
Xnew = XoLp €086 — Ygp sin©
each coordinate of a point (or points) by a scaling value Sy Ynew = XoLp $in® + YoLp cos®
and Sy. Scaling an object is similar to stretching or shrinking OR
an object. The coordinates of each point that makes up the
object are multiplied by a scaling value which scales the cos® sin® 0
object to a larger or smaller scale. Figure 2 shows the scaling Xnew Ynew 1] = [Xop Yop 1] ¢ [—sin@ cos® 0
of an object from one size to another. ° ° 1
BEFORE SCALING AFTER SCALING
y Y
1 -] L1 i A i i1 1 -]
X X

Let the scaling factors S, and S, = 0.5

s, 0 ©
Xnew Ynew 1] = [Xowp Youp 11 . o sy]
o 0 1

XY 1] =1[441] .

f o)
cown
©
owmo
I~ °9

Xvyin=(221

Figure 2, Scaling From One Size To Another

Figure 3 shows an implementation of these equations
to rotate an object 30 degrees about the origin.

Figures 4 and 5 show a segment of straight-line
TMS32010 and TMS32020 code, respectively. These
programs calculate the coordinate rotation example using a
Q12 format. Note that once the matrices are loaded into
memory, the procssors can calculate the results in 5.4
microseconds. The segment of TMS32020 code in Figure 5
implements the MAC instruction. For small matrices, the
MAC instruction in conjunction with the RPT instruction
gains little due to the overhead timing of the MAC
instruction. However, for larger matrices, this method is
most efficient since the MAC instruction becomes single-
cycle in the repeat mode. For applications that only require
translation, scaling, or rotation of coordinates, straight-line
code as in Figures 4 and 5 is more efficient than the larger
programs in the appendices.

NOSIDT FZO10 FAMILY MACRO ASSEMRLER

JH 35 3 3 30 36 36 36 30 3 333 3 S0 30 3

3636 3 3 3 9F 3¢ 3 3 3 335 3 3 3 3 3E 3 3 H I3

0000 EQ0 RITATE LDPH O
0Oll OO0 ANZ G 12
GO12 0001 42320 LARF 0
0013 0002 7000 LARK ARO, 0
Q014 Q003 7109 LARK AR1, ¥
QO1S 0004 40AF IN #+ PAQ
0014 0005 40A2 IN #+, PAO
0017 0006 40AS IN #+ FAO
Q01& 0007 40AF IN #+,FAOQ
Q01?0008 40AL IN #+, FAD
0OZ0 O00? 40AZ IN #+, PAO
0021 VO0A 40A3 IN #+, PAO
OOOR 40A% IN #+ FPAO

3 000C 40AR IN #+ FPAO
0024 000D 40AS IN #4+ FPAO
0OZ5 000E 40A8 IN #+, FAD
GOZ6 QO0F 40A3 IN #+, FPAO
0027 Q010 7F2% ZAC
0028 0011 7000 LARK AROD, O
Q029 0012 4LAAL LT #+,1
0030 0013 &DAC MFY #+ 0
0021 0014 ACAL LTA *+, 1
0032 0015 4DA0 MFY +,0
0033 0016 &LCAL LTA #+ .1
QOZ4 0017 GDAO MPY #+, 0
0035 0018 7FEF AFAC
0036 Q019 SCOC SACH ANS, 4
0037 001A 4800 ouT ANS, FPAC

yr
- P’ (5,6.2)
3 P(7.2)
30°
[S T S S DO S |
X
0.866 65 O
Xy =1721] -05 0868 O
[[} 1

(X'Y 1] = [6.05.2 1}

Figure 3. Implementation of Rotation Matrix

Pz,

24,107

3636 35 36 35 96 36 3 3 3 36 3 3 3 3 SR 0 WA IR R I IR B FHFHA

3* *
* THIS ROUTINE ASSUMES THE INFUTS ARE IN @1Z. *
* THE FIRST NINE INFUTS SHOULD BE THE ROTATION *
MATRIX (HOMOSENEOUS COORDINATES), ENTERED BY *
* COLLMNS. THE LAST THREE INPUTS SHOULD BE THE *
* OLD X AND Y CODRDINATES. *
3 3*

36 3638 36 03 35 36 36 35 46 3 3 3E 3 30 3 3 330 3 30 30 S 3 336 ;R R R

POINT AT BESINNING OF
FOINT AT BEGINNING OF
INFUT ROTATION MATRIX
COORDINATES.

RIOTATION MATRIX.
oLD COORDINATES.
AND OLD

CLEAR ACCUMULATOR.

CALCULATE NEW X COOROINATE.

CONVERT T3 212 AND QUTPUT RESULT.

Figure 4. TMS32010 Code for Rotation

Q038 00LR 7F3¥ ZAC

0O3% 0010 7109 AR, % # CALCLLATE NEW Y COORDINATES,

G040 O0ILD AAAL #+ 1
Q041 QO1E 4ADAC #+ 0
0042 0O0O1F &A1 *+. 1
0043 0020 ADAO #+ 0
Q044 s+, 1
Q045 4+, 0

Q044

047 # LONVERT TO @2

CAND HATEUT R

LARE ARL,® # FINISH HOMOGENECQUS MATRIX.
LT ¥+, 1
0029 LDAO MEY #+,0
T O02A ACAL LTA #41
QOS54 00ZB GDAO MY e+, 0
QOSS 00T &CAL LTA *+ 1
Q0S4 0020 &DAD MPY 24,0
0057 O0ZE 7FRF AFAL
QOS2 Q02F SCOL ZACH ang, 4
OOSY OD30 48O ouT AN, FAO
OOLO 0031 TFED RET

N ERRORS, N3 WARNINGE

Figure 4. TMS32010 Code for Rotation (Concluded)

NOS$IDT

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

0015
0016
0017

0018
0019
0020
0021
0022

0023
0024

0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038

0033
0040
0041
0042

0000

0001
0002
0003
0004
Q005
0006
0007
0008
0009
000A
000B
000C
000D
QOQE
OQOF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
Q01D
001E
001F
0020
0021
0022
0023
0024
0025

NO ERRORS,

32020 FAMILY KACRO ASSEMBLER

5589
000C
CAOO
C306
D100
0300
CBOS
80RO
D100
0200
CBO2
80RO
CEOS
A00O
D100
0300
CBO2
SDAO
FFOO
CE15
6C0C
E00C
A0OOQ
CAQO
CBO2
SDAO
FFO0
CE15
6COC
EDOC
AOOO
CAOD
CRO2
SDAQ
FFOO
CE15
6COC
EOOC
CE26

PCO.7 84.348 16:07:15 02-25-85

PAGE 0001

hhhhhh kA h kAR AR ARk AR b Rk AR ARk ARk bbbk kb hbdd

* % * B

*

*
THIS ROUTINE ASSUMES THE INPUTS ARE IN Q12. *
THE FIRST NINE INPUTS SHOULD BE THE ROTATION *
MATRIX (HOMOGENEOUS COORDINATES), ENTERED BY *
COLUMNS, THE LAST THREE INPUTS SHOULD BE THE *
OLD X AND Y COORDINATES. *

*

*

Ahkhhkhhhdhhhhbhhhhhhhbhhohhhhrhrbdhbhhbhhhhbhbhbhdbdhthhhdasd

ROTATE LARP
ANS EQU
IAC

- LDPK

LRLK

RPTK
1N
LRLK

RPTK
IN

CNFP
NPYK
LRLK

RFTK
MAC

APAC
SACH
ouT
HMPYK
IAC
RPTK
HAC

APAC
SACH
ouT
NPYK
IZAC
RPTK
MAC

APAC
SACH
ouT
RET

NO WARNINGS

1
12

3
AR1,>300

8
*+,PAO
AR1,>200

2
+4+,PAD

>0
AR1, 3300

2

YFFQO, *+

ANS,4
ANS,PAO
>0

2
>FFO0, #+

ANS, 4
ANS,PAO
>0

2
SFF00, *+

ANS, 4
ANS,PAO

*

*

»

USE AUXILIARY REGISTER 1.

INITIALIZE ACCUMULATOR.

LOAD ROTATION MATRIX INTO Bl.

LOAD COORDIMNATES INTO BLOCK BO.

* CONFIGURE BO AS PROGRAM MEMORY.

»

» »

*

* *

»>

CLEAR P REGISTER.
CALCULATE THE NEW X COORDINATE.

OUTPUT NEW X COORDINATE.
CLEAR P REGISTER.

CALCULATE NEW Y COORDINATE.

OUTPUT NEW Y COQRDINATE.
CLEAR P REGISTER.

FINISH HOMOGENEQOUS MATRIX.

Figure 5. TMS32020 Code for Rotation

To combine translation, scaling, and rotation, a more
general matrix can be implemented.

GENERAL MATRIX FOR
TWO-DIMENSIONAL SYSTEMS

1 2 0
ny 22
ty ty 1

The upper 2 x 2 matrix is a combination rotation matrix
and scaling matrix. The ty and ty values are the translation
values. A three-dimensional general matrix can be developed
similar to the two-dimensional translation, scaling, and
rotation matrix.

INITIALIZATION

INPUT M. N, AND P.

CALCULATE SIZE OF MATRIX A
AND B. A 1S MxN,
AND B IS NxP.

!

INPUT THE A MATRIX BY ROWS. STORE
THESE VALUES IN MEMORY IMMEDIATELY |
AFTER THE INITIALIZATION VALUES.

INPUT THE 8 MATRIX BY COLUMNS.
STORE THESE VALUES IN MEMORY
FOLLOWING THE A MATRIX VALUES.

MCOUNT = 0

GENERAL MATRIX FOR
THREE-DIMENSIONAL SYSTEMS

m 2 3 0
21 22 n3 0
31 32 33 0
tx ty tz 1

IMPLEMENTATION OF THE MATRIX
MULTIPLICATION ALGORITHM
FOR THE TMS32010

The implementation of the algorithm for the TMS32010
shown in Figure 6 assumes that the two matrices to be
multiplied together are of size M X N and N x P. Three major

3

INCREMENT PCOUNT. LOAD POINTER1
WITH BDIS (FIRST UNPROCESSED ROW).
SEY NCOUNT = 0. CLEAR ACCUMULATOR.

—

INCREMENT NCOUNT. MULTIPLY VALUE
POINTED AT BY POINTER1 WITH
VALUE POINTED AT BY POINTER2
AND ACCUMULATE. INCREMENT
BOTH POINTERS.

YES
OUTPUT ANSWER

INCREMENT MCOUNT AND DEFINE
THE BEGINNING OF THE FIRST
UNPROCESSED ROW AS BDIS. SET
POINTER2 POINTING AT THE
BEGINNING OF THE B MATRIX.
SET PCOUNT = 0.

|

Figure 6. TMS32010 Flowchart

INITIALIZATION

!

INPUT M, N, AND P.

v

READ B MATRIX
INTO BLOCK B1.

"

MULTIPLY THE ROW OF THE
A MATRIX BY A COLUMN IN
THE B MATRIX.

OUTPUT RESULT.

HAS
LAST ROW
BEEN ENTERED
YET?

INPUT A ROW
OF THE A MATRIX.

CLEAR ACCUMULATOR
| AND P REGISTER.

Figure 7. TMS32020 Flowchart

loops are included to multiply the two matrices. The outside
loop control is labeled MCOUNT since it controls which row
in the A matrix is being referenced during the multiplication.
The secondary loop control is labeled PCOUNT because it
counts how many columns in the B matrix have been
processed. The inside loop control is labeled NCOUNT since
it controls the multiplication of the values in the A matrix
with the values in the B matrix.

IMPLEMENTATION OF THE MATRIX
MULTIPLICATION ALGORITHM
FOR THE TMS32020

The implementation of the algorithm for the TMS32020
is somewhat different since its advanced instruction set allows
for a more efficient method of computing matrix
multiplication. The TMS32020 version in Figure 7 also
assumes that the two matrices to be multiplied are of size
M x N and N x P. This program takes a row of the A matrix,

loads it into block B0 of data memory, and then multiplies
this row by all columns in the B matrix. The TMS32020
continues this process until all the rows in the A matrix have
been multiplied by all the columns in the B matrix. The
TMS32020 version is similar to the TMS32010 in that the
A matrix must be entered by rows and the B matrix by
columns. This allows for a faster execution time. Figure 7
shows the basic implementation of the matrix multiplication
algorithm that the TMS32020 uses to multiply two matrices.

Since the programs in the appendices treat the matrices
differently, a memory map is included to help in
understanding the two versions. Figure 8 shows how the
matrices should look in memory after they have been entered.
Note that for the TMS32020 version, the A matrix values
reside in program memory since the CNFP (configure as
program memory) instruction was implemented. Note also
that only one row of the A matrix is in this block since the
program enters one row at a time.

For the following matrices,

A=| a1 a2 | g_ | bu b2 b
B A byp bn b3

the memory would be configured in this manner for the TMS32010 and TMS32020.

TM$§32020
DATA MEMORY PROGRAM MEMORY
LOCATION VALUE LOCATION VALUE
{IN HEX) (IN HEX}
>308 b4y - >FFO0 ajp
>309 b2 >FFO1 aj2
>30A by2
>308 ba2
>30C b3
>30D b3

Figure 8. Memory Maps

TMS32010
DATA MEMORY
LOCATION VALUE
(IN HEX)

>00F ayq
>010 812
>011 a2y
>012 822
>013 byy
>014 b2y
>015 by2
>018 ba2
>017 bys
>018 baa

SUMMARY

The TMS32010 and TMS32020 processors can be used
to multiply large matrices efficiently. A brief review of
matrix multiplication has been given to assist in the
understanding of fundamental matrix multiplication. Three
examples of graphics applications have been presented since
these applications often require multiplication of matrices.

The TMS320 family has the power and flexibility to
cost-effectively implement a wide range of high-speed
graphics, numerical analysis, digital signal processing, and

control applications. Since the TMS32010 and TMS32020
combine the flexibility of a high-speed controller with the
numerical capability of an array processor, a new approach
to applications such as graphics can now be considered.

REFERENCES

1. 1.D. Foley and A. Van Dam, Fundamentals of
. Interactive Commputer Graphics, Addison-Wesley
Publishing Company, Inc. (1982).
2. S.D. Conte and Carl de Boor,. Elementary Numerical
Analysis, McGraw-Hill, Inc. (1980).

NOSIDT

0001
0002
0003
0004
00035
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
Q028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
003?
0040
0041
0042
0043
0044
0045
0044
o047
0043
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059

0000

0000
0001
0002
0002
Q004
0005
0006

0007
Q0%
Q009

Q00A
OOOB
GOOL
Q00D

000E
QOOF
0010
0011

0012

Appendix A

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107

0000
0001
0002
0003
0004
0005
0006
0007
0003
0009
000A
Q00B
000C
000D
00CE

4EOO
46880
7EOF
S00C
500D
7E01
S00E

4000
4001
4002

LAOO
6001
7FSE
S007

4A01
sD0O2
7F3E
5008

380C

10:03:42 02-25-85
PAGE 0001

I3 366 T 3 I 363636 6 I 3E 3 I I 3 3036 3 4E 30 I 3 3F I A0 I 35 S0 3 3003 S 3 I S0 30 S0 S

*

ALL INPUTS AND OUTPUTS FOR THIS PROGRAM SHOULD #*

% BE OR ARE IN Q12 FORMAT EXCEPT FOR THE M, N, *

#*

AND P INPUTS, WHICH SHOULD BE GO.

*

F6 3436 3695 9696 336 39 3 I 3 36 36 6 34 3636 36 363096 96 3596 96 336 I I3 383 696 36 I3 3 46 3 W 3 3

M

N

[

c1
2
c3
ANS
ADIS
BDIS
CDIs
TEMP
oI
cos
T
ONE
*

AORG
EQU
Equ
EQU
2=0)
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0o

>0
>1
>2

* INITIALIZATION

*

R R

Kk K %k

* &

LDPK
LARP
LACK
SACL
SACL
LACK
SACL

MATRIX A IS M

IN
IN
IN

LT
MPY
PAC
SACL

LT
MY
FAC
SACL

0
0
15
cos
T

1
ONE

M, PAO
N, PAD
P, FAO

M
N

ADIS

N
P

BDIS

LAR ARO,CDS

N AND MATRIX B IS N x P,
THESE STATEMENTS READ IN THE SIZES OF
THE TWO MATRICES.

FOINT AT THE END OF THE INITIAL DATA.

CALCULATE THE LENGTH OF THE A MATRIX AND
STORE THIS VALUE IN ADIS.

ZALCULATE THE LENGTH OF THE B MATRIX AND
STORE THIS VALLUE IN BDIS,

0060 *
00641 # READ THE A MATRIX VALUES INTO DATA RAM.
0062 * THIS MATRIX MUST BE ENTERED BY ROWS.
0043 # THE MATRIX VALUES WILL BE LOCATED IN
0064 * DATA RAM FOLLOWING THE INITIALIZATION
0065 * VALUES,
0066 *
0067 0013 200B FST LAC col
0068 0014 000E ADD ONE
0069 0015 S00B SACL [}
0070 0016 4088 IN #*,PAO
0071 0017 48A8 MAR *#+
0072 0018 2007 LAC ADIS
0073 0019 100B SUB CoI
0074 001A FEOO BN2 FET
001B 0013
0075 *
0076 # RESET COUNTER TO READ IN THE B MATRIX VALUES.
0077 *
0078 001C 7F8% ZAC
0079 001D 500B SACL cor
0080 *
0081 # READ THE B MATRIX VALUES INTO DATA RAM.
0082 # UNLIKE THE A MATRIX, THESE VALUES MUST BE
0083 % ENTERED BY COLUMNS. THESE VALUES WILL BE
0084 # LOCATED IN DATA RAM FOLLOWING THE A MATRIX VALUES.
0085 %* .
0086 #*
0087 O01E 200B SND LAC coI
0088 001F O00E ADD ONE
0039 0020 S00B SACL co1
0090 0021 4088 N *,PAO
0091 0022 &3A8 MAR *+
0092 0023 2008 Lac RDIS
0093 0024 100B SuB col
0094 00235 FEQO BNZ SND
0026 001E
0095 *
0094 # MORE INITIALIZATION
0097 #*
0098 0027 200D LAC T
0099 0028 1001 SUIB N
0100 0029 5002 SACL o1
0101 002A 2000 LAC T
0102 002EB 0007 AlD ADIS
0103 002C 500D SACL T
0104 002D 1001 SUB N
0105 002E 5007 SACL ADIS
0106 *
0107 # CALCULATE A «x B
o108 *
0109 *
0110 *
0111 *
0112 * N . .
0113 *
0114 #* AN
0115 # OQUTPUT(i)) = A AGik) x Bk))
0116 * /
0117 * /
0113 ®» mm———
0119 * k=1
0120 : *
0121 002F 2003 FS LAC C1

0122 0030 0001 ADD N

0123 0031 5003 SACL Ct

0124 0032 4881 LARP 1
0125 0033 390D LAR ARL,T
0126 0034 4880 LARP 0
0127 0035 7F89 zAC
0128 0036 5004 SACL €2
0129 0037 2004 SN LAC 2
0130 0038 000E ADD ONE
0131 0039 5004 SACL €2
0132 0034 3803 LAR ARO, C1
0133 003B 7F89 ZAC
0134 003C 5006 SACL ANS
0135 003D S00S sACL 3
0136 003E 2005 TH LAC c3
0137 003F O00E ADD ONE
0138 0040 5005 sACL €3
0139 0041 6506 IALH ANS
0140 0042 6AAL LT #+, AR1
0141 0043 4DAO MPY #+, ARO
0142 0044 TFEF APAC :
0143 0045 5806 SACH ANS
0144 0046 2005 LAC e
0145 0047 1001 SUB N
0146 0048 FEOO BNZ ™
0049 003E
0147 * ,
0148 * LOAD ACCUMULATOR WITH HIGH WORD OF @24 RESULT.
0149 * LEFT-SHIFT FOUR TO CONVERT TO 012.
0150 * NOTE THAT ONLY THE 12 MSB‘S ARE SIGNIFICANT.
0151 *
0152 004A 2404 LAC ANS, 4
0153 004B 5006 SACL ANS
0154 004C 4806 ouT ANS, PAG
0155 004D 2004 LAC c2
0156 004E 1002 5UB P
0157 004F FE0O BNZ &N
0050 0037
0158 0051 2003 LAC o1
0159 0052 1007 SUB ADIS
0160 0053 FEOO BNZ FS
0054 002F
0141 0055 F900 AUIT B QuUIT
0056 0055

NO ERRORS, NO WARNINGS

Appendix B

NO$IDT 32020 FAMILY MACRD ASSEMBLER PCO.7 84,348 11:22:01 02-25-85
PAGE 0001
0001 33 36 36 36 3 I 36 34 3 3630 96 34 336 3 3636 356 3 3 34 3436 36 3 3 3 I 3 33 34 2300 3
0002 # ALL INPUTS AND OUTPUTS FOR THIS PROGRAM #
0003 # SHOULD BE OR ARE IN Q12 FORMAT EXCEPT »
0004 # FOR THE M, N, AND P, WHICH SHOULD BE QO. ¥
QOOS 4 363 3 36 36 36 35 3 36 36 36 36 3 36 3 3 36 36 36 3 I I I I3 36 I H 63 33 e N
0006 0020 ADRG 32
0007 0000 M EQU >0
000S 0001 N EQU >1
Q00 0002 P EQu >2
0010 0003 ANS EQU >3
0011 0004 BDM1 EQU >4
0012 0005 ONE EQu >5
0013 0006 NM1 EQU >6
0014 0007 PM1 EQU >7
0015 *
0016 * INITIALIZATION
0017 *
0018 0020 €806 LDPK I3
0019 0021 D100 LRLK AR1, >300
0022 0300
0020 0023 5539 LARP 1
0021 0024 CAOL LACK >1
0022 0025 4005 SACL ONE
0023 *®
0024 # READ SIZES OF MATRICES.
0025 *
0026 0026 CBO2 RPTK 2
0027 0027 80A0 IN #+,PAO
0028 *
0029 # MORE INITIALIZATION
Q030 *
0031 0028 2001 LA M
0032 0029 0005 ADD ONE
0033 002A 4001 sACL M
0034 002B 2000 LAC N
0035 002C 1005 SUB ONE
0034 002D 4006 SACL NM1 .
0037 O02E 200 LT N
0038 002ZF 3802 MPY P
0039 0030 CE14 FAC
0040 0031 1005 SUB ONE
0041 0032 4Q04 SACL BDM1
L0042 0033 2002 LAC P
Q043 0034 1005 SUB ONE
0044 0035 6007 SACL FM1
004S *
0046 % READ IN THE B MATRIX.
0047 *
0048 0036 D100 LRLK AR1,>308
0037 0308
0049 0038 4BO4 RPT BDM1
00S0 0039 S80A0 IN *+,PAO
0051 003A 2001 CALLER LAC M
0052 003B 1005 sSuB ONE
0053 003C 6001 SACL M
0054 003D F680 BZ ar
003E 0052
0055 *

0056 * CALL ROUTINE TO READ IN A ROW

0057
0053
00O5Y

Q0L0

0061
0062
00&3
0064
0065
QO&L
00467
0042
QO&D
Q070
0071
0072

0073
0074
0075
Q076
Q077
Q072
0079
Q0ao
001
ooz
QORI

[alat:

O0IS
[alu}=723
0oe7

o0za
00g9
Q070
001

0092
0093
0o0R4
QO9S

QO3F
0040
0041
004z
0043
0044

0045
Q044

0047
0043

0042

004A

004B
004
004D

0O04E
O04F

Q0%0
0OO%1
0052
0053
0054
0055
0056
0057
0058
00T
0054

NQ ERRDRS,

8}

om

o o
0y o

2m
=

0

o1
0zOg
S58Y
F007

AOOO

CAOO

4BO&
SDAD
FFOO
CELS

by
<

anmo
fe

]

B Dk)

FBYY
00n4s

FF=O0
00za
CELF
CEOQ4
SEae
D100
0200
4BO&
S0A0
CEOQS
CE26

*

*
*
*
MU

#

*

#

*

*

OF THE A MATRIX.

CALL

LRL#

LARP
LAR

0
AR1, >308

1
ARC,PM1

CLEAR ACCUMULATOR AND F REGISTER.

L

MPYE
ZAC

(%)

MULTIFLY A ROW BY A COLUMN.

RPT
MAL

AFALC

NM1
HEFOO, #+

OUTPUT RESILT.

CHECE

NO WARNINGS

SACH

T

LARF
T

BANZ

SEE

ANE, 4

AN, FAO

)

IF ALL COLUMNS HAVE BEEN PROCESSED.

MUL,, %=1

G GET NEXT ROW.

R

IDLE
ZNFD
LLARP
LRLE

RPT
IN
CNFP
RET

CALLER

1
ARL, »200

NM1
#+ PAO

