

Rcmote Virtual Disk Systcm 181\1/4.3-SI\II\I:6-41

logging, and physical configuration management. The administrative password
authorizes allocation and deallocation of virtual disks. Individual pack passwords
authorize usage of those packs.

(3) The "nonce" keyword appears in every request, with a value chosen by the reques­
ter to be different from any other request for which a late response might stitI arrive.
Every response contains a copy of the nonce of the request to which it responds.

(4) The "success" keyword must be the first keyword in a response to a successful
request. Its value is the name of the operation performed.

(5) The "failure" keyword must be the first keyword in a response to an unsuccessful
request. Its value is the name of the operation that failed. It may be accompanied
by an "error =" operand describing the error which occurred. The value of the
"error" keyword is a human-readable string describing the error which occurred.

Except for "operation," "success,"and "failure,"each be the first keyword in a message, the
order of operands in a message is unimportant.

Where a number is called for, it is represented in the operand value string as an ASCII
decimal integer. Where an Internet Protocol (IP) Address is caned for, it is represented in
the operand value string as .q "A.B.C.D" in network standard ASCII decimal form.
Where a mode is called for, it is represented in the operand value string as an ASCII
decimal number coded in the following way, in any sum desired:

1 = read-only spinups allowed
2 = shared spinups allowed (not currently implemented)
4 = exclusive spin ups allowed
o = no spinups allowed

Port: The RVDCTL protocol operates on UDP port 531.

5.3. Operations

(1) Add a physical device partition to the set of partitions managed by the R VO server.

operation = add yhysical

Required operands:

password

filename

blocks

The operations password for the R VO server.

Path name of the device to be managed as a physical
partition.

The number of 5 12-byte sectors ttl this physical
partition.

The device need not be a real physical disk; any device (e.g., a file) that behaves like a
raw disk partition will work equally welt.

+ If the server finds it is unable to open the physical device it marks the physical device
as "disused" and returns an error. (See di.fUseyhysical.)

Note that add yhysical is nonnally invoked as part of updating the pcnnanent data
base that describes the server configuration. If add yhysical is invoked without a data

July 1987

IDM/4.3-SMM:6-42 Remote Virtual Disk System

base update, the next time the server is shut down the change made by the
add yhysical operation will be forgotten.

(2) Delete a physical device partition from the set of partitions managed by the R VD
server.

operation = delete yhysical

Required operands:

password The operations password for the RVD server.

filename Path name of the device to be managed as a physical
partition.

If there are any virtual disk packs allocated on this physical device, delete yhysical
returns an error response, and does not delete the device.

Note that the delete yhysical operation is normally invoked as part of updating the
permanent data base that describes the server configuration. If delete yhysical is
invoked without a data base update, the next time the server is shut down the change
made by the delete yhysical operation will be forgotten.

(3) Stop using a physical disk partition.

operation = disuse yhysical

Required operands:

password The operations password for this R VD server.

physical The pathname of the device partition to be disused.

The disuse yhysical operation allows an operator to take a partition out of use, for
example because the disk is getting hard errors. (The server may, on its own, place a
partition that is getting errors in disused mode.) Add_~'irtual and delete_virtualopera­
tions may be executed on a disused partition. Attempts to spinup packs that are
located on a disused partition receive the error response "pack temporarily unavail­
able." The server continues to maintain records of existing connections and to allow
spindowns, but attempts to read or write a previously spunup pack receive an error
packet containing the error code "pack temporarily unavailable."

(4) Try to use a physical disk partition.

operation = use yhysical

Required operands:

password The operations password for this RVD server.

physical The path name of the device partition to be used.

July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-43

If a physical partition is currently disused, this operation puts the partition back into
service. If the physical partition docs not exist or is already in usc, use yhysical
returns an error.

(5) Allocate a virtual disk pack.

operation = add_virtual

Required operands:

password

physical

name

packid

owner

rocap

excap

shcap

modes

offset

blocks

Optional operands:

ownhost

The administrative password for this RVD server.

The pathname of the device partition this virtual
disk pack is to be on.

The name of this virtual disk pack (n.b., upper
and lower case are distinguished.)

The unique id of this pack on this server.

The name of this virtual disk pack's owner.

The read-only mode password (may be null).

The exclusive mode password (may be null).

The shared mode password (may be null).

The allowable modes this virtual disk pack may be
spun up in.

The offset, in blocks, of this virtual disk pack from
the start of the physical partition.

The number of 512-byte blocks in this virtual disk.

Internet address of the ownmg host of this
virtual disk pack. If none is supplied, the disk
is assumed to not have an owning host.

Add_virtual is nonnally invoked as part of updating the pcnnanent data base that
describes the server configuration. If add virtual is invoked without a data base
update, the next time the server is shut dow; the addition made by add_virtualopera­
tion will be forgotten.

(6) Deallocate a virtual disk pack

operation = delete_virtual

Required operands:

password Administrative password.

July 1987

IBM/4.3-SMM:6-44

Optional operands:

packid

name

Remote Virtual I>isk System

The unique identifier of the virtual disk pack to be
deallocated.
The name of the virtual disk pack to· be deallocated.

One of the operands {packid, name} must he present. If both are present, they must
refer to the same pack.

Delete _virtual is normally invoked as part of updating the permanent data base that
describes the server configuration. If delete_virtual is invoked without a data base
update, the next time the server is shut down the deletion made by delete virtual
operation will be forgotten. -

(7) Modify the definition of a virtual disk pack.

operation = modify_virtual

Required operands:

password

name

Administrative password.

The name of the virtual disk pack whose description
is to be modified.

Optional operands (any operand present supersedes the value previously supplied by
add _virtual or modify _virtual of the corresponding parameter for this virtual disk
pack):

packid

owner

rocap

excap

shcap

modes

blocks

ownhost

The unique identifier of this pack. If provided,
this operand is used to identify the pack to be
modified, and the name operand is taken to be a
new pack name.

The name of this virtual disk pack's owner.

The read-only mode password.

The exclusive mode password.

The shared mode password.

The allowable modes this virtual disk pack may be
spun up in, as an ASCII decimal number.

The numher of 512-byte blocks in this virtual disk.
Must be less than or equal to the current number of
blocks on this disk. In general, changing a disk's
Slze IS a bad idea, especially if it IS currently
in use.

Internet address of the owning host of this disk.

July 1987

Remote Virtual Disk System IBl\f/4.3-SMM:6-4S

Modify _virtual is normally invoked as part of updating the permanent data ba~e that
describes the server configuration. If modify _virtual is invoked without a data base
update, the next time the server is shut down the changes made by the modify virtual
operation will be forgotten. -

(8) Exchange the names of two virtual disk packs.

operation = exchange_names

Required operands:

name I

packidl

password I

name2

packid2

password2

Desired name for the first virtual disk pack

Unique identifier of first pack

The exclusive mode password of the first virtual
disk pack

Desired name for the second virtual disk pack

Unique identifier of second pack

The exclusive mode password of the second virtual
disk pack

The operands namel and name2 must be the names presently associated with the two
packs. Success for this operation means that those two names are now associated
with the packs in the order requested, whether or not they were before the operation.

This operation is used as part of an update procedure, in which two copies of a
library virtual disk pack are maintained. One copy is normally spun up by clients in
read-only mode; the other is the "maintenance" copy, to which the owner makes
changes. Once a consistent set of changes are ready for release, the owner exchanges
the names of the packs. Other users can then spin the pack down and back up again
by name to get the new copy. If the server shuts down and restarts, clients that have
temporarily cached the packid can respin up the old pack by pac kid , to complete
their session without being forced prematurely to switch to the new library.

Exchange_names is normally invoked as part of updating the permanent data base
that describes the server configuration. If exchange_names is invoked without a data
base update, the next time the server is shut down exchange _names will be forgotten.

(9) Force a virtual disk pack to be spun down.

operation = spindown _virtual

Required operands:

name

password

The name of the virtual disk pack to be forced
down.

The exclusive mode password of the virtual disk
pack to be forced down.

July 1987

IBM/4.3-SMM:6-46 Remote Virtual Disk System

This operation is normally used by the owner of a virtual disk pack that was spun up
on a machine that crashed. It forces the specified virtual disk pack to be spun down
from all the machines that have it spun up.

(10) Porce all virtual disk packs of a given client at this server to be spun down.

operation = spindown _host

Required operands:

name

Optional operands:

password

The Internet address of the client whose disk packs
are to be forced down.

If the spindown _host request was not sent from the
client whose disks are to be spun down, the operations
password must be supplied.

This operation has two uses:

a) It should appear in a InM/4.3 client's /etc/rc file, or a DOS client's autoexec.bat
me, so that when a host recovers from a crash, all its previously spunup virtual
disk packs are spun down. This spindown insures that the server state agrees
with the client state.

b) An operator can use this operation to force down the virtual disks of a client
which has crashed and that may be down for some time.

(11) Display all spin ups involving a virtual disk pack, or a client.

operation = display_virtual

Required operands (exactly one of the following must be present):

name

host

Optional operand:

start = < value>

The name of a virtual disk pack. If present, display_virtual
returns a list of all the spinups of this disk
pack. These are the spinups that would be forced
down if a .rpindown_l'irtual operation nammg
this pack were performed.

The If> address of a client. If present, di.rplay _virtual
returns a list of all the spinups of this client.
These arc the spinups that would be forced down if
a .rpindmvn _'100ft operation naming this client
were performed.

An ASCII decimal integer gtvmg the offset of the
first spinup description wanted. This operand IS

normally supplied if a previous invocation of
display_virtual contained the response "more = true."

July 1987

Rcmote Virtual Disk Systcm IBM/4.3-SMM:6-47

password If the display_virtual operation requests information
about a client different from the one making the
request, the operations password must be supplied.

This operation returns a success packet containing an ASCII text string describing the
spinups (host/drive number pairs) of this virtual disk. The response packet contains:

success = display_virtual
number = < value 1 >
connections = < value2 >
more = true

< value I >

(optional response)

The number of currently active spinups for this virtual disk pack or client.

<value2>
A canonicalized string, with one line pcr spinup, containing as many spinup descrip­
tions as will fit in one VD P packet. Each line is a collection of space-separated
tokens, as follows:

pack = library host = 18.72.0.5 drive = 9 mode=4

Since the string is canonicalized, all spaces and CRLP sequences are quoted.

If there were more spinup descriptions than would fit in a single packet, the response
operand "more = true" will appear.

(1) Log statistics of external interactions.

operation = log_ external_statistics

Required operand:

password The operations password

Dump into the log file all statistics kept by the RVD server concerning interactions
with clients--number of packets exchanged, disk operations, etc.)

(2) Log all statistics

operation = log_ all_statistics

Required operand:

password The operations password

Dump into the log file all statistics kept by the rvd server.

(3) Shut down server

operation = shutdown

July 1987

IBM/4.3-SMM:6-48 Remote Virtual Disk System

Required operands:

password The operations password

Log all statistics, then perfonn a clean shutdown of the server.

(4) Change log level

operation = 10gJevel

Required operands:

password The operations password

level New log level as a hex number (N.n., not decimal.)

Change which events are logged; see specification of the R VD protocol for definition
of log levels.

(5) Truncate log

operation = log_truncate

Required operands:

password The operations password

Truncate the log file to keep it from growing too large. (In the nSD 4.3 UNIX
implementation of RVD, logging is done with the UNIX logging system (syslogd), so
this operation has no effect.]

(6) Allow spin ups

operation = allow _ spin ups

Required operands:

password

mode

Optional operands:

physical

name

The operations password, for a physical device,
or the exclusive mode pack password, for a single
virtual pack.

The mode of allowed spinups.

Path name of the device partition to which this
mode setting applies. (If absent, the mode applies
to all partitions managed by this server.)

The name of a virtual disk pack to which this mode
setting applies.

July 1987

Remote Virtual Disk System

Response operand:

oldmode

IBl\f/4.3-SMM:6-49

The spinup mode that was formerly allowed for
this partition or virtual pack.

This operation is used to prevent or allow further spinups of a single virtual pack, or
all the virtual packs on a given device partition of this RVD server; it has no effect on
spinups already in force. When a server first comes up it allows no spin ups
(mode = 0), so an invocation of allow _.fpinup.f is required as part of starting a server.

A separate allowed spinup mode value is maintained for each pack and for each parti­
tion; the actual modes permitted for a pack are given by the logical A NO of the
mode value for the pack and the mode value for the partition on which it is located.

The server rejects spinups that would be allowed by the static pack description but
that are prevented by the current setting of allow _spinuPJ with a distinct error code
indicating temporary unavailability.

Usage scenarios: If a server is to be dumped, one might allow only read spinups dur­
ing the dump; if a server is to be taken down one might sometime earlier allow no
new spinups. The maintainer of a library disk pack that needs to be updated might
first allow no spinups, then after a period of time adequate for most clients to finish
their sessions, do a spindown _virtual to get rid of any remaining spinups.

(7) Post an operations message.

operation = set_message

Required operands

password

message = < string>

The operations password

The (canonicalized) message < string> replaces any
previous operations message. If < string> is null,
any previous message is cleared. lbe content of
the message is limited to 400 bytes, and is network
ASCII (lines terminated with canonicalized CRLF's).

This operation, together with the next one, allows an operator to post a message
(e.g., "server going down at 5:00 p.m. for preventive maintenance") for clients of an
RVO server.

(8) Get the operations message.

operation = get_message (no required or optional operands)

Response operands:

success = get_message
message = < string> < string> is a canonica1ized string of network ASCII

to be displayed as an operations message. If there
is no current operations message, < string> is nun.
(Note that in either case < string> is terminated
by an operand separator.)

July 1987

IBM/4.3-SMM:6-50 Remote Virtual Disk System

+

This operation would nonnally be invoked by a client as part of bringing up a system
that uses RVD and also whenever spinning up a virtual disk pack.

(9) Change a user password.

operation = change yassword

Required operands

packname

mode

old yassword

new yassword

The name of the virtual disk pack whose password IS

to be changed.

The spinup modes for which a new password is being
supplied. If more than one mode is specified, the
operation wiJI be rejected unless the old passwords
for the several modes are all the same as the
as the old_password operand.

The current password for this pack and mode; a null
string if there is no current passwor&

The new password; a null string if there IS to be np
password.

Note that this function is not intended for direct use by a client, but rather for use by
the database update system; if used by a client without also updating the database,
the password will be restored to its old value the next time the R YO server is res­
tarted.

(10) Return a list of active virtual packs

operation = display_active

Optional operands:

filename

start = < value>

Response operand:

number = < value 1 >

activity = < value2 >
more = true

Path name of device partition for which a list of
active virtual packs is wanted. If omitted, a list
of all active virtual packs is returned.

A number giving the offset of the first infonnation
line wanted. This operand is nonnally supplied if
the previous invocation of display_active included
the response operand "more = true."

(optional response)

.July 1987

Remote Virtual Disk System IBM/4.3-SMM:6-51

< value! >
The number of currently active packs on this partition or, if no partition was
specified, on this server.

< value 2 >

'"

A single canonicalized netascii string containing one line of infonnation for each
active virtual pack. A typical line looks like:

partition = /dev /raOg pack = library mode = I connections = 5 idle = 1721

If there were more activity descriptions than would fit in a single packet, the response
operand "more = true" will appear.

Idle time is measured in seconds since most recent access. Note that the idle time is
purely an activity hint, to detennine whether or not a pack that appears to be spun
up is actively in use. It is maintained by the server only to a rough approximation.

(II) Obtain server load statistics

operation = get Joad

Required operands:

password The operations password for the RVD server.

Response:

load = < string> < string> is a canonicalized netascii string containing
load statistics ready for display.

(12) Change authorization for operations and administrative operations.

operation = require_authorization (no required or optional operands)

When an RVD server begins operation, it accepts RVD control protocol requests
only from the same host on which it is operating, and it does not require operations
or administrative passwords. (Starting without passwords allows automating initiali­
zation without the need to store those passwords in clear fonn.) The
require_authorization operation causes the server to read operations and administra­
tive passwords from a file in the file system of the server's host. After
require_authorization is executed all operations listed above as requiring either an
administrative or operations password do actually require them. \Vhenever
require_authorization is invoked, the RVD server rcinitializes its copy of the opera­
tions and administrative passwords from /etc/rvdautllOr.

There are two scenarios of use of require_authorization. The first is at system initiali­
zation time:

- start server
- send initializing control sequences, if any
- send require_authorization
- await success of require authorization
- declare initialization su~essful.

July 1987

IBM/4.3-SMM:6-52 Remote Virtual I>isk System

The second scenario is to change the operations or administrative passwords.

- modify file containing operations and maintenance passwords.
- send require_authorization

July 1987

DMA Reference Manual IBM/4.3-SMM:7-1

. DMA Reference Manual

ABSTRACT

This paper describes the set of kernel utility routines provided with IBM/4.3 to
facilitate the use of the RT's eight Direct Memory Access (DMA) channels by
device driver writers. The article contains the following sections:

1. Introduction describes the purpose of the DMA utility routines.

2. The Hardware provides a brief overview of how the D MA hardware works.

3. The Software describes the structures, flags, and callable routines provided.

4. Using DMA in a Device Driver describes the nonnal flow of control between device drivers
and the DMA code.

July 1987

IBM/4.3-SMM:7-2 DMA Reference Manual

I. Introduction

IBM/4.3 includes a set of utility routines designed to facilitate how device drivers use the IBM
RT PC's eight DMA channels. This article describes the interface the writer of a device driver
uses, and the way the DMA hardware works. For a more complete description of the DMA
hardware, see the IBM RT PC Hardware Technical Reference Volume I, Number 75X0232.

2. The Hardware

The DMA hardware on the RT PC is influenced by the DMA implementations on the
PC/ AT, PC/XT, and PC. Transfers are mapped from the PC address that the various
adapters use to an R T memory address (either physical or virtual) by a set of registers called
Translation Control Words (TCWs). The number, location, and fonnat of the TCWs usable
by a given device are dependent upon which of several modes the DMA will operate in.

2.1. System DMA vs. Alternate DMA

DMA transfers can be assisted by hardware on the RT PC System Board, or controlled by
a DMA controller on an adapter card. The former is known as system DMA (as well as
third party DMA, or non-cascade mode). The latter is known as alternate DMA (as well
as first party DMA, or cascade mode). The mode a driver can use is constrained by the
hardware for which the driver was written. Adapters without DMA controllers on the card
must use system DMA. Adapters with DMA controllers must use alternate DMA. The
DMA utility routines will set up system DMA as well as the required TCWs. The device
driver writer must set up alternate DMA.

2.2. 16 bit vs. 8 bit

When using system DMA, DMA channels 0 to 3 are connected to an eight bit DMA con­
troller, while channels 5 to 7 are connected to a 16 bit DMA controller. The eight bit con­
troller transfers data one byte at a time. Addresses can be aligned on any arbitrary byte
boundary, and counts can be either even or odd. The maximum transfer length is 64K,
due to addressing limitations of the DMA controller.

The 16 bit controller transfers data two bytes at a time. Addresses must be half-word
aligned, and counts must be even. The DMA code will truncate odd addresses and counts.
The maximum transfer length is 128K.

Note that this distinction is only applicable when using system DMA. Alternate DMA
treats all these channels the same.

2.3. Page Mode vs. Region Mode

The TCWs used and the meaning of each TCW are cant roIled by the DMA mode register.
This register can select either page mode or region mode. In page mode, the I/O address
specified by the device doing the DMA (or in the case of system DMA, by the DMA con­
troller) is separated into two pieces: a TCW page select (six bits) and a page displacement
(11 bits). The TCW page select is used to address one of 64 TCWs belonging to the DMA
channel which generated the request. The TCW contains a 13 bit physical page address
which is added to the II bit displacement to produce a 24 bit real address. This
corresponds to the 2K virtual page size used by IBM/4.3. (This means one TCW is
needed for each page of virtual memory to which the driver transfers.) The DMA mapping
routines automatically set up these TCWs from valid paged-in virtual buffers. In page
mode, the maximum DMA transfer is 128K. Alternate controllers can generate 24 bit I/O
addresses. For alternate DMA using page mode, the upper seven bits must be 1 'so

July 1987

DMA Reference Manual

r
6 bit TCW

Se ect

8 bit
System

16 bit
System

Alternate

24 bit real address

13 bit physical page

I 13 bit
page

Per Channel

TCW's

(64 total)

0000000

0000000 6 bit
TCW page

1111111 ~·t TC page

IBM/4.3-SMM:7-3

11 bit
displacement

1 1 bit displacement

. ~ 1 bit dlsp acement

10 bit
displacement

. ~ 1 bit dlsp acement

Region mode also separates addresses into two pieces: a TCW region select (nine bits) and
a region displacement (15 bits). lbe TCW region select points to one of 512 TCWs shared
by all the DMA channels. These TCWs contain a nine bit region which is concatenated to
the 15 bit displacement. In addition to the nine bit region, region mode TCW s also con­
tain status information specifying if the transfer is to real or virtual memory. If the transfer
is real, the nine bit region select plus 15 bit displacement becomes the 24 bit real address.
If the transfer is virtual, the hex value EO is prepended to the 24 bit address and sent to the
MMU to be translated. Note that region mode DMA can potentially transfer 16 Meg of
data in one transfer. However, the granularity of the translation is 32K contiguous. Since
under normal circumstances, it is unlikely transfers will be to 32K contiguous real memory,
most devices which use region mode would use region mode virtual.

July 1987

IBM/4.3-SMM:7-4 DMA Reference Manual

EO/JOO
Vi Re

Selects
Virtual
or Real

9 bit
TCW select

32 bit virtual or 24 bit real address

9 bit
region

9 bit
region

Common

Region mode

TCW's

(512 total)

9 bit
TCW select

15 bit
displacement

15 bit
displacement

15 bit
displacement

24 bit 1/0 address (alternate dma, region mode)

System DMA devices must use page mode DMA only. Alternate controllers can use
either; however, the OMA utility code only supports page mode OMA.

2.4. Special and Restricted Channels

As mentioned above, channels 0 to 3 are eight bit controller channels, and channels 5 to 7
are 16 bit controller channels. These distinctions apply only when using system DMA.
Channel 8 is a special OMA channel designed for use with the 286 co-processor card.
Since there is no system controller for channel 8, no system DMA can be used by it. Nor
are there any page mode TCWs for channel 8; only region mode DMA can be used.
Channel 4 is a reserved channel not available for use by DMA devices.

2.5. Selecting the Proper DMA Channels and Modes

The adapter hardware determines most of the modes that a DMA device can use. The
channels that a device can use are usually fixed (though some adapters can be programmed
to use some or all of the OMA channels). Whether the adapter can use system OMA or
alternate DMA is also an attribute of the adapter. Writers of device drivers must detennine
what type of DMA the adapter can use.

July 1987

DMA Reference Manual IBM/4.3-SMM:7-5

3. The Software

3.1. Structures Used When Calling DMA Utility Routines

There are several fields reserved in various I/O structures for use by DMA. The fields
listed in this section are those used by a device driver to send information to and receive it
from the DMA code. The format of the list is as follows:

structure: include file: descript ion

for the header, and

field I descriptions I [valid parameters]

for the fields.

struct iocc_ctlr: /sys/machineio/ioccvar.h: per controller structure
to dma_setup()

short ic_dmachannell DMA channel number I DM_CIIAN[O-3,5-8]
int ic_dmaflags I DMA transfer flags I see DMA flags below
struct buf +ic_dmabuf I buffer describing the DMA transfer I

struct dma_callback:/sys/machineio/ioccvar.h: callback structure used by the driver
when calling dma_wait()

caddr _ t d jnfo I value to be passed to the callback routine I
void (+d _wakeup)O I callback routine, called when the channel is no longer exclusive I

struct buf:/sys/h/bufh:general buffer structure
long b Jlags I flags describing the transfer. DMA is only interested in the

B_PHYS flag (which must be set if the buffer points to an address
in user space) and B _REA D (which is set if the transfer is a read). I

caddr_t b_un.b_addr I address of the transfer I
long b _ bcount I size of the transfer in bytes I

3.2. DMA flags passed with ic_dmaflags

The following flags can be passed using ic_dmaflags to tell the DMA code how to set up
the hardware. Defines for these flags can be found in /sys/machineio/dmavar.h.

Flag(s): DMA_DEMAND, DMA_SINGLE, DMA_BLOCK, DMA_CASCADE
Default: DMA_SINGLE (system DMA), DMA_CASCADE (alternate DMA)
Hardware: DMA controller mode register (see IBM RT PC" lIardware Technical Reference
Volume I)
Effect: Controls transfer mode characteristics. DEMAND is for asynchronous input such
as from keyboards and serial lines; SINGLE is for cycle stealing mode; BLOCK is for burst
mode; CASCADE is for alternate DMA (first party) mode.
Restrictions/Side Effects: DMA_CASCADE must be used for alternate DMA, and cannot
be used for system DMA.

July 1987

IBM/4.3-SMM:7-6 DMA Reference Manual

FJag(s): DMA_PAGE, DMA_REGION
Default: DMA PAGE
Hardware: DMA mode register (see IBM RT PC lIardware Technical Reference Volume I;
note that this is NOT the same register as above).
Effect: Controls whether page mode or region mode transfers are used (see "Page Mode vs.
Region Mode" above).
Restrictions/Side Effects: System DMA can usc only page mode. Region mode DMA is
not supported.

Flag(s): DMA_PHYSICAL, DMA_ VIRTUAL
Default: DMA PHYSICAL
Hardware: TCW (see IBM RT PC Hardware Technical Reference Volume /).
Effect: Controls whether the translated address is real or virtual.
Restrictions/Side Effects: DMA_ VIRTUAL is not valid for page mode transfers.

Flag(s): DMA_ CANTINT
Default: off
Hardware: software only
Effect: Tells the DMA code that the device can't interrupt after the DMA has completed.
The DMA code will call the device driver's interrupt routine whenever the DMA gets an
interrupt. It is up to the device driver to determine whether or not the transfer has really
completed. If the transfer has not completed, the device driver should return
INT NOT MINE. - -
Restrictions/Side Effects: The DMA controller only interrupts on completion of system
DMA transfers.

Flag(s): DMA_EXCLUSIVE
Default: off
Hardware: software only
Effect: This flag tells the DMA code that the device driver intends to usc this channel
indefinitely. Once an exclusive device has control of the channel, any further attempts to
queue a request will result in the DMA code requesting the exclusive device driver to
release the channel. If the exclusive device driver refuses, the request will be rejected with a
DMA_EXCLUSIVE_RET. See Using DMA_EXCLUSIVE below for more details.
Restrictions/Side Effects: Only one DMA_EXCLUSIVE request can be queued at one
time. If a DMA_EXCLUSIVE request is not yet running, other requests on that channel
have priority.

Flag(s): DMA_ CANTWAIT
Default: off
Hardware: software only
Effect: This flag tells the DMA code that the device driver can't wait for the channel to
become not busy.
Restrictions/Side Effects: See "dma_setup()" below.

3.3. Driver Callable DMA Routines

There are several routines in the DMA code which are designed to be caIJed by a device
driver when it wishes to use DMA services.

int
dma _ setup(ic)
struct iocc _ ctlr "'ic;

July 1987

DMA Reference Manual IBM/4.3-SMM:7-7

Dma _setup () is called whenever a device first wants to initiate a transfer. It is passed a
pointer to a controller structure which has the channel number (ic _ dmachannel), flags
(ic_dmaflags), and a buffer describing the DMA transfer (ic_dmabuf). lc_dmabuf can be
set to 0 to get the channel only. If the request can be queued, dma_setup() will return
DMA_OK_RET. If the request cannot be queued because there is an exclusive device,
dma_setup will return DMA_EXCLUSIVE_RET. If the channel is busy, and the
DMA_ CANTWAIT flag is on, dma_setup() will return DMA_DUSY _RET.

short
dma_select_chan(channel_array)
short channel_array[);

Dma_select_chan() returns the "least busy" channel out of all the channels in
channel_array[]. Channetarray is an array of valid channels that the calling device driver
can use terminated with the value DMA END CHAN. Dma .~elect chan () first rotors
through the array looking for the fir;t non-busy channcl. If- none are found,
dma_select_chan() rotors through the array again looking for the first channel which does
not have a DMA_EXCLUSIVE request queued on it. If it finds none, dma_.'ieleCl_chan()
rotors through the array looking for the first channel the does not have a
DMA_EXCLUSIVE request running. If no free channel is found, dma_select_chan will
return the channel on the top of the channel_array.

unsigned
dma_map(chan,bp)
short chan;
struct buf +bp;

Dma map() is used to map TCWs for DMA transfers. Dma setup () automatically calls
dma~map() for the buffer pointer passed in ic_dmabuf. Chan is the channel for the
transfer. Dp is a pointer to a buffer structure which describes the transfer. Dma _map ()
returns the ioaddr for the transfer. If there aren't enough contiguous free TC\Vs to support
the transfer, dma_map() returns DMA_INV_IOADDR.

void
dma _free _ map(chan ,io addr ,len)
short chan;
unsigned ioaddr;
int len;

DmaJree_map() frees TCWs allocated by the dma_map() call. Chan is the channel,
ioaddr is the I/O address returned by dma _ map(), and len is the length of the transfer in
bytes.

void
dma _go (channel)
short channel;

DmaJJo() enables the DMA channel for a transfer.

void
dma _ donee channel)
short channel;

July 1987

IBM/4.3-SMM:7-8 DMA Reference Manual

Dma_done() frees the channel for other devices to use. All TCWs arc automatically freed.
If the request was a DMA EXCLUSIVE request, any device drivers on the callback queue
are called. The channel is disabled. The request is dequeued, and the next request on the
channel is started.

void
dma _ wait(chan ,callback)
short chan;
struct dma _ callback "'callback;

Dma _wait () queues the callback structure on the DMA channel chan. \Vhenever the
channel is free (no DMA EXCLUSIVE requests are running), the routine specified in the
callback structure is called~ This allows drivers to wait on DMA channels that are tied up
by exclusive requests that refuse to release the bus. If there are no exclusive requests on
the channel, the routine specified in the callback structure is called immediately.

void
("'dma _get _ minphys(ic»O
struct iocc _ ctlr "'ic;

Dma -.!Jet _ minphys() returns a pointer to the proper minphys routine to be called. The typi­
cal usage is in a physioO call when doing raw I/O.

3.4. DMA Callable Routines in the Device Driver

The device driver routines that the DMA code calls are in the device driver's iocc_driver
structure (where the probe, slave, attach, and other routines are defined).

int
xx_ chanrelse (channel)
short chatmel;

Xx _ chanrelre() (the routine pointed to by xxdriver- > idr _ chanrelse) is necessary only for
device drivers which use the DMA_EXCLUSIVE flag. This routine is called from
dma_setup whenever the exclusive device has the channel, and another device queues a
request to use the channel. Xx_chanrelse() must either: I) take steps to release the channel
now, or in the near future, then return 0, or 2) decide it cannot release the channel now
and return non-zero. If zero is returned, the DMA code assumes that the exclusive device
has released the channel (or will do so as soon as the current transfer is completed) and
allows the new DMA request to be queued.

void
xx_ dgo(ic,len ,ioaddr ,bp)
struct iocc _ ctlr *ic;
int len;
unsigned ioaddr;
struct buf *bp;

When the channel become available, the DMA code will call xx_dgo() so that the device
driver can set up the device specific portions of the DMA transfer. Ic is a pointer to the
controller structure passed by dma_setup(). Len is the length of the transfer. If no tew's
have been allocated, len is O. Xx_dgo() is still called to let the driver know that an error

July 1987

DMA Reference Manual IBM/4.3-SMM:7-9

has occurred. Ioaddr is the I/O address for the transfer. If there were not enough TCWs to
map the transfer, this value is set to DMA_INV _IOADDR. Bp is the buffer passed to
dma_start in the ic_dmabuJfield. int
xx _ int(ctlr ,irq)
int cdr;
int irq;

XX_i11t() is called by DMA code only if the DMA_ CANTINT flag is set. Usually the dev­
ice will generate a normal interrupt when a DMA transfer is completed. This interrupt will
be routed to xX_int() through the standard interrupt handlers.

4. Using DMA in a Device Driver

The method of calling DMA varies depending on the way the device driver uses the DMA
code. This section describes the normal flow of control between device drivers and the DMA
code for several general situations.

4. t . Standard Device Drivers

A standard device driver is a device driver that calls the DMA code each time it wishes to
start a transfer, and notifies the DMA code when the transfer has been completed. To start
a transfer, the standard device driver loads the ic structure with the channel, flags, and
buffer to transfer. The device driver then calls dma_setup(). passing it a pointer to the ic
structure. Dma_setup() will return "DMA_ OK_RET" if it successfully queues the DMA
request.

When the channel becomes not busy, the DMA code will set up the TCWs and system
controller for the transfer and call the device driver's xx_dgo(). Xx_dgo() is responsible
for setting up everything the device needs to start a transfer. When xx _ dgo() finally needs
to enable the channel, it calls dma..150(), passing the channel number on which it wishes to
transfer. Note that if the channel is not busy when dma _setup () is called, all these calls
happen before setup returns. Xx _ dgo() is not guaranteed to be called at the proper inter­
rupt level or in the context of the user process whose transfer it is supposed to service.

When the transfer has completed, the device will generate an interrupt. (If the device
doesn't generate an interrupt, see "Using DMA_ CANTINT" below). Once the device's
interrupt handler determines that the interrupt indicates an end to a DMA transfer, the
interrupt handler does any necessary post-transfer cleanup of the adapter and device driver
data structures, and calls dma_done() with the channel number to indicate that the device
driver is done using the channel.

July 1987

IBM/4.3-SMM:7-10 DMA Reference Manual

Device driver DMA code

call dma_setup(ic) .. ~ request is queued
,/

wait for xx_dgo / I
to be called "-

channel is free, set up
dma system controller

xx_dgo sets up
/ and TCW's

device specific dma '\

"
call dgo(ic,len,ioaddr,hp I

call dma_go(channel) enable the channel.
/

I return and /
wait for interrupt ~

Interrupt

"- xx_intO com~letes
" free TCW's an(' adapter c eanup

/ cal dma done(channel) ,(disable the channel
start next dma request

signal routine L I waitinr on the transfer
tha the transfer has " completed

4.2. Using DMA_EXCLUSIVE

Device drivers which plan to hold a channel for an indefinite period of time must use the
DMA_EXCLUSIVE flag. This flag tells the DMA code that the device driver must be
notified if another driver tries to queue a request on the channel. The exclusive device's
xx_chanrelse() routine will be called when this happens. Xx_chanrelre() must signal the
device driver to release the channel. If the device driver cannot release the channel,
xx_chanrelse() must return non-zero. If the channel can be released, xx_chanrelre() must
return o. Releasing the channel means disabling the exclusive device from starting DMA
and calling dma_ done.

4.3. Using DMA_CANTINT

Some devices don't interrupt when a DMA transfer has been completed. If the device uses
system DMA, the device driver can set the DMA CANTINT flag. When the system
DMA controllers complete a transfer, they will gene~ate an interrupt. Any devices which
have set DMA_ CANTINT will be called. It is up to the individual device driver interrupt
routines to determine if transfers have been completed. If a transfer has not been com­
pleted, the device driver interrupt routine must return INT _NOT_MINE (defined in

July 1987

DMA Reference Manual IBM/4.3-SMM:7- t t

/ sys/h/ioccvar.h).

4.4. Using Dma _ waitO

It is possible that dma_setupO will reject a DMA request because an exclusive device
refuses to give up the channel. If this happens, the device driver can set up a callback
structure and call dma_waitO. When the exclusive device finally finishes with the DMA
channel (if ever), dma _wait will call the callback routine specified by the device driver in
the callback structure. The callback routine could then restart the DMA request.

4.5. Devices Which Can Handle Multiple I>MA Transfers

Dma_map() and dmaJree_map() are provided for devices which can maintain multiple
transfers on the same channel. Por the first transfer the device driver calls dma _setup ()
normally. If another transfer request comes to the device driver before the first transfer is
complete, the device driver can call dma_map() to set up the needed TCWs, then hand call
xx _ dgo(). When the first transfer completes, the interrupt routine calls dma Jree _ map ()
instead of dma_done(). Dma_done() is called only after all the outstanding transfers have
been completed.

A device driver which does this must provide some mechanism to allow dma_done() to be
called periodically so other device drivers can use the channel. This can be done by keep­
ing a maximum count of consecutive transfers since the last dma _ done () call. When the
number of transfers equals this maximum count, no more transfers are started until all out­
standing transfers have been completed and dma _done () has been called. An alternative is
for the driver to set the DMA_EXCLUSIVE flag. The device driver merrily transfers until
all requests have been completed, or until the device driver's xx _ chanrelse() is called.
When the xx _ chanrelse() is called, it sets a flag to tell the device driver not to start any
new requests, then returns O. When all the outstanding DMA requests have been serviced,
dma_done() is called and the channel is freed for use by another device driver. Note:
Dma_done() will always free all the TCWs allocated by a channel with the dma_map()
call.

4.6. I>evices Which Can Use Multiple DMA Chann('ls

Some adapters can software select which DMA channcIs they are going to use. The
dma_select_chan() routine facilitates the best use of channels. Before calling dma_setup() ,
a device driver calls dma select chan () with an array of channels which it can use.
Dma_select_chan() returns the le;st busy channel in the array. In the following example,
the adapter can software select between channels 0, 5, and 7.

#include < .. /machineio/dmavar.h >

/+
+ set up channel array

+/

short dma _select _ chanO

July 1987

IBM/4.3-SMM:7-12 DMA Reference Manual

short xx_chan_array(J = {
DMA_CHANO,
DMA_CHAN5,
DMA_CHAN7,
DMA END CHAN - -
};

,+get channelfor transfer +,
ic- > ic_channel = dma_select_chan(xx_chan_array); ,+ tell adapter which channel to u.se (can also be done in xx_dgo) +,
xx_set_channel(ic- > ic_channel);
/+ start dma +,
dma_setup(ic);

4.7. Consequences of Not Using the DMA Interface

Device drivers which do not use the DMA interface run the risk of being interfered with by
other DMA devices. The kernel also uses infonnation provided by the DMA code when it
wishes to do things which are unsafe to do while DMA is running. If a device driver writer
absolutely needs to grab a DMA channel pennanently, the device can call dma_setup()
with DMA_CANT_WAIT and DMA_EXCLUSIVE. (Of course, if another device has
already grabbed the channel, this device driver is out of luck. Using DMA_EXCLUSIVE
implies that the device doesn't plan on releasing the channel ever!) The device driver's
xx_chanrelse() would then always return non-zero.

July 1987

