
Graphics Library Programming Guide 1-1

Chapter 1

1. Graphics Development Environment

This chapter provides a brief overview of the graphics development
environment. The graphics development environment contains the tools and
systems that you work with when you write GL programs.

The tools available in the graphics development environment include your
workstation, the IRIX operating system, the IRIS Graphics Library, system
libraries, include files, the X Window System™, and a programming language
that provides the interface to the GL. This guide describes the ANSI C interface
to the GL.

The IRIS workstation processes graphics operations through the Geometry
Pipeline™. The Geometry Pipeline is like an assembly line that performs the
specialized graphics tasks that create and display graphics.

The IRIX operating system provides commands for setting up and
maintaining your system, creating and editing files, and using IRIX system
calls in your GL applications.

1.1 Using the Graphics Library and System Libraries

The GL is a library of subroutines that you call from a program, written in C,
or another language, to draw and animate 2-D and 3-D color graphics scenes.
You build your application using GL commands within the framework of the
programming language. The programming language provides the logical
structure for your program, and GL commands provide the interface to the
graphics software and hardware.

1-2 Graphics Development Environment

The GL is network-transparent, so you can send graphics information over the
network to a remote host, send graphics information to multiple display
screens, or share processing tasks with other systems. To use
network-transparent features, you must link with the shared libraries, as
described in Section 1.3.2, “Compiling C Programs.” See Chapter 19, “Using
the GL in a Networked Environment,” for more information about network
transparency. The X Window System, described in Section 1.2, “Using the X
Window System,” manages operations over the network.

1.1.1 System Libraries

System libraries allow you to use capabilities such as graphics, fonts, and math
routines. Shared libraries provide the optimum use of system resources and
the best portability and compatibility between IRIS platforms. Libraries such
as the shared graphics library (libgl_s.a), the math library (libm.a), and the font
library (libfm.a) are invoked when you link to them when compiling your
program.

1.1.2 Include Files

Include files provide standard definitions that your program uses. The include
file gl/gl.h provides the standard definitions for graphics. Include files such as
math.h, device.h, and stdio.h provide definitions for system facilities that your
program uses.

1.2 Using the X Window System

Your workstation uses the X Window System. The X Window System provides
resource management and communication through a client/server system,
known as the X client and X server, that you can read about in your X Window
System documentation. A few of the facilities that it includes are a terminal
emulator (xterm), a window manager (4Dwm), a manual page browser (xman),
mail managing utilities, user customizing options, font utilities, demos, and
toolkits for creating graphical user interfaces.

The client/server model allows for remote display of graphics output. The
DISPLAY environment variable determines where output is to be displayed.

Graphics Library Programming Guide 1-3

Most of the time you display graphics on the default display, which is the
screen attached to your workstation.

The X Window System designates displays by:

hostname:server.screen

where:

hostname is the name of the server on which the display resides.

server is the number of the X server. Some setups have more than one
server, so they are numbered starting with 0; the default is 0.

screen is the screen to display on. Some systems have more than one
screen; the default is 0.

A typical display is:

mysystem.mydomain:0.0

If you are displaying on the system in front of you, it is called a local host. When
displaying on a local host, you do not have to specify the hostname, so your
DISPLAY is :0.0 if you have only one screen on your system. Because this is
the default, your system already knows that DISPLAY is :0.0 , and you do not
have to set it explicitly. You can learn more about X servers and displays in
your X Window System documentation. See Chapter 19, “Using the GL in a
Networked Environment,” for information about how to share graphics across
a network.

The 4Dwm window manager supplied with your system provides a default
appearance for windows and manages window operations. You can create X
windows, GL windows, and mixed-model applications, which are either X
windows that accept GL input, or GL windows that intermix X and GL
subroutines. Creating, manipulating, and displaying windows are activities
central to your task as a GL programmer. Working with GL windows is
covered in depth in the Graphics Library Windowing and Font Library
Programming Guide.

1-4 Graphics Development Environment

1.3 Programming in C

The C programming language provides the framework for developing GL
programs. This guide assumes that you are comfortable writing C programs.

1.3.1 Using the ANSI C Standard

Ideally, GL programs are independent of the particular IRIS platform and the
installed graphics hardware that is running the application. The best way to
develop machine-independent code is to follow the ANSI C standard and to
query the system about available hardware to establish its graphics
performance capabilities. You can learn about the ANSI C standard in your C
programming language documentation. To compile non-ANSI compliant
code, use the -cckr flag to invoke the standard C compiler, as described in
Section 1.3.2.

1.3.2 Compiling C Programs

To compile C programs, use the cc (C compiler) command:

% cc myprogram.c -lc_s -lgl_s -lm -o myprogram

The first two options in this list allow the same binary to run on all IRIS-4D
Series systems:

-lc_s links with the shared C library.

-lgl_s links with the shared Graphics library.

-lm links with the math library.

-o defines the name of the output file.

Some other compile options that you might want to use are:

-cckr invokes the standard C compiler rather than ANSI C.

-lfm_s links with the IRIS shared Font Manager library.

-lsun links with the Network Information Service (NIS) to supply a
hostname list for network-transparent GL applications.

Graphics Library Programming Guide 1-5

1.4 GL Program Structure

Steps that you perform in a GL program include:

1. Querying the system for the availability of graphics resources.

2. Initializing the Graphics Library.

3. Calling GL subroutines to set and get global state attributes and to create
and render graphics.

4. Exiting the Graphics Library.

The best way to learn about what a GL program contains is to look at a sample
program. The sample program for this chapter is in the ch01 directory of
/usr/people/4Dgifts/examples/glpg. Change directories (cd) to that directory now
so you can follow along with the discussion.

This program is named green.c:

#include <gl/gl.h>

main()
{
 prefsize(400, 400);
 winopen("green");
 color(GREEN);
 clear();
 sleep(10);
 gexit();
 return 0;
}

Compile the program using the compile line:

% cc green.c -lgl_s -lc_s -o green

Run the sample program by typing:

% green

Move the mouse cursor to the location where you want the window to appear
and click the left mouse button. A solid green window opens, remains visible
for 10 seconds, and then disappears.

1-6 Graphics Development Environment

Look at the program in detail. The first line

#include <gl/gl.h>

includes all the standard definitions for graphics. It must be included in every
graphics program. You must include gl/gl.h in green.c to get the definition of
“GREEN” in the call to color() .

The subroutine

prefsize(400,400);

tells the window system that when a window is opened, it should be 400 pixels
on a side. It doesn’t create a window—it just establishes the initial size of the
next window to be opened.

The call to winopen() actually creates the window and initializes the GL.
Calling color() with an argument of GREEN sets the drawing color for
subsequent operations to the value of the constant GREEN, defined in gl/gl.h.
The call to clear() fills the window with the current drawing color. You set
the drawing color for other operations in the same manner—that is, by calling
color() with the color specification you wish to use. See Chapter 4, “Display
and Color Modes,” for more information. The call to gexit() closes the
window and tells the system that the process is finished using graphics.

As you work through the rest of the chapters, run the sample programs, copy
them, and modify their parameters to see what effects are possible. The next
sections examine the basic elements of a GL program that are in the sample
program.

1.4.1 Initializing the System

Initializing the Graphics Library means telling the system to set up the
graphics software and hardware environment in which a program will run.
Use winopen() to initialize the GL and open a graphics window to tell the
system where to display the graphics output of your program.

winopen() initializes the hardware, allocates memory for symbol tables and
display list objects, and sets up default values for global state attributes.
winopen() must be called before you call most GL routines.

Graphics Library Programming Guide 1-7

You can call these GL subroutines before you call winopen() , ginit() , or
gbegin :

fudge
foreground
imakebackground
iconsize
keepaspect
maxsize
minsize
noborder
noport
prefposition
prefsize
stepunit
getgdesc
gversion
ismex
scrnselect

1.4.2 Getting Graphics Information

You can make your application more portable by including code that queries
the system for its graphics capabilities before commencing with the program.

Querying the System for Graphics Resources

getgdesc() allows you to inquire about characteristics of the graphics system,
such as screen size, number of bitplanes, and the existence of optional
hardware such as z-buffer. getgdesc() returns a number that describes the
hardware configuration specified by its parameter, inquiry. See the getgdesc(3G)
man page for a complete list of parameters. getgdesc() returns a value of -1
if the inquiry is invalid, or if the specified hardware is not installed. You can call
getgdesc() at any time, including before the first winopen() .

The values that getgdesc() returns are not affected by changes to software
modes or software configuration.

Querying the System for Graphics Hardware and Software Versions

gversion(v) returns information about the current graphics hardware and
the Graphics Library version.

1-8 Graphics Development Environment

The argument v is a pointer to a location into which gversion() copies a
null-terminated string. Reserve at least 12 characters at this location.
gversion() fills the buffer pointed to by v with a null-terminated string that
specifies the graphics hardware type and the version number of the Graphics
Library.

You can call gversion() before the first winopen() .

Caution: Using gversion() makes programs machine-specific. In almost
all cases, getgdesc() is preferable to gversion() .

Table 1-1 lists the descriptors returned by gversion() . In the table, m and n
represent the major and minor release numbers, respectively, of the IRIX
software release to which the current Graphics Library belongs.

Note: Personal IRIS units with early serial numbers do not support the
complete Personal IRIS graphics functionality.

Graphics Type String Returned

B or G GL4D-m.n

GT or GTB GL4DGT-m.n

GTX or GTXB GL4DGTX-m.n

VGX GL4DVGX-m.n

VGXT, Skywriter GL4DVGXT-m.n

RealityEngine GL4DRE-m.n

Personal IRIS GL4DPI2-m.n

Personal IRIS with Turbo Graphics GL4DPIT-m.n

Personal IRIS (early serial numbers) GL4DPI-m.n

IRIS Indigo Entry GLDLG-m.n

XS GL4DXG-m.n

XS24 GL4DXG-m.n

Elan GL4DXG-m.n

Table 1-1 System Types and Graphics Library Versions

Graphics Library Programming Guide 1-9

Setting Compatibility Modes

glcompat() gives control over details of the compatibility among systems.
glcompat() controls two compatibility modes. The first, GLC_OLDPOLYGON,
offers compatibility with old-style polygons, described in Chapter 2,
“Drawing.” The second, GLC_ZRANGEMAP, controls the state of z-range mapping
mode, described in Chapter 8, “Hidden-Surface Removal.”

Setting and Getting the Graphics Resource Configuration

The GL is a modal system—it maintains settings, or modes, that determine how
graphics resources are set up. When you change certain modes, you need to
call gconfig() to configure them. Table A-2 in Appendix A, “Scope of GL
Subroutines,” contains a notation in its third column that indicates which
commands require a gconfig() in order to take effect. Call gconfig()

following the group of all calls that require a gconfig() .

The current configuration can be read back with getgconfig() .

Table 1-2 lists the getgconfig() tokens and the resource they describe.

Token Resource

GC_BITS_CMODE Color index size

GC_BITS_RED Red component size

GC_BITS_GREEN Green component size

GC_BITS_BLUE Blue component size

GC_BITS_ALPHA Alpha component size

GC_BITS_ZBUFFER z-buffer size

GC_ZMIN Minimum depth value that can be stored in the z-buffer

GC_ZMAX Maximum depth value that can be stored in the z-buffer

GC_BITS_STENCIL Stencil size

GC_BITS_ACBUF Accumulation buffer size

GC_MS_SAMPLES Number of samples in multisample buffer

Table 1-2 Tokens for Graphics Resource Inquiries

1-10 Graphics Development Environment

Requests for GGC_ZSIZE, GGC_ACSIZE, and GGC_MSZSIZE return a negative size
if the buffer is signed.

1.4.3 Global State Attributes

The global state attributes are options that specify information that the GL uses.
Many of the GL subroutines allow you to change the values of these attributes.
Unless you specify otherwise, the global state attributes use their default
values. See Appendix B for the default values of the global state attributes.

1.4.4 Exiting the Graphics Environment

gexit() performs housekeeping functions associated with the termination of
graphics programming, such as freeing memory used for GL data structures.
Call gexit() as the last step in a GL program.

GC_BITS_MS_ZBUFFERMultisample zbuffer size

GC_MS_ZMIN Minimum depth value that can be stored in the
multisample z-buffer

GC_MS_ZMAX Maximum depth value that can be stored in the
multisample z-buffer

GC_BITS_MS_STENCIL Multisample stencil size

GC_STEREO Stereoscopic buffer state

GC_DOUBLE Display double buffer state

Token Resource

Table 1-2 (continued) Tokens for Graphics Resource Inquiries

