
Graphics Library Programming Guide 18-1

Chapter 18

18. Textures

This chapter describes the texture capabilities of the IRIS GL. Texture is not
available on every system. If you are not using a system that supports texture,
you may want to skip to Chapter 19, “Using the GL in a Networked
Environment.”

Some systems perform texturing in software, and others have special
hardware for texturing. Systems that use software texturing do not exhibit the
same level of texture performance as systems that use hardware texturing, so
plan carefully when using texture on systems that use software texturing.

• Section 18.1, “Texture Basics,” begins by introducing some
terminology that you need to know to understand textures.

• Section 18.2, “Defining a Texture,” tells you how to define a texture and
how to optimize image quality.

• Section 18.3, “Using Texture Filters,” describes how to use filters to
modify how textures are treated by the system.

• Section 18.4, “Using the Sharpen and DetailTexture Features,” describes
two advanced texture features that are available on RealityEngine
systems.

• Section 18.5, “Texture Coordinates,” tells you how to assign texture
coordinates to define a mapping into object space.

• Section 18.6, “Texture Environments,” tells you how to set the texture
environment to modify the color and opacity of textured polygon pixels.

• Section 18.7, “Texture Programming Hints,” presents strategies for
achieving the maximum texture mapping performance from the GL.

• Section 18.8, “Sample Texture Programs,” contains two sample programs
that illustrate two different ways of using textures.

18-2 Textures

18.1 Texture Basics

Texture adds realism to an image. You can use texture in a variety of ways to
enhance visual information. Use texture to:

• show the material of an object. For example, wrap a wood grain
pattern around a rectangular solid to create a block of wood.

• create patterned surfaces such as brick walls and fabrics by repeating
textures across a surface.

See the brick.c sample program in Section 18.8, “Sample Texture
Programs,” for an example of how to create a brick texture.

• simulate physical properties for scientific visualization applications. For
example, temperature data represented by color can be mapped onto an
object to show thermal gradients.

See the heat.c sample program in Section 18.8 for an example of how to
use texture to show a thermal gradient.

• simulate lighting effects such as reflections for photo-realistic images.

Figure 18-1 shows an example of some textures that can be used to represent
water, wood planks, and the end of a wood board. The water and wood plank
textures are photos. The wood cross-section texture is a synthetically
generated collection of light and dark hues.

Figure 18-1 Textures for Wood and Water

Water texture Wood plank texture Wood cross-section

Graphics Library Programming Guide 18-3

Figure 18-2 shows how these textures are applied to objects in a 3-D scene.

Figure 18-2 Fully Textured Scene

Textures are usually specified in two dimensions for most applications.
RealityEngine systems allow three-dimensional textures. Definitions and uses
of 2-D and 3-D textures follow.

18.1.1 2-D Textures

Texture mapping is a technique that applies an image to an object’s surface as if
the image were a decal or cellophane shrink-wrap. The image exists in a
coordinate system called the texture space. The coordinate axes S and T define
a 2-D texture space. A texture is a function that is defined on the interval 0 to 1
along both axes in the texture space. The individual elements of a texture are
called texels. Texels are indexed with (s,t) coordinate pairs.

18-4 Textures

Figure 18-3 shows how a simple stripe texture is defined in 2-D texture space
and mapped to 3-D object space. The mapping describes where the texels are
placed in object space. This is not always a one-to-one mapping to screen
pixels, as you will see later.

Figure 18-3 Mapping from 2-D Texture Space to 3-D Object Space

18.1.2 3-D Textures

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to section Section 18.1.3,
“How to Set Up Texturing,” if you do not have one of these systems.

RealityEngine systems let you specify 3-D textures. Figure 18-4 shows a 3-D
texture. Three-dimensional textures can also be thought of as an array of 2-D
textures, as illustrated by the diagram on the right of the 3-D texture.

Figure 18-4 3-D Texture

0.0 1.0
S

1.0

T

X

Y

Z

Texture space
Object space

t

s

Mapping
texel

0,0,0
1,0,0

0,1,0 1,1,0 s

t

1,1,10,1,1

1,0,1
0,0,1

r

Graphics Library Programming Guide 18-5

The 3-D texture is mapped into (s,t,r) coordinates such that its lower left back
corner is (0,0,0) and its upper right front corner is (1,1,1).

3-D textures can be used for

• Volume rendering.

• Examining a 3-D volume one slice at a time.

• Animating textured geometry—for example, people that move.

Texel values defined in a 3-D coordinate system form a texture volume.
Textures can be extracted from this volume by intersecting it with a 3-D plane,
as shown in Figure 18-5.

Figure 18-5 Extracting an Arbitrary Planar Texture from a 3-D Texture Volume

The resulting texture, which is applied to a polygon, is the intersection of the
volume and the plane. You determine the orientation of the plane by
supplying, or by having the GL supply, texture coordinates.

T

18-6 Textures

18.1.3 How to Set Up Texturing

This list provides an overview of the steps used to set up texturing.

1. Use getgdesc(GD_TEXTURE) to determine whether your system supports
texturing.

2. Create a texture by defining a texture image.

3. Specify a set of texture properties that describes the number of
components in the texture and how the texture should be filtered.

4. Assign texture coordinates to the vertices of geometric primitives, either
explicitly or automatically, to define a mapping from texture space to
geometry in object space.

5. Choose a texture environment that specifies how texture values should
modify the color and opacity of an incoming shaded pixel. You can use
this feature to indicate whether you want the texture to be completely
opaque on top of the pixel, let some of the pixel color show through, or
mix the pixel color with the texture.

Each of these steps is discussed in detail in the following sections.

18.2 Defining a Texture

A texture function consists of an image defined as an array of texels and a set
of parameters that determines how samples are derived from the image. The
texture image can be any image that you have constructed, scanned in, or
captured from the screen.

Regardless of its dimensions, the texture image is mapped into an (s,t,[r])
coordinate range such that its lower-left-back corner is (0.,0.,[0.]) and its
upper-right-front corner is (1.,1., [1.]).

Note: For a 2-D texture, r is always ignored.

Graphics Library Programming Guide 18-7

18.2.1 Using Texture Components

The elements of the texture array are constructed with one to four components
per texel. Table 18-1 lists the texture types and the components for each type.

Intensity is used to show color variations (shades) within the same color value.
Alpha is used to indicate the transparency of the color.

Suggestions for choosing a texture type to achieve certain effects follow.

Use a 1-component texture to create subtle variations in surfaces. For example,
vary the intensity of a brown shade to turn plain brown hills into hills with
shades of light to dark brown. You can also use a 1-component texture with a
texture environment to create blended textures, such as a blue-and-white sky.
The wood and the water in Figure 18-2 are examples of 1-component textures.

Use a 2-component texture to create surfaces with subtle color variations on
geometry that has irregular edges. For example, use a 2-component texture to
create a tree with many shades of green. The 2-component texture used for the
foliage varies in intensity, creating different shades of green from light to dark.
Another 2-component texture is used for the trunk, which has different shades
of brown. 1-component and 2-component textures are sufficient for
representing many types of objects and are effective because they use less
memory than 3- and 4-component textures.

Alpha, the other component of the 2-component texture, is used to indicate
how transparent the texture is. Commands that determine how alpha affects
the manner in which a texture is drawn include afunction() ,
blendfunction() , and on Reality Engine, msalpha() .

Note: On RealityEngine, use multisampling with the msalpha() feature
rather than afunction() to define the edges of the tree.

Texture Type Components

1-component Intensity

2-component Intensity, Alpha

3-component Red, Green, Blue

4-component Red, Green, Blue, Alpha

Table 18-1 Texture Components

18-8 Textures

Figure 18-6 shows an example of a tree created with a 2-component texture.
The tree is a single rectangular polygon that has a scanned photo of a tree
superimposed on it. This polygon can be rotated about the center of the trunk,
as shown by the outlines, so that it is always facing the viewer.

Figure 18-6 Example of a Tree Created with a 2-component Texture

Representing complex surfaces by texturing simple polygons rather than by
creating complex geometry with multiple polygonal faces can achieve greater
realism and better performance. You can experiment with the performance
trade-off between the number of polygons and the use of texturing to get the
best possible solution for your application.

Graphics Library Programming Guide 18-9

18.2.2 Loading a Texture Array

Textures are loaded into a memory array that the system accesses when
rendering the textured surface. Figure 18-7 shows how the texture array is
constructed for an 8-bit–per-component image.

Figure 18-7 Structure of a Texture Array

I1 I2 I3

I4 I5 I6

I7 I8 I9

A1 I1 A2

A3 I3

A4 I4 A5

A6 I6

A7 I7 A8

A9 I9

I2

I5

I8

B1 G1 R1

G2 R2

R3

B4 G4

G5 R5 B6

R6

B2

G6

G8 R8 B9

R9

G9

B3 G3

B7 G7 R7 B8

R4 B5

A1 B1 G1

A2 B2

R1

G2 R2

A3 B3 G3

A4 B4

R3

G4 R4

A6 B6 G6 R6

A7 B7 G7

A8 B8

R7

G8 R8

A9 B9 G9 R9

A5 B5 G5 R5

n + 0

n + 1

n + 2

n + 0

n + 1

n + 2

n + 3

n + 4

n + 5

n + 0

n + 1

n + 2

n + 3

n + 4

n + 5

n + 6

n + 7

n + 8

n + 0

n + 1

n + 2

n + 3

n + 4

n + 5

n + 6

n + 7

n + 8

3 Component

4 Component

1 Component

2 Component

7 8 9

4 5 6

1 2 3

t

s

Texture

Byte address

Word
address

0 1 2 3

18-10 Textures

Figure 18-7 shows a texture consisting of 9 texels, which are numbered 1
through 9. The texels fill the texture from left to right, bottom to top. The
component information for each texel is stored as a packed array of unsigned
long words. This is the same format used by lrectread() .

In Figure 18-7, the boxes represent blocks of memory. A long word is 32 bits,
and each byte of texture information requires 8 bits. Therefore, 4 bytes of texel
information can fit into each long word. Each row of texel information must be
long word-aligned, so the end of the row must be byte-padded to the end of
each long word. The diagram shows how the array is packed for an
8-bit–per-component texture of 1-, 2-, 3-, or 4- components, consisting of 9
texels.

Table 18-2 summarizes the relationships between texel component and byte
ordering.

For each polygon pixel to be textured, the texture function generates texture
components (color, intensity, alpha) based on the texel type, the texture map
coordinates of the pixel’s center, and the area in texels onto which the pixel
maps. The properties that you specify for the texture function determine how
the texture image is sampled and how the texture function is evaluated outside
the range (0.,0.,[0.]), (1.,1.,[1.]).

Note: All geometry including polygons, lines, points, and character strings
are texture-mapped. Character strings always have the texture
coordinates (0.,0.,[0.]).

Components Pixel Type Byte Ordering
(low-order to high-order)

1-Component Intensity I0, I1, I2, I3, I4,...

2-Component Intensity-Alpha A0, I0, A1, I1, A2,...

3-Component Red, Green, Blue B0, G0, R0, B1, G1,...

4-Component Red, Green, Blue, Alpha A0, B0, G0, R0, A1,...

Table 18-2 Texture Image Array Format

Graphics Library Programming Guide 18-11

18.2.3 Defining and Binding a Texture

Textures use the define/bind paradigm that was introduced in Chapter 9.

Use texdef2d() or texdef3d() to define a texture and texbind() to activate a
texture.

Textures can be redefined by calling texdef2d() or texdef3d() with the
index of a previously defined texture. As with materials, only one texture can
be active, or bound, at a time. The binding process and defining process are
separated for performance reasons—it takes substantially less time to bind a
texture than it takes to define one.

The ANSI C specifications for texdef2d() and texdef3d() are:

void texdef2d(long index, long nc, long width, long height,
unsigned long *image, long np, float props)

void texdef3d(long index, long nc, long width, long height,
long depth, unsigned long *image, long np, float props)

where:

index is a unique index, or name, that identifies the texture. Index 0
is reserved as a null definition, and it cannot be redefined.

nc is the number of components per texel (1, 2, 3, or 4).

width is the width of the texture image in texels.

height is the height of the texture image in texels.

depth is the depth of the texture image in texels.

image is a word-aligned array containing the texel data.

np is the number of symbols and floating point values in the props
array, including the termination symbol TX_NULL. If np is zero,
it is ignored, but operations over network connections are
more efficient when np is correctly specified.

props is an array of floating point symbols and values that define
how to interpret the texture function. The props array contains
a sequence of symbols, each followed by the appropriate
number of floating point values. The last symbol in the array
must be TX_NULL, which terminates the array.

18-12 Textures

The following code fragment illustrates how to use texdef2d() to define a 2-D
brick texture:

float texprops[] = {TX_MINFILTER, TX_POINT,
 TX_MAGFILTER, TX_POINT,
 TX_WRAP,TX_REPEAT, TX_NULL};

texdef2d(1, 1, 8, 8, bricks, 7, texprops);

The current texture, bricks in this case, is bound using the texbind() call:

texbind(TX_TEXTURE_0, 1);

In this example, the array texprops explicitly specifies TX_MINFILTER , the filter
function that is used for minifying texture when the pixel being textured maps
onto an area greater than one texel, and TX_MAGFILTER, the filter function that
is used when the pixel being textured maps to an area less than or equal to one
texel. See Section 18.3, “Using Texture Filters,” for a discussion of minification
and magnification filters. In the brick example, TX_MINFILTER and
TX_MAGFILTER are both set to use point-sampling filters.

TX_WRAP, which specifies what to do when the (s,t,[r]) coordinates are outside
the range 0.0 through 1.0, is set to TX_REPEAT. TX_REPEAT specifies that only the
fractional parts of the texture coordinates are used, thereby creating a
repeating pattern. TX_REPEAT is the default. By setting TX_WRAP to TX_REPEAT,
the small 8×8 pattern is repeated across the polygon, creating an entire wall of
bricks.

You can specify the wrapping behavior per coordinate, rather than globally:

TX_WRAP_S specifies the wrapping behavior only for the s texture coordinate.

TX_WRAP_T specifies the wrapping behavior only for the t texture coordinate.

TX_WRAP_R specifies the wrapping behavior only for the r texture coordinate.

If you replace TX_REPEAT with TX_CLAMP, you see the brick pattern only once
on the polygon, where the (s, t) coordinates are in the range (0.,1.). The edges
of the texture are smeared across the rest of the polygon. TX_CLAMP is useful for
preventing wrapping artifacts when mapping a single image onto an object.

TX_TILE , a property that is not used in the brick example, supports mapping
of high-resolution images with multiple rendering passes. By splitting the
texture into multiple pieces, each piece can be rendered at the maximum
supported texture resolution. For example, to render a scene with 2× texture

Graphics Library Programming Guide 18-13

resolution, texdef2d() is called four times. Each call includes the entire
image, but specifies a different subregion of that image to be converted into a
texture.

TX_TILE is followed by four floating point coordinates that specify the x and y
coordinates of the lower-left corner of the subregion, then the x and y
coordinates of the upper-right corner of the subregion. The original texture
image continues to be addressed in the range 0,0 through 1,1. However, the
subregion occupies only a fraction of this space, and pixels that map outside
the subregion are not drawn.

To divide the image both horizontally and vertically into quadrants, the
corners of the subregions should be (0,0 .5,.5), (.5,0 1,.5), (0,.5 .5,1), and (.5,.5
1,1). The scene is then drawn four times, each time calling texbind() with the
texture ID of one of the four quadrants. In each pass, only the pixels whose
texture coordinates map within that quadrant are drawn.

If the image, or the specified subregion of the image, is larger than what can be
handled by the hardware, it is reduced to the maximum supported size
automatically, with no indication other than the resulting visual quality.
Because subregions are specified independently, they should all be the same
size. Otherwise, some subregions may be reduced while others are not.

18.2.4 Selecting the Texel SIze

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to Section 18.3, “Using
Texture Filters,” if you do not have one of these systems.

RealityEngine supports three internal texel sizes: 16-bit, 32-bit, and 64-bit. You
can change this internal format to select the texel size that best suits your
application needs. There is a trade-off between image quality and speed. The
fill rate is inversely proportional to the texel size; thus, the fill rate doubles
when the texel size is halved.

The default texel size for 1- and 2-component textures is 16 bits. The default
texel size for 3- and 4-component textures is 32 bits.

18-14 Textures

Each of the texel sizes is available with 12, 8, or 4 bits per component.
Table 18-3 shows the configurations possible, and the symbols for selecting
those configurations for the different texel sizes.

Use 16-bit texels for the fastest performance and to reduce memory usage.
16-bit texels with TX_RGBA_4 provide high performance and good image
quality, but if you don’t need alpha, use TX_RGB_5 for even better image
quality, because it increases the color resolution.

Use the 64-bit texel size for the highest resolution for color computations, for
example, in low-light-level simulations. This format provides 12-bit per
component capability for R,G,B,A texture maps. The advantage of 12 bits per
component is that it increases the number of color levels for each component
from 256 to 4096, greatly enhancing the precision of the color computation.

Use the 32-bit texel size when you want to balance performance halfway
between speed and image quality.

The texel size and bit configuration of the texture components are set as
internal and external format hints in the props array of the texdef2d() and
texdef3d() commands.

Use TX_INTERNAL_FORMAT in the props array as a hint to trade image quality
for speed. This hint affects the precision used internally in texture function
computations. Because the performance of texture function implementations
is typically constrained by texel accesses per screen pixel, you can specify a
smaller internal texel size and often realize performance gain.

Texel Size 1-component 2-component 3-component 4-component

16-bit TX_I12_A4 TX_I12_A4 ,
TX_IA_8

TX_RGB_5 TX_RGBA_4

32-bit TX_IA_12 TX_RGBA_8 TX_RGBA_8

64-bit TX_RGB_12 TX_RGBA_12

Table 18-3 Texture Component Configuration for Different Texel Sizes

Graphics Library Programming Guide 18-15

The tokens for TX_INTERNAL_FORMAT are:

TX_I_12A_4 specifies that a 1- or 2-component texture should be computed
with at least 12 bits for intensity and 4 bits for alpha. Texel
size: 16 bits.

TX_IA_8 specifies that a 2-component texture should be computed
with at least 8 bits for intensity and 8 bits for alpha. Texel size:
16 bits.

TX_RGB_5 specifies that a 3-component texture should be computed
with at least 5 bits for red and blue and at least 6 bits for green.
Texel size: 16 bits.

TX_RGBA_4 specifies that a 4-component texture should be computed
with at least 4 bits per component. texel size: 16 bits.

TX_IA_12 specifies that a 2-component texture should be computed
with at least 12 bits per component. Texel size: 24 bits; may be
rounded up to 32 bits.

TX_RGBA_8 specifies that a 3- or 4-component texture should be computed
with at least 8 bits per component.Texel size: 32 bits.

TX_RGBA_12 specifies that a 4-component texture should be computed
with at least 12 bits per component.Texel size: 64 bits.

TX_RGB_12 specifies that a 3-component texture should be computed
with at least 12 bits per component. Texel size: 48 bits,
rounded to 64 bits.

TX_EXTERNAL_FORMAT specifies the size of the image components:

TX_PACK_8 specifies that the image is composed of 8-bit components. This
is the default.

TX_PACK_16 specifies that the image is composed of 16-bit components.

When the external format is larger than the internal format, the most
significant bits of the external format pixel are used. When the external format
is smaller than the internal format, the most significant bits of the external
format pixel are replicated in the lower order bits of the internal format. Thus,
three 8-bit external format components with the hexadecimal values AB,FF,00
become the three 12-bit internal format components with the hexadecimal
values ABA,FFF,000.

The next section describes the filters that can be specified in the props array.

18-16 Textures

18.3 Using Texture Filters

During the texture mapping process, the texture function computes texture
values based on the (s,t, [r]) texture coordinates at the center of the polygon
pixel that is being textured and the area in texture space onto which the pixel
maps. One of two filtering algorithms is used, depending on the size of this
area.

If the area is greater than the area of 1 texel, as shown in Figure 18-8, the texture
is minified to fit the screen pixel and the texture function’s minification filter is
used. Specify the minification filter with the TX_MINFILTER parameter.

Figure 18-8 Texture Minification

If the area is less than the area of 1 texel, as shown in Figure 18-9, the texture is
magnified to fill the screen pixel and the texture function’s magnification
algorithm is used. Specify the magnification filter with the TX_MAGFILTER

parameter.

Figure 18-9 Texture Magnification

Minification and magnification filters are discussed in detail in the sections
that follow.

Texture Polygon

Texture Polygon

Graphics Library Programming Guide 18-17

18.3.1 Minification Filters

Minification filters are used when multiple texels correspond to a single screen
pixel, as shown in Figure 18-10.

Figure 18-10 Texture Minification

In most cases, the best minification results are obtained by using a MIPmap to
minify the texture.

MIPmap Minification Filters

Figure 18-11 shows a MIPmap. MIP comes from a Latin term that means
“many things in a small place.” A MIPmap stores an array of prefiltered
versions of the texture image.

Figure 18-11 MIPmap

1 2 3
4 5 6
7 8 9

Texture Polygon

Original Texture

1/4

1/16

1/64

etc.

1 pixel

Pre-Filtered Images

18-18 Textures

Each image in the array has half the resolution of the image before it, but it still
maps into the texture coordinate range (0.,0.) to (1.,1.). Thus, the first image in
the MIPmap has a 1-to-1 texel-to-pixel correspondence. The second image has
a 4-to-1 correspondence, the third image, 16-to-1, and so on.

For any minification factor, there is one image in the MIPmap whose texels
map closely to an area in texture space that is less than or equal to the area that
the pixel being textured maps into. This image has the appropriate resolution,
so samples interpolated from this image do not have undersampling artifacts.

Each of the MIPmap filters works differently. The default minification filter for
systems other than RealityEngine is TX_MIPMAP_LINEAR or a filter of equal
performance, but better quality. Prefiltered versions of the image, when
required by the minification filter, are computed automatically by the GL.

RealityEngine uses high-performance trilinear MIPmap filtering by default.
Simultaneous parallel memory access allows the eight samples needed for
trilinear interpolation to be retrieved with a single memory access.

Trilinear interpolation is one of the highest quality texture functions available.
It produces images that look sharp when viewed from close range and that
remain stable under all circumstances. In addition, there is no perceptible
transition in the image as the textures move relative to the eyepoint.

RealityEngine also performs quadlinear MIPmap filtering of 3-D textures. This
is effectively a trilinear interpolation of a 3-D texture, automatically
generating a series of 3-D volumes, each 1/8 smaller than the one above. The
interpolation is performed between the 8 adjacent pixels in the MIPmap from
the two closest-bounding volume levels and then blended between the two
results, thus achieving a four-way interpolation.

Select the filter to use based on the type of application you are creating and the
quality and. performance results you want. Refer to Section 18.7, “Texture
Programming Hints,” for additional information on selecting a filter.

Note: Because the high-performance MIPmap filters available on
RealityEngine are superior to other MIPmap minification filters, the
GL always uses TX_MIPMAP_TRILINEAR for MIPmapping 2-D textures
and TX_MIPMAP_QUADLINEARfor MIPmapping 3-D textures for
applications running on a RealityEngine, no matter what filter is
specified in the props array.

Graphics Library Programming Guide 18-19

To select a minification filter, use the token TX_MINFILTER , followed by a single
symbol that specifies the minification filter. Values for TX_MINFILTER are listed
below, with descriptions of what they do.

Note: Filters marked with an asterisk(*) are currently available only on
RealityEngine systems.

TX_MIPMAP_POINT

chooses a prefiltered version of a 2-D texture, based on the
number of texels that correspond to 1 screen pixel. The value
of the pixel that is nearest to the (s,t,r) mapping onto that
image is used to color the pixel.

TX_MIPMAP_LINEAR

chooses the two prefiltered versions of a 2-D texture that have
the nearest texel-to-screen pixel correspondence. A weighted
average of the values of the pixel in each of these images that
is nearest to the (s,t,r) mapping onto that image is used to
color the pixel.

TX_MIPMAP_BILINEAR

chooses a prefiltered version of a 2-D texture, based on the
number of texels that correspond to 1 screen pixel. The
weighted average of the values of the 4 pixels nearest to the
(s,t) mapping onto that image is used to color the pixel.

TX_MIPMAP_TRILINEAR

chooses the prefiltered version of the 2-D texture whose texel
size most closely corresponds to screen pixel size. A weighted
average of the values of the pixels nearest to the mapping onto
that image is used to color the pixel.

For 2-D textures, TX_MIPMAP_TRILINEAR chooses the two
prefiltered versions of the image that have the nearest
texel-to-screen pixel size correspondence. A weighted
average of the values of the 4 pixels in each of these images
that are nearest to the (s,t) mapping onto that image is
computed. The weighted averages from the two levels are
then themselves interpolated.

For 3-D textures, this filter is analogous to MIPMAP_BILINEAR

for the 2-D textures—that is, the filter chooses the prefiltered
MIPmap image whose texel size most closely corresponds to
screen pixel size and uses the weighted average of the values
of the 8 pixels nearest to the (s,t,r) mapping onto that image.

18-20 Textures

Note: TX_MIPMAP_TRILINEAR is available only on
SkyWriter, VGXT, and RealityEngine systems.

TX_MIPMAP_QUADLINEAR*

chooses the two prefiltered versions of a 3-D texture that have
the nearest texel-to-screen pixel size correspondence. A
weighted average of the 8 pixels in each of these images that
are nearest to the (s,t,r) mapping onto that image is computed.
The weighted averages from the two levels are then
themselves interpolated.

TX_MIPMAP_FILTER_KERNEL*

specifies an 8x8x8 kernel to use as a separable symmetric filter
to generate MIPmap levels. Because it is separable and
symmetric, only one dimension needs to be specified. The
eight floating point values that follow the token specify the
kernel. The default that is used for implementations which do
not correct for perspective distortion is 0.0, 0.0, 0.125, 0.375,
0.375, 0.125, 0.0, 0.0. The default that is used for
implementations which correct for perspective distortion is
0.0, -0.03125, 0.05, 0.48125, 0.48125, 0.05, -0.03125, 0.0. This
filter blurs less than the others.

Other Minification Filters

Minification can be performed without MIPmapping. To minify textures
without using a MIPmap, select one of these filters:

Note: Filters marked with an asterisk(*) are currently available only on
RealityEngine systems.

TX_POINT uses the value of the texel, in either a 2-D or 3-D texture, that
is nearest to the (s,t,r) mapping onto the texture to color the
pixel.

TX_BILINEAR uses a weighted average of the values of the 4 texels in a 2-D
texture that are nearest to the (s,t) mapping onto the texture.

TX_TRILINEAR* uses a weighted average of the values of the 8 texels of a 3-D
texture that are nearest to the (s,t,r) mapping onto the texture.

TX_BICUBIC* computes a smoothly weighted average of a 4×4 region of
texels in a 2-D texture that are nearest to the (s,t) mapping
onto the texture.

Graphics Library Programming Guide 18-21

The drawback of using either the TX_POINT or the TX_BILINEAR filter for
minification is that only 1, or 4, of the texture pixels that map onto the area of
the pixel being textured are considered in the texture value computation. If the
texture is mapped so that it is shrunk by a factor greater than two, it may
exhibit scintillation, a shimmering or swimming motion as if it is not tacked
firmly to the surface, or it may appear to have a moire pattern on top of it.

Aliasing artifacts such as these result from undersampling— not including in
the texture value computation the contributions of all of the texture pixels that
map onto the pixel being textured. Artifacts caused by undersampling can be
alleviated by using one of the MIPmap filters.

To see how MIPmap filtering reduces aliasing and blockiness, change the
texprops array of the brick texture to:

float texprops[] = {TX_MINFILTER, TX_MIPMAP_BILINEAR,
TX_MGFILTER, TX_BILINEAR, TX_WRAP,TX_REPEAT, TX_NULL};

Sometimes you may not want the blurring that results from MIPmap filtering,
as is frequently the case when texture alpha is used as a geometry
approximating template—for example, in defining the outline of a row of
trees. In these circumstances, TX_BILINEAR is a good minification filter choice
on systems other than RealityEngine. RealityEngine supports a feature called
SharpenTexture, described in Section 18.4, “Using the Sharpen and
DetailTexture Features,” to maintain the crispness of edges on textured
geometry.

18.3.2 Using Magnification Filters

Magnification filters are used when multiple screen pixels correspond to 1
texel, as shown in Figure 18-12.

Figure 18-12 Texture Magnification

1 2 3
4 5 6
7 8 9

Texture Polygon

18-22 Textures

To select a magnification filter, use the token TX_MAGFILTER, followed by a
single symbol that specifies the magnification filter. Values for TX_MAGFILTER

are listed below, with descriptions of what they do.

Note: Filters marked with an asterisk (*) are currently available only on
RealityEngine systems.

TX_POINT Used for either 2-D or 3-D textures to select the value of the
texel nearest to the (s,t,[r]) mapping onto the screen pixel of
the polygon that is being textured. For example, in
Figure 18-12, TX_POINT selects texel number 7 for texturing
the highlighted polygon pixel.

On systems other than RealityEngine, TX_POINT is generally
faster than TX_BILINEAR , but has the drawback that mapped
textures can appear boxy because there is not as smooth a
transition between the texels as there is with TX_BILINEAR . If
the texture image does not have sharp edges, this effect
might not be noticeable.

TX_BILINEAR Used for 2-D textures, to select the weighted average of the
values of the 4 texels nearest to the (s,t) mapping onto the
texture. For example, in Figure 18-12, TX_BILINEAR would
cause a weighted average of texels 4, 5, 7, and 8 to be used to
color the screen pixel.

TX_TRILINEAR* Used for 3-D textures, to select the weighted average of the
values of the 8 texels nearest to the (s,t,r) mapping onto the
texture.

TX_BICUBIC* Used for 2-D textures, to compute a smooth weighted average
of a 4×4 region of texels nearest to the (s,t) mapping onto the
texture.

See the texdef(3G) man page for the formulas used to compute filter
parameters.

See Section 18.4, “Using the Sharpen and DetailTexture Features,” for
information on three additional magnification filters— TX_SHARPEN,
TX_ADD_DETAIL, and TX_MODULATE_DETAIL—that can be used for enhancing
the image quality of magnified textures on RealityEngine systems.

Graphics Library Programming Guide 18-23

18.4 Using the Sharpen and DetailTexture Features

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to Section 18.5, “Texture
Coordinates,” if you do not have one of these systems.

The appearance of a textured surface can vary, depending on whether it is seen
from a distance or close up. For example, from a distance you see the lane
markings and reflectors on a road, but close to its surface you see only gravel
and tar.

There are two types of problems that occur when the eyepoint is close to a
textured surface:

• The texture lacks sufficient detail for close-ups.

• The texture image is out of focus as a result of over-magnification.

RealityEngine provides solutions for these problems with Sharpen and
DetailTexture. These two features enable low-resolution textures to be as crisp
as high-resolution textures without taking up a lot of texture storage space.

Sharpen works best when the high-frequency information is used to represent
edge information. A stop sign is an example of this type of texture—the edges
of the letters have distinct outlines. Magnification normally causes the letters
to blur, but Sharpen keeps the edges crisp.

DetailTexture works best for a texture with high-frequency information that is
not strongly correlated to its low-frequency information. This occurs in images
that have a uniform color and texture variation throughout, such as a field of
grass or a wood panel with a uniform grain.

18.4.1 Using the Sharpen Feature

Textures must often be magnified for close-up views. However, not all textures
can be magnified without looking blurry or artificial. The fine details of a
texture, such as the precise edges of letters on a sign, are supplied by
high-frequency image data within a high-resolution image. When the
high-frequency data is missing, the image is blurred.

Sharpen uses the top two levels of a MIPmap to extrapolate high-frequency
information beyond the texture image in the top level of the MIPmap.

18-24 Textures

Sharpen lets you use a lower resolution texture map, yet preserve the
sharpness of the edges in the original image. This allows you to use less texture
storage per texture.

Sharpen maintains edges that bilinear magnification normally blurs. For
example, Sharpen works exceptionally well for textures such as the stop sign
and for textures whose alpha represents geometry with intricate edges, such as
a tree. During the magnification process the edges are extrapolated and they
stay crisp.

To use Sharpen, specify the TX_SHARPEN token for TX_MAGFILTER.

How Sharpen is Computed

The GL computes a Level-of-Detail (LOD) factor at each pixel it textures. LOD
is the magnification factor above the base level. LOD n is a 2n magnification.
For example, if a 512×512 base texture is LOD 0, its LOD (−1) texture is
256×256.

To produce a sharpened texel n LODs above the base texture, the GL adds n
times the weighted difference between the texel at LOD 0 and LOD (−1) to
LOD 0, or

LODn = LOD0 + weight(n) * (LOD0 - LOD(-1))

where:

n is the number of levels of extrapolation.

weight(n) is the sharpening multiplier function.

LOD 0 is the base texture.

LOD (−1) is the texture at half resolution.

By default, the GL uses a linear extrapolation function, where weight(n) = n.

Graphics Library Programming Guide 18-25

Customizing the Sharpen Function

Sharpen can cause ringing in some textures when they are magnified too
much. The weight can be varied to create a nonlinear LOD extrapolation curve
and/or the extrapolation function can be clamped to reduce the ringing.

Figure 18-13 shows LOD extrapolation curves as a function of weight and
magnification factors.

The curve on the left is the default linear extrapolation, where weight(n)=1∗n.
The curve on the right is a nonlinear extrapolation, where the weight function
is modified to control the amount of sharpening so that less sharpening is
applied as the magnification factor increases.

Figure 18-13 LOD Extrapolation Curves

Use TX_CONTROL_POINT to specify control points for shaping the sharpen
function.The first control point specifies the LOD, and the second control point
specifies a weight multiplier for that magnification level.

For example, to gradually ease the sharpening effect—use a nonlinear LOD
extrapolation curve, as shown on the right in Figure 18-13—with these control
points:

TX_CONTROL_POINT, 0., 0.,
TX_CONTROL_POINT, 1., 1.,
TX_CONTROL_POINT, 2., 1.7,
TX_CONTROL_POINT, 4., 2.0,

0 1 2 3 0 1 2 3

22

n

2n Magnification

Weight

n

2n Magnification

Weight

Default LOD extrapolation Custom LOD extrapolation

44

18-26 Textures

If a texture exhibits ringing when it is magnified with Sharpen—for example,
beyond a 6× magnification, you can set the TX_CONTROL_CLAMP to clamp at the
maximum allowable extrapolation.

Figure 18-14 shows how the default linear extrapolation on the left can be
clamped at an arbitrary LOD value, 2.5 in this case, beyond which
extrapolation is clamped.

Figure 18-14 Clamping the LOD Extrapolation

Specify a clamp at LOD 2.5 as follows:

TX_CONTROL_CLAMP, 2.5

You can sharpen the alpha or the color of a texture independently by explicitly
setting the magnification filter to use for color and alpha. For example, use the
following functions to maintain the precise edges of a geometry described by
alpha such as a tree, while allowing the colors to blur:

TX_MAGFILTER_ALPHA, TX_SHARPEN,
TX_MAGFILTER_COLOR, TX_BILINEAR,

0 1 2 3

2

n

2n Magnification

Weight

Default LOD extrapolation

4 0 1 2 3

2

n

2n Magnification

Weight

Clamped LOD extrapolation

4

TX_CONTROL_CLAMP

Graphics Library Programming Guide 18-27

18.4.2 Using DetailTextures

Ideally, you would always use textures that have high enough resolution to
allow magnification without bluriness. High-resolution textures maintain
realistic image quality for both close-up and distant views. For example, in a
high-resolution road texture, both the large features, such as potholes, oil
stains, and lane markers that are visible from a distance, as well as the asphalt
of the road surface, look realistic no matter where the viewpoint is.

Unfortunately, a high-resolution road texture with that much detail may be as
large as 2K×2K, which exceeds the maximum texture storage capacity of the
system. Making the image close to or equal to the maximum allowable size still
leaves little or no memory for the other textures in the scene.

RealityEngine provides a solution for representing the 2K×2K road texture
with the DetailTexture feature.

How DetailTexture Works

The detail elements of a texture, such as the asphalt in a road texture, are the
high-frequency components of a high-resolution image. Because the
high-frequency detail is virtually the same across a texture such as a road, the
high-frequency detail from any portion of the image can be used as the
high-frequency detail across the entire image.

Using the same high-frequency detail across the entire image allows the
high-resolution image to be represented with the combination of a
low-resolution image and a small high-frequency detail image, which is called
a DetailTexture. RealityEngine can combine these two images on-the-fly to
create an approximation of the high-resolution image.

Creating a DetailTexture and a Low-Resolution Texture

You can convert a high-resolution image into a low-resolution image and a
DetailTexture in the following manner:

Make the low-resolution image by shrinking the high-resolution image to the
desired resolution. You can then extract the high-frequency detail from the
high-resolution image by scaling the low-resolution image back up to the size
of the high-resolution image, then subtracting it from the original
high-resolution image.

18-28 Textures

The result is a difference image that contains only the high-frequency details of
the image. You can use any 256×256 subimage of this difference image as a
DetailTexture.

For example, follow these steps to create a 512×512 low-resolution texture, and
a DetailTexture from a 2K×2K high-resolution image:

1. Make the low-resolution image as follows:

Use izoom or other resampling program to make the low-resolution image
by shrinking the high-resolution image by 2n. In this example, n is 2, so
the resolution of the low-resolution image is 512×512. This band-limited
image has had the n highest frequency bands of the original image
removed from it.

2. Make the DetailTexture as follows:

1. Use subimage, or other tool to select a 256×256 region of the original
high-resolution image, 2K×2K in this case, whose n highest frequency
bands are characteristic of the image as a whole.

For example, rather than choosing a subimage from the lane
markings, choose an area in the middle of a lane.

2. Optionally, you can make this image self-repeating along its edges to
eliminate the seams.

3. Make a blurry version of this 256×256 subimage.

First, shrink the 256×256 subimage by 2n, to 64×64 in this case.

Now, scale the resulting image back up to 256×256.

This image is blurry because it is missing the two highest frequency
bands present in the two highest levels of detail (LOD).

4. Subtract the blurry subimage from the original subimage. This signed
difference image has only the 2 highest frequency bands.

5. Add a bias to make the image unsigned. If the original image has 8
bits per component, add 128. If the original image has 12 bits per
component, add 2048. This is the DetailTexture.

6. Define and bind the low-resolution texture and the DetailTexture. See
“Defining and Binding the DetailTexture” for instructions.

Graphics Library Programming Guide 18-29

How DetailTexture is Computed

The GL computes the Level-of-Detail (LOD) at each pixel it textures. LOD is
the magnification factor above the base level. LOD n is a 2n magnification. In
the road example, the 512x512 base texture is LOD 0. The DetailTexture
combined with the base texture represents LOD 2, which is called the
maximum-detail texture.

When a pixel’s LOD is between 0 and 2, the GL linearly interpolates between
the texture as it looks at LOD 0 and LOD 2. Linearly interpolating between
more than 1 LOD can result in aliasing. To minimize aliasing between the
known LODs, the GL lets you specify a nonlinear interpolation curve.

Setting the Detail Control Points

Figure 18-15 shows the default linear interpolation and a nonlinear
interpolation curve that minimizes aliasing when interpolating between two
LODs.

Figure 18-15 LOD Interpolation Curves

The basic strategy is to use very little of the maximum-detail texture until the
LOD is within 1 LOD of the maximum-detail texture. More of the information
from the maximum-detail texture can be used as the LOD approaches LOD2.
At LOD 2, the full amount of detail is used, and the resultant texture exactly
matches the high-resolution texture.

Use TX_CONTROL_POINT to specify control points for shaping the curve.

0 1 2 3

1

0 1 2 3

Default LOD interpolation Custom LOD interpolation

1

n n
LOD = 2n Magnification LOD = 2n Magnification

Weight Weight

(3., 1.1)

(1.,.3)

(2., 1.)

Values of
TX_CONTROL_POINTs

18-30 Textures

The parameters for TX_CONTROL_POINT are LOD and weight, where weight is
used in the functions listed in Table 18-4 to control how the DetailTexture is
combined with the base texture.

The following control points can be used to create a nonlinear interpolation, as
shown in Figure 18-15, for the road texture example:

TX_CONTROL_POINT, 0.0, 0.0,
TX_CONTROL_POINT, 1.0, 0.3,
TX_CONTROL_POINT, 2.0, 1.0,
TX_CONTROL_POINT, 3.0, 1.1,

Notice that making the weight at LOD 3 greater than 1.0 extends the
extrapolation beyond the maximum-detail texture, which prevents the texture
from blurring beyond a 4× magnification.

Defining and Binding the DetailTexture

For a texture to be used as a DetailTexture, it is bound to the
TX_TEXTURE_DETAIL target rather than the familiar TX_TEXTURE_0 target, and
used with a texture that has TX_ADD_DETAIL or TX_MODULATE_DETAIL as a
magnification filter.

Use TX_DETAIL in the props array to define a DetailTexture. TX_DETAIL is
followed by five values, J, K, M, N, and scramble. J and K must be equal and M
and N must be equal. Currently, J and K must both be 4 and scramble must be
zero.

M and N describe the mapping of the DetailTexture to the base texture and are
given by the following formula:

(EQ 18-1)

where n is the number of frequency bands, or LODs, in the DetailTexture.

TX_MAGFILTER Formula

TX_ADD_DETAIL Factor(n) = weight(n) ∗ DetailTexture

TX_MODULATE_DETAIL Factor(n) = weight(n) * DetailTexture * base

Table 18-4 Formulas for Computing DetailTexture Filters

M N, 256
28 n–
------------=

Graphics Library Programming Guide 18-31

In the 2K×2K road texture example, the 256×256 detail texture maps to a 64×64
area of the 512×512 low-resolution texture, so the TX_DETAIL parameters for
the detail texture are:

TX_DETAIL, 4.,4.,64.,64.,0,

The magnification filter for the low-resolution texture is:

TX_MAGFILTER, TX_ADD_DETAIL

or

TX_MAGFILTER, TX_MODULATE_DETAIL

When a texture is used as a DetailTexture, the properties MINFILTER ,
MAGFILTER, MAGFILTER_COLOR, MAGFILTER_ALPHA, TX_WRAP, TX_WRAP_S,
TX_WRAP_T, TX_WRAP_R, TX_MIPMAP_FILTER_KERNEL, TX_CONTROL_POINT,
TX_CONTROL_CLAMP, and TX_TILE have no effect.

Note: The DetailTexture must have the same number of components and the
same number of bits per component as the base texture.

The following code fragment provides another example of how to use a
DetailTexture:

To define and bind a a DetailTexture, use these properties:

TX_DETAIL, 4., 4., 4., 4., 0, TX_NULL

To apply a DetailTexture to another texture, use:

#define MAX_DETAIL 1.0

TX_MAGFILTER, TX_MODULATE_DETAIL,
TX_CONTROL_POINT, 0., 0.0,
TX_CONTROL_POINT, 0.5, 0.05,
TX_CONTROL_POINT, 2., 0.4,
TX_CONTROL_POINT, 5., MAX_DETAIL,
TX_CONTROL_CLAMP, MAX_DETAIL.

/* a detail texture must be bound and a base texture must be bound */
texbind(TX_TEXTURE_DETAIL, detail_texture_id);
texbind(TX_TEXTURE_0, texture_id);

Note: You cannot bind one DetailTexture to another DetailTexture.

18-32 Textures

18.5 Texture Coordinates

This section describes how to map textures onto object geometry using texture
coordinates and how texture coordinates are generated at screen pixels.

To define a texture mapping, you assign texture coordinates to the vertices of
a geometric primitive, a process called parameterization. You can either assign
texture coordinates explicitly with the t() subroutines, or let the system
automatically generate and assign texture coordinates using the texgen()

subroutine. You can also use a NURBS texture as described in Chapter 14.

The current texture matrix transforms the texture coordinates. This matrix is
set while in mmode(MTEXTURE) and is a standard transformation matrix.

The final step generates (s,t, [r, q]) at every pixel center inside a geometric
primitive by interpolating between the vertex texture coordinates as it fills the
geometric primitives during scan conversion.

Note: On RealityEngine, a full 3-D projective transformation is supported.

The IRIS-4D/VGX uses hardware to interpolate texture coordinates linearly.
Although hardware interpolation is very fast, it is incorrect for perspective
projections. The scrsubdivide() subroutine improves interpolation—and
consequently image quality—for perspective projections on the VGX.

SkyWriter, VGXT, and RealityEngine systems use an enhanced hardware
interpolation that does not require the use of scrsubdivide() . IRIS Indigo
Entry, XS, XS24, and Elan can perform the perspective correction in software if
getgdesc(GD_TEXTURE_PERSP) = 1.

18.5.1 Assigning Texture Coordinates Explicitly

Use the t() subroutines to specify individual texture coordinates explicitly.
The argument you specify for t() is a 2-, 3-, or 4-element array whose type can
be short, long, float, or double. Like vertex coordinates, texture coordinates can
be 2-D, 3-D, or 4-D. Specify the texture coordinates s, t, q, and r in that order for
the array. The default for r is 0 and the default for q is 1.

Note: 3-D and 4-D texture coordinates are currently supported only on
RealityEngine.

Graphics Library Programming Guide 18-33

Table 18-5 lists the formats for the t() subroutine.

Call the t() subroutines within a bgnpolygon()/endpolygon() sequence to
texture individual vertices, as illustrated below.

bgnpolygon();
t2f (coord1);
v3f (vertex1);
t2f (coord2);
v3f (vertex2);
t2f (coord3);
v3f (vertex3);
t2f (coord4);
v3f (vertex4);

endpolygon();

18.5.2 Generating Texture Coordinates Automatically

The texgen() subroutine generates texture coordinates as a function of object
geometry. Coordinates are generated on a per-vertex basis and override
coordinates specified by the t() commands. You can independently control
the generation of either or both texture coordinates. If you generate only one
coordinate, the other is specified by the t() subroutines.

texgen() can compute the distance of a vertex from a reference plane and
calculate texture coordinates proportional to this distance.

The following form of the plane equation is used to define the reference plane:

(EQ 18-2)

 Array Type 2-D 3-D 4-D

Short integer t2s() t3s() t4s()

Long integer t2i() t3i() t4i()

Float t2f() t3f() t4f()

Double t2d() t3d() t4d()

Table 18-5 The t() Subroutine

Ax By Cz D+ + + 0=

18-34 Textures

Where the plane normal is the vector (EQ 18-3)

and the plane constant is D.

For example, the plane X=Y that passes through the origin is {1., -1., 0., 0.}.

The TG_LINEAR mode defines the reference plane in object coordinates so that
the parameterization is fixed with respect to object geometry. For example, use
TG_LINEAR to texture terrain for which sea level is the reference plane. In this
case, the altitude of a terrain vertex is its distance from the reference plane. Use
TG_LINEAR to make the vertex altitude index the texture so that white snow is
mapped onto peaks and green grass is mapped onto foothills.

The following code fragment illustrates how to use the TG_LINEAR function to
generate s coordinates proportional to vertex distance from the object
coordinate plane. The first call to texgen() defines the generation algorithm
for the s coordinate. The second call activates coordinate generation so that the
system generates an s coordinate for each vertex.

float tgparams[] = {1., -1., 0., 0.};
texgen(TX_S, TG_LINEAR, tgparams);
texgen(TX_S, TG_ON, tgparams);

The TG_CONTOUR mode defines the specified plane in eye coordinates. The
ModelView matrix in effect at the time of mode definition transforms the plane
equation. Thus, the transformation matrix is not necessarily the same as that
applied to vertices. This mode establishes a “field” of texture coordinates that
can produce dynamic contour lines on moving objects.

The TG_SPHEREMAP mode defines parameters for reflection mapping, by
generating texture coordinates based on the vertex and current normal. This
causes a reflection of the nearby surrounding environment to map to the
surface.

A
B
C

Graphics Library Programming Guide 18-35

18.5.3 Texture Lookup Tables

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to Section 18.6, “Texture
Environments,” if you do not have one of these systems.

RealityEngine supports the use of a texture lookup table (TLUT) for translating
texture function outputs. Texture function outputs are used by the texture
environment to modify the screen pixel color. The texture environment
function is defined by tevdef() and selected by tevbind() .

For textures up to 8-bit per component, 1- or 2-component textures can
reference an 8-bit lookup table of 8-bit per component R,G,B,A values to
produce full-colored and translucent imagery from intensity textures. This
saves memory space and increases the overall texture capacity of the system.

The texture lookup table is defined by tlutdef() and selected by tlutbind() .

The ANSI C specification for tlutdef() is:

void tlutdef(long index, long nc, long len,
unsigned long *table, long np, float *props)

where:

index is the name of the texture look-up table being defined. Index
0 is reserved as a null definition, and cannot be redefined.

nc is the number of components per table entry.

len is the length of table in table entries.

table is a long-word aligned array of packed nc, 8-bit, component
table entries.

np is the number of symbols and floating point values in props,
including the termination symbol TL_NULL. If np is zero, it is
ignored. Operation over network connections is more efficient
when np is correctly specified, however.

props is an array of floating point symbols and values that define the
texture look-up table. props must contain a sequence of
symbols, each followed by the appropriate number of floating
point values. The last symbol must be TL_NULL.

18-36 Textures

The ANSI C specification for tlutbind() is:

void tlutbind(long target, long index)

where:

target is the texture resource to which the texture function definition
is to be bound. The only appropriate resource is TL_TLUT_0.

index is the name of the texture function that is being bound. Name
is the index passed to texdef2d() when the texture function
is defined.

By default, texture look-up table definition 0 is bound to TL_TLUT_0. Texture
look-up table use is enabled when a texture function definition other than 0 is
bound to TX_TEXTURE_0, a texture environment definition other than 0 is
bound to TV_ENV_0, and a texture look-up table definition other than 0 is
bound to TL_TLUT_0.

Table 18-6 shows the relationship between the number of components in the
texture look-up table, the number of components in the texture, and the
resultant action.

TLUT nc Texture nc Action

2 1 I looks up I,A

2 I,A looks up I,A

3 R,G,B passes through unchanged

4 R,G,B,A passes through unchanged

 3 1 I looks up R,G,B

2 I,A passes through unchanged

3 R,G,B looks up R,G,B

4 R,G,B,A passes through unchanged

 4 1 I looks up R,G,B,A

2 I looks up R,G,B; A looks up A.

3 R,G,B,B looks up R,G,B,A

4 R,G,B,A looks up R,G,B,A

Table 18-6 Texture Look-up Table Actions

Graphics Library Programming Guide 18-37

The following code fragment demonstrates how to use texture lookup tables:

maketable4()
{
 int i;
 unsigned long table[256];
 float tlutps[] = {TL_NULL};

/* inverts colors */
 for (i = 0; i < 256; i++){
 table[i] = ((255-i)<<24) | ((255-i)<<16) | ((255-i)<<8) | ((255-i));
 }
 tlutdef(4,4,256,table,0, tlutps);
 tlutbind(0,4);
}

18.5.4 Improving Interpolation Results on VGX Systems

This section describes a technique that applies only to IRIS-4D/VGX systems,
so you might want to skip to Section 18.6, “Texture Environments,” if you do
not have one of these systems.

On the VGX, texture coordinates are linearly interpolated in screen space by
hardware the same way color is interpolated. Although this produces fast
rendering, it is mathematically incorrect for perspective projections. For
example, you can modify the sample program by replacing the ortho()

subroutine with perspective(600, 1., 1., 16.) , which introduces
perspective distortion. Because of incorrect interpolation, textures no longer
appear fixed to a surface but shift as the surface moves. This effect is called
swimming.

Swimming occurs because texture coordinates are interpolated after the
perspective division (in screen coordinates) when they should be interpolated
in eye coordinates. Because the VGX hardware does not support eye
coordinate interpolation, you can use screen subdivision to improve texture
coordinate interpolation. Screen subdivision can also improve the accuracy of
fog by correctly interpolating w (see Chapter 13).

18-38 Textures

Note: On systems other than VGX, you should not use scrsubdivide()

because the texture coordinates are already interpolated correctly in
eye coordinates.

Use scrsubdivide to turn screen subdivision on or off. Use SS_OFF to turn
off subdivision, which is the default.

Use the SS_DEPTH algorithm to subdivide polygons and lines into smaller
pieces. Colors, texture coordinates, and the homogeneous coordinate w at
newly generated vertices are correctly interpolated in eye coordinates rather
than in screen coordinates. Because incorrect interpolation is limited to smaller
pieces, error globally decreases and image quality increases. Consequently,
you can “tune” image quality by modifying the amount of subdivision.

Note: scrsubdivide() is most effective for large, nontessellated polygons
and lines. Highly tessellated surfaces (for example, curved surfaces)
have, in essence, already been subdivided and thus benefit little from
further subdivision.

SS_DEPTH subdivision slices screen coordinate polygons and lines by a fixed
grid in z. Spacing between z planes is constant throughout the grid and is
determined by the three scrsubdivide() parameters: maximum screen z,
minimum screen size, maximum screen size. The first value in the parameter
list specifies the desired distance between subdivision planes in units set by
lsetdepth() .

If polygon slices generated using this metric span a distance in pixels less than
minimum screen size, the distance between subdivision planes is increased
until the slices are larger than the minimum screen size. This can occur when
a polygon is oriented edge-on, so that it spans little screen distance.

If polygon slices generated using the maximum screen z metric span a distance
in pixels greater than maximum screen size, the distance between subdivision
planes is decreased until the slices are smaller than the maximum screen size.
This parameter is often useful for polygons that face the viewer and suffer
from too little subdivision.

In practice, the minimum and maximum screen size parameters are used to
keep slices from becoming too small or too big, respectively. However, these
parameters can introduce situations in which polygons that share an edge are
sliced by differently spaced grids. This generates T-vertices that can cause pixel
dropout along the shared edges. To avoid T-vertices, you can “turn off” the

Graphics Library Programming Guide 18-39

screen size parameters by setting them to 0 so that only the maximum screen
Z parameter is used. You can turn off any parameter by setting it to 0. For
example, a parameter list of {0., 0., 10.} specifies subdivision every 10 pixels.

The following code fragment illustrates how to use screen subdivision:

float scrparams[] = {0., 0., 10.};
scrsubdivide(SS_OFF, scrparams);

To turn on screen depth subdivision, change the SS_OFF mode to SS_DEPTH.
With the parameter list of {0., 0., 10.}, the quadrilateral is subdivided every 10
pixels and the image quality is improved. You can view the tessellation
produced by scrsubdivide() by drawing only the polygon outlines, using
the polymode(PYM_LINE) subroutine (see Chapter 2).

18.6 Texture Environments

A texture environment specifies how texture values modify the color and
opacity of an incoming shaded pixel. Use the tevdef() subroutine to define a
texture environment and the tevbind() subroutine to enable the texturing
environment. As with texbind() , there can be only one texture environment
bound (active) at a time.

There are three texture environment types:

TV_MODULATE Modulates the polygon surface with the texture. This is the
default environment and is valid for 1-, 2-, 3-, and
4-component textures.

TV_BLEND Interpolates between the polygon color and a constant color
based on the texel intensity. This environment is valid for 1-
and 2-component textures only.

TV_DECAL Applies the texture on top of the polygon color wherever
texture alpha is nonzero.

The ANSI C specification for tevdef() is:

tevdef(long index, long np, float props[])

where:

index is the unique index(name) for the texture environment.

18-40 Textures

np is the number of elements in the props array.

props is a array of floating point constants that defines how the
texture is combined with incoming pixels to color screen
pixels.

The texture environment function takes a shaded, incoming pixel color
(Rin,Gin,Bin,Ain) and computed texture values (Rtex,Gtex,Btex,Atex) as input, and
outputs a new color (Rout,Gout,Bout,Aout). The equations for each environment
are listed in the tables that follow the environment description.

TV_MODULATE multiplies the incoming color components by texture values,
according to the equations listed in Table 18-7.

TV_BLEND blends the incoming color and the active texture environment
color, which is a single RGBA constant (Rconst,Gconst,Bconst,Aconst)
according to the equations used for TV_BLEND in Table 18-8.
The texture environment color is specified with the TV_COLOR

parameter.

1-component 2-component 3-component 4-component

Table 18-7 TV_MODULATE Equations

Output Color 1-component 2-component

Red

Green

Blue

Alpha

Table 18-8 TV_BLEND Equations

Rout Rin Itex⋅= Rout Rin Itex⋅= Rout Rin Rtex⋅= Rout Rin Rtex⋅=

Gout Gin Itex⋅= Gout Gin Itex⋅= Gout Gin Gtex⋅= Gout Gin Gtex⋅=

Bout Bin Itex⋅= Bout Bin Itex⋅= Bout Bin Btex⋅= Bout Bin Btex⋅=

Aout Ain= Aout Ain Atex⋅= Aout Ain= Aout Ain Atex⋅=

Rout Rin 1 Itex–()⋅ Rconst Itex⋅+= Rout Rin 1 Itex–()⋅ Rconst Itex⋅+=

Gout Gin 1 Itex–()⋅ Gconst Itex⋅+= Gout Gin 1 Itex–()⋅ Gconst Itex⋅+=

Bout Bin 1 Itex–()⋅ Bconst Itex⋅+= Bout Bin 1 Itex–()⋅ Bconst Itex⋅+=

Aout Ain= Aout Ain Atex⋅=

Graphics Library Programming Guide 18-41

TV_COLOR specifies the constant color used by the TV_BLEND

environment. Four floating point values, in the range 0.0
through 1.0, must follow this symbol. These values specify
Rcon, Gcon, Bcon, and Acon. By default, all are set to 1.0.

TV_DECAL uses texture alpha (referred to as Atex in the equations below)
is used to blend the incoming color and the texture color,
according to the blend equations in Table 18-9

TV_COMPONENT_SELECT

allows the use of one or two components from a texture with
more components. Some GL implementations may allow 4
component textures with a very small component size, such
as 4 bits, which is smaller than the smallest addressable
datum. Therefore, a 4 component texture with 4 bits per
component may be used as four separate 1-component
textures, or two 2-component textures, and so on.

The token is followed by one choice from the following:

TV_I_GETS_R uses the red component of a 4-component texture as a
1-component texture.

TV_I_GETS_G uses the green component of a 4-component texture as a
1-component texture.

TV_I_GETS_B uses the blue component of a 4-component texture as a
1-component texture.

TV_I_GETS_A uses the alpha component of a 4- or 2-component texture.

Output Color 3-component 4-component

Red

Green

Blue

Alpha

Table 18-9 TV_DECAL Equations

Rout Rtex= Rout Rin 1 Atex–()⋅ Rtex Atex⋅+=

Gout Gtex= Gout Gin 1 Atex–()⋅ Gtex Atex⋅+=

Bout Btex= Bout Bin 1 Atex–()⋅ Btex Atex⋅+=

Aout Ain= Aout Ain=

18-42 Textures

18.7 Texture Programming Hints

After you understand the basics of the IRIS GL texture routines, the following
hints can be useful in getting the optimal performance from your system.

Most of these hints apply to RealityEngine, but because of the texturing
capabilities of RealityEngine, some do not apply and are so noted.
RealityEngine systems feature dedicated texture memory, rather than using
framebuffer memory for textures. This provides the ability to display complex,
texture-mapped scenes at fast frame rates, thereby improving image quality
without sacrificing performance.

RealityEngine provides 4Mbytes of standard, on-line texture memory, stored
as two banks of 2Mbyte memory areas. Different texture types and modes can
be mixed together within the memory storage space. Built-in texture storage
algorithms store textures sequentially in memory for maximum efficiency.
The minimum texture size on RealityEngine is 2×2, and the maximum size is
1024×1024. The system can store two R,G,B,A full-color 1024×1024 textures
with 16-bit texels.

Overall Hints

• Turn off texturing when you are not drawing textured geometry.

Remember to turn off texturing when drawing nontextured
geometry. Not supplying texture coordinates does not disable
texturing. Texturing is disabled only with one of the following
subroutine calls: texbind(TX_TEXTURE_0,0) or
tevbind(TV_ENV0,0) .

• Texturing works only in RGB mode.

The behavior of texturing is not defined in color index mode.

• Most texture calls are illegal between bgn/end sequences.

With the exception of the t() commands, the texture subroutines
described in this chapter cannot be called inside of bgn/end

sequences such as bgnpolygon() /endpolygon() .

Graphics Library Programming Guide 18-43

Hints for Using texdef2d

• Use images whose dimensions are powers of two whenever possible.

Internally, the GL works only with images whose dimensions are
powers of 2. texdef2d automatically resizes images as necessary. To
avoid resizing, pass texdef2d() images that have widths and
heights that are powers of 2.

• Use as few components as necessary.

The more components a texture has, the longer it takes to map the
texture onto a polygon. For optimal speed, use as few components as
possible. This applies to RealityEngine unless you specify an internal
format. If you are not taking advantage of a texture’s alpha, define the
texture as a 1- or 3-component texture. If you do not need a full-color
texture, define the texture with one or two components.

• Use the simplest filter you need.

The per-pixel speed of the texture filter functions is related to the
number of interpolations the filter has to perform. The filters in order
from fastest to slowest are TX_POINT, TX_MIPMAP_POINT,
TX_MIPMAP_LINEAR, TX_BILINEAR , TX_MIPMAP_BILINEAR,
TX_MIPMAP_TRILINEAR and TX_TRILINEAR , TX_BICUBIC and
TX_MIPMAP_QUADLINEAR.

There is some overhead per polygon for using MIPmap filters. If a
scene has a large number of textured polygons, or if the polygons are
subdivided finely, performance is improved if MIPmap filters are not
used.

• Keep the texture size below the recommended maximum.

Textures that exceed the maximum dimensions of the graphics
hardware are resized to the maximum dimensions. The maximum
dimensions for textures using MIPmapping are half of those that do
not. The effect is that large textures using MIPmapping are more
blurry than those that do not.

• Be aware that texdef2d() copies the texture image to memory.

The image passed to texdef2d() is copied. All other data associated
with the texture, such as its MIPmap, are saved with it in the user’s
memory space until the texture is redefined or the program exits.

18-44 Textures

Hints for Using texbind

• Bind textures as infrequently as possible.

texbind can be a time-consuming operation, especially if the texture
is not resident in the graphics hardware. To achieve maximum
performance, draw all of the polygons that use the same texture
together.

• Texture caching.

Hardware texture memory is a finite resource managed by the IRIX
kernel. The kernel guarantees that the currently bound texture of a
program resides in this memory, whenever the program owns the
graphics pipe. Beyond that, the kernel keeps as many additional
textures as possible in the hardware texture memory. When a texture
is bound, if it is not resident in the texture memory and there is not
enough room remaining for this texture, one or more of the resident
textures are swapped out. To minimize the frequency of this
swapping, use smaller textures or try to switch them less often.

Hints for Using scrsubdivide

• Use scrsubdivide() only on VGX systems.

• Turn on scrsubdivide() only when you need it.

Because scrsubdivide() generates many polygons from each
incoming polygon, it is wise to turn off this feature when it is not
needed, such as when you are drawing non–texture-mapped
polygons or highly tessellated texture-mapped polygons.

• Use only as much subdivision as you need.

Choose the scrsubdivide() parameters carefully. For maximum
performance, use only as much subdivision as is necessary. Textures
without high frequencies need less subdivision than those with high
frequencies.

Hints for Using alpha

• Use afunction() , and/or msalpha() on RealityEngine for fast drawing
of objects with texture alpha.

Graphics Library Programming Guide 18-45

When the alpha component of a texture is used to approximate a
geometry (such as when a texture is used to describe a tree), the
polygons must be blended into the scene in sorted order to properly
realize the coverage defined by the alpha component. This sorting
and blending requirement can be removed by using afunction() .
afunction(0, AF_NOTEQUAL) specifies that only pixels with nonzero
alpha be drawn. See the afunction() man page for more details. On
VGXT, afunction(128, AF_GREATER) works well.

• Alphaless systems.

Systems without alpha memory also lack storage for a fourth texture
component. On such systems, the alpha component of 4-component
textures always appears to be 255. 1- and 3-component textures
behave the same on systems with or without alpha.

18.8 Sample Texture Programs

This sample program, brick.c, creates a brick texture and lets you toggle
scrsubdivide() with the mouse, to view texture “swimming.”

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

float texprops[] = {TX_MINFILTER, TX_POINT,TX_MAGFILTER, TX_POINT,
TX_WRAP, TX_REPEAT, TX_NULL};

/* Texture color is brick-red */
float tevprops[] = {TV_COLOR, .75, .13, .06, 1., TV_BLEND, TV_NULL};

/* Subdivision parameters */
float scrparams[] = {0., 0., 10.};

unsigned long bricks[] = /*Define texture image */
{0x00ffffff, 0xffffffff,
 0x00ffffff, 0xffffffff,
 0x00ffffff, 0xffffffff,
 0x00000000, 0x00000000,
 0xffffffff, 0x00ffffff,
 0xffffffff, 0x00ffffff,
 0xffffffff, 0x00ffffff,
 0x00000000, 0x00000000};

18-46 Textures

/* Define texture and vertex coordinates */
float t0[2] = {0., 0.}, v0[3] = {-2., -4.,0.};
float t1[2] = {16., 0.}, v1[3] = {2., -4.,0.};
float t2[2] = {16., 32.}, v2[3] = {2., 4.,0.};
float t3[2] = {0., 32.}, v3[3] = {-2., 4.,0.};

main()
{

short val;
int dev, texflag;

if (getgdesc(GD_TEXTURE) == 0) {
fprintf(stderr, “texture mapping not availble on this machine\n”);
return 1;

}
keepaspect(1, 1);
winopen(“brick”);
subpixel(TRUE);
RGBmode();
doublebuffer();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qenter (LEFTMOUSE, 0);
mmode(MVIEWING);
perspective(600, 1., 1., 10.);
texdef2d(1, 1, 8, 8, bricks, 0, texprops);
tevdef(1, 0, tevprops);
texbind(TX_TEXTURE_0, 1);
tevbind(TV_ENV0, 1);
texflag = getgdesc(GD_TEXTURE_PERSP);
translate(0., 0., -6.); /* Move poly away from viewer */

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
while (TRUE){

while(qtest()){
dev = qread(&val);
switch(dev){

case ESCKEY: exit(0);
break;

case REDRAW: reshapeviewport();
break;

Graphics Library Programming Guide 18-47

/* Screen subdivision - use it only if you have a VGX.
 Push the leftmouse button to see "swimming" on VGX’s */

case LEFTMOUSE:
if (val){

switch(texflag){
case 0: scrsubdivide(SS_OFF, scrparams);

 break;
case 1: printf("Your machine corrects in hardware\n");

 break;
}

}
else

switch(texflag){
case 0: scrsubdivide(SS_DEPTH, scrparams);

 break;
case 1: break;

}
break;

} /* end main switch */
} /* end qtest */

cpack(0x0);
clear();
pushmatrix();
rotate(getvaluator(MOUSEX)*5,'y');
rotate(getvaluator(MOUSEY)*5,'z');
cpack(0xffcccccc);
bgnpolygon();

t2f(t0); v3f(v0);
t2f(t1); v3f(v1);
t2f(t2); v3f(v2);
t2f(t3); v3f(v3);

endpolygon();
popmatrix();
swapbuffers();

}
texbind(TX_TEXTURE_0, 0); /* Turn off texturing */
}

18-48 Textures

This sample program, heat.c, illustrates texture mapping in color map mode.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

/* Texture environmnet */
float tevprops[] = {TV_MODULATE, TV_NULL};

/* RGBA texture map representing temperature as color and
 * opacity */
float texheat[] = {TX_WRAP, TX_CLAMP, TX_NULL};
/* Black->blue->cyan->green->yellow->red->white */
unsigned long heat[] = /* Translucent -> Opaque */

{0x00000000, 0x55ff0000, 0x77ffff00, 0x9900ff00,
 0xbb00ffff, 0xdd0000ff, 0xffffffff};

/* Point sampled 1 component checkerboard texture */
float texbgd[] = {TX_MAGFILTER, TX_POINT, TX_NULL};

unsigned long check[] =
{0xff800000, /* Notice row byte padding */
 0x80ff0000};

/* Subdivision parameters */
float scrparams[] = {0., 0., 10};

/* Define texture and vertex coordinates */
float t0[] = {0., 0.}, v0[] = {-2., -4., 0.};
float t1[] = {.4, 0.}, v1[] = { 2., -4., 0.};
float t2[] = {1., 0.}, v2[] = { 2., 4., 0.};
float t3[] = {.7, 0.}, v3[] = {-2., 4., 0.};

Graphics Library Programming Guide 18-49

main()
{

long device;
short data, sub = 0;

if (getgdesc(GD_TEXTURE) == 0){
fprintf(stderr,

"Texture mapping not available on this machine\n");
return 1;

}
keepaspect(1,1);
winopen("heat");
RGBmode();
doublebuffer();
gconfig();
subpixel(TRUE);
lsetdepth(0x0, 0x7fffff);

blendfunction(BF_SA, BF_MSA); /* Enable blending */

mmode(MVIEWING);
perspective(600, 1, 1., 16.);

/* Define checkerboard */
texdef2d(1, 1, 2, 2, check, 0, texbgd);
/* Define heat */
texdef2d(2, 4, 7, 1, heat, 0, texheat);
tevdef(1, 0, tevprops);
tevbind(TV_ENV0, 1);

translate(0., 0., -6.);
qdevice(ESCKEY);

/* Determine if machine does perspective correction */
if (getgdesc(GD_TEXTURE_PERSP) != 1) sub = 1;

18-50 Textures

while(TRUE) {
if(qtest()){

device = qread(&data);
switch(device){

case ESCKEY: texbind(TX_TEXTURE_0, 0); /* Turn off texturing */
exit(0);
break;

case REDRAW: reshapeviewport();
break;

}
 }
 cpack(0x0);
 clear();

/* Subdivision off */
 if (sub) scrsubdivide(SS_OFF, scrparams);
 texbind(TX_TEXTURE_0, 1); /* Bind checkerboard */
 cpack(0xff102040); /* Background rectangle color */

 bgnpolygon(); /* Draw textured rectangle */
t2f(v0); v3f(v0); /* Notice vertex */
t2f(v1); v3f(v1); /* coordinates are used */
t2f(v2); v3f(v2); /* as texture coordinates */
 t2f(v3); v3f(v3)

 enpolygon();

 pushmatrix();
rotate(getvaluator(MOUSEX)*5, 'y');
rotate(getvaluator(MOUSEY)*5, 'x');

 /* Screen subdivision - use it only if you have a VGX */
 if (sub) scrsubdivide(SS_DEPTH, scrparams);
 texbind(TX_TEXTURE_0, 2); /* Bind heat */
 cpack(0xffffffff); /* Heated rectangle base color */
 bgnpolygon(); /* Draw textured rectangle */

t2f(t0); v3f(v0);
t2f(t1); v3f(v1);
t2f(t2); v3f(v2);
 t2f(t3); v3f(v3);

 endpolygon();

 popmatrix();
 swapbuffers();
}

}

