Nx586(Processor Recognition�Application Note

 	

PRELIMINARY INFORMATION

�EMBED Unknown * MERGEFORMAT \s���, Incorporated.

1623 Buckeye Drive

Milpitas, CA 95035

ORDER # 754006-02

Copyright © 1994, 1995 by NexGen, Inc.

The goal of this databook is to enable our customers to make informed purchase decisions and to design systems around our described products. Every effort is made to provide accurate information in support of these goals. However, representations made by this databook are not intended to describe the internal logic and physical design. Wherever product internals are discussed, the information should be construed as conceptual in nature. No presumptions should be made about the internal design based on this document. Information about the internal design of NexGen products is provided via nondisclosure agreement ("NDA") on a need to know basis.

The material in this document is for information only and is subject to change without notice. NexGen reserves the right to make changes in the product specification and design without reservation and without notice to its users. THIS DOCUMENT DOES NOT CONSTITUTE A WARRANTY OF ANY KIND WITH RESPECT TO THE NEXGEN INC. PRODUCTS, AND NEXGEN INC. SHALL NOT BE LIABLE FOR ANY ERRORS THAT APPEAR IN THIS DOCUMENT.

All purchases of NexGen products shall be subject to NexGen's standard terms and conditions of sale. THE WARRANTIES AND REMEDIES EXPRESSLY SET FORTH IN SUCH TERMS AND CONDITIONS SHALL BE THE SOLE WARRANTIES AND THE BUYER'S SOLE AND EXCLUSIVE REMEDIES, AND NEXGEN INC. SPECIFICALLY DISCLAIMS ANY AND ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE, AGAINST INFRINGEMENT AND OF MERCHANTABILITY. No person is authorized to make any other warranty or representation concerning the performance of the NexGen products. In particular, NexGen's products are not specifically designed, manufactured or intended for sale as components for the planning, design, construction, maintenance, operation or use of any nuclear facility or other ultra-hazardous activity, and neither NexGen nor its suppliers shall have any liability with respect to such use

Trademark Acknowledgments

Nx586 is a registered trademark of NexGen, Inc.. NexGen, Nx686, RISC86, NexBus, NxPCI, NxMC, and NxVL are trademarks of NexGen, Inc..

IBM, AT, and PS/2 are registered trademarks of International Business Machines, Inc. Intel is a registered trademark of Intel Corporation. i386, i387, i486 and Pentium are trademarks of Intel Corporation. Tri-state is a registered trademark of National Semiconductor Corporation. VL-Bus is a trademark of Video Electronics Standards Association.

Restricted Rights and Limitations

Use, duplication, or disclosure by the Government is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in technical Data and Computer Software clause at 252.2777-7013

�
Contents

� TOC \o �Introduction	� GOTOBUTTON _Toc334326009 � PAGEREF _Toc334326009 �
1
��

Processor Recognition	� GOTOBUTTON _Toc334326010 � PAGEREF _Toc334326010 �
1
��

Recognition Program	� GOTOBUTTON _Toc334326011 � PAGEREF _Toc334326011 �
3
��

CPUID Instruction	� GOTOBUTTON _Toc334326012 � PAGEREF _Toc334326012 �
16
��

�

List of Figures

� TOC \f c \c "Figure" �Figure 1 Flow Chart Of Processor Recognition Routine	� GOTOBUTTON _Toc334326020 � PAGEREF _Toc334326020 �
2
��

Figure 2 CPUID.ASM	� GOTOBUTTON _Toc334326021 � PAGEREF _Toc334326021 �
4
��

Figure 3 CPUCLK.ASM	� GOTOBUTTON _Toc334326022 � PAGEREF _Toc334326022 �
7
��

Figure 4 NXCPU.C	� GOTOBUTTON _Toc334326023 � PAGEREF _Toc334326023 �
14
��

�

List Of Tables

� TOC \c "Table" �Table 1 NexGen Online Resources	� GOTOBUTTON _Toc334326075 � PAGEREF _Toc334326075 �
3
��

Table 2 NexGen Processor Signatures	� GOTOBUTTON _Toc334326076 � PAGEREF _Toc334326076 �
17
��

��Introduction

The NexGen Nx586(processor offers a powerful and affordable alternative to Intel’s Pentium(processor. The Nx586 processor is a 5th generation processor with full x86 binary compatibility. In order to properly identify NexGen processors and their features, NexGen is providing software that performs these functions. As the number of alternatives in the x86 market increases it is important for software to be able to identify the features and performance level associated with a given processor.

This application note explains the method for identifying a NexGen processor and its features. It provides a software routine necessary to perform this function. It also explains how this routine and the method it describes can be used by software developers in BIOS code, software applications, and utilities to properly identify current and future NexGen processors.

Processor Recognition

To best leverage existing processor recognition routines and minimize the effort for software developers, the NexGen processor recognition code is designed as an extension of the processor recognition code published by Intel in AP-485, Intel Processor Identification With the CPUID Instruction Application Note.

� REF _Ref327955802 * MERGEFORMAT �
Figure
1
� provides a flow chart of the process used to identify different processors. The areas in gray are those added to recognize NexGen processors. Note that there are two code additions to recognize NexGen processors.

The first is for older Nx586 processors. Since all older Nx586s use the same register and flag implementation as the 80386, Intel’s recognition code will identify the Nx586 as an 80386. To identify the additional performance and features available, NexGen has developed code to distinguish an Nx586 processor from an 80386. This is done by using the fact that the 80386 and Nx586

�

Figure � SEQ Figure * Arabic * MERGEFORMAT �
1
� Flow Chart Of Processor Recognition Routine

processor affect the ZF flag (bit 6 of EFLAGs) differently as a result of a DIV instruction and specific operands. The Nx586 does not change the value of the ZF flag during the DIV while the 80386 changes the ZF flag according to the result of the execution.

The second piece of code uses the CPUID instruction to determine the type of processor and its features. NexGen supports the CPUID in newer versions of the Nx586 processor. To determine if the CPUID instruction is supported, software must test the ID bit (bit 21) in EFLAGS to determine if its value can be changed. The code example in this application note includes this test. Once the software determines that the CPUID instruction is available, it can execute this instruction to determine the processor’s vendor, family, type, features, and other useful information. The section entitled “� REF _Ref327770616 * MERGEFORMAT �
CPUID Instruction
�” describes the functionality of the CPUID instruction.

Recognition Program

The following code examples (� REF _Ref327781845 * MERGEFORMAT �
Figure
2
�, � REF _Ref327929931 * MERGEFORMAT �
Figure
3
�, and � REF _Ref327929967 * MERGEFORMAT �
Figure
4
�) enable software to identify NexGen processors and the features that they support. These routines can be integrated with the recognition routines for other x86 processors to provide a complete solution for processor recognition.

An electronic copy of the code can be obtained from NexGen. The code is available as a self-extracting zip file, CPUID52.EXE. � REF _Ref334325529 * MERGEFORMAT �
Table
1
� provides the paths available for obtaining the code from NexGen.

��file area�filename��BBS�(408)955-1839�Techdesk�CPUID52.EXE��World Wide Web�http://www.nexgen.com�Support Desk�CPUID52.EXE��FTP�ftp.nexgen.com�Techdesk�CPUID52.EXE��Table � SEQ Table * Arabic * MERGEFORMAT �
1
� NexGen Online Resources

� REF _Ref327781845 * MERGEFORMAT �
Figure
2
� contains the file “cpuid.asm”. This file contains two routines, “_get_nxcpu_type” and “_get_nxfpu”, that have been written in assembly language. The “_get_nxcpu_type” routine implements the code necessary to identify NexGen processors. It first checks for the AC bit (bit 18) in EFLAGS. If the AC bit is not writeable, it then tests the ZF FLAG result from the DIV instruction. If the ZF FLAG is unchanged, it is an Nx586 processor.

If during the initial test, the AC bit is found to be writeable, the code immediately tests for the ID bit. If it is writeable, the code executes the CPUID instruction to identify the vendor, family, model, and features associated with the processor.

The “_get_nxfpu” routine implements the code necessary to determine if a floating point processor is present when the CPUID instruction is not supported. This routine tests for the presence of the floating point processor by testing the floating point status word.� REF _Ref327783014 * MERGEFORMAT �

Figure
3
� contains the file “cpuclk.asm”. This file contains a single assembly language routine, “_Nx586_clock_rate” that determines the operating frequency for the Nx586 processor. This routine calculates the CPU clock rate by determining the time elapsed to execute a known number of CPU clock cycles. The frequency calculated to the nearest 1/10th MHz and is returned in the AX register as 10 times the number of MHz.

� REF _Ref327929967 * MERGEFORMAT �
Figure
4
� contains the file “nxcpu.c”. This file contains the C language program that calls the “_get_nxcpu_type” and “_get_nxfpu” routines to identify the type of processor and determine the presence of the numeric processor. It then prints the results to the screen. In addition, the program calls “_Nx586_clock_rate” to determine the processor’s operating frequency and display this information on the screen. Finally, if the CPUID instruction is available, this routine displays the vendor identification string, the processor signature (family, model, and stepping), and the feature flags.

Figure � SEQ Figure * Arabic * MERGEFORMAT �
2
� CPUID.ASM

	page ,132

;**

;

; NexGen, Inc.		

; 1623 Buckeye Drive

; Milpitas, CA 95035

; Phone: (408)435-0202

;

;**

;**

; File: cpuid.asm

;	Revision: 1.0

;

; This sample file contains two routines: "_get_nxcpu_type" and "_get_nxfpu".

; "_get_nxcpu_type" identifies NexGen's processor and saves CPU information

; in the data segment, and "_get_nxfpu" tests if FPU is present.

;

;**

DOSSEG

.model 	small

.386

CPU_ID	macro

	db	0fh, 0a2h

	endm

NONE		equ	0

PRESENT		equ	1

Nx586		equ	5

UNKNOWN		equ	0

.data

	public	_nxcpu

	public	_cputype

	public	_cpuid_flag	

	public	_vendor_id	

	public	_cpu_signature

	public	_features_ecx	

	public	_features_edx	

	public	_features_ebx	

	public	_nxfpu		

_nxcpu		db	NONE			;default to none

_cputype	db	UNKNOWN			;default to unknown

_cpuid_flag	db	NONE			;default to no CPUID

_vendor_id	db	"************"

_cpu_signature	dd	0

_features_ecx	dd	0

_features_edx	dd	0

_features_ebx	dd	0

_nxfpu		db	NONE			;default to none

fp_status	dw	0

NexGen_id	db	"NexGenDriven"

.code

;==

; _get_nxcpu_type

;	This routine identifies NexGen's processor type in following steps:

;

;	if (no AC flag) {	//current Nx586 does not support AC flag

;		set ZF=1;

;		execute DIV to result a none zero value;

;		if (ZF=0) {	//ZF is changed

;			not a NexGen processor;

;			exit;

;		} else {	//Nx586 does not change ZF on DIV instruction

;			if (ID bit not writeable) {

;				CPU is Nx586 with no CPUID support

;			} else { 		//Nx586 with CPUID support

;				execute CPUID instruction;

;				save CPU information;

;			}

;		}

;	} else {

;		if (ID bit not writeable) {

;			not a NexGen processor;

;		} else {	//NexGen future processors support CPUID

;			execute CPUID instruction;

;			save CPU information;

;		}

;	}

;

;==

	public	_get_nxcpu_type

_get_nxcpu_type	proc	near

	mov	byte ptr _nxcpu,PRESENT	; default to present

; test AC bit on EFLAGS register

	mov	bx,sp		; save the current stack pointer

	and	sp,not 3	; align the stack to avoid AC fault

	pushfd			;

	pop	eax		; get the original EFLAGS

	mov	ecx,eax		; save the original EFLAGS

	xor	eax,40000h	; flip AC bit in EFLAGS

	push	eax		; save for EFLAGS

	popfd			; copy it to EFLAGS

	pushfd			;

	pop	eax		; get the new EFLAGS value

	mov	sp,bx		; restore stack pointer

	xor	eax,ecx		; if the AC bit is unchanged

	je	test_zf		;	goto second step

	jmp	nx_future_cpu	

test_zf:

; test ZF on DIV instruction

	mov	ax,5555h	; init AX with a non-zero value

	xor	dx,dx		; set ZF=1

	mov	cx,2

	div	cx		; Nx586 processor does not modify ZF on DIV

	jnz	not_nx_cpu	; not a NexGen processor if ZF=0 (modified)

test_cpuid:

; test if CPUID instruction is available

; new Nx586 or future CPU supports CPUID instruction

	pushfd			; get EFLAGs

	pop	eax

	mov	ecx,eax		; save it

	xor	eax,200000h	; modify ID bit

	push	eax

	popfd			; save it in new EFLAGS

	pushfd			; get new EFLAGS

	pop	eax		;

	xor	eax,ecx		; is ID bit changed?

	jnz	cpuid_present	; yes

	mov	byte ptr _cputype,Nx586	; no, current Nx586

	jz	cpuid_exit	; stop testing

nx_future_cpu:

; all NexGen's future processors feature a CPUID instruction

	mov	eax,ecx		; get original EFLAGS

	xor	eax,200000h	; modify ID bit

	push	eax

	popfd			; save it in new EFLAGS

	pushfd			; get new EFLAGS

	pop	eax		;

	xor	eax,ecx		; is ID bit changed?

	jz	not_nx_cpu	; no, not a NexGen processor

cpuid_present:

; execute CPUID instruction to get vendor name, stepping and feature info

	xor	eax,eax		

	CPU_ID

	mov	dword ptr _vendor_id,ebx

	mov	dword ptr _vendor_id[+4],edx

	mov	dword ptr _vendor_id[+8],ecx

	mov	bx,ds

	mov	es,bx

	mov	si,offset _vendor_id

	mov	di,offset NexGen_id

	mov	cx,12

	cld

	repe	cmpsb		; compare vendor ID string

	jne	not_nx_cpu

	mov	byte ptr _cpuid_flag,PRESENT

	cmp	eax,1		; check highest level

	jl	cpuid_exit

	mov	eax,1

	CPU_ID

	mov 	_cpu_signature,eax

	mov	_features_ecx,ecx

	mov	_features_edx,edx

	mov	_features_ebx,ebx

	shr	eax,8

	and	al,0fh

	mov	_cputype,al

	jmp	cpuid_exit	

not_nx_cpu:

	mov	byte ptr _nxcpu,NONE

cpuid_exit:

	ret

_get_nxcpu_type	endp

;==

; _get_nxfpu

;	This procedure identifies NexGen's floating point processor by

; testing the floating point status word.

;

;==

	public	_get_nxfpu

_get_nxfpu	proc	near

	mov	_nxfpu, PRESENT		; default to present

	fninit				; reset fpu status word

	mov	fp_status,0aa55h

	fnstsw	fp_status

	mov	ax,fp_status

	cmp	al,0

	je	nxfpu_end

	mov	_nxfpu, NONE		

nxfpu_end:		

	

	ret

_get_nxfpu	endp

	end

Figure � SEQ Figure * Arabic * MERGEFORMAT �
3
� CPUCLK.ASM

	page ,132

;***

;

; NexGen, Inc.		

; 1623 Buckeye Drive

; Milpitas, CA 95035

; Phone: (408)435-0202

;

;***

;***

; File: cpuclk.asm

;	Revision: 1.0

;

; This file contains a "C" callable routine:

;

;	1) _Nx586_clock_rate returns CPU clock rate in MHz*10 unit.

;	 (i.e. A value of 600 means 60.0 MHz)

;

; The routine returns the result in AX register. You need to declare

; the function prototypes in the C program as:

;

;	extern unsigned _Nx586_clock_rate (void);

;

; The _Nx586_clock_rate returns the clock rate in MHz*10 unit.;

;

; Notice: these routines are coded for SMALL memory model.

; You have to change the .MODEL directive if your C program is using

; a different memory model. For example, the following directive will

; make routines callable from a C program in the LARGE memory model.

;

;	.MODEL LARGE, C

;

; To assemble this file into an object file if you are using Microsoft

; Assembler (5.10 or later), type this command:

;

; 	masm cpuclk;

;

; If you are using Borland Turbo Assembler, type this command:

;

;	tasm cpuclk;

;

;

; Revision History:

;	1.0 - initial release

;

;***

.MODEL	small

.386p

.DATA

clkcnt	dw	16 dup (0)

.CODE

;==

; _Nx586_clock_rate

; 	This routine calculates the CPU clock rate by reading the time

; elapsed on a known number of CPU clock cycles. The total number of

; clock cycles is obtained from the cycle number defference of two

; instruction loops; a long cycle loop (DIV EBX) and a short cycle loop

; (DIV BX). The time elapsed on executing these number of cycles is

; the time difference of the long and short loop.

;

;	This routine gets the time difference of the two cycle loops for

; five times, and calculates their average. Then, the routine computes

; the CPU clock rate in MHz*100 unit, rounds off the last digit, and

; return the clock rate in MHz*10 unit. The calling program (C program)

; has to convert it to MHz unit.

;

; Input: none

; Output: AX = clock rate in MHz*10 unit

;==

	PUBLIC	_Nx586_clock_rate

_Nx586_clock_rate	PROC

	push	ds

	push	es

	mov	ax,@data

	mov	ds,ax

	mov	es,ax

	ASSUME	DS:@data

	mov	cx,1		; execute sub-routine once to make sure

				; cache hit

	xor	al,al		; a dummy call to clock routine

	call	getclk

	mov	di,offset clkcnt

	cld

	mov	cx,5		; run clock detection for 5 times

nextcount:

	push	cx

				; for each time:

	mov	cx,400		; perform 400 short delay loops (DIV BX)

	mov	al,1		; select short cycle loop

	call	getclk		; get timer tic

	mov	bx,ax		; save it

	mov	cx,400		; perform 400 long delay loops (DIV EBX)

	xor	al,al		; select long cycle loop

	call	getclk		; get timer tic

	sub	ax,bx		; calculate time difference of the two loops

	stosw			; save it

	pop	cx

	loop	nextcount

	xor	dx,dx		; init DX:AX

	xor	ax,ax

	mov	cx,5

	mov	si,offset clkcnt

totalcount:			; sum the total time difference in DX:AX

	add	ax,[si]

	adc	dx,+0

	inc	si

	inc	si

	loop	totalcount

	mov	bx,5		; calculate average time difference of

	div	bx		; each loop

	mov	bx,ax		; calculate clock rate in MHz*100 unit

	mov	ax,64000	; freq=(total cycle/time elapsed)*100

	mov	cx,1193		; =(("DIV EBX" clock - "DIV BX" clock)*100

	xor	dx,dx		; *400 loops)/(time difference/1.193 MHz)

	mul	cx		; *100

	div	bx		; =((34-18)*100*400/(timer difference/

				; 1193000))*100

				; =64000*1193/time difference

	xor	dx,dx

	add	ax,5		; round off the last digit

	adc	dx,+0

	mov	bx,10		; disgard the last digit

	div	bx		; return clock rate in MHz*10 unit

	pop	es

	pop	ds

	ret

_Nx586_clock_rate	ENDP

;===

; Getclk

;

;	Get timer tics after executing one of two clock loops. The long

; clock loop performs 100 "DIV EBX" instructions, and the short clock

; loop executes 100 "DIV BX" instructions. A loop count is passed through

; CX register to extend the total delay time.

;

;	The time tics returned from long and short clock loops can be used

; for clock rate calculation. The time difference of two clock loops is

; exactly same as the total cycle difference of the two loops. The total

; cycle difference is:

;

;		(34-18)*100*loopcount

;

; The Nx586 processor uses 34 cycles to execute "DIV EBX" instruction, and

; uses 18 cycles to execute "DIV BX" instruction.

;

; Input: CX = loop count

;	 AL = 0 to select long clock loop

;	 = 1 to select short clock loop

;

; Output: AX = timer tic from timer 2

;===

getclk	PROC	NEAR

	push	si

	push	di

	push	bx

	push	dx

	mov	bl,al		; save cycle loop selection

	xor	dx,dx

	in	al,61h		; get current value from port 61h

	and	al,0FCh		; disable Gate2 and Speaker Data

	out	61h,al

	mov	al,0B4h		; program timer 2 with mode 2 (rate generator)

	out	43h,al

	mov	al,0ffh		; init timer 2 starting count

	out	42h,al		; write LSB

	out	42h,al		; then MSB

	in	al,61h		; read port 61h again

	mov	di,ax		; save this value for later use (to disarm

				; timer 2

	or	al,1		; enable timer 2 by enabling Gate2

	cmp	bl,0		; check which loop to perform

	je	long_loop

	jmp	short_loop

long_loop:			

	cli			; disable interrupt

	out	61h,al		; arm timer 2

	mov	ebx,2		; set divisor to a simple value

	xor	edx,edx		; init EDX:EAX

	xor	eax,eax		; NOTE: the time spent on instructions after

				; arming the timer 2 and before the DIV loop

				; will be eliminated by calculating the

				; time difference of two cycle loops. (see

				; short_loop below)

next_long:			

	div	ebx		; perform "DIV EBX" for 100 times

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx	

	div	ebx

	dec	cx	

	jnz	next_long		

	jmp	end_loop		

short_loop:			; select short cycle loop

	cli			; disable interrupts

	out	61h,al		; arm timer 2

	mov	ebx,2		; init divisor to a simple value

	xor	edx,edx		; init EDX:EAX

	xor	eax,eax		; these three instructions are exactly same

				; the ones used in the long cycle loop

next_short:					

	div	bx 		; perform "DIV BX" for 100 times

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

	div	bx

		

	dec	cx

	jnz	next_short		

	jmp	end_loop	; same JMP instruction as the one used in the

	nop			; long loop

	nop

end_loop:					

	mov	ax,di		; retrieve saved value for port 61h

	out	61h,al		; disarm timer 2

	sti			; enable interrupt

	in	al,42h		; read LSB from timer 2

	xchg	ah,al

	in	al,42h		; read MSB

	xchg	ah,al

	neg	ax		; total count elasped

	pop	dx

	pop	bx

	pop	di

	pop	si

	ret

getclk	ENDP

	END

Figure � SEQ Figure * Arabic * MERGEFORMAT �
4
� NXCPU.C

//***

//

// NexGen, Inc.		

// 1623 Buckeye Drive

// Milpitas, CA 95035

// Phone: (408)435-0202

//

//***

//***

// File: nxcpu.c

// Revision: 1.0

//

// This sample C program identifies Nx586 processor and prints its information

// according to the data saved by the external procedures "get_nxcpu_type",

// "get_nxfpu", and "cpuclk". If the CPUID instruction is available, the

// vendor ID, family ID, stepping number and features supported will be

// displayed.

//

// The first two external functions can be found in CPUID.ASM. The

// CPUID.ASM is assembled in SMALL model, and should be linked with this

// program.

//

// The third routine, "Nx586_clock_rate", is found in CPUCLK.ASM. It should

// also be assembled in SMALL model, and linked with this program.

//

// Revision History:

//	1.0 - initial release

//

//***

#include <stdio.h>

extern	char nxcpu;

extern	char cputype;

extern	char cpuid_flag;

extern	unsigned long cpu_signature;

extern	unsigned long features_ecx;

extern	unsigned long features_edx;

extern	unsigned long features_ebx;

extern	char nxfpu;

extern	void get_nxcpu_type(void);

extern	void get_nxfpu(void);

extern	int Nx586_clock_rate(void);

void main (void)

{

	get_nxcpu_type();

	get_nxfpu();

	print_cpu_info();

}

print_cpu_info()

{

	if (!nxcpu) {

		printf ("This system does not have a NexGen processor.\n");

		exit(-1);

	}

	printf ("This system has an ");

	switch (cputype) {

		case 5:

		 printf ("Nx586[R] processor ");

		 if (nxfpu)

		 	printf ("and a floating point processor");

		 printf ("\n");

		 printf ("\nProcessor running at %d MHz\n", (int)Nx586_clock_rate()/10);

		 printf ("\n");

		 if (cpuid_flag)

		 	print_id_info();		//print more CPU information

		 break;

		default:

			//reserved for future expansion

		 break;

	}

}

print_id_info()

{

	printf ("Vendor ID: NexGenDriven\n");

	printf ("Processor Family: %x\n",(char)((cpu_signature>>8) & 0xff));

	printf ("Stepping: %x\n",(char)(cpu_signature & 0xf));

	printf ("Feature Flags: %x\n",(char)(features_edx & 1));

}

CPUID Instruction

The CPUID instruction is an application level instruction that software can execute to identify the processor and its feature set. It can be executed from any privilege level. Software can use this information to tune functionality for the specific processor and its features.

Not all processors implement the CPUID instruction. Before executing the instruction, software should first test to see if the instruction exists. Existence of the CPUID instruction is indicated by the ID bit (21) in the EFLAGS register. If this bit is writeable, the CPUID instruction exists.

Opcode: 0F A2

Input: EAX

Output: EAX, EBX, ECX, EDX

Function:

EAX = 0:

	EAX = Highest input value recognized by CPUID instruction

	EBX, EDX, ECX = Vendor identification string

EAX = 1:

	EAX = Processor signature

	EBX = Reserved

	ECX = Reserved

	EDX = Feature flags

EAX > 1:

	EAX = Undefined

	EBX = Undefined

	ECX = Undefined

	EDX = Undefined

	Highest Input Value:

The highest input value recognized by the CPUID instruction in the Nx586 or Nx686 is 1. If an input value greater than 1 is used the values returned in EAX, EBX, ECX, and EDX are undefined. Future processors may implement higher values and the results returned by these values will be defined at that time.

	Vendor Identification String:

The vendor identification string identifies NexGen as the vendor for the CPU. It does so by returning “NexGenDriven” in the EBX, EDX, and ECX registers.

EBX = 4778654Eh (GxeN)

EDX = 72446E65h (rDne)

ECX = 6E657669h (nevi)

	Processor Signature:

The processor signature identifies the specific CPU by providing information regarding its type, family, model, and stepping revision. The information is formatted as follows:

EAX[0:3] = Stepping Revision

EAX[4:7] = CPU Model

EAX[8:11] = CPU Family

EAX[12:31] = Reserved

	Feature Flags:

The feature flags indicate the existence or presence of specific features. In most cases a “1” indicates the feature is present. The following is an explanation of the feature flags currently defined. Reserved bits will be used in the future for new features as they are added.

EDX[0] = Floating Point Unit (1 indicates floating point unit is present, 0 indicates no floating point unit)

EDX[1:31] = Reserved

Note: All registers and bits marked “Reserved” should return 0.

Table � SEQ Table * Arabic * MERGEFORMAT �
2
� NexGen Processor Signatures

CPU Family�CPU Model�Stepping Revision1�Description��0101�0000�xxxx�Nx586 Processor��0110�0000�xxxx�Nx686 Processor��Notes:

1. Contact NexGen for specific stepping revision information.

PRELIMINARY	Nx586 Processor Recognition	�page * ROMAN�iii�

Notice: These materials are proprietary to Nexgen, Inc. and are provided pursuant to a confidentiality agreement for your evaluation ONLY. Any violation is subject to legal action. Printed: � TIME \@ "MMMM d, yyyy" �
September

20
,

1995
�

Figures	Confidential	�

�		Table of Contents

�page * ROMAN�iv�	Nx586 Processor Recognition	ADVANCED

Notice: These materials are proprietary to Nexgen, Inc. and are provided pursuant to a confidentiality agreement for your evaluation ONLY. Any violation is subject to legal action. Printed: � TIME \@ "MMMM d, yyyy" �
September

20
,

1995
�

PRELIMINARY	Nx586 Processor Recognition	�page * ROMAN�
iii
�

	ORDER # 754006-02

Processor Recognition		�

�		Processor Recognition

�page * ROMAN�
2
�	Nx586 Processor Recognition	PRELIMINARY

	ORDER #
754006-02

PRELIMINARY	Nx586 Processor Recognition	�page * ROMAN�
3
�

	ORDER # 754006-02

