
Graphics Library Programming Guide 10-1

Chapter 10

10. Framebuffers and Drawing Modes

This chapter describes modes used for accessing different “layers” of your
graphics scene. The subroutines described in this chapter let you draw an
image on top of the standard pixel contents (overlay) or underneath (underlay).
Personal IRIS and IRIS Indigo owners with the minimum bitplane
configuration (eight bitplanes) can skip the sections dealing with overlay and
underlay bitplanes, because these bitplanes are not present on these systems.

• Section 10.1, “Framebuffers,” describes the framebuffers on the IRIS
workstation.

• Section 10.2, “Drawing Modes,” describes the modes used for drawing.

• Section 10.3, “Writemasks,” tells you how to use masks to draw
selectively into designated layers.

• Section 10.4, “Configuring Overlay and Underlay Bitplanes,” tells you
how to designate drawing layers for multilayer drawings.

• Section 10.5, “Cursor Techniques,” tells you how to create and use
cursors.

10.1 Framebuffers

Pixel data is stored in a special memory called the framebuffer. In its default
configuration, the framebuffer on IRIS workstations is divided into four
partitions that the GL can address as if they were separate framebuffers or
layers of bits called bitplanes. These four bitplanes are called: normal, overlay,
underlay, and pop-up. Setting a drawing mode selects one of these bitplanes for
access.

10-2 Framebuffers and Drawing Modes

The exact number of bits varies from system to system and is also dependent
on the drawing mode. Use getgdesc() with the appropriate GD_BITS

parameter to query the system for the bit configuration in each mode.

RealityEngine systems have additional framebuffers, a multisample buffer for
antialiasing, and left and right buffers for stereo applications.

10.1.1 Normal Framebuffer

Usually, drawing is done in the standard (normal) color framebuffer. Data in
the framebuffer is interpreted either as RGB and, optionally, Alpha, data for
RGB mode, or as indices into a color map for color map mode. A single sample
of the color is written to the framebuffer to represent 1 pixel.

The color represented by a pixel in the framebuffer is not necessarily the color
drawn on the screen. Colors from other framebuffers can appear on top of or
underneath this pixel, or colors can be blended with the pixel to achieve
interesting effects such as transparency. For example, a cursor moving over a
pixel obscures the pixel’s color while the cursor is displayed in that location.
The original color of the pixel is displayed once again after the cursor passes.
Similarly, when a pop-up menu is drawn over a window, the underlying colors
are temporarily obscured, but they reappear when the pop-up menu
disappears. These effects are accomplished by drawing into other parts of the
framebuffer such as the overlay, underlay, or pop-up planes.

On RealityEngine systems, a multisample buffer coexists with the normal
framebuffer that provides single-pass multisample antialiasing, which is
described in Chapter 15. Multisampling can be used only when the draw mode
is NORMALDRAW, and only when you have configured the multisample buffer.

RealityEngine systems also feature a flexible framebuffer configuration that
allows you to specify how to partition the framebuffer and how to allocate bits
within the various parts of the framebuffer. You can configure the framebuffer
to choose the number of subsamples for multisample antialiasing and you can
also allocate framebuffer bits for z-buffer and stencil operations.

Graphics Library Programming Guide 10-3

10.1.2 Overlay Framebuffer

Overlay planes are useful for creating menus, construction lines,
rubber-banding lines, and so on. Overlay bitplanes supply additional bits of
information at each pixel. You can configure the system to have from 0 up to a
system-dependent maximum number of bitplanes. Whenever all the overlay
bitplanes contain 0 at a pixel, the color of the pixel from the standard color
bitplanes is presented on the screen. If the value stored in the overlay planes is
not 0, the overlay value is looked up in a separate color table, and that color is
presented instead.

10.1.3 Underlay Framebuffer

Underlay planes are useful for background grids that appear where nothing
else is drawn, such as a reference grid for a sketching application. Underlay
bitplanes are similar in concept, in that there are extra bits for each pixel, but
their values are normally ignored unless the color in the standard bitplanes is
0. In that case, the underlay color is looked up in a color map and is presented.
Thus, the underlay color shows up only if there is “nothing” (the pixel value =
0) in the standard bitplanes. With two underlay bitplanes, there are four
possible underlay colors.

Use drawmode() , described in Section 10.2, “Drawing Modes,” to enter
overlay or underlay mode and to return to normal drawing mode—drawing
into the standard bitplanes.

The system actually has several physical bitplanes that can be used for either
overlay or underlay. Two of the available bitplanes are normally reserved for
window manager use; you can allocate the others among overlay bitplanes,
underlay bitplanes, or neither. See Section 10.4, “Configuring Overlay and
Underlay Bitplanes.”

10.1.4 Pop-up Framebuffer

The two bitplanes normally reserved by the window manager for pop-up
menus are accessible (either by themselves using a special drawing mode, or
by allocating all the available overlay and underlay bitplanes). You must be
careful, however, not to conflict with the window manager’s use for them, so
using the reserved bitplanes is not recommended.

10-4 Framebuffers and Drawing Modes

10.1.5 Left and Right Stereo Framebuffers

This section describes a feature that is available only on RealityEngine
systems, so you may want to skip to Section 10.2, “Drawing Modes,” if you do
not have one of these systems.

On RealityEngine systems, the normal framebuffer can be configured for
stereoscopic viewing with the stereobuffer() command.

When stereobuffer() is used in conjunction with singlebuffer() , two
color buffers, left and right, are allocated. When stereobuffer() is used in
conjunction with doublebuffer() , four color buffers, front-left, front-right,
back-left, and back-right, are allocated.

stereobuffer() does not take effect until gconfig() is called. The default
mode is monoscopic viewing. If neither monobuffer() nor stereobuffer()

is called, gconfig() defaults to monoscopic buffer mode.

stereobuffer() configures the framebuffer to store left and right images, but
it does not position those images as required for stereo viewing. Use
setmonitor() to select a stereo video format to display the stereo images
correctly. See Chapter 5 for the setmonitor() parameters. When
setmonitor() is not configured for stereo display, only the left buffer is
displayed.

In singlebuffer mode, leftbuffer() controls whether drawing is enabled in
the left buffer, and rightbuffer() controls whether drawing is enabled in the
right buffer.

In doublebuffer mode, the front-left buffer is enabled for drawing if both
frontbuffer() and leftbuffer() are true, and the back-left buffer is
enabled for drawing if both backbuffer() and leftbuffer() are true.
Likewise, the front-right buffer is enabled for drawing if both frontbuffer()

and rightbuffer() are true, and the back-right buffer is enabled if both
backbuffer() and rightbuffer() are true.

leftbuffer() and rightbuffer() should be called only when the draw
mode is NORMALDRAW, and they are ignored when the normal buffer is not
configured for stereo buffering.

Graphics Library Programming Guide 10-5

TRUE is the default for leftbuffer() and FALSE is the default for
rightbuffer() . After gconfig() is called, the left buffer is enabled and the
right buffer is disabled.

10.2 Drawing Modes

The drawing mode specifies which of the four layers, normal, overlay, underlay,
or pop-up, is the intended destination for the bits produced by subsequent
drawing and mode commands. Calls to color() , getcolor() ,
getwritemask() , writemask() , mapcolor() , and getmcolor() are affected
by the current drawing mode.

Rather than introduce a new set of subroutines for operating on the different
layers, the color map subroutines are used to affect the overlay and underlay
bitplanes if the system is in overlay or underlay mode.

For example, in overlay mode, all drawing routines draw into the overlay
bitplanes rather than into the standard bitplanes. In overlay mode, color()

sets the overlay color; getcolor() gets the current overlay color; mapcolor()

affects entries in the overlay map, and getmcolor() reads those entries. The
routines are similarly redefined for underlay mode.

Some system resources are shared among the bitplanes, while in other cases
the system maintains individual resources for each one. The pop-up, overlay,
normal, and underlay planes maintain a separate version of each of the
following modes, which are modified and read back, based on the current
drawing mode:

backbuffer
cmode
color or RGBcolor
doublebuffer
frontbuffer
mapcolor (a complete separate color map)
readsource
RGBmode
singlebuffer
writemask or RGBwritemask

10-6 Framebuffers and Drawing Modes

Other modes affect only the operation of the normal framebuffer. You can
modify these modes only while the normal framebuffer is selected:

acsize
blink
cyclemap
multimap
onemap
setmap
stencil
stensize
swritemask
zbuffer
zdraw
zfunction
zsource
zwritemask

All other modes are shared, including matrices, viewports, graphics and
character positions, lighting, and many primitive rendering options.

There is a special bitplane area reserved for cursor images. See Section 10.5,
“Cursor Techniques.” In cursor mode, only mapcolor() and getmcolor()

perform a function; color() , getcolor() , writemask() , and
getwritemask() are ignored.

drawmode

drawmode() sets the current drawing mode; mode defines the drawing mode:

void drawmode(long mode)

Drawing modes are:

UNDERDRAW Sets operations for the underlay planes.

NORMALDRAW Sets operations for the normal color index or RGB planes; also
sets z bitplanes.

OVERDRAW Sets operations for the overlay planes.

PUPDRAW Sets operations for the pop-up menu planes (this drawing
mode is maintained for compatibility only and is not
recommended).

CURSORDRAW Sets operations for the cursor planes.

Graphics Library Programming Guide 10-7

The default drawing mode is NORMALDRAW mode, which remains set unless you
change it explicitly.

getdrawmode

getdrawmode() returns the current drawing mode specified by drawmode() :

long getdrawmode(void)

Each drawing mode has its own color and writemask. See Section 10.3,
“Writemasks,” for information about writemasks. By default, the writemask
enables all planes, and the color is not defined. As you switch from one
drawing mode to another, the current color and writemask are saved, and the
previously saved color and writemask for the new mode are restored. For
example, if you are in NORMALDRAW, then switch to OVERDRAW, and then switch
back to NORMALDRAW, the color and writemask that were active before you
switched to OVERDRAW are automatically restored.

You can use Gouraud shading, that is, shademodel(GOURAUD) in NORMALDRAW

mode. On the Personal IRIS, when you draw polygons in the overlay and
underlay bitplanes, or pop-up menus, the shading model is automatically set
to FLAT.

Many routines that affect the operation of the standard bitplanes should not be
used while in overlay or underlay drawing mode. They include
doublebuffer() (on all except VGX, SkyWriter, and RealityEngine systems),
RGBmode(), zbuffer() , and multimap() . VGX, SkyWriter, and RealityEngine
systems support double-buffered underlay and overlay.

10.3 Writemasks

In cases when the system uses color maps (the standard bitplanes in color map
mode, and the overlay and underlay bitplanes), a writemask is available that
can selectively limit drawing into the bitplanes. A writemask determines
whether or not a new value is stored in each bitplane. A one in the writemask
allows the system to store a new value in the corresponding bitplane; a zero
prevents a new value from being written, so the bitplane retains its current
color.

10-8 Framebuffers and Drawing Modes

By default, the writemask is set up so that there are no drawing restrictions,
but it is sometimes useful to limit the effects of the drawing routines. The two
most common cases are to provide the equivalent of extra overlay bitplanes
and to display a layered scene where the contents of the layers are independent
of one another. In previous systems, overlay and underlay modes were not
available; consequently, writemasks had a more significant function.

10.3.1 How Writemasks Work

Figure 10-1 shows how a writemask works. In this example, the values in the
first and second bits (b1 and b2) do not change because their corresponding
positions in the writemask are zero. All the other values change because they
have ones in their corresponding positions in the writemask.

Figure 10-1 Writemask

The writemask is described here in terms of the standard drawing bitplanes,
but it works exactly the same way if the system is in overlay or underlay mode.
This discussion assumes that only 8 of the 12 bitplanes are used, although the
discussion applies equally well to different numbers.

With 8 bitplanes, the color is a number from 0 to 255, which can be represented
by 8 binary bits. For example, color 68 is 01000100 in binary notation. Without
writemask controls, if the color is set to 68, every drawing subroutine puts
01000100 into the 8 bitplanes of the affected pixels.

A writemask restricts what is written to the bitplanes. In the example above, if
the writemask is 15 (bits= 00001111), only the bottom (right-most) 4 bits of the

New color index

Writemask

Current color index in bitplanes

a1 a2 a3 a4 a5 a6 a7 a8

a3 a4 a5 a6 a7 a8

Final color index

b1 b2 b3 b4 b5 b6 b7 b8

b1 b20 0 1 1 1 1 1 1

Graphics Library Programming Guide 10-9

color are written into the bitplanes (1 enables writing to the bitplane; 0 disables
writing to the bitplane). If the color is 68, any pixels hit by a drawing
subroutine while the writemask is enabled contain ABCD0100, where ABCD
are the 4 bits that were previously there. The zeros in the writemask prevent
those bits from writing. The default writemask is entirely ones, so there is no
restriction.

10.3.2 Writemask Subroutines

This section describes the subroutines you use to work with writemasks.

writemask

writemask() grants write permission to available bitplanes in color map
mode:

void writemask(Colorindex wtm)

The writemask prevents writing into (protects) bitplanes in the current
drawing mode that are reserved for special uses. wtm is a mask with 1 bit
available per bitplane. Wherever there are ones in the writemask, the
corresponding bits in the color index are written into the bitplanes. Zeros in the
writemask mark bitplanes as read-only. These bitplanes are unchanged,
regardless of the bits in the color.

If the drawing mode is NORMALDRAW, writemask() affects the standard
bitplanes; if it is OVERDRAW, the overlay bitplanes; if it is UNDERDRAW, the
underlay bitplanes. It is important to understand that although writemask()

allows you to protect certain bits from being overwritten, all the bits stored at
any pixel are still taken as a single integer or color index value (see the circles.c
sample program).

RGBwritemask

RGBwritemask() is the same as writemask() , except that it functions in RGB
mode:

void RGBwritemask(short red, short green, short blue)

The arguments red, green, and blue are masks for each of the three sets of
bitplanes. In the same way that writemasks affect drawing in bitplanes in

10-10 Framebuffers and Drawing Modes

NORMALDRAW color map mode, separate red, green, and blue masks can be
applied in NORMALDRAW RGB mode.

wmpack

wmpack() is the same as RGBwritemask() , except it that it accepts a single
packed argument, rather than three separate masks:

wmpack(unsigned long pack)

Bits 0 through 7 specify the red mask, 8 through 15 the green mask, 16 through
23 the blue mask, and 24 through 31 the alpha mask. For example,
wmpack(0xff804020) has the same effect as RGBwritemask(0x20,0x40,0x80).

getwritemask

In color map mode, getwritemask() returns the current writemask of the
current drawing mode:

long getwritemask(void)

The return value is an integer with up to 12 significant bits, one for each
available bitplane.

gRGBmask

gRGBmask() returns the current RGB writemask as three 8-bit masks:

void gRGBmask(short *redm, *greenm, *bluem)

gRGBmask() places masks in the low order 8-bits of the locations redm, greenm,
and bluem address. The system must be in RGB mode when this routine
executes.

10.3.3 Sample Writemask Programs

Two sample programs that use writemasks follow.

The first sample program, circles.c, draws overlapping circles. Because of the
writemask, the overlapping colors form their compound color—that is, where

Graphics Library Programming Guide 10-11

the red and green circles overlap, the shared area is yellow; where the red and
blue circles overlap, the shared area is magenta, and so on.

#include <gl/gl.h>
main()
{

prefsize(400, 400);
winopen(“circles”);
color(BLACK);
clear();
writemask(RED);
color(RED);
circfi(150, 250, 100);
writemask(GREEN);
color(GREEN);
circfi(250, 250, 100);
writemask(BLUE);
color(BLUE);
circfi(200, 150, 100);
sleep(10);
gexit();
return 0;

}

As a more involved example, suppose you want to draw two completely
independent electronic circuits on the screen: power and ground. You want the
circuit to be drawn on a white background, with the power traces in blue, the
ground traces in black, and short circuits (power touching ground) in red.

Initialize the program as follows:

#define BACKGROUND 0 /*=00*/
#define POWER 1 /*=01*/
#define GROUND 2 /*=10*/
#define SHORT 3 /*=11*/
mapcolor(0, 255, 255, 255); /*white*/
mapcolor(1, 0, 0, 255); /*blue*/
mapcolor(2, 0, 0, 0); /*black*/
mapcolor(3, 255, 0, 0); /*red*/

Draw all the power circuitry into bitplane 1 and the ground circuitry into
bitplane 2. Where both power and ground appear, there is a 1 in both bitplanes,
making color 3.

10-12 Framebuffers and Drawing Modes

To clear the window before drawing:

writemask(3);
color(BACKGROUND);
clear();

To draw power circuitry without affecting ground circuitry:

writemask(1);
color(1);
<drawing subroutines>

To draw ground circuitry without affecting power circuitry:

writemask(2);
color(2);
<drawing subroutines>
writemask(1);
color(0);
clear();

To erase all ground circuitry:

writemask(2);
color(0);
clear();

The complete circuit.c sample program follows. The user interface consists of
the keys P (draw power rectangles), G (draw ground rectangles), C (clear the
window), and Q (quit). To draw a rectangle, press the left mouse button at one
corner, hold it down, slide the mouse to the other corner, and release it.

When you use the program, be sure to exit by typing Q—this resets the four
lowest entries in the color map (which are used by all the windows) back to the
default values. If you forget, your text will be white against a white
background, and hence a bit tough to read. If this happens, type a couple of
carriage returns, followed by gclear() and another carriage return. The
program gclear() resets the color map back to the default.

#include <gl/gl.h>
#include <gl/device.h>

#define R 0
#define G 1
#define B 2
#define RGB 3
#define BACKGROUND 0x0 /* = 00 */

Graphics Library Programming Guide 10-13

#define POWER 0x1 /* = 01 */
#define GROUND 0x2 /* = 10 */
#define SHORT 0x3 /* = 11 */

void powerrect(x1, y1, x2, y2)
Icoord x1, y1, x2, y2;
{

writemask(0x1);
color(POWER);
sboxfi(x1, y1, x2, y2);

}

void groundrect(x1, y1, x2, y2)
Icoord x1, y1, x2, y2;
{

writemask(0x2);
color(GROUND);
sboxfi(x1, y1, x2, y2);

}

void clearcircuit()
{

writemask(0x3);
color(BACKGROUND);
clear();

}

main()
{

int i, drawtype;
Device dev;
short val;
short x1, y1, x2, y2;
long xorg, yorg;
Boolean run;
short saved[SHORT+1][RGB];
prefsize(400, 400);
winopen(“circuit”);
color(BLACK);
clear();
qdevice(PKEY); /* draw power rectangles */
qdevice(GKEY); /* draw ground rectangles */
qdevice(CKEY); /* clear screen */
qdevice(ESCKEY); /* quit */
qdevice(WINQUIT); /* quit from window manager */
qdevice(LEFTMOUSE); /* mark rectangle corners */

10-14 Framebuffers and Drawing Modes

tie(LEFTMOUSE, MOUSEX, MOUSEY);
getorigin(&xorg, &yorg);

/* save existing color map */
for (i = BACKGROUND; i <= SHORT; i++)

getmcolor(i, &saved[i][R], &saved[i][G], &saved[i][B]);

/* load new color map */
mapcolor(BACKGROUND, 0, 0, 0); /* black */
mapcolor(POWER, 0, 0, 255); /* blue */
mapcolor(GROUND, 255, 255, 255); /* white */
mapcolor(SHORT, 255, 0, 0); /* red */
drawtype = GROUND;
run = TRUE;
while (run) {

dev = qread(&val);
if (dev == WINQUIT)

run = FALSE;
else if (dev == LEFTMOUSE) { /* downclick */

qread(&x1);
qread(&y1);
qread(&val); /* upclick */
qread(&x2);
qread(&y2);
if (drawtype == POWER)

powerrect(x1 - xorg, y1 - yorg, x2 - xorg, y2 - yorg);
else

groundrect(x1 - xorg, y1 - yorg, x2 - xorg, y2 - yorg);
}
else if (val == 0) {/* on upstroke only */

switch (dev) {
case PKEY:

drawtype = POWER;
break;

case GKEY:
drawtype = GROUND;
break;

case CKEY:
clearcircuit();
break;

case ESCKEY:
run = FALSE;
break;

}
}

}

Graphics Library Programming Guide 10-15

/* restore default color map */
for (i = BACKGROUND; i <= SHORT; i++)

mapcolor(i, saved[i][R], saved[i][G], saved[i][B]);
gexit();
return 0;

}

10.4 Configuring Overlay and Underlay Bitplanes

To set the number of user-defined bitplanes to use for overlay color or
underlay color, call overlay() or underlay() , respectively.

Not all systems support overlay and underlay user-defined bitplanes
simultaneously. Personal IRIS and IRIS-4D/G/GT/GTX systems support only
one or the other at any one time. Call gconfig() after overlay() or
underlay() to activate their settings overlay()/underlay() takes effect only
after gconfig() is called, which is when all bitplane requests are resolved.

overlay

overlay() sets the number of user-defined bitplanes used for overlay colors:

void overlay(long planes)

underlay

underlay() sets the number of user-defined bitplanes used for underlay color:

void underlay(long planes)

underlay() is the same as overlay() except it affects the underlay() colors.
The default value is 0.

planes is the number of bitplanes to use for the overlay/underlay color, which
depends on the system type. The overlay/underlay framebuffer contains two
bitplanes in single buffer, color map mode. Use overlay()/underlay() to
change the number of bitplanes allocated for overlay/underlay mode. Use
drawmode() to specify the overlay/underlay planes as the destination for
drawing mode changes.

10-16 Framebuffers and Drawing Modes

Table 10-1 shows the system type and the number of overlay/underlay planes.

On models that cannot support simultaneous overlay and underlay, setting
underlay() to 2 forces overlay() to 0 and vice-versa. If underlay() is 2,
there are four available colors that mapcolor() can define. This is one more
than the available number of overlay colors because of the way the precedence
of the framebuffers works.

If the overlay planes contain 0 at any location, the system displays the contents
of the normal framebuffer at that location. If the underlay planes contain 0 at
a given location, the system displays the color at index 0 of the underlay
framebuffer’s color map when the normal bitplanes do not obscure them.

This loads the color map for the underlay buffers with black, red, green, blue.

underlay(2); /* two bitplanes, four colors */
gconfig();
drawmode(UNDERDRAW);
mapcolor(0, 0.0, 0.0, 0.0); /* black as color 0 */
mapcolor(1, 1.0, 0.0, 0.0); /* red as color 1 */
mapcolor(2, 0.0, 1.0, 0.0); /* green as color 2 */
mapcolor(3, 0.0, 0.0, 1.0); /* blue as color 3 */

System Overlay/Underlay Planes

Personal IRIS 0 or 2 single buffer, color-map mode overlay/underlay bitplanes.
(There are no overlay/underlay bitplanes in the minimum
configuration of the Personal IRIS.)

IRIS-4D/G
IRIS-4D/GT
IRIS-4D/GTX

0, 2, or 4 single buffer, color-map mode overlay/underlay bitplanes.
(Use of 4 is discouraged, because of interference with the window
manager pop-up bitplanes.)

IRIS-4D/VGX,
SkyWriter

0, 2, 4, or 8 single or double buffer color map mode overlay/underlay
bitplanes. The 4- and 8-bitplane configurations use the alpha
bitplanes, which are then unavailable for use in NORMALDRAW mode.
Furthermore, your system must have the alpha bitplane option
for you to use 4 or 8 overlay/underlay bitplanes with an
IRIS-4D/VGX or SkyWriter system.

RealityEngine 0,2,4, or 8 single or double buffer overlay/underlay bitplanes.
Does not steal alpha planes.

IRIS Indigo 0

Table 10-1 Overlay and Underlay Bitplane Configurations

Graphics Library Programming Guide 10-17

10.5 Cursor Techniques

The cursor is handled with special cursor hardware. When the color guns scan
the screen, they look at the cursor mask to determine what color to draw the
cursor with as they cross the square region of the screen where the cursor is to
be drawn. The cursor mask can be 1 or 2 bits deep. If the cursor mask is zero,
the normal color is presented. If the mask is nonzero, the mask value is looked
up in a color table (similar to overlay) to find out which color to draw. The
cursor color takes precedence over even the overlay color. As with overlays, if
the cursor mask is 1 bit deep, there is only one possible color; if it is 2 bits deep,
the cursor can have up to three colors.

10.5.1 Types of Cursors

The system supports five cursor types: a 16×16-bit cursor in one or three colors,
a 32×32-bit cursor in one or three colors, and a cross-hair one-color cursor. To
specify a cursor completely, you need to specify not only its type, but its shape
and color(s). In addition, every cursor has an origin, or “hot spot,” and can be
turned on or off.

Default Cursor

There is a default cursor, cursor number zero (0), which is an arrow pointing
to the upper-left corner of the cursor glyph, and whose origin is at (0, 15), the
tip of the arrow. The default cursor (number 0) cannot be redefined, and can
always be used. The position of the origin of the cursor, or the cursor’s hot
spot, is set to the current values of the valuators that are attached to the cursor.

Cross-Hair Cursor

The cross-hair cursor (CCROSS) is formed with 1-pixel wide intersecting
horizontal and vertical lines that extend completely across the screen. It is a
one-color cursor that always uses cursor color 3 as its color. Its origin is at the
intersection of the two lines; the default center is (15, 15). The hot spot is at the
center of the cross.

The cross-hair cursor is formed from a default glyph that cannot be changed.
If you assign a value to it with defcursor() , the user-defined glyph is ignored.
The color of the cross-hair cursor is set by mapping color index 3.

10-18 Framebuffers and Drawing Modes

Figure 10-2 shows some example cursors.

Figure 10-2 Example Cursors

Cursor arrow = {0xFE00, 0xFC00, 0xF800, 0xF800,
0xFC00, 0xDE00, 0x8F00, 0x0780,
0x03C0, 0x01E0, 0x00F0, 0x0078,
0x003C, 0x001E, 0x000E, 0x0004}

Cursor hourglass = {0x1FF0, 0x1FF0, 0x0820, 0x0820,
0x0820, 0x0C60, 0x06C0, 0x0100,
0x0100, 0x06C0, 0x0C60, 0x0820,
0x0820, 0x0820, 0x1FF0, 0x1FF0}

Cursor martini = {0x1FF8, 0x0180, 0x0180, 0x0180,
0x0180, 0x0180, 0x0180, 0x0180,
0x0180, 0x0240, 0x0720, 0x0B10,
0x1088, 0x3FFc, 0x4022, 0x8011}

Graphics Library Programming Guide 10-19

10.5.2 Creating and Using Cursors

To define and use a new cursor, follow these steps:

1. Set the cursor type to one of the five allowable types with curstype() .

2. Define the cursor’s shape and assign it a number with defcursor() .

3. If necessary, define its origin (or hot spot) with curorigin() , and its
color(s) with drawmode() and mapcolor() .

4. Finally, the new cursor becomes the current cursor with a call to
setcursor() .

If an application needs a number of different cursors, it typically defines all of
them on initialization, then switches from one to another using setcursor()

(and perhaps mapcolor()). Although they do not physically do so, cursors can
be thought of as occupying 1 or 2 bitplanes of their own, which behave like
overlay bitplanes as described above. A one-color cursor uses one bitplane,
and a three-color cursor occupies two. Where there are 0s in the cursor’s
bitplane(s), the contents of the standard, overlay, and underlay bitplanes
appear. In the same way that overlay colors are defined, drawmode() and
mapcolor() define the cursor’s color(s).

For a one-color cursor, first, call:

drawmode(CURSORDRAW)

followed by:

mapcolor(1, r, g, b)

For a three-color cursor, call:

mapcolor(1, r 1, g 1, b 1)
mapcolor(2, r 2, g 2, b 2)
mapcolor(3, r 3, g 3, b 3)

Note: Three-color cursors might not be supported on all future versions of
hardware. To write code that is portable, use only single-color cursors.

Whenever the cursor pattern (described below) contains a 1(=01), (r1, r1, g1,
b1) is presented; when it is 2(=10), (r2, r2, g2, b2) appears, and so on. Be sure to
call drawmode(NORMALDRAW) after you have defined the cursor’s colors.

10-20 Framebuffers and Drawing Modes

10.5.3 Cursor Subroutines

This section describes the cursor subroutines.

curstype

curstype() defines the current cursor type:

void curstype(long typ)

type is one of C16X1, C16X2, C32X1, C32X2, and CCROSS. It is used by
defcursor() to determine the dimensions of the arrays that define the
cursor’s shape. C16X1 is the default value.

After you call curstype() , call defcursor() to specify the appropriately
sized array and to assign a numeric value to the cursor glyph.

defcursor

defcursor() defines a cursor glyph:

void defcursor(short n, Cursor curs)

The index n defines the cursor number, and curs is an array of bits of the correct
size, depending on the current cursor type. The format of the array of bits is
exactly the same as that for characters in a font—the 16-bit word at the
lower-left is given first, then (if the cursor is 32 bits wide) the word to its right.
Continue in this way to the top of the cursor for either 16 or 64 words. If the
cursor is three-colored, another set of 16 or 64 words follows, again beginning
at the bottom, for the second plane of the mask.

curorigin

curorigin() sets the origin of a cursor:

void curorigin (short n, short xorigin, short yorigin)

The origin is the point on the cursor that aligns with the current cursor
valuators. The lower-left corner of the cursor has coordinates (0,0). Before
calling curorigin() , you must define the cursor with defcursor() . The
number n is an index into the cursor table created by defcursor() .
curorigin() does not take effect until there a a call to setcursor() .

Graphics Library Programming Guide 10-21

setcursor

setcursor() sets the cursor characteristics:

void setcursor(short index, Colorindex color, Colorindex wtm)

It selects a cursor glyph from among those defined with defcursor() . index
picks a glyph from the definition table. color and wtm are ignored. They are
present for compatibility with older systems that made use of them. Set the
color for the cursor with mapcolor() and drawmode() .

getcursor

getcursor() returns the cursor characteristics:

void getcursor(short *index, Colorindex *color, Colorindex *wtm, Boolean b)

It returns two values: the cursor glyph (index) and a boolean value (b), which
indicates whether the cursor is visible.

The default is the glyph index 0 in the cursor table, displayed with the color 1,
drawn in the first available bitplane, and automatically updated on each
vertical retrace.

10.5.4 Sample Cursor Program

This sample program, flag.c, defines a three-color 32×32 cursor in the shape of
a United States flag. Unfortunately, 32×32 is small, so there is room for only 12
stars. (Note that a three-color cursor is not supported on the Personal IRIS;
hence, C16X2 and C32X2 cursor types are not available on the Personal IRIS.)

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

unsigned short curs2[128] = {
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,

10-22 Framebuffers and Drawing Modes

0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0xffff, 0x6666, 0xffff,
0x6666, 0xffff, 0x0000, 0xffff,
0x0000, 0xffff, 0x6666, 0xffff,
0x6666, 0xffff, 0x0000, 0xffff,
0x0000, 0xffff, 0x6666, 0xffff,
0x6666, 0xffff, 0x0000, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0x0000, 0x0000, 0x0000, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0x0000, 0xffff, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0x0000, 0xffff, 0x0000,
0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0x0000, 0xffff, 0x0000

};

main()
{

short val;
prefsize(400, 400);
if (getgdesc(GD_BITS_CURSOR) < 2) {

fprintf(stderr, “2-plane cursor not available\n”);
return 1;

}
winopen(“flag”);
color(BLACK);
clear();
qdevice(ESCKEY);
drawmode(CURSORDRAW);
mapcolor(1, 255, 0, 0);
mapcolor(2, 0, 0, 255);
mapcolor(3, 255, 255, 255);
drawmode(NORMALDRAW);
curstype(C32X2);
defcursor(1, curs2);

Graphics Library Programming Guide 10-23

setcursor(1, 0, 0);
while (TRUE) {
Device dev;
dev = qread(&val);

if (dev == ESCKEY && val == 0);
break;

if (dev == INPUTCHANGE &&val != 0) {
drawmode(CURSORDRAW);
mapcolor(1,255,0,0);
mapcolor(2,0,0,255);
mapcolor(3,255,255,255);
drawmode(NORMALDRAW);

}
}
gexit();
return 0;

}

10-24 Framebuffers and Drawing Modes

