
Graphics Library Programming Guide 12-1

Chapter 12

12. Picking and Selecting

This chapter discusses how to use the GL picking and selecting subroutines.
Picking and selecting are used to create a “point and click” interface, where the
user can position the mouse over an area of the screen and click the mouse
button to choose an item on the screen.

• Section 12.1, “Picking,” describes how to test for proximity to the
cursor.

• Section 12.2, “Selecting,” describes how to designate a screen region to be
used for picking.

12.1 Picking

Picking identifies items on the screen that are near the cursor. When the system
is in picking mode, it does not draw anything on the screen. Instead, drawing
subroutines that would have been drawn near the current location of the
cursor cause hits to be recorded in the picking buffer.

All the standard drawing routines cause hits, except raster operations, such as
character strings drawn with charstr() . However, because cmov() does
cause a hit, character strings can be picked because they can appear to cause
hits. The cursor must be near the lower-left corner of the string for it to be
picked. Because pixel subroutines such as readpixels() and readRGB() are
often preceded by cmov() , these routines can also appear to cause hits.

To use picking effectively, your program must be structured in such a way that
you can regenerate the picture on the screen whenever picking is required.

12-2 Picking and Selecting

To perform picking:

1. Set the system into picking mode

2. Redraw the image on the screen using pick()

3. Call endpick() .

The results of the pick appear in a buffer specified by pick() and endpick() .

A name stack stores the name of the items that are hit while picking is enabled.
When you call a subroutine that alters the name stack or when you exit picking
mode, the contents of the name stack are copied to the buffer if a hit occurs. See
Section 12.1.2, “Using the Name Stack,” for more details about the name stack.

pick

pick() puts the system in picking mode:

void pick(short buffer[], long numnames)

The numnames argument specifies the maximum number of values that the
picking buffer can store. The graphical items that intersect the picking region
are hits and store the contents of the name stack in buffer.

endpick

endpick() takes the system out of picking mode and returns the number of
hits that occurred in the picking session:

long endpick(short buffer[])

If endpick() returns a positive number, the buffer stored all of the name lists.
If it returns a negative number, the buffer was too small to store all the name
lists; the magnitude of the returned number is the number of name lists that
were stored.

buffer contains all of the name lists stored in picking mode, one list for each
valid hit. The first value in each name list is the length of a name list. If a name
stack is empty when a hit occurs, the first and only entry in the list for that hit
is “0.”

Graphics Library Programming Guide 12-3

12.1.1 Defining the Picking Region

Picking loads a projection matrix that makes the picking region fill the entire
viewport. This picking matrix replaces the projection transformation matrix
that is normally used when drawing routines are called. Therefore, you must
restate the original projection transformation after each pick() and after each
endpick() , to ensure that the system maps the objects to be picked to the
proper coordinates. If no projection transformation was originally issued, you
must specify the default, ortho2() . When the transformation routine is
restated, the product of the transformation matrix and the picking matrix is
placed at the top of the matrix stack.

Note: If you do not restate the projection transformation, picking does not
work properly. Instead, the system typically picks every object,
regardless of cursor position and pick size.

Specifying or defining the default ortho2() parameters brings up the issue of
creating a graphics window that has a one-to-one mapping between screen
space (viewport) and world space (in this case, ortho2()).

In the following example, assume a graphics window that is 4 pixels wide by
5 pixels high. This window runs from coordinates 1 to 4 in x and 1 to 5 in y. In
order to set up a mapping between floating point coordinates and screen space
(integer coordinates) that centers pixels at integer coordinates in the ortho2()

projection, you need to specify:

viewport(0, 3, 0, 4);
ortho2(0.5, 4.5, 0.5, 5.5);

Extrapolate from this and assume a situation where the graphics window has
been resized and you need to redefine a current ortho2() based on the new
size. To do this, use the following three statements:

getsize(&xsize, &ysize);
viewport(0, xsize - 1, 0, ysize - 1);
ortho2 (x1-0.5,(float)(xsize-0.5), y1-0.5,(float)(ysize-0.5);

In the call to viewport() , you must subtract 1 from the value of xsize and ysize
because they start at 0, not at 1. Likewise, in the call to ortho2, you need to start
at -0.5 less than the corner coordinates and subtract -0.5 from xsize and ysize to
create the straddling effect described earlier.

12-4 Picking and Selecting

picksize

The default height and width of the picking region is 10 pixels centered at the
cursor. You can change the picking region with picksize() .

picksize(deltax, deltay)

deltax and deltay specify a rectangle centered at the current cursor position (the
origin of the cursor glyph; see Chapter 11, “Drawing Modes,” for a discussion
of cursors.)

12.1.2 Using the Name Stack

A name stack stores the name of the items that are hit while picking is enabled.
The name stack is a stack of 16-bit names whose contents are controlled by
loadname() , pushname() , popname() , and initname() . You can store up to
1000 names in a name stack. You can intersperse these routines with drawing
routines, or you can insert them into object definitions (see Chapter 16,
“Graphical Objects,” for a discussion of objects).

Note: Because the contents of the name stack are reported only when it
changes, one hit is reported no matter how many drawing routines
actually draw something near the cursor. If the application requires
more accuracy than this, it must modify the name stack more often.

loadname

loadname() puts name at the top of the name stack and erases what was there
before:

void loadname(short name)

pushname

pushname() puts name at the top of the stack and pushes all the other names
in the stack one level lower:

void pushname(short name)

Before the first loadname() is called, the current name is unpredictable.
Calling pushname() before loadname() can cause unpredictable results.

Graphics Library Programming Guide 12-5

popname

popname() discards the name at the top of the stack and moves all the other
names up one level:

void popname(void)

initnames

initnames() discards all the names in the stack and leaves the stack empty:

void initnames(void)

The sample program pick.c draws an object consisting of three shapes; then it
loops, until you press the right mouse button. Each time you press the middle
mouse button, the system:

1. enters picking mode

2. calls the object

3. records hits for any routines that draw into the picking region

4. prints out the contents of the picking buffer

Note: When you call an object in picking mode, the screen does not change.
Because the picking matrix is recalculated only when you call pick() ,
the system exits and reenters picking mode to obtain new cursor
positions.

Position the cursor near one of the shapes on the screen and click the left
mouse button. The results of the pick are printed to the screen. Five outcomes
are possible for each picking session. The circles can be picked together
because they overlap:

• nothing is picked = “hit count: 0 hits:”

• the square is picked = “hit count: 1 hits: (1)”

• the bottom circle is picked = “hit count: 1 hits: (2 21)”

• the top circle is picked = “hit count: 1 hits: (2 22)”

• both the top and bottom circles are picked = “hit count: 2 hits: (2 21)
(2 22)”

#include <stdio.h>
#include <gl/gl.h>

12-6 Picking and Selecting

#include <gl/device.h>
#define BUFSIZE 50

void drawit()
{

loadname(1);
color(BLUE);
writemask(BLUE);
sboxfi(20, 20, 100, 100);
loadname(2);
pushname(21);

color(GREEN);
writemask(GREEN);
circfi(200, 200, 50);

popname();
pushname(22);

color(RED);
writemask(RED);
circi(200, 230, 60);

popname();
writemask(0xfff);

}
void printhits(buffer, hits)
short buffer[];
long hits;
{

int indx, items, h, i;
char str[20];
sprintf(str, “%ld hit”, hits);
charstr(str);
if (hits != 1)

charstr(“s”);
if (hits > 0)

charstr(“: “);
indx = 0;
for (h = 0; h < hits; h++) {

items = buffer[indx++];
charstr(“(“);
for (i = 0; i < items; i++) {

if (i != 0)
charstr(“ “);

sprintf(str, “%d”, buffer[indx++]);
charstr(str);

}
charstr(“) “);

}
}

Graphics Library Programming Guide 12-7

main()
{

Device dev;
short val;
long hits;
long xsize, ysize;
short buffer[BUFSIZE];
Boolean run;
prefsize(400, 400);
winopen(“pick”);
getsize(&xsize, &ysize);
mmode(MVIEWING);
ortho2(-0.5, xsize - 0.5, -0.5, ysize - 0.5);
color(BLACK);
clear();
qdevice(LEFTMOUSE);
qdevice(ESCKEY);
drawit();
run = TRUE;
while (run) {

dev = qread(&val);
if (val == 0) { /* on upstroke */

switch (dev) {
case LEFTMOUSE:

pick(buffer, BUFSIZE);
ortho2(-0.5, xsize - 0.5, -0.5, ysize - 0.5);
drawit();/* no actual drawing takes place */

hits = endpick(buffer);
ortho2(-0.5, xsize - 0.5, -0.5, ysize - 0.5);
color(BLACK);
sboxfi(150, 20-getdescender(), size -1, 20 + getheight());
color(WHITE);
cmov2i(150, 20);
printhits(buffer, hits);
break;

case ESCKEY:
run = FALSE;
break;
}

}
}
gexit();
return 0;

}

12-8 Picking and Selecting

12.2 Selecting

Selecting is a more general mechanism than picking for identifying the
routines that draw to a particular region. A selecting region is a 2-D or 3-D area
of world space. When gselect() turns on selecting mode, the region
represented by the current viewing matrix becomes the selecting region. You
can change the selecting region at any time by issuing a new viewing
transformation routine. To use selecting mode:

1. Issue a viewing transformation routine that specifies the selecting region.

2. Call gselect() .

3. Call the objects or routines of interest.

4. Exit selecting mode and look to see what was selected.

gselect

gselect() turns on the selection mode:

gselect(short buffer[], long numnames)

gselect() and pick() are identical, except gselect() allows you to create a
viewing matrix in selection mode.

numnames() specifies the maximum number of values that the buffer can store.
Names are 16-bit numbers that you store on the name stack. Each drawing
routine that intersects the selecting region causes the contents of the name
stack to be stored in buffer. The name stack is used in the same way as it is in
picking.

endselect

endselect() turns off selecting mode:

long endselect(short buffer[])

buffer stores any hits the drawing routines generated between gselect() and
endselect() . Each name list represents the contents of the name stack when
a routine was called that drew into the selecting region. endselect() returns
the number of name lists in buffer. If the number is negative, more routines
drew into the selecting region than were specified by numnames.

Graphics Library Programming Guide 12-9

This sample program, select1.c, uses selecting to determine if a rocket ship is
colliding with a planet. The program calls a simplified version of the planet
and draws a box representing the ship each time you press the left mouse
button, and beeps when the ship collides with the planet.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>
#define X 0
#define Y 1
#define XY 2
#define BUFSIZE 10
#define PLANET 109
#define SHIPWIDTH 20
#define SHIPHEIGHT 10
void drawplanet()
{

color(GREEN);
circfi(200, 200, 20);

}
main()
{

float ship[XY];
long org[XY];
long size[XY];
Device dev;
short val;
Device mdev[XY];
short mval[XY];
long nhits;
short buffer[BUFSIZE];
Boolean run;
prefsize(400, 400);
winopen(“select1”);
getorigin(&org[X], &org[Y]);
getsize(&size[X], &size[Y]);
mmode(MVIEWING);
ortho2(-0.5, size[X] - 0.5, -0.5, size[Y] - 0.5);
qdevice(LEFTMOUSE);
qdevice(ESCKEY);
color(BLACK);
clear();
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
drawplanet();
run = TRUE;

12-10 Picking and Selecting

while (run) {
dev = qread(&val);

if (val == 0) { /* on upstroke */
switch (dev) {
case LEFTMOUSE:

getdev(XY, mdev, mval);
ship[X] = mval[X] - org[X];
ship[Y] = mval[Y] - org[Y];
color(BLUE);
sbox(ship[X], ship[Y],

 ship[X] + SHIPWIDTH, ship[Y] + SHIPHEIGHT);

/* specify the selecting region to be a box surrounding the rocket ship */
ortho2(ship[X], ship[X] + SHIPWIDTH,

ship[Y], ship[Y] + SHIPHEIGHT);
initnames();
gselect(buffer, BUFSIZE);

loadname(PLANET);
/* no actual drawing takes place */
drawplanet();

nhits = endselect(buffer);

/* restore the Projection matrix. Can’t use push/popmatrix because they only
* work for the ModelView matrix stack when in MVIEWING mode */

ortho2(-0.5, size[X] - 0.5, -0.5, size[Y] - 0.5);

/* check to see if PLANET was selected, nhits is NOT the number
* of buffer elements written */

if (nhits < 0) {
fprintf(stderr, “gselect buffer overflow\n”);
run = FALSE;

}
else if (nhits >= 1 & buffer[0] == 1 && buffer[1] == PLANET)

ringbell();
break;

case ESCKEY:
run = FALSE;
break;

}
}

}
gexit();
return 0;

}

