
Graphics Library Programming Guide 13-1

Chapter 13

13. Depth-Cueing and Atmospheric Effects

This chapter introduces you to two techniques that contribute to the
perception of 3-D in your scenes: depth-cueing and atmospheric effects.

• Section 13.1, “Depth-Cueing,”describes how to use depth-cueing in
RGB mode and in colormap mode.

• Section 13.2, “Atmospheric Effects,” shows you how to create
atmospheric effects such as fog and haze.

13.1 Depth-Cueing

When you look at objects in the real world, it is your eye’s ability to perceive
depth—depth perception, that makes you aware of the 3-D nature of objects and
lets you judge the relative distance of objects. The illusion of depth perception
can be created on the 2-D screen by depth-cueing images. Depth-cueing
modifies an object’s color based on its distance from the viewer. Figure 13-1
shows how a cube looks when it is depth-cued.

Figure 13-1 Depth-Cued Cube

13-2 Depth-Cueing and Atmospheric Effects

Two methods of depth-cueing are presented in this chapter: color replacement
and color blending.

Color replacement makes objects closer to the viewer brighter than those far
away from the viewer. Depth-cueing makes an image appear 3D by replacing
the color of all points, lines, and polygons with colors determined by their z
values.

Color blending blends true object color with another color, where the blend ratio
is determined by the depth of the object. You can use color blending for
depth-cueing, but color blending is better known as a technique for simulating
atmospheric phenomena such as fog and smoke. (See Section 13.2)

Note: Depth-cueing and lighting cannot be used simultaneously.

13.1.1 Setting Up Depth–Cueing

To set up depth-cueing in your GL application:

1. Set the proper modes:

shademodel(GOURAUD); — this is the default

2. Define a range of z values that describes the viewing volume that is
subject to depth-cueing.

3. Clear the z-buffer to the maximum z value and clear the screen color to
the background color.

4. Turn depth–cueing on.

5. Specify a mapping of z values to color.

6. Draw objects that are to be depth-cued.

Defining the Boundaries for Depth-Cueing

You need to tell the GL where in your viewing volume you want objects to be
depth-cued. Doing so establishes a reference for mapping the maximum and
minimum color intensities. The near and far clipping planes establish the
reference for the color mapping.

Graphics Library Programming Guide 13-3

Figure 13-2 shows how the minimum and maximum z values are mapped to
the brightest and dimmest colors within a viewing volume.

Figure 13-2 Viewing Volume Showing Clipping Planes and a Depth-Cued Line

Use the lsetdepth() subroutine to define the near and far z values that form
the boundary z values used for depth-cueing within a viewing volume. The C
specification for lsetdepth() is:

void lsetdepth(long near, long far)

The valid range of near and far depends on the state of the GLC_ZRANGEMAP

compatibility mode you set. You use the glcompat() subroutine with the
argument GLC_ZRANGEMAP to set the compatibility:

glcompat(GLC_ZRANGEMAP)

If glcompat(GLC_ZRANGEMAP) is set to 0, the valid range for near and far
depends on the graphics hardware: the z minimum is the value returned by
getgdesc(GD_ZMIN) and the z maximum is the value returned by
getgdesc(GD_ZMAX) . If GLC_ZRANGEMAP is set to 1, the minimum is 0x0 and the
maximum is 0x7FFFFF, and this range is mapped to whatever range the
hardware supports. You should always explicitly set
glcompat(GLC_ZRANGEMAP) because its default state depends on the machine
type.

zmaxzmin

near

far

13-4 Depth-Cueing and Atmospheric Effects

Turning Depth-Cueing On/Off

Use the depthcue() subroutine to turn depth-cue mode on and off. The ANSI
C specification for depthcue is:

void depthcue(Boolean mode)

When you specify TRUE, all lines, points, characters, and polygons that the
system draws are depth-cued. When you specify FALSE, depth-cue mode is
off. Rendering in depth-cue mode may be somewhat slower, so turn off
depth-cueing when you don’t need it.

Querying the System for Depth-Cueing Mode

Use the subroutine getdcm() to query the system about whether depth-cueing
is on or off. The ANSI C specification for getdcm() is:

boolean getdcm(void)

TRUE means depth-cue mode is on; FALSE means depth-cue mode is off.

Specify a mapping of z values to color by using either the lshaderange() or
lRGBrange() command. In colormap mode, use 1shaderange() to describe a
mapping from z values to color index values. In RGB mode, use 1RGBrange()

to describe a mapping from z values to RGB values.

13.1.2 Depth-Cueing in Colormap Mode

When you use depth-cueing in color map mode, the GL uses the colors that
you define in the z value mapping when it draws the geometry. You need to
create a color ramp for depth-cueing in color map mode. Figure 13-3 shows a
typical color ramp.

Figure 13-3 Color Ramp

highin lowin

brightest dimmest

Graphics Library Programming Guide 13-5

Create a color ramp by specifying the color values at each end of the ramp, and
how the colors are incremented.

Use the mapcolor() subroutine to load your color ramp into the color map.
(See Chapter 4 for information on using mapcolor() .

Use the lshaderange() subroutine to define the mapping from z value to
color.

The ANSI C specification for lshaderange() is:

void lshaderange(Colorindex lowin, Colorindex highin,
 long znear, long zfar)

Specify the low-intensity color map index (lowin) and the high-intensity color
map index (highin) in the lshaderange() subroutine. These values are
mapped to the near and far z values that you specify for znear and zfar.

lshaderange() defines the entire transformation range. The brightest color is
mapped to znear and the dimmest color is mapped to zfar. The color of lines or
points extending beyond znear and zfar are clamped to the brightest and
dimmest values respectively. Screen z values nearer than znear map to highin
and screen z values farther than zfar map to lowin.

The values of znear and zfar should correspond to or lie within the range of z
values specified by lsetdepth() . If near < far, then znear should be less than
zfar. If near > far, then znear should be greater than zfar. In other words, the
range [near, far] that you define in lsetdepth() should bound the range [znear,
zfar] that you define in lshaderange() .

The entries for the color map between lowin and the highin should reflect the
appropriate sequence of intensities for the color being drawn.

When a depth-cued point is drawn, its z value is used to determine its intensity.
When a depth-cued line is drawn, the color intensity along the line is linearly
interpolated from the intensities of its endpoints, which are determined from
their z values.

You can achieve higher resolution if the near and far clipping planes bound the
object as closely as possible.

13-6 Depth-Cueing and Atmospheric Effects

The following equation yields the color map index for a point with a z
coordinate of z. Note that this equation yields a nonlinear mapping when z is
outside the range of [znear, zfar]. Because depth-cued lines are linearly
interpolated between endpoints, an endpoint outside the range of [znear, zfar]
can result in an undesirable image.

(EQ 13-1)

13.1.3 Depth-Cueing in RGBmode

When you use depth-cueing in RGB mode, the GL uses the colors that you
define in the z value mapping when draws the geometry.

You use the lRGBrange() subroutine to set the range of colors to use for
depth-cueing in RGB mode. The C specification for lRGBrange is:

void lRGBrange (short rmin, short gmin, short bmin, short
rmax, short gmax, short bmax, long zmin, long zmax)

Specify the minimum and maximum values to be stored in the color bitplanes,
and the near and far z values to which the colors are mapped. rmin and rmax
are the minimum and maximum values stored in the red bitplanes. Likewise,
gmin, gmax, bmin, and bmax define the minimum and maximum values stored
in the green and blue bitplanes, respectively. znear and zfar define the z values
that are mapped linearly into the RGB range. z values nearer than znear are
mapped to rmax, gmax, and bmax; z values farther than zfar are mapped to rmin,
gmin, and bmin.

colorz
lowin highin–
zfar znear–

 z znear–() highin,+

=

highin,

lowin, if zfar z≤()

if z znear≤()

if znear z zfar≤ ≤()

Graphics Library Programming Guide 13-7

13.1.4 Sample Depth-Cueing Program

This sample program, depthcue.c, draws a cube filled with points that rotates as
you move the mouse. Because the image is drawn in depth-cue mode, the
edges of the cube and the points inside the cube that are closer to the viewer
are brighter than the edges and points farther away.

#include <stdio.h>
#include <math.h>
#include <gl/gl.h>
#include <gl/device.h>

#define RGB_BLACK 0x000000

#define X 0
#define Y 1
#define Z 2
#define XY 2
#define XYZ 3

#define CORNERDIST 1.8 /* center to furthest corner of cube */
#define EYEDIST 3*CORNERDIST /* center to eye */

#define NUMPOINTS 100

float points[NUMPOINTS][XYZ];
long corner[8][XYZ] = {

{-1, -1, -1},
{-1, 1, -1},
{ 1, -1, -1},
{ 1, 1, -1},
{-1, -1, 1},
{-1, 1, 1},
{ 1, -1, 1},
{ 1, 1, 1}

};
int edge[12][2] = {

{0, 1}, {1, 3}, {3, 2}, {2, 0},
{4, 5}, {5, 7}, {7, 6}, {6, 4},
{0, 4}, {1, 5}, {2, 6}, {3, 7},

};

void drawcube()
{

int i;

13-8 Depth-Cueing and Atmospheric Effects

for (i = 0; i < 12; i++) {
bgnline();

v3i(corner[edge[i][0]]);
v3i(corner[edge[i][1]]);

endline();
}

}

void drawpoints()
{

int i;

bgnpoint();
for (i = 0; i < NUMPOINTS; i++)

v3f(points[i]);
endpoint();
drawcube();

}
main()
{

long maxscreen[XY];
Device mdev[XY];
short mval[XY];
float rotang[XY];
short val;
int i;
if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {
fprintf(stderr, “Double buffered RGB not available on this machine \n”);
return 1;
}
prefsize(400, 400);
winopen(“depthcue”);
doublebuffer();
RGBmode();
gconfig();
cpack(RGB_BLACK);
clear();
swapbuffers();
qdevice(ESCKEY);
maxscreen[X] = getgdesc(GD_XPMAX) - 1;
maxscreen[Y] = getgdesc(GD_YPMAX) - 1;
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
mmode(MVIEWING);
window(-CORNERDIST, CORNERDIST, -CORNERDIST, CORNERDIST,

 EYEDIST, EYEDIST + 2*CORNERDIST);

Graphics Library Programming Guide 13-9

lookat(0.0, 0.0, EYEDIST + CORNERDIST, 0.0, 0.0, 0.0, 0);
/* map the current machine’s z range to 0x0 -> 0x7fffff */
glcompat(GLC_ZRANGEMAP, 1);
/* set up the mapping of screen z values to cyan intensity */
lRGBrange(0, 15, 15, 0, 255, 255, 0x0, 0x7fffff);
/* have screen z values control the color */
depthcue(TRUE);
/* generate random points */
for (i = 0; i < NUMPOINTS; i++) {

points[i][X] = 2.0 * (drand48() - 0.5);
points[i][Y] = 2.0 * (drand48() - 0.5);
points[i][Z] = 2.0 * (drand48() - 0.5);

 }
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
cpack(RGB_BLACK);
clear();
getdev(XY, mdev, mval);
rotang[X] = 4.0 * (mval[Y] - 0.5 * maxscreen[Y]) / maxscreen[Y];
rotang[Y] = 4.0 * (mval[X] - 0.5 * maxscreen[X]) / maxscreen[X];
rot(rotang[X], ‘x’);
rot(rotang[Y], ‘y’);
drawpoints();
swapbuffers();

 }
 gexit();
 return 0;
}

13-10 Depth-Cueing and Atmospheric Effects

13.2 Atmospheric Effects

You can create a variety of atmospheric effects on IRIS Indigo, IRIS-4D/VGX,
SkyWriter, and RealityEngine systems. Atmospheric detail adds realism to
visual simulations and provides interesting depth perception effects. You can
simulate fog, smoke, haze and air pollution by varying the color and density
of the atmosphere in your scene. In this section, the term “fog” is used to mean
any of these atmospheric conditions.

The GL creates atmospheric effects by modifying the color of the objects in
your scene based on their distance from the viewer. Object color is blended
with fog color to determine the apparent color perceived by the viewer.

When fog is present, objects at close range to the viewer appear in true color.
True color is the color an object would be in the absence of fog—that is, the
color of the object computed after lighting, shading, and texture mapping (if
any). Distant objects look “washed out” as the object color is blended with the
fog color, which gives the appearance of seeing the object “through” the fog.
There is a certain point in the distance where the fog completely obscures the
object.

As an example, consider looking down the runway at an approaching
airplane. On a clear sunny day, the airplane is seen in full detail, limited only
by your visual acuity (the resolution of your eye). On a foggy day, your view
of the airplane is impaired and its apparent color is a combination of its true
color and the fog color. As the airplane approaches, your eye begins to detect
its true color.

Depth-cueing is another effect possible with fog. When you blend an object’s
true color with the scene background color, an object moving away from the
viewer appears to fade into the background. An advantage of this method over
using depthcue()/1shaderange() is that it is independent of the color of the
viewed objects—you have to call lshaderange() each time the object color
changes, whereas fogvertex() need only be called when the background
color changes.

Graphics Library Programming Guide 13-11

13.2.1 Fog

You define and enable fog with the fogvertex() subroutine. You call
fogvertex() once to set up the fog parameters, then you turn the fog on with
another call to fogvertex() . Fog is currently available only on Indigo, VGX,
SkyWriter, and RealityEngine systems, so you should call
getgdesc(GD_FOGVERTEX) to determine the fog capability of the machine
when writing fog applications.

To use fog in your application:

1. Use getgdesc() to determine the fog capabilities of your machine.

2. Set up the proper modes for fog:

RGBmode()
mmode(MVIEWING)

Note: Remember to call gconfig() if you change to RGB mode from
colormap mode.

3. Define the fog characteristics.

fogvertex(mode, params)

Note: Defining a fog effect does not enable it. This must be done with a
separate call.

4. Turn fog on.

fogvertex(FG_ON, dummy)

The ANSI C specification for fogvertex() is:

void fogvertex(long mode,float *params);

You use the mode argument to indicate whether you are defining, enabling, or
disabling fog effects. You specify the fog characteristics in the params array.
params is an array of floating point values.

13-12 Depth-Cueing and Atmospheric Effects

13.2.2 Fog Characteristics

Fog characteristics define the color and density of the fog. You can specify
uniformly distributed fog, where the fog has a uniform density throughout, or
you can specify linearly blended (interpolated) fog, where the fog begins at a
certain point and becomes so dense that it is opaque in the distance.

For uniformly distributed fog, you specify a fog density between 0.0 and 1.0
and the fog color. A fog density of 0.0 represents no fog at all—the object’s
apparent color is the same as its true color. Increasing positive values increase
the fog density. The maximum fog density is 1.0. For a fog density of 1.0, fog
totally obscures the true color of the viewed object at a distance of one unit in
eye coordinates. This is the reference to which fog density values are
normalized.

The proportion of the object’s true color that contributes to the apparent color
is called the blend factor. When you enable fog effects, the blend factor is
computed at the vertices of each graphics primitive. The vertex blend factors
are then interpolated to determine the blend factor at the interior pixels of the
graphics primitive.

SkyWriter and RealityEngine systems allow you to specify per-pixel fog
calculations, which is more accurate than interpolation. To maximize the
accuracy of the fog, minimize the ratio of the distance to the far clipping plane
to the distance to the near clipping plane. In other words, you specify near and
far such that the near and far clipping panes are as close together as possible.
In addition, you need to specify the maximum lsetdepth() range for your
machine by calling lsetdepth(getgdesc(GD_ZMIN), getgdesc(GD_ZMAX)) .

13.2.3 Fog Calculations

The blend factor (fog) is calculated according to one of the three equations that
follow. The first two equations calculate fog in eye coordinates for uniformly
distributed fog. The third equation calculates fog varying linearly with
distance, given the distance at which the fog begins and the distance at which
the fog becomes opaque. Each of these methods allow you to indicate
per-vertex or per-pixel fog calculations.

Graphics Library Programming Guide 13-13

Exponential fog: (EQ 13-2)

Exponential-squared fog: (EQ 13-3)

Linear fog: (EQ 13-4)

where:

fog is the computed fog blending factor (0 ≤ fog ≤ 1).

density is the fog density.

Zeye is the eye space Z coordinate (always negative) of the pixel or
vertex being fogged.

start_fog is the distance from the viewer where the fog begins to appear.

end_fog is the distance from the viewer where the fog becomes
opaque.

The pixel color, Cp, is combined with fog color, Cf, to give apparent color, C:

(EQ 13-5)

where:

fog is the computed fog blending factor, (0 ≤ fog ≤ 1).

C is the resultant color.

Cp is the incoming pixel color, which may be Gouraud or flat
shaded and possibly textured.

Cf is the fog color.

fog 1 e–() 5.5 density Zeye⋅ ⋅()=

fog 1 e–() 5.5– density Zeye⋅() 2⋅()=

fog 1
end_fog Zeye+()

end_fog start_fog–()
---–=

C Cp 1 fog–()⋅ Cf fog⋅+=

13-14 Depth-Cueing and Atmospheric Effects

13.2.4 Fog Parameters

Based on the effect you want to achieve, you enter one of the following
symbolic constants for mode in fogvertex() :

FG_VTX_EXP Fog is computed at each vertex of the primitive (EQ 13-2).

FG_PIX_EXP Fog is computed at each pixel of the primitive (EQ 13-2).

FG_VTX_EXP2 Fog is computed at each vertex of the primitive (EQ 13-3).

FG_PIX_EXP2 Fog is computed at each pixel of the primitive, (EQ 13-3).

FG_VTX_LIN Fog is computed at each vertex of the primitive (EQ 13-4).

FG_PIX_LIN Fog is computed at each pixel of the primitive (EQ 13-4).

To enable or disable fog effects, use the following:

FG_ON Enable the previously defined fog effect.

FG_OFF Disable fog effects. This is the default.

You specify four floating point values in the params array for uniformly
distributed fog (FG_VTX_EXP, FG_PIX_EXP, FG_VTX_EXP2, or FG_PIX_EXP2):

density Density(thickness) of fog (0.0 ≤ density ≤ 1.0).

r Red component of fog (0.0 ≤ r ≤ 1.0).

g Green component of fog (0.0 ≤ g ≤ 1.0).

b Blue component of fog (0.0 ≤ b ≤ 1.0).

You specify five values in the params array for linearly blended fog
(FG_VTX_LIN, or FG_PIX_LIN):

start_fog Distance in eye coordinates to start of fog.

end_fog Distance in eye coordinates where fog becomes completely
opaque.

r Red component of fog (0.0 ≤ r ≤ 1.0).

g Green component of fog (0.0 ≤ g ≤ 1.0).

b Blue component of fog (0.0 ≤ b ≤ 1.0).

