6. Programming Interface

Registers

This chapter contains information needed to write custom software drivers� XE "writing custom software drivers" � for the EPC’s Flash� XE "Flash" � or SRAM� XE "SRAM" �. If using the supplied software that supports Flash or SRAM as a disk device, skip this chapter. The EPC-26A/27 defines the following registers� XE "registers" � in the I/O space.

�
Bit 7�
Bit 6�
Bit 5�
Bit 4�
Bit 3�
Bit 2�
Bit 1�
Bit 0�
I/O port�
�

Device ID Reg �
1�
1�
1�
1�
1�
1�
0�
1�
100�
�

Config Option Byte 1 Reg �
x�
x�
x�
x�
x�
x�
0�
Cden�
102�
�

Low Address Register�
Low Order Bits 0-7 of Flash/SRAM Address�
�
�
�
�
�
�
�
8380�
�

Middle Address Register�
Low-Middle Bits 8-15 of Flash/SRAM Address�
�
�
�
�
�
�
�
8381�
�

Middle Address Register�
High-Middle Bits 16-23 of Flash/SRAM Address�
�
�
�
�
�
�
�
8382�
�

Flash Data Access�
�
�
�
�
�
�
�
�
8383�
�

SRAM Data Access�
�
�
�
�
�
�
�
�
8384�
�

Reserved�
�
�
�
�
�
�
�
�
8385�
�

High Address Register�
High Order Bits 24-31 of Flash/SRAM Address�
�
�
�
�
�
�
�
8386�
�

Battery Status �
x�
x�
x�
x�
x�
x�
x�
Batt ok�
8387�
�
Figure 8. Flash/SRAM Registers.

The first two registers are standard read/write EXM registers� XE "EXM registers" � for device identification and configuration. The EPC-26A/27 re�sponds to accesses to ports 100h and 102h only if its EXM expansion interface line -EXMID is as�serted. Registers 8380 - 8382 and register 8386 are write-only registers. Registers 8383 and 8384 are read/write, and register 8387 is read-only.

Configuration Registers

The Device ID register is an 8-bit read-only register at I/O address 100h, which may be read when ~EXMID is asserted. It returns the value FDh, so that the EPC-26A/27 appears as an EXM-2A device ID.

The Configuration Option Byte 1 Register� XE "Option Byte 1 Register" � (OB1) is an 8-bit register at I/O address 102h which may be read or written when ~EXMID is asserted. The only writable bit in OB1 is CDEN, which specifies whether the Flash/SRAM which appears as an EXM-2A is enabled (1) or disabled (0). If disabled, the Flash/SRAM� XE "Flash/SRAM" � will not respond to the 8380-8387 I/O addresses; it will only respond to reads from I/O port 100h and reads and writes from I/O port 102h (if -EXMID is asserted). During reads, the Flash/SRAM returns bit 1 in OB1 as a 0. This reveals the board as an EXM-2A.

Addressing Registers� XE "Addressing Registers" �

The flash and SRAM devices are accessed by placing an address in the four address registers and then reading or writing the appropriate data register, which causes the data byte at the location specified in the address registers to be read or written. The four address reg�isters are write-only. The EPC-26A/27’s EXM-2A interface does not implement the High address register (8386). The I/O address 8386 is reserved for future use.

The EPC-26A/27’s EXM-2A interface provides a means of performing fast reads and writes of sequential bytes in the flash memory or SRAM� XE "SRAM:fast reads and writes" �. After each read or write access, the Low Address Register is incremented, allowing the next byte of data to be accessed without re-writing the address registers. When the Low Address Register reaches FFh, the next access will increment the Low Address Register to 00h, but it will not affect the value of the other address registers.

Only the lower eight address bits are auto-incremented on a read/write to the SRAM or flash. Thus, the maximum string I/O read or write length that can be issued by software to access the flash or SRAM data is limited to 256 bytes. To obtain this maximum length, software must first load the address registers with an address that is aligned to a 256 byte boundary. To read a subsequent, contiguous 256 bytes, the software must manually update the Low-Middle, High-Middle, and High registers (and the lower address register, if the previous string read/write to flash/SRAM was not 256 bytes in length) before issuing another 256 byte string read/write.

�
Flash Data Access

Flash disk data can be read from address 8383. Writing to this address will cause a write to a flash device control register, which may result in unpredictable results. The details of manipulating the flash devices� XE "manipulating the flash devices" �, such as using their command register and identifier, are not specified here; consult the datasheets for the Intel flash mem�ory devices. Note that some functions require the write-protection jumper� XE "flash write-protection jumper" � to be in the write-enabled position.

SRAM data access

The battery-backed SRAM� XE "battery-backed SRAM" � is accessed in a similar fashion as the flash. The three low order address registers are set to the appropriate SRAM address and then an I/O read or write is performed to I/O address 8384 to read or write a byte of SRAM.

Address aliasing� XE "Address aliasing" � occurs when accessing the lower density SRAM� XE "SRAM:address aliasing" � chips. This may be used by software to determine the size of memory installed. The EPC-26A/27 uses a 128Kx8 chip SRAM chip; address aliasing begins at the 1MB boundary.

Note that during power-down transition� XE "power-down transition" �� XE "Flash/SRAM:power-down transition" � there is a very small probability that a single byte of SRAM or flash memory could be incorrectly written. This is the same problem that a disk drive has if it is powered off during a sector write.

Battery Low� XE "Battery Low" � Condition

If bit 0 is set to 0 in register 8387, the battery needs replacing because the voltage is less than approximately 2.5V. Note that the XFORMAT software� XE "XFORMAT software" � will fail when the battery is low. The SRAMDISK.SYS driver� XE "SRAMDISK.SYS driver" � issues a warning before continuing. The remainder of the bits in register 8387 are undefined.

�
SRAM Standard Memory Array

Typically, access to the SRAM� XE "SRAM" � is via a file system installed by the device driver SRAMDISK.SYS� XE "SRAMDISK.SYS driver" �. For users who wish to bypass the file system and use the SRAM as a standard memory array� XE "standard memory array" �, the following ANSI C routine is provided as an example of how to program an executable file� XE "programming an executable file" �� XE "SRAM:programming an executable file" �.

#include <stdio.h>

#include <memory.h>

#include <conio.h>

typedef unsigned char UCHAR;

typedef unsigned short USHORT;

typedef unsigned long ULONG;

#define FAR		_far

#define BYTESPERSECTION 0x100

#define EXMID		0x96

#define EXMENABLE	0x00000001

#define LSWLOWBYTE	0x8380

#define LSWHIGHBYTE	0x8381

#define MSWLOWBYTE	0x8382

#define MSWHIGHBYTE	0x8386

#define SRAMDATA	0x8384

UCHAR	Slot	=	5;		/* presumes Flash is in slot 5 */

void

readsection(UCHAR FAR *target, ULONG sramoffset)

{ UCHAR ob;

 register USHORT rinductor;

 /*

 //	Enable the card to allow register access

 */

 outp(EXMID,Slot);

 ob = inp(0x102);

 outp(0x102,ob | EXMENABLE);

 /*

 //	Load initial offset value (sramoffset should be

 // divisible by 256)

 */

 outp(MSWHIGHBYTE,(USHORT) (sramoffset >> 24));

 outp(MSWLOWBYTE,(USHORT) (sramoffset >> 16));

 outp(LSWHIGHBYTE,(USHORT) (sramoffset >>8));

 outp(LSWLOWBYTE,(USHORT) sramoffset);

 /*

 //	Read a section using the autoincrement feature.

 */

 for (rinductor = 0; rinductor < BYTESPERSECTION; rinductor++) {

 *target++ = (UCHAR) inp(SRAMDATA);

 }

 outp(0x102,ob);	/* restore the option byte */

}

void

writesection(UCHAR FAR *source, ULONG sramoffset)

{ UCHAR ob;

 register USHORT rinductor;

 /*

 //	Enable the card to allow register access

 */

 outp(EXMID,Slot);

 ob = inp(0x102);

 outp(0x102,ob | EXMENABLE);

 /*

 //	Load initial offset value (sramoffset should be

 // divisible by 256)

 */

 outp(MSWHIGHBYTE,(USHORT) (sramoffset >> 24));

 outp(MSWLOWBYTE,(USHORT) (sramoffset >> 16));

 outp(LSWHIGHBYTE,(USHORT) (sramoffset >>8));

 outp(LSWLOWBYTE,(USHORT) sramoffset);

 /*

 //	Write a section using the autoincrement feature.

 */

 for (rinductor = 0; rinductor < BYTESPERSECTION; rinductor++) {

 outp(SRAMDATA,*source++);

 }

 outp(0x102,ob);	/* restore the option byte */

}

void

main()

{ UCHAR test[BYTESPERSECTION];

 UCHAR readbuffer[BYTESPERSECTION];

 register USHORT minductor;

 for (minductor = 0; minductor < BYTESPERSECTION; minductor++)

	test[minductor] = minductor;

 writesection(test,0);

 readsection(readbuffer,0);

 if (memcmp(test,readbuffer,BYTESPERSECTION))

 printf("Buffer did not compare \n\r")

 else printf("Buffers comparison ok \n\r"):

}

�
NOTES

EPC-26A/27 Hardware Reference

�EMBED MSDraw * mergeformat���

Programming Interface

�EMBED MSDraw * mergeformat���

Page �page�44�

Page �page�43�

�EMBED MSDraw * mergeformat���

Page �page�39�

