
2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

APPLICATION
NOTE

AP-578

Software and
Hardware
Considerations for
FPU Exception
Handlers for Intel
Architecture
Processors

Order Number: 243291-002

February 1997



AP-578

3/11/97 10:25 AM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

2

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The Pentium®  and Pentium Pro processor may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

        Intel Corporation
        P.O. Box 7641
        Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http:\\www.intel.com

Copyright © Intel Corporation 1996, 1997.

* Third-party brands and names are the property of their respective owners.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

3

CONTENTS

PAGE PAGE

1.0 INTRODUCTION AND READING GUIDE .3

2.0 MS-DOS* COMPATIBLE HANDLERS AND
THEIR ISSUES OVER GENERATIONS ...5

2.1 Origin of MS-DOS* Mode: 8088 and
8087 .....................................................5

2.2 Development of MS-DOS* Mode with 80286
and 80287; Intel386  Processor and
Intel387 Math Coprocessor ...................5

2.2.1 SPECIAL HARDWARE FOR THE
80287 INTERFACE ........................6

2.2.2 SPECIAL HARDWARE FOR THE
INTEL387 MATH COPROCESSOR
INTERFACE ..................................6

2.3 FERR# & IGNNE# with Intel486™  and
Pentium  Processors with CR0.NE=0 ..7

2.3.1 BASIC RULES: WHEN FERR# IS
GENERATED ................................7

2.3.2 RECOMMENDED EXTERNAL
HARDWARE TO SUPPORT MS-DOS*
COMPATIBILITY ...........................8

2.3.3 “NO-WAIT” FPU INSTRUCTIONS CAN
GET FPU INTERRUPT IN
WINDOW ..................................... 10

2.4 Pentium  Pro Processor with
CR0.NE=0 .......................................... 13

3.0 RECOMMENDED PROTOCOL FOR
MS-DOS™  AND WINDOWS* 95
COMPATIBLE HANDLERS ................... 14

3.1 Numeric Exceptions and their Defaults 14
3.1.1 TWO OPTIONS FOR HANDLING

NUMERIC EXCEPTIONS ............ 14
3.1.2 AUTOMATIC EXCEPTION HANDLING :

USING MASKED EXCEPTIONS ..15

3.2 Software Exception Handling ...............16
3.3 Synchronization Required for Use of FPU

Exception Handlers .............................17
3.3.1 EXCEPTION SYNCHRONIZATION:

WHAT, WHY AND WHEN ............17
3.3.2 EXCEPTION SYNCHRONIZATION

EXAMPLES..................................17
3.3.3 PROPER EXCEPTION

SYNCHRONIZATION IN GENERAL 18
3.4 FPU Exception Handling Examples .....18
3.5 Need for Preserving the State of IGNNE#

Circuit if Use FPU and SMM ...............22
3.6 Considerations When FPU Shared

Between Tasks ...................................22
3.6.1 SPECULATIVELY DEFERRING FPU

SAVES, GENERAL OVERVIEW ..23
3.6.2 TRACKING FPU OWNERSHIP .....24
3.6.3 INTERACTION OF FPU STATE

 SAVES AND FP EXCEPTION
ASSOCIATION ............................24

3.6.4 INTERRUPT ROUTING FROM THE
KERNEL.......................................26

4.0 DIFFERENCES FOR HANDLERS USING
NATIVE MODE .......................................27

4.1 Origin with 80286 and 80287; Intel386™
Processor
and Intel387 Math Coprocessor ..........27

4.2 Changes with Intel486  , Pentium  and
Pentium
Pro Processors with CR0.NE=1 ..........27

4.3 Considerations When FPU Shared Between
Tasks Using Native Mode ...................27



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

4

1.0 INTRODUCTION AND READING
GUIDE

The primary purpose of this application note is to
provide information to help software engineers
write the most robust Floating-Point Unit (FPU)
exception handlers possible. This note also
provides the basic hardware information needed to
design the MS-DOS* compatible interface1 for the
most recent generations of Intel Architecture
processors, starting with the Intel486™  processor.
(Because of the small amount of new design
activity, the hardware interfaces for the 8086
through the Intel386™  processors are treated only
briefly.) The third purpose is to provide a
compendium of the history of the development and
variations of the Intel Architecture Floating-Point
Units (FPUs) as relevant to their exception
handling. Following is a list of Intel Architecture
processors and math coprocessors in
chronological order.

• 8086 processor

• 8087 math coprocessor

• 80286 processor

• 80287 math coprocessor

• Intel386™  processor

• Intel387 math coprocessor

• Intel486™  DX processor
(with integrated FPU)

• Intel486 SX processor

• Intel487 math coprocessor

• Pentium®  processor (with integrated FPU)

• Pentium Pro processor (with integrated FPU)

Much of this material is in various sections of the
Pentium  Processor Family Developer’s Manual,
Volume 3. There is also some material in this
application note that is not published elsewhere.
On the other hand, there is much additional

                                                                
Footnotes
1 WINDOWS* 95 and WINDOWS 3.1 (and earlier

versions) use almost the same interface as MS-
DOS*, and the recommendations herein for an
MS-DOS compatable system apply to all three
operating systems.

material on the FPU from the Pentium  Processor
Family Developer’s Manual, Volume 3 which has
not been reproduced here, including the details on
each of its specific exceptions. Much of this will be
useful in writing FPU exception handlers, so
Volume 3 should be used as an essential
reference along with this appliction note.

NOTE

The following manuals referenced in this
document are archived and are available on
Intel’s web site at http://www.intel.com:
Pentium®  Processor Family Developer’s
Manual, Volume 1: Pentium Processor
(Order Number 241428-004) and the
Pentium®  Processor Family Developer’s
Manual, Volume 3:  Architecture and
Programming Manual (Order Number
241430-004).

The materials are presented in a mostly
chronological order, which supports the history
preservation purpose, and also minimizes forward
references. Thus the main body of this application
note begins with Section 2 which covers the six
presently available generations of Intel
Architecture FPUs in chronological order starting
with the 8087. The history of the FPU exception
handling has been complicated both by Intel’s
successful efforts to improve the performance and
flexibility of the FPU through the generations, and
by the decision to support upward compatibility for
a large customer base which was implementing
FPU exception handling in a way compatible with
the first 8088 Personal Computers (PCs) and
major Operating Systems (OSs). This second
complication has resulted in two different systems
or modes for FPU exception handling starting with
the 80286 and 80287.

Beginning with the 80286 and 80287, Intel
provided a dedicated input pin (ERROR#) on the
80286, to be connected to the ERROR# output pin
on the 80287, for the FPU exceptions. When
asserted, the ERROR# input triggers interrupt 16.
The use of this dedicated interrupt for the FPU
exception handler is referred to as the “native
mode”, and is recommended by Intel. However, for
reasons explained in Sections 2.1 and 2.2, the
majority of the Intel Architecture (IA) customer
base has not been using the native mode, but
rather the “MS-DOS compatible mode” for FPU
exception handling. Since the MS-DOS compatible
mode has the largest customer base, is the more
complicated mode, and has changed the most
between generations, it is the main focus of
Section 2. In addition to the history of the



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

5

architecture and interfaces for FPU exception
handling, Section 2 provides the basic hardware
information needed to design the MS-DOS
compatible interface for the most recent
generations of IA processors, and discusses in
detail several important system implications.

Section 3 describes the recommended protocol for
writing MS-DOS compatible FPU exception
handlers, with various options, along with
discussions of several problems and how to avoid
them. Most of the material is also applicable to
native mode handlers.

Although the native mode of FPU exception
handling was available from the second generation
of the six presently available generations of the
Intel Architecture FPUs (and brief discussions of it
are provided in Section 2), we give the main
presentation of it last, in Section 4. This is more
chronologically consistent than it would seem
because it has not become widely used until
recently.

A software engineer who needs to write an MS-
DOS compatible FPU exception handler but does
not want to review the FPU history (or read any
more about hardware than necessary) may skip
Section 2 and begin reading Section 3. Then some
subsections of Section 2 should be read as
needed when referenced in Section 3. Someone
writing a native mode exception handler that wants
to read only what’s necessary should start with
Section 4, but then should also read Section 3, as
most of the recommended protocol for FPU
exception handling is the same for MS-DOS
compatible and native modes and is not repeated
in Section 4. Studying Section 4 first will allow this
reader more easily to skip references back into
Section 2 which are not relevant to the native
mode.

A note on TERMINOLOGY: There are many
variations of the words which are used to label an
(unmasked) FPU error condition, and also the
code which handles it. “Error”, “exception” and
“fault” are used to refer to the condition. Such a
condition results in an interrupt, if no mask or
block is in effect along the interrupt pathway. The
code which handles the interrupt can be referred
to as an error or exception or fault handler, or an
interrupt or exception service routine, etc. The
phrase “exception handler” has been used
consistently (as much as possible) in this
application note, for several reasons: “Exception”
is less general than interrupt (which includes
external hardware interrupts and software

interrupts, as well as the processor problem
conditions called exceptions or faults), but
correctly more general than error or fault (because
e.g. a precision exception caused by the fact that
the number 1/3 cannot be exactly represented in
the 80 bit FPU format is not really due to any
mistake or error!). However, the reader should be
aware that a number of the variations given above
can be found in the literature, and that when
applied to the FPU, they all mean the same thing.

2.0 MS-DOS* COMPATIBLE
HANDLERS AND THEIR ISSUES
OVER GENERATIONS

2.1 Origin of MS-DOS* Mode: 8088
and 8087

The 8087 has an output pin, INT, which it asserts
when an unmasked exception occurs. There is no
dedicated pin or interrupt vector number in the
8088 or 8086  specific for an FPU error assertion.
Intel recommended that the FPU INT be routed to
the 8088 or 8086 INTR pin through an 8259A
Programmable Interrupt Controller (PIC), and not
to the NMI input. However, the original PC design
attached INT to NMI anyway, because by the time
the 8087 was available, the original PC had
already assigned other functions to the 8 inputs of
the single PIC used in that design.

2.2 Development of MS-DOS*
Mode with 80286 and 80287;
Intel386  Processor and
Intel387 Math Coprocessor

The 80286 and 80287 and Intel386 processor and
Intel387 math coprocessor pairs are each provided
with ERROR# pins that are recommended to be
connected between the processor and FPU. If this
is done, when an unmasked FPU exception
occurs, the FPU records the exception, and
asserts its ERROR# pin. The processor
recognizes this active condition of the ERROR#
status line at the next WAIT or ESC instruction in
its instruction stream, and branches to the FPU
exception handler at interrupt vector 16. This is the
native mode.

However, it was important to maintain maximum
compatibility with the already significant 8088 and
8086 PC software base, where the NMI vector (#2)
was used for FPU exceptions and vector 16 was



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

6

used for the BIOS video software interrupt. So the
original IBM PC-AT* design for the 80286 and
80287 maintained Vector #16 for the BIOS video,
and vector 2 was shared between the FPU
exception and the new parity checking feature. A
parity error detected by external hardware directly
triggered vector 2 through the NMI pin. The FPU
exception was handled by tying the 80286 RROR#
input permanently high, and the 80287 ERROR#
output was tied to the IRQ13 interrupt input on the
second (cascaded) PIC in the PC-AT design. The
PIC was programmed to issue vector 75H when
IRQ13 was triggered.2 But to maintain
compatibility with older PC software that expected
to access its own FPU exception handler by
changing vector 2, the BIOS routine activated by
INT 75H branches to INT 2. The standard INT 2
routine tests to see if the signal is due to the NMI
pin (in which case it branches to the Parity Error
handler) or an FPU exception.

2.2.1 SPECIAL HARDWARE FOR THE
80287 INTERFACE

It is necessary to guarantee, in the case of an
80287 exception, that the exception will be
handled through the external loop using IRQ13 in
the cascaded PIC before other 80287 instructions
are sent over from the 80286. This is done by
asserting BUSY# to the 80286, which normally
means that the 80287 is still busy with a previous
instruction, and so blocks the 80286 from sending
another until BUSY# is de-asserted. This
additional use of BUSY# is implemented by an
edge triggered flip-flop which latches BUSY# using
ERROR# from the 80287 as a clock. The output of
this latch is OR’ed with the BUSY# output of the
80287 and drives the BUSY# input of the 80286.
This PC-AT scheme effectively delays

deactivation of BUSY# at the 80286 whenever an
80287 ERROR# is signaled.

Since the BUSY# signal to the 80286 remains
active after an exception, the IRQ13 interrupt

                                                                
Footnotes
2 WINDOWS 95 and WINDOWS 3.1 (and earlier

versions) use interrupt 5DH instead of 75H, but
the recommendations herein apply to systems
using these WINDOWS operating systems, as
well as MS-DOS.

(exception) handler (accessed through interrupt
vector 75H) is guaranteed to execute before any
other 80287 instruction can begin (except for
some special control instructions).The IRQ13
handler clears the BUSY# latch (by writing to a
special I/O port defined at 0F0H), thus allowing
execution of 80287 instructions to proceed. The
handler then branches to the NMI handler
(interrupt vector 2), where the user defined
numeric exception handler resides in PC
compatible systems. Thus the PC-AT scheme
approximates the exception reporting scheme
between the 8087 and 8088 in the original PC.

2.2.2 SPECIAL HARDWARE FOR THE
INTEL387™  MATH COPROCESSOR
INTERFACE

The Intel386 processor can use a PC-AT
compatible interface to communicate with an
Intel387 math coprocessor, that is similar to the
one in the 80286 and 80287 system above. As
with the 80286, the Intel386 processor ERROR#
pin should be tied permanently inactive (high), and
the Intel387 ERROR# output used both to drive
IRQ13, and to latch BUSY# in a flip-flop. The
IRQ13 handler (vector 75H) should clear the
BUSY# latch and branch to the NMI handler, as in
the 80286 case.

However, an additional hardware feature is
needed to manage the PEREQ signal to the
Intel386 processor. After the Intel387 math
coprocessor asserts ERROR#, and then its
BUSY# signal has gone inactive, external
hardware must re-assert the PEREQ signal to the
Intel386 processor. This is needed for store
instructions (for example, FST mem ) because the
Intel387 math coprocessor drops PEREQ once it



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

7

signals an exception. While the Intel386 processor
has not yet recognized the occurrence of the
exception, it still expects the data transfers to
complete via PEREQ re-activation. It is
permissible for the Intel386 processor to receive
undefined data during such I/O read cycles.
Disabling the Intel387 math coprocessor is not
necessary, because the dummy data transfer
cycles directed to the Intel387 math co processor
when PEREQ is externally reactivated for the
Intel386 processor will not disturb the operation of
the Intel387math coprocessor. The IRQ13
interrupt handler should remove the extension of
BUSY# and also the re-activation of PEREQ via a
write to PC/AT compatible hardware at I/O port
0F0H.

An Intel387 math coprocessoroffers significant
performance improvements over the 80287, but
because the Intel386 processor was ready for
production before the Intel387math coprocessor,
the Intel386 processor was designed to work with
either the 80287 or Intel387 math coprcoessors.
The Intel386 processor automatically configures
itself for the attached FPU on reset by testing the
ERROR# pin, and setting or clearing bit 4 in CR0
(see Section 10.1.3 in the Pentium  Processor
Family Developer’s Manual, Volume 3). This bit is
the ET (Extension Type) bit, and it will be set if
ERROR# is low (meaning an Intel387 is attached)
and cleared if ERROR# is high (meaning there is
an 80287 or no FPU attached). The MS-DOS
compatible hardware interface is similar to that for
the Intel386 processor  and Intel387 math
coprocessor combination.

2.3 FERR# & IGNNE# with
Intel486™  and Pentium
Processors with CR0.NE=0

In the Intel486 and Pentium  processors, more
enhancements and speedup features have been
added to the corresponding FPUs. Also, the FPU
is built into the same chip as the processor, which
allows further increases in speed. MS-DOS
compatibility for exception handling has also been
built in, with the NE bit in control register CR0
selecting the MS-DOS compatible mode if made
zero. (NE=1 selects the native or internal mode,
which generates Interrupt 16, which is the same
as the native version of exception handling for the
80286 and 80287 and the Intel386 processors and
Intel 387 math coprocessor.)

In MS-DOS compatible mode, the FERR#
(Floating-point ERRor) output replaces the

ERROR# signal from the previous generations,
and is connected to a PIC. A new input signal,
IGNNE# ( IGNore Numeric Error), is provided to
allow the FPU exception handler to execute FPU
instructions, if desired, without first clearing the
error condition and without triggering the interrupt
a second time. This IGNNE# feature is needed to
replicate the capability that was provided on MS-
DOS compatible Intel 80286 and 80287 and the
Intel386 processors and INtel 387 math
coprocessor-based systems by turning off the
BUSY# signal, when inside the FPU exception
handler, before clearing the error condition.

Note that Intel, in order to provide Intel486
processors for market segments which had no
need for an FPU, created the “SX” versions.
These Intel486 SX processors did not contain the
floating-point unit. Intel also produced Intel487 SX
math coprocessors for end users who later
decided to upgrade to a system with an FPU.
These Intel487 SX math coprocessors are similar
to standard Intel486 processors with a working
FPU on board. Thus the external circuitry
necessary to support the MS-DOS compatible
mode for Intel487 SX math coprocessors is the
same as for standard Intel486 DX processors.

Note that the special DP (Dual Processing) mode
for Pentium processors, and also the more general
Intel MultiProcessor Specification for systems with
multiple Pentium or Pentium Pro processors,
support FPU exception handling only in the native
mode. Intel does not recommend using the MS-
DOS compatible FPU mode for systems using
more than one processor.

2.3.1 BASIC RULES: WHEN FERR# IS
GENERATED

• Assume the following conditions: NE=0, the
IGNNE# input is de-asserted, and then an
FPU instruction causes an unmasked FPU
exception. Then in most cases, deferred error
reporting occurs. This means that the
processor does not respond immediately, but
rather freezes just before executing the next
WAIT or FPU instruction (except for “No-
Wait” instructions, which the FPU executes
regardless of an error condition).

• At the same time that the processor freezes,
it also asserts the FERR# output.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

8

• The frozen processor waits for an external
interrupt, which must be supplied by external
hardware in response to the FERR#
assertion.

• In MS-DOS compatible systems, FERR# is
fed to the IRQ13 input in the cascaded PIC,
which generates interrupt 75H, which then
branches to interrupt 2, as described above
for the 80286and 80287 and Intel386
processor and Intel387 processor-based
systems.

These cases in which FERR# is not asserted at
the time of the error, but rather at the next FPU or
WAIT instruction, include all exceptions caused by
the basic arithmetic instructions (including FADD,
FSUB, FMUL, FDIV, FSQRT, FCOM and
FUCOM), precision exceptions caused by all types
of FPU instructions, and numeric underflow and
overflow on all types of FPU instructions except
stores to memory. We will refer to these cases as
deferred (error reporting).

On the other hand, there are some exceptions,
which when caused by some instructions, drive
FERR# at the time that the exception occurs.
These include FPU stack fault, invalid operation
and denormal exceptions caused by all
transcendental instructions, FSCALE, FXTRACT,
FPREM and others, and all exceptions (except
precision) when caused by FPU store instructions.
These cases are called immediate (error
reporting). (These cases will, like the deferred,
cause the processor to freeze just before
executing the next WAIT or FPU instruction if the
error condition has not been cleared by that time.)
Note that in general, whether an FPU exception
case is deferred or immediate depends both on
which exception occurred, and which instruction
caused that exception. A complete specification of
these cases, which applies also to the Intel486, is
given in Section 5.1.21 in the Pentium  Processor
Family Developer’s Manual,  Volume 1.

If NE=0 but the IGNNE# input is active while an
unmasked FPU exception is in effect, the
processor disregards the exception, does not
assert FERR#, and continues. If IGNNE# is then
de-asserted and the FPU exception has not been
cleared, the processor will respond as described

above. (That is, an immediate exception case will
assert FERR# immediately. A deferred exception
case will assert FERR# and freeze just before the

next FPU or WAIT instruction.) The assertion of
IGNNE# is intended for use only inside the FPU
exception handler, where it is needed if one wants
to execute non-control FPU instructions for
diagnosis, before clearing the exception condition.
When IGNNE# is asserted inside the exception

handler, a preceding FPU exception has already
caused FERR# to be asserted, and the external
interrupt hardware has responded, but IGNNE#
assertion still prevents the freeze at FPU
instructions. Note that if IGNNE# is left active
outside of the FPU exception handler, additional
FPU instructions may be executed after a given
instruction has caused an FPU exception. In this
case, if the FPU exception handler ever did get
invoked, it could not determine which instruction
caused the exception.

To properly manage the interface between the
processor’s FERR# output, its IGNNE# input, and
the IRQ13 input of the PIC, additional external
hardware is needed. A recommended
configuration is described below.

2.3.2 RECOMMENDED EXTERNAL
HARDWARE TO SUPPORT MS-DOS*
COMPATIBILITY

Figure 1 below provides an external circuit which
will assure proper handling of FERR# and IGNNE#
when an FPU exception occurs. In particular, it
assures that IGNNE# will be active only inside the
FPU exception handler without depending on the
order of actions by the exception handler. Some
hardware implementations have been less robust
because they have depended on the exception
handler to clear the FPU exception interrupt
request to the PIC (FP_IRQ signal) before the
handler causes FERR# to be de-asserted by
clearing the exception from the FPU itself. Figure
2 below shows the details of how IGNNE# will
behave when the circuit in Figure 1 is
implemented. The temporal regions within the FPU
exception handler activity are described as
follows:

1. The FERR# signal is activated by an FPU
exception and sends an interrupt request
through the PIC to the processor’s INTR pin.

2. During the FPU interrupt service routine
(exception handler) the processor will need to
clear the interrupt request latch (Flip Flop #1).
It may also want to execute non-control FPU
instructions before the exception is cleared



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

9

from the FPU. For this purpose the IGNNE#
must be driven low. Typically in the PC
environment an I/O access to Port 0F0H
clears the external FPU exception interrupt
request (FP_IRQ). In the recommended
circuit, this access also is used to activate
IGNNE#. With IGNNE# active the FPU
exception handler may execute any FPU
instruction without being blocked by an active
FPU exception.

3. Clearing the exception within the FPU will
cause the FERR# signal to be deactivated
and then there is no further need for IGNNE#
to be active. In the recommended circuit, the

deactivation of FERR# is used to deactivate
IGNNE#. If another circuit is used, the
software and circuit together must assure that
IGNNE# is deactivated no later than the exit
from the FPU exception handler.

4. In the circuit in Figure 1 when the FPU
exception handler accesses I/O port 0F0H it
clears the IRQ13 interrupt request output
from Flip Flop #1 and also clocks out the
IGNNE# signal (active) from Flip Flop #2. So
the handler can activate IGNNE#, if needed,
by doing this 0F0H access before clearing



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

10

Intel486 ,
Pentium® , or
Pentium Pro
processor

FF #1

FF #2

FP_IRQ

LEGEND
FF #n: Flip Flop #n
CLR: Clear or reset

Figure 1.  Recommended Circuit for MS-DOS* Compatible FPU Exception Handling

the FPU exception condition (which de-asserts
FERR#). However, the circuit does not depend on
the order of actions by the FPU exception handler
to guarantee the correct hardware state upon exit
from the handler. The flip flop which drives IGNNE#
to the processor has its CLEAR input attached to
the inverted FERR#. This ensures that IGNNE# can
never be active when FERR# is inactive. So if the
handler clears the FPU exception condition before
the 0F0H access, IGNNE# does not get activated
and left on after exit from the handler.

2.3.3 “NO-WAIT” FPU INSTRUCTIONS CAN
GET FPU INTERRUPT IN WINDOW

The Pentium and the Intel486 processors
implement the “No-Wait” Floating-Point instructions
(FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW,
FNSTCW, FNENI, FNDISI or FNSETPM - See
Section 6.3.7 in the Pentium®  Processor Family
Developer's Manual, Volume 3) in the MS-DOS
Compatibility mode (CR0.NE = 0) in the following
manner:



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

11

If an unmasked numeric exception is pending from
a preceding FPU instruction, a member of the “No-
Wait” class of instructions will, at the beginning of
its execution, assert the FERR# pin in response to
that exception just like other FPU instructions, but
then, unlike the other FPU instructions, FERR# will
be de-asserted. This de-assertion was implemented
to allow the “No-Wait” class of instructions to
proceed without an interrupt due to any pending
numeric exception. However, the brief assertion of
FERR# is sufficient to latch the FPU exception
request into most hardware interface
implementations (including Intel’s recommended
circuit).

All the FPU instructions are implemented such that
during their execution, there is a window in which
the processor will sample and accept external
interrupts. If there is a pending interrupt, the
processor services the interrupt first before
resuming the execution of the instruction.
Consequently, it is possible that the “No-Wait”
Floating-Point instruction may accept the external
interrupt caused by it’s own assertion of the FERR#
pin in the event of a pending unmasked numeric
exception, which is not an explicitly documented
behavior of a “No-Wait” instruction. This process is
illustrated by Figure 3, which is followed by a
detailed description of the several cases possible.

0F0H Address
   Decode

Figure 2.  Behavior of Signals During FPU Exception Handling



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

12

E x c e p t io n  g e n e ra t in g
F P  i n s t r u c t i o n

S t a r t  o f  th e  
“N o - W a it” F P

i n s t r u c t i o n

A s s e r t io n  O f   F E R R #
b y  t h e  p r o c e s s o r

S y s t e m  D e p e n d e n t
D e l a y

E x t e r n a l  I n t e r r u p t  
S a m p lin g  W i n d o w

W i n d o w  C L O S E D

C a s e  I

C a s e  I I

A s s e r t io n  O f   IN T R
p i n  b y  t h e  s y s t e m

Figure 3: Timing of Receipt of External Interrupt

Figure 3 assumes that a floating-point instruction
which generates a “deferred” error (as defined
above in the Section 2.3.1), which asserts the
FERR# pin only on encountering the next floating-
point instruction, causes an unmasked numeric
exception. Assume that the next floating-point
instruction following this instruction is one of the
“No-Wait” floating-point instructions. The FERR#
pin is asserted by the processor to indicate the
pending exception on encountering the “No-Wait”
floating-point instruction. After the assertion of the
FERR# pin the “No-Wait” floating-point instruction
opens a window where the pending external
interrupts are sampled.

Then there are two cases possible depending on
the timing of the receipt of the interrupt via the INTR
pin (asserted by the system in response to the
FERR# pin) by the processor.

Case 1
If the system responds to the assertion of FERR#
pin by the “No-Wait” floating-point instruction via the
INTR pin during this window then the interrupt is
serviced first, before resuming the execution of the
“No-Wait” floating-point instruction.

Case 2
If the system responds via the INTR pin after the
window has closed then the interrupt is recognized
only at the next instruction boundary.

There are two other ways, in addition to Case I
above, in which a “No-Wait” floating-point
instruction can service a numeric exception inside
its interrupt window. First, the first floating-point
error condition could be of the “immediate” category
(as defined in Section 2.3.1) that assert FERR#



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

13

immediately. If the system delay before asserting
INTR is long enough, relative to the time elapsed
before the “No-Wait” floating-point instruction, INTR
can be asserted inside the interrupt window for the
latter. Second, consider two “No-Wait” FPU
instructions in close sequence, and assume that a
previous FPU instruction has caused an unmasked
numeric exception. Then if the INTR timing is too
long for an FERR# signal triggered by the first “No-
Wait” instruction to hit the first instruction’s interrupt
window, it could catch the interrupt window of the
second.

The possible malfunction of a “No-Wait” FPU
instruction explained above cannot happen if the
instruction is being used in the manner for which
Intel originally designed it. The “No-Wait
instructions were intended to be used inside the
FPU exception handler, to allow manipulation of the
FPU before the error condition is cleared, without
hanging the processor because of the FPU error
condition, and without the need to assert IGNNE#.
They will perform this function correctly, since
before the error condition is cleared, the assertion
of FERR# that caused the FPU error handler to be
invoked is still active. Thus the logic that would
assert FERR# briefly at a “No-Wait” instruction
causes no change since FERR# is already
asserted. The “No-Wait” instructions may also be
used without problem in the handler after the error
condition is cleared, since now they will not cause
FERR# to be asserted at all.

If a “No-Wait” instruction is used outside of the FPU
exception handler, it may malfunction as explained
above, depending on the details of the hardware
interface implementation and which particular
processor is involved. The actual interrupt inside
the window in the “No-Wait” instruction may be
blocked by surrounding it with the instructions:
PUSHFD, CLI, “No-Wait”, then POPFD. (CLI blocks
interrupts, and the push and pop of flags preserves
and restores the original value of the interrupt flag.)
However, if FERR# was triggered by the “No-Wait”,
its latched value and the PIC response will still be in
effect. Further code can be used to check for and
correct such a condition, if needed. Section 3.6
(Considerations When FPU Shared Between
Tasks) discusses an important example of this type
of problem and gives a solution.

2.4 Pentium  Pro Processor with
CR0.NE=0

When bit NE=0 in CR0, the MS-DOS* compatible
mode of the Pentium Pro processor provides
FERR# and IGNNE# functionality that is almost
identical to the Intel486 and Pentium processors.
The same external hardware, as described in
Section 2.3.2 above, is recommended for the
Pentium Pro processor as well as the two previous
generations. The only change to MS-DOS
compatible FPU exception handling with the
Pentium Pro processor is that all exceptions for all
FPU instructions cause immediate error reporting.
That is, FERR# is asserted as soon as the FPU
detects an unmasked exception; there are no cases
in which error reporting is deferred to the next FPU
or WAIT instruction. (As is discussed in Section
2.3.1, most exception cases in the Intel486 and
Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon
detection of an unmasked FPU error, this certainly
does not mean that therequested interrupt will
always be serviced before the next instruction in the
code sequence is executed. To begin with, the
Pentium Pro processor executes several
instructions simultaneously. There also will be a
delay, which depends on the external hardware
implementation, between the FERR# assertion from
the processor and the responding INTR assertion to
the processor. Further, the interrupt request to the
PICs (IRQ13) may be temporarily blocked by the
OS, or delayed by higher priority interrupts, and
processor response to INTR itself is blocked if the
OS has cleared the IF bit in EFLAGS.

However, just as with the Intel486 and Pentium
processors, if the IGNNE# input is inactive, a
floating-point exception which occurred in the
previous FPU instruction and is unmasked causes
the processor to freeze immediately when
encountering the next WAIT or FPU instruction
(except for “No-Wait” instructions). This means that
if the FPU exception handler has not already been
invoked due to the earlier exception (and therefore
the handler has not cleared that exception state
from the FPU), the processor is forced to wait for
the handler to be invoked and handle the exception,
before the processor can execute another WAIT or
FPU instruction.



AP-578

14

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

As explained in Section 2.3.3, if a “No-Wait”
instruction is used outside of the FPU exception
handler, in the Intel486 and Pentium processors, it
may accept an unmasked exception from a
previous FPU instruction which happens to fall
within the external interrupt sampling window that is
opened near the beginning of execution of all FPU
instructions. This will not happen in the Pentium Pro
processor, because this sampling window has been
removed from the “No-Wait” group of FPU
instructions.

3.0 RECOMMENDED PROTOCOL
FOR MS-DOS  AND
WINDOWS* 95 COMPATIBLE
HANDLERS3

The activities of numeric programs can be split into
two major areas: program control and arithmetic.
The program control part performs activities such
as deciding what functions to perform, calculating
addresses of numeric operands, and loop control.
The arithmetic part simply adds, subtracts,
multiplies, and performs other operations on the
numeric operands. The processor is designed to
handle these two parts separately and efficiently.
An FPU exception handler, if a system chooses to
implement one, is often one of the most
complicated parts of the program control code.

3.1 Numeric Exceptions and their
Defaults

The FPU can recognize six classes of numeric
exception conditions while executing numeric
instructions:

                                                                
Footnotes
3 Although there are some differences in the way

FPU exceptions are handled between MS-DOS,
and WINDOWS 95 and WINDOWS 3.1 (and
earlier versions), the WINDOWS operating
systems operate the processor in the MS-DOS
compatable mode, and the recommended protocol
given here applies to all these systems. On the
other hand, current versions of WINDOWS NT
use the FPU native mode.

1. #I —  Invalid operation
#IS Stack fault
#IA IEEE standard invalid operation

2. #Z Divide-by-zero

3. #D Denormalized operand

4. #O Numeric overflow

5. #U Numeric underflow

6. #P Inexact result (precision)

For complete details on these exceptions and their
defaults, see the Pentium  Processor Family
Developer’s Manual, Volume 3, Sections 7.1.7
through 7.1.13.

3.1.1 TWO OPTIONS FOR HANDLING
NUMERIC EXCEPTIONS

Depending on options determined by the software
system designer, the processor takes one of two
possible courses of action when a numeric
exception occurs:

1. The FPU can handle selected exceptions
itself, producing a default fix-up that is
reasonable in most situations. This allows the
numeric program execution to continue
undisturbed. Programs can mask individual
exception types to indicate that the FPU
should generate this safe, reasonable result
whenever the exception occurs. The default
exception fix-up activity is treated by the FPU
as part of the instruction causing the
exception; no external indication of the
exception is given (except that the instruction
takes longer to execute when it handles a
masked exception.) When masked exceptions
are detected, a flag is set in the numeric status
register, but no information is preserved
regarding where or when it was set.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

15

2. Alternatively, a software exception handler can
be invoked to handle the exception. When a
numeric exception is unmasked and the
exception occurs, the FPU stops further
execution of the numeric instruction and
causes a branch to a software exception
handler. The exception handler can then
implement any sort of recovery procedures
desired for any numeric exception detectable
by the FPU.

3.1.2 AUTOMATIC EXCEPTION HANDLING:
USING MASKED EXCEPTIONS

Each of the six exception conditions described
above has a corresponding flag bit in the FPU
status word and a mask bit in the FPU control word.
If an exception is masked (the corresponding mask
bit in the control word = 1), the processor takes an
appropriate default action and continues with the
computation. The processor has a default fix-up
activity for every possible exception condition it
may encounter. These masked-exception
responses are designed to be safe and are
generally acceptable for most numeric applications.

For example, if the Inexact result (Precision)
exception is masked, the system can specify
whether the FPU should handle a result that cannot
be represented exactly by one of four modes of
rounding: rounding it normally, chopping it toward
zero, always rounding it up, or always down. If the
Underflow exception is masked, the FPU will store
a number that is too small to be represented in
normalized form as a denormal (or zero if it’s
smaller than the smallest denormal). Note that
when exceptions are masked, the FPU may detect
multiple exceptions in a single instruction, because
it continues executing the instruction after
performing its masked response. For example, the
FPU could detect a denormalized operand, perform
its masked response to this exception, and then
detect an underflow.

As an example of how even severe exceptions can
be handled safely and automatically using the
default exception responses, consider a calculation
of the parallel resistance of several values using
only the standard formula (Figure 4). If R1 becomes
zero, the circuit resistance becomes zero. With the
divide-by-zero and precision exceptions masked,
the processor will produce the correct result. FDIV
of R1 into 1 gives infinity, and then FDIV of (infinity
+R2 +R3) into 1 gives zero.

Figure 4. Arithmetic Example Using Infinity

By masking or unmasking specific numeric
exceptions in the FPU control word, programmers
can delegate responsibility for most exceptions to
the processor, reserving the most severe
exceptions for programmed exception handlers.
Exception-handling software is often difficult to
write, and the masked responses have been
tailored to deliver the most reasonable result for
each condition. For the majority of applications,
masking all exceptions yields satisfactory results
with the least programming effort. Certain
exceptions can usefully be left unmasked during the
debugging phase of software development, and
then masked when the clean software is actually
run. An invalid-operation exception for example,
typically indicates a program error that must be
corrected.

The exception flags in the FPU status word provide
a cumulative record of exceptions that have
occurred since these flags were last cleared. Once
set, these flags can be cleared only by executing
the FCLEX/FNCLEX (clear exceptions) instruction,
by reinitializing the FPU with FINIT/FNINIT or
FSAVE/FNSAVE, or by overwriting the flags with an
FRSTOR or FLDENV instruction. This allows a
programmer to mask all exceptions, run a
calculation, and then inspect the status word to see



AP-578

16

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

if any exceptions were detected at any point in the
calculation.

3.2 Software Exception Handling

If the FPU in or with an Intel family processor
(80286 and onwards) encounters an unmasked
exception condition, with the system operated in the
MS-DOS compatible mode and with IGNNE# not
asserted, a software exception handler is invoked
through a PIC and the processor’s INTR pin. The
FERR# (or ERROR# ) output from the FPU that
begins the process of invoking the exception
handler may occur when the error condition is first
detected, or when the processor encounters the
next WAIT or FPU instruction. Which of these two
cases occurs depends on the processor generation
and also on which exception and which FPU
instruction triggered it, as discussed earlier in
Section 2. The elapsed time between the initial
error signal and the invocation of the FPU exception
handler depends of course on the external
hardware interface, and also on whether the
external interrupt for FPU errors is enabled. But the
architecture ensures that the handler will be
invoked before execution of the next WAIT or
floating-point instruction since an unmasked
floating-point exception causes the processor to
freeze just before executing such an instruction
(unless the IGNNE# input is active, or it is a “No-
Wait” FPU instruction).

The frozen processor waits for an external interrupt,
which must be supplied by external hardware in
response to the FERR# (or ERROR#) output of the
processor (or coprocessor), usually through IRQ13
on the “slave” PIC, and then through INTR. Then
the external interrupt invokes the exception
handling routine. Note that if the external interrupt
for FPU errors is disabled when the processor
executes an FPU instruction, the processor will
freeze until some other (enabled) interrupt occurs if
an unmasked FPU exception condition is in effect.
If NE = 0 but the IGNNE# input is active, the
processor disregards the exception and continues.
Error reporting via an external interrupt is supported
for MS-DOS compatibility. Chapter 23 of the
Pentium  Processor Family Developer’s Manual,
Volume 3 contains further discussion of
compatibility issues.

The references above to the ERROR# output from
the FPU apply to the Intel387 and 80287 math
coprocessors (NPX chips). If one of these
coprocessors encounters an unmasked exception
condition, it signals the exception to the 80286 or
Intel386 processor using the ERROR# status line
between the processor and the coprocessor. See
Section 2.2 above, and Chapter 23 of the Pentium

Processor Family Developer’s Manual,  Volume 3
for differences in FPU exception handling.

The exception-handling routine is normally a part of
the systems software. The routine must clear (or
disable) the active exception flags in the FPU status
word before executing any FP instructions that
cannot complete execution when there is a pending
FP exception. Otherwise, the FP instruction will
trigger the FPU interrupt again, and the system will
be caught in an endless loop of nested FP
exceptions, and hang. In any event, the routine
must clear (or disable) the active exception flags in
the FPU status word after handling them, and
before IRET(D). Typical exception responses may
include:

• Incrementing an exception counter for later
display or printing

• Printing or displaying diagnostic information
(e.g., the FPU environment and registers)

• Aborting further execution, or using the
exception pointers to build an instruction that
will run without exception and executing it

Applications programmers should consult their
operating system's reference manuals for the
appropriate system response to numerical
exceptions. For systems programmers, some
details on writing software exception handlers are
provided in Chapter 14 of the Pentium  Processor
Family Developer’s Manual, Volume 3, as well as in
this application note.

As discussed in Section 2.3.2, some early FERR#
to INTR hardware interface implementations are
less robust than the recommended circuit. This is
because they depended on the exception handler to
clear the FPU exception interrupt request to the PIC
(by accessing port 0F0H) before the handler causes
FERR# to be de-asserted by clearing the exception
from the FPU itself. To eliminate the chance of a



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

17

problem with this early hardware, Intel recommends
that FPU exception handlers always access port
0F0H before clearing the error condition from the
FPU.

3.3 Synchronization Required for
Use of FPU Exception Handlers

Concurrency or synchronization management
requires a check for exceptions before letting the
processor change a value just used by the FPU. It
is important to remember that almost any numeric
instruction can, under the wrong circumstances,
produce a numeric exception.

3.3.1 EXCEPTION SYNCHRONIZATION:
WHAT, WHY AND WHEN

Exception synchronization means that the
exception handler inspects and deals with the
exception in the context in which it occurred. If
concurrent execution is allowed, the state of the
processor when it recognizes the exception is often
not in the context in which it occurred. The
processor may have changed many of its internal
registers and be executing a totally different
program by the time the exception occurs. If the
exception handler cannot recapture the original
context, it cannot reliably determine the cause of
the exception or to recover successfully from the
exception. To handle this situation, the FPU has
special registers updated at the start of each
numeric instruction to describe the state of the
numeric program when the failed instruction was
attempted. This provides tools to help the exception
handler recapture the original context, but the
application code must also be written with
synchronization in mind. Overall, exception
synchronization must ensure that the FPU and
other relevant parts of the context are in a well
defined state when the handler is invoked after an
unmasked numeric exception occurs.

When the FPU signals an unmasked exception
condition, it is requesting help. The fact that the
exception was unmasked indicates that further
numeric program execution under the arithmetic
and programming rules of the FPU will probably
yield invalid results. Thus the exception must be
handled, and with proper synchronization, or the
program will not operate reliably.

For programmers in higher-level languages, all
required synchronization is automatically provided
by the appropriate compiler. However, for assembly

language programmers exception synchronization
remains the responsibility of the programmer. It is
not uncommon for a programmer to expect that
their numeric program will not cause numeric
exceptions after it has been tested and debugged,
but in a different system or numeric environment,
exceptions may occur regularly nonetheless. An
obvious example would be use of the program with
some numbers beyond the range for which it was
designed and tested. The example in Section 3.3.2
shows a more subtle way in which unexpected
exceptions can occur.

As described in Section 3.1.1, depending on
options determined by the software system
designer, the processor can perform one of two
possible courses of action when a numeric
exception occurs.

• The FPU can provide a default fix-up for
selected numeric exceptions. If the FPU
performs its default action for all exceptions,
then the need for exception synchronization is
not manifest. However, code is often ported to
contexts and operating systems for which it
was not originally designed. The example
below illustrates that it is safest to always
consider exception synchronization when
designing code that uses the FPU.

• Alternatively, a software exception handler can
be invoked to handle the exception. When a
numeric exception is unmasked and the
exception occurs, the FPU stops further
execution of the numeric instruction and
causes a branch to a software exception
handler. When an FPU exception handler will
be invoked, synchronization must always be
considered to assure reliable performance.

The following examples illustrate the need to
always consider exception synchronization when
writing numeric code, even when the code is initially
intended for execution with exceptions masked.

3.3.2 EXCEPTION SYNCHRONIZATION:
EXAMPLES

In the following examples, three instructions are
shown to load an integer, calculate its square root,
then increment the integer. The synchronous
execution of the FPU will allow both of these



AP-578

18

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

Incorrect Error Synchronization:

FILD COUNT ; FPU instruction
INC COUNT ; integer instruction alters operand
FSQRT ; subsequent FPU instruction -- error

; from previous FPU instruction detected here

Proper Error Synchronization:

FILD COUNT ; FPU instruction
FSQRT ; subsequent FPU instruction -- error from

; previous FPU instruction detected here
INC COUNT ; integer instruction alters operand

programs to execute correctly, with INC COUNT
being executed in parallel in the processor, as long
as no exceptions occur on the FILD instruction.
However, if the code is later moved to an
environment where exceptions are unmasked, the
code in the first example will not work correctly:

In some operating systems supporting the FPU, the
numeric register stack is extended to memory. To
extend the FPU stack to memory, the invalid
exception is unmasked. A push to a full register or
pop from an empty register sets SF (Stack Fault
flag) and causes an invalid operation exception.
The recovery routine for the exception must
recognize this situation, fix up the stack, then
perform the original operation. The recovery routine
will not work correctly in the first example shown in
the figure. The problem is that the value of COUNT
is incremented before the exception handler is
invoked, so that the recovery routine will load an
incorrect value of COUNT, causing the program to
fail or behave unreliably.

3.3.3 PROPER EXCEPTI ON
SYNCHRONIZATION IN GENERAL

As explained before (see Section 3.2), if the FPU
encounters an unmasked exception condition a
software exception handler is invoked before
execution of the next WAIT or floating-point
instruction. This is because an unmasked floating-
point exception causes the processor to freeze
immediately before executing such an instruction
(unless the IGNNE# input is active, or it is a “No-
Wait” FPU instruction). Exactly when the exception
handler will be invoked (in the interval between
when the exception is detected and the next WAIT
or FPU instruction) is dependent on the processor
generation, the system, and which FPU instruction
and exception is involved.

To be safe in exception synchronization, one
should assume the handler will be invoked at the
end of the interval. Thus the program should not
change any value that might be needed by the
handler (such as COUNT in the above example)
until after the next FPU instruction following an FPU
instruction that could cause an error. If the program
needs to modify such a value before the next FPU
instruction (or if the next FPU instruction could also
cause an error), then a WAIT instruction should be
inserted before the value is modified. This will force
the handling of any exception before the value is
modified. A WAIT instruction should also be placed
after the last floating-point instruction in an
application so that any unmasked exceptions will be
serviced before the task completes.

3.4 FPU Exception Handling
Examples

There are many approaches to writing exception
handlers. One useful technique is to consider the
exception handler procedure as consisting of
"prologue," "body," and "epilogue" sections of code.

In the transfer of control to the exception handler
due to an INTR, NMI, or SMI, external interrupts
have been disabled by hardware. The prologue
performs all functions that must be protected from
possible interruption by higher-priority sources.
Typically, this involves saving registers and
transferring diagnostic information from the FPU to
memory. When the critical processing has been
completed, the prologue may re-enable interrupts to
allow higher-priority interrupt handlers to preempt
the exception handler. The standard "prologue" not
only saves the registers and transfers diagnostic
information from the FPU to memory but also clears
the FP exception flags in the status word.
Alternatively, when it is not necessary for the



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

19

handler to be re-entrant, another technique may
also be used. In this technique, the exception flags
are not cleared in the "prologue" and the body of
the handler must not contain any FP instructions
that cannot complete execution when there is a
pending FP exception. (The “No-Wait” instructions
are discussed in Section 6.3.7 of the Pentium

Processor Family Developer’s Manual, Volume 3).
Note that the handler must still clear the exception
flag(s) before executing the IRET. If the exception
handler uses neither of these techniques the
system will be caught in an endless loop of nested
FP exceptions, and hang.

The body of the exception handler examines the
diagnostic information and makes a response that
is necessarily application-dependent. This response
may range from halting execution, to displaying a
message, to attempting to repair the problem and
proceed with normal execution. The epilogue
essentially reverses the actions of the prologue,
restoring the processor so that normal execution
can be resumed. The epilogue must not load an
unmasked exception flag into the FPU or another
exception will be requested immediately.

The following code examples show the ASM386
and ASM486 coding of three skeleton exception
handlers, with the save spaces given as correct for
32 bit protected mode. They show how prologues
and epilogues can be written for various situations,
but the application dependent exception handling
body is just indicated by comments showing where
it should be placed.

The first two are very similar; their only substantial
difference is their choice of instructions to save and
restore the FPU. The tradeoff here is between the
increased diagnostic information provided by
FNSAVE and the faster execution of FNSTENV.
(Also, after saving the original contents, FNSAVE
re-initializes the FPU, while FNSTENV only masks
all FPU exceptions.) For applications that are
sensitive to interrupt latency or that do not need to
examine register contents, FNSTENV reduces the
duration of the "critical region," during which the
processor does not recognize another
interrupt request. (See the Pentium  Processor
Family Developer’s Manual, Volume 3, Section
6.2.1.6 for a complete description of the FPU save
image.)

After the exception handler body, the epilogues
prepare the processor to resume execution from the
point of interruption (i.e., the instruction following
the one that generated the unmasked exception).
Notice that the exception flags in the memory
image that is loaded into the FPU are cleared to
zero prior to reloading (in fact, in these examples,
the entire status word image is cleared).

Example 1 and Example 2 assume that the
exception handler itself will not cause an unmasked
exception. Where this is a possibility, the general
approach shown in 3 can be employed. The basic
technique is to save the full FPU state and then to
load a new control word in the prologue. Note that
considerable care should be taken when designing
an exception handler of this type to prevent the
handler from being reentered endlessly.

Example 1. Full-State Exception Handler

SAVE_ALL PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU STATE IMAGE

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE FULL FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)



AP-578

20

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

; RESTORE MODIFIED STATE IMAGE
MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ALL ENDP

Example 2. Reduced-Latency Exception Handler

SAVE_ENVIRONMENT PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU ENVIRONMENT

PUSH  EBP
.
.
MOV EBP, ESP
SUB ESP, 28 ; ALLOCATES 28 BYTES (32-bit PROTECTED MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSTENV [EBP-28]
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
;
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
; RESTORE MODIFIED ENVIRONMENT IMAGE

MOV BYTE PTR [EBP-24], 0H
FLDENV [EBP-28]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO INTERRUPTED CALCULATION

IRETD
SAVE_ENVIRONMENT ENDP

Example 3. Reentrant Exception Handler

LOCAL_CONTROL DW ? ; ASSUME INITIALIZED
.
.

REENTRANT PROC
;
; SAVE REGISTERS, ALLOCATE STACK SPACE FOR FPU STATE IMAGE



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

21

PUSH EBP
.
.
MOV EBP, ESP
SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED MODE SIZE)

; SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)
FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO STACK TOP
POPFD ; RESTORE IF TO VALUE BEFORE FPU EXCEPTION

.

.
;
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE. AN UNMASKED EXCEPTION
; GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
; IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK.
;

.

.
; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)
; RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H
FRSTOR [EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
.
.
POP EBP

;
; RETURN TO POINT OF INTERRUPTION

IRETD
REENTRANT ENDP



AP-578

22

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

3.5 Need for Preserving the State
of IGNNE# Circuit if Use FPU
and SMM

In Section 2.3.2 the recommended circuit (Figure 2)
for MS-DOS compatible FPU exception handling for
Intel486 processors and beyond contains two flip
flops. When the FPU exception handler accesses
I/O port 0F0H it clears the IRQ13 interrupt request
output from Flip Flop #1 and also clocks out the
IGNNE# signal (active) from Flip Flop #2. The
assertion of IGNNE# may be used by the handler if
needed to execute any FPU instruction while
ignoring the pending FPU errors. The problem here
is that the state of Flip Flop #2 is effectively an
additional (but hidden) status bit that can affect
processor behavior, and so ideally should be saved
upon entering SMM, and restored before resuming
to normal operation. If this is not done, and also the
SMM code saves the FPU state, AND an FPU error
handler is being used which relies on IGNNE#
assertion, then (very rarely) the FPU handler will
nest inside itself and malfunction. The following
example shows how this can happen.

The problem will only occur if the processor enters
SMM between the OUT and the FLDCW
instructions. But if that happens, AND the SMM
code saves the FPU state using FNSAVE, then the
IGNNE# Flip Flop will be cleared (because
FNSAVE clears the FPU errors and thus de-asserts
FERR#). When the processor returns from SMM it
will restore the FPU state with FRSTOR, which will
re-assert FERR#, but the IGNNE# Flip Flop will not
get set. Then when the FPU error handler executes
the FLDCW instruction, the active error condition
will cause the processor to re-enter the FPU error
handler from the beginning. This may cause the
handler to malfunction.

Note that NMI (or any interrupt through INTR that is
enabled inside the FPU exception handler) will
cause this same problem, if the interrupt routine
saves and restores the FPU state, and it happens
to occur between the OUT and the FLDCW
instructions. SMI is the main focus here because it
is much more likely to invoke FNSAVE/FRSTOR
than other interrupts because of 0V suspend (see
below). The problem can easily be eliminated from
all interrupts besides SMI and NMI by not enabling
INTR inside the FPU exception handler.

To avoid this problem, Intel recommends two
measures:

1. Do not use the FPU for calculations inside
SMM code (or code for NMI, or any other
interrupts enabled inside the FPU exception
handler). (The normal power management,
and sometimes security, functions provided by
SMM have no need for FPU calculations; if
they are needed for some special case, use
scaling or emulation instead.) This eliminates
the need to do FNSAVE/FRSTOR inside SMM
code, except when going into an 0V suspend
state (in which, in order to save power, the
processor is turned off completely, requiring its
complete state to be saved).

2. The system should not call upon SMM code to
put the processor into 0V suspend while the
processor is running FPU calculations, or just
after an interrupt has occurred. Normal power
management protocol avoids this by going into
power down states only after timed intervals in
which no system activity occurs.

3.6 Considerations When FPU
Shared Between Tasks

The Intel Architecture allows speculative deferral of
floating-point state swaps on task switches. This
feature allows postponing an FPU state swap until
an FPU instruction is actually encountered in
another task. Since kernel tasks rarely use floating-
point, and some applications do not use floating-
point or use it infrequently, the amount of time
saved by avoiding unnecessary stores of the
floating-point state is significant. Speculative
deferral of FPU saves does, however, place an
extra burden on the kernel in three key ways:

1. The kernel must keep track of which thread
owns the FPU, which may be different from
the currently executing thread.

2. The kernel must associate any floating-point
exceptions with the generating task. This
requires special handling since floating-point
exceptions are delivered asynchronous with
other system activity.

3. There are conditions under which spurious
floating-point exception interrupts are
generated, which the kernel must recognize
and discard.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

23

Suppose that the FPU exception handler includes the following sequence:

FNSTSW save_sw ; save the FPU status word using a “No-Wait” FPU instruction

OUT 0F0H, AL ; clears IRQ13 & activates IGNNE#

  . . . .

FLDCW new_cw ; loads new CW ignoring FPU errors, since IGNNE# is assumed active; or any 
; other FPU instruction that is not a “No-Wait” type will cause the

same problem

   . . . .

FCLEX ; clear the FPU error conditions & thus turn off FERR# & reset the
IGNNE# FF

3.6.1 SPECULATIVELY DEFERRING FPU
SAVES, GENERAL OVERVIEW

In order to support multi-tasking, each thread in the
system needs a save area for the general purpose
registers, and each task that is allowed to use
floating-point needs an FPU save area large
enough to hold the entire FPU stack and associated
FPU state such as the control word and status
word. (See the Pentium  Processor Family
Developer’s Manual, Volume 3, Section 6.2.1.6 for
a complete description of the FPU save image.)

On a task switch, the general purpose registers are
swapped out to their save area for the suspending
thread, and the registers of the resuming thread are
loaded. The FPU state does not need to be saved
at this point. If the resuming thread does not use
the FPU before it is itself suspended, then both a
save and a load of the FPU state has been
avoided. It is often the case that several threads
may be executed without any usage of the FPU.

The processor supports speculative deferral of FPU
saves via interrupt 7 “Device Not Available” (DNA),
used in conjunction with CR0 bit 3, the “Task
Switched” bit (TS). (See the Pentium  Processor
Family Developer’s Manual, Volume 3, Sections
10.1.3 & 14.9.7) Every task switch via the hardware
supported task switching mechanism (see Section
13.5 of the Pentium  Processor Family Developer’s
Manual, Volume 3) sets TS. Multi-threaded kernels
that use software task switching4 can set the TS bit
by reading CR0, ORing a ‘1’ into bit 3, and writing
back CR05. Any subsequent floating-point
instructions (now being executed in a new thread
context) will fault via interrupt 7 before execution.

                                                                
Footnotes
4In a software task switch, the operating system

uses a sequence of instructions to save the
suspending thread’s state and restore the
resuming thread’s state instead of the single long,
noninterruptable task switch operation provided by
the Intel Architecture.

5 Although CR0, bit 2, the emulation flag (EM), also
causes a DNA exception, do not use the EM bit
as a surrogate for TS. EM means that no floating-
point unit is available and that FP instructions
must be emulated. Using EM to trap on task
switches is not compatible with Intel Architecture
MMX  Technology. If the EM flag is set, MMX
instructions raise the invalid opcode exception.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

24

This allows the DNA handler to save the old
floating-point context and reload the FPU state for
the current thread. The handler should clear the TS
bit before exit using the CLTS instruction. On return
from the handler the faulting thread will proceed
with its floating-point computation.

Some operating systems save the FPU context on
every task switch, typically because they also
change the linear address space between tasks.
The problem and its solution discussed below apply
to these operating systems also.

3.6.2 TRACKING FPU OWNERSHIP

Since the contents of the FPU may not belong to
the currently executing thread, the thread identifier
for the last FPU user needs to be tracked
separately. This is not complicated -- the kernel
should simply provide a variable to store the thread
identifier of the FPU owner, separate from the
variable that stores the identifier for the currently
executing thread. This variable is updated in the
DNA exception handler, and is used by the DNA
exception handler to find the FPU save areas of the
old and new threads. A simplified flow for a DNA
exception handler is then:

1. Use the ‘FPU Owner’ variable to find the FPU
save area of the last thread to use the FPU.

2. Save the FPU contents to the old thread’s
save area, typically using an FNSAVE
instruction.

3. Set the ‘FPU Owner’ variable to the identify
the currently executing thread.

4. Reload the FPU contents from the new
thread’s save area, typically using an
FRSTOR instruction.

5.  Clear TS using the CLTS instruction and exit
the DNA exception handler.

While this flow covers the basic requirements for
speculatively deferred FPU state swaps, there are
some additional subtleties that need to be handled
in a robust implementation.

3.6.3 INTERACTION OF FPU STATE SAVES
AND FP EXCEPTION ASSOCIATION

Recall these key points from earlier in this
document: When considering FP exceptions across
all implementations of the Intel Architecture, and
across all FP instructions, an FP exception can be

initiated from any time during the excepting FP
instruction, up to just before the next FP instruction.
The ‘next’ FP instruction may be the FNSAVE used
to save the FPU state for a task switch. In the case
of “no-wait:” instructions such as FNSAVE, the
interrupt from a previously excepting instruction
(NE=0 case) may arrive just before the “no-wait”
instruction, during, or shortly thereafter with a
system dependent delay. Note that this implies that
an FP exception might be registered during the
state swap process itself, and the kernel and FP
exception interrupt handler must be prepared for
this case.

A simple way to handle the case of exceptions
arriving during FPU state swaps is to allow the
kernel to be one of the FPU owning threads. A
reserved thread identifier is used to indicate kernel
ownership of the FPU. During an FP state swap,
the ‘FPU owner’ variable should be set to indicate
the kernel as the current owner. At the completion
of the state swap, the variable should be set to
indicate the new owning thread. The numeric
exception handler needs to check the FPU owner
and discard any numeric exceptions that occur
while the kernel is the FPU owner. A more general
flow for a DNA exception handler that handles this
case is shown next:



AP-578

2/21/97 3:11 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

25

DNA Handler Entry

Current Thread
same as

FPU Owner?

FPU Owner := Kernel

FNSAVE to Old Thread’s
FP Save Area

(may cause numeric exception)

<other handler set up code>

<other handler code>

FPU Owner := Current Thread

FRSTOR from Current Thread’s
FP Save Area

CLTS (clears CR0.TS)

Exit DNA Handler

No

Yes

<handler final clean-up>

Numeric exceptions received while the kernel owns the FPU for a state swap must be discarded in the kernel
without being dispatched to a handler. A flow for a numeric exception dispatch routine is shown below:

Numeric Exception Entry

Is Kernel
FPU Owner?

Normal Dispatch to
Numeric Exception Handler Exit

No

Yes



AP-578 

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

26

It may at first glance seem that there is a possibility
of FP exceptions being lost because of exceptions
that are discarded during state swaps. This is not
the case, as the exception will be re-issued when
the FP state is reloaded. Walking through state
swaps both with and without pending numeric
exceptions will clarify the operation of these two
handlers.

Case 1: FPU State Swap Without Numeric
Exception

Assume two threads ‘A’ and ‘B’, both using the
floating-point unit. Let A be the thread to have most
recently executed a FP instruction, with no pending
numeric exceptions. Let B be the currently
executing thread. CR0.TS was set when thread A
was suspended. When B starts to execute a FP
instruction the instruction will fault with the DNA
exception because TS is set.

At this point the handler is entered, and eventually it
finds that the current FPU Owner is not the
currently executing thread. To guard the FPU state
swap from extraneous numeric exceptions, the FPU
Owner is set to be the kernel. The old owner’s FPU
state is saved with FNSAVE, and the current
thread’s FPU state is restored with FRSTOR.
Before exiting, the FPU owner is set to thread B,
and the TS bit is cleared.

On exit, thread B resumes execution of the faulting
FP instruction and continues.

Case 2: FPU State Swap with Discarded
Numeric Exception

Again, assume two threads ‘A’ and ‘B’, both using
the floating-point unit. Let A be the thread to have
most recently executed a FP instruction, but this
time let there be a pending numeric exception. Let
B be the currently executing thread. When B starts
to execute a FP instruction the instruction will fault
with the DNA exception and enter the DNA handler.
(If both numeric and DNA exceptions are pending,
the DNA exception takes precedence, in order to
support handling the numeric exception in its own
context.)

When the FNSAVE starts, it will trigger an interrupt
via FERR# because of the pending numeric
exception. After some system dependent delay, the
numeric exception handler is entered. It may be
entered before the FNSAVE starts to execute, or it
may be entered shortly after execution of the
FNSAVE. Since the FPU

Owner is the kernel, the numeric exception handler
simply exits, discarding the exception. The DNA
handler resumes execution, completing the
FNSAVE of the old FP context of thread A and the
FRSTOR of the FP context for thread B.

Thread A eventually gets an opportunity to handle
the exception that was discarded during the task
switch. After some time, thread B is suspended,
and thread A resumes execution. When thread A
starts to execute an FP instruction, once again the
DNA exception handler is entered. B’s FPU state is
FNSAVE’ed, and A’s FPU state is FRSTOR’ed.
Note that in restoring the FPU state from A’s save
area, the pending numeric exception flags are
reloaded in to the FP status word. Now when the
DNA exception handler returns, thread A resumes
execution of the faulting FP instruction just long
enough to immediately generate a numeric
exception, which now gets handled in the normal
way. The net result is that the task switch and
resulting FPU state swap via the DNA exception
handler causes an ‘extra’ numeric exception which
can be safely discarded.

3.6.4 INTERRUPT ROUTING FROM THE
KERNEL

In MS-DOS, an application that wishes to handle
numeric exceptions hooks interrupt 2 by placing its
handler address in the interrupt vector table, and
exiting via a jump to the previous interrupt 2
handler. Protected mode systems that run MS-DOS
programs under a subsystem can emulate this
exception delivery mechanism. For example,
assume a protected mode O.S. that runs with
CR.NE = 1, and that runs MS-DOS programs in a
virtual machine subsystem. The MS-DOS program
is set up in a virtual machine that provides a
virtualized interrupt table. The MS-DOS application
hooks interrupt 2 in the virtual machine in the
normal way. A numeric exception will trap to the
kernel via the real INT 16 residing in the kernel at
ring 0. The INT 16 handler in the kernel then
locates the correct MS-DOS virtual machine, and
reflects the interrupt to the virtual machine monitor.
The virtual machine monitor then emulates an
interrupt by jumping through the address in the
virtualized interrupt table, eventually reaching the
application’s numeric exception handler.



AP-578

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

27

4.0 DIFFERENCES FOR HANDLERS
USING NATIVE MODE

The 8087 has a pin INT which it asserts when an
unmasked exception occurs. But there is no
interrupt input pin in the 8086 or 8088 dedicated to
its attachment, nor an interrupt vector number in the
8086 or 8088 specific for an FPU error assertion.
But beginning with the Intel 80286 and 80287,
hardware connections were dedicated to support
the FPU exception, and interrupt vector 16
assigned to it.

4.1 Origin with 80286 and 80287;
Intel386™  Processor and
Intel387 Math Coprocessor

The 80286 and 80287 and Intel386 processor and
Intel387 math coprocessor pairs are each provided
with ERROR# pins that are recommended to be
connected between the processor and FPU. If this
is done, when an unmasked FPU exception occurs,
the FPU records the exception, and asserts its
ERROR# pin. The processor recognizes this active
condition of the ERROR# status line immediately
before execution of the next WAIT or FPU
instruction (except for the “N0-Wait” type) in its
instruction stream, and branches to the routine at
interrupt vector 16. Thus an FPU exception will be
handled before any other FPU instruction (after the
one causing the error) is executed (except for “No-
Wait” instructions, which will be executed without
triggering the FPU exception interrupt, but it will
remain pending).

Using the dedicated interrupt 16 for FPU exception
handling is referred to as the native mode. It is the
simplest approach, and the one recommended
most highly by Intel.

4.2 Changes with Intel486 ,
Pentium  and Pentium Pro
Processors with CR0.NE=1

With these latest three generations of the Intel
Architecture, more enhancements and speedup
features have been added to the corresponding
FPUs. Also, the FPU is now built into the same chip
as the processor, which allows further increases in
the speed at which the FPU can operate as part of
the integrated system. This also means that the
native mode of FPU exception handling, selected
by setting bit NE of register CR0 to 1, is now
entirely internal.

If an unmasked exception occurs during an FPU
instruction, the FPU records the exception
internally, and triggers the exception handler
through interrupt 16 immediately before execution
of the next WAIT or FPU instruction (except for “No-
Wait” instructions, which will be executed as
described in Section 4.1  above).

An unmasked numerical exception causes the
FERR# output to be activated even with NE=1, and
at exactly the same point in the program flow as it
would have been asserted if NE were zero.
However, the system would not connect FERR# to
a PIC to generate INTR when operating in the
native, internal mode. (If the hardware of a system
has FERR# connected to trigger IRQ13 in order to
support MS-DOS, but an OS using the native mode
is actually running the system, it is the OSs
responsibility to make sure that IRQ13 is not
enabled in the slave PIC.) With this configuration a
system is immune to the problem discussed in
Section 2.3.3, where for Intel486 and Pentium
processors a “No-Wait” FPU instruction can get an
FPU exception.

4.3 Considerations When FPU
Shared Between Tasks Using
Native Mode

The protocols recommended in Section 3.6 for
MS-DOS compatible FPU exception handlers that
are shared between tasks may be used without
change with the native mode. However, the
protocols for a handler written specifically for native
mode can be simplified, because the problem of a
spurious floating-point exception interrupt occurring
while the kernel is executing cannot happen in
native mode.

The problem as actually found in practical code in a
MS-DOS compatible system happens when the
DNA handler uses FNSAVE to switch FPU
contexts. If an FPU exception is active, then
FNSAVE triggers FERR# briefly, which usually will
cause the FPU exception handler to be invoked
inside the DNA handler. In native mode, neither
FNSAVE nor any other “No-Wait” instructions can
trigger interrupt 16. (As discussed above, FERR#
gets asserted independent of the value of the NE
bit, but when NE=1, the OS should not enable its
path through the PIC.) Another possible (very rare)
way a floating-point exception interrupt could occur
while the kernel is executing is by an FPU
immediate exception case having its interrupt
delayed by the external hardware until execution
has switched to the kernel. This also cannot



AP-578 

2/21/97 12:57 PM    24329102.DOC

INTEL CONFIDENTIAL
(until publication date)

28

happen in native mode because there is no delay
through external hardware.

Thus the native mode FPU exception handler can
omit the test to see if the kernel is the FPU owner,
and the DNA handler for a native mode system can
omit the step of setting the kernel as the FPU
owner at the handler’s beginning. Since however
these simplifications are minor and save little code,
it would be a reasonable and conservative habit (as
long as the MS-DOS compatible mode is widely
used) to include these steps in all systems.

Note that the special DP (Dual Processing) mode
for Pentium processors, and also the more general
Intel MultiProcessor Specification for systems with
multiple Pentium or Pentium Pro processors,
support FPU exception handling only in the native
mode. Intel does not recommend using the
MS-DOS compatible FPU mode for systems using
more than one processor.


	1.0 INTRODUCTION AND READING GUIDE
	2.0 MS-DOS* COMPATIBLE HANDLERS AND THEIR ISSUES OVER GENERATIONS
	2.1 Origin of MS-DOS* Mode: 8088 and 8087
	2.2 Development of MS-DOS* Mode with 80286 and 80287; Intel386(TM) Processor and Intel387 Math Coprocessor
	2.2.1 SPECIAL HARDWARE FOR THE 80287 INTERFACE
	2.2.2 SPECIAL HARDWARE FOR THE INTEL387 MATH COPROCESSOR INTERFACE

	2.3 FERR# & IGNNE# with Intel486™ and Pentium(R) Processors with CR0.NE=0
	2.3.1 BASIC RULES: WHEN FERR# IS GENERATED
	2.3.2 RECOMMENDED EXTERNAL HARDWARE TO SUPPORT MS-DOS* COMPATIBILITY
	2.3.3 “NO-WAIT” FPU INSTRUCTIONS CAN GET FPU INTERRUPT IN 

	2.4 Pentium(R) Pro Processor with 

	3.0 RECOMMENDED PROTOCOL FOR MS DOS™ AND WINDOWS* 95 COMPATIBLE HANDLERS
	3.1 Numeric Exceptions and their Defaults
	3.1.1 TWO OPTIONS FOR HANDLING NUMERIC EXCEPTIONS
	3.1.2 AUTOMATIC EXCEPTION HANDLING: USING MASKED EXCEPTIONS

	3.2 Software Exception Handling
	3.3 Synchronization Required for Use of FPU Exception Handlers
	3.3.1 EXCEPTION SYNCHRONIZATION: WHAT, WHY AND WHEN
	3.3.2 EXCEPTION SYNCHRONIZATION 
	3.3.3 PROPER EXCEPTION SYNCHRONIZATION IN GENERAL

	3.4 FPU Exception Handling Examples
	3.5 Need for Preserving the State of IGNNE# Circuit if Use FPU and SMM
	3.6 Considerations When FPU Shared 
	3.6.1 SPECULATIVELY DEFERRING FPU SAVES, GENERAL OVERVIEW
	3.6.2 TRACKING FPU OWNERSHIP
	3.6.3 INTERACTION OF FPU STATE
	3.6.4 INTERRUPT ROUTING FROM THE KERNEL


	4.0 DIFFERENCES FOR HANDLERS USING NATIVE MODE
	4.1 Origin with 80286 and 80287; Intel386™ Processor 
	4.2 Changes with Intel486Ô, PentiumÒ and Pentium 
	4.3 Considerations When FPU Shared Between Tasks Using Native Mode


