
TMS320C2x
C Source Debugger

User’s Guide

Literature Number: SPRU070
 March 1991

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2001, Texas Instruments Incorporated

 How to Use This Manual

iii

Preface

Read This First

What Is This Book About?

This book tells you how to use the TMS320C2x C source debugger with these
debugging tools:

� ’C2x software development system (SWDS)
� ’C2x simulator

Each tool has its own version of the debugger. These versions operate almost
identically; however, the executable files that invoke them are very different.
The SWDS version won’t work with the simulator, and vice versa. Separate
installation chapters are provided for each tool. Be sure to install the correct
version of the debugger for your environment.

How to Use This Manual

The goal of this book is to help you install the C source debugger and learn how
to use it. This book is divided into three distinct parts:

� Part I: Hands-On Information is presented first so that you can start
using your debugger the same day you receive it.

� There are two versions of the debugger—one for the SWDS and one
for the simulator—and two sets of installation instructions (Chapters 1
and 2, respectively).

� Chapter 3 is a tutorial that introduces you to many of the debugger
features.

� Part II: Debugger Description contains detailed information about using
the debugger.

� Chapter 4 is analogous to a traditional manual introduction. It lists the
key features of the debugger, describes additional ’C2x software
tools, and tells you how to prepare a ’C2x program for debugging.

How to Use This Manual

iv

� The remaining chapters in Part II detail the individual topics that are
introduced in the tutorial. For example, Chapter 5 describes all of the
debugger’s windows and tells you how to move them and size them;
Chapter 6 describes everything you need to know about entering
commands.

� Part III: Reference Material provides supplementary information.

� Chapter 12 provides a complete reference to all the tasks introduced
in Parts I and II. This includes a functional and an alphabetical
reference of the debugger commands and a topical reference of
function key actions.

� Chapter 13 provides information about C expressions. The debugger
commands are powerful because they accept C expressions as
parameters; however, the debugger can also be used to debug
assembly language programs. The information about C expressions
will aid assembly language programmers who are unfamiliar with C.

� Part III also includes a glossary and an index.

The way you use this book should depend on your experience with similar
products. As with any book, it would be best for you to begin on page 1 and
read to the end. Because most people don’t read technical manuals from cover
to cover, here are some suggestions about what you should read.

� If you have used TI development tools or other debuggers before, then you
may want to:
� Use the appropriate installation chapter (Chapter 1 if you’re using the

SWDS; Chapter 2 if you’re using the simulator).
� Complete the tutorial in Chapter 3.
� Read the alphabetical command reference in Chapter 12.

� If this is the first time that you have used a debugger or similar tool, then
you may want to:
� Use the appropriate installation chapter (Chapter 1 if you’re using the

SWDS; Chapter 2 if you’re using the simulator).
� Complete the tutorial in Chapter 3.
� Read all of the chapters in Part II.

 Notational Conventions

v

Notational Conventions

This document uses the following conventions.

� The TMS320C25 and TMS320C26 processors are referred to collectively
as the ’C2x generation .

� The C source debugger has a very flexible command-entry system; there
are usually a variety of ways to perform any specific action. For example,
you may be able to perform the same action by typing in a command, using
the mouse, or using function keys. This document uses three symbols to
identify the methods that you can use to perform an action:

Symbol Description
Identifies an action that you perform by using the mouse.

Identifies an action that you perform by using function keys.

Identifies an action that you perform by typing in a
command.

� The following symbols identify mouse actions. For simplicity, these
symbols represent a mouse with two buttons. However, you can use a
mouse with only one button or a mouse with more than two buttons.

Symbol Action
Point. Without pressing a mouse button, move the mouse to
point the cursor at a window or field on the display. (Note that
the mouse cursor displayed on the screen is not shaped like an
arrow; it’s shaped like a block.)

Press and hold. Press a mouse button. If your mouse has only
one button, press it. If your mouse has more than one button,
press the left button.

Release. Release the mouse button that you pressed.

Click. Press a mouse button and, without moving the mouse,
release the button.

Drag. While pressing the left mouse button, move the mouse.

� Debugger commands are not case sensitive; you can enter them in
lowercase, uppercase, or a combination. To emphasize this fact,

Notational Conventions

vi

commands are shown throughout this user’s guide in both uppercase and
lowercase.

� Program listings and examples, interactive displays, and window contents
are shown in a special font . Some examples use a bold version
to identify code, commands, or portions of an example that you enter. Here
is an example:

Command Result displayed in the COMMAND window

whatis giant struct zzz giant[100];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

In this example, the left column identifies debugger commands that you
type in. The right column identifies the result that the debugger displays in
the COMMAND window display area.

� In syntax descriptions, the instruction or command is in a bold face font,
and parameters are in italics. Portions of a syntax that are in bold face
should be entered as shown; portions of a syntax that are in italics
describe the kind of information that should be entered. Here is an
example of a command syntax:

wa expression [, label]

wa is the command. This command has two parameters, indicated by
expression and label. The first parameter must be an actual C expression;
the second parameter, which can be any string of characters, is optional.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

run [expression]

The RUN command has one parameter, expression, which is optional.

 Information About Cautions / Related Documentation From Texas Instruments

vii

Information About Cautions

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

Please read each caution statement carefully.

Related Documentation From Texas Instruments

The following books describe the TMS320C2x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Customer Support Center (CRC) at (800) 232–3200. When
ordering, please identify the book by its title and literature number.

The TMS320C2x User’s Guide (literature number SPRU014B) discusses
hardware aspects of the TMS320C2x generation devices, including the
TMS32020, TMS320C25, and TMS320C26. Topics in this user’s guide
include pin functions, architecture, stack operation, and interfaces; the
manual also includes a full discussion and summary of the TMS320C2x
assembly language instruction set.

The TMS320C2x Software Development System Technical Reference
(literature number SPRU019A) contains an overview of the key features,
step-by-step installation procedures, hardware and software system
requirements, equations that were developed for programming the
programmable logic arrays that are used on the TMS320C2x SWDS,
troubleshooting procedures, error code listings, and schematics for the
SWDS board.

The TMS320 Fixed-Point DSP Assembly Language Tools User’s Guide
(literature number SPRU018) describes the assembly language tools
(assembler, linker, archiver, and object code converter utility), assembler
directives, macros, common object file format (COFF), and symbolic
debugging directives.

The TMS320C2x C Compiler Reference Guide (literature number
SPRU024B) tells you how to use the TMS320C2x C Compiler. This C
compiler accepts standard Kernighan and Ritchie C source code and
produces TMS320C2x assembly language source code.

If You Need Assistance / Trademarks

viii

If you are an assembly language programmer and would like more information
about C or C expressions, you may find this book useful:

The C Programming Language (second edition, 1988), by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice–Hall, Englewood
Cliffs, New Jersey.

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about Texas
Instruments digital signal processing
(DSP) products

Call the CRC† hotline:
(800) 232–3200

Or write to:
Market Communications Manager
Texas Instruments Incorporated
P.O. Box 1443, MS 736
Houston, Texas 77251–1443

Order Texas Instruments documenta-
tion

Call the CRC† hotline:
(800) 232–3200

Ask questions about product operation
or report suspected problems

Call the DSP hotline:
(713) 274–2320

Report mistakes in this document or
any other TI documentation

Send your comments to
Technical Publications Manager
Texas Instruments Incorporated
P.O. Box 1443, MS 702
Houston, Texas 77251–1443

† Texas Instruments Customer Response Center

Trademarks

PC-DOS is a trademark of International Business Machines.

MS-DOS is a trademark of Microsoft Corporation.

VEGA Deluxe is a trademark of Video Seven Incorporated.

VAX and VMS are trademarks of Digital Equipment Corporation.

Sun-3, Sun-4, and SunView are trademarks of Sun Microsystems,
Incorporated.

ix

Contents

Part I: Hands-On Information

1 Installing the SWDS and the C Source Debugger 1-1.

Lists the hardware and software you’ll need to install and run the SWDS with the debugger, guides you through
a 3-step installation process, and tells you how to invoke the SWDS version of the debugger.

1.1 What You’ll Need 1-2.
Hardware checklist 1-2.
Software checklist 1-3.

1.2 Step 1: Installing the SWDS Board in Your PC 1-4.
Preparing the SWDS board for installation 1-4.
SWDS memory map 1-5.
Selecting wait state (jumper P5) 1-7.
SWDS board installation 1-7.

1.3 Step 2: Installing the Debugger Software 1-9.
1.4 Step 3: Setting Up the Debugger Environment 1-9.

Invoking the new or modified batch file 1-10.
Modifying the PATH statement 1-11.
Setting up the environment variables 1-11.
Identifying the correct jumper settings 1-12.
Resetting the SWDS 1-12.

1.5 Invoking the Debugger 1-13.
1.6 Troubleshooting 1-15.
1.7 Exiting the Debugger 1-15.

Contents

x

2 Installing the Simulator and the C Source Debugger 2-1.

Lists the hardware and software you’ll need to install and run the simulator with the debugger, guides you through
installation on one of three possible systems, lists debugger restrictions associated with the three systems, and
tells you how to invoke the simulator version of the debugger.

2.1 Installing the Simulator on PC Systems 2-2.
2.1.1 What You’ll Need 2-2.

Hardware checklist 2-2.
Software checklist 2-2.

2.1.2 Step 1: Installing the Simulator and Debugger Software 2-3.
2.1.3 Step 2: Setting Up the Debugger Environment 2-4.

Invoking the new or modified batch file 2-5.
Modifying the PATH statement 2-5.
Setting up the environment variables 2-5.

2.1.4 Restrictions Associated With the PC Version of the Simulator 2-6.
2.1.5 Using the Simulator With Microsoft Windows 2-7.

2.2 Installing the Simulator on VAX/VMS Systems 2-8.
2.2.1 What You’ll Need 2-8.

Hardware checklist 2-8.
Software checklist 2-8.

2.2.2 Installing the Simulator and Debugger Software 2-9.
2.2.3 Restrictions Associated With the VMS Version of the Simulator 2-10.

2.3 Installing the Simulator on Sun Systems 2-11.
2.3.1 What You’ll Need 2-11.

Hardware checklist 2-11.
Software checklist 2-11.

2.3.2 Installing the Simulator and Debugger Software 2-12.
2.3.3 Restrictions Associated With the Sun Version of the Simulator 2-12.

2.4 Invoking the Debugger 2-13.
2.5 Exiting the Debugger 2-14.

3 An Introductory Tutorial to the C Source Debugger 3-1.

This chapter provides a step-by-step introduction to the debugger and its features.

How to use this tutorial 3-2.
A note about entering commands 3-3.
An escape route (just in case) 3-3.
Invoke the debugger and load the sample program’s object code 3-4.
Take a look at the display. . . 3-5.
What’s in the DISASSEMBLY window? 3-6.
Select the active window 3-6.
Resize the active window 3-8.
Move the active window 3-9.
Scroll through a window’s contents 3-10.
Display the C source version of the sample file 3-11.

 Contents

xi

Execute some code 3-11.
Become familiar with the three debugging modes 3-12.
Open another text file, then redisplay a C source file 3-14.
Use the basic run command 3-15.
Set some breakpoints 3-15.
Benchmark a section of code (simulator) 3-17.
Watch some values and single-step through code 3-18.
Run code conditionally 3-20.
WHATIS that? 3-21.
Clear the COMMAND window display area 3-22.
Display the contents of an aggregate data type 3-22.
Display data in another format 3-25.
Change some values 3-26.
Define a memory map 3-27.
Close the debugger 3-28.

Part II: Debugger Description

4 Overview of a Code Development and Debugging System 4-1.

Discusses features of the debugger and additional tools.

4.1 Description of the ’C2x C Source Debugger 4-2.
Key features of the debugger 4-3.

4.2 Developing Code for the ’C2x 4-5.
4.3 Preparing Your Program for Debugging 4-8.
4.4 Debugging ’C2x Programs 4-10.

5 The Debugger Display 5-1.

Describes the default displays, tells you how to switch between assembly language and C debugging, describes
the various types of windows on the display, and tells you how to move and size the windows.

5.1 Debugging Modes and Default Displays 5-2.
Auto mode 5-2.
Assembly mode 5-3.
Mixed mode 5-4.
Restrictions associated with debugging modes 5-4.

5.2 Descriptions of the Different Kinds of Windows and Their Contents 5-5.
COMMAND window 5-6.
DISASSEMBLY window 5-7.
FILE window 5-8.
CALLS window 5-9.
MEMORY window 5-11.
CPU window 5-13.
DISP windows 5-14.
WATCH window 5-15.

Contents

xii

5.3 Cursors 5-16.
5.4 The Active Window 5-17.

Identifying the active window 5-17.
Selecting the active window 5-18.

5.5 Manipulating Windows 5-20.
Resizing a window 5-20.
Moving a window 5-22.

5.6 Manipulating a Window’s Contents 5-25.
Scrolling through a window’s contents 5-25.
Editing the data displayed in windows 5-27.

5.7 Closing a Window 5-28.

6 Entering and Using Commands 6-1.

Describes the rules for entering commands from the command line, tells you how to use the pulldown menus and
dialog boxes (for entering parameter values), describes general information about entering commands from batch
files, and describes the use of DOS-like system commands.

6.1 Entering Commands From the Command Line 6-2.
How to type in and enter commands 6-3.
Sometimes, you can’t type a command 6-4.
Using the command history 6-4.
Clearing the display area 6-5.

6.2 Using the Menu Bar and the Pulldown Menus 6-6.
Using the pulldown menus 6-7.
Escaping from the pulldown menus 6-8.
Entering parameters in a dialog box 6-9.
Using menu bar selections that don’t have pulldown menus 6-10.
How the menu selections correspond to commands 6-11.

6.3 Entering Commands From a Batch File 6-13.
6.4 Additional System Commands 6-14.

7 Defining a Memory Map 7-1.

Contains instructions for setting up a memory map that will enable the debugger to correctly access target memory,
includes hints about using batch files, and tells you how to simulate I/O ports for use with the simulator or SWDS
version of the debugger.

7.1 The Memory Map: What It Is and Why You Must Define It 7-2.
7.2 A Sample Memory Map 7-3.

Defining a memory map for the simulator 7-3.
Defining a memory map for the SWDS 7-4.

7.3 Identifying Usable Memory Ranges 7-6.
7.4 Enabling Memory Mapping 7-7.
7.5 Checking the Memory Map 7-7.
7.6 Modifying the Memory Map During a Debugging Session 7-8.

Returning to the original memory map 7-9.
7.7 Simulating I/O Space 7-10.

 Contents

xiii

Connecting an I/O port 7-10.
Observing serial port data 7-11.
Configuring memory to use serial port simulation 7-12.
Disconnecting an I/O port 7-13.

8 Loading, Displaying, and Running Code 8-1.

Tells you how to use the three debugger modes to view the type of source files that you’d like to see, how to load
source files and object files, how to run your programs, and how to halt program execution.

8.1 Code-Display Windows:
Viewing Assembly Language Code, C Code, or Both 8-2.

Selecting a debugging mode 8-3.
8.2 Displaying Your Source Programs (or Other Text Files) 8-4.

Displaying assembly language code 8-4.
Displaying C code 8-6.
Displaying other text files 8-7.

8.3 Loading Object Code 8-8.
Loading code while invoking the debugger 8-8.
Loading code after invoking the debugger 8-8.

8.4 Where the Debugger Looks for Source Files 8-9.
8.5 Running Your Programs 8-10.

Defining the starting point for program execution 8-10.
Running code 8-11.
Single-stepping through code 8-12.
Running code while disconnected from the target system 8-14.
Running code conditionally 8-15.

8.6 Halting Program Execution 8-16.
8.7 Benchmarking 8-17.

Benchmarking with the simulator 8-17.
Benchmarking with the SWDS 8-18.

9 Managing Data 9-1.

Describes the data-display windows and tells you how to edit data (memory contents, register contents, and
individual variables).

9.1 Where Data Is Displayed 9-2.
9.2 Basic Commands for Managing Data 9-2.
9.3 Basic Methods for Changing Data Values 9-4.

Editing data displayed in a window 9-4.
Advanced “editing”—using expressions with side effects 9-5.

9.4 Managing Data in Memory 9-6.
Displaying memory contents 9-6.
Displaying program memory 9-7.
Displaying memory contents while you’re debugging C 9-8.
Saving memory values in a file 9-9.
Filling a block of memory 9-10.

Contents

xiv

9.5 Managing Register Data 9-11.
Displaying register contents 9-11.

9.6 Managing Data in a DISP (Display) Window 9-12.
Displaying data in a DISP window 9-12.
Closing a DISP window 9-14.

9.7 Managing Data in a WATCH Window 9-15.
Displaying data in the WATCH window 9-15.
Deleting watched values and closing the WATCH window 9-16.

9.8 Managing Signal Information (Simulator Only) 9-17.
Monitoring the BIO pin 9-17.

10 Using Breakpoints 10-1.

Describes the use of software breakpoints to halt code execution.

10.1 Setting a Breakpoint 10-2.
10.2 Clearing a Breakpoint 10-4.
10.3 Finding the Breakpoints That Are Set 10-5.

11 Customizing the Debugger Display 11-1.

Contains information about the commands that you can use for customizing the display and identifies the display
areas that you can modify.

11.1 Changing the Colors of the Debugger Display 11-2.
area names: common display areas 11-3.
area names: window borders 11-4.
area names: COMMAND window 11-4.
area names: DISASSEMBLY and FILE windows 11-5.
area names: data-display windows 11-6.
area names: menu bar and pulldown menus 11-7.

11.2 Changing the Border Styles of the Windows 11-8.
11.3 Saving and Using Custom Displays 11-9.

Changing the default display for monochrome monitors 11-9.
Saving a custom display 11-10.
Loading a custom display 11-10.
Invoking the debugger with a custom display 11-11.
Returning to the default display 11-11.

11.4 Changing the Prompt 11-12.

 Contents

xv

Part III: Reference Material

12 Summary of Commands and Special Keys 12-1.

Provides a functional summary of the debugger commands and function keys; also provides a complete
alphabetical summary of all debugger commands.

12.1 Functional Summary of Debugger Commands 12-2.
Changing modes 12-3.
Managing windows 12-3.
Performing DOS-like tasks 12-3.
Managing and displaying data 12-4.
Displaying files and loading programs 12-4.
Managing breakpoints 12-5.
Customizing the screen 12-5.
Memory mapping 12-5.
Running programs 12-6.

12.2 Alphabetical Summary of Debugger Commands 12-7.
12.3 Summary of Special Keys 12-36.

Editing text on the command line 12-36.
Using the command history 12-36.
Switching modes 12-37.
Halting or escaping from an action 12-37.
Displaying pulldown menus 12-37.
Running code 12-38.
Selecting or closing a window 12-38.
Moving or sizing a window 12-38.
Scrolling through a window’s contents 12-39.
Editing data or selecting the active field 12-39.

13 Basic Informatio n About C Expressions 13-1.

Many of the debugger commands accept C expressions as parameters. This chapter provides general information
about the rules governing C expressions and describes specific implementation features related to using C
expressions as command parameters.

13.1 C Expressions for Assembly Language Programmers 13-2.
13.2 Restrictions and Features Associated With Expression Analysis in the Debugger 13-4. .

Restrictions 13-4.
Additional features 13-4.

Contents

xvi

A What the Debugger Does During Invocation A-1.

In some circumstances, you may find it helpful to know the steps that the debugger goes through during the
invocation process; this appendix lists these steps.

B Debugger Messages B-1.

Describes progress and error messages that the debugger may display.

B.1 Alphabetical Summary of Debugger Messages B-2.
B.2 Additional Instructions for Expression Errors B-18.
B.3 Additional Instructions for Hardware Errors B-18.

C Registers and Pseudoregisters C-1.

D Glossary D-1.

Defines acronyms and key terms used in this book.

 Running Title—Attribute Reference

xvii

Figures

1–1. Location of the Components on the SWDS Board 1-4.
1–2. SWDS Board Jumpers P1 through P4 1-5.
1–3. DOS-Command Setup for the Debugger 1-10.
2–1. DOS-Command Setup for the Debugger 2-4.
2–2. Keyboard Mapping for VAX/VMS Systems 2-10.
4–1. The Debugger Display 4-2.
4–2. ’C2x Software Development Flow 4-5.
4–3. Steps You Go Through to Prepare a Program 4-8.
5–1. Typical Assembly Display (for Auto Mode and Assembly Mode) 5-2.
5–2. Typical C Display (for Auto Mode Only) 5-3.
5–3. Typical Mixed Display (for Mixed Mode Only) 5-4.
5–4. Default Appearance of an Active and an Inactive Window 5-17.
6–1. The COMMAND Window 6-2.
6–2. The Menu Bar in the Debugger Display 6-6.
6–3. All of the Pulldown Menus 6-6.
7–1. Definition of On-Chip Memory Maps 7-3.
7–2. Initial Memory Map Defined by the siminit.cmd File 7-3.
7–3. Example of a Memory Map That You Could Define for the Simulator 7-4.
7–4. Definition of On-Chip Memory Maps 7-4.
7–5. Initial Memory Map Defined by the dbinit.cmd File 7-5.

Running Title—Attribute Reference

xviii

Tables

1–1. PC Memory Segment Selections/Jumpers Settings (P1 through P4) 1-6.
1–2. Debugger Options 1-13.
2–1. Debugger Options 2-13.
5–1. Width and Length Limits for Window Sizes 5-21.
5–2. Minimum and Maximum Limits for Window Positions 5-23.
7–1. Acceptable Memory Map Configurations for the SWDS 7-5.
7–2. Serial Port Pseudoregisters 7-12.
11–1. Colors and Other Attributes for the COLOR and SCOLOR Commands 11-2.
11–2. Summary of Area Names for the COLOR and SCOLOR Commands 11-3.

1-1 Chapter Title—Attribute Reference

Installing the SWDS
and the C Source Debugger

If you are using the debugger with the ’C2x simulator, do not follow the installation
instructions in this chapter—turn to Chapter 2.

This chapter helps you install the ’C2x SWDS board with the appropriate version of the C source
debugger. When you complete the installation, turn to Chapter 3, An Introductory Tutorial to the C
Source Debugger.

Topic Page

The chapter begins with check-
lists of the hardware and software
you’ll need for installing the
SWDS and the debugger.

1.1 What You’ll Need 1-2
Hardware checklist 1-2
Software checklist 1-3

Installing the SWDS and debug-
ger is a 3-step process. Before
you can install the SWDS board,
you must select the appropriate
switch settings. After installing the
debugger, you must modify the
DOS environment, enabling the
debugger to operate properly.

1.2 Step 1: Installing the SWDS Board in Your PC 1-4
Preparing the SWDS board for installation 1-4
SWDS memory map 1-5
Selecting wait state (jumper P5) 1-7
SWDS board installation 1-7

1.3 Step 2: Installing the Debugger Software 1-9

1.4 Step 3: Setting Up the Debugger Environment 1-9
Invoking the new or modified batch file 1-10
Modifying the PATH statement 1-11
Setting up the environment variables 1-11
Identifying the correct jumper settings 1-12
Resetting the SWDS 1-12

When you finish the installation
steps, you’ll need to know how to
invoke and exit the debugger.

1.5 Invoking the Debugger 1-13

1.6 Troubleshooting 1-15

1.7 Exiting the Debugger 1-15

STOP

Chapter 1

What You’ll Need

 1-2

1.1 What You’ll Need

In addition to the items shipped with the ’C2x C source debugger and SWDS,
you’ll need the following items.

Hardware checklist

host An IBM PC/AT or 100% compatible ISA/EISA-bus PC with a
hard-disk system and a floppy-disk drive

memory Minimum of 640K (debugger occupies approximately 400K)

display Monochrome or color (color recommended)

slot One 16-bit slot

SWDS board
power requirements

Approximately 3 amps @ 5 volts (15 watts)

optional hardware Mouse (must be compatible with a Microsoft mouse)

An EGA- or VGA-compatible graphics display card

A 17” or 19” monitor. The C source debugger has several modes that
allow you to display varying amounts of information on your PC
monitor. If you have an EGA- or VGA-compatible graphics card and
a large monitor (17” or 19”), you can take advantage of some of the
debugger’s larger screen modes. (To use larger screen sizes, you
must invoke the debugger with the appropriate options; Table 1–2,
page 1-13, explains this in detail.)

miscellaneous
materials

A blank, formatted disk

 What You’ll Need

1-3

Software checklist

operating system MS-DOS or PC-DOS (version 3.0 or later)

software tools ’C2x C compiler, assembler, and linker

required files † c2xreset resets the ’C2x SWDS

† c2xmon.out is the monitor program for the ’C2x SWDS

optional files † dbinit.cmd is a general-purpose batch file that contains debugger
commands. The version of dbinit.cmd that’s shipped with the debug-
ger defines a ’C2x memory map. If this file isn’t present when you
invoke the debugger, then all memory is invalid at first. When you
first start using the debugger, this memory map should be sufficient
for your needs. Later, you may want to define your own memory
map. For information about setting up your own memory map, refer
to Chapter 7, Defining a Memory Map.

† init.clr is a general-purpose screen configuration file. If init.clr isn’t
present when you invoke the debugger, the debugger uses the
default screen configuration.

The default configuration is for color monitors; an additional file,
mono.clr, can be used for monochrome monitors. When you first
start to use the debugger, the default screen configuration should be
sufficient for your needs. Later, you may want to define your own
custom configuration. For information about these files and about
setting up your own screen configuration, refer to Chapter 11,
Customizing the Display.

† swdsdiag.exe uses c2xreset while it checks the hardware of the
SWDS. This file is included for hardware diagnostics and is
discussed in the TMS320C2x Software Development System Tech-
nical Reference (literature number SPRU019A).

† Included as part of the debugger package

Step 1: Installing the SWDS Board in Your PC

 1-4

1.2 Step 1: Installing the SWDS Board in Your PC

This section contains the hardware installation information for the SWDS.

Preparing the SWDS board for installation

The SWDS board is shipped as shown in Figure 1–1. Jumpers P1–P4 are set
for segment D. Jumper P5 is set for no wait state. A TMS320C25 is installed
in socket U40, and a canned 40-MHz oscillator is installed in socket U29 (for
operation with the onboard ’C25). Figure 1–1 shows the location of the jump-
ers, connectors, ’C25, and crystal oscillator on the SWDS board.

Figure 1–1. Location of the Components on the SWDS Board

Jumpers
P6–P8

Jumpers
P1–P4

Jumper P9

TMS320C25

Jumper P5

Y1
20-MHz Oscillator

U29
40-MHz Oscillator

J5
J4

J3

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

Jumpers P1–P4 allow you to select the appropriate decoded memory segment address for your
PC. The proper settings for these jumpers depend on which PC memory segment
address (1–9, A–F) you select.

Jumper P5 allows you to select either one wait state or no wait state.

Jumpers P6–P9 are reserved.

Connectors J3–J5 are reserved.

 Step 1: Installing the SWDS Board in Your PC

1-5

SWDS memory map

The SWDS occupies one segment (64K bytes) of PC memory. The segment
address is decoded by jumpers P1 through P4. The memory segment is the
decoded value of the four most significant PC address lines, A16–A19. The
decoded memory segment is changed by setting SWDS board jumpers
P1–P4 to decode the desired segment from 0–F. Table 1–1 lists all possible
PC memory segment selections and their corresponding jumper settings.

Many segments are already used by the PC for memory and screen functions.
Consult your PC technical reference manual to determine segment usage.
The SWDS is shipped with the jumpers set for the D segment as shown in
Figure 1–2. The D segment is recommended for the IBM PC/AT.

Figure 1–2. SWDS Board Jumpers P1 through P4

P
1

P
2

P
3

P
4

P
5

Jumpers P1–P4 Set for D Segment (As Shipped)

Step1: Installing the SWDS Board in Your PC

 1-6

Table 1–1. PC Memory Segment Selections/Jumpers Settings (P1 through P4)

PC Memory
Segment Address

Jumper Setting PC Address Lines (A16–A19)
 Binary Values

P1–P4 A16 A17 A18 A19

0000

P
1

P
2

P
3

P
4

0 0 0 0

1000 1 0 0 0

2000 0 1 0 0

3000 1 1 0 0

4000 0 0 1 0

5000 1 0 1 0

6000 0 1 1 0

7000 1 1 1 0

8000 0 0 0 1

9000 1 0 0 1

A000 0 1 0 1

B000 1 1 0 1

C000 0 0 1 1

D000 1 0 1 1

E000 0 1 1 1

F000 1 1 1 1

 Step 1: Installing the SWDS Board in Your PC

1-7 Chapter Title—Attribute Reference

Selecting wait state (jumper P5)

The 24K words of 25-ns static RAM on the SWDS allows the ’C25 to execute
at a 40-MHz crystal frequency with no wait states. Jumper P5 selects between
one wait and no wait states. Figure 1–1 on page 1-4 shows jumper P5 set in
the no-wait-state position (as shipped). Moving jumper P5 to the opposite
position extends all program and data memory accesses by one wait state; this
does not extend the I/O instructions.The extension is done optionally by the
target system control of the ’C25 RDY line, via the in-circuit emulation adapter.

SWDS board installation

If you plan to connect the SWDS board to a realtime target system, select two
vacant PC slots side-by-side. Use the vacant slot to your left (facing the rear
of the PC) for the SWDS board, and use the vacant slot to your right for the
two ribbon cables that connect the SWDS board to an external target system.
Feed the two ribbon cables through the open slot in the back of the PC and plug
them into SWDS board connectors J1 and J2.

To install the SWDS board, perform the following steps:

1) Ensure that you’ve made any necessary changes to the memory jumpers
P1 through P4.

2) Remove the cover of the PC. Refer to the PC user’s guide instructions for
removing the cover to access the I/O expansion channel card cage.

3) Locate the PC slot planned for the SWDS board (facing the rear of the PC).
Remove the metal plate covering the chassis opening. Save the screw to
secure the SWDS board to the chassis later. If you plan to connect the
SWDS board to a realtime target system, remove the metal plate covering
the chassis opening adjacent to the SWDS board PC slot.

4) If the board was shipped with the cables connected, remove the two ribbon
cables connected to the SWDS board at J1 and J2. If no data logging/
in-circuit emulation will be done, skip the rest of this step. If the SWDS will
be connected to a realtime external target system, feed the ends of the two
ribbon cables through the chassis opening adjacent to the SWDS board
PC slot from outside the PC.

Step 1: Installing the SWDS Board in Your PC

 1-8

5) Align the SWDS board with the PC slot and press into place, ensuring that
the board and the metal support bracket are firmly seated. If the two target-
system ribbon connectors were fed through the adjacent chassis opening
in the previous step, connect them to connectors J1 and J2. Plug the long-
er cable into J2, observing proper placement of the keyed pin. Plug the
shorter cable into J1, observing proper placement of the keyed pin.

6) Tighten the screw in the mounting bracket hole to keep the SWDS board
from working loose.

7) Replace the PC cover.

8) Turn the PC on.

 Step 2: Installing the Debugger Software / Step 3: Setting Up the DOS Environment

1-9 Chapter Title—Attribute Reference

1.3 Step 2: Installing the Debugger Software

This section explains the simple process of installing the debugger software
on a hard-disk system. The debugger package includes a single disk that may
contain multiple directories. To install the debugger, you must copy the
contents directory from the product disk.

Step 1: Make a backup copy of the product disk. (If necessary, refer to the
DOS manual that came with your computer.)

Step 2: On your hard disk or system disk, create a directory named c2xhll.
This directory will contain the ’C2x C source debugger software.

MD C:\c2xhll

Step 3: Insert the product disk into drive A. Copy the contents of the disk:

COPY A:*.* C:\C2xHLL*.* /V

1.4 Step 3: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

1) Modify the PATH statement to identify the c2xhll directory.
2) Define environment variables so that the debugger can find the files it

needs.
3) Identify the SWDS memory segment address.
4) Reset the SWDS board.

Not only must you do these things before you invoke the debugger for the first
time, you must do them any time you power up or reboot your PC.

You can accomplish these tasks by entering individual DOS commands, but
it’s simpler to put the commands in a batch file. You can edit your system’s
autoexec. bat file; in some cases, modifying the autoexec may interfere with
other applications running on your PC. So, if you prefer, you can create a sepa-
rate batch file that performs these tasks.

Setting Up the Debugger Environment

 1-10

Figure 1–3 (a) shows an example of an autoexec.bat file that contains the sug-
gested modifications (highlighted in bold type). Figure 1–3 (b) shows a sample
batch file that you could create instead of editing the autoexec.bat file. (For the
purpose of discussion, assume that this sample file is named initdb.bat.)

Figure 1–3. DOS-Command Setup for the Debugger

(a) Sample autoexec.bat file to use with the debugger

DATE

TIME

ECHO OFF

PATH=C:\DOS;C:\dsptools; C:\c2xhll

SET D_DIR=C:\c2xhll

SET D_SRC=;C:\c25code

SET D_OPTIONS=–p d000

SET C_DIR=C:\dsptools

CLS

c2xreset

PATH statement

Environment
variables and
memory segment

Modifications:

Reset the SWDS

(b) Sample initdb.bat file to use with the debugger

PATH=C:\c2xhll;%path%

SET D_DIR=C:\c2xhll

SET D_SRC=C:\c25code

SET D_OPTIONS=–p d000

c2xreset

PATH statement

Environment
variables and
memory segment

Reset the SWDS

Invoking the new or modified batch file

� If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

autoexec

� If you create an initdb.bat file, you must invoke it before invoking the
debugger for the first time. After that, you’ll need to invoke initdb.bat any
time that you power up or reboot your PC. To invoke this file, enter:

initdb

 Step 3: Setting Up the Debugger Environment

1-11 Chapter Title—Attribute Reference

Modifying the PATH statement

Step 1: Define a path to the debugger directory. The general format for doing
this is:

PATH=C:\c2xhll

This allows you to invoke the debugger without specifying the name
of the directory that contains the debugger executable file.

� If you are modifying an autoexec that already contains a PATH
statement, simply include ;C:\c2xhl l at the end of the
statement as shown in Figure 1–3 (a).

� If you are creating an initdb.bat file, use a different format for the
PATH statement:

PATH=C:\c2xhll;%path%

The addition of ;%path % ensures that this PATH statement won’t
undo PATH statements in any other batch files (including the
autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables, named D_DIR, D_SRC, and D_OPTIONS. The next
three steps tell you how to set up these environment variables. The format for
doing this is the same for both the autoexec.bat and initdb.bat files.

Step 2: Set up the D_DIR environment variable to identify the c2xhll
directory:

SET D_DIR=C:\c2xhll

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (c2xreset, dbinit.cmd, etc.) that
the debugger needs.

Step 3: Set up the D_SRC environment variable to identify any directories
that contain program source files that you’ll want to look at while
you’re debugging code. The general format for doing this is:

SET D_SRC=C:\pathname1;pathname2...

(Be careful not to precede the equal sign with a space.)

For example, if your ’C2x programs were in a directory named
csource, the D_SRC setup would be:

SET D_SRC=C:\csource

Step 3: Setting Up the Debugger Environment

 1-12

Step 4: You can use several options when you invoke the debugger. If you
use the same options over and over, it’s convenient to specify them
with D_OPTIONS. The general format for doing this is:

SET D_OPTIONS= [object filename] [debugger options]

(Be careful not to precede the equal sign with a space.)

This tells the debugger to load the specified object file and use the
specified options each time you invoke the debugger. These are the
options that you can identify with D_OPTIONS:

–b[bbbb] –p memory segment address –i pathname

–s –t filename –v
–c

For more information about options, see Section 1.5 (page 1-13).
Note that you can override D_OPTIONS by invoking the debugger
with the –x option.

Identifying the correct jumper settings

Step 5: You must use the debugger’s –p option to identify the memory seg-
ment address that the SWDS is using, even if you are using the
default memory segment address. You can use –p each time you
invoke the debugger, or you can specify this information by using the
D_OPTIONS environment variable. Table 1–1 on page 1-6 lists the
memory segment addresses and corresponding jumper settings.

Resetting the SWDS

Step 6: To reset the SWDS, add this line to the autoexec.bat or initdb.bat file:

c2xreset

 Invoking the Debugger

1-13 Chapter Title—Attribute Reference

1.5 Invoking the Debugger

Here’s the basic format for the command that invokes the debugger:

db2x [filename] [–options]

db2x is the command that invokes the debugger.

filename is an optional parameter that names an object file that the
debugger will load into memory during invocation. The
debugger looks for the file in the current directory; if the file
isn’t in the current directory, you must supply the entire path-
name. If you don’t supply an extension for the filename, the
debugger assumes that the extension is .out.

–options supply the debugger with additional information (see
Table 1–2).

You can also specify filename and option information with the D_OPTIONS
environment variable (see Setting up the environment variables, page 1-11).

Table 1–2. Debugger Options

Option Description

–b[bbbb] By default, the debugger uses an 80 character by 25 line screen. If you’re using the
PC version, you must also have a special graphics card installed.

Option Characters/Lines Notes
none 80 by 25 This is the default display
–b 80 by 43 (PC with EGA) Use any EGA or VGA card

80 by 50 (PC with VGA)

–bb 120 by 43
–bbb 132 by 43
–bbbb 80 by 60
–bbbbb 100 by 60

Currently, the debugger supports
these modes on a Video Seven
VEGA Deluxe card.

–c Sets memory reserved for uninitialized data to all zeros.

–i pathname –i identifies additional directories that contain your source files. Replace pathname
with an appropriate directory name. You can specify several pathnames; use the –i
option as many times as necessary:

db2x –i path1 –i path2 –i path3 . . .

Using –i is similar to using the D_SRC environment variable (described on page
1-11). If you name directories with both –i and D_SRC, the debugger first searches
through directories named with –i. The debugger can track a cumulative total of 20
paths (including paths specified with –i, D_SRC, and the debugger USE command).

Invoking the Debugger

 1-14

Table 1–2.Debugger Options (Continued)

Option Description

–p memory segment address –p identifies the memory segment address that the debugger uses for
communicating with the SWDS. Depending on your jumper settings, replace
memory segment address with the correct memory segment address (found in
Table 1–1 on page 1-6.)

–s If you supply a filename when you invoke the debugger, you can use the –s op-
tion to tell the debugger to load only the file’s symbol table (without the file’s ob-
ject code). This is similar to the debugger’s SLOAD command.

–t filename –t allows you to specify an initialization command file other than dbinit.cmd. If
–t is present on the command line, the file specified by filename will be in-
voked as the command file instead of dbinit.cmd.

–v This command prevents the debugger from loading the entire symbol table when
you load an object file. The debugger loads only the global symbols and later
loads local symbols as it needs them. This speeds up the loading time and
consumes less memory space.

The –v option affects all loads, including loading when you invoke the debugger
and loading with the LOAD command within the debugger environment.

–x –x tells the debugger to ignore any information supplied with D_OPTIONS.

 Troubleshooting/Exiting the Debugger

1-15 Chapter Title—Attribute Reference

1.6 Troubleshooting

If the SWDS is behaving unpredictably, or if you’re receiving unexpected
results, check the specific cases below. You might need to remap your SWDS
memory segment or adjust your system:

� PC with an expanded memory system (EMS)

The EMS standard defines a memory map swap area. If that swap area is
the area where the SWDS is mapped, you’ll need to remap the SWDS. For
memory segment addresses and corresponding jumper settings, refer to
Table 1–1 on page 1-6.

� PC with extended/expanded memory managers

A memory manager could indicate that the SWDS memory segment is
available, and then try to load something else into that segment. To avoid
this, you should prevent the memory manager from accessing the SWDS
memory segment.

� PC with shadow RAM or RAM BIOS

Some systems automatically move the BIOS of the operating system or
graphics card to fast RAM, and the BIOS could be moved to the SWDS
memory segment. You should turn that feature off, if possible. If you can’t
turn that feature off, you’ll need to remap the SWDS memory segment or
relocate the BIOS. Table 1–1 on page 1-6 contains SWDS memory seg-
ment addresses and corresponding jumper settings.

1.7 Exiting the Debugger

To exit the debugger and return to the operating system, enter this command:

quit

You don’t need to worry about where the cursor is or which window is
active—just type. If a program is running, press ESC to halt program execution
before you quit the debugger.

2-1 Chapter Title—Attribute Reference

Installing the Simulator
and the C Source Debugger

If you are using the debugger with the ’C2x SWDS, do not follow the installation
instructions in this chapter—turn to Chapter 1.

This chapter contains information that will help you prepare to use the simulator with the C source
debugger. The simulator runs on three types of host systems:

IBM PCs and compatibles
running MS-DOS or PC-DOS
running Microsoft Windows 3.0 (or later) on top of MS-DOS or PC-DOS

VAX/VMS systems
Sun-3 and Sun-4 systems

Topic Page
This section tells you how to install
the PC version of the simulator
and debugger.

2.1 Installing the Simulator on PC Systems 2-2
What You’ll Need 2-2
Step 1: Installing the Simulator and Debugger Software 2-3
Step 2: Setting Up the Debugger Environment 2-4
Restrictions Associated With the PC Version 2-6

of the Simulator
Using the Simulator With Microsoft Windows 2-7

This section tells you how to install
the VMS version of the simulator
and debugger. Pay special atten-
tion to the restrictions.

2.2 Installing the Simulator on VAX/VMS Systems 2-8
What You’ll Need 2-8
Installing the Simulator and Debugger Software 2-9
Restrictions Associated With the VMS Version 2-10

of the Simulator

This section tells you how to install
the Sun version of the simulator
and debugger. Pay special atten-
tion to the restrictions.

2.3 Installing the Simulator on Sun Systems 2-12
What You’ll Need 2-12
Installing the Simulator and Debugger Software 2-13
Restrictions Associated With the SUN Version 2-13

of the Simulator

When you finish installing the
simulator, you’ll need to know how
to invoke and exit the debugger.

2.4 Invoking the Debugger 2-14

2.5 Exiting the Debugger 2-15

STOP

Chapter 2

Installing the Simulator on PC Systems

 2-2

2.1 Installing the Simulator on PC Systems

This section tells you how to install and set up the simulator on PC systems.

2.1.1 What You’ll Need

In addition to the items shipped with the ’C2x C source debugger and simula-
tor, you’ll need the following items.

Hardware checklist
host An IBM PC/AT or 100% compatible ISA/EISA-based PC with a

hard-disk system and a floppy-disk drive

memory Minimum of 640K; in addition, if you are running under Microsoft
Windows, you’ll need at least 256K of extended memory

display Monochrome or color (color recommended)

optional hardware Mouse (must be compatible with a Microsoft mouse)

An EGA- or VGA-compatible graphics display card

A 17” or 19” monitor. The C source debugger has several modes that
allow you to display varying amounts of information on your PC
monitor. If you have an EGA- or VGA-compatible graphics card and
a large monitor (17” or 19”), you can take advantage of some of the
debugger’s larger screen modes. (To use larger screen sizes, you
must invoke the debugger with the appropriate options; Table 2–1,
page 2-14, explains this in detail.)

miscellaneous
materials

A blank, formatted disk

Software checklist

operating system MS-DOS or PC-DOS (version 3.0 or later)
Optional: Microsoft Windows 3.0 (or later)

software tools ’C2x C compiler, assembler, and linker

optional file † siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C2x memory map. If this file isn’t present when you invoke the
debugger, then all memory is invalid at first. When you first start
using the debugger, this memory map should be sufficient for your
needs. Later, you may want to define your own memory map. For
information about setting up your own memory map, refer to Chap-
ter 7, Defining a Memory Map.

† Included as part of the debugger package

 Installing the Simulator on PC Systems

2-3 Chapter Title—Attribute Reference

2.1.2 Step 1: Installing the Simulator and Debugger Software

This section explains the simple process of installing the simulator and
debugger on a hard-disk system. The software package includes a single disk
with multiple files. To install the simulator and debugger, you must copy these
files from the product disk.

Step 1: Make a backup copy of the product disk. (If necessary, refer to the
DOS manual that came with your computer.)

Step 2: On your hard disk or system disk, create a directory named sim2x.
This directory will contain the ’C2x software.

MD C:\sim2x

Step 3: Insert the product disk into drive A. Copy the contents of the product
disk into the sim2x directory:

COPY A:*.* C:\sim2x*.* /V

Step 4: You must set up to use the correct executable according to whether
or not you plan to use Microsoft Windows. If you plan to use Microsoft
Windows, delete sim2x.exe from your hard disk (not from the product
disk) and rename sim2xw.exe to sim2x.exe:

del sim2x.exe
re nsim2xw.exe sim2x.exe

If you do not plan to use Microsoft Windows, delete sim2xw.exe from
your hard disk (not from the product disk):

del sim2xw.exe

Note that if you are also using the SWDS, you may want to install the simulator
package in a different directory.

Installing the Simulator on PC Systems

 2-4

2.1.3 Step 2: Setting Up the Debugger Environment

To ensure that your debugger works correctly, you must:

� Modify the PATH statement to identify the sim2x directory.
� Define environment variables so that the debugger can find the files it

needs.

Not only must you do these things before you invoke the debugger for the first
time, you must do them any time you power up or reboot your PC.

You can accomplish these tasks by entering individual DOS commands, but
it’s simpler to put the commands in a batch file. You can edit your system’s
autoexec. bat file; in some cases, modifying the autoexec may interfere with
other applications running on your PC. So, if you prefer, you can create a
separate batch file that performs these tasks.

Figure 2–1 (a) shows an example of an autoexec.bat file that contains the
suggested modifications (highlighted in bold type). Figure 2–1 (b) shows a
sample batch file that you could create instead of editing the autoexec.bat file.
(For the purpose of discussion, assume that this sample file is named
initdb.bat.)

Figure 2–1. DOS-Command Setup for the Debugger

(a) Sample autoexec.bat file to use with the debugger

DATE

TIME

ECHO OFF

PATH=C:\DOS;C:\dsptools; C:\sim2x

SET D_DIR=C:\sim2x

SET D_SRC=;C:\c25code

SET D_OPTIONS=–b

SET C_DIR=C:\dsptools

CLS

PATH statement

Environment
variables

Modifications:

(b) Sample initdb.bat file to use with the debugger

PATH=C:\sim2x;%path%

SET D_DIR=C:\sim2x

SET D_SRC=C:\c25code

SET D_OPTIONS=–b

PATH statement

Environment
variables

 Installing the Simulator on PC Systems

2-5 Chapter Title—Attribute Reference

Invoking the new or modified batch file

� If you modify the autoexec.bat file, be sure to invoke it before invoking the
debugger for the first time. To invoke this file, enter:

autoexec

� If you create an initdb.bat file, you must invoke it before invoking the
debugger for the first time. (If you are using Microsoft WIndows, invoke
initdb.bat before entering Microsoft Windows.) After that, you’ll need to
invoke initdb.bat any time that you power up or reboot your PC. To invoke
this file, enter:

initdb

Modifying the PATH statement

Step 1: Define a path to the debugger directory. The general format for doing
this is:

PATH=C:\sim2x

This allows you to invoke the debugger without specifying the name
of the directory that contains the debugger executable file.

� If you are modifying an autoexec that already contains a PATH
statement, simply include ;C:\sim2 x at the end of the statement
as shown in Figure 2–1 (a).

� If you are creating an initdb.bat file, use a different format for the
PATH statement:

PATH=C:\sim2x;%path%

The addition of ;%path % ensures that this PATH statement won’t
undo PATH statements in any other batch files (including the
autoexec.bat file).

Setting up the environment variables

An environment variable is a special system symbol that the debugger uses
for finding or obtaining certain types of information. The debugger uses three
environment variables, named D_DIR, D_SRC, and D_OPTIONS. The next
three steps tell you how to set up these environment variables. The format for
doing this is the same for both the autoexec.bat and initdb.bat files.

Installing the Simulator on PC Systems

 2-6

Step 2: Set up the D_DIR environment variable to identify the sim2x
directory:

SET D_DIR=C:\sim2x

(Be careful not to precede the equal sign with a space.)

This directory contains auxiliary files (such as siminit.cmd) that the
debugger needs.

Step 3: Set up the D_SRC environment variable to identify any directories
that contain program source files that you’ll want to look at while
you’re debugging code. The general format for doing this is:

SET D_SRC=C:\pathname1;pathname2...

(Be careful not to precede the equal sign with a space.)

For example, if your ’C2x programs were in a directory named
csource, the D_SRC setup would be:

SET D_SRC=C:\csource

Step 4: You can use several options when you invoke the debugger. If you
use the same options over and over, it’s convenient to specify them
with D_OPTIONS. The general format for doing this is:

SET D_OPTIONS= [object filename] [debugger options]

(Be careful not to precede the equal sign with a space.)

This tells the debugger to load the specified object file and use the
specified options each time you invoke the debugger. These are the
options that you can identify with D_OPTIONS:

–b[bbbb] –i pathname –mvversion

–s –t filename –v

–c

For more information about options, see Section 2.4 (page 2-14).
Note that you can override D_OPTIONS by invoking the debugger
with the –x option.

2.1.4 Restrictions Associated With the PC Version of the Simulator

Note that these restrictions do not apply if you are using Microsoft Windows.

The size of the PC version of the simulator limits the size of memory that can
be configured in the memory map. (Memory mapping is described in detail in
Chapter 7, Defining a Memory Map.) You can configure a maximum of 56K
words in any combination of program and data memory.

 Installing the Simulator on PC Systems

2-7 Chapter Title—Attribute Reference

For example, you could configure 24K words of program memory and 32K
words of data memory with these memory-mapping commands:

ma 0,0,0x6000,RAM Add 24K of program memory
ma 0x200,1,0x6000,RAM Add 24K of data memory
ma 0x8000, 1, 0x2000, RAM Add 8K of data memory

2.1.5 Using the Simulator With Microsoft Windows

If you’re using Microsoft Windows, you can freely move or resize the debugger
display on the screen. If the resized display is bigger than the debugger
requires, the extra space is not used. If the resized display is smaller than
required, the display is clipped. Note that when the display is clipped, it can’t
be scrolled.

You may want to create an icon to make it easier to invoke the debugger from
within the Microsoft Windows environment. Refer to your Microsoft Windows
manual for details.

You should run Microsoft Windows in either the standard mode or the 386
enhanced mode to get the best results and to avoid the restrictions described
in subsection 2.1.4.

Installing the Simulator on VAX/VMS Systems

 2-8

2.2 Installing the Simulator on VAX/VMS Systems

This section tells you how to install and set up the simulator on VMS systems.

2.2.1 What You’ll Need

In addition to the items shipped with the ’C2x C source debugger and simula-
tor, you’ll need the following items.

Hardware checklist

host A DEC VAX system with a 9-track tape drive

display VT100 or equivalent

Software checklist

operating system VMS (version 4.5 or later)

software tools ’C2x C compiler, assembler, and linker

optional files † siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C2x memory map. If this file isn’t present when you invoke the
debugger, then all memory is invalid at first. When you first start us-
ing the debugger, this memory map should be sufficient for your
needs. Later, you may want to define your own memory map. For
information about setting up your own memory map, refer to Chap-
ter 7, Defining a Memory Map.

† clrs.dat is a general-purpose screen configuration file. If clrs.dat
isn’t present when you invoke the debugger, the debugger uses the
default screen configuration. For information about these files and
about setting up your own screen configuration, refer to Chapter 11,
Customizing the Display.

† Included as part of the debugger package

 Installing the Simulator on VAX/VMS Systems

2-9 Chapter Title—Attribute Reference

2.2.2 Installing the Simulator and Debugger Software

This section explains the simple process of installing the simulator and
debugger on a hard disk system. The software package is shipped on a
1600-bpi magnetic tape. To install the simulator and debugger, you must
restore the directory from the tape.

Step 1: Select the VMS device name for the tape drive. These installation
instructions use the name MFA0 (which is a typical name for a tape
drive), but you should use the name that you have selected.

Step 2: Mount the tape on an appropriate VAX tape drive. Be sure that the
tape is ONLINE and at LOAD POINT before proceeding.

Step 3: Mount the tape drive:

ALLOC MFA0:
MOUNT/FOR/DEN=1600 MFA0:

If the mounting is successful, you will see this message:

SIM2x MOUNTED ON MFA0

Step 4: Create a directory named sim2x to contain the ’C2x simulator and
debugger software:

CREATE/DIR DUA0:[SIM2X]

Step 5: Copy the files from tape to disk:

BACKUP/LOG/VERIFY MFA0:SIM2X.BCK DUA0:[SIM2X...]*.*

Step 6: After the files are successfully copied, rewind the tape and free the
tape drive:

DISMOUNT MFA0:
DEALLOCATE MFA0:

Step 7: Place the following commands in your LOGIN.COM file:

DEFINE IPCDIR DUA0:[SIM2X]
SIM2x : == $IPCDIR:SIM2X

Installing the Simulator on VAX/VMS Systems

 2-10

2.2.3 Restrictions Associated With the VMS Version of the Simulator

Several restrictions are associated with the VAX/VMS version of the debugger
interface. These restrictions, listed below, override the information presented
in Parts II and III of this manual.

� This version of the debugger works with VT100-compatible terminals only.
Many descriptions of color monitors and color features do not apply.

� All unconfigured memory regions are displayed in reverse video.

� The C source debugger has a very flexible command-entry system; there
are usually a variety of ways to perform any specific action. For example,
you may be able to perform the same action by typing in a command, using
the mouse, or using a function key. However:

� The VAX/VMS system does not use a mouse; therefore, you cannot
use the mouse methods described in this book.

� As described throughout this manual, keys used for special purposes
refer to a standard PC keyboard, which differs from VAX keyboards.
Some of the keys are identical and have the same functions on both
keyboards (Figure 2–2 a); some have no equivalent (Figure 2–2 b),
and others are mapped (Figure 2–2 c).

� The simulator is an instruction-level simulator that does not simulate the
pipeline.

Figure 2–2. Keyboard Mapping for VAX/VMS Systems
(a) Identical keys (a) Unmapped keys

SHIFT

SPACE

DELETE

INSERT

ESC

TABBACK SPACE

CTRL

ALT HOME

PAGE
DOWN

PAGE
UPEND

 Running Title—Attribute Reference

2-11 Chapter Title—Attribute Reference

(b) Mapped keys

PC Key Sequence Mapped to This key
on the Numeric Pad
of the VAX Keyboard

ALT

ALT

ALT

ALT

ALT

ALT

L

B

W

M

C

D

PF1

PF2

PF3

PF4

_

PC Key Mapped to This Key
on the Numeric Pad
of the VAX Keyboard

F2

F3

F4

5

4

3

2

1

PC Key Mapped to This Key
on the Numeric Pad
of the VAX Keyboard

F6

F7

F8

F9

F10

6

7

8

9

10

’

F5

F1F1

F2

F3

F4

F6

F7

F8

F9

F10

Installing the Simulator on Sun Systems

 2-12

2.3 Installing the Simulator on Sun Systems

This section tells you how to install and set up the simulator on Sun-3 and
Sun-4 systems.

2.3.1 What You’ll Need

In addition to the items shipped with the ’C2x C source debugger and simula-
tor, you’ll need the following items.

Hardware checklist

host A Sun-3 or Sun-4 system (running SunView) with a cartridge tape
drive

display Monitor running SunView

optional hardware Mouse

Software checklist

operating system Sun OS (running SunView)

software tools ’C2x C compiler, assembler, and linker

optional file † siminit.cmd is a general-purpose batch file that contains debugger
commands. This batch file, shipped with the debugger, defines a
’C2x memory map. If this file isn’t present when you invoke the
debugger, then all memory is invalid at first. When you first start
using the debugger, this memory map should be sufficient for your
needs. Later, you may want to define your own memory map. For
information about setting up your own memory map, refer to Chap-
ter 7, Defining a Memory Map.

† Included as part of the debugger package

 Installing the Simulator on Sun Systems

2-13 Chapter Title—Attribute Reference

2.3.2 Installing the Simulator and Debugger Software

This section explains the simple process of installing the simulator and
debugger on a hard-disk system. The software package is shipped on a
cartridge tape. To install the simulator and debugger, you must restore the
directory from the tape.

Step 1: Insert the product tape in a cartridge tape drive.

Step 2: Create a directory named sim2x to contain the ’C2x simulator and
debugger software:

mkdir sim2x

Step 3: Make sim2x the current directory:

cd sim2x

Step 4: Copy the files from tape to disk:

tar xvf /dev/rst8

Note that the sim2x directory will contain copies of both the Sun3 (Sun3) and
Sun4 (Sun4) versions of the simulator. Simply delete the version you don’t
need.

2.3.3 Restrictions Associated With the Sun Version of the Simulator

Several restrictions are associated with the Sun version of the debugger
interface. These restrictions, listed below, override the information presented
in Parts II and III of this manual, as well as the information presented in the
tutorial.

� This version of the debugger works with monochrome monitors only.
Descriptions of color monitors and color features do not apply.

� Breakpointed lines are not highlighted in any way.

� The C source debugger has a very flexible command-entry system; there
are usually a variety of ways to perform any specific action. For example,
you may be able to perform the same action by typing in a command, using
the mouse, or using a function key. However, the function key and
alternate-key sequences described in this manual apply to PCs. No key-
board mapping is provided for Sun systems. Therefore, you should look
for methods that use the mouse or a command.

� The simulator is an instruction-level simulator that does not simulate the
pipeline.

Invoking the Debugger

 2-14

2.4 Invoking the Debugger

Here’s the basic format for the command that invokes the debugger:

sim2x [filename] [–options]

sim2x is the command that invokes the debugger.

filename is an optional parameter that names an object file that the
debugger will load into memory during invocation. The
debugger looks for the file in the current directory; if the file
isn’t in the current directory, you must supply the entire path-
name.

–options supply the debugger with additional information (see
Table 2–1).

With the PC version of the simulator or the PC version under Microsoft Win-
dows, you can also specify filename and option information with the
D_OPTIONS environment variable.

Table 2–1. Debugger Options

Option Description

–b[bbbb] By default, the debugger uses an 80-character-by-25-line screen. If you are using the
PC or Sun version of the simulator, you can use the –b screen-size options to choose
a larger screen size. With the PC version, you must also have a special graphics card
installed.

Option Characters/Lines Notes
none 80 by 25 This is the default display
–b 80 by 39 (PC under Microsoft Windows)

80 by 43 (PC with EGA; Sun) PC without Microsoft Windows:
80 by 50 (PC with VGA) Use any EGA or VGA card

–bb 120 by 43
–bbb 132 by 43
–bbbb 80 by 60
–bbbbb 100 by 60

PC without Microsoft Windows
only: currently, the debugger sup-
ports these modes on a Video
Seven VEGA Deluxe card.

–c Sets memory reserved for uninitialized data to all zeros.

–i pathname –i identifies additional directories that contain your source files. Replace pathname
with an appropriate directory name. You can specify several pathnames; use the –i
option as many times as necessary:

sim2x –i path1 –i path2 –i path3 . . .

Using –i is similar to using the D_SRC environment variable (described on page
2-5). If you name directories with both –i and D_SRC, the debugger first searches
through directories named with –i.

 Invoking the Debugger/Exiting the Debugger

2-15 Chapter Title—Attribute Reference

Table 2–1.Debugger Options (Continued)

Option Description

–mvversion The –mv options tells the simulator to simulate the operation of ’C25 or ’C26 DSPs:

–mv25 tells the simulator to simulate the ’C25 DSP operation (default).
–mv26 tells the simulator to simulate the ’C26 DSP operation.

If you don’t use the –mv option, the simulator simulates the ’C25 DSP operation.

–mmmode The –mm option tells the simulator to operate in either the microprocessor or micro-
computer mode:

–mm0
tells the simulator to operate in the microcomputer mode.
–mm1
tells the simulator to operate in the microprocessor mode (default).

If you don’t use the –mm option, the simulator operates in the microprocessor mode.

–s If you supply a filename when you invoke the debugger, you can use the –s option
to tell the debugger to load only the file’s symbol table (without the file’s object code).
This is similar to the debugger’s SLOAD command.

–t filename –t allows you to specify an initialization command file other than siminit.cmd. If –t
is present on the command line, the file specified by filename will be invoked as
the command file instead of siminit.cmd.

–v This command prevents the debugger from loading the entire symbol table when you
load an object file. The debugger loads only the global symbols and later loads local
symbols as it needs them. This speeds up the loading time and consumes less
memory space.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger envi-
ronment.

–x –x tells the debugger to ignore any information supplied with D_OPTIONS.

2.5 Exiting the Debugger

To exit the debugger and return to the operating system, enter this command:

quit

You don’t need to worry about where the cursor is or which window is
active—just type. If a program is running, press ESC to halt program execution
before you quit the debugger.

If you are using the PC version under Microsoft Windows, you can also exit the
debugger by selecting the exit option from the Microsoft Windows menu bar.

3-1 Chapter Title—Attribute Reference

An Introductory Tutorial
to the C Source Debugger

This chapter provides a step-by-step, hands-on demonstration of the ’C2x C source debugger’s basic
features. This is not the kind of tutorial that you can take home to read—this tutorial is effective only if
you’re sitting at your PC, performing the lessons in the order that they’re presented. This tutorial con-
tains two sets of lessons (10 in the first, 13 in the second) and takes about one hour to complete.

Synopsis Topic
Page

Reading these sections will help
you get the most out of the tutorial.

How to use this tutorial 3-2
A note about entering commands 3-3
An escape route (just in case) 3-3

The first set of lessons introduces
you to basic debugger operation.
You’ll learn how to invoke the
debugger and load object code,
and you’ll become acquainted
with the main features of the
debugger display. You’ll also learn
how to view a C source file and
how to select one of the three
debugging modes.

Invoke the debugger 3-4
and load the sample program’s object code
Take a look at the display... 3-5
What’s in the DISASSEMBLY window? 3-6
Select the active window 3-6
Resize the active window 3-8
Move the active window 3-9
Scroll through a window’s contents 3-10
Display the C source version of the sample file 3-11
Execute some code 3-11
Become familiar with the three debugging modes 3-12

The second set of lessons shows
you how to execute your pro-
grams and concentrates on the
debugger’s advanced features:
setting breakpoints, benchmark-
ing code, and observing the ef-
fects of program execution on se-
lected variables, memory loca-
tions, and registers.

Open another text file, then redisplay a C source file 3-14
Use the basic RUN command 3-15
Set some breakpoints 3-15
Benchmark a section of code (simulator) 3-17
Watch some values and single-step through code 3-18
Run code conditionally 3-20
WHATIS that? 3-21
Clear the COMMAND window display area 3-22
Display the contents of an aggregate data type 3-22
Display data in another format 3-25
Change some values 3-26
Define a memory map 3-27
Close the debugger 3-28

Chapter 3

How to Use This Tutorial

 3-2

How to use this tutorial

This tutorial contains three basic types of information:

Primary actions Primary actions identify the main lessons in the
tutorial; they’re boxed so you can find them
easily. A primary action looks like this:

Make the CPU window the active window:

win CPU

Important information In addition to primary actions, important infor-
mation ensures that the tutorial works correctly.
Important information is marked like this:

Important! The CPU window should still be
active from the previous step.

Alternative actions Alternative actions show additional methods for
performing the primary actions. Alternative
actions are marked like this:

Try This: Another way to display the current
code in MEMORY is to show memory beginning
from the current PC. . .

You can use this information in several ways:

� To use this information as a tutorial, perform the primary actions and pay
close attention to the important information.

� If you want to be able to use the debugger like a real pro, then perform the
alternative actions, too. (Don’t worry—if you skip any of the alternative
actions, the debugger won’t blow up.)

� If all you’re interested in is a quick demonstration of how the debugger
works, just perform the primary actions.

Important! This tutorial assumes that you have correctly and completely
installed your development board or emulator (including invoking any files or
DOS commands as instructed in the installation chapters).

 A Note About Entering Commands/An Escape Route

3-3 Chapter Title—Attribute Reference

A note about entering commands

Whenever this tutorial tells you to type a debugger command, just type—the
debugger automatically places the text on the command line. You don’t have
to worry about moving the cursor to the command line; the debugger takes
care of this for you. (There are a few instances when this isn’t true—for exam-
ple, when you’re editing data in the CPU or MEMORY window—but this is
explained later in the tutorial.)

Also, you don’t have to worry about typing commands in uppercase or lower-
case—either is fine. There are a few instances when a command’s parameters
must be entered in uppercase, and the tutorial points this out.

An escape route (just in case)

The steps in this tutorial create a path for you to follow. The tutorial won’t
purposely lead you off the path. But sometimes when people use new
products, they accidently press the wrong key, push the wrong mouse button,
or mistype a command. Suddenly, they’re off the path without any idea of
where they are or how they got there.

This probably won’t happen to you. But, if it does, you can almost always get
back to familiar ground by pressing ESC . If you were running a program when
you pressed ESC , you should also type RESTART . Then go back to the
beginning of whatever lesson you were in and try again.

Invoke the Debugger and Load the Sample Program’s Object Code

 3-4

Invoke the debugger and load the sample program’s object code

Included with the debugger is a demonstration program named sample. This
lesson shows you how to invoke the debugger and load the sample program.
You will use the –b option so that the debugger uses a larger display.

Important! This step assumes that you are using the default memory seg-
ment jumpers or that you have identified the memory segment jumpers with
the D_OPTIONS environment variable (as described in the installation instruc-
tions in Chapter 1).

Invoke the debugger and load the sample program:

For the SWDS, enter:

db2x –b c:\c2xhll\sample

For the simulator , enter:

sim2x –b c:\c2xhll\sample

 Take a Look at the Display

3-5 Chapter Title—Attribute Reference

Take a look at the displa y. . .

Now you should see a display similar to this (it may not be exactly the same
display, but it should be close).

Load Brea

k

Watch Memory

DISASSEMBLY CPU

MEMORYCOMMAND

>>>

TMS320C2x Debugger Version 1.00

Copyright (c) 1990, Texas In-

strume

TMS320C2x

Simulator Version 3.0

ACC 00000000
PREG 00000000
TIM ffff
PRD ffff
PC 1124
TOS 0000
ST0 0600
ST1 07f0
IMR ffc0
IFR 0000
TREG 0000
RTPC 0000
AR0 0000
AR1 0000
AR2 0000
AR3 0000
AR4 0000
AR5 0000
AR6 0000
AR7 0000
BIO 0001

1124 d000 c_int0: LRLK AR0,#4e1h

1126 d100 LRLK AR1,#4e1h

1128 ce08 SPM0

1129 ce07 SSXM

112a d001 LALK #1000h

112c cc01 ADDK #01h

112d f680 BZ 1131h

112f fe89 CALL 1135h,*,AR1

1131 fe89 CALL 1007h,*,AR1

1133 fe89 CALL 1116h,*,AR1

1135 7e02 ADRK #02h

1136 d001 LALK #1000h

1138 5588 LARP AR0

1139 58a0 TBLR *+

113a cc01 ADDK #01h

0000 0000 0000 ffff ffff ffc0 ff00 0000

0007 0000 0000 0000 0000 0000 0000 0000

000e 0000 0000 0000 0000 0000 0000 0000

0015 0000 0000 0000 0000 0000 0000 0000

001c 0000 0000 0000 0000 0000 0000 0000

0023 0000 0000 0000 0000 0000 0000 0000

MoDe Run=F5 Step=F8 Next=F1 0Colormenu bar with
pulldown menus

reverse assembly
of memory contents

register contents

memory contents

COMMAND window
display area

command line

current PC
(highlighted)

� If you don’t see a display, then your debugger or board may not be
installed properly. Go back through the installation instructions and be
sure that you followed each step correctly; then reinvoke the debugger.

� If you do see a display, check the first few lines of the DISASSEMBLY
window. If these lines aren’t the same—if, for example, they show ADD
instructions or say Invali d address —then enter the following com-
mands on the debugger command line. (Just type; you don’t have to worry
about where the cursor is.)

1) Reset the ’C2x processor:

reset

2) Load the sample program again:

load c:\c2xhll\sample

What’s in the DISASSEMBLY Window? / Select the Active Window

 3-6

What’s in the DISASSEMBLY window?

The DISASSEMBLY window always shows the reverse assembly of memory
contents; in this case, it shows an assembly language version of sample.out.
The MEMORY window displays the current contents of memory. Because you
loaded the object file sample.out when you invoked the debugger, memory
contains the object code version of the sample file.

This tutorial step demonstrates that the code shown in the DISASSEMBLY
window corresponds to memory contents. Initially, memory is displayed start-
ing at address 0; if you look at the first line of the DISASSEMBLY window, you’ll
see that its display starts at address 0x1124.

Modify the MEMORY display to show the same object code that is dis-
played in the DISASSEMBLY window:

mem 0x1124@prog

Notice that the first column in the DISASSEMBLY window corresponds to the
addresses in the MEMORY window; the second column in the DISASSEMBLY
window corresponds to the memory contents displayed in the MEMORY
window.

Try This: The ’C2x has separate program and data spaces. You can access
either program or data memory by following the location with @prog for
program memory or @data for data memory. If you’d like to see the contents
of location 0x1124 in data memory, enter:

mem 0x1124@data

Try This: Another way to display the current code in MEMORY is to show
memory beginning from the current PC:

mem PC@prog

Select the active window

This lesson shows you how to make a window into the active window. You can
move and resize any window; you can close some windows. Whenever you
type a command or press a function key to move, resize, or close a window,
the debugger must have some method of understanding which window you
want to affect. The debugger does this by designating one window at a time
to be the active window. Any window can be the active window, but only one
window at a time can be active.

 Select the Active Window

3-7 Chapter Title—Attribute Reference

Make the CPU window the active window:

win CPU

Important! If this didn’t work, look at the way you entered the command. Did
you enter CPU in uppercase letters? For this command, it’s important that you
enter the parameter in uppercase as shown.

Important! Notice the appearance of the CPU window (especially its
borders) in contrast to the other, inactive windows! This is how you can tell
which window is active.

Try This: Press the F6 key to “hop” through the windows in the display, mak-
ing each one active in turn. Press F6 as many times as necessary until the
CPU window becomes the active window.

Try This: You can also use the mouse to make a window active:

1) Point to any location on the window’s border.

2) Click the left mouse button.

Be careful! If you point inside the window, the window becomes active when
you press the mouse button, but something else may happen as well:

� If you’re pointing inside the CPU window, then the register you’re pointing
at becomes active. The debugger then treats the text you type as a new
value for that register. Similarly, if you’re pointing inside the MEMORY
window, the address you’re pointing at becomes active.

Press ESC to get out of this.

� If you’re pointing inside the DISASSEMBLY or FILE window, you’ll set a
breakpoint on the statement that you were pointing to.

Point to the same statement; press the button again to delete the break-
point.

Resize the Active Window

 3-8

Resize the active window

This lesson shows you how to resize the active window.

Important! The CPU window should still be active from the previous step.

Make the CPU window as small as possible:

size 4,3

This tells the debugger to make the window 4 characters by 3 lines, which is
the smallest a window can be. (If it were any smaller, the debugger wouldn’t
be able to display all four corners of the window.) If you try to enter smaller
values, the debugger will warn you that you’ve entered an Invalid window size.
The maximum width and length depend on which –b option you used when you
invoked the debugger. (If you’d like a complete list of the limits, see Table 5–1
on page 5-21.)

Make the CPU window larger:

size Enter the SIZE command without parameters

Make the window 3 lines longer

Make the window 4 characters wider

Press this key when you finish sizing the window

You can also use ↑ to make the window shorter and ← to make the window
narrower.

Try This: You can also use the mouse to resize the window (note that this
process forces the selected window to become the active window).

1) If you examine any window, you’ll see a highlighted, backwards “L” in the
lower right corner. Point to the lower right corner of the CPU window.

 Move the Active Window

3-9 Chapter Title—Attribute Reference

2) Press the left mouse button, but don’t release it; move the mouse while
you’re holding in the button. This resizes the window.

3) Release the mouse button when the window reaches the desired size.

Move the active window

This lesson shows you how to move the active window.

Important! The CPU window should still be active from the previous steps.

Move the CPU window to the upper left portion of the screen:

move 0,1 The debugger doesn’t let you move the window
to the very top—that would hide the menu bar

The MOVE command’s first parameter identifies the window’s new X position
on the screen. The second parameter identifies the window’s new Y position
on the screen. The maximum X and Y positions depend on which –b option
you used when you invoked the debugger. (For a complete list of the limits, see
Table 5–2 on page 5-23.)

Try This: You can use the MOVE command with no parameters and then use
arrow keys to move the window:

move
→ → → → Press → until the CPU window is back where it was

(it may seem like only the border is moving—this is normal)
ESC Press ESC when you finish moving the window

You can also use ↑ to move the window up, ↓ to move the window down,
and ← to move the window left.

Try This: You can also use the mouse to move the window (note that this
process forces the selected window to become the active window).

1) Point to the top edge or left edge of the window border.

2) Press the left mouse button, but don’t release the button; move the mouse
while you’re holding in the button.

Scroll Through a Window’s Contents

 3-10

3) Release the mouse button when the window reaches the desired position.

Scroll through a window’s contents

Many of the windows contain more information than can possibly be displayed
at one time. You can view hidden information by moving through a window’s
contents. The easiest way to do this is to use the mouse to scroll the display
up or down.

If you examine most windows, you’ll see an up arrow near the top of the right
border and a down arrow near the bottom of the right border. These are scroll
arrows.

Scroll through the contents of the DISASSEMBLY window:

1) Point to the up or down scroll arrow.

2) Press the left mouse button; continue pressing it until the dis-
play has scrolled several lines.

3) Release the button.

Try This: You can also use several of the keys to modify the display in the
active window.

Make the MEMORY window the active window:

win MEMORY

Now try pressing these keys; observe their effects on the window’s contents.

↓ ↑ PAGE DOWN PAGE UP

These keys don’t work the same for all windows; Section 12.3 (page 12-37)
summarizes the functions of all the special keys, key sequences, and how their
effects vary for the different windows.

 Display the C Source Version of the Sample File / Execute Some Code

3-11 Chapter Title—Attribute Reference

Display the C source version of the sample file

Now that you can find your way around the debugger interface, you can
become familiar with some of the debugger’s more significant features. It’s
time to load some C code.

Display the contents of a C source file:

file sample.c

This opens a FILE window that displays the contents of the file sample.c
(sample.c was one of the files that contributed to making the sample object
file). You can always tell which file you’re displaying by the label in the FILE
window. Right now, the label should say FILE: sample.c .

Execute some code

Let’s run some code—not the whole program, just a portion of it.

Execute a portion of the sample program:

go main

You’ve just executed your program up to the point where main() is declared.
Notice how the display has changed:

� The current PC is highlighted in both the DISASSEMBLY and FILE
windows.

� The addresses and object code of the first several statements in the
DISASSEMBLY window are highlighted; this is because these statements
are associated with the current C statement (highlighted in the FILE
window).

� The CALLS window, which tracks functions as they’re called, now points
to main().

� The values of the PC and SP (and possibly some additional registers) are
highlighted in the CPU window because they were changed by program
execution.

Become Familiar With the Three Debugging Modes

 3-12

Become familiar with the three debugging modes
The debugger has three basic debugging modes:

� Mixed mode shows both disassembly and C at the same time.

� Auto mode shows disassembly or C, depending on what part of your
program happens to be running.

� Assembly mode shows only the disassembly, no C, even if you’re
executing C code.

When you opened the FILE window in a previous step, the debugger switched
to mixed mode; you should be in mixed mode now. (You can tell that you’re in
mixed mode if both the FILE and DISASSEMBLY windows are displayed.)

The following steps show you how to switch debugging modes.

Use the MoDe menu to select assembly mode:

1) Look at the top of the display: the first line shows a row of pull-
down menu selections.

2) Point to the word MoDe on the menu bar.

3) Press the left mouse button, but don’t release it; drag the
mouse downward until Asm (the second entry) is highlighted.

4) Release the button.

This switches to assembly mode. You should see the DISASSEMBLY window,
but not the FILE window.

Switch to auto mode:

1) Press . This displays and freezes the MoDe menu.

2) Now select C(auto). Choose one of these methods for doing this:

Press the arrow keys to move up/down through the menu; when
C(auto) is highlighted, press .

Type C .

Point the mouse cursor at C(auto), then click the left mouse but-
ton.

 Become Familiar With the Three Debugging Modes

3-13 Chapter Title—Attribute Reference

You should be in auto mode now, and you should see the FILE window but not
the DISASSEMBLY window (because you’re program is in C code). Auto
mode automatically switches between an assembly or a C display, depending
on where you are in your program. Here’s a demonstration of that:

Run to a point in your program that executes assembly language code:

go meminit

You’re still in auto mode, but you should now see the DISASSEMBLY window.
The current PC should be at the statement that defines the meminit label.

Try This: You can also switch modes by typing one of these commands:

asm switches to assembly-only mode
c switches to auto mode
mix switches to mixed mode

Switch back to mixed mode.

You’ve finished the first half of the tutorial and the
first set of lessons.

If you’re lucky enough to be going to lunch or going home at this point, you may
want to close the debugger down. To do this, just type QUIT . When you
come back, reinvoke the debugger and load the sample program (page 3-4).
Then turn to page 3-14 and continue with the second set of lessons.

Still here? Turn the page.

Open Another Text File, Then Redisplay a C Source File

 3-14

Open another text file, then redisplay a C source file

In addition to what you already know about the FILE window and the FILE
command, you should also know that:

� You can display any text file in the FILE window.

� If you enter any command that requires the debugger to display a C source
file, it automatically displays that code in the FILE window (regardless of
whether the window is open or not and regardless of what is already
displayed in the FILE window).

Display a file that isn’t a C source file:

file ..\autoexec.bat

This replaces sample.c in the FILE window with your autoexec.

Remember, you can tell which file you’re displaying by the label in the FILE
window. Right now, the label should say FILE: autoexec.bat .

Redisplay another C source file (sample1.c):

func call

Now the FILE window label should say FILE: sample1.c because the call()
function is in sample1.c.

 Use the Basic RUN Command / Set Some Breakpoints

3-15 Chapter Title—Attribute Reference

Use the basic run command

The debugger provides you with several ways of running code, but it has one
basic run command.

Run your entire program:

run

Entered this way, the command basically means “run forever”. You may not
have that much time!

This isn’t very exciting: halt program execution:

Set some breakpoints

When you halted execution in the previous step, you should have seen
changes in the display similar to the changes you saw when you entered go
main earlier in the tutorial. When you pressed ESC , you had little control over
where the program stopped. Knowing that information changed was nice, but
what part of the program affected the information?

This information would be much more useful if you picked an explicit stopping
point before running the program. Then, when the information changed, you’d
have a better understanding of what caused the changes. You can stop
program execution in this way by setting breakpoints.

Important! This lesson assumes that you’re displaying the contents of
sample.c in the FILE window. If you aren’t, enter:

file sample.c

lesson continues on the next page →

Set Some Breakpoints

 3-16

Set a breakpoint and run your program:

1) Scroll to line 51 in the FILE window (the meminit() statement) and set
a breakpoint at that line:

a) Point the mouse cursor at the statement on line 51.

b) Click the left mouse button. Notice how the line is highlighted;
this identifies a breakpointed statement.

2) Reset the program entry point:

restart

3) Enter the run command:

run Program execution halts at the breakpoint

Once again, you should see that some statements are highlighted in the CPU
window, showing that they were changed by program execution. But this time,
you know that the changes were caused by code from the beginning of the
program to line 51 in the FILE window.

Clear the breakpoint:

1) Point the mouse cursor at the statement on line 51. (It should still
be highlighted from setting the breakpoint.)

2) Click the left mouse button. The line is no longer highlighted.

 Benchmark a Section of Code (Simulator)

3-17 Chapter Title—Attribute Reference

Benchmark a section of code (simulator)

If you’re using the ’C2x simulator, you can use breakpoints to help you bench-
mark a section of code. This means that you’ll ask the debugger to count the
number of CPU clock cycles that are consumed by a certain portion of code.

Benchmark some code:

1) In sample.c (displayed in the FILE window), set two breakpoints: one
at line 56 (the call (i) statement) and one at line 59 (the if (!(i&0xFFFA))
statement).

2) Reset the program entry point:

restart

3) Enter the run command:

run This runs to the first breakpoint

4) Enter the runb command:

runb This runs to the second breakpoint

5) Now use the ? command to examine the contents of the CLK pseudo-
register:

? clk

The debugger now shows a number in the display area; this is the number of
CPU clock cycles consumed by the portion of code between the two break-
pointed C statements.

Important! The value in the CLK pseudoregister is valid only when you
execute the RUNB command and when that execution is halted on break-
pointed statements.

Delete both breakpoints:

br The BR (breakpoint reset) command deletes
all breakpoints that were set

simulator

Watch Some Values and Single-Step Through Code

 3-18

Watch some values and single-step through code

Now you know how to update the display without running your entire program;
you can set breakpoints to obtain information at specific points in your
program. But what if you want to update the display after each statement? No,
you don’t have to set a breakpoint at every statement—you can use
single-step execution.

For this lesson, you have to be at a specific point in the program—let’s go there
before we do anything else.

Set up for single-step example:

restart
go main

The debugger has another type of window called a WATCH window that’s very
useful in combination with single-step execution. What’s a WATCH window
for? Suppose you are interested in only a few specific register values, not all
of the registers shown in the CPU window. Or suppose you are interested in
a particular memory location or in the value of some variable. You can observe
these data items in a WATCH window.

Set up the WATCH window before you start the single-step execution.

Open a WATCH window:

wa TOS, Stack Pointer
wa pc
wa i

You may have noticed that the WA (watch add) command can have one or two
parameters. The first parameter is the item that you’re watching. The second
parameter is an optional label.

 Watch Some Values and Single-Step Through Code

3-19 Chapter Title—Attribute Reference

Now try out the single-step commands. Hint: Watch the PC in the FILE and
DISASSEMBLY windows; watch the value of i in the WATCH window.

Single-step through the sample program:

step 50

Try This: Notice that the step command single-stepped each assembly
language statement (in fact, you single-stepped through 50 assembly
language statements). Did you also notice that the FILE window displayed the
source for the call() function when it was called? The debugger supports more
single-step commands that have a slightly different flavor.

� For example, if you enter:

cstep 50

you’ll single-step 50 C statements, not assembly language statements
(notice how the PC “jumps” in the DISASSEMBLY window).

� Reset the program entry point and run to main().

restart
go main

Now enter the NEXT command, as shown below. You’ll be single-stepping
50 assembly language statements, but the FILE window doesn’t display
the source for the call() function when call() is executed.

next 50

(There’s also a CNEXT command that “nexts” in terms of C statements.)

Run Code Conditionally

 3-20

Run code conditionally

Let’s execute this loop one more time. Take a look at this code; its doing a lot
of work with a variable named i. You may want to check the value of i at specific
points instead of after each statement. To do this, you set breakpoints at the
statements you’re interested in and then initiate a conditional run.

First, clear out the WATCH window so that you won’t be distracted by any
superfluous data items.

Delete the first three data items from the WATCH window (don’t watch
them anymore)

wd 3
wd 1

i was the third item added to the WATCH window in the previous tutorial step,
and it should now be the only remaining item in the window.

Set up for the conditional run examples

1) Set breakpoints at lines 56 and 58.

2) Reset the program entry point:

restart

3) Run the first part of the program

go main

4) Reset the value of i:

?i=0

Now initiate the conditional run:

run i<100

This causes the debugger to run through the loop as long as the value of i is
less than 100. Each time the debugger encounters the breakpoints in the loop,
it updates the value of i in the WATCH window.

 Run Code Conditionally / WHATIS That?

3-21 Chapter Title—Attribute Reference

When the conditional run completes, close the WATCH window.

Close the WATCH window:

wr

WHATIS that?

At some point, you might like to obtain some information about the types of
data in your C program. Maybe things won’t be working quite the way you’d
planned, and you’ll find yourself saying something like “... but isn’t that sup-
posed to point to an integer?” Here’s how you can check on this kind of infor-
mation: be sure to watch the COMMAND window display area as you enter
these commands.

Use the WHATIS command to find the types of some of the variables de-
clared in the sample program:

whatis genum
enum yyy genum; genum is an enumerated type

whatis tiny6
struct { tiny6 is a structure

int u;

int v;

int x;

int y;

int z;

} tiny6;

whatis call
int call(); call is a function that returns an integer

whatis s
short s; s is a short unsigned integer

whatis zzz
struct zzz { zzz is a very long structure

int b1;

int b2;

Press to halt long listings

Clear the COMMAND Window Display Area / Display the Contents of an Aggregate Data Type

 3-22

Clear the COMMAND window display area
After displaying all of these types, you may want to clear them away. This is
easy to do.

Clear the COMMAND window display area:

cls

Try This: CLS isn’t the only system-type command that the debugger
supports.

cd .. Change back to the main directory
dir Show a listing of the current directory
cd c2xhll Change back to the debugger directory

Display the contents of an aggregate data type
The WATCH window is convenient for watching single, or scalar, values. When
you’re debugging a C program, though, you may need to observe values that
aren’t scalar; for example, you might need to observe the effects of program
execution on an array. The debugger provides another type of window called
a DISP window where you can display the individual members of an array or
structure.

Show another structure in a DISP window:

disp big1

Now you should see a display like the one below. The newly opened DISP
window becomes the active window. Like the FILE window, you can always tell
what’s being displayed because of the way the DISP window is labeled. Right
now, it should say DISP: big1 .

DISP: big1
b1 0
b2 0
b3 0
b4 0
b5 0
q1 [...]
q2 {...}
q3 0x0000

 Display the Contents of an Aggregate Data Type

3-23 Chapter Title—Attribute Reference

� Members b1, b2, b3, b4, and b5 are ints; you can tell because they’re
displayed as integers (shown as plain numbers without prefixes).

� Member q1 is an array; you can tell because q1 shows [. . .] instead of a
value.

� Member q2 is another structure; you can tell because q2 shows {. . .}
instead of a value.

� Member q3 is a pointer; you can tell because it is displayed as a hexadeci-
mal address (indicated by a 0x prefix) instead of an integer value.

If a member of a structure or an array is itself a structure or an array, or even
a pointer, you can display its members (or the data it points to) in additional
DISP windows (referred to as the original DISP window’s children).

Display what q3 is pointing to:

1) Point at the address displayed next to the q3 label in big1’s
display.

2) Click the left mouse button.

This opens a second DISP window, named big1.q3, that shows what q3 is
pointing to (it’s pointing to another structure). Close this DISP window or move
it out of the way.

Display array q1 in another DISP window:

1) Point at the [. . .] displayed next to the q1 label in big1’s dis-
play.

2) Click the left mouse button.

This opens another DISP window labeled DISP: big1.q1 .

Important! q1 is actually a 2-member array of structures. To view the two dif-
ferent structures, use CONTROL PAGE DOWN and CONTROL PAGE UP . (Look at the
name of this DISP window when you’re switching.)

lesson continues on the next page →

Display the Contents of an Aggregate Data Type

 3-24

Try This: Display structure q2 in another DISP window.

1) Close the additional DISP windows or move them out of the way so that
you can clearly see the original DISP window that you opened to display
big1.

2) Make big1’s DISP window the active window.

↓ ↑ 3) Use these arrow keys to move the field cursor (_) through the list of big1’s
members until the cursor points to q2.

F9 4) Now press F9 .

Close all of the DISP windows:

1) Make big1’s DISP window the active window.

2) Press .

When you close the main DISP window, the debugger closes all of its children
as well.

 Display Data in Another Format

3-25 Chapter Title—Attribute Reference

Display data in another format

Usually when you add an item to the WATCH window or open a DISP window,
the data is shown in its natural format. This means that ints are shown as
integers, floats are shown as floating-point values, etc. Occasionally, however,
you may wish to view data in a different format.

This is especially important if you want to show memory contents in another
format. For example, suppose you want to see the contents of the stack in
integer format:

Display memory contents in an integer format:

disp *(int *)TOS

Notice that this shows memory contents in the DISP window in an array format.
The “array” member identifiers don’t necessarily correspond to actual ad-
dresses—they’re relative to the first address you request with the DISP com-
mand. In this case, the item displayed as item [0] is the contents of the stack
pointer— it isn’t memory location 0. Note that you can scroll through the
memory displayed in the DISP window; item [1] is at &TOS + 1, item [–1] is at
&TOS–1.

Try This: You might also want to display memory contents in floating-point
format. For example, you can display the contents of location 0x0 in floating-
point format:

disp *(float *)0x0

To get ready for the next step, close any DISP windows that are open.

Change Some Values

 3-26

Change some values

You can edit the values displayed in the MEMORY, CPU, WATCH, and DISP
windows.

Change a value in memory:

1) Move or close the WATCH window if it’s obscuring the
MEMORY window, then display memory beginning with ad-
dress 0x042b:

mem 0x042b

2) Point to the contents of memory location 0x042b.

3) Click the left mouse button. This highlights the field to identify
it as the field that will be edited.

4) Type 1111.

5) Press to enter the new value.

6) Press to conclude editing.

Try This: Here’s another method for editing data that lets you edit a few more
values at once.

1) Make the CPU window the active window:

win CPU

↑ ↓ 2) Press the arrow keys until the field cursor (_) points to the PC contents.

F9 3) Press F9 .

4) Type 0107.

↓ 5) Press ↓ 8 times. You should now be pointing at the contents of register
AR0.

6) Type ffff.

7) Press to enter the new value.

ESC 8) Press ESC to conclude editing.

 Define a Memory Map

3-27 Chapter Title—Attribute Reference

Define a memory map

You can set up a memory map to tell the debugger which areas of memory it
can and can’t access. This is called memory mapping. When you invoked the
debugger for this tutorial, the debugger automatically read a default memory
map from a batch file included in the c2xhll directory. For the purposes of the
sample program, that’s fine (which is why this lesson was saved for next-to-
last).

View the default memory map settings:

ml

Look in the COMMAND window display area—you’ll see a listing of the areas
that are currently mapped. The ’C2x supports separate program and data
spaces. Page 0 in the memory map is for program memory; page 1 is for data
memory.

It’s easy to add new ranges to the map or delete existing ranges.

Change the memory map:

1) Use the MD (memory delete) command to delete the block of data
memory:

md 0x0,1

This deletes the block of memory beginning at address 0 in data
memory.

2) Use the MA (memory add) command to define a new block of program
memory and a new block of data memory:

ma 0x2000,0,0x20,ROM

ma 0x4000,1,0xfff,RAM

Close the Debugger

 3-28

Close the debugger

This is the end of the tutorial—close the debugger.

Close the debugger and return to DOS:

quit

4-1 Chapter Title—Attribute Reference

Overview of a Code
 Development and Debugging System

The ’C2x C source debugger is an advanced software interface that helps you to develop, test, and re-
fine ’C2x C programs (compiled with the ’C2x optimizing ANSI C compiler) and assembly language
programs. The debugger is the interface to TI’s ’C2x SWDS and simulator. This chapter provides an
overview of the C source debugger and describes the ’C2x code development environment.

Topic Page

The chapter provides an overview
of the debugger and the debug-
ging process and describes how
the debugging process fits in with
the overall code development
process.

4.1 Description of the ’C2x Debugger 4-2
Key features of the debugger 4-3

4.2 Developing Code for the ’C2x 4-5

4.3 Preparing Your Program for Debugging 4-8

4.4 Debugging ’C2x Programs 4-10

Chapter 4

Description of the ’C2x C Source Debugger

 4-2

4.1 Description of the ’C2x C Source Debugger

The ’C2x C source debugger improves productivity by allowing you to debug
a program in the language it was written in. You can choose to debug your
programs in C, assembly language, or both. And, unlike many other debug-
gers, the ’C2x debugger’s higher level features are available even when you’re
debugging assembly language code.

The debugger is easy to learn and use. Its friendly window-, mouse-, and
menu-oriented interface reduces learning time and eliminates the need to
memorize complex commands. The debugger’s customizable displays and
flexible command entry let you develop a debugging environment that suits
your needs—you won’t be locked into a rigid environment. A shortened learn-
ing curve and increased productivity reduce the software development cycle,
so you’ll get to market faster.

Figure 4–1 identifies several features of the debugger display.

Figure 4–1. The Debugger Display

pulldown
menus DISASSEMBLY

105c 8aa0 call: POPD *+
105d 80a0 SAR AR0,*+
105e 8180 SAR AR1,*
105f b001 LARK AR0,#1
1060 00e0 LAR AR0,*0+
1061 7980 B 1088h
1063 8b8a LARP AR2
1064 bf0a LRLK AR2,#fffdh
1066 8be0 MAR *0+
1067
1068
1069
106a
106c
106d
106f
1070

Brea

k

Watch Memory

CALLS

MoDe

2: call()

1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
ACC fffb0023
PREG 00000006
TIM c41e
PRD ffff
PC 0107
TOS 0000
ST0 c609
ST1 c5f0
IMR ffc0
IFR 0008
TREG 0001
RPTC 0000
AR0 ffff
AR1 0000
AR2 0000
AR3 ffff
AR4 0000
AR5 0000
AR6 0000
AR7 0000

WATCH
1: str.a 0
2: AR0 0x04e3
3: color GREEN

FILE: sample.c
00008 };
00009
00010 extern struct xxx str;
00011
00012 call(newvalue)
00013 int newvalue;
00014 {
00015 static int value = 0;
00016
00017 switch (newvalue & 3)
00018 {
00019 case 0 : str.a = newvalue ; break;
00020 case 1 : str.b = newvalue + 1; return
00021 case 2 : str.c = newvalue * 2;
00022 case 3 : xcall(newvalue); break;

COMMAND

>>>

whatis str

struct xxx str;

step

DISP: astr[7]
a 123
b 555
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: astr[7].f4
[0] 0
[1] 9
[2] 7
[3] 54
[4] 3
[5] 3
[6] 4
[7] 123
[8] 4
[9] 789

MEMORY [PROG]
0107 bf08 09f5
0109 bf09 09f5
010b bf00 be47
010d bf80 017c
010f b801 e388
0111 0114 7a89
0113 0118 7a89
0115 0040 8a89
0017 0163 7802
0019 bf80 017c
001b 8b88 a6a0
001d b801 a680
001f 0290 038b
0121 7b9a 0126
0123 8b89 7c02
0125 ef00 b801

disassembly
display

C source
display

interactive
command entry
and history
window

scrolling data
displays with

on-screen,
interactive

editing

function call
traceback

natural-format
data displays

 Description of the ’C2x C Source Debugger

4-3 Chapter Title—Attribute Reference

Key features of the debugger

� Multilevel debugging .The debugger allows you to debug both C and
assembly language code. If you’re debugging a C program, you can
choose to view just the C source, the disassembly of the object code
created from the C source, or both. You can also use the debugger as an
assembly language debugger.

� Fully configurable, state-of-the-art, window-oriented interface. The
C source debugger separates code, data, and commands into manage-
able portions. Use any of the default displays. Or, select the windows you
want to display, size them, and move them where you want them.

� Comprehensive data displays. You can easily create windows for
displaying and editing the values of variables, arrays, structures, point-
ers—any kind of data—in their natural format (float, int, char, enum, or
pointer). You can even display entire linked lists.

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

DISP: str
a 123
b 0
c 75435
f1 3
f2 6
f3 0x00f000a
f4 [...]

DISP: *str.f3
a 8327
b 666
c 87213
f1 45
f2 27
f3 0x00f000a
f4 [...]

DISP: *str.f3–>f3
a 75
b 3212
c 782
f1 7
f2 9
f3 0x00f000a
f4 [...]

� On-screen editing. Change any data value displayed in any window—
just point the mouse, click, and type.

� Continuous update. The debugger continuously updates information on
the screen, highlighting changed values.

� Powerful command set. Unlike many other debugging systems, this
debugger doesn’t force you to learn a large, intricate command set. The
’C2x C source debugger supports a small but powerful command set that
makes full use of C expressions. One debugger command performs
actions that would take several commands in another system.

Description of the ’C2x C Source Debugger

 4-4

� Flexible command entry. There are a variety of ways to enter com-
mands. You can type commands or use a mouse, function keys, or the
pulldown menus; choose the method that you like best. Want to re-enter
a command? No need to retype it—simply use the command history.

� Create your own debugger. The debugger display is completely confi-
gurable, allowing you to create the interface that is best suited for your use.

� If you’re using a color display, you can change the colors of any area
on the screen.

� You can change the physical appearance of display features such as
window borders.

� You can interactively set the size and position of windows in the
display.

Create and save as many custom configurations as you like, or use the
defaults. Use the debugger with a color display or a black-and-white
display. A color display is preferable; the various types of information on
the display are easier to distinguish when they are highlighted with color.

� Variety of screen sizes. The debugger’s default configuration is set up
for a typical PC display, with 25 lines by 80 characters. If you use a sophis-
ticated graphics card, you can take advantage of the debugger’s addition-
al screen sizes. A larger screen size allows you to display more informa-
tion and provides you with more screen space for organizing the display—
bringing the benefits of workstation displays to your PC.

� Plus all the standard features you expect in a world-class debugger.
The debugger provides you with complete control over program execution
with features like conditional execution and single-stepping (including
single-stepping into or over function calls). You can set or clear a break-
point with a click of the mouse or by typing commands. You can define a
memory map that identifies the portions of target memory that the debug-
ger can access. You can choose to load only the symbol table portion of
an object file to work with systems that have code in ROM. The debugger
can execute commands from a batch file, providing you with an easy
method for entering often-used command sequences.

 Developing Code for the ’C2x

4-5 Chapter Title—Attribute Reference

4.2 Developing Code for the ’C2x

The ’C2x is supported by a complete set of hardware and software develop-
ment tools, including a C compiler, assembler, and linker. Figure 4–2 illus-
trates the ’C2x code development flow. The figure highlights the most common
paths of software development; the other portions are optional.

Figure 4–2. ’C2x Software Development Flow

’C2x
target

system

assembler
source

assembler

linker

object format
converter

C compiler

macro
libraries

software
libraries

COFF
object
files

C
source

files

EPROM
programmer

debugging
toolsexecutable

COFF
file

Developing Code for the ’C2x

 4-6

These tools use common object file format (COFF), which encourages
modular programming. COFF allows you to divide your code into logical
blocks, define your system’s memory map, and then link code into specific
memory areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 4–2.

The ’C2x optimizing ANSI C compiler is a full-featured optimizing compiler
that translates standard ANSI C programs into ’C2x assembly language
source. Key characteristics include:

� Standard ANSI C. The ANSI standard is a precise definition of the C
language, agreed upon by the C community. The standard encompasses
most of the recent extensions to C. To an increasing degree, ANSI confor-
mance is a requirement for C compilers in the DSP community.

� Optimization. The compiler uses several advanced techniques for
generating efficient, compact code from C source.

� Assembly language output. The compiler generates assembly language
source that you can inspect (and modify, if desired).

� ANSI standard runtime support. The compiler package comes with a
complete runtime library that conforms to the ANSI C library standard. The
library includes functions for string manipulation, dynamic memory alloca-
tion, data conversion, timekeeping, trigonometry, exponential, and
hyperbolic operations. Functions for I/O and signal handling are not
included because they are application specific.

� Flexible assembly language interface. The compiler has straightforward
calling conventions, allowing you to easily write assembly and C functions
that call each other.

� Shell program. The compiler package includes a shell program that
enables you to compile, assemble, and link programs in a single step.

� Source interlist utility. The compiler package includes a utility that interlists
your original C source statements into the assembly language output of
the compiler. This utility provides you with an easy method for inspecting
the assembly code generated for each C statement.

C compiler

 Developing Code for the ’C2x

4-7 Chapter Title—Attribute Reference

The assembler translates ’C2x assembly language source files into machine
language object files.

The archiver allows you to collect a group of files into a library. It also allows
you to modify a library by deleting, replacing, extracting, or adding members.
One of the most useful applications of the archiver is to build a library of object
modules. Several object libraries and a source library are included with the C
compiler.

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system’s
memory map and to associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module that can
be executed in a ’C2x target system. You can use one of several debugging
tools to refine and correct your code. Available products include:

� A software development system (SWDS), and
� A software simulato r.

Each of these tools uses the ’C2x debugger as a software interface.

An object format converter is also available; it converts a COFF object file
into an Intel, Tektronix, or TI-tagged object-format file that can be downloaded
to an EPROM programmer.

assembler

archiver

linker

debugging
tools

object
format

converter

Preparing Your Program for Debugging

 4-8

4.3 Preparing Your Program for Debugging

Figure 4–3 illustrates the steps you must go through to prepare a program for
debugging.

Figure 4–3. Steps You Go Through to Prepare a Program

C Compiler

assembly
language

C
source

object
code

executable
object code

If you’re working with a C
program, start here

If you’re working with an
assembly language
program, start here

This is the file that you load
when you invoke the
debugger

Assembler

Linker

code

If you’re preparing to
debug a C program. . .

1) Compile the program; use the –g option.

2) Assemble the resulting assembly language pro-
gram.

3) Link the resulting object file.

This produces an object file that you can load into the
debugger.

If you’re preparing to
debug an assembly
language program. . .

1) Assemble the assembly language source file.

2) Link the resulting object file.

This produces an object file that you can load into the
debugger.

You can compile, assemble, and link a program by invoking the compiler,
assembler, and linker in separate steps; or, you can perform all three actions
in a single step by using the CL2x shell program. The TMS320 Floating-Point
DSP Assembly Language Tools User’s Guide and TMS320C2x C Compiler
Reference Guide contain complete instructions for invoking the tools individu-
ally and for using the shell program.

 Preparing Your Program for Debugging

4-9 Chapter Title—Attribute Reference

For your convenience, here’s the command for invoking the shell program
when preparing a program for debugging:

dspcl [–options] –g [filenames] [–z [link options]]

dspcl is the command that invokes the compiler and assembler.

options affect the way the shell processes input files.

filenames are one or more C source files, assembly language source files,
or object files. Filenames are not case sensitive.

–g is an option that tells the C compiler to produce symbolic debug-
ging information. When preparing a C program for debugging,
you must use the –g option.

–z is an option that invokes the linker. After compiling/assembling
your programs, you can invoke the linker in a separate step. If
you want the shell to automatically invoke the linker, however,
use –z.

link options affect the way the linker processes input files; use these options
only when you use –z.

Options and filenames can be specified in any order on the command line, but
if you use –z, it must follow all C/assembly language source filenames and
compiler options.

The shell identifies a file’s type by the filename’s extension.

Extension File Type File Description

.c C source compiled, assembled,
and linked

.asm assembly language
source

assembled and linked

.s* (any extension that
begins with s)

assembly language
source

assembled and linked

.o* (extension begins
with o)

object file linked

none (.c assumed) C source compiled, assembled,
and linked

Debugging ’C2x Programs

 4-10

4.4 Debugging ’C2x Programs

Debugging a program is a multiple-step process. These steps are described
below, with references to parts of this book that will help you accomplish each
step.

Prepare a C program or as-
sembly language program for
debugging.

See Section 4.3, Preparing a
Program for Debugging,
page 4-8.

Step 1

Ensure that the debugger has
a valid memory map.

See Chapter 7, Defining a
Memory Map

Load the program’s object file. See Section 8.3, Loading
Object Code, page 8-8.

Run the loaded file. You can
run the entire program, run
parts of the program, or
single-step through the
program.

See Running Your Programs
on page 8-10.

If you find a mistake in your source code, exit the debugger, edit
your source file, and return to step 1.

Stop the program at critical
points and examine important
information.

See Chapter 10, Using
Breakpoints, and Chapter 9,
Managing Data.

Step 2

Step 3

Step 4

Step 5

Step 6

5-1 Chapter Title—Attribute Reference

The Debugger Display

The ’C2x C source debugger has a window-oriented display. This chapter shows what windows can look
like and describes the basic types of windows that you’ll use.

Topic Page
The debugger’s three modes use
a set of three default displays.
These modes control the types of
information that you can display
and the types of actions that you
can perform.

5.1 Debugging Modes and Default Displays 5-2
Auto mode 5-2
Assembly mode 5-3
Mixed mode 5-4
Restrictions associated with debugging modes 5-4

The debugger can display eight
different types of windows. Each
has a unique purpose.

5.2 Descriptions of the Different Kinds of Windows 5-5
and Their Contents
COMMAND window 5-6
DISASSEMBLY window 5-6
FILE window 5-8
CALLS window 5-9
MEMORY window 5-11
CPU window 5-13
DISP windows 5-14
WATCH window 5-15

The windows in the debugger dis-
play aren’t fixed in position or size.
You can resize, move, and, in
some cases, close windows. The
window that you’re going to move,
resize, or close must be the active
window .

5.3 Cursors 5-16

5.4 The Active Window 5-17
Identifying the active window 5-17
Selecting the active window 5-18

5.5 Manipulating Windows 5-20
Resizing a window 5-20
Moving a window 5-22

5.6 Manipulating a Window’s Contents 5-25
Scrolling through a window’s contents 5-25
Editing the data displayed in windows 5-26

5.7 Closing a Window 5-28

Chapter 5

Debugging Modes and Default Displays

 5-2

5.1 Debugging Modes and Default Displays

The debugger has three debugging modes:

� Auto mode
� Assembly mode
� Mixed mode

Each mode changes the debugger display by adding or hiding specific win-
dows. Some windows, such as the COMMAND window, may be present in all
modes. The following figures show the default displays for these modes and
show the windows that the debugger automatically displays for these modes.
In addition to the default windows shown in these illustrations, you can also
display DISP windows and the WATCH window (see Section 5.2, page 5-5).

Auto mode
In auto mode , the debugger automatically displays whatever type of code is
currently running—assembly language or C. This is the default mode; when
you first invoke the debugger, you’ll see a a display similar to Figure 5–1. Auto
mode has two types of displays:

� When the debugger is running assembly language code, you’ll see an
assembly display similar to the one in Figure 5–1. The DISASSEMBLY
window displays the reverse assembly of memory contents.

Figure 5–1. Typical Assembly Display (for Auto Mode and Assembly Mode)

Load Brea

k

Watch Memory

DISASSEMBLY CPU

MEMORYCOMMAND

>>>

TMS320C2x Debugger Version 1.00

Copyright (c) 1990, Texas In-

strume

TMS320C2x

Simulator Version 3.0

ACC 00000000
PREG 00000000
TIM ffff
PRD ffff
PC 1124
TOS 0000
ST0 0600
ST1 07f0
IMR ffc0
IFR 0000
TREG 0000
RTPC 0000
AR0 0000
AR1 0000
AR2 0000
AR3 0000
AR4 0000
AR5 0000
AR6 0000
AR7 0000
BIO 0001

1124 d000 c_int0: LRLK AR0,#4e1h

1126 d100 LRLK AR1,#4e1h

1128 ce08 SPM0

1129 ce07 SSXM

112a d001 LALK #1000h

112c cc01 ADDK #01h

112d f680 BZ 1131h

112f fe89 CALL 1135h,*,AR1

1131 fe89 CALL 1007h,*,AR1

1133 fe89 CALL 1116h,*,AR1

1135 7e02 ADRK #02h

1136 d001 LALK #1000h

1138 5588 LARP AR0

1139 58a0 TBLR *+

113a cc01 ADDK #01h

0000 0000 0000 ffff ffff ffc0 ff00 0000

0007 0000 0000 0000 0000 0000 0000 0000

000e 0000 0000 0000 0000 0000 0000 0000

0015 0000 0000 0000 0000 0000 0000 0000

001c 0000 0000 0000 0000 0000 0000 0000

0023 0000 0000 0000 0000 0000 0000 0000

MoDe Run=F5 Step=F8 Next=F10Color

 Debugging Modes and Default Displays

5-3 Chapter Title—Attribute Reference

� When the debugger is running C code, you’ll see a C display similar to the
one in Figure 5–2. (This assumes that the debugger can find your C
source file to display in the FILE window. If the debugger can’t find your
source, then it switches to mixed mode.)

Figure 5–2. Typical C Display (for Auto Mode Only)

Load Brea

k

Watch Memory

COMMAND

FILE: sample.c

>>>

TMS320C2x Debugger Version 1.00

Copyright (c) 1990, Texas Instrume

TMS320C2x

Simulator Version 3.0

CALLS

1: main()

0004 2 double d;

0004 3 int ai[10];

0004 4 int aai[10][5];

0004 5 char ac[10];

0004 6 int *pi;

0004 7 char *xpc;

00048

0004 9 exter n call();

0005 9 exte r meminit();

00060

0006 1 main()

0006 2 {

00063 int i = 0;

00064 int j = 0; k = 0;

00065 meminit();

MoDe Run=F5 Step=F8 Next=F10Color

When you’re running assembly language code, the debugger automatically
displays windows as described for assembly mode.

When you’re running C code, the debugger automatically displays the
COMMAND, CALLS, and FILE windows. If desired, you can also open a
WATCH window and DISP windows.

Assembly mode

Assembly mode is for viewing assembly language programs only. In this
mode, you’ll see a display similar to the one shown in Figure 5–1. When you’re
in assembly mode, you’ll always see the assembly display, regardless of
whether C or assembly language is currently running.

Windows that are automatically displayed in assembly mode include the
MEMORY window, the DISASSEMBLY of memory contents window, the CPU
register window, and the COMMAND window. If you choose, you can also
open a WATCH window in assembly mode.

Debugging Modes and Default Displays

 5-4

Mixed mode
Mixed mode is for viewing assembly language and C code at the same time.
Figure 5–3 shows the default display for mixed mode.

Figure 5–3. Typical Mixed Display (for Mixed Mode Only)

Brea

k

Watch Memory

DISASSEMBLY

MEMORY
0000 0000 0000 ffff ffff ffc0 ff00 0000
0007 0000 0000 0000 0000 0000 0000 0000
000e 0000 0000 0000 0000 0000 0000 0000
0015 0000 0000 0000 0000 0000 0000 0000
001c 0000 0000 0000 0000 0000 0000 0000
0023 0000 0000 0000 0000 0000 0000 0000

FILE: sample.c

COMMAND

>>>

file sample.c

go main

mix

CALLS

MoDe

1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
ACC 00000000
PREG 00000000
TIM ffff
PRD ffff
PC 1124
TOS 0000
ST0 0600
ST1 07f0
IMR ffc0
IFR 0000
TREG 0000
RTPC 0000
AR0 000000046 int *pi;

00047 char *xpc;

00048

00049 extern call();

00059 exter meminit();

00060

00061 main()

1007 0aa0 main: POPD *+

1008 80a0 SAR AR0,*+

1009 8180 SAR AR1,*

100a b004 LARK AR0,#4

100b 00ea LAR AR0,*0+

100c b900 SAR AR0,*+,AR6

100d b201 LARK AR2,#1

100e 8be0 MAR *0+

100f 90a0 LACK #00h

In mixed mode, the debugger displays all windows that can be displayed in
auto and assembly modes—regardless of whether you’re currently running
assembly language or C code. This is useful for finding bugs in C programs
that exploit specific architectural features of the ’C2x.

Restrictions associated with debugging modes
The assembly language code that the debugger shows you is the disassembly
(reverse assembly) of memory’s contents. If you load object code into memory,
then the assembly language code is the disassembly of that object code. If you
don’t load an object file, then the disassembly won’t be very useful.

Some commands are valid only in certain modes, especially if a command
applies to a window that is visible only in certain modes. In this case, entering
the command causes the debugger to switch to the mode that is appropriate
for the command. This applies to these commands:

dasm func mem

calls file disp

 Descriptions of the Different Kinds of Windows and Their Contents

5-5 Chapter Title—Attribute Reference

5.2 Descriptions of the Different Kinds of Windows and Their Contents

The debugger can show several types of windows. This section lists the
various types of windows and describes their characteristics.

Every window is identified by a name in its upper left corner. Each type of
window serves a specific purpose and has unique characteristics. There are
eight different windows, divided into three general categories:

� The COMMAND window provides an area for typing in commands and
for displaying various types of information such as progress messages,
error messages, or command output.

� Code-display windows are for displaying assembly language or C code.
There are three code-display windows:

� The DISASSEMBLY window displays the disassembly (assembly
language version) of memory contents.

� The FILE window displays any text file that you want to display; its
main purpose, however, is to display C source code.

� The CALLS window identifies the current function traceback (when C
code is running).

� Data-display windows are for observing and modifying various types of
data. There are four data-display windows:

� The MEMORY window displays the contents of a range of memory.

� The CPU window displays the contents of ’C2x registers.

� A DISP window displays the contents of an aggregate type such as an
array or structure, showing the values of the individual members. You
can display up to 120 DISP windows at one time.

� A WATCH window displays selected data such as variables, specific
registers, or memory locations.

You can move or resize any of these windows; you can also edit any value in
a data-display window. Before you can perform any of these actions, however,
you must select the window you want to move, resize, or edit, and make it the
active window. For more information about making a window active, see
Section 5.4, The Active Window, on page 5-17.

The remainder of this section describes the individual windows.

Descriptions of the Different Kinds of Windows and Their Contents

 5-6

COMMAND window

COMMAND

>>>

TMS320C2x Debugger Version 1.00
Copyright (c) 1990, Texas Instruments
TMS320C2x
Simulator Version 3.0

go main

display
area

command
line

command line
cursor

Purpose Provides an area for entering commands

Provides an area for echoing commands and displaying
command output, errors, and messages

Editable? Command line is editable; command output isn’t

Modes All modes

Created Automatically

Affected by All commands entered on the command line
All commands that display output in the display area
Any input that creates an error

The COMMAND window has two parts:

� Command line. This is where you enter commands. When you want to
enter a command, just type—no matter which window is active. The
debugger keeps a list of the last 50 commands that you entered. You can
select and re-enter commands from the list without retyping them.

� Display area . This area of the COMMAND window echoes the command
that you entered, shows any output from the command, and displays
debugger messages.

For more information about the COMMAND window and entering commands,
refer to Chapter 6, Entering and Using Commands.

DISASSEMBLY window

 Running Title—Attribute Reference

5-7 Chapter Title—Attribute Reference

DISASSEMBLY

memory
address

object
code

disassembly
(assembly language
constructed from object code)

1123 ce26 RET

1124 d000 c_int0: LRLK AR0,#4e1h

1126 d100 LRLK AR1,#4e1h

1128 ce08 SPM0

1129 ce07 SSXM

112a d001 LALK #1000h

112c cc01 ADDK #01h

112d f680 BZ 1131h

112f fe89 CALL 1135h,*,AR1

current PC

Purpose Displays the disassembly (or reverse assembly) of memory
contents

Editable? No; pressing the edit key (F9) or the left mouse button sets
a breakpoint on an assembly language statement

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by DASM and ADDR commands
Breakpoint and run commands

Within the DISASSEMBLY window, the debugger highlights:

� The statement that the PC is pointing to (if that line is in the current display)
� Any breakpointed statements
� The address and object code fields for all statements associated with the

current C statement, as shown below

DISASSEMBLY

1007 0aa0 main: POPD *+

1008 80a0 SAR AR0,*+

1009 8180 SAR AR1,*

100a b004 LARK AR0,#4

current PC
FILE: t1.c

0004 9 exter n call();

0005 9 exte r meminit();

00060

0006 1 main()

These assembly lan-
guage statements are
associated with this C

statement

Descriptions of the Different Kinds of Windows and Their Contents

 5-8

FILE window

FILE: sample.c

00001 struct xxx { int a,b,c; int f1 : 2; int f2 : 4; struct xx

00002 str, astr[10], aastr[

00003 union uuu { int u1, u2, u3, u4, u5[6]; struct xxx u6; }

00004 struct zzz { int b1,b2,be,b4,b5; struct xxx q1[2],q2; str

00005 big1, *big2, big3[6];

00006 struct { int x,y,z,; int **ptr; float *fptr; char ra[5

00007 enum yyy { RED, GREEN, BLUE } genum, *penum, aenum[5][4]

text
file

Purpose Shows any text file you want to display

Editable? No; if the FILE window displays C code, pressing the edit key
(F9) or the left mouse button sets a breakpoint on a C
statement

Modes Auto (C display only) and mixed

Created With the FILE command
Automatically when you’re in auto or mixed mode and
your program begins executing C code

Affected by FILE, FUNC, and ADDR commands
Breakpoint and run commands

You can use the FILE command to display the contents of any file within the
FILE window, but this window is especially useful for viewing C source files.
Whenever you single-step a program or run a program and halt execution, the
FILE window automatically displays the C source associated with the current
point in your program. This overwrites any other file that may have been
displayed in the window.

Within the FILE window, the debugger highlights:

� The statement that the PC is pointing to (if that line is in the current display)
� Any statements where you’ve set a breakpoint

 Descriptions of the Different Kinds of Windows and Their Contents

5-9 Chapter Title—Attribute Reference

CALLS window

CALLS

3: subx()

2: call()

1: main() current function

order of functions called

names of functions called

is at top of list

Purpose Lists the function you’re in, its caller, and its caller, etc., as
long as each function is a C function

Editable? No; pressing the edit key (F9) or the left mouse button
changes the FILE display to show the source associated with
the called function

Modes Auto (C display only) and mixed

Created Automatically when you’re displaying C code
With the CALLS command if you closed the window

Affected by Run and single-step commands

The display in the CALLS window changes automatically to reflect the latest
function call.

CALLS

1: **UNKNOWN

CALLS

1: main()

If you haven’t run any code, then no func-
tions have been called yet. You’ll also see
this if you’re running code but are not cur-

rently running a C function.

In C programs, the first C function is main.

As your program runs, the contents of the
CALLS window change to reflect the cur-
rent routine that you’re in and where the

routine was called from. When you exit a
routine, its name is popped from the

CALLS list.

CALLS

2: xcall()

1: main()

CALLS

1: main()

Descriptions of the Different Kinds of Windows and Their Contents

 5-10

If a function name is listed in the CALLS window, you can easily display the
function in the FILE window:

1) Point the mouse cursor at the appropriate function name that is listed in
the CALLS window.

2) Click the left mouse button. This displays the selected function in the FILE
window.

1) Make the CALLS window the active window (see Section 5.4, The Active
Window, page 5-17).

↓ ↑ 2) Use the arrow keys to move up/down through the list of function names
until the appropriate function is indicated.

F9 3) Press F9 . This displays the selected function in the FILE window.

You can close and reopen the CALLS window.

� Closing the window is a two-step process:

1) Make the CALLS window the active window.

2) Press F4

� To reopen the CALLS window after you’ve closed it, enter the CALLS
command. The format for this command is:

calls

 Descriptions of the Different Kinds of Windows and Their Contents

5-11 Chapter Title—Attribute Reference

MEMORY window

MEMORY

MEMORY
0000 0007

0001 0007

0002 0007

0003 0007

0004 3fff

0005 ff00

0000 0007 0007 0007 0007 bfff ff00 0000

0007 0008 0000 bfff 0000 0000 0001 0001

000e 0001 bfff 0000 09f5 dffd ffff f080

0015 09c6 bfff bfff f7ff 0000 bfff bfff

001c bfff bfff ff77 bfff 0000 0000 0900

0023 0900 fe5a ffff 0000 0000 ffff ffff

addresses data

The display changes
when you resize the

window

Purpose Displays the contents of memory

Editable? Yes—you can edit the data (but not the addresses)

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by The MEM command

The MEMORY window has two parts:

� Addresses . The first column of numbers identifies the addresses of the
first column of displayed data. No matter how many columns of data you
display, only one address column is displayed. Each address in this
column identifies the address of the data immediately to its right.

� Data. The remaining columns display the values at the listed addresses.
You can display more data by making the window wider and/or longer.

The first MEMORY window above has one column of data, so each new
address is incremented by one. Although the second window shows four
columns of data, there is still only one column of addresses; the first value
is at address 0x0000, the second at address 0x0001, etc.; the fifth value
(first value in the second row) is at address 0x0007, the sixth at address
0x0008, etc.

As you run programs, some memory values change as the result of program
execution. The debugger highlights changed values. Depending on how you
configure memory for your application, some locations may be invalid/uncon-
figured. The debugger also highlights these locations (by default, it shows
these locations in red).

Descriptions of the Different Kinds of Windows and Their Contents

 5-12

If you want to view different memory locations, use the MEM command to
display a different block of memory. The basic syntax for this command is:

mem address

When you enter this command, the debugger changes the memory display so
that address becomes the first displayed location (it’s displayed in row 1,
column 1).

The ’C2x has separate data and program spaces. By default, the MEMORY
window shows data memory. If you want to display program memory, you can
enter the MEM command like this:

mem address@prog

The @prog suffix identifies the address as a program memory address. (You
can also use @data to display data memory, but since data memory is the
default, the @data is unnecessary).

When you display program memory, the MEMORY window’s label changes to
remind you that you are no longer displaying data memory:

MEMORY [PROG]
0000 ff80 1000 0000 0000 0000 0000 0000

0007 0000 0000 0000 0000 0000 0000 0000

000e 0000 0000 0000 0000 0000 0000 0000

0015 0000 0000 0000 0000 0000 0000 0000

001c fefa fdcf 7175 1454 57d3 5555 ffff

The MEMORY label
changes to MEMORY

[PROG]

 Descriptions of the Different Kinds of Windows and Their Contents

5-13 Chapter Title—Attribute Reference

CPU window

register
name

register
contents

CPU
ACC 00000000 PRE G 00000000
TIM ffff PRD ffff
PC 1124 TOS 0000 ST0 0600 ST1 07f0
IMR ffc0 IFR 0000 TREG 0000 RTPC 0000
AR0 0000 AR1 0000 AR2 0000 AR3 0000

The display changes
when you resize the

window

CPU
ACC 00000000
PREG 00000000
TIM ffff
PRD ffff
PC 1124
TOS 0000
ST0 0600
ST1 07f0
IMR ffc0
IFR 0000
TREG 0000
RTPC 0000
AR0 0000
AR1 0000
AR2 0000
AR3 0000
AR4 0000
AR5 0000

Purpose Shows the contents of the ’C2x registers

Editable? Yes—you can edit the value of any displayed register

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by Data-management commands

As you run programs, some values displayed in the CPU window change as
the result of program execution. The debugger highlights changed values.

Descriptions of the Different Kinds of Windows and Their Contents

 5-14

DISP windows

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x1874

f4 [...]

structure
members

member
values

This member is an array, and you
can display its contents in a sec-

ond DISP window

DISP: str.f4

[0] 4427

[1] 1778

[2] 5554

[3] 3567

[4] 1384

[5] 1824

[6] 3565

[7] 3774

[8] 1347

[9] 1384

Purpose Displays the members of a selected structure, array or
pointer, and the value of each member

Editable? Yes—you can edit individual values

Modes Auto (C display only) and mixed

Created With the DISP command

Affected by The DISP command

A DISP window is similar to a WATCH window, but it shows the values of an
entire array or structure instead of a single value. Use the DISP command to
open a DISP window; the syntax is:

disp expression

Data is displayed in its natural format:

� Integer values are displayed in decimal.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

If any of the displayed members are arrays, structures, or pointers, you can
bring up additional DISP windows to display their contents—up to 120 DISP
windows can be open at once.

 Descriptions of the Different Kinds of Windows and Their Contents

5-15 Chapter Title—Attribute Reference

WATCH window

WATCH

1: AR0 0x0000

2: X+X 4

3: PC 0x0040

watch index

label current value

Purpose Displays the values of selected expressions

Editable? Yes—you can edit the value of any expression whose value
specifies a storage location (in registers or memory). In the
window above, for example, you could edit the value of PC but
couldn’t edit the value of X+X.

Modes Auto, assembly, and mixed

Created With the WA command

Affected by WA, WD, and WR commands

The WATCH window helps you to track the values of arbitrary expressions,
variables, and registers. Use the WA command for this; the syntax is:

wa expression [, label]

WA adds expression to the WATCH window. (If there’s no WATCH window,
then WA also opens a WATCH window).

To delete individual entries from the WATCH window, use the WD command.
To delete all entries at once and close the WATCH window, use the WR
command.

Although the CPU window displays register contents, you may not be
interested in the values of all these registers. In this situation, it is convenient
to use the WATCH window to track the values of the specific registers you’re
interested in.

Cursors

 5-16

5.3 Cursors

The debugger display has three types of cursors:

� The command-line cursor is a block-shaped cursor that identifies the
current character position on the command line. Arrow keys do not affect
the position of this cursor.

COMMAND

>>>

Loading sample.out

Done

file sample.c

wa ACC+1

wa i

go main

command line cursor

� The mouse cursor is a block-shaped cursor that tracks mouse move-
ments over the entire display. This cursor is controlled by the mouse driver
installed on your system; if you haven’t installed a mouse, you won’t see
a mouse cursor on the debugger display.

� The current-field cursor identifies the current field in the active window.
This is the hardware cursor that is associated with your EGA card. Arrow
keys do affect this cursor’s movement.

CPU
TIM ffff PRD ffff

PC 1124 TOS 0000 ST0 0600 ST1 07f0

IMR ffc0 IFR 0000 TREG 0000 RTPC 0000

AR0 0000 AR1 0000 AR2 0000 AR3 0000

current field cursor

 The Active Window

5-17 Chapter Title—Attribute Reference

5.4 The Active Window

The windows in the debugger display aren’t fixed in their position or in their
size. You can resize them, move them around, and, in some cases, close
them. The window that you’re going to move, resize, or close must be active .

You can move, resize, or close only one window at a time; thus, only one
window at a time can be the active windo w. Whether or not a window is active
doesn’t affect the debugger’s ability to update information in a window—it
affects only your ability to manipulate a window.

Identifying the active window

The debugger highlights the active window. When windows overlap on your
display, the debugger pops the active window to be on top of other windows.

You can alter the active window’s border style and colors if you wish;
Figure 5–4 illustrates the default appearance of an active window and an
inactive window.

Figure 5–4. Default Appearance of an Active and an Inactive Window

COMMAND

>>>

Loading sample.out

Done

file sample.c

go main

COMMAND

>>>

TMS320C2x Debugger Version 1.00

Copyright (c) 1990, Texas Instrume

TMS320C2x

Simulator Version 3.0

Loading sample.out
This window is high-

lighted to show that it
is active

This window is not
highlighted and is not

active

An active window (default appearance)

An inactive window (default appearance)

Note: On monochrome monitors , the border and selection corner are highlighted as shown in
the illustration. On color monitors , the border and selection corner are highlighted as
shown in the illustration, but they also change color (by default, they change from white to
yellow).

The Active Window

 5-18

Selecting the active window

You can use one of several methods for selecting the active window:

1) Point to any location within the boundaries or on any border of the desired
window.

2) Click the left mouse button.

Note that if you point within the window, you might also select the current field.
For example:

� If you point inside the CPU window, then the register you’re pointing at
becomes active and the debugger treats any text that you type as a new
register value. If you point inside the MEMORY window, then the address
value you’re pointing at becomes active, and the debugger treats any text
that you type as a new memory value.

Press ESC to get out of this.

� If you point inside the DISASSEMBLY or FILE window, you’ll set a break-
point on the statement you’re pointing to.

Press the button again to clear the breakpoint.

F6 This key hops through the windows on your display, making each one active
in turn and making the previously active window inactive. Pressing this key
highlights one of the windows, showing you that the window is active. Pressing

F6 again makes a different window active. Press F6 as many times as nec-
essary until the desired window becomes the active window.

 The Active Window

5-19 Chapter Title—Attribute Reference

win The WIN command allows you to select the active window by name. The
format of this command is:

win WINDOW NAME

Note that the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need
specify only enough letters to identify the window.

For example, to select the DISASSEMBLY window as the active window, you
could enter either of these two commands:

win DISASSEMBLY
or win DISA

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them.

If you supply an ambiguous name (such as C, which could stand for CPU or
CALLS), the debugger selects the first window it finds whose name matches
the name you supplied. If the debugger doesn’t find the window you asked for
(because you closed the window or misspelled the name), then the WIN
command has no effect.

Manipulating Windows

 5-20

5.5 Manipulating Windows

A window’s size and its position in the debugger display aren’t fixed—you can
resize and move windows.

Note: Which Windows Can Be Resized?

You can resize or move any window, but first the window must be active . For
information about selecting the active window, refer to Section 5.4 (page
5-17).

Resizing a window

The minimum window size is three lines by four characters. The maximum
window size varies, depending on which screen size you’re using, but you
can’t make a window larger than the screen.

There are two basic ways to resize a window:

� You can resize a window by using the mouse.

� You can resize a window by using the SIZE command.

1) Point to the lower right corner of the window. This corner is highlighted—
here’s what it looks like:

COMMAND

>>>

TMS320C2x Debugger Version 1.00

Copyright (c) 1990, Texas Instr

TMS320C2x

Simulator Version 3.0

highlighted corner

2) Grab the highlighted corner by pressing one of the mouse buttons; while
pressing the button, move the mouse in any direction. This resizes the
window.

3) Release the mouse button when the window reaches the desired size.

 Manipulating Windows

5-21 Chapter Title—Attribute Reference

size The SIZE command allows you to size the active window. The format of this
command is:

size [width, length]

You can use the SIZE command in one of two ways:

Method 1 Supply a specific width and length

Method 2 Omit the width and length parameters and use arrow keys to
interactively resize the window.

SIZE, method 1: Use width and length parameters. Valid values for the
width and length depend on the screen size and the window position on the
screen. Table 5–1 lists the minimum and maximum window sizes.

Table 5–1. Width and Length Limits for Window Sizes

Screen size
Debugger
option Valid widths Valid lengths

80 characters by 25 lines none 4 through 80 3 through 24

80 characters by 39 lines†

80 characters by 43 lines‡

80 characters by 50 lines§

–b 4 through 80 3 through 38
3 through 42
3 through 49

120 characters by 43 lines –bb 4 through 120 3 through 42

132 characters by 43 lines –bbb 4 through 132 3 through 42

80 characters by 60 lines –bbbb 4 through 80 3 through 59

100 characters by 60 lines –bbbbb 4 through 100 3 through 59
† PC version of simulator running under Microsoft Windows
‡ PC with EGA card; Sun
§ PC with VGA card

Note: To use a larger screen size, you must invoke the debugger with one of the –b options.

The maximum sizes assume that the window is in the upper left corner
(beneath the menu bar). If a window is in the middle of the display for example,
you can’t size it to the maximum height and width—you can size it only to the
right and bottom screen borders.

For example, if you want to use commands to make the CALLS window 8
characters wide by 20 lines long, you could enter:

win CALLS
size 8, 20

Manipulating Windows

 5-22

SIZE, method 2: Use arrow keys to interactively resize the window. If you
enter the SIZE command without width and length parameters, you can use
arrow keys to size the window:

↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the cursor keys, you must press or .

For example, if you want to make the CPU window three lines longer and two
characters narrower, you can enter:

win CPU
size

↓ ↓ ↓ ← ← ESC

Moving a window

The windows in the debugger display don’t have fixed positions—you can
move them around.

There are two ways to move a window:

� You can move a window by using the mouse

� You can move a window by using the MOVE command

1) Point to the left or top edge of the window.

COMMAND

>>>

TMS320C2x Debugger Version 1.00

Copyright (c) 1990, Texas Instr

TMS320C2x

Simulator Version 3.0

Loading sample.out

Point to the top edge
or the left edge

2) Press the left mouse button, but don’t release it; now move the mouse in
any direction.

3) Release the mouse button when the window is in the desired position.

 Manipulating Windows

5-23 Chapter Title—Attribute Reference

mov e The MOVE command allows you to move the active window. The format of this
command is:

mov e [X position, Y position [, width, length]]

You can use the MOVE command in one of two ways:

Method 1 Supply a specific X position and Y position

Method 2 Omit the X position and Y position parameters and use arrow
keys to interactively resize the window

MOVE, method 1: Use the X position and Y position parameters. You can
move a window by defining a new XY position for the window’s upper left
corner. Valid X and Y positions depend on the screen size and the window size.
Table 5–2 lists the minimum and maximum XY positions.

Table 5–2. Minimum and Maximum Limits for Window Positions

Screen size
Debugger
option

Valid X
positions

Valid Y
positions

80 characters by 25 lines none 0 through 76 1 through 22

80 characters by 39 lines†

80 characters by 43 lines‡

80 characters by 50 lines§

–b 0 through 76 1 through 36
1 through 40
1 through 47

120 characters by 43 lines –bb 0 through 116 1 through 40

132 characters by 43 lines –bbb 0 through 128 1 through 40

80 characters by 60 lines –bbbb 0 through 76 1 through 57

100 characters by 60 lines –bbbbb 0 through 106 1 through 57
† PC version of simulator running under Microsoft Windows
‡ PC with EGA card; Sun
§ PC with VGA card

Note: To use a larger screen size, you must invoke the debugger with one of the –b options.

The maximum values assume that the window is as small as possible; for
example, if a window is half as tall as the screen, you won’t be able to move
its upper left corner to an X position on the bottom half of the screen.

For example, if you want to use commands to move the DISASSEMBLY
position to a place in the upper left area of the display, you might enter:

win DISASSEMBLY
move 5, 6

Manipulating Windows

 5-24

MOVE, method 2: Use arrow keys to interactively move the window. If you
enter the MOVE command without X position and Y position parameters, you
can use arrow keys to move the window:

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the cursor keys, you must press or .

For example, if you want to move the COMMAND window up two lines and
right five characters, you can enter:

win COM
move

↑ ↑ → → → → → ESC

Note: Resizing the Window as You Move the Window

If you choose, you can resize a window at the same time you move it. To do
this, use the width and length parameters in the same way that they are used
for the SIZE command.

 Manipulating a Window’s Contents

5-25 Chapter Title—Attribute Reference

5.6 Manipulating a Window ’s Contents

Although you may be concerned with changing the way windows appear in the
display—where they are and how big/small they are—you’ll usually be
interested in something much more important: what’s in the windows. Some
windows contain more information than can be displayed on a screen; others
contain information that you’d like to change. This section tells you how to view
the hidden portions of data within a window and which data can be edited.

Note: Which Windows Can Be Scrolled and Edited?

You can scroll and edit only the active windo w. For information about select-
ing the active window, refer to Section 5.4 (page 5-17).

Scrolling through a window ’s contents

If you resize a window to make it smaller, you may hide information. Some-
times, a window may contain more information than can be displayed on a
screen. In these cases, the debugger allows you to scroll information up and
down within the window.

There are two ways to view hidden portions of a window’s contents:

� You can use the mouse to scroll the contents of the window.

� You can use function keys and arrow keys.

You can use the mouse to point to the scroll arrows on the righthand side of
the active window. This is what the scroll arrows look like:

FILE: sample.c
0003 8 extern call();

0003 9 extern meminit();

0004 0 main()

0004 1 {

00042 register int i = 0;

00043 int j = 0, k = 0;

00044

00045 meminit();

00046 for (i = 0, i , 0x50000; i++)

00047 {

00048 call(i);

00049 if (i & 1) j += i;

00050 aai[k][k] = j;

00051 if (!(i & 0xFFFF)) k++;

00052 }

scroll up

scroll down

Manipulating a Window’s Contents

 5-26

To scroll window contents up or down:

1) Point to the appropriate scroll arrow.

2) Press the left mouse button; continue to press it until the information you’re
interested in is displayed within the window.

3) Release the mouse button when you’re finished scrolling.

You can scroll up/down one line at a time by pressing the mouse button and
releasing it immediately.

In addition to scrolling, the debugger supports the following methods for
moving through a window’s contents.

PAGE UP

The page-up key scrolls up through the window contents, one window length
at a time. You can use CONTROL PAGE UP to scroll up through an array of struc-
tures displayed in a DISP window.

PAGE DOWN

The page-down key scrolls down through the window contents, one window
length at a time. You can use CONTROL PAGE DOWN to scroll down through an
array of structures displayed in a DISP window.

HOME When the FILE window is active, pressing HOME adjusts the window’s con-
tents so that the first line of the text file is at the top of the window. You can’t
use HOME outside of the FILE window.

END When the FILE window is active, pressing END adjusts the window’s contents
so that the last line of the file is at the bottom of the window. You can’t use END

outside of the FILE window.

↑ Moves the field cursor up one line at a time.

↓ Moves the field cursor down one line at a time.

← In the FILE window, scrolls the display left eight characters at a time. In other
windows, moves the field cursor left one field; at the first field on a line, wraps
back to the last fully displayed field on the previous line.

→ In the FILE window, scrolls the display right eight characters at a time. In other
windows, moves the field cursor right one field; at the last field on a line, wraps
around to the first field on the next line.

Editing the data displayed in windows

You can edit the data displayed in the MEMORY, CPU, DISP, and WATCH
windows by using an overwrite “click and type” method or by using commands

 Manipulating a Window’s Contents

5-27 Chapter Title—Attribute Reference

that change the values. (This is described in detail in Section 9.3, Basic
Methods for Changing Data Values, page 9-4.)

Note: “Editing” the FILE, DISASSEMB LY, and CALLS Windows

In these windows, the “click and type” method of selecting data for editing—
pointing at a line and pressing F9 or the left mouse button—does not allow
you to modify data.

In the FILE and DISASSEMBLY windows, pressing F9 or the mouse but-
ton sets or clears a breakpoint on any line of code that you select. You
can’t modify text in a FILE or DISASSEMBLY window.

In the CALLS window, pressing F9 or the mouse button shows the
source for the function named on the selected line.

Closing a Window

 5-28

5.7 Closing a Window

The debugger opens various windows on the display according to the debug-
ging mode you select. When you switch modes, the debugger may close some
windows and open others. Additionally, you may choose to open DISP and
WATCH windows.

Most of the windows remain open—you can’t close them. However, you can
close the CALLS, DISP, and WATCH windows.

� To close the CALLS window:

1) Make the CALLS window the active window.

2) Press .

� To close a DISP window:

1) Make the appropriate DISP window the active window.

2) Press .

If the DISP window that you close has any children, they are closed also.

� To close the WATCH window, enter:

wr

6-1 Chapter Title—Attribute Reference

Entering and Using Commands

The debugger provides you with several methods for entering commands and accomplishing other
tasks within the debugger environment. There are several ways to enter commands: from the command
line, from pulldown menus, with a mouse, and with function keys. Mouse and function key use differ from
situation to situation, and their use is described throughout this book whenever applicable. Certain
specific rules apply to entering commands and using pulldown menus, however, and this chapter
includes this information.

Some restrictions apply to command entry for VAX and Sun versions of the simulator. For descriptions
of these restrictions, refer to subsection 2.2.3, page 2-10 (VAX) or subsection 2.3.3, page 2-13 (Sun).

Topic Page

Some of the alternative methods
for entering commands don’t
apply to all commands—however,
entering the command from the
command line is a method that
works for all commands.

6.1 Entering Commands From the Command Line 6-2
How to type in and enter commands 6-3
Sometimes, you can’t type a command 6-4
Using the command history 6-4
Clearing the display area 6-5

The pulldown menus and dialog
boxes provide you with another
easy method for entering com-
mands. You can use this method
even if you don’t have a mouse.

6.2 Using the Menu Bar and the Pulldown Menus 6-6
Using the pulldown menus 6-7
Escaping from the pulldown menus 6-8
Entering parameters in a dialog box 6-9
Using menu bar selections that don’t 6-10

have pulldown menus
How the menu selections correspond to commands 6-11

The debugger allows you to
execute often-needed command
sequences by keeping the com-
mands in a batch file. The debug-
ger also allows you to perform
some simple system commands
from within the debugger environ-
ment.

6.3 Entering Commands From a Batch File 6-13

6.4 Additional System Commands 6-14

Chapter 6

Entering Commands From the Command Line

 6-2

6.1 Entering Commands From the Command Line

The debugger supports a complete set of commands that help you to control
and monitor program execution, customize the display, and perform other
tasks. These commands are discussed in various sections throughout this
book, as they apply to the current topic. Chapter 12 summarizes all of the
debugger commands with an alphabetical reference.

Although there are a variety of methods for entering most of the commands,
all of the commands can be entered by typing them on the command line in
the COMMAND window. Figure 6–1 shows the COMMAND window.

Figure 6–1. The COMMAND Window

COMMAND

>>>

Simulator version 3.00

Loading sample.out

 58 Symbols loaded

Done

go main

display
area

command
line

The COMMAND window serves two purposes:

� The command line portion of the window provides you with an area for
entering commands. For example, the command line in Figure 6–1 shows
that a GO command was typed in (but not yet entered).

� The display area provides the debugger with an area for echoing com-
mands, displaying command output, or displaying errors and messages
for you to read. For example, the command output in Figure 6–1 shows
the messages that are displayed when you first bring up the debugger and
also shows that a GO MAIN command was entered.

If you enter a command by using an alternate method (using the mouse, a
pulldown menu, or function keys), the COMMAND window doesn’t echo
the entered command.

 Entering Commands From the Command Line

6-3 Chapter Title—Attribute Reference

How to type in and enter commands

You can type a command at almost any time; the debugger automatically
places the text on the command line when you type. When you want to enter
a command, just type—no matter which window is active. You don’t have to
worry about making the COMMAND window active or moving the field cursor
to the command line. When you start to type, the debugger usually assumes
that you’re typing a command and puts the text on the command line (except
under certain circumstances, which are explained on the next page).
Commands themselves are not case sensitive, although some parameters
(such as window names) are.

To execute a command that you’ve typed, just press . The debugger then:

1) Echoes the command to the display area,
2) Executes the command and displays any resulting output, and
3) Clears the command line when command execution completes.

Once you’ve typed a command, you can edit the text on the command line with
these keystrokes:

To... Press...

Move back over text without erasing characters or

Move forward through text without erasing
characters

Move back over text while erasing characters

Move forward through text while erasing
characters

Insert text into the characters that are already on
the command line

Note: Several Points About Typing Commands on the Command Line

� You cannot use the arrow keys to move through or edit text on the
command line.

� Typing a command doesn’t make the COMMAND window the active
window.

� If you press when the cursor is in the middle of text, the debugger
truncates the input text at the point where you press .

Entering Commands from the Command Line

 6-4

Sometimes, you can’t type a command

At most times, you can press any alphanumeric or punctuation key on your
keyboard (any printable character); the debugger interprets this as part of a
command and displays the character on the command line. In a few instances,
however, pressing an alphanumeric key is not interpreted as information for
the command line.

� When you’re pressing the ALT key, typing certain letters causes the
debugger to display a pulldown menu.

� When a pulldown menu is displayed, typing a letter causes the debugger
to execute a selection from the menu.

� When you’re pressing the CONTROL key, pressing H or L moves the
command-line cursor backward or forward through the text on the com-
mand line.

� When you’re editing a field, typing enters a new value in the field.

� When you’re using the MOVE or SIZE command interactively, pressing
keys affects the size or position of the active window. Before you can enter
any more commands, you must press ESC to terminate the interactive
moving or sizing.

� When you’ve brought up a dialog box, typing enters a parameter value for
the current field in the box.

Using the command history

The debugger keeps an internal list, or command history , of the commands
that you enter. It remembers the last 100 commands that you entered. If you
want to re-enter a command, you can move through this list, select a command
that you’ve already executed, and re-execute it.

Use these keystrokes to move through the command history.

To... Press...

Move forward through the list of executed commands, one by one

Move backward through the list of executed commands, one by one

Execute the last command in the list F2

 Entering Commands From the Command Line

6-5 Chapter Title—Attribute Reference

As you move through the command history, the debugger displays the
commands, one by one, on the command line. When you see a command that
you want to execute, simply press to execute the command. You can also
edit these displayed commands in the same manner that you can edit new
commands.

Clearing the display area

Occasionally, you may want to completely blank out the display area of the
COMMAND window; the debugger provides a command for this:

cls Use the CLS command to clear all displayed information from the display area.
The format for this command is:

cls

Using the Menu Bar and the Pulldown Menus

 6-6

6.2 Using the Menu Bar and the Pulldown Menus

In all three of the debugger displays, you’ll see a menu bar at the top of the
screen. The menu selections offer you an alternative method for entering
many of the debugger commands. Figure 6–2 points out the menu bar in a
mixed- mode display. There are several ways to use the selections on the
menu bar, depending on whether the selection has a pulldown menu or not.

Figure 6–2. The Menu Bar in the Debugger Display

Brea

k

Watch Memory

DISASSEMBLY

MEMORY
0000 0000 0000 ffff ffff ffc0 ff00 0000
0007 0000 0000 0000 0000 0000 0000 0000
000e 0000 0000 0000 0000 0000 0000 0000
0015 0000 0000 0000 0000 0000 0000 0000
001c 0000 0000 0000 0000 0000 0000 0000
0023 0000 0000 0000 0000 0000 0000 0000

FILE: sample.c

COMMAND

>>>

file sample.c

go main

mix

CALLS

MoDe

1: main()

Run=F5 Step=F8 Next=F10ColorLoad

CPU
ACC 00000000
PREG 00000000
TIM ffff
PRD ffff
PC 1124
TOS 0000
ST0 0600
ST1 07f0
IMR ffc0
IFR 0000
TREG 0000
RTPC 0000
AR0 000000046 int *pi;

00047 char *xpc;

00048

00049 extern call();

00059 exter meminit();

00060

00061 main()

1007 0aa0 main: POPD *+

1008 80a0 SAR AR0,*+

1009 8180 SAR AR1,*

100a b004 LARK AR0,#4

100b 00ea LAR AR0,*0+

100c b900 SAR AR0,*+,AR6

100d b201 LARK AR2,#1

100e 8be0 MAR *0+

100f 90a0 LACK #00h

menu bar

Several of the selections on the menu bar have pulldown menus; if they could
all be pulled down at once, they’d look like Figure 6–3.

Figure 6–3. All of the Pulldown Menus

Add
Delete
Reset
List
Enable
Fill
Save
Connect
Di sConn

Load
Load
Reload
Symbols
REstart
ReseT
File

Break
Add
Delete
Reset
List

Watch
Add
Delete
Reset

Memory Color
Load
Save
Config
Border
Prompt

Mode
C (auto)
Asm
Mixed

 Using the Menu Bar and the Pulldown Menus

6-7 Chapter Title—Attribute Reference

Note that the menu bar and associated pulldown menus occupy fixed positions
on the display. Unlike windows, you can’t move, resize, or cover the menu bar
or pulldown menus.

Using the pulldown menus

There are several ways to display the pulldown menus and then execute your
selections from them. Executing a command from a menu is similar to execut-
ing a command by typing it in.

� If you select a command that has no parameters, then the debugger
executes the command as soon as you select it.

� If you select a command that has one or more parameters, the debugger
displays a dialog box when you make your selection. A dialog box offers
you the chance to type in the parameter values for the command.

The following paragraphs describe several methods for selecting commands
from the pulldown menus.

Mouse method 1

1) Point the mouse cursor at one of the appropriate selections in the menu
bar.

2) Press the left mouse button, but don’t release the button.

3) While pressing the mouse button, move the mouse downward until your
selection is highlighted on the menu.

4) When your selection is highlighted, release the mouse button.

Mouse method 2

1) Point the cursor at one of the appropriate selections in the menu bar.

2) Click the left mouse button. This displays the menu until you are ready to
make a selection.

 3) Point the mouse cursor at your selection on the pulldown menu.

4) When your selection is highlighted, click the left mouse button.

Using the Menu Bar and the Pulldown Menus

 6-8

Keyboard method 1

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

X 3) Press and release the key that corresponds to the highlighted letter of your
selection in the menu.

Keyboard method 2

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

↓ ↑ 3) Use the arrow keys to move up and down through the menu.

4) When your selection is highlighted, press .

Escaping from the pulldown menus

� If you display a menu and then decide that you don’t want to make a selec-
tion from this menu, you can:

� Press ESC

or

� Point the mouse outside of the menu; press and then release the left
mouse button.

� If you pull down a menu and see that it is not the menu you wanted, you
can point the mouse at another entry and press the left mouse button, or
you can use the ← and → keys to display adjacent menus.

 Using the Menu Bar and the Pulldown Menus

6-9 Chapter Title—Attribute Reference

Entering parameters in a dialog box

Many of the debugger commands have parameters. When you execute these
commands from menus, you must have some way of providing parameter
values. The debugger allows you to do this by displaying a dialog box that
asks for these values.

Entering parameter values in a dialog box is much like entering commands on
the command line:

� If you press in the middle of a string of text, the debugger truncates
the string at that point.

� When you display a dialog box for the first time during a debugging
session, the parameter fields are empty. When you bring up the same
dialog box again, though, the box displays the last values that you entered.
(This is similar to having a command history.) If you want to use the same

value, just press .

� You can edit what you type (or values that remain from previous entry) in
the same way that you can edit text on the command line.

When the dialog box displays more than one parameter, you can use the arrow
keys to move from parameter to parameter. You can omit entries for optional
parameters, but the debugger won’t allow you to skip required parameters.

For example, the Add entry on the Watch menu is equivalent to the WA
command. This command has two parameters:

wa expression [, label]

When you select Add from the menu, the debugger displays a dialog box that
asks you for this parameter information. The dialog box looks like this:

Watch add

Expression

Label

Using the Menu Bar and the Pulldown Menus

 6-10

You can type in an expression just as you’d type in an expression if you were
typing the WA command, and then press . The cursor moves down to the
next parameter:

Watch add

Expression

Label

AR0 + 10

In this case, the next parameter (label) is optional. If you want to enter a param-
eter, you may do so; if you don’t want to use this parameter, don’t type anything
in the field. When you’ve entered your final choices, press . The debugger
closes the dialog box and executes the command with the parameter values
you supplied.

Using menu bar selections that don’t have pulldown menus

These three menu bar selections are single-level entries without pulldown
menus:

Run=F5 Step=F8 Next=F10

There are two ways to execute these choices.

1) Point the cursor at one of these selections in the menu bar.

2) Click the left mouse button.

This executes your choice in the same manner as typing in the associated
command without its optional expression parameter.

F5 Pressing this key is equivalent to typing in the RUN command without an
expression parameter.

F8 Pressing this key is equivalent to typing in the STEP command without an
expression parameter.

F10 Pressing this key is equivalent to typing in the NEXT command without an
expression parameter.

 Using the Menu Bar and the Pulldown Menus

6-11 Chapter Title—Attribute Reference

How the menu selections correspond to commands

The following sample screens illustrate the relationship of the debugger
commands to the menu bar and pulldown menus.

Run=F5

Step=F8

Next=F10

RUN command
(without a parameter)

NEXT command
(without a parameter)

STEP command
(without a parameter)

Load
Load
Reload
Symbols
REstart
ReseT
File

RELOAD command

SLOAD command

RESTART command

RESET command

FILE command

LOAD command

Break
Add
Delete
Reset
List

BA command

BD command

BR command

BL command

Watch
Add
Delete
Reset

WA command

WD command

WR command

program execution
(run) commands

file/load commands

breakpoint commands

watch commands

Using the Menu Bar and the Pulldown Menus

 6-12

Memory
Add
Delete
Reset
List
Enable
Fill
Save
Connect
Di sConn

MA command

MD command

MR command

ML command

MAP command

FILL command

MI command

MC command

MS command

Color
Load
Save
Config
Border
Prompt

SCONFIG command

SSAVE command

SCOLOR command

BORDER command

PROMPT command

Mode
C (auto)
Asm
Mixed

C command

ASM command

MIX command

memory commands

screen-configuration
commands

mode commands

 Entering Commands From a Batch File

6-13 Chapter Title—Attribute Reference

6.3 Entering Commands From a Batch File

You can place debugger commands in a batch file and execute the file from
within the debugger environment. This is useful, for example, for setting up a
memory map that contains several MA commands followed by a MAP
command that enables memory mapping.

take Use the TAKE command to tell the debugger to read and execute commands
from a batch file. A batch file can call another batch file; they can be nested
in this manner up to 10 deep. To halt the debugger’s execution of a batch file,
press ESC .

The format for the TAKE command is:

take batch filename [, suppress echo flag]

� The batch filename parameter identifies the file that contains commands.

� If you supply path information with the filename, the debugger looks
for the file only in the specified directory.

� If you don’t supply path information with the filename, the debugger
looks for the file in the current directory.

� If the debugger can’t find the file in the current directory, it looks in any
directories that you identified with the D_DIR environment variable.
You can set D_DIR within the DOS environment; the command for
doing this is:

SET D_DIR=C:\pathname;C:\pathname

This allows you to name several directories that the debugger can
search. Remember that if you use D_DIR, you must set it before you
invoke the debugger—the debugger doesn’t recognize the DOS SET
command. If you often use the same directories, it may be convenient
to set D_DIR in your autoexec.bat file.

� By default, the debugger echoes the commands in the COMMAND
window display area and updates the display as it reads commands from
the batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but
supply a nonzero value, then the debugger behaves in the default
manner.

� If you would like to suppress the echoing and updating, use the value 0
for the suppress echo flag parameter.

Additional System Commands

 6-14

6.4 Additional System Commands

In addition to the commands that the debugger supports for controlling and
monitoring program execution and maintaining the display, the debugger
supports several system-manipulation commands that perform DOS-like
functions.

dir Use the DIR command to list the contents of a directory. The format for this
command is:

dir [directory name]

This command displays a directory listing in the display area of the COMMAND
window. If you use the optional directory name parameter, the debugger
displays a list of the specified directory’s contents. If you don’t use this
parameter, the debugger lists the contents of the current directory.

You can use wildcards as part of the directory name.

cd Use the CHDIR (CD) command to change the current working directory. The
format for this command is:

chdir directory name
or cd directory name

This changes the current directory to the specified directory name. You can
use relative pathnames as part of the directory name. Note that this command
can affect any command whose parameter is a filename (such as the FILE,
LOAD, and TAKE commands).

7-1 Chapter Title—Attribute Reference

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a memory map. The memory
map tells the debugger which areas of memory it can and can’t access. Note that the commands
described in this chapter can also be entered using the Memory pulldown menu.

Topic Page

This chapter shows you how to set
up a memory map for your sys-
tem.

7.1 The Memory Map: 7-2
What It Is and Why You Must Define It

7.2 A Sample Memory Map 7-3
Defining a memory map for the simulator 7-3
Defining a memory map for the SWDS 7-4

7.3 Identifying Usable Memory Ranges 7-6

7.4 Enabling Memory Mapping 7-7

7.5 Checking the Memory Map 7-7

7.6 Modifying the Memory Map 7-8
During a Debugging Session
Returning to the original memory map 7-9

When you are using either the
simulator or the SWDS, you can
add simulated I/O ports to the
memory map and associate the
ports with input or output files.

7.7 Simulating I/O Space 7-10
Connecting an I/O port 7-10
Observing serial port data 7-11
Configuring memory to use serial port simulation 7-12
Disconnecting an I/O port 7-13

Chapter 7

The Memory Map: What It is and Why You Must Define It

 7-2

7.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and can’t
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file. (For information
about the MEMORY directive and setting up a linker command file, see the
TMS320 Floating-Point DSP Assembly Language Tools User’s Guide.)

When memory mapping is enabled, the debugger checks each of its memory
accesses against the provided memory map. If you attempt to access an
undefined or protected area, the debugger displays an error message.

Note: Accessing Nonexistent Memory

If you’re using the SWDS
The debugger won’t allow you to access nonexistent memory. Attempting to
access nonexistent program memory may actually cause the debugger to
access data memory, and accessing nonexistent data memory may cause
access to board control registers.

If you’re using the simulator
When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger cannot
prevent your program from attempting to access nonexistent memory.

The debugger provides a complete set of memory-mapping commands. You
can define the memory map interactively by entering these commands while
you’re using the debugger. This can be inconvenient because in most cases,
you’ll set up one memory map before you begin debugging and will use this
map for all of your debugging sessions. The easiest method for doing this is
to put the memory-mapping commands in a batch file.

Whenever you invoke the debugger, it looks for a batch file named dbinit.cmd
(SWDS) or siminit.cmd (simulator). If it finds the file, the debugger
automatically reads and executes the commands in the file. If you plan to use
the same memory map many times, then it may be convenient for you to define
your memory map in this batch file. However, you aren’t required to use
dbinit.cmd or siminit.cmd file. You can define the memory map in any batch file
and load the file after you invoke the debugger.

The dbinit.cmd and siminit.cmd files shipped with the SWDS and simulator, re-
spectively, define default memory maps for these tools. These default maps
may be sufficient when you begin using the debugger. If you don’t define the
memory map in dbinit.cmd or siminit.cmd, then the debugger is initially unable

 The Memory Map: What It is and Why You Must Define It/A Sample Memory Map

7-3 Chapter Title—Attribute Reference

to access any target memory locations. Invalid memory addresses and their
contents are highlighted in the data-display windows. (On color monitors, in-
valid memory locations, by default, are displayed in red.)

7.2 A Sample Memory Map

Whenever you invoke the debugger, it looks for an initialization file named
dbinit.cmd (SWDS) or siminit.cmd (simulator). If the debugger finds this file,
it reads commands from the file during the initialization process.

Because you must define a memory map before you can run any programs,
it’s convenient to define the memory map in the initialization file. The method
for doing this differs between the simulator and the SWDS. Choose the correct
method for the tool that you’re using.

Defining a memory map for the simulator

Figure 7–1 shows the memory map commands that are defined in siminit.cmd.
You can use the file as is, edit it, or create your own command file.

Figure 7–1. Definition of On-Chip Memory Maps

MA 0x0 , 0, 0x20 , ROM ;Interrup t vectors and reserved
MA 0x20 , 0, 0xF80 , RAM ;On-chip program memory EPROM
MA 0x0 , 1, 0x6, RAM ;On-chip data memory-mapped registers

The MA (map add) commands define valid memory ranges and identify the
read/write characteristics of the memory ranges. Figure 7–2 illustrates the
memory map defined by the default siminit.cmd file.

Figure 7–2. Initial Memory Map Defined by the siminit.cmd File

0x00

0xFFFF

Page 0—Program Memory

0x00

Page 1—Data Memory

0x6

0x80

0x200

0x400

0x60

0xFFFF

Reserved

Reserved

Unmapped Internal RAM

Memory-Mapped Registers

Unmapped Internal RAM

Unmapped External RAM

0x20

0x1000

Unmapped External
Program Memory

Program Memory EPROM

Interrupt Vectors

A Sample Memory Map

 7-4

Note: Memory Map Restrictions Associated With the Simulator

1) You must map in the first six words of data memory for on-chip memory-
mapped registers. (Refer to the third line of code in Figure 7–1.)

2) Do not map in the following two reserved areas in data memory:

0x6 through 0x5F and
0x80 through 0x1FF

Figure 7–3 shows another example of a possible memory map for the
simulator.

Figure 7–3. Example of a Memory Map That You Could Define for the Simulator

MA 0x0, 0,0x20, ROM ;on-chip registers
MA 0x400, 1,0x4000, RAM ;External data memory

Defining a memory map for the SWDS

Figure 7–4 shows the memory map commands that are defined in dbinit.cmd.
You can use the file as is, edit it, or create your own command file.

Figure 7–4. Definition of On-Chip Memory Maps

MA 0x0, 0,0x20, RAM ;Interrupt vectors and reserved
MA 0x20, 0,0x4FC0,RAM ;On-chip program memory EPROM
MA 0x0, 1,0x6, RAM ;On-chip data memory-mapped registers

The MA (map add) commands define valid memory ranges and identify the
read/write characteristics of the memory ranges. Figure 7–5 illustrates the
memory map defined by the default dbinit.cmd file (configuration 0 from
Table 7–1).

 A Sample Memory Map

7-5 Chapter Title—Attribute Reference

Figure 7–5. Initial Memory Map Defined by the dbinit.cmd File

0x00

0x5000

Page 0—Program Memory

0x00

Page 1—Data Memory

0x06

0x80

0x200

0x400

0x60

0x1000

Reserved

Reserved

Unmapped Internal RAM

Memory-Mapped Registers

Unmapped Internal RAM

Unmapped External RAM

0x20

Unmapped External
Program Memory

Interrupt Vectors

The SWDS program and data memory space is limited to 24K words. You can
define your own memory map in one of the four configurations shown in
Table 7–1.

Table 7–1. Acceptable Memory Map Configurations for the SWDS

Configuration Progra m Memory Data Memory

0 0x0 to 0x5000 0x0 to 0x1000

1 0x0 to 0x4000 0x0 to 0x2000

2 0x0 to 0x3000 0x0 to 0x3000

3 0x0 to 0x2000 0x0 to 0x4000

Note: Memory Map Restrictions Associated with the SWDS

The total memory available in any configuration is 0x6000, and each memory
space (program or data) begins at 0x0000. The SWDS configuration allows
you to map over the normally reserved areas of the ’C2x; however, these re-
served areas are still undefined. You should avoid these areas.

The SWDS memory configuration is determined from the program memory
configuration. For example, if you defined the program memory upper limit
to be somewhere between 0x4000 and 0x5000, the SWDS configuration will
be set to 0. In this case, data memory addresses higher than 0x1000 will pro-
duce a memory error.

Identifying Usable Memory Ranges

 7-6

7.3 Identifying Usable Memory Ranges

ma The debugger’s MA (memory add) command identifies valid ranges of target
memory. The syntax for this command is:

ma address, page, length, type

� The address parameter defines the starting address of a range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the COMMAND window display
area: Conflicting map range .

� The page parameter is a 1-digit number that identifies the type of memory
(program, data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0
Data memory 1
I/O space 2

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory,
Use this keyword as the type
parameter

Read-only memory R, ROM, or READONLY
Write-only memory W, WOM, or WRITEONLY
Read/write memory WR or RAM
No-access memory PROTECT
Input port IPORT or IN PORT‡

Output port OPORT or OUT PORT‡

Input/output port IOPORT‡

‡ Simulator only

 Enabling Memory Mapping / Checking the Memory Map

7-7 Chapter Title—Attribute Reference

7.4 Enabling Memory Mapping

map By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to explicitly enable or disable memory. You can use
the MAP command to do this; the syntax for this command is:

map on
or map off

Note that disabling memory mapping can cause bus fault problems in the
target because the debugger may attempt to access nonexistent memory.

Note: Accessing Invalid Memory Locations

When memory mapping is enabled, you cannot:

� Access memory locations that are not defined by an MA command

� Modify memory areas that are defined as read only or protected

If you attempt to access memory in these situations, the debugger displays
this message in the COMMAND window display area:

Error in expression

7.5 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML command.
The syntax for this command is:

ml

The ML command lists the page, starting address, ending address, and read/
write characteristics of each defined memory range. For example, if you’re
using the SWDS default memory map and you enter the ML command, the
debugger displays this:

Page 0 = program memory

Page Memory range Attributes
0 0000 – efff READ WRITE
1 0000 – efff READ WRITE

Page 1 = data memory
Page 0 = program memory

ending addressstarting address

Modifying the Memory Map During a Debugging Session

 7-8

7.6 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory
delete) command. The syntax for this command is:

md address, page

� The address parameter identifies the starting address of the range of
program, data, or I/O memory. If you supply an address that is not the
starting address of a range, the debugger displays this error message in
the COMMAND window display area:

Specified map not found

� The page parameter is a 1-digit number that identifies the type of memory
(program, data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

Note: Deleting a Simulated I/O Port

If you are using the simulator and want to use the MD command to remove
a simulated I/O port, you must first disconnect the port with the MI command.
Refer to Section 7.7, page 7-10.

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

 Modifying the Memory Map During a Debugging Session

7-9 Chapter Title—Attribute Reference

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, page, length, type

The MA command is described in detail on page 7-6.

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you had set up your memory map in a batch file
named mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

Simulating I/O Space

 7-10

7.7 Simulating I/O Space

Both the SWDS and simulator provide simulation of I/O ports.

In addition to adding memory ranges to the memory map, you can use the MA
command to add I/O ports to the memory map. To do this, use IPORT (input
port), OPORT (output port), or IOPORT (input/output port) as the memory
type. Use page 1 to simulate serial ports; use page 2 to simulate parallel ports.
Then, you can use the MC command to connect a port to an input or output
file. This simulates external I/O cycle reads and writes by allowing you to read
data in from a file and/or write data out to a file.

Note: Simulating I/O Space With the SWDS

The SWDS cannot monitor the instruction execution while it’s running; so, in
addition to using the MC and MI commands, you must set a breakpoint on the
IN and OUT instructions to enable the I/O simulation.

If the I/O port is connected to a file and a breakpoint is set on the corre-
sponding I/O instruction, the debugger performs the I/O operation but does
not break at that breakpoint. If you want to break at the I/O instruction while
connected to a port, precede the I/O instruction with a NOP instruction, and
set breakpoints on both instructions.

Connecting an I/O port

mc The MC (memory connect) command connects IPORT, OPORT, or IOPORT
to an input or output file. The syntax for this command is:

mc port address, page, filename, {READ | WRITE}

� The port address parameter defines the address of the I/O port. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

� The page parameter is a 1-digit number that identifies the page that the
port occupies. Parallel ports are on page 2 (the I/O space), and serial ports
are on page 1 (data space).

� The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist, or the MC command will fail.

� The final parameter is specified as READ or WRITE and defines how the
file will be used (for input or output, respectively).

 Simulating I/O Space

7-11 Chapter Title—Attribute Reference

The file is accessed during an IN or OUT instruction to the associated port
address. Any port in I/O space can be connected to a file. A maximum of one
input and one output file can be connected to a single port; multiple ports can
be connected to a single file. Memory-mapped ports can also be connected
to files; any instruction that reads or writes to the memory-mapped port will
read or write to the associated file.

Example 7–1 shows how an input port can be connected to an input file named
in.dat.

Example 7–1.Connecting an Input Port to an Input File

Assume that the file in.dat contains words of data in hexadecimal format,
one per line, like this:

0A00
1000
2000

.

.

.

These two debugger instructions set up and connect an input port:

MA 0x5,2,0x1,IPORT Configure port address 5h
as an input port

MC 0x5,2,in.dat,READ Open file in.dat and
connect to port address 5h

Assume that these two ’C2x instructions are part of your ’C2x program.
They read from the file in.dat.

IN *,5h IN instruction reads a word from the
file attached to location 5h and stores it

in data memory location indicated by
the current auxiliary register.

Observing serial port data

The SWDS and simulator provide simulation for the serial port. The mode of
operation depends primarily on three bits: FO, FSM, and TXM. You can con-
nect the ports to input and output files with the MC command. You can observe
the data moving in and out of the ports with the WA command or by watching
locations 0 and 1 in data memory.

Simulating I/O Space

 7-12

You can use four pseudoregisters to generate external synchronization pulses
when you’re operating with the FSM mode set to one: XIRP, XIRT, RIRP, RIRT.
For more information about these pseudoregisters, refer to Table 7–2.

Table 7–2. Serial Port Pseudoregisters

Pseudo-
Register Description Default

XIRP Transmit Interrupt Period Register

Defines the machine cycles between transmit interrupts. The period is loaded
into the transmit interrupt timer register (XIRT) when the serial ports are reset
or when the XIRT decrements to zero. Once the XIRT register counter
reaches zero, data is transferred from the DXR register to the file which is
connected to this register. A transmit interrupt is set in the interrupt flag regis-
ter. If the interrupt is masked in the interrupt mask register, or if the global inter-
rupt mode (INTM) is disabled, the transfer will not occur. Note that the mini-
mum period value should be five. When both XIRT and XIRP are zero, any
load to XIRP will also load XIRT. A write of zero to XIRP will disable the syn-
chronization pulse generation after XIRT decrements to zero.

64

XIRT Transmit Interrupt Timer Register

Contains the current cycle count time to the next transmit interrupt. The count-
er decrements at the machine cycle rate.

Loaded from XIRP

RIRP Receive Interrupt Period Register

Defines the machine cycles between receive interrupts. The period is loaded
into the receive interrupt timer register (RIRT) when the serial ports are reset
or when the RIRT decrements to zero. Once the RIRT counter reaches zero,
data is transferred from the file which is connected to the register to the data
memory location. A receive interrupt is set in the interrupt flag register. If the
interrupt is masked in the interrupt mask register, or if the global interrupt mode
(INTM) is disabled, the transfer will not occur. Note that the minimum period
value should be five. When both IRT and RIRP are zero, any load to RIRP will
also load RIRT. A write of zero to RIRP will disable the synchronization pulse
generation after RIRT decrements to zero.

64

RIRT Receive Interrupt Timer Register

Contains the current cycle count time to the next receive interrupt. The counter
decrements at the machine cycle rate.

Loaded from XIRT

Configuring memory to use serial port simulation

If you want to use serial port simulation, you must configure memory with MA
and MC. The code in Example 7–2 adds the transmit and receive registers to
the memory map, then connects them to the input and output files.

 Simulating I/O Space

7-13 Chapter Title—Attribute Reference

Example 7–2.Adding Transmit and Receive Registers; Connecting Their Input and Output
to a File

ma 0x0, 1, 1, IPORT ;Configure DRR in data space as input port
ma 0x1, 1, 1, OPORT ;Configure DXR in data space as output port
mc 0x0, 1, rdat, read ;Open file rdat and connect to port address 0h
mc 0x1, 1, xdat, write ;Open file xdat and connect to port address 1h

The following commands configure the period registers for the transmit and
receive operations to occur every 64 cycles for the standard serial port:

?rirp=64
?xirp=64

The input and output file formats for the standard serial port operation require
one hexidecimal number per line. The following is an acceptable format for an
input file to the standard serial port:

0000
a445
099f
 .
 .
 .

Disconnecting an I/O port

Before you can use the MD command to delete a port from the memory map,
you must use the MI command to disconnect the port.

mi The MI (memory disconnect) command disconnects a file from an I/O port. The
syntax for this command is:

mi port address, page, {READ | WRITE}

The port address and page identify the port that will be closed. The read/write
characteristics must match the parameter used when the port was connected.

8-1 Chapter Title—Attribute Reference

Loading, Displaying, and
Running Code

The main purpose of a debugging system is to allow you to load and run your programs in a test environ-
ment. This chapter tells you how to load your programs into the debugging environment, run them on
the target system, and view the associated source code. Note that many of the commands described
in this chapter can also be executed from the Load pulldown menu.

Topic Page
Depending on the debugging
mode you choose, the debugger
shows you assembly language
only, C code only, or both at the
same time. You can also tell the
debugger to automatically display
whatever type of code is currently
running.

8.1 Code-Display Windows: 8-3
Viewing Assembly Language Code, C Code, or Both
Selecting a debugging mode 8-4

To debug a program, you must
load the program’s object code
into memory. You’ll also need to
see the associated source code.

8.2 Displaying Your Source Programs 8-5
(or Other Text Files)
Displaying assembly language code 8-5
Displaying C code 8-7
Displaying other text files 8-8

8.3 Loading Object Code 8-9
Loading code while invoking the debugger 8-9
Loading code after invoking the debugger 8-9

8.4 Where the Debugger Looks for Source Files 8-10

Chapter 8

Running Title—Attribute Reference

 8-2

Once you’ve loaded an object file,
there are several ways of running
the program during a debugging
session.

8.5 Running Your Programs 8-11
Defining the starting point for program execution 8-11
Running code 8-12
Single-stepping through code 8-13
Running code while disconnected from the target system 8-15
Running code conditionally 8-16

8.6 Halting Program Execution 8-17

8.7 Benchmarking 8-18
Benchmarking with the simulator 8-18
Benchmarking with the SWDS 8-19

 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

8-3 Chapter Title—Attribute Reference

8.1 Code-Display Windows:
Viewing Assembly Language Code, C Code, or Both

The debugger has three code-display windows:

� The DISASSEMBLY window displays the reverse assembly of program
memory contents.

� The FILE window displays any text file; its main purpose is to display C
source files.

� The CALLS window identifies the current function (when C code is run-
ning).

You can view code in several different ways. The debugger has three different
code displays that are associated with the three debugging modes. The de-
bugger’s selection of the appropriate display is based on two factors:

� The mode you select and
� Whether your program is currently executing assembly language code or

C code.

Here’s a summary of the modes and displays; for a complete description of the
three debugging modes, refer to Section 5.1, Debugging Modes and Default
Displays (page 5-2).

Use this mode To view
The debugger uses these
code-display windows

assembly mode assembly language code only
(even if your program is
executing C code)

DISASSEMBLY

auto mode assembly language code
(when that’s what your
program is running)

DISASSEMBLY

auto mode C code only
(when that’s what your
program is running)

FILE
CALLS

mixed mode both assembly language and
C code

DISASSEMBLY
FILE
CALLS

You can switch freely between the modes. If you choose auto mode, then the
debugger displays C code or assembly language code, depending on the type
of code that is currently executing.

Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

 8-4

Selecting a debugging mode

When you first invoke the debugger, it automatically comes up in auto mode.
You can then choose assembly or mixed mode. There are several ways to do
this.

The Mode pulldown menu provides an easy method for
switching modes. There are several ways to use the
pulldown menus; here’s one method:

1) Point to the menu name.

2) Press the left mouse button; do not release the button. Move the mouse
down the menu until your choice is highlighted.

3) Release the mouse button.

For more information about the pulldown menus, refer to Section 6.2, Using
the Pulldown Menus, on page 6-6.

F3 Pressing this key causes the debugger to switch modes in this order:

auto assembly mixed

Enter any of these commands to switch to the desired debugging mode:

c Changes from the current mode to auto mode.

asm Changes from the current mode to assembly mode.

mix Changes from the current mode to mixed mode.

If you are already in the desired mode when you enter a mode command, then
the command has no effect.

Mode

C

A

Mixed

sm

 (auto)

 Displaying Your Source Programs (or Other Text Files)

8-5 Chapter Title—Attribute Reference

8.2 Displaying Your Source Programs (or Other Text Files)

The debugger displays two types of code:

� It displays assembly language code in the DISASSEMBLY window in
auto, assembly, or mixed mode.

� It displays C code in the FILE window in auto and mixed modes.

The DISASSEMBLY and FILE windows are primarily intended for displaying
code that the PC points to. By default, the FILE window displays the C source
for the current function (if any), and the DISASSEMBLY window shows the
current disassembly.

Sometimes it’s useful to display other files or different parts of the same file;
for example, you may want to set a breakpoint at an undisplayed line. The
DISASSEMBLY and FILE windows are not large enough to show the entire
contents of most assembly language and C files. You can scroll through the
windows. You can also tell the debugger to display specific portions of the
disassembly or C source.

Displaying assembly language code

The assembly language code in the DISASSEMBLY window is the reverse
assembly of program-memory contents. (This code doesn’t come from any of
your text files or from the intermediate assembly files produced by the
compiler.)

MEMORY [PROG]
103e ce06

103f d002

1041 0098

1042 6080

1043 348a

1044 208c

103e ce06 RSXM

103f d002 ASLK #0418h

1041 0098 ADD *–,AR0

1042 6080 SACL *

1043 348a LAR AR4,*,AR2

1044 208c LAC *,AR4

DISASSEMBLY

addresses contents of
program memory
(object code)

disassembly of object
code in memory

Displaying Your Source Programs (or Other Text Files)

 8-6

When you invoke the debugger, it comes up in auto mode. If you load an object
file when you invoke the debugger, then the DISASSEMBLY window displays
the reverse assembly of the object file that’s loaded into memory. If you don’t
load an object file, the DISASSEMBLY window shows the reverse assembly
of whatever happens to be in memory.

In assembly and mixed modes, you can use these commands to display a
different portion of code in the DISASSEMBLY window.

dasm Use the DASM command to display code beginning at a specific point. The
syntax for this command is:

dasm address
or dasm function name

This command modifies the display so that address or function name is
displayed within the DISASSEMBLY window. The debugger continues to
display this portion of the code until you run a program and halt it.

addr Use the ADDR command to display assembly language code beginning at a
specific point. The syntax for this command is:

addr address
or addr function name

In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window. In mixed mode, ADDR affects both the
DISASSEMBLY and FILE windows.

 Displaying Your Source Programs (or Other Text Files)

8-7 Chapter Title—Attribute Reference

Displaying C code

Unlike assembly language code, C code isn’t reconstructed from memory
contents—the C code that you view is your original C source. You can display
C code explicitly or implicitly:

� You can force the debugger to show C source by entering a FILE, FUNC,
or ADDR command.

� In auto and mixed modes, the debugger automatically opens a FILE
window if you’re currently running C code.

These commands are valid in C and mixed modes:

file Use the FILE command to display the contents of any text file. The syntax for
this command is:

file filename

This uses the FILE window to display the contents of filename. The debugger
continues to display this file until you run a program and halt in a C function.
Although this command is most useful for viewing C code, you can use the
FILE command for displaying any text file. You can view only one text file at
a time. Note that you can also access this command from the Load pulldown
menu.

(Displaying a file doesn’t load that file’s object code. If you want to be able to
run the program, you must load the file’s associated object code as described
in Section 8.3 on page 8-9.)

func Use the FUNC command to display a specific C function. The syntax for this
command is:

func function name
or func address

FUNC modifies the display so that function name or address is displayed with-
in the window. If you supply an address instead of a function name, the FILE
window displays the function containing address and places the cursor at that
line.

Note that FUNC works similarly to FILE, but you don’t need to identify the name
of the file that contains the function.

Displaying Your Source Programs (or Other Text Files)

 8-8

addr Use the ADDR command to display C or assembly code beginning at a specific
point. The syntax for this command is:

addr address
or addr function name

In a C display, ADDR works like the FUNC command, positioning the code
starting at address or at function name as the first line of code in the FILE
window. In mixed mode, ADDR affects both the FILE and DISASSEMBLY
windows.

Whenever the CALLS window is open, you can use the mouse or function keys
to display a specific C function. This is similar to the FUNC or ADDR command
but applies only to the functions listed in the CALLS window.

1) In the CALLS window, point to the name of the C function.

2) Click the left mouse button.

(If the CALLS window is active, you can also use the arrow keys and F9 to
display the function; see the CALLS window discussion on page 5-9 for
details.)

Displaying other text files

The DISASSEMBLY window always displays the reverse assembly of memory
contents, no matter what is in memory.

The FILE window is primarily for displaying C code, but you can use the FILE
command to display any text file within the FILE window. You may, for example,
wish to examine system files such as autoexec.bat or an initialization batch file.
You can also view your original assembly language source files in the FILE
window.

You are restricted to displaying files that are 65,518 bytes long or less.

 Loading Object Code

8-9 Chapter Title—Attribute Reference

8.3 Loading Object Code

In order to debug a program, you must load the program’s object code into
memory. You can do this as you’re invoking the debugger, or you can do it after
you’ve invoked the debugger. (Note that you create an object file by compiling,
assembling, and linking your source files; see Section 4.3, Preparing Your
Program for Debugging, on page 4-8.)

Loading code while invoking the debugger

You can load an object file when you invoke the debugger (this has the same
effect as using the debugger’s LOAD command). To do this, enter the
appropriate command along with the name of the object file.

If you want to load a file’s symbol table only, use the –s option (this has the
same effect as using the debugger’s SLOAD command). To do this, enter the
appropriate command, the name of the object file, and specify –s.

Loading code after invoking the debugger

After you invoke the debugger, you can use one of three commands to load
object code and/or the symbol table associated with an object file. Use these
commands as described below, or use them from the Load pulldown menu.

load Use the LOAD command to load both an object file and its associated symbol
table. In effect, the LOAD command performs both a RELOAD and an SLOAD.
The format for this command is:

load object filename

reloa d Use the RELOAD command to load only an object file without loading its asso-
ciated symbol table. This is useful for reloading a program when memory has
been corrupted. The format for this command is:

reload object filename

sloa d Use the SLOAD command to load only a symbol table. The format for this
command is:

sload object filename

SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point.

Where the Debugger Looks for Source Files

 8-10

8.4 Where the Debugger Looks for Source Files

Some commands (FILE, LOAD, RELOAD, and SLOAD) expect a filename as
a parameter. If the filename includes path information, the debugger uses the
file from the specified directory and does not search for the file in any other
directory. If you don’t supply path information, though, the debugger must
search for the file. The debugger first looks for these files in the current
directory. You may, however, have your files in several different directories.

� If you’re using LOAD, RELOAD, or SLOAD, you have only two choices for
supplying the path information:

� Specify the path as part of the filename.

cd Alternatively, you can use the CD command to change the current
directory from within the debugger. The format for this command is:

cd directory name

� If you’re using the FILE command, you have several options:

� Within the DOS environment, you can name additional directories with
the D_SRC environment variable. The format for doing this is:

SET D_SRC=C:\pathname;C:\pathname

This allows you to name several directories that the debugger can
search. If you use the same directories often, it may be convenient to
set the D_SRC environment variable in your autoexec.bat file. If you
do this, then the list of directories is always available when you’re us-
ing the debugger.

� When you invoke the debugger, you can use the – i option to name
additional source directories for the debugger to search. The format
for this option is –i pathname.

You can specify multiple pathnames by using several –i options (one
pathname per option). The list of source directories that you create
with –i options is valid until you quit the debugger.

use Within the debugger environment, you can use the USE command to
name additional source directories. The format for this command is:

use directory name

You can specify only one directory at a time.

In all cases, you can use relative pathnames such as ..\csource or ..\..\code.
The debugger can recognize a cumulative total of 20 paths specified with
D_SRC, –i, and USE.

 Running Your Programs

8-11 Chapter Title—Attribute Reference

8.5 Running Your Programs
To debug your programs, you must execute them on one of the two
TMS320C2x debugging tools (SWDS, or simulator). The debugger provides
two basic types of commands to help you run your code:

� Basic run commands run your code without updating the display until you
explicitly halt execution. There are several ways to halt execution:

� Set a breakpoint.
� When you issue a run command, define a specific stopping point.
� Press ESC .
� Press the left mouse button.

� Single-step commands execute assembly language or C code, one
statement at a time, and update the display after each execution.

Defining the starting point for program execution
All run and single-step commands begin executing from the current PC (pro-
gram counter). When you load an object file, the PC is automatically set to the
starting point for program execution. You can easily identify the current PC by:

� Finding its entry in the CPU window

or

� Finding the appropriately highlighted line in the FILE or DISASSEMBLY
window. You can do this by executing one of these commands:

dasm PC
or addr PC

Sometimes you may want to modify the PC to point to a different position in
your program. There are two ways to do this:

rest If you executed some code and would like to rerun the program from the
original program entry point, use the RESTART (REST) command. The
format for this command is:

restart
or rest

Note that you can also access this command from the Load pulldown
menu.

?/eval You can directly modify the PC’s contents with one of these commands:

?PC=new value
or eval pc = new value

After halting execution, you can continue from the current PC by reissuing any
of the run or single-step commands.

Running Your Programs

 8-12

Running code

The debugger supports several run commands.

run The RUN command is the basic command for running an entire program. The
format for this command is:

run [expression]

The command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press ESC or the left mouse button.

� If you supply a logical or relational expression, this becomes a conditional
run (see page 8-16).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, then updates the display.

F5 Pressing this key runs code from the current PC. This is similar to entering a
RUN command without an expression parameter.

go Use the GO command to execute code up to a specific point in your program.
The format for this command is:

go [address]

If you don’t supply an address parameter, then GO acts like a RUN command
without an expression parameter.

ret The RETURN (RET) command executes the code in the current C function
and halts when execution returns to its caller. The format for this command is:

return
or ret

Breakpoints do not affect this command, but you can halt execution by press-
ing ESC or the left mouse button.

 Running Your Programs

8-13 Chapter Title—Attribute Reference

runb Use the RUNB (run benchmark) command to execute a specific section of
code and count the number of clock cycles consumed by the execution. The
format for this command is:

runb

Using the RUNB command to benchmark code is a multistep process,
described later in this chapter (Section 8.7, Benchmarking, on page 8-18).

Single-stepping through code

Single-step execution is similar to running a program that has a breakpoint set
on each line. The debugger executes one statement, updates the display, and
halts execution. (You can supply a parameter that tells the debugger to
single-step more than one statement; the debugger updates the display after
each statement.) You can single-step through assembly language code or C
code.

The debugger supports several commands for single-stepping through a pro-
gram. Command execution may vary, depending on whether you’re
single-stepping through C code or assembly language code.

Note that the debugger ignores interrupts when you use the STEP command
to single-step through assembly language code.

Each of the single-step commands has an optional expression parameter that
works like this:

� If you don’t supply an expression, the program executes a single state-
ment, then halts.

� If you supply a logical or relational expression, this becomes a conditional
single-step execution (see page 8-16).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger single-steps count C or
assembly language statements (depending on the type of code you’re in).

step Use the STEP command to single-step through assembly language or C code.
The format for this command is:

step [expression]

If you’re in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

Simulator

Running Your Programs

 8-14

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug op-
tion). When function execution completes, single-step execution returns to the
caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

cstep The CSTEP command is similar to STEP, but CSTEP always single-steps in
terms of a C statement. If you’re in C code, STEP and CSTEP behave
identically. In assembly language code, however, CSTEP executes all assem-
bly language statements associated with one C statement before it updates
the display. The format for this command is:

cstep [expression]

next
cnext

The NEXT and CNEXT commands are similar to the STEP and CSTEP com-
mands. The only difference is that NEXT/CNEXT never show single-step
execution of called functions—they always step to the next consecutive state-
ment. The formats for these commands are:

next [expression]
cnext [expression]

You can also single-step through programs by using function keys:

F8 Acts as a STEP command.

F10 Acts as a NEXT command.

The debugger allows you to execute several single-step commands from the
selections on the menu bar.

To execute a STEP:

1) Point to Step=F8 in the menu bar.

2) Press and release the left mouse button.

To execute a NEXT:

1) Point to Next=F10 in the menu bar.

2) Press and release the left mouse button.

 Running Your Programs

8-15 Chapter Title—Attribute Reference

Running code while disconnected from the target system

runf Use the RUNF command to disconnect the SWDS from the target system
while code is executing. The format for this command is:

runf

When you enter RUNF, the debugger clears all breakpoints, disconnects the
SWDS from the target system, and causes the processor to begin execution
at the current PC. You can quit the debugger, or you can continue to enter
commands. However, any command that causes the debugger to access the
target at this time will produce an error.

RUNF is useful in a multiprocessor system. It’s also useful in a system in which
several target systems share an SWDS; RUNF enables you to disconnect the
SWDS from one system and connect it to another.

halt Use the HALT command to halt the target system after you’ve entered a RUNF
command. The format for this command is:

halt

When you invoke the debugger, it automatically executes a HALT command.
Thus, if you enter a RUNF, quit the debugger, and later reinvoke the debugger,
you will effectively reconnect the SWDS to the target system and run the
debugger in its normal mode of operation. When you invoke the debugger, use
the –s option to preserve the current PC and memory contents.

reset The RESET command resets the target system. This is a software reset. The
format for this command is:

reset

SWDS

Running Your Programs

 8-16

Running code conditionally

The RUN, GO, and single-step commands have an optional expression
parameter that can be a relational or logical expression. This type of expres-
sion has one of the following operators as the highest precedence operator in
the expression:

> > = <
< = = = ! =
&& | | !

When you use this type of expression with these commands, the command
becomes a conditional run. The debugger executes the command repeatedly
for as long as the expression evaluates to true.

You must use breakpoints with conditional runs; the expression is evaluated
each time the debugger encounters a breakpoint. Each time the debugger
evaluates the conditional expression, it updates the screen. The debugger
applies this algorithm:

top:
if (expression = = 0) go to end;
run or single-step (until breakpoint, ESC , or mouse button halts execution)
if (halted by breakpoint, not by ESC or mouse button) go to top

end:

Generally, you should set the breakpoints on statements that are related in
some way to the expression. For example, if you’re watching a particular
variable in a WATCH window, you may want to set breakpoints on statements
that affect that variable and use that variable in the expression.

 Halting Program Execution

8-17 Chapter Title—Attribute Reference

8.6 Halting Program Execution

Whenever you’re running or single-stepping code, program execution halts
automatically if the debugger encounters a breakpoint or if it reaches a
particular point where you told it to stop (by supplying a count or an address).
If you’d like to explicitly halt program execution, there are two ways to accom-
plish this:

Click the left mouse button.

ESC Press the escape key.

After halting execution, you can continue program execution from the current
PC by reissuing any of the run or single-step commands.

Benchmarking

 8-18

8.7 Benchmarking

The debugger allows you to keep track of the number of CPU clock cycles
consumed by a particular section of code. This process is referred to as
benchmarking.

Benchmarking with the simulator
The debugger maintains the count in a pseudoregister named CLK.

Benchmarking code is a multiple-step process:

Step 1: Set a breakpoint at the statement that marks the beginning of the
section of code you’d like to benchmark.

Step 2: Set a breakpoint at the statement that marks the end of the section
of code you’d like to benchmark.

Step 3: Enter any RUN command to execute code up to the first breakpoint.

Step 4: Now enter the RUNB command:

runb

When the processor halts at the second breakpoint, the value of CLK is valid.
To display it, use the ? command or enter it into the WATCH window with the
WA command. This value is valid until you enter another RUN command.

Note: Restrictions Associated With CLK

� The value in CLK is valid only after using a RUNB command that is termi-
nated by a breakpoint.

� The value returned by CLK after executing a RUNB command would be
higher than the actual number of cycles because the pipeline reduces the
number of execution cycles for each instruction, and the simulator is an
instruction-level simulator.

 Benchmarking

8-19 Chapter Title—Attribute Reference

Benchmarking with the SWDS

Note:

If you’re using serial ports, this information does not apply.

 The debugger maintains the cycle count in the timer period register (TIM).

Usually, when you invoke the debugger, the TIM is set to 0. This value
corresponds to the period of CLKIN/4 which is the same as the processor’s
cycle time.

TIM is shown in the CPU window. You can also view it (in integer format) in the
WATCH window by entering this command:

wa tim

9-1 Chapter Title—Attribute Reference

Managing Data

The debugger allows you to examine and modify many different types of data related to the ’C2x and
to your program. You can display and modify the values of :

Individual memory locations or a range of memory
’C2x registers
Variables, including scalar types (ints, chars, etc.) and aggregate types (arrays, structures, etc.)

This chapter tells you how to display and change data.

Topic Page
The chapter begins by describing
basic commands and editing
methods that apply to managing
all forms of data.

9.1 Where Data Is Displayed 9-2

9.2 Basic Commands for Managing Data 9-2

9.3 Basic Methods for Changing Data Values 9-4
Editing data displayed in a window 9-4
Advanced “editing”—using expressions with side effects 9-5

These sections discuss unique
details about displaying and
changing specific types of data.

9.4 Managing Data in Memory 9-6
Displaying memory contents 9-6
Displaying program memory 9-7
Displaying memory contents while you’re debugging C 9-8
Saving memory values in a file 9-9
Filling a block of memory 9-10

9.5 Managing Register Data 9-11
Displaying register contents 9-11

9.6 Managing Data in a DISP (Display) Window 9-13
Displaying data in a DISP window 9-13
Closing a DISP window 9-15

9.7 Managing Data in a WATCH Window 9-16
Displaying data in a WATCH window 9-16
Deleting watched values 9-17

and closing the WATCH window

If you are using the simulator, you
can also observe the status of the
pipeline and of the BIO pin.

9.8 Managing Signal Information 9-18
(Simulator Only)
Monitoring the BIO pin 9-18

Chapter 9

Where Data Is Displayed / Basic Commands for Managing Data

 9-2

9.1 Where Data Is Displayed
Four windows are dedicated to displaying the various types of data.

Type of data Window name and purpose

memory locations MEMORY window
Displays the contents of a range of data
memory or program memory

register values CPU window
Displays the contents of ’C2x registers

pointer data or selected variables of
an aggregate type

DISP windows
Display the contents of aggregate types
and shows the values of individual
members

selected variables (scalar types or
individual members of aggregate
types) and specific memory loca-
tions or registers

WATCH window
Displays selected data

This group of windows is referred to as data-display windows .

9.2 Basic Commands for Managing Data
The debugger provides special-purpose commands for displaying and modify-
ing data in dedicated windows. The debugger also supports several general-
purpose commands that you can use to display or modify any type of data.

whatis If you want to know the type of a variable, use the WHATIS command. The
syntax for this command is:

whatis symbol

This lists symbol’s data type in the COMMAND window display area. The
symbol can be any variable (local, global, or static), a function name, structure
tag, typedef name, or enumeration constant.

Command Result displayed in the COMMAND window

whatis big1 struct zzz big1;

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

 Basic Commands for Managing Data

9-3 Chapter Title—Attribute Reference

? The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The syntax for this com-
mand is:

? expression

The expression can be any C expression, including an expression with side
effects. However, you cannot use a string constant or function call in the
expression.

If the result of expression is scalar, then the debugger displays the result as
a decimal value in the COMMAND window. If expression is a structure or array,
? displays the entire contents of the structure or array; you can halt long listings
by pressing ESC .

Here are some examples that use the ? command.

Command Result displayed in the COMMAND window

? big1 big1[0].b1 4365
big1[0].b2 –7910
big1[0].b3 1952
big1[0].b4 –1555
etc.

? j 4194425

? j=0x5a 90

Note that the DISP command (described in detail on page 9-13) behaves like
the ? command when its expression parameter does not identify an aggregate
type.

eval The EVAL (evaluate expression) command behaves like the ? command but
does not show the result in the COMMAND window display area. The syntax
for this command is:

eval expression
or e expression

EVAL is useful for assigning values to registers or memory locations in a batch
file (where it’s not necessary to display the result).

Basic Methods for Changing Data Values

 9-4

9.3 Basic Methods for Changing Data Values

The debugger provides you with a great deal of flexibility in modifying various
types of data. You can use the debugger’s overwrite editing capability, which
allows you to change a value simply by typing over its displayed value. You can
also use the data-management commands for more complex editing.

Editing data displayed in a window

Use overwrite editing to modify data in a data-display window; you can edit:

� Registers displayed in the CPU window
� Memory contents displayed in the MEMORY window
� Elements displayed in a DISP window
� Values displayed in the WATCH window

There are two similar methods for overwriting displayed data:

This method is sometimes referred to as the “click and type” method.

1) Point to the data item that you want to modify.

2) Click the left button. The debugger highlights the selected field. (Note that
the window containing this field becomes active when you press the
mouse button.)

ESC 3) Type the new information. If you make a mistake or change your mind,
press ESC or move the mouse outside the field and press/release the left
button; this resets the field to its original value.

4) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

1) Select the window that contains the field you’d like to modify; make this the
active window. (Use the mouse, the WIN command, or F6 . For more
detail, see Section 5.4, The Active Window, on page 5-17.)

2) Use arrow keys to move the cursor to the field you’d like to edit.

↑ Moves up 1 field at a time.
↓ Moves down 1 field at a time.
← Moves left 1 field at a time.
→ Moves right 1 field at a time.

 Basic Methods for Changing Data Values

9-5 Chapter Title—Attribute Reference

F9 3) When the field you’d like to edit is highlighted, press F9 . The debugger
highlights the field that the cursor is pointing to.

ESC 4) Type the new information. If you make a mistake or change your mind,
press ESC ; this resets the field to its original value.

5) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

Advanced “editing”—using expressions with side effects

Using the overwrite editing feature to modify data is straightforward. However,
there are other methods that take advantage of the fact that most debugger
commands accept C expressions as parameters, and that C expressions can
have side effects. When an expression has a side effect, it means that the val-
ue of some variable in the expression changes as the result of evaluating the
expression.

This means that you can coerce many commands into changing values for
you. Specifically, it’s most helpful to use ? and EVAL to change data as well
as display it.

For example, if you want to see what’s in auxiliary register AR3, you can enter:

? AR3

You can also use this type of command to modify AR3’s contents. Here are
some examples of how you might do this:

? AR3++ Side effect: increments the contents of AR3 by 1
eval ––AR3 Side effect: decrements the contents of AR3 by 1
? AR3 = 8 Side effect: sets AR3 to 8
eval AR3/=2 Side effect: divides contents of AR3 by 2

Note that not all expressions have side effects. For example, if you enter
? AR3+4 , the debugger displays the result of adding 4 to the contents of AR3
but does not modify AR3’s contents. Expressions that have side effects must
contain an assignment operator or an operator that implies an assignment.
Operators that can cause a side effect are:

= += –= *= /=

%= &= ^= |= <<=

>>= ++ – –

Managing Data in Memory

 9-6

9.4 Managing Data in Memory

In mixed and assembly modes, the debugger maintains a MEMORY window
that displays the contents of memory. For details concerning the MEMORY
window, see the MEMORY window discussion (page 5-11).

MEMORY

addresses data

0000 0007 0007 0007 0007 bfff ff00 0000

0007 0008 0000 bfff 0000 0000 0001 0001

000e 0001 bfff 0000 09f5 dffd ffff f080

0015 09c6 bfff bfff f7ff 0000 bfff bfff

001c bfff bfff ff77 bfff 0000 0000 0900

0023 0900 ff4d ffff 0000 0000 ffff ffff

By default, the MEMORY window displays data memory.The debugger has
commands that show the value at a specific location, display a different range,
or display program memory instead of data memory. The debugger allows you
to change the values at individual locations; refer to Section 9.3, Basic
Methods for Changing Data Values (page 9-4), for more information.

Displaying memory contents

The main way to observe memory contents is to view the display in the
MEMORY window. The amount of memory that you can display is limited by
the size of the MEMORY window (which is limited only by the screen size).
During a debugging session, you may need to display different areas of
memory within the window. The debugger provides two methods for doing this.

mem If you want to display a different memory range in the MEMORY window, use
the MEM command. The basic syntax for this command is:

mem expression

This makes expression the first entry in the MEMORY window. The end of the
range is defined by the size of the window: to show more memory locations,
make the window larger (see Resizing a window, page 5-20, for more
information).

 Managing Data in Memory

9-7 Chapter Title—Attribute Reference

The expression can be an absolute address, a symbolic address, or any C
expression. Here are several examples:

� Absolute address. Suppose that you want to display data memory begin-
ning from the very first address. You might enter this command:

mem 0x00

Hint: MEMORY window addresses are shown in hexadecimal format. If
you want to specify a hex address, be sure to prefix the address number
with 0x; otherwise, the debugger treats the number as a decimal address.

� Symbolic address. You can use any defined C symbol as an expression
parameter. For example, if your program defined a symbol named SYM,
you could enter this command:

mem &SYM

Hint : Prefix the symbol with the & operator to use the address of the
symbol.

� C expression. If you use a C expression as a parameter, the debugger
evaluates the expression and uses the result as a memory address:

mem SP – AR0 + label

You can also change the display of any data-display window—including the
MEMORY window—by scrolling through the window’s contents. See the
Scrolling through a window’s contents discussion (page 5-25) for more details.

Displaying program memory

By default, the MEMORY window displays data memory, but you can also
display program memory. To do this, follow any address parameter with
@prog ; for example, you can follow the MEM command’s expression
parameter with @prog. This suffix tells the debugger that the expression
parameter identifies a program memory address instead of a data memory
address.

If you display program memory in the MEMORY window, the debugger
changes the window’s label to MEMORY [PROG] so that there is no confusion
about what type of memory is displayed at any given time.

Managing Data in Memory

 9-8

Any of the examples presented in this section could be modified to display
program memory:

mem 0x00@prog
mem &SYM@prog
mem (SP – AR0 + label)@prog
? *0x26@prog
wa *0x26@prog
disp *(float *)0x26@prog

You can also use the suffix @data to display data memory; however, since
data memory is the default, the @data suffix is unnecessary.

Displaying memory contents while you’re debugging C

If you’re debugging C code in auto mode, you won’t see a MEMORY window—
the debugger doesn’t show the MEMORY window in the C-only display.
However, there are several ways to display memory in this situation.

Hint: If you want to use the contents of an address as a parameter, be sure
to prefix the address with the C indirection operator (*).

� If you have only a temporary interest in the contents of a specific memory
location, you can use the ? command to display the value at this address.
For example, if you want to know the contents of data memory location 26
(hex), you could enter:

? *0x26

The debugger displays the memory value in the COMMAND window
display area.

� If you want the opportunity to observe a specific memory location over a
longer period of time, you can display it in a WATCH window. Use the WA
command to do this:

wa *0x26

� You can also use the DISP command to display memory contents. The
DISP window shows memory in an array format with the specified address
as “member” [0]. In this situation, you can also use casting to display
memory contents in a different numeric format:

disp *(float *)0x26

 Managing Data in Memory

9-9 Chapter Title—Attribute Reference

Saving memory values in a file

ms Sometimes it’s useful to save a block of memory values to a file. You can use
the MS (memory save) command to do this; the files are saved in COFF for-
mat. The syntax for the MS command is:

ms address, page, length, filename

� The address parameter identifies the first address in the block.

� The page is a 1-digit number that identifies the type of memory (program,
data, or I/O) to save:

To save this type of
memory

Use this value as the page
parameter

Program memory 0

Data memory 1

� The length parameter defines the length, in words, of the range. This
parameter can be any C expression.

� The filename is a system file.

For example, to save the values in data memory locations 0x0–0x10 to a file
named memsave, you could enter:

ms 0x0,1,0x10,memsave

To reload memory values that were saved in a file, use the LOAD command.
For example, to reload the values that were stored in memsave, enter:

load memsave

Managing Data in Memory

 9-10

Filling a block of memory

fill Sometimes it’s useful to be able to fill an entire block of memory at once. You
can do this by using the FILL command. The syntax for this command is:

fill address [@ prog rr @ data], page, length, data

� The address parameter identifies the first address in the block.

� The length parameter defines the number of words to fill.

� The page is a 1-digit number that identifies the type of memory (program,
data, or I/O) to fill:

To fill this type of
memory

Use this value as the page
parameter

Program memory 0

Data memory 1

� The data parameter is the value that is placed in each word in the block.

For example, to fill program memory locations 0x10FF–0x110D with the value
0xABCD, you would enter:

fill 0x10ff @ data,0,0xf,0xabcd

If you want to check to see that memory has been filled as you have asked,
you can enter:

mem 0x10ff@data

This changes the MEMORY window display to show the block of memory
beginning at data memory address 0x10FF.

The FILL command can also be executed from the Memory pulldown menu.

Note that the syntax for the fill command can be simplified as fill addr, page,
length, data if the first address in the block is not a reserved memory location
in either program or data memory space:

fill 0 @ prog,0,0x100,0xabcd

 Managing Register Data

9-11 Chapter Title—Attribute Reference

9.5 Managing Register Data

In mixed and assembly modes, the debugger maintains a CPU window that
displays the contents of individual registers. For details concerning the CPU
window, see the CPU window discussion (page 5-13).

CPU
ACC 00000000 PREG 00000000

TIM ffff PRD ffff

PC 1124 TOS 0000 ST0 0600 ST1 07f0

IMR ffc0 IFR 0000 TREG 0000 RTPC 0000

AR0 0000 AR1 0000 AR2 0000 AR3 0000

AR4 0000 AR5 04e5 AR6 04e6 AR7 0000

BIO 0001

register
name

register
contents

The debugger provides commands that allow you to display and modify the
contents of specific registers. You can use the data-management commands
or the debugger’s overwrite editing capability to modify the contents of any reg-
ister displayed in the CPU or WATCH window. Refer to Section 9.3, Basic
Methods for Changing Data Values (page 9-4), for more information.

Displaying register contents
The main way to observe register contents is to view the display in the CPU
window. However, you may not be interested in all of the registers—if you’re
interested in only a few registers, you might want to make the CPU window
small and use the extra screen space for the DISASSEMBLY or FILE display.
In this type of situation, there are several ways to observe the contents of the
selected registers.

� If you have only a temporary interest in the contents of a register, you can
use the ? command to display the register’s contents. For example, if you
want to know the contents of the PC, you could enter:

? PC

The debugger displays the SP’s current contents in the COMMAND
window display area.

Managing Register Data

 9-12

� If you want to observe a register over a longer period of time, you can use
the WA command to display the register in a WATCH window. For
example, if you want to observe the status register, you could enter:

WA ST,Status Reg

This adds the ST to the WATCH window and labels it as Status Reg. The
register’s contents are continuously updated, just as if you were observing
the register in the CPU window.

These methods are also useful when you’re debugging C in auto mode
because the debugger doesn’t show the CPU window in the C-only display.
For a list of all registers and pseudoregisters that you can display, see
Appendix C.

 Managing Data in a DISP Window

9-13 Chapter Title—Attribute Reference

9.6 Managing Data in a DISP (Display) Window

The main purpose of the DISP window is to display members of complex,
aggregate data types such as arrays and structures. The debugger shows
DISP windows only when you specifically request to see DISP windows with
the DISP command (described below). Note that you can have up to 120 DISP
windows open at once. For additional details about DISP windows, see the
DISP window discussion (page 5-14).

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x1874

f4 [...]

structure
members

member
values

This member is an array, and you
can display its contents in a sec-

ond DISP window

DISP: str.f4

[0] 4427

[1] 1778

[2] 5554

[3] 3567

[4] 1384

[5] 1824

[6] 3565

[7] 3774

[8] 1347

[9] 1384

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in a
DISP window. Refer to Section 9.3, Basic Methods for Changing Data Values
(page 9-4), for more information.

Displaying data in a DISP window

disp To open a DISP window, use the DISP command. Its syntax is:

disp expression

If the expression is not an array, structure, or pointer (of the form *pointer
name), the DISP command behaves like the ? command. However, if expres-
sion is one of these types, the debugger opens a DISP window to display the
values of the members.

If a DISP window contains a long list of members, you can use PAGE DOWN ,
PAGE UP , or arrow keys to scroll through the window. If the window contains an

array of structures, you can use CONTROL PAGE DOWN and CONTROL PAGE UP to
scroll through the array.

Managing Data in a DISP Window

 9-14

Once you open a DISP window, you may find that a displayed member is
another one of these types. This is how you identify the members that are
arrays, structures, or pointers:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x00000000

You can display the additional data (the data pointed to or the members of the
array or structure) in additional DISP windows (these are referred to as
children). There are three ways to do this.

Use the DISP command again; this time, expression must identify the member
that has additional data. For example, if the first expression identifies a struc-
ture named str and one of str’s members is an array named f4, you can display
the contents of the array by entering this command:

disp str.f4

This opens a new DISP window that shows the contents of the array. If str has
a member named f3 that is a pointer, you could enter:

disp *str.f3

This opens a window to display what str.f3 points to.

Here’s another method of displaying the additional data:

1) Point to the member in the DISP window.

2) Now click the left button.

Here’s the third method:

↑ ↓ 1) Use the arrow keys to move the cursor up and down in the list of members.

F9 2) When the cursor is on the desired field, press F9 .

When the debugger opens a second DISP window, the new window may at
first be displayed on top of the original DISP window—if so, you can move the
windows so that you can see both at once. If the new windows also have
members that are pointers or aggregate types, you can continue to open new
DISP windows.

 Managing Data in a DISP Window

9-15 Chapter Title—Attribute Reference

Closing a DISP window

Closing a DISP window is a simple, two-step process.

Step 1: Make the DISP window that you want to close active (see Section
5.4, The Active Window, on page 5-17).

Step 2: Press F4 .

Note that you can close a window and all of its children by closing the original
window.

Note: Effects of LOAD and SLOAD on DISP Windows

The debugger automatically closes any DISP windows when you execute a
LOAD or SLOAD command.

Managing Data in a WATCH Window

 9-16

9.7 Managing Data in a WATCH Window

The debugger doesn’t maintain a dedicated window that tells you about the
status of all the symbols defined in your program. Such a window might be so
large that it wouldn’t be useful. Instead, the debugger allows you to create a
WATCH window that shows you how program execution affects specific
expressions, variables, registers, or memory locations.

WATCH

1: AR0 0x1802

2: X+X 4

3: PC 0x0040

watch index

label current value

The debugger displays a WATCH window only when you specifically request
a WATCH window with the WA command (described below). Note that there
is only one WATCH window. For additional details concerning the WATCH
window, see the WATCH window discussion (page 5-15).

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in the
WATCH window. Refer to Section 9.3, Basic Methods for Changing Data
Values (page 9-4), for more information.

Note: Alternative Method for Entering WATCH Commands

All of the watch commands described here can also be
accessed from the Watch pulldown menu. For more informa-
tion about using the pulldown menus, refer to Section 6.2, Us-
ing the Menu Bar and the Pulldown Menus (page 6-6).

Watch
Add
Delete
Reset

Displaying data in the WATCH window

The debugger has one command for adding items to the WATCH window.

wa To open the WATCH window, use the WA (watch add) command. The basic
syntax is:

wa expression [, label]

When you first execute WA, the debugger opens the WATCH window. After
that, executing WA adds additional values to the WATCH window.

 Managing Data in a WATCH Window

9-17 Chapter Title—Attribute Reference

The expression parameter can be any C expression, including an expression
that has side effects. It’s most useful to watch an expression whose value will
change over time; constant expressions provide no useful function in the
watch window.

The label parameter is optional. When used, it provides a label for the watched
entry. If you don’t use a label, the debugger displays the expression in the label
field.

Deleting watched values and closing the WATCH window

The debugger supports two commands for deleting items from the WATCH
window.

wr If you’d like to close the WATCH window and delete all of the items in a single
step, use the WR (watch reset) command. The syntax is:

wr

wd If you’d like to delete a specific item from the WATCH window, use the WD
(watch delete) command. The syntax is:

wd index number

Whenever you add an item to the WATCH window, the debugger assigns it an
index number. (The illustration of the WATCH window on page 9-16 points to
these watch indexes.) The WD command’s index number parameter must cor-
respond to one of the watch indexes in the WATCH window.

Note that deleting an item (depending on where it is in the list) causes the
remaining index numbers to be reassigned. Deleting the last remaining item
in the WATCH window closes the WATCH window.

Note: Effects of LOAD and SLOAD on WATCH Windows

The debugger automatically closes the WATCH window when you execute
a LOAD or SLOAD command.

Managing Signal Information (Simulator Only)

 9-18

9.8 Managing Signal Information (Simulator Only)

The simulator supports an additional feature that allows you to monitor the BIO
pin. For this feature, the simulator supports a pseudoregister that you can
query with ? or DISP or add to the WATCH window.

Monitoring the BIO pin

The BIO pin, which is associated with ’C2x conditional instructions, is simu-
lated as the BIO pseudoregister. You can query the value of BIO and also
change it; for example, to set BIO low, you would enter:

?BIO = 0

After a reset command, BIO is set to 1.

10-1 Chapter Title—Attribute Reference

Using Breakpoints

During the debugging process, you may want to halt execution temporarily so that you can examine the
contents of selected variables, registers, and memory locations before continuing with program
execution. You can do this by setting breakpoints at critical points in your code. You can set breakpoints
in assembly language code and in C code. A breakpoint halts any program execution, whether you’re
running or single-stepping through code.

Breakpoints are especially useful in combination with conditional execution (described on page 8-16)
and benchmarking (simulator only; described on page 8-18).

Note that the commands described in this chapter can also be executed from the Break pulldown menu.

Topic Page

This chapter describes the simple
processes of setting and clearing
software breakpoints and of ob-
taining a listing of all the break-
points that are set.

10.1 Setting a Breakpoint 10-2

10.2 Clearing a Breakpoint 10-4

10.3 Finding the Breakpoints That Are Set 10-5

Chapter 10

Setting a Breakpoint

 10-2

10.1 Setting a Breakpoint

When you set a breakpoint, the debugger highlights the breakpointed line by
showing it in a heavier or brighter font (this is the default behavior—you can
change this behavior with the screen-customization commands), and adds a
BP > label to the beginning of the line. If you set a breakpoint in the disassem-
bly, the debugger also highlights the associated C statement. If you set a
breakpoint in the C source, the debugger also highlights the associated state-
ment in the disassembly. (If more than one assembly language statement is
associated with a C statement, the debugger highlights the first of the asso-
ciated assembly language statements.)

DISASSEMBLY
00fc 7aa0 meminit: POPD *+
00fe 70a0 SARAR0,*+
0100 7180 SARAR1,*

FILE: sample.c
00044
00045 BP> meminit();
00046 for (i=0; i < 0x50000; i++)
00047 {
00048 call(i);

A breakpoint is set
at this C statement;
notice how the line

is highlighted.
Breakpoints are

also set at the
associated assem-

bly language
statement—it’s

highlighted, too.

Notes: Restrictions Associated With Breakpoints

� After execution is halted by a breakpoint, you can continue program
execution by reissuing any of the run or single-step commands.

� Up to 200 breakpoints can be set.

� If you’re using the SWDS for I/O space simulation, you must set a break-
point on I/O instructions.(For details about setting breakpoints for I/O
space simulation, refer to Section 7.7 on page 7-10.

 Setting a Breakpoint

10-3 Chapter Title—Attribute Reference

There are several ways to set a breakpoint:

1) Point to the line of assembly language code or C code where you’d like to
set a breakpoint.

2) Click the left button.

Repeating this action clears the breakpoint.

1) Make the FILE or DISASSEMBLY window the active window.

↑ ↓ 2) Use the arrow keys to move the cursor to the line of code where you’d like
to set a breakpoint.

F9 3) Press the F9 key.

Repeating this action clears the breakpoint.

ba If you know the address where you’d like to set a breakpoint, you can use the
BA (breakpoint add) command. This command is useful because it doesn’t
require you to search through code to find the desired line. The syntax for the
BA command is:

ba address

This command sets a breakpoint at address. This parameter can be an abso-
lute address, any C expression, the name of a C function, or the name of an
assembly language label. You cannot set multiple breakpoints at the same
statement.

Clearing a Breakpoint

 10-4

10.2 Clearing a Breakpoint

There are several ways to clear a breakpoint. If you clear a breakpoint from
an assembly language statement, the breakpoint is also cleared from any as-
sociated C statement; if you clear a breakpoint from a C statement, the break-
point is also cleared from the associated statement in the disassembly.

1) Point to a breakpointed assembly language or C statement.

2) Click the left button.

↑ ↓ 1) Use the arrow keys or the DASM command to move the cursor to a break-
pointed assembly language or C statement.

F9 2) Press the F9 key.

br If you want to clear all the breakpoints that are set, use the BR (breakpoint
reset) command.This command is useful because it doesn’t require you to
search through code to find the desired line. The syntax for the BR command
is:

br

bd If you’d like to clear one specific breakpoint and you know the address of this
breakpoint, you can use the BD (breakpoint delete) command. The syntax for
the BD command is:

bd address

This command clears the breakpoint at address. This parameter can be an
absolute address, any C expression, the name of a C function, or the name
of an assembly language label. If no breakpoint is set at address, the debugger
ignores the command.

 Finding the Breakpoints That Are Set

10-5 Chapter Title—Attribute Reference

10.3 Finding the Breakpoints That Are Set

bl Sometimes you may need to know where breakpoints are set. For example,
the BD command’s address parameter must correspond to the address of a
breakpoint that is set. The BL (breakpoint list) command provides an easy way
to get a complete listing of all the breakpoints that are currently set in your
program. The syntax for this command is:

bl

The BL command displays a table of breakpoints in the COMMAND window
display area. BL lists all the breakpoints that are set, in the order in which you
set them. Here’s an example of this type of list:

 Address Symbolic Information
004d in main, at line 60, ”c:\c2xhll\sample.c”
0051

The address is the memory address of the breakpoint. The symbolic informa-
tion identifies the function, line number, and filename of the breakpointed C
statement:

� If the breakpoint was set in assembly language code, you’ll see only an
address unless the statement defines a symbol.

� If the breakpoint was set in C code, you’ll see the address together with
symbolic information.

11-1 Chapter Title—Attribute Reference

Customizing the Debugger Display

The debugger display is completely configurable; you can create the interface that is best suited for your
use. Besides being able to size and position individual windows, you can change the appearance of
many of the display features, such as window borders, how the current statement is highlighted, etc.
In addition, if you’re using a color display, you can change the colors of any area on the screen. Once
you’ve customized the display to your liking, you can save the custom configuration for use in future
debugging sessions.

Topic Page

The commands described in this
section are most useful if you
have a color display. If you are us-
ing a monochrome display, these
commands change the shades of
gray on your display.

11.1 Changing the Colors of the Debugger Display 11-2
area names: common display areas 11-3
area names: window borders 11-4
area names: COMMAND window 11-4
area names: DISASSEMBLY and FILE windows 11-5
area names: data-display windows 11-6
area names: menu bar and pulldown menus 11-7

These sections are useful with
both color and monochrome dis-
plays. They tell you how to change
the window border styles, save
and restore custom display
configurations, and customize the
command-line prompt.

11.2 Changing the Border Styles of the Windows 11-8

11.3 Saving and Using Custom Displays 11-9
Changing the default display for monochrome monitors 11-9
Saving a custom display 11-10
Loading a custom display 11-10
Invoking the debugger with a custom display 11-11
Returning to the default display 11-11

11.4 Changing the Prompt 11-12

Chapter 11

Changing the Colors of the Debugger Display

 11-2

11.1 Changing the Colors of the Debugger Display

You can use the debugger with a color or a monochrome display; the com-
mands described in this section are most useful if you have a color display. If
you are using a monochrome display, these commands change the shades on
your display. For example, if you are using a black-and-white display, these
commands change the shades of gray that are used.

color
scolor

You can use the COLOR or SCOLOR command to change the colors of areas
in the debugger display. The format for these commands is:

color area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]
scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

These commands are similar. However, SCOLOR updates the screen imme-
diately, and COLOR doesn’t update the screen (the new colors/attributes take
effect as soon as the debugger executes another command that updates the
screen). Typically, you might use the COLOR command several times,
followed by an SCOLOR command to put all of the changes into effect at once.

The area name parameter identifies the areas of the display that are affected.
The attributes identify how the areas are affected. Table 11–1 lists the valid
values for the attribute parameters.

Table 11–1. Colors and Other Attributes for the COLOR and SCOLOR Commands

(a) Colors

black blue green cyan

red magenta yellow white

(b) Other attributes

bright blink

The first two attribute parameters usually specify the foreground and
background colors for the area. If you do not supply a background color, the
debugger uses black as the background.

Table 11–2 lists valid values for the area name parameters. This is a long list;
the subsections following the table further identify these areas.

 Changing the Colors of the Debugger Display

11-3 Chapter Title—Attribute Reference

Table 11–2. Summary of Area Names for the COLOR and SCOLOR Commands

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

Note: Listing order is left to right, top to bottom.

You don’t have to type an entire attribute or area name; you need type only
enough letters to uniquely identify either parameter. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed in Table 11–2 (left to right, top to bottom).

The remainder of this section identifies these areas.

area names : common display areas

blanks

CPU
PC 1124 TOS 004f ST0 2e00

ST1 4dfc IMR 09f7 IFR 09fb

TREG 09fa RTPC ffff AR0 f080

AR1 09c6 AR2 3ffff AR3 3fff

background

Area identification Parameter name

Screen background (behind all windows) background

Window background (inside windows) blanks

Changing the Colors of the Debugger Display

 11-4

area names : window borders

COMMAND

>>>

Loading sample.out

58 Symbols loaded

Done

mr

win_hiborder

WATCH

1: AR0 0x1802

2: X+X 4

3: PC 0x0064

win_border

win_resize

an inactive
window

an active
window

Area identification Parameter name

Window border for any window that isn’t active win_border

The reversed “L” in the lower right corner of a resizable
window

win_resize

Window border of the active window win_hiborder

area names : COMMAND window

COMMAND

>>> go main

cmd_echo

cmd_inputcmd_prompt cmd_cursor

Done

file sample.c

wa eee

Name ”eee” not found
error_msg

Area identification Parameter name

Echoed commands in display area cmd_echo

Errors shown in display area error_msg

Command-line prompt cmd_prompt

Text that you enter on the command line cmd_input

Command-line cursor cmd_cursor

 Changing the Colors of the Debugger Display

11-5 Chapter Title—Attribute Reference

area names : DISASSEMB LY and FILE windows

DISASSEMBLY

0040 8aa0 main: POPD *+

0041 80a0 SAR AR0,*+

0042 8180 SAR AR1,*

0043 b004 LARK AR0,#4

0044 00ea LAR AR0,*0+

asm_data

FILE: t1.c

asm_clabel

asm_label file_brk

file_line

file_text

file_pc

file_pc_brk

00053 extern call();

00054 extern meminit():

00055 main()

00056 {

*eof

asm_cdata

file_eof

Area identification Parameter name

Object code in DISASSEMBLY window that is associated
with current C statement

asm_cdata

Object code in DISASSEMBLY window asm_data

Addresses in DISASSEMBLY window asm_label

Addresses in DISASSEMBLY window that are associated
with current C statement

asm_clabel

Line numbers in FILE window file_line

End-of-file marker in FILE window file_eof

Text in FILE or DISASSEMBLY window file_text

Breakpointed text in FILE or DISASSEMBLY window file_brk

Current PC in FILE or DISASSEMBLY window file_pc

Breakpoint at current PC in FILE or DISASSEMBLY
window

file_pc_brk

Changing the Colors of the Debugger Display

 11-6

area names : data-display windows

MEMORY

field_textfield_label

field_edit

0000 0007 0007 0007 0007 3fff ff00 0000

0007 0007 0000 3fff 0000 0000 0002 0002

000e 0002 3fff 09f5 09f5 aff1 ffff f080

0015 09c6 3fff 3fff 5d77 09f5 3fff 3fff

001c 3fff 3fff ff77 3fff 0000 0000 0000

0023 0900 ed8d ffff 0000 0000 ffff ffff

field_error

field_hilite

Area identification Parameter name

Label of a window field (includes register names in CPU
window, addresses in MEMORY window, index numbers
and labels in WATCH window, member names in DISP
window)

field_label

Text of a window field (includes data values for all data-
display windows) and of most command output messages
in command window

field_text

Text of a highlighted field field_hilite

Text of a field that has an error (such as an invalid
memory location)

field_error

Text of a field being edited (includes data values for all
data-display windows)

field_edit

 Changing the Colors of the Debugger Display

11-7 Chapter Title—Attribute Reference

area names : menu bar and pulldown menus

menu_bar

menu_border

Load Break Watch
Add
Delete
Reset

Memory Color Mode

menu_entrymenu_cmd

menu_hilite
menu_hicmd

Area identification Parameter name

Top line of display screen; background to main menu
choices

menu_bar

Border of any pulldown menu menu_border

Text of a menu entry menu_entry

Invocation key for a menu or menu entry menu_cmd

Text for current (selected) menu entry menu_hilite

Invocation key for current (selected) menu entry menu_hicmd

Changing the Border Styles of the Windows

 11-8

11.2 Changing the Border Styles of the Windows

In addition to changing the colors of areas in the display, the debugger allows
you to modify the border styles of the windows.

border Use the BORDER command to change window border styles. The format for
this command is:

border [active window style] [, inactive window style] [, resize style]

This command can change the border styles of the active window, the inactive
windows, and any window that is being resized. The debugger supports nine
border styles. Each parameter for the BORDER command must be one of the
numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides and bottom

3 Solid 1/4-tone top, double-lined sides and bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top and bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Here are some examples of the BORDER command. Note that you can skip
parameters, if desired.

border 6,7,8 Change style of active, inactive, and resize windows
border 1,,2 Change style of active and resize windows
border ,3 Change style of inactive window

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

 Saving and Using Custom Displays

11-9 Chapter Title—Attribute Reference

11.3 Saving and Using Custom Displays

The debugger allows you to save and use as many custom configurations as
you like.

When you invoke the debugger, it looks for a screen configuration file:

� If you are using the SWDS, the screen configuration file is named init.clr.

� If you are using the VMS or Sun version of the simulato r, the screen con-
figuration file is named clrs.dat.

� If you are using the PC version of the simulato r, there is no screen config-
uration file.

The screen configuration file defines how various areas of the display will ap-
pear. If the debugger doesn’t find this file, it uses the default screen configura-
tion. Initially, init.clr and clrs.dat define screen configurations that exactly
match the default configuration.

The debugger supports two commands for saving and restoring custom
screen configurations into files. The filenames that you use for restoring
configurations must correspond to the filenames that you used for saving con-
figurations. Note that these are binary files, not text files, so you can’t edit the
files with a text editor.

Changing the default display for monochrome monitors

The default display is most useful with color monitors. The debugger highlights
changed values, messages, and other information with color; this may not be
particularly helpful if you are using a monochrome monitor.

If you are using the SWDS, the debugger package includes another screen
configuration file named mono.clr that defines a screen configuration that can
be used with monochrome monitors. The best way to use this configuration is
to rename the file:

1) Rename the original init.clr file—you might want to call it color.clr.

2) Now rename the mono.clr file. Call it init.clr. Now, whenever you invoke the
debugger, it will automatically come up with a customized screen
configuration for monochrome files.

If you aren’t happy with the way that this file defines the screen configuration,
you can customize it.

Saving and Using Custom Displays

 11-10

Saving a custom display

ssave Once you’ve customized the debugger display to your liking, you can use the
SSAVE command to save the current screen configuration to a file. The format
for this command is:

ssave [filename]

This saves the screen colors, window positions, window sizes, and border
styles for all debugging modes. The filename parameter names the new
screen configuration file. You can include path information (including relative
pathnames); if you don’t supply path information, the debugger places the file
in the current directory.

If you don’t supply a filename, then the debugger saves the current configura-
tion into a file named init.clr.

Note that you can execute this command as the Save selection on the Color
pulldown menu.

Loading a custom display

sconfig You can use the SCONFIG command to restore the display to a particular
configuration. The format for this command is:

sconfig [filename]

This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for init.clr. The debugger searches for
the file in the current directory and then in directories named with the D_DIR
environment variable.

Note that you can execute this command as the Load selection on the Color
pulldown menu.

 Saving and Using Custom Displays

11-11 Chapter Title—Attribute Reference

Invoking the debugger with a custom display

If you set up the screen in a way that you like and always want to invoke the
debugger with this screen configuration, you have two choices for
accomplishing this:

� Save the configuration in init.clr (SWDS).

� Add a line to the batch file that the debugger executes at invocation time
(For the SWDS, this file is dbinit.cmd; for the simulator, this file is
siminit.cmd.) This line should use the SCONFIG command to load the cus-
tom configuration.

Returning to the default display

If you saved a custom configuration into init.clr or clrs.dat but don’t want the
debugger to come up in that configuration, then rename the file or delete it. If
you are in the debugger, have changed the configuration, and would like to
revert to the default, just execute the SCONFIG command without a filename.

Changing the Prompt

 11-12

11.4 Changing the Prompt

prompt The debugger enables you to change the command-line prompt by using the
PROMPT command. The format of this command is:

prompt new prompt

The new prompt can be any string of characters, excluding semicolons and
commas. (If you type a semicolon or a comma, it terminates the prompt string.)

Note that the SSAVE command doesn’t save the command-line prompt as part
of a custom configuration. The SCONFIG command doesn’t change the
command-line prompt. If you change the prompt, it stays changed until you
change it again, even if you use SCONFIG to load a different screen configura-
tion.

If you always want to use a different prompt, you can add a PROMPT state-
ment to the batch file that the debugger executes at invocation time (for the
SWDS, this file is dbinit.cmd; for the simulator, this file is siminit.cmd.)

You can also execute this command as the Prompt selection on the Color
pulldown menu.

12-1 Chapter Title—Attribute Reference

Summary of Commands
 and Special Keys

This chapter summarizes the debugger’s commands and special key sequences.

Topic Page
The chapter begins with a de-
scription of the various categories
of debugger commands and then
lists the various commands that
fall under these categories.

12.1 Functional Summary of Debugger Commands 12-2
Changing modes 12-3
Managing windows 12-3
Performing DOS-like tasks 12-3
Managing and displaying data 12-4
Displaying files and loading programs 12-4
Managing breakpoints 12-4
Customizing the screen 12-5
Memory mapping 12-5
Running programs 12-6

The main portion of this chapter is
the alphabetical command refer-
ence. Each debugger command
is listed with its syntax, applicable
modes, its correspondence to a
pulldown menu (if any), and a
short description.

12.2 Alphabetical Summary of Debugger Commands 12-7

The chapter ends with a summary
of special keys and their functions
in the debugger environment.

12.3 Summary of Special Keys 12-35
Editing text on the command line 12-35
Using the command history 12-35
Switching modes 12-36
Halting or escaping from an action 12-36
Displaying the pulldown menus 12-36
Running code 12-37
Selecting or closing a window 12-37
Moving or sizing a window 12-37
Scrolling through a window’s contents 12-38
Editing data or selecting the active field 12-38

Chapter 12

Functional Summary of Debugger Commands

 12-2

12.1 Functional Summary of Debugger Commands

This section summarizes the debugger commands according to these
categories:

� Changing modes. These commands enable you to switch freely among
the three debugging modes (auto, mixed, and assembly). You can select
these commands from the Mode pulldown menu, also.

� Managing windows. These commands enable you to select the active
window and move or resize the active window. You can perform these
functions with the mouse, also.

� Performing DOS-like tasks. These commands enable you to perform
several DOS-like functions and provide you with some control over the
target system.

� Displaying and changing data. These commands enable you to display
and evaluate a variety of data items. Some of these commands are
available on the Watch pulldown menu, also.

� Displaying files and loading programs. These commands enable you
to change the displays in the FILE and DISASSEMBLY windows and to
load object files into memory. Several of these commands are available
on the Load pulldown menu.

� Managing breakpoints. These commands provide you with a command-
line method for controlling software breakpoints. These commands are
available through the Break pulldown menu. You can also set/clear break-
points interactively.

� Customizing the screen. These commands allow you to customize the
debugger display, then save and later reuse the customized displays.
These commands are available from the Color pulldown menu, also.

� Memory mapping. These commands enable you to define the areas of
target memory that the debugger can access or to fill a memory range with
an initial value. These commands are available on the Memory pulldown
menu, also.

� Running programs. These commands provide you with a variety of
methods for running your programs in the debugger environment. The
basic run and single-step commands are available on the menu bar, also.

 Functional Summary of Debugger Commands

12-3 Chapter Title—Attribute Reference

Changing modes

To do this
Use this
command See page

Put the debugger in assembly mode asm 12-8

Put the debugger in auto mode for debugging C
code

c 12-10

Put the debugger in mixed mode mix 12-21

Managing windows

To do this
Use this
command See page

Select the active window win 12-33

Reposition the active window move 12-22

Resize the active window size 12-29

Performing DOS-like tasks

To do this
Use this
command See page

Clear all displayed information from the COMMAND
window display area

cls 12-10

Change the current working directory from within the
debugger environment

cd/chdir 12-10

List the contents of the current directory or any other
directory

dir 12-13

Name additional directories that can be searched
when you load source files

use 12-32

Execute commands from a batch file take 12-32

Reset the SWDS reset 12-25

Exit the debugger quit 12-24

Functional Summary of Debugger Commands

 12-4

Managing and displaying data

To do this
Use this
command See page

Show the type of a data item whatis 12-33

Evaluate and display the result of a C expression ? 12-7

Evaluate a C expression without displaying the
results

eval 12-14

Display the values in an array or structure or display
the value that a pointer is pointing to

disp 12-13

Display a different range of memory in the MEMORY
window

mem 12-21

Continuously display the value of a variable, regis-
ter, or memory location within the WATCH window

wa 12-33

Delete a data item from the WATCH window wd 12-33

Delete all data items from the WATCH window and
close the WATCH window

wr 12-34

Displaying files and loading programs

To do this
Use this
command See page

Display a text file in the FILE window file 12-14

Display C and/or assembly language code at a
specific point

addr 12-7

Display assembly language code at a specific
address

dasm 12-13

Display a specific C function func 12-15

Reopen the CALLS window calls 12-10

Load an object file load 12-16

Load only the object-code portion of an object file reload 12-24

Load only the symbol-table portion of an object file sload 12-30

Managing breakpoints

 Functional Summary of Debugger Commands

12-5 Chapter Title—Attribute Reference

To do this
Use this
command See page

Add a breakpoint ba 12-8

Delete a breakpoint bd 12-8

Display a list of all the breakpoints that are set bl 12-9

Reset (delete) all breakpoints br 12-9

Customizing the screen

To do this
Use this
command See page

Change the screen colors and update the screen
immediately

scolor 12-28

Change the screen colors, but don’t update the
screen immediately

color 12-11

Change the border style of any window border 12-9

Change the command-line prompt prompt 12-24

Save a custom screen configuration ssave 12-31

Load and use a previously saved custom screen
configuration

sconfig 12-29

Memory mapping

To do this
Use this
command See page

Initialize a block of memory fill 12-15

Enable or disable memory mapping map 12-18

Add an address range to the memory map ma 12-17

Connect a simulated I/O port to an input or output file mc 12-18

Delete an address range from the memory map md 12-19

Disconnect a simulated I/O port mi 12-20

Reset the memory map (delete all ranges) mr 12-23

Save the values in a block of memory to a system file ms 12-23

Display a list of the current memory map settings ml 12-20

Functional Summary of Debugger Commands

 12-6

Running programs

To do this
Use this
command See page

Run a program run 12-26

Run a program up to a certain point go 12-16

Single-step through assembly language or C code step 12-31

Single-step through assembly language or C code,
one C statement at a time

cstep 12-12

Single-step through assembly language or C code;
step over function calls

next 12-24

Single-step through assembly language or C code,
one C statement at a time; step over function calls

cnext 12-11

Run a program with benchmarking—count the num-
ber of CPU clock cycles consumed by the executing
portion of code (simulator only)

runb 12-27

Execute code in a function and return to the func-
tion’s caller

return 12-26

Reset the program entry point restart 12-25

Disconnect the SWDS from the target system and
run free (SWDS only)

runf 12-27

Halt the target system after executing a RUNF
command (SWDS only)

halt 12-16

Execute commands from a batch file take 12-32

Reset the SWDS reset 12-25

 Alphabetical Summary of Debugger Commands

12-7 Chapter Title—Attribute Reference

12.2 Alphabetical Summary of Debugger Commands

Commands are not case sensitive; to emphasize this, command names are
shown in both uppercase and lowercase throughout this book.

Evaluate Expression?

Syntax ? expression[@prog | @data]

Menu selection none

Description The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The expression can be any
C expression, including an expression with side effects; however, you cannot
use a string constant or function call in the expression. If the expression identi-
fies an address, you can follow it with @prog to identify program memory or
@data to identify data memory. Without the suffix, the debugger treats an ad-
dress- expression as a program-memory location.

If the result of expression is not an array or structure, then the debugger
displays the results in the COMMAND window. If expression is a structure or
array, ? displays the entire contents of the structure or array; you can halt long
listings by pressing ESC .

Display Code at Selected Addressaddr

Syntax addr address[@prog | @data]
addr function name

Menu selection none

Description Use the ADDR command to display C code or the disassembly at a specific
point. ADDR’s behavior changes, depending on the current debugging mode:

� In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window.

� In a C display, ADDR works like the FUNC command, displaying the code
starting at address or at function name in the FILE window.

� In mixed mode, ADDR affects both the DISASSEMBLY and FILE win-
dows.

The address parameter is treated as a program-memory address.

Note: Effects of ADDR on the FILE Window

ADDR affects the FILE window only if the specified address is in a C function.

Alphabetical Summary of Debugger Commands

 12-8

Enter Assembly-Only Debugging Modeasm

Syntax asm

Menu selection MoDe→Asm

Description The ASM command changes from the current debugging mode to assembly
mode. If you’re already in assembly mode, the ASM command has no effect.

Breakpoint Addba

Syntax ba address

Menu selection B reak→Add

Description The BA command sets a breakpoint at a specific address. This command is
useful because it doesn’t require you to search through code to find the desired
line. The address can be an absolute address, any C expression, the name
of a C function, or the name of an assembly language label.

Breakpoints can be set in program memory only; the address parameter is
treated as a program-memory address.

Breakpoint Deletebd

Syntax bd address

Menu selection B reak→ Delete

Description The BD command clears a breakpoint at a specific address. The address can
be an absolute address, any C expression, the name of a C function, or the
name of an assembly language label. The address is treated as a program-
memory address.

 Alphabetical Summary of Debugger Commands

12-9 Chapter Title—Attribute Reference

Breakpoint Listbl

Syntax bl

Menu selection Break→List

Description The BL command provides an easy way to get a complete listing of all the
breakpoints that are currently set in your program. It displays a table of break-
points in the COMMAND window display area. BL lists all the breakpoints that
are set, in the order in which you set them.

Change Style of Window Borderborder

Syntax borde r [active window style] [[,inactive window style] [,resize window style]

Menu selection Color→Border

Description The BORDER command changes the border style of the active window, the
inactive windows, and any window that you’re resizing. The debugger sup-
ports nine border styles. Each parameter for the BORDER command must be
one of the numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides/bottom

3 Solid 1/4-tone top, double-lined sides/bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top/bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

Breakpoint Resetbr

Syntax br

Menu selection Break→Reset

Description The BR command clears all breakpoints that are set.

Alphabetical Summary of Debugger Commands

 12-10

Enter Auto Debugging Modec

Syntax c

Menu selection MoDe→C (auto)

Description The C command changes from the current debugging mode to auto mode. If
you’re already in auto mode, then the C command has no effect.

Open CALLS Windowcalls

Syntax calls

Menu selection none

Description The CALLS command displays the CALLS window. The debugger displays
this window automatically when you are in auto/C or mixed mode. However,
you can close the CALLS window; the CALLS command opens the window up
again.

Change Directorycd, chdir

Syntax cd [directory name]
chdir [directory name]

Menu selection none

Description The CD or CHDIR command changes the current working directory from within
the debugger. You can use relative pathnames as part of the directory name.
If you don’t use a pathname, the CD command displays the name of the current
directory. Note that this command can affect any other command whose
parameter is a filename, such as the FILE, LOAD, and TAKE commands, when
used with the USE command. You can also use the CD command to change
the current drive. For example,

cd c:
cd d:\csource
cd c:\c20hll

Clear Screencls

Syntax cls

Menu selection none

Description The CLS command clears all displayed information from the COMMAND
window display area.

 Alphabetical Summary of Debugger Commands

12-11 Chapter Title—Attribute Reference

Single-Step C, Next Statementcnext

Syntax cnex t [expression]

Menu selection Next=F10 (in C code)

Description The CNEXT command is similar to the CSTEP command. It runs a program
one C statement at a time, updating the display after executing each state-
ment. If you’re using CNEXT to step through assembly language code, the
debugger won’t update the display until it has executed all assembly language
statements associated with a single C statement. Unlike CSTEP, CNEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page 8-16, discusses this
in detail).

Change Screen Colorscolor

Syntax color area name, attribute1 [,attribute2 [,attribute3 [,attribute4]]]

Menu selection none

Description The COLOR command changes the color of specified areas of the debugger
display. COLOR doesn’t update the display; the changes take effect when
another command, such as SCOLOR, updates the display. The area name
parameter identifies the areas of the display that are affected. The attributes
identify how the areas are affected. The first two attribute parameters usually
specify the foreground and background colors for the area. If you do not supply
a background color, the debugger uses black as the background.

Valid values for the attribute parameters include

black blue green cyan

red magenta yellow white

bright blink

Valid values for the area name parameters include

Alphabetical Summary of Debugger Commands

 12-12

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need type only
enough letters to uniquely identify the attribute. If you supply ambiguous attrib-
ute names, the debugger interprets the names in this order: black, blue, bright,
blink. If you supply ambiguous area names, the debugger interprets them in
the order that they’re listed above (left to right, top to bottom).

Single-Step Ccstep

Syntax cstep [expression]

Menu selection Step=F8 (in C code)

Description The CSTEP single-steps through a program one C statement at a time,
updating the display after executing each statement. If you’re using CSTEP
to step through assembly language code, the debugger won’t update the dis-
play until it has executed all assembly language statements associated with
a single C statement.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug op-
tion). When function execution completes, single-step execution returns to the
caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page 8-16, discusses this
in detail).

 Alphabetical Summary of Debugger Commands

12-13 Chapter Title—Attribute Reference

Display Selected Disassemblydasm

Syntax dasm address[@prog | @data]
dasm function name

Menu selection none

Description The DASM command displays code beginning at a specific point within the
DISASSEMBLY window. By default, the address parameter is treated as a
program-memory address. However, you can follow it with @prog to identify
program memory or with @data to identify data memory.

Show Directory Contentsdir

Syntax di r [directory name]

Menu selection none

Description The DIR command displays a directory listing in the display area of the
COMMAND window. If you use the optional directory name parameter, the
debugger displays a list of the specified directory’s contents. If you don’t use
the parameter, the debugger lists the contents of the current directory.

Open DISPlay Windowdisp

Syntax disp expression[@prog | @data]

Menu selection none

Description The DISP command opens a DISP window to display the contents of an array,
structure, or pointer expressions to a scalar type (of the form *pointer). If the
expression is not one of these types, then DISP acts like a ? command. If the
expression identifies an address, you can follow it with @prog to identify
program memory or @data to identify data memory. Without the suffix, the
debugger treats an address-expression as a program-memory location.

Once you open a DISP window, you may find that a displayed member is itself
an array, structure, or pointer:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x00000000

You can display the additional data (the data pointed to or the members of the
array or structure) in another DISP window by using the DISP command again,

Alphabetical Summary of Debugger Commands

 12-14

using the arrow keys to select the field and then pressing F9 , or pointing the
mouse cursor to the field and pressing the left mouse button. You can have up
to 120 DISP windows open at the same time.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0
disp *(float *)123
disp *(char *)0x111

This shows memory in the DISP window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other
locations are offset from that location.

Evaluate Expressioneval

Syntax eval expression[@prog | @data]
e expression[@prog | @data]

Menu selection none

Description The EVAL command evaluates an expression like the ? command does but
does not show the result in the COMMAND window display area. EVAL is use-
ful for assigning values to registers or memory locations in a batch file (where
it’s not necessary to display the result).

If the expression identifies an address, you can follow it with @prog to identify
program memory or @data to identify data memory. Without the suffix, the
debugger treats an address-expression as a program-memory location.

Display Text Filefile

Syntax file filename

Menu selection L oad→File

Description The FILE command displays the contents of any text file in the FILE window.
The debugger continues to display this file until you run a program and halt in
a C function. This command is intended primarily for displaying C source code.
You can view only one text file at a time.

 Alphabetical Summary of Debugger Commands

12-15 Chapter Title—Attribute Reference

You are restricted to displaying files that are 65,518 bytes long or less.

Fill Memoryfill

Syntax fill address,page,length,data

Menu selection Memory→Fill

Description The FILL command fills a block of memory with a specified value.

� The address parameter identifies the first address in the block.

� The length parameter defines the number of words to fill.

� The page is a 1-digit number that identifies the type of memory (program
or data) to fill:

To fill this type of
memory

Use this value as the page
parameter

Program memory 0

Data memory 1

� The data parameter is the value that is placed in each word in the block.

Display Functionfunc

Syntax func function name
func address

Menu selection none

Description The FUNC command displays a specified C function in the FILE window. You
can identify the function by its name or its address; an address parameter is
treated as a program-memory address. Note that FUNC works similarly to
FILE, but you don’t need to identify the name of the file that contains the
function.

Debugger Commands

 12-16

Run to Specified Addressgo

Syntax go [address]

Menu selection none

Description The GO command executes code up to a specific point in your program. The
address parameter is treated as a program-memory address. If you don’t
supply an address, then GO acts like a RUN command without an expression
parameter.

Halt Target Systemhalt

Syntax halt

Menu selection none

Description The HALT command halts the target system after you’ve entered a RUNF
command. When you invoke the debugger, it automatically executes a HALT
command. Thus, if you enter a RUNF, quit the debugger, and later reinvoke
the debugger, you will effectively reconnect the SWDS to the target system
and run the debugger in its normal mode of operation.

Load Object Fileload

Syntax load object filename

Menu selection L oad→ Load

Description The LOAD command loads both an object file and its associated symbol table
into memory. In effect, the LOAD command performs both a RELOAD and an
SLOAD. Note that the LOAD command clears the old symbol table and closes
the WATCH and DISP windows.

 Alphabetical Summary of Debugger Commands

12-17 Chapter Title—Attribute Reference

Memory Map Addma

Syntax ma address, page, length, type

Menu selection Memory→Add

Description The MA command identifies valid ranges of target memory. Note that a new
memory map must not overlap an existing entry; if you define a range that over-
laps an existing range, the debugger ignores the new range.

� The address parameter defines the starting address of a range in data or
program memory. This parameter can be an absolute address, any C
expression, the name of a C function, or an assembly language label.

� The page parameter is a 1-digit number that identifies the type of memory
(program, data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memor y,
Use this keyword as the type
parameter

Read-only memory R, ROM, or READONLY

Write-only memory W, WOM, or WRITEONLY

Read/write memory WR or RAM

No-access memory PROTECT

Input port IPORT

Output port OPORT

Input/output port IOPORT

You can use the parameters (page 2 and type IPORT, OPORT, or IOPORT)
in conjunction with the MC command to simulate I/O ports.

Alphabetical Summary of Debugger Commands

 12-18

Enable Memory Mappingmap

Syntax map {on | off }

Menu selection M emory→Enable

Description The MAP command enables or disables memory mapping. In some instances,
you may want to explicitly enable or disable memory. Note that disabling
memory mapping can cause bus fault problems in the target because the
debugger may attempt to access nonexistent memory.

Connect a Simulated I/O Port to a Filemc

Syntax mc port address, page, filename, {READ | WRITE}

Menu selection M emory→Connect

Description The MC command connects IPORT,OPORT, or IOPORT to an input or output
file. Before you can connect the port, you must add it to the memory map with
the MA command.

� The port address parameter defines the address of the I/O port. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label.

� The page parameter is a 1-digit number that identifies the page that the
port occupies.

To identify this page,
Use this value as the page
parameter

Data memory 1

I/O space 2

Ports are usually on page 2 (the I/O space).

� The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist or the MC command will fail.

� The final parameter is specified as READ or WRITE and defines how the
file will be used (for input or output, respectively).

The file is accessed during an IN or OUT instruction to the associated port
address. Any port in I/O space can be connected to a file. A maximum of one
input and one output file can be connected to a single port; multiple ports can

 Alphabetical Summary of Debugger Commands

12-19 Chapter Title—Attribute Reference

be connected to a single file. Memory-mapped ports can also be connected
to files; any instruction that reads or writes to the memory-mapped port will
read or write to the associated file.

This port-connect feature can also be used for some simulation of serial ports.
The DXR and DRR registers can be connected to files.

If you’re using the SWDS to simulate I/O space, you must set a breakpoint on
the I/O instructions. For details about simulating I/O space with the SWDS, re-
fer to Section 7.7 on page 7-10 .

Memory Map Deletemd

Syntax md address, page

Menu selection Memory→Delete

Description The MD command deletes a range of memory from the debugger’s memory
map.

� The address parameter identifies the starting address of the range of
program, data, or I/O memory. If you supply an address that is not the start-
ing address of a range, the debugger displays this error message in the
COMMAND window display area:

Specifie d map not found

� The page parameter is a 1-digit number that identifies the type of memory
(program, data, or I/O) that the range occupies:

To identify this page,
Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

Note: Deleting a Simulated I/O Port

If you are using the simulator and want to use the MD command to remove
a simulated I/O port, you must first disconnect the port with the MI command.

Alphabetical Summary of Debugger Commands

 12-20

Disconnecting an I/O Portmi

Syntax mi port address, page, {READ | WRITE}

Menu selection M emory→DisConn

Description The MI command disconnects a simulated I/O port from its associated system
file.

� The port address parameter identifies the address of the I/O port, which
must have been previously defined with the MC command.

� The page parameter is a 1-digit number that identifies the type of memory
(program, data, or I/O) that the port occupies:

To identify this page,
Use this value as the page
parameter

Data memory 1

I/O space 2

The page parameter for the MI command must match the page parameter
that was used when the port was connected using the MC command.

Memory Map Listml

Syntax ml

Menu selection M emory→List

Description The ML command lists the memory ranges that are defined for the debugger’s
memory map. The ML command lists the starting address, ending address,
and read/write characteristics of each defined memory range.

 Alphabetical Summary of Debugger Commands

12-21 Chapter Title—Attribute Reference

Modify MEMORY Window Displaymem

Syntax mem expression[@prog | @data]

Menu selection none

Description The MEM command identifies a new starting address for the block of memory
displayed in the MEMORY window. The debugger displays the contents of
memory at expression in the first data position in the MEMORY window. The
end of the range is defined by the size of the window. The expression can be
an absolute address, a symbolic address, or any C expression.

You can display either program or data memory:

� By default, the MEMORY window displays data memory. Although it is not
necessary, you can explicitly specify data memory by following the expres-
sion parameter with a suffix of @data.

� You can display the contents of program memory by following the expres-
sion parameter with a suffix of @prog . When you do this, the MEMORY
window’s label changes to MEMORY [PROG] so that there is no confusion
about the type of memory being displayed.

Enter Mixed Debugger Modemix

Syntax mix

Menu selection MoDe→Mixed

Description The MIX command changes from the current debugging mode to mixed mode.
If you’re already in mixed mode, the MIX command has no effect.

Alphabetical Summary of Debugger Commands

 12-22

Move Windowmove

Syntax move [X position, Y position [, width, length]]

Menu selection none

Description The MOVE command moves the active window to the specified XY position.
If you choose, you can resize the window while you move it (see the SIZE
command for valid width and length values). You can use the MOVE command
in one of two ways:

� By supplying a specific X position and Y position or
� By omitting the X position and Y position parameters and using function

keys to interactively move the window.

Valid X and Y positions depend on the screen size and the window size. These
are the minimum and maximum XY positions. The maximum values assume
that the window is as small as possible; for example, if a window was half as
tall as the screen, you wouldn’t be able to move its upper left corner to an X
position on the bottom half of the screen.

Screen size
Debugger
options

Valid X
positions

Valid Y
positions

80 characters by 25 lines none 0 through 76 1 through 22

80 characters by 39 lines†

80 characters by 43 lines‡
80 characters by 50 lines§

–b 0 through 76 1 through 36
1 through 40
1 through 47

120 characters by 43 lines –bb 0 through 116 1 through 40

132 characters by 43 lines –bbb 0 through 128 1 through 40

80 characters by 60 lines –bbbb 0 through 76 1 through 57

100 characters by 60 lines –bbbbb 0 through 106 1 through 57

† PC version of simulator running under Microsoft Windows
‡ PC with EGA card; Sun
§ PC with VGA card

Note: To use larger screen sizes, you must invoke the debugger with the appropriate –b option.

If you enter the MOVE command without X position and Y position parameters,
you can use arrow keys to move the window.

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the arrow keys, you must press or .

 Alphabetical Summary of Debugger Commands

12-23 Chapter Title—Attribute Reference

Memory Map Resetmr

Syntax mr

Menu selection Memory→Reset

Description The MR command resets the debugger’s memory map by deleting all defined
memory ranges from the map.

Save a Block of Memory to a Filems

Syntax ms address, page, length, filename

Menu selection Memory→Save

Description The MS command saves the values in a block of memory to a system file; files
are saved in COFF format.

� The address parameter identifies the first address in the block.

� The page is a 1-digit number that identifies the type of memory (program,
data, or I/O) to save:

To save this type of
memory

Use this value as the page
parameter

Program memory 0

Data memory 1

I/O space 2

� The length parameter defines the length, in words, of the range. This pa-
rameter can be any C expression.

� The filename is a system file.

Alphabetical Summary of Debugger Commands

 12-24

Single-Step, Next Statementnext

Syntax next [expression]

Menu selection Next=F10 (in disassembly)

Description The NEXT command is similar to the STEP command. If you’re in C code, the
debugger executes one C statement at a time. In assembly or mixed mode,
the debugger executes one assembly language statement at a time. Unlike
STEP, NEXT never updates the display when executing called functions;
NEXT always steps to the next consecutive statement. Unlike STEP, NEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page 8-16, discusses this
in detail).

Change Command-Line Promptprompt

Syntax prompt new prompt

Menu selection C olor→Prompt

Description The PROMPT command changes the command-line prompt. The new prompt
can be any string of characters (note that a semicolon or comma ends the
string).

Exit Debuggerquit

Syntax quit

Menu selection none

Description The QUIT command exits the debugger and returns to the DOS environment.

Reload Object Codereload

Syntax reload object filename

Menu selection L oad→Reload

Description The RELOAD command loads only an object file without loading its asso-
ciated symbol table. This is useful for reloading a program when target
memory has been corrupted.

 Alphabetical Summary of Debugger Commands

12-25 Chapter Title—Attribute Reference

Reset Target Systemreset

Syntax reset

Menu selection Load→ReseT

Description The RESET command resets the SWDS and reloads the monitor. (Use
c2xreset for the simulator.) Note that this is a software reset.

Reset PC to Program Entry Pointrestart

Syntax restart
rest

Menu selection Load→REstart

Description The RESTART or REST command resets the program to its entry point. (This
assumes that you have already used one of the load commands to load a
program into memory.)

Alphabetical Summary of Debugger Commands

 12-26

Return to Function’s Callerreturn

Syntax return
ret

Menu selection none

Description The RETURN or RET command executes the code in the current C function
and halts when execution reaches the caller. Breakpoints do not affect this
command, but you can halt execution by pressing the left mouse button or
pressing ESC .

Run Coderun

Syntax run [expression]

Menu selection Run=F5

Description The RUN command is the basic command for running an entire program. The
command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page 8-16).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, and updates the display.

 Alphabetical Summary of Debugger Commands

12-27 Chapter Title—Attribute Reference

Run Benchmark Simulator Onlyrunb

Syntax runb

Menu selection none

Description The RUNB command executes a specific section of code and counts the
number of CPU clock cycles consumed by the execution. In order to operate
correctly, execution must be halted by a breakpoint. After RUNB execution
halts, the debugger stores the number of cycles into the CLK pseudoregister.
For a complete explanation of the RUNB command and the benchmarking
process, read Section 8.7, Benchmarking, on page 8-18.

Note: Simulator Only

This command is for the simulator only; it does not work with the SWDS. If
you attempt to use the RUNB command with an SWDS system, the debugger
displays this error message:

––– Execution error

Run Free SWDS Onlyrunf

Syntax runf

Menu selection none

Description The RUNF command disconnects the SWDS from the target system while
code is executing. When you enter RUNF, the debugger clears all breakpoints,
disconnects the SWDS from the target system, and causes the processor to
begin execution at the current PC. You can quit the debugger, or you can con-
tinue to enter commands. However, any command that causes the debugger
to access the target at this time produces an error.

The HALT command stops a RUNF; note that the debugger automatically
executes a HALT when the debugger is invoked.

Alphabetical Summary of Debugger Commands

 12-28

Change Screen Colorsscolor

Syntax scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

Menu selection C olor→Config

Description The SCOLOR command changes the color of specified areas of the debugger
display and updates the display immediately. The area name parameter identi-
fies the areas of the display that are affected. The attributes identify how the
area is affected. The first two attribute parameters usually specify the fore-
ground and background colors for the area. If you do not supply a background
color, the debugger uses black as the background.

Valid values for the attribute parameters include

black blue green cyan

red magenta yellow white

bright blink

Valid values for the area name parameters include

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need type only
enough letters to uniquely identify the attribute. If you supply ambiguous attrib-
ute names, the debugger interprets the names in this order: black, blue, bright,
blink. If you supply ambiguous area names, the debugger interprets them in
the order that they’re listed above (left to right, top to bottom).

 Alphabetical Summary of Debugger Commands

12-29 Chapter Title—Attribute Reference

Load Screen Configurationsconfig

Syntax sconfig [filename]

Menu selection Color→Load

Description The SCONFIG command restores the display to a specified configuration.
This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for init.clr. The debugger searches for
the specified file in the current directory and then in directories named with the
D_DIR environment variable.

Size Windowsize

Syntax size [width, length]

Menu selection none

Description The SIZE command changes the size of the active window. You can use the
SIZE command in one of two ways:

� By supplying a specific width and length or
� By omitting the width and length parameters and using function keys to in-

teractively resize the window.

Valid values for the width and length depend on the screen size and the win-
dow position on the screen. These are the minimum and maximum window
sizes.

Screen size
Debugger
option Valid widths Valid lengths

80 characters by 25 lines none 4 through 80 3 through 24

80 characters by 39 lines†

80 characters by 43 lines‡

80 characters by 50 lines§

–b 4 through 80 3 through 38
3 through 42
3 through 49

120 characters by 43 lines –bb 4 through 120 3 through 42

132 characters by 43 lines –bbb 4 through 132 3 through 42

80 characters by 60 lines –bbbb 4 through 80 3 through 59

100 characters by 60 lines –bbbbb 4 through 100 3 through 59
† PC version of simulator running under Microsoft Windows
‡ PC with EGA card; Sun
§ PC with VGA card

Note: To use larger screen sizes, you must invoke the debugger with the appropriate –b option.

Alphabetical Summary of Debugger Commands

 12-30

The maximum sizes assume that the window is in the upper left corner
(beneath the menu bar). If a window is in the middle of the display, for example,
you can’t size it to the maximum height and width; you can size it only to the
right and bottom screen borders.

If you enter the SIZE command without width and length parameters, you can
use arrow keys to size the window.

↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the arrow keys, you must press or .

Load Symbol Tablesload

Syntax sload object filename

Menu selection L oad→Symbols

Description The SLOAD command loads the symbol table of the specified object file.
SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point. Note that SLOAD closes the
WATCH and DISP windows.

 Alphabetical Summary of Debugger Commands

12-31 Chapter Title—Attribute Reference

Save Screen Configurationssave

Syntax ssav e [filename]

Menu selection Color→Save

Description The SSAVE command saves the current screen configuration to a file. This
saves the screen colors, window positions, window sizes, and border styles.
The filename parameter names the new screen configuration file. You can
include path information (including relative pathnames); if you don’t supply
path information, the debugger places the file in the current directory. The
filename is required for the simulator but optional for the SWDS. If you don’t
supply a filename, then the debugger saves the current configuration into a file
named init.clr (SWDS) and places the file in the current directory.

Single-Stepstep

Syntax step [expression]

Menu selection Step=F8 (in disassembly)

Description The STEP command single-steps through assembly language or C code. If
you’re in C code, the debugger executes one C statement at a time. In assem-
bly or mixed mode, the debugger executes one assembly language statement
at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug op-
tion). When function execution completes, single-step execution returns to the
caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (Running code conditionally, page 8-16, discusses this
in detail).

Alphabetical Summary of Debugger Commands

 12-32

Execute Batch Filetake

Syntax take batch filename [, suppress echo flag]

Menu selection none

Description The TAKE command tells the debugger to read and execute commands from
a batch file. The batch filename parameter identifies the file that contains
commands.

By default, the debugger echoes the commands to the output area of the
COMMAND window and updates the display as it reads the commands from
the batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but supply
a nonzero value, then the debugger behaves in the default manner.

� If you would like to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

Use Different Directoryuse

Syntax use directory name

Menu selection none

Description The USE command names an additional directory that the debugger can
search when looking for source files. You can specify only one directory at a
time.

 Alphabetical Summary of Debugger Commands

12-33 Chapter Title—Attribute Reference

Watch Value Addwa

Syntax wa expression[@prog | @data] [, label]

Menu selection Watch→Add

Description The WA command displays the value of expression in the WATCH window. If
the WATCH window isn’t open, executing WA opens the WATCH window. The
expression parameter can be any C expression, including an expression that
has side effects. If the expression identifies an address, you can follow it with
@prog to identify program memory or with @data to identify data memory.
Without the suffix, the debugger treats an address-expression as a
program-memory location.

WA is most useful for watching an expression whose value changes over time;
constant expressions provide no useful function in the watch window. The la-
bel parameter is optional. When used, it provides a label for the watched entry.
If you don’t use a label, the debugger displays the expression in the label field.

Watch Value Deletewd

Syntax wd index number

Menu selection Watch→Delete

Description The WD command deletes a specific item from the WATCH window. The WD
command’s index number parameter must correspond to one of the watch
indexes listed in the WATCH window.

What Is This Data?whatis

Syntax whatis symbol

Menu selection none

Description The WHATIS command shows the data type of symbol in the COMMAND
window display area. The symbol can be any variable (local, global, or static),
a function name, structure tag, typedef name, or enumeration constant.

Select Active Windowwin

Syntax win WINDOW NAME

Menu selection none

Description The WIN command allows you to select the active window by name. Note that
the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need
specify only enough letters to identify the window.

Running Title—AttributeReference

 12-34

If several of the same types of window are visible on the screen, don’t use the
WIN command to select one of them. If you supply an ambiguous name (such
as C, which could stand for CPU or CALLS), the debugger selects the first
window it finds whose name matches the name you supplied. If the debugger
doesn’t find the window you asked for (because you closed the window or
misspelled the name), then the WIN command has no effect.

WATCH Window Resetwr

Syntax wr

Menu selection W atch→Reset

Description The WR command deletes all items from the WATCH window and closes the
window.

 Summary of Special Keys

12-35 Chapter Title—Attribute Reference

12.3 Summary of Special Keys
The debugger provides function key, cursor key, and command key se-
quences for performing a variety of actions:

� Editing text on the command line
� Using the command history
� Switching modes
� Halting or escaping from an action
� Displaying the pulldown menus
� Running code
� Selecting or closing a window
� Moving or sizing a window
� Scrolling through a window’s contents
� Editing data or selecting the active field

Editing text on the command line

To do this
Use these
function keys

Enter the current command (note that if you press the return key
in the middle of text, the debugger truncates the input text at the
point where you press this key)

Move back over text without erasing characters
or

Move forward through text without erasing characters

Move back over text while erasing characters

Move forward through text while erasing characters

Insert text into the characters that are already on the command
line

Using the command history

To do this
Use these
function keys

Move backward, one command at a time, through the command
history

Move forward, one command at a time, through the command
history

Execute the last command in the list F2

Summary of Special Keys

 12-36

Switching modes

To do this
Use this
function key

Switch debugging modes in this order:

auto assembly mixed

Halting or escaping from an action

The escape key acts as an end or undo key in several situations.

To do this
Use this
function key

� Halt program execution

� Close a pulldown menu

� Undo an edit of the active field in a data-display window
(pressing this key leaves the field unchanged)

� Halt the display of a long list of data in the COMMAND window
display area

Displaying pulldown menus

To do this
Use these
function keys

Display the Load menu

Display the Break menu

Display the Watch menu

Display the Memory menu

Display the Color menu

Display the MoDe menu

Display an adjacent menu or

Execute any of the choices from a displayed pulldown menu Press the high-
lighted letter cor-
responding to
your choice

 Summary of Special Keys

12-37 Chapter Title—Attribute Reference

Running code

To do this
Use these
function keys

Run code from the current PC (equivalent to the RUN command
without an expression parameter)

Single-step code from the current PC (equivalent to the STEP
command without an expression parameter)

Single-step code from the current PC; step over function calls
(equivalent to the NEXT command without an expression
parameter)

Selecting or closing a window

To do this
Use these
function keys

Select the active window (pressing this key makes each window
active in turn; stop pressing the key when the desired window be-
comes active)

Close the CALLS or DISP window (the window must be active
before you can close it)

Moving or sizing a window

You can use the arrow keys to interactively move a window after entering the
MOVE or SIZE command without parameters.

To do this
Use these
function keys

� Move the window down one line

� Make the window one line longer

� Move the window up one line

� Make the window one line shorter

� Move the window left one character position

� Make the window one character narrower

� Move the window right one character position

� Make the window one character wider

Summary of Special Keys

 12-38

Scrolling through a window’s contents

These descriptions and instructions for scrolling apply to the active window.
Some of these descriptions refer to specific windows; if no specific window is
named, then the description/instructions refer to any window that is active.

To do this
Use these
function keys

Scroll up through the window contents, one window length at
a time

Scroll down through the window contents, one window length
at a time

Move the field cursor up, one line at a time

Move the field cursor down, one line at a time

� FILE window only: Scroll left 8 characters at a time

� Other windows: Move the field cursor left 1 field; at the first
field on a line, wrap back to the last fully displayed field on the
previous line

� FILE window only: Scroll right 8 characters at a time

� Other windows: Move the field cursor right 1 field; at the last
field on a line, wrap around to the first field on the next line

FILE window only: Adjust the window’s contents so that the first
line of the text file is at the top of the window

FILE window only: Adjust the window’s contents so that the last
line of the text file is at the bottom of the window

DISP windows only: Scroll up through an array of structures

DISP windows only: Scroll down through an array of structures

Editing data or selecting the active field

The F9 function key makes the current field (the field that the cursor is pointing
to) active. This has various effects, depending on the field.

To do this
Use this
function key

� FILE or DISASSEMBLY window: Set or clear a breakpoint

� CALLS window: Display the source to a listed function

� Any data-display window: Edit the contents of the current field

� DISP window: Open an additional DISP window to display a
member that is an array, structure, or pointer

13-1 Chapter Title—Attribute Reference

Basic Information
 About C Expressions

Many of the debugger commands take C expressions as parameters. This allows the debugger to have
a relatively small, yet powerful, instruction set. Because C expressions can have side effects—that is,
the evaluation of some types of expressions can affect existing values—you can use the same com-
mand to display or to change a value. This reduces the number of commands in the command set.

This chapter contains basic information that you’ll need to know in order to use C expressions as
debugger command parameters.

Topic Page

If you’re an experienced C pro-
grammer, skip this section.

13.1 C Expressions for Assembly Language Programmers 13-2

Because the C expressions you’ll
use are parameters to debugger
commands, some language fea-
tures may be inappropriate. This
section covers specific implemen-
tation issues (including necessary
limitations and additional fea-
tures) related to using C expres-
sions as command parameters.

13.2 Restrictions and Features Associated With 13-4
Expression Analysis in the Debugger
Restrictions 13-4
Additional features 13-4

Chapter 13

C Expressions for Assembly Language Programmers

 13-2

13.1 C Expressions for Assembly Language Programmers

It’s not necessary for you to be an experienced C programmer in order to use
the debugger. However, in order to use the debugger’s full capabilities, you
should at least be familiar with the rules governing C expressions. You should
obtain a copy of The C Programming Language (first or second edition) by
Brian W. Kernighan and Dennis M. Ritchie, published by Prentice-Hall, Engle-
wood Cliffs, New Jersey. This book is referred to in the C community, and in
Texas Instruments documentation, as K&R.

Note: Single Values as Expressions

A single value or symbol is a legal C expression.

K&R contains a complete description of C expressions; to get you started,
here’s a summary of the operators that you can use in expression parameters.

� Reference operators

–> indirect structure reference . direct structure reference
[] array reference * indirection (unary)
& address (unary)

� Arithmetic operators

+ addition (binary) – subtraction (binary)
* multiplication / division
% modulo – negation (unary)
(type) typecast

� Relational and logical operators

> greater than >= greater than or equal to
< less than <= less than or equal to
= = is equal to != is not equal to
&& logical AND || logical OR
! logical NOT (unary)

 C Expressions for Assembly Language Programmers

13-3 Chapter Title—Attribute Reference

� Increment and decrement operators

++ increment – – decrement

These unary operators can precede or follow a symbol. When the operator
precedes a symbol, the symbol value is incremented/decremented before
it is used in the expression; when the operator follows a symbol, the sym-
bol value is incremented/decremented after it is used in the expression.
Because these operators affect the symbol’s final value, they have side
effects.

� Bitwise operators

& bitwise AND | bitwise OR
^ bitwise exclusive-OR << left shift
>> right shift ~ 1s complement (unary)

� Assignment operators

= assignment += assignment with addition
–= assignment with subtraction /= assignment with division
%= assignment with modulo &= assignment with bitwise AND
^= assignment with bitwise XOR |= assignment with bitwise OR
<<= assignment with left shift >>= assignment with right shift
*= assignment with multiplication

These operators support a shorthand version of the familiar binary expres-
sions; for example, X = X + Y can be written in C as X += Y. Because these
operators affect a symbol’s final value, they have side effects.

Restrictions and Features Associated With Expression Analysis in the Debugger

 13-4

13.2 Restrictions and Features Associated With
Expression Analysis in the Debugger

The debugger’s expression analysis is based on C expression analysis. This
includes all mathematical, relational, pointer, and assignment operators.
However, there are a few limitations, as well as a few additional features not
described in K&R C.

Restrictions

The following restrictions apply to the debugger’s expression analysis
features.

� The sizeof operator is not supported.

� The comma operator (,) is not supported (commas are used to separate
parameter values for the debugger commands).

� Function calls and string constants are currently not supported in
expressions.

� The debugger supports a limited capability of type casts—the following
forms are allowed.

(basic type)
(basic type * ...)
([structure/union/enum] structure/union/enum tag)
([structure/union/enum] structure/union/enum tag * ...)

Note that you can use up to six * s in a cast.

Additional features

� All floating-point operations are performed in double precision using stan-
dard widening. (This is transparent.) Floats are represented in IEEE floa-
ting-point format.

� All registers can be referenced by name. The TMS320C2x’s auxiliary reg-
isters are treated as integers and/or pointers.

� Void expressions are legal (treated like integers).

� The specification of variables and functions can be qualified with context
information. Local variables (including local statics) can be referenced
with the expression form:

function name.local name

 Restrictions and Features Associated With Expression Analysis in the Debugger

13-5 Chapter Title—Attribute Reference

This expression format is useful for examining the automatic variables of a
function that is not currently being executed. Unless the variable is static,
however, the function must be somewhere in the current call stack. Note
that if you want to see local variables from the currently executing function,
you need not use this form; you can simply specify the variable name (just
as in your C source).

File-scoped variables (such as statics or functions) can be referenced with
the following expression form:

filename.function name
or filename.variable name

This expression format is useful for accessing a file-scoped static variable
(or function) that may share its name with variables in other files.

Note that in this expression, filename does not include the file extension;
the debugger searches the object symbol table for any source filename
that matches the input name, disregarding any extension. Thus, if the vari-
able ABC is in file source.c, you can specify it as source.ABC.

Note that these expression forms can be combined into an expression of
the form:

filename.function name.variable name

� Any integral or void expression may be treated as a pointer and used with
the indirection operator (*). Here are several examples of valid use of a
pointer in an expression:

*123
*AR5
*(AR2 + 123)
*(I*J)

By default, the values are treated as integers (that is, these expressions
point to integer values).

� Any expression can be typecast to a pointer to a specific type (overriding
the default of pointing to an integer, as described above).

Hint: You can use casting with the WA and DISP commands to display
data in a desired format.

For example, the expression:

*(floa t *)10

treats 10 as a pointer to a floating-point value at location 10 in memory. In
this case, the debugger fetches the contents of memory location 10 and
treats the contents as a floating-point value. If you use this expression as a
parameter for the DISP command, the debugger displays memory

Restrictions and Features Associated With Expression Analysis in the Debugger

 13-6

contents as an array of floating-point values within the DISP window, be-
ginning with memory location 10 as array member [0].

Note how the first expression differs from the expression:

(float)*10

In this case, the debugger fetches an integer from address 10 and con-
verts the integer to a floating-point value.

You can also typecast to user-defined types such as structures. For exam-
ple, in the expression:

((struct STR *)10)–>field

the debugger treats memory location 10 as a pointer to a structure of type
STR (assuming that a structure is at address 10) and accesses a field from
that structure.

N-1 Chapter Title—Attribute Reference

Appendix A

What the Debugger Does
During Invocation

In some circumstances, you may find it helpful to know the steps that the
debugger goes through during the invocation process. These are the steps,
in order, that the debugger performs when you invoke it.

1) Reads options from the command line.

2) Reads any information specified with the D_OPTIONS environment vari-
able.

3) Reads information from the D_DIR and D_SRC environment variables.

4) SWDS: Looks for the init.clr screen configuration file.

VAX/VMS version of the simulator: Looks for the clrs.dat screen configu-
ration file.

(The debugger searches for the screen configuration file in directories
named with D_DIR.)

5) Initializes the debugger screen and windows but initially displays only the
COMMAND window.

6) SWDS: Looks for the dbinit.cmd batch file.

Simulator: Looks for the siminit.cmd batch file.

The debugger searches for dbinit.cmd or siminit.cmd in directories named
with D_DIR. If the debugger finds the file, it opens the file and reads and
executes the commands it finds inside. The debugger expects this file to
set up the memory map.

7) Loads any object filenames specified with D_OPTIONS or specified on the
command line during invocation.

8) Determines the initial mode (auto, assembly, or mixed) and displays the
appropriate windows on the screen.

At this point, the debugger is ready to process any commands that you enter.

Appendix A

O-1 Chapter Title—Attribute Reference

Appendix A

Debugger Messages

This appendix contains an alphabetical listing of the progress and error messages that the debugger
might display in the COMMAND window display area. Each message contains both a description of the
situation that causes the message and an action to take if the message indicates a problem or error.

Synopsis Topic
Page

The main portion of this appendix
is the alphabetical message refer-
ence.

B.1 Alphabetical Reference of Debugger Messages O-2

These sections supplement the
actions provided with error mes-
sages.

B.2 Additional Instructions for Expression Errors O-18

B.3 Additional Instructions for Hardware Errors O-18

Appendix B

Running Title—Attribute Reference

O-2

B.1 Alphabetical Summary of Debugger Messages

Symbols

‘]’ expected

Description This is an expression error—it means that the parameter
contained an opening [symbol but didn’t contain a closing]
symbol.

Action See Section B.2 (page O-18).

‘)’ expected

Description This is an expression error—it means that the parameter
contained an opening (symbol but didn’t contain a closing)
symbol.

Action See Section B.2 (page O-18).

A

Aborted by user

Description The debugger halted a long COMMAND display listing (from
WHATIS, DIR, ML, or BL) because you pressed the ESC key.

Action None required; this is normal debugger behavior.

B

Breakpoint already exists at address

Description During single-step execution, the debugger attempted to set
a breakpoint where one already existed. (This isn’t necessari-
ly a breakpoint that you set—it may have been an internal
breakpoint that was used for single-stepping).

Action None should be required; you may want to reset the program
entry point (RESTART) and re-enter the single-step
command.

 Running Title—Attribute Reference

O-3 Chapter Title—Attribute Reference

Breakpoint table full

Description 200 breakpoints are already set, and there was an attempt to
set another. The maximum limit of 200 breakpoints includes
internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where you have breakpoints set
in your program. Use the BR command to delete all break-
points, or use the BD command to delete individual unneces-
sary breakpoints.

C

Cannot allocate host memory

Description This is a fatal error—it means that the debugger is running out
of memory to run in.

Action You might try invoking the debugger with the –v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Corrupt call stack

Description The debugger tried to update the CALLS window and
couldn’t. This may be because a function was called that
didn’t return. Or it could be that the call stack was overwritten
in memory.

Action If your program called a function that didn’t return, then this is
normal behavior (as long as you intended for the function not
to return). Otherwise, you may be overwriting program
memory.

Cannot change directory

Description The directory name specified with the CD command either
doesn’t exist or is not in the current or auxiliary directories.

Action Check the directory name that you specified. If this is really
the directory that you want, re-enter the CD command and
specify the entire pathname for that directory (for example,
specify C:\c2xhl l , not just c2xhll).

Running Title—Attribute Reference

O-4

Cannot edit field
Description Expressions that are displayed in the WATCH window cannot

be edited.

Action If you attempted to edit an expression in the WATCH window,
you may have actually wanted to change the value of a sym-
bol or register used in the expression. Use the ? or EVAL
command to edit the actual symbol or register. The expres-
sion value will automatically be updated.

Cannot find/open initialization file
Description The debugger can’t find the dbinit.cmd or siminit.cmd file.

Action Be sure that dbinit.cmd or siminit.cmd is in the appropriate di-
rectory. If it isn’t, copy it from the debugger product diskette. If
the file is already in the correct directory, verify that the D_DIR
environment variable is set up to identify the directory. See
Setting Up the Debugger Environment in the appropriate
installation chapter.

Cannot halt the processor
Description This is a fatal error—for some reason, pressing ESC didn’t

halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again.

Cannot map port address
Description Attempt to do a connect/disconnect on an illegal port address.

Cannot open config file
Description The SCONFIG command can’t find the screen-customization

file that you specified.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the command with the correct name. If it was,
re-enter the command and specify full path information with
the filename.

Cannot open “ filename”
Description The debugger attempted to show filename in the FILE win-

dow but could not find the file.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

 Running Title—Attribute Reference

O-5 Chapter Title—Attribute Reference

Cannot open object file: “ filename”

Description The file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run dspcl again to create
an executable object file).

Cannot open new window

Description A maximum of 127 windows can be open at once. The last
request to open a window would have made 128, which isn’t
possible.

Action Close any unnecessary windows. Windows that can be
closed include WATCH, CALLS, and DISP. To close the
WATCH window, enter WD. To close the CALLS window or a
DISP window, make the desired window active and press

F4 .

Cannot read processor status

Description This is a fatal error—for some reason, pressing ESC didn’t
halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again.

Cannot reset the processor

Description This is a fatal error—for some reason, pressing ESC didn’t
halt program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again.

Cannot restart processor

Description If a program doesn’t have an entry point, then RESTART
won’t reset the PC to the program entry point.

Action Don’t use RESTART if your program doesn’t have an explicit
entry point.

Running Title—Attribute Reference

O-6

Cannot set/verify breakpoint at address

Description Either you attempted to set a breakpoint in read-only or
protected memory, or there are hardware problems with the
target system or SWDS.

Action Check your memory map. If the address that you wanted to
breakpoint wasn’t in ROM, see Section B.3 (page O-18).

Cannot step (SWDS only)

Description The monitor software has been overwritten or damaged by
program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger.

Cannot take address of register

Description This is an expression error. C does not allow you to take the
address of a register.

Action See Section B.2 (page O-18).

Command “ cmd” not found

Description The debugger didn’t recognize the command that you typed.

Action Re-enter the correct command. Refer to Chapter 12 or the
Quick Reference Card for a list of valid debugger commands.

Command timed out (SWDS only)

Description The monitor software has been overwritten or damaged by
program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger.

Conflicting map range

Description A block of memory specified with the MA command overlaps
an existing memory map entry. Blocks cannot overlap.

Action Use the ML command to list the existing memory map; this will
help you find that existing block that the new block would
overlap. If the existing block is not necessary, delete it with the
MD command and re-enter the MA command. If the existing
block is necessary, re-enter the MA command with parame-
ters that will not overlap the existing block.

 Running Title—Attribute Reference

O-7 Chapter Title—Attribute Reference

E

Error in expression

Description This is an expression error.

Action See Section B.2 (page O-18).

Execution error (SWDS only)

Description The monitor software has been overwritten or damaged by
program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger.

F

File already tied to port

Description Attempt to connect on an address that already has a file
connected to it.

File does not exist

Description Port file could not be opened for reading.

Files must be disconnected from ports

Description Attempt to delete a memory map that has files connected to it.

File not found

Description The filename specified for the FILE command was not found
in the current directory or any of the directories identified with
D_SRC.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the FILE command with the correct name. If it was,
re-enter the FILE command and specify full path information
with the filename.

Running Title—Attribute Reference

O-8

File not found : “ filename”

Description The filename specified for the LOAD, RELOAD, SLOAD, or
TAKE command was not found in the current directory or any
of the directories identified with D_SRC.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the command with the correct name. If it was,
re-enter the command and specify full path information with
the filename.

File too large (filename)

Description You attempted to load a file that was more than 65,518 bytes
long.

Action Try loading the file without the symbol table (SLOAD), or use
gspcl to relink the program with fewer modules.

Float not allowed

Description This is an expression error—a floating-point value was used
invalidly.

Action See Section B.2 (page O-18).

Function required

Description The parameter for the FUNC command must be the name of a
function in the program that is loaded.

Action Re-enter the FUNC command with a valid function name.

I

Illegal addressing mode

Description An illegal C2x addressing mode was encountered.

Illegal cast

Description This is an expression error—the expression parameter uses
a cast that doesn’t meet the C language rules for casts.

Action See Section B.2 (page O-18).

 Running Title—Attribute Reference

O-9 Chapter Title—Attribute Reference

Illegal control transfer instruction

Description The instruction following a delayed branch/call instruction
was modifying the program counter.

Illegal left hand side of assignment

Description This is an expression error—the left hand side of an assign-
ment expression doesn’t meet C language assignment rules.

Action See Section B.2 (page O-18).

Illegal memory access

Description Access to unconfigured/reserved/nonexistent memory.

Illegal opcode

Description An invalid C2x instruction was encountered.

Illegal operand of &

Description This is an expression error—the expression attempts to take
the address of an item that doesn’t have an address.

Action See Section B.2 (page O-18).

Illegal pointer math

Description This is an expression error—some types of pointer math are
not valid in C expressions.

Action See Section B.2 (page O-18).

Illegal pointer subtraction

Description This is an expression error—the expression attempts to use
pointers in a way that is not valid.

Action See Section B.2 (page O-18).

Illegal structure reference

Description This is an expression error—either the item being referenced
as a structure is not a structure, or you are attempting to refer-
ence a nonexistent portion of a structure.

Action See Section B.2 (page O-18).

Running Title—Attribute Reference

O-10

Illegal use of structures

Description This is an expression error—the expression parameter is not
using structures according to the C language rules.

Action See Section B.2 (page O-18).

Illegal use of void expression

Description This is an expression error—the expression parameter does
not meet the C language rules.

Action See Section B.2 (page O-18).

Integer not allowed

Description This is an expression error—the command did not accept an
integer as a parameter.

Action See Section B.2 (page O-18).

Invalid address
––– Memory access outside valid range: address

Description The debugger attempted to access memory at address,
which is outside the memory map.

Action Check your memory map to be sure that you access valid
memory.

Invalid argument

Description One of the command parameters does not meet the require-
ments for the command.

Action Re-enter the command with valid parameters. Refer to the
appropriate command description in Chapter 12.

Invalid attribute name

Description The COLOR and SCOLOR commands accept a specific set
of area names for their first parameter. The parameter
entered did not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid area
name parameter. Valid area names are listed in Table 11–2
(page 11-3).

 Running Title—Attribute Reference

O-11 Chapter Title—Attribute Reference

Invalid color name

Description The COLOR and SCOLOR commands accept a specific set
of color attributes as parameters. The parameter entered did
not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid color
parameter. Valid color attributes are listed in Table 11–1
(page 11-2).

Invalid memory attribute

Description The third parameter of the MA command specifies the type, or
attribute, of the block of memory that MA adds to the memory
map. The parameter entered did not match one of the valid
attributes.

Action Re-enter the MA command. Use one of the following valid
parameters to identify the memory type:

R, ROM, READONLY (read-only memory)
W, WOM, WRITEONLY (write-only memory)
RW, RAM (read/write memory)
PROTECT (no-access memory)
OPORT (I/O memory, simulator only)
IPORT (I/O memory, simulator only)
IOPORT (I/O memory, simulator only)

Invalid object file

Description Either the file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load, or it
has been corrupted.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run dspcl again to create
an executable object file). If the file you attempted to load was
a valid executable object file, then it was probably corrupted;
recompile, assemble, and link with dspcl.

Running Title—Attribute Reference

O-12

Invalid watch delete
Description The debugger can’t delete the parameter supplied with the

WD command. Usually, this is because the watch index
doesn’t exist or because a symbol name was typed in instead
of a watch index.

Action Re-enter the WD command. Be sure to specify the watch
index that matches the item you’d like to delete (this is the
number in the left column of the WATCH window). Remem-
ber, you can’t delete items symbolically—you must delete
them by number.

Invalid window position
Description The debugger can’t move the active window to the XY posi-

tion specified with the MOVE command. Either the XY param-
eters are not within the screen limits, or the active window
may be too large to move to the desired position.

Action You can use the mouse to move the window.

If you don’t have a mouse, enter the MOVE command
without parameters; then use the arrow keys to move the
window. When you’re finished, you must press ESC or

.

If you prefer to use the MOVE command with parameters,
refer to Table 5–2 (page 5-23) for a list of the XY limits.
The minimum XY position is 0,1; the maximum position
depends on which screen size you’re using.

Invalid window size
Description The width and length specified with the SIZE or MOVE com-

mand may be too large or too small. If valid width and length
were specified, then the active window is already at the far
right or bottom of the screen and so cannot be made larger.

Action You can use the mouse to size the window.

If you don’t have a mouse, enter the SIZE command with-
out parameters; then use the arrow keys to move the win-
dow. When you’re finished, you must press ESC or .

If you prefer to use the SIZE command with parameters,
refer to Table 5–1 (page 5-21) for a list of valid sizes. The
minimum size is 4 by 3; the maximum size depends on
which screen size you’re using.

 Running Title—Attribute Reference

O-13 Chapter Title—Attribute Reference

L

Load aborted

Description This message always follows another message.

Action Refer to the message that preceded Load aborted.

Lost power (or cable disconnected)

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section B.3 (page O-18).

Lost processor clock

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section B.3 (page O-18).

Lval required

Description This is an expression error—an assignment expression was
entered that requires a legal lefthand side.

Action See Section B.2 (page O-18).

N

Name “ name” not found

Description The command cannot find the object named name.

Action If name is a symbol, be sure that it was typed correctly. If it
wasn’t, re-enter the command with the correct name. If it
was, then be sure that the associated object file is loaded.

If name was some other type of parameter, refer to the
command’s description for a list of valid parameters.

Running Title—Attribute Reference

O-14

Nonrepeatable instruction

Description The instruction following the RPT instruction is not a repeat-
able instruction.

M

Memory access error at address

Description Either the processor is receiving a bus fault or there are
problems with target system memory.

Action See Section B.3 (page O-18).

Memory map table full

Description Too many blocks have been added to the memory map. This
will rarely happen unless someone is adding blocks word by
word (which is inadvisable).

Action Stop adding blocks to the memory map. Consolidate any
adjacent blocks that have the same memory attributes.

P

Pointer not allowed

Description This is an expression error.

Action See Section B.2 (page O-18).

Processor is already running

Description One of the RUN commands was entered while the debugger
was running free from the target system.

Action Enter the HALT command to stop the free run, then re-enter
the desired RUN command.

 Running Title—Attribute Reference

O-15 Chapter Title—Attribute Reference

R

Read not allowed for port

Description There was an attempt to connect a file for input operation to
an address that is not configured for read.

Register access error

Description Either the processor is receiving a bus fault, or there are
problems with target-system memory.

Action See Section B.3 (page O-18).

S

Specified map not found

Description The MD command was entered with an address or block that
is not in the memory map.

Action Use the ML command to verify the current memory map.
When using MD, it is possible to specify only the first address
of a defined block.

Structure member not found

Description This is an expression error—an expression references a non-
existent structure member.

Action See Section B.2 (page O-18).

Structure member name required

Description This is an expression error—a symbol name followed by a
period but no member name.

Action See Section B.2 (page O-18).

Structure not allowed

Description This is an expression error—the expression is attempting an
operation that cannot be performed on a structure.

Action See Section B.2 (page O-18).

Running Title—Attribute Reference

O-16

T

Take file stack too deep

Description Batch files can be nested up to 10 levels deep. Batch files can
call other batch files, which can call other batch files, and so
on. Apparently, the batch file that you are TAKEing calls batch
files that are nested more than 10 levels.

Action Edit the batch file that caused the error. Instead of calling
another batch file from within the offending file, you may want
to copy the contents of the second file into the first. This will
remove a level of nesting.

Too many breakpoints

Description 200 breakpoints are already set, and there was an attempt to
set another. Note that the maximum limit of 200 breakpoints
includes internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where you have breakpoints set
in your program. Use the BR command to delete all break-
points or use the BD command to delete individual unneces-
sary breakpoints.

Too many paths

Description More than 20 paths have been specified cumulatively with the
USE command, D_SRC environment variable, and –i debug-
ger option.

Action If you are entering the USE command before entering another
command that has a filename parameter, don’t enter the USE
command. Instead, enter the second command and specify
full path information for the filename.

 Running Title—Attribute Reference

O-17 Chapter Title—Attribute Reference

W

Window not found

Description The parameter supplied for the WIN command is not a valid
window name.

Action Re-enter the WIN command. Remember that window names
must be typed in uppercase letters. Here are the valid window
names; the bold letters show the smallest acceptable abbre-
viations:

CALLS CPU DISP MEMORY

COMMAND DISASSEMBLY FILE WATCH

Write not allowed for port

Description There was an attempt to connect a file for output operation to
an address that is not configured for write.

U

Undeclared port address

Description There was an attempt to do a connect/disconnect on an ad-
dress that isn’t declared as a port.

User halt

Description The debugger halted program execution because you
pressed the ESC key.

Action None required; this is normal debugger behavior.

Additional Instructions for Expression Errors and Hardware Errors

O-18

B.2 Additional Instructions for Expression Errors

Whenever you receive an expression error, you should re-enter the command
and edit the expression so that it follows the C language expression rules. If
necessary, refer to a C language manual such as The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie.

B.3 Additional Instructions for Hardware Errors

If you continue to receive the messages that send you to this section, this indi-
cates persistent hardware problems.

� SWDS: Your program may be overwriting the monitor software installed
on the board.

P-1 Chapter Title—Attribute Reference

Appendix A

Registers and Pseudoregisters

While using the ’C2x debugger, you can display the registers and pseudoregis-
ters listed in this appendix. For more information about these registers, refer
to the TMS320C2x User’s Guide (literature number SPRU014B).

Register
Acronym

Size
(in bits) Description

PC 16 Program counter

ST0 16 Status register 0

ST1 16 Status register 1

ACC 32 Accumulator

ACCL 16 Accumulator low word

ACCH 16 Accumulator high word

PREG 32 Product register

PLR 16 Product register low word

PHR 16 Product register high word

TREG 16 Temporary register

AR0 16 Auxiliary register 0

AR1 16 Auxiliary register 1

AR2 16 Auxiliary register 2

AR3 16 Auxiliary register 3

AR4 16 Auxiliary register 4

AR5 16 Auxiliary register 5

AR6 16 Auxiliary register 6

AR7 16 Auxiliary register 7

DRR 16 Serial port data receive register

DXR 16 Serial port data transmit register

Appendix C

Registers and Pseudoregisters

P-2

Register
Acronym

Size
(in bits) Description

TIM 16 Time register

PRD 16 Period register

IMR 16 Interrupt mask register

GREG 16 Global memory allocation register

IFR 16 Interrupt flag register

RPTC 16 Repeat counter

TOS 16 Top of stack

MPMC 16
pseudoregister for determining whether the sim-
ulator is in the microprocessor or microcomput-
er mode.

CLK 32 Clock pseudoregister for benchmarking (simula-
tor only)

BIO 16 Branch control input pin (simulator only)

RIRT 16 Receive interrupt timer register

RIRP 16 Receive interrupt period register

XIRT 16 Transmit interrupt timer register

XIRP 16 Transmit interrupt period register

STK(0–7) 16 ’C2x hardware stack pseudoregisters

Q-1 Chapter Title—Attribute Reference

Appendix A

Glossary

A
active window: Window that is currently selected for moving, sizing, editing,

closing, or some other function.

aggregate type: A C data type, such as a structure or array, where a variable
is composed of multiple variables, called members.

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

assembly mode: A debugging mode that shows assembly language code
in the DISASSEMBLY window and doesn’t show the FILE window, no
matter what type of code is currently running.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

auto mode: A context-sensitive debugging mode that automatically
switches between shown assembly language code in the DISASSEM-
BLY window and C code in the FILE window, depending on what type of
code is currently running.

B
batch file: Either of two different types of files. One type of batch file contains

DOS commands for the PC to execute. A second type of batch file
contains debugger commands for the debugger to execute. The PC
doesn’t execute debugger batch files, and the debugger doesn’t execute
PC batch files.

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

breakpoint: A point within your program where execution will halt because
of a previous request from you.

Appendix D

Running Title—Attribute Reference

Q-2

C

c2xreset: A utility that resets the SWDS.

CALLS window: A window that lists the functions called by your program.

casting: A feature of C expressions that allows you to use one type of data
as if it were a different type of data.

children: Additional windows opened for aggregate types that are members
of a parent aggregate type displayed in the original DISP window.

click: To press and release a mouse button without moving the whole
mouse.

CLK: A pseudoregister that shows the number of CPU cycles consumed
during benchmarking. The value in CLK is valid only after entering a
RUNB command but before entering another RUN command.

code-display windows: Windows that show code, text files, or code-specif-
ic information. This category includes the DISASSEMBLY, FILES, and
CALLS windows.

COFF: Common Object File Format. An implementation of the object file for-
mat of the same name developed by AT&T. The TMS320 fixed-point DSP
compiler, assembler, and linker use and generate COFF files.

command line: The portion of the COMMAND window where you can enter
commands.

command-line cursor: Block-shaped cursor that identifies the current
character position on the command line.

COMMAND window: A window for you to enter commands and for the
debugger to echo command entry, show command output, and list
progress or error messages.

CPU window: Displays the contents of ’C2x on-chip registers, including the
program counter, status register, and auxiliary registers.

current-field cursor: A screen icon that identifies the current field in the ac-
tive window.

cursor: An icon on the screen (such as a rectangle or a horizontal line) that
is used as a pointing device. The cursor is usually under mouse or key-
board control.

 Running Title—Attribute Reference

Q-3 Chapter Title—Attribute Reference

D
data-display windows : Windows for observing and modifying various

types of data. This category includes the MEMORY, CPU, DISP, and
WATCH windows.

D_DIR: An environment variable that identifies the directory containing the
commands and files necessary for running the debugger.

debugger: A window-oriented software interface that helps you to debug
’C2x programs running on the SWDS, emulator, or simulator.

disassembly : The reverse-assembly of the contents of memory to form
assembly language code.

DISASSEMBLY window: A window that displays the disassembly of
memory contents.

DISP window : A window that displays the members of an aggregate data
type.

display area : The portion of the COMMAND window where the debugger
echoes command entry , shows command output, and lists progress or
error messages.

D_OPTIONS: An environment variable that you can use for identifying
often-used debugger options.

drag : To move the mouse while pressing one of the mouse buttons.

dspcl: A shell utility that invokes the TMS320 fixed-point DSP compiler,
assembler, and linker to create an executable object file version of your
program.

D_SRC: An environment variable that identifies directories containing
program source files.

E
EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

EISA: Extended Industry Standard Architecture. A standard for PC buses.

environment variable : A special system symbol that the debugger uses for
finding directories or obtaining debugger options.

F
FILE window : A window that displays the contents of the current C code.

The FILE window is primarily intended for displaying C code but can be
used to display any text file.

Running Title—Attribute Reference

Q-4

I
initdb.bat: A batch file created to contain DOS commands for setting up the

debugger environment.

I/O switches: Hardware switches on the SWDS board that identify the PC
I/O memory space used for SWDS–debugger communications.

ISA: Industry Standard Architecture. A subset of the EISA standard.

M
memory map: A map of memory space that tells the debugger which areas

of memory can and can’t be accessed.

MEMORY window: A window that displays the contents of memory.

menu bar: A row of pulldown menu selections, found at the top of the debug-
ger display.

mixed mode: A debugging mode that simultaneously shows both assembly
language code in the DISASSEMBLY window and C code in the FILE
window.

mouse cursor: Block-shaped cursor that tracks mouse movements over
the entire display.

P
PC: Personal computer or program counter, depending on the context and

where it’s used in this book: 1) In installation instructions or information
relating to hardware and boards, PC means Personal Computer (as in
IBM PC). 2) In general debugger and program-related information, PC
means Program Counter, which is the register that identifies the current
statement in your program.

point: To move the mouse cursor until it overlays the desired object on the
screen.

port address: The PC I/O memory space that the debugger uses for
communicating with the emulator. The port address is selected via
switches on the emulator board and communicated to the debugger with
the –p debugger option.

pulldown menu: A command menu that is accessed by name or with the
mouse from the menu bar at the top of the debugger display.

 Running Title—Attribute Reference

Q-5 Chapter Title—Attribute Reference

S
scalar type : A C type in which the variable is a single variable itself, not com-

posed of other variables.

scrolling : A method of moving the contents of a window up, down, left, or
right to view contents that weren’t shown.

side effects : A feature of C expressions in which using an assignment oper-
ator in an expression affects the value of one of the components used
in the expression.

simulator : A software program that simulates ’C2x operation, providing a
low-cost method of testing ’C2x applications without target hardware.

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display
windows.

SWDS: Software Development System. A PC-compatible plug-in board that
provides a low-cost method of program evaluation and development.

symbol table : A file that contains the names of all variables and functions
in your ’C2x program.

T
TMS320C25: A 100-ns, fixed-point, CMOS digital signal processor, capable

of executing 10 million instructions per second. It is pin-for-pin and ob-
ject-code upward compatible with the TMS32020.

TMS320C26: A 100-ns, fixed-point, CMOS digital signal processor, capable
of executing 10 million instructions per second. It is pin-for-pin and ob-
ject-code upward compatible with the TMS320C25, except for the RAM
configuration instructions.

V
VGA: Video Graphics Array. An industry standard for video cards.

W
WATCH window : A window that displays the values of selected expres-

sions, symbols, addresses, and registers.

window: A defined rectangular area of virtual space on the display.

1

TMS320C2x C Source Debugger
Reference Card

Phone Numbers
TI Customer Response Center
(CRC) Hotline: (800) 232–3200

DSP Hotline: (713) 274–2320

Invoking the Debugger

SWDS: db2x [filename] [–options]
Simulator: sim2x [filename] [–options]

Debugger Options

Option Description

–b[bbbb] Screen size options (PCs
only).
Option Chars./Lines Notes
none 80 × 25 Default

display
–b 80 × 39†

80 × 43‡
80 × 50§

–bb 120 × 43
–bbb 132 × 43
–bbbb 80 × 60
–bbbbb 100 × 60

Supported on
PCs with a
Video Seven
VEGA Deluxe
card

–c Sets memory reserved for
uninitialized data to all zeros.

–i pathname Identifies additional directories
that contain source files.

–mv25
–mv26

Simulator only. Identifies ’25,
or ’26 memory map (’25 is the
default).

–p memory segment SWDS only. You must use –p to
identify the correct jumper set-
tings (P1–P4).

† PC version of simulator running under Microsoft Windows
‡ PC with EGA card; Sun
§ PC with VGA card

2

Debugger Options (continued)

Option Description

–s Tells the debugger to load filename’s
symbol table only.

–t filename Allows you to specify an initializa-
tion file other than dbinit.cmd or si-
minit.cmd.

–v Loads only global symbols; later,
local symbols are loaded as needed.
Affects all loads.

–x Ignores options supplied with
D_OPTIONS.

Summary of Debugger Commands

? expression [@prog | @data]

addr address [@prog | @data]
addr function name
asm

ba address

bd address

bl

border [active] [[,inactive] [,resize]

br

c

calls

cd directory name
chdir directory name
cls

cnext [expression]

color area, attr1 [,attr2 [,attr3 [,attr4]]]

cstep [expression]

dasm address [@prog | @data]
dasm function name

dir [directory]

disp expression [@prog | @data]

eval expression [@prog | @data]
e expression [@prog | @data]

file filename

fill address, page, length, data

func function name
func address
go [address]

3

Summary of Debugger Commands (continued)

load object filename

ma address, page, length, type

map {on | off }

mc port address, page, filename, {READ | WRITE} ‡

md address, page

mi port address, page, {READ | WRITE} ‡

ml

mem expression [@prog | @data]

mix

move [X, Y [, width, length]]

mr

ms address, page, length, filename

next [expression]

prompt new prompt

quit

reload object filename

reset

restart
rest

return
ret

run [expression]

runb ‡

runf †

scolor area, attr1 [, attr2 [, attr3 [, attr4]]]

sconfig [filename]

size [width, length]

sload object filename

ssave [filename]

step [expression]

take filename [, flag]

use directory name

wa expression [@prog | @data] [, label]

wd index number

whatis symbol

win WINDOW NAME

wr
† SWDS only
‡ Simulator only

4

Border Styles
(BORDER Command)

Index Style

0 Double-lined box
1 Single-lined box
2 Solid 1/2-tone top, double-lined sides/bottom
3 Solid 1/4-tone top, double-lined sides/bottom
4 Solid box, thin border
5 Solid box, heavy sides, thin top/bottom
6 Solid box, heavy borders
7 Solid 1/2-tone box
8 Solid 1/4-tone box

Colors and Attributes
(COLOR/SCOLOR Commands)

black blue green cyan
red magenta yellow white
bright blink

Area Names
(COLOR/SCOLOR Commands)

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

Window Size and Position Limits
(SIZE and MOVE Commands)

Screen
size Option

Valid
widths

Valid
lengths

Valid
X pos.

Valid
Y pos.

80×25 none 4–80 3–24 0–76 1–22

80×39†
80×43‡
80×50§

–b 4–80 3–38

3–42

3–49

0–76 1–36

1–40

1–47

120×43 –bb 4–120 3–42 0–116 1–40

132×43 –bbb 4–132 3–42 0–128 1–40

80×60 –bbbb 4–80 3–59 0–76 1–57

100×60 –bbbbb 4–100 3–59 0–106 1–57
† PC version of simulator running under Microsoft Windows
‡ PC with EGA card; Sun
§ PC with VGA card

5

Memory Types

To identify this kind of
memory

Use this keyword as the
type parameter

read-only memory R, ROM, or READONLY

write-only memory W, WOM, or WRITEONLY

read/write memory RW or RAM

no-access memory PROTECT

input port IPORT or IN PORT‡

output port OPORT or OUT PORT‡

input/output port IOPORT‡

Page Types

To identify this page
Use this 1-digit page
parameter

program memory 0

data memory 1

I/O space 2

Switching Modes

To do this
Use this
function key

Switch debugging modes in this
order:

auto assembly mixed

Running Code

To do this
Use these
function keys

Run code from the current PC

Single-step from the current PC

Single-step code from the current
PC; step over function calls

Selecting or Closing a Window

To do this
Use these
function keys

Select the active window

Close the CALLS or DISP window

‡ Simulator only

6

Editing Text on the Command Line

To do this
Use these
function keys

Enter the current command

Move back over text without eras-
ing characters or

Move forward through text without
erasing characters

Move back over text while erasing
characters

Move forward through text while
erasing characters

Insert text into the characters that
are already on the command line

Using the Command History

To do this
Use these
function keys

Move backward, one command at a
time, through the command history

Move forward, one command at a
time, through the command history

Editing Data or Selecting the Active Field

To do this
Use this
function key

FILE or DISASSEMBLY window:
Set or clear a breakpoint

CALLS window: Display the
source to a listed function

Any data-display window: Edit the
contents of the current field

DISP window: Open an additional
DISP window

7

Halting or Escaping From an Action

To do this
Use this
function key

Halt program execution

Close a pulldown menu

Undo an edit of the active field in
a data-display window

Halt the display of a long list of
data

Displaying Pulldown Menus

To do this
Use these
function keys

Display the Load menu

Display the Break menu

Display the Watch menu

Display the Memory menu

Display the Color menu

Display the MoDe menu

Display an adjacent menu or

Execute any of the choices from a
displayed pulldown menu

Press the high-
lighted letter cor-
responding to
your choice

Moving or Sizing a Window

Enter the MOVE or SIZE command without parameters,
then use the arrow keys:

To do this
Use these
function keys

Move the window down one line

Make the window one line longer

Move the window up one line

Make the window one line shorter

Move the window left one char-
acter position

Make the window one character
narrower

Move the window right one char-
acter position

Make the window one character
wider

8

Scrolling the Active Window’s Contents

To do this
Use these
function keys

Scroll up through the window con-
tents, one window length at a time

Scroll down through the window
contents, one window length at a
time

Move the field cursor up one line at
a time

Move the field cursor down one line
at a time

FILE window only: Scroll left 8
characters at a time

Other windows: Move the field
cursor left 1 field; at the first field
on a line, wrap back to the last
fully displayed field on the pre-
vious line

FILE window only: Scroll right 8
characters at a time

Other windows: Move the field
cursor right 1 field; at the last
field on a line, wrap around to the
first field on the next line

FILE window only: Adjust the win-
dow’s contents so that the first line
of the text file is at the top of the win-
dow

FILE window only: Adjust the win-
dow’s contents so that the last line
of the text file is at the bottom of the
window

DISP windows only: Scroll up
through an array of structures

DISP windows only: Scroll down
through an array of structures

Index-1

Index

? command, 3-17, 9-3, 12-7, 12-34
modifying PC, 8-10
side effects, 9-5

A
absolute addresses, 9-7, 10-3

active window, 5-17—5-19
breakpoints, 10-3
current field, 3-7, 5-16
customizing its appearance, 11-4
default appearance, 5-17
effects on command entry, 6-3
identifying, 3-7, 5-17
selecting, 5-18, 12-35

function key method, 3-7, 5-18, 12-38
mouse method, 3-7, 5-18
WIN command, 3-6, 5-19, 12-35

ADDR command, 5-7, 5-8, 8-5, 8-7, 12-7

addresses
absolute addresses, 9-7, 10-3
accessible locations, 7-1
contents of (indirection), 9-8
data memory notation, 3-6
hexadecimal notation, 9-7
I/O address space, simulator, 7-10—7-14
in MEMORY window, 3-6, 9-7
nonexistent locations, 7-2
pointers in DISP window, 3-23
program memory notation, 3-6
symbolic addresses, 9-7

aggregate types, displaying, 3-22, 5-14, 9-12—9-14

ANSI C, 4-6

archiver, 4-7

area names (for customizing the display)
code-display windows, 11-5
COMMAND window, 11-4
common display areas, 11-3
data-display windows, 11-6
menus, 11-7
summary of valid names, 11-3
window borders, 11-4

arithmetic operators, 13-2
arrays

displaying/modifying contents, 9-12
format in DISP window, 3-23, 9-13, 12-14
member operators, 13-2

arrow keys
editing, 9-4
moving a window, 3-9, 5-24, 12-38
scrolling, 5-26, 12-39
sizing a window, 3-8, 5-22, 12-38

ASM command, 3-13, 8-3, 12-8
pulldown selection, 6-12, 8-3

assembler, 1-3, 2-2, 2-8, 2-11, 4-7, 4-8
assembly language code, displaying, 5-2, 5-3, 8-4
assembly mode, 3-12, 5-3

ASM command, 8-3, 12-8
selection, 8-3

assignment operators, 9-5, 13-3
attributes, 11-2
auto mode, 3-12, 5-2—5-3

C command, 8-3, 12-10
selection, 8-3

autoexec.bat
invoking, 1-10, 2-5
sample

simulator, 2-4
SWDS, 1-10

simulator, 2-4—2-14
SWDS, 1-9—1-16

auxiliary registers, 9-11

B
–b debugger option

effect on window positions, 5-23
effect on window sizes, 5-21
simulator, 2-13
SWDS, 1-13
with D_OPTIONS environment variable

simulator, 2-6
SWDS, 1-12

BA command, 10-3, 12-8

ind

Index-2

pulldown selection, 6-11

background, 11-3

batch files, 6-13
autoexec.bat

simulator, 2-4—2-14
SWDS, 1-9—1-16

clrs.dat, 2-8, 11-9
dbinit.cmd, 1-9, A-1

SWDS, 1-3
displaying, 8-7
execution, 12-33
halting execution, 6-13
init.clr, 11-9

SWDS, 1-3
initdb.bat

simulator, 2-4—2-14
SWDS, 1-9—1-16

invoking
autoexec.bat

simulator, 2-5
SWDS, 1-10

initdb.bat
simulator, 2-5
SWDS, 1-10

mem.map, 7-9
memory maps, 7-9
mono.clr, 11-9

SWDS, 1-3
siminit.cmd, A-1

simulator
PC systems, 2-2
SUN systems, 2-11
VMS version, 2-8

TAKE command, 6-13, 7-9, 12-33

BD command, 10-4, 12-8
pulldown selection, 6-11

benchmarking, 3-17, 8-17
simulator constraints, 8-17
SWDS, 8-18

BIO pseudoregister, 9-17

bitwise operators, 13-3

BL command, 10-5, 12-9
pulldown selection, 6-11

blanks, 11-3

BORDER command, 11-8, 12-9
pulldown selection, 6-12

borders
colors, 11-4
styles, 11-8

BR command, 3-17, 10-4, 12-10
pulldown selection, 6-11

breakpoints, 10-1—10-6
active window, 3-7
adding, 12-8

function key method, 10-3, 12-39
mouse method, 10-3
with commands, 10-3

benchmarking with RUNB, 3-17, 8-17
clearing, 3-17, 10-4, 12-8, 12-10

function key method, 10-4, 12-39
mouse method, 10-4
with commands, 10-4

commands
BA command, 10-3, 12-8
BD command, 10-4, 12-8
BL command, 10-5, 12-9
BR command, 3-17, 10-4, 12-10

listing set breakpoints, 10-5, 12-9
pulldown menu, 6-11
setting, 3-15, 3-17, 10-2

function key method, 10-3, 12-39
mouse method, 10-3
with commands, 10-3

C
C command, 3-13, 8-3, 12-10

pulldown selection, 6-12, 8-3
C source

displaying, 3-11, 8-4, 12-15
managing memory data, 9-8

c2xhll directory, 2-3, 2-5
c2xhll directory, 1-9, 1-11
c2xreset, 1-3
CALLS command, 5-9, 5-10, 12-10
CALLS window, 3-11, 5-9, 8-7

closing, 5-10, 5-28, 12-38
opening, 5-10, 12-10

casting, 3-25, 9-8, 13-4
CHDIR (CD) command, 3-22, 6-14, 8-9, 12-10
clearing the display area, 3-22, 6-5, 12-11
“click and type” editing, 5-27, 9-4
CLK pseudoregister, 3-17, 8-17
closing

a window, 5-28
CALLS window, 5-10, 5-28, 12-38
debugger, 1-15, 2-14, 12-25
DISP window, 3-24, 5-28, 9-14, 12-38

 ind

Index-3

WATCH window, 5-28, 9-16, 12-35

clrs.dat, 2-8, 11-9

CLS command, 3-22, 6-5, 12-11

CNEXT command, 8-13, 12-11

code-display windows, 5-5, 8-2
CALLS window, 5-9, 8-2, 8-7
DISASSEMBLY window, 3-6, 5-7, 8-2
effect of debugging modes, 8-2
FILE window, 5-8, 8-2

COLOR command, 11-2, 12-12

color.clr, 11-9

colors, 11-2
area names, 11-3—11-7

comma operator, 13-4

command history, 6-4
function key summary, 12-36

command line, 5-6, 6-2
changing the prompt, 11-12, 12-25
cursor, 5-16

customizing its appearance, 11-4, 11-12
editing, 6-3

function key summary, 12-36
COMMAND window, 5-5, 5-6, 6-2

colors, 11-4
command line, 3-5, 6-2

editing keys, 12-36
customizing, 11-4
display area, 3-5, 6-2

clearing, 12-11
commands

alphabetical summary, 12-7—12-35
batch files, 6-13
breakpoint commands, 10-1—10-6, 12-5
code-execution (run) commands, 8-10, 12-6
command line, 6-2
data-management commands, 9-2—9-18, 12-4
entering and using, 6-1—6-14
file-display commands, 8-4, 12-4
load commands, 8-8, 12-4
memory commands, 7-6—7-14
memory-map commands, 12-5
mode commands, 8-2, 12-3
pulldown menus, 6-6, 6-11
screen-customization commands, 11-1, 12-5
system commands, 6-14, 12-3
window commands, 5-19, 12-3

compiler, 1-3, 2-2, 2-8, 2-11, 4-6, 4-8

constraints

CLK, 8-17
simulator, benchmarking, 8-17

control bits
FO, 7-11, 7-13, 12-20
SPC, 7-11, 7-13, 12-20
TDM, 7-11, 7-13, 12-20
TSPC, 7-11, 7-13, 12-20

CPU window, 5-13, 9-2, 9-11
colors, 11-6
customizing, 11-6

CSTEP command, 3-19, 8-13, 12-13
current directory, changing, 6-14, 8-9, 12-10
current field

cursor, 5-16
dialog box, 6-4
editing, 9-4—9-5

current PC, 3-5, 5-7
finding, 8-10
selecting, 8-10

cursors, 5-16
command-line cursor, 5-16
current-field cursor, 5-16
mouse cursor, 5-16

customizing the display, 11-1—11-12
changing the prompt, 11-12
clrs.dat, 2-8
colors, 11-2—11-7
init.clr, SWDS, 1-3
loading a custom display, 11-10, 12-30
mono.clr, SWDS, 1-3
saving a custom display, 11-10, 12-32
window border styles, 11-8

D
DASM command, 5-7, 8-5, 12-13
data-display windows, 3-22, 5-5, 9-2

colors, 11-6
CPU window, 5-13, 9-2, 9-11
DISP window, 5-14, 9-2, 9-12
MEMORY window, 3-6, 5-11, 9-2, 9-6
WATCH window, 3-18, 5-15, 9-2, 9-15

data-management commands, 3-20, 3-22, 9-2
? command, 3-17, 9-3, 12-7, 12-34
controlling data format, 3-25, 9-8
DISP command, 9-12, 12-14
EVAL command, 9-3, 12-15
FILL, 12-16
FILL command, 9-10

ind

Index-4

MEM command, 3-6, 9-6, 12-22
MS command, 9-9, 12-24
side effects, 9-5
WA command, 3-18, 9-15, 12-34
WD command, 9-16, 12-34
WHATIS command, 3-21, 9-2, 12-34
WR command, 3-20, 9-16, 12-35

data memory
adding to memory map, 7-6, 12-18
deleting from memory map, 7-8, 12-20
filling, 9-10, 12-16
saving, 9-9, 12-24

db2x command, 3-4
options

–b, 1-13
–c, 1-13
D_OPTIONS environment variable, 1-12
–i, 1-13
–p, 1-14
–s, 1-14
–t, 1-14
–v, 1-14
–z, 1-14

db2x command, 8-8, 8-9
dbinit.cmd, 1-9, A-1

SWDS, 1-3
D_DIR environment variable, 6-13, 11-10, 12-30

effects on debugger invocation, A-1
simulator, 2-5
SWDS, 1-11

debugger
description, 4-2
environment setup

simulator (PC systems), 2-4—2-7
SWDS, 1-9—1-12

installation
simulator, 2-1—2-14

PC systems, 2-2—2-7
SUN systems, 2-11—2-12
VMS systems, 2-8—2-10

SWDS, 1-4—1-8
invocation, 3-4

simulator, 2-13—2-14
SWDS, 1-13—1-14
task ordering, A-1

key features, 4-3—4-4
messages, B-1—B-18
SWDS version, 1-1—1-16

environment setup, 1-9
installation, 1-4

invocation, 1-13
debugging modes, 3-12—3-13, 8-3

assembly mode, 5-3
auto mode, 5-2
default mode, 5-2, 8-2
mixed mode, 5-4
pulldown menu, 3-13, 8-3
restrictions, 5-4
selection, 3-12

commands, 8-3
function key method, 8-3, 12-37
mouse method, 8-3

decrement operator, 13-3
default

debugging mode, 5-2, 8-2
display, 3-5, 5-2, 8-2, 11-11
memory map, 7-3

simulator
PC systems, 2-2
SUN systems, 2-11
VMS version, 2-8

SWDS, 1-3
screen configuration file, 11-9

monochrome displays, 1-3, 11-9
simulator, VAX version, 2-8
SWDS, 1-3

dialog boxes, 6-9
DIR command, 3-22, 6-14, 12-14
directories

c2xhll directory, 2-3, 2-5
c2xhll directory, 1-9, 1-11
changing current directory, 6-14, 12-10
for auxiliary files

simulator, 2-5
SWDS, 1-11

for debugger software, 1-9, 2-3
simulator, 2-5
SWDS, 1-11

identifying additional source directories, 12-33
simulator, 2-6
SWDS, 1-11
USE command, 12-33

identifying current directory, 8-9
listing contents of current directory, 6-14, 12-14
relative pathnames, 6-14, 12-10
search algorithm, 6-13, 8-9, A-1

DISASSEMBLY window, 3-6, 5-7
colors, 11-5
customizing, 11-5
modifying display, 12-13

 ind

Index-5

DISP command, 3-22, 5-14, 9-12, 12-14

DISP window, 3-22, 5-14, 9-2, 9-12
closing, 3-24, 5-28, 9-14
colors, 11-6
customizing, 11-6
identifying arrays, structures, pointers, 12-14
opening, 9-12
opening another DISP window, 9-13

function key method, 3-24, 9-13, 12-39
mouse method, 3-23, 9-13
with DISP command, 9-13

display area, 5-6
clearing, 3-22, 6-5, 12-11

display format
enumerated types, 5-14
floating-point values, 5-14
integers, 5-14
pointers, 5-14

display requirements
simulator

PC version, 2-2
SUN version, 2-11
VAX version, 2-8

SWDS, 1-2

displaying
assembly language code, 8-4
batch files, 8-7
C code, 8-6
source programs, 8-4
text files, 8-7

D_OPTIONS environment variable
effects on debugger invocation, A-1
simulator, 2-6
SWDS, 1-12

DOS, setting up debugger environment
simulator, 2-4
SWDS, 1-10

DRR register, 7-11, 7-13, 12-20
dspcl shell, 4-9

D_SRC environment variable, 8-9
effects on debugger invocation, A-1
simulator, 2-6
SWDS, 1-11

DXR register, 7-11, 7-13, 12-20

E
E command, 12-15

“edit” key (F9), 5-27, 9-4, 12-39

editing
“click and type” method, 3-26, 9-4
command line, 6-3, 12-36
data values, 9-4, 12-39
dialog boxes, 6-9
expression side effects, 9-5
FILE, DISASSEMBLY, CALLS, 5-27
function key method, 9-4, 12-39
MEMORY, CPU, DISP, WATCH, 5-27
mouse method, 9-4
overwrite method, 9-4
window contents, 5-27

end key, scrolling, 5-26, 12-39

entering commands
from pulldown menus, 6-6—6-12
on the command line, 6-2—6-5

entry point, 8-10

enumerated types, display format, 5-14

environment variables
D_OPTIONS

simulator, 2-6, 2-13
SWDS, 1-12, 1-13

D_DIR, 6-13, 11-10
simulator, 2-5
SWDS, 1-11

D_SRC, 8-9
simulator, 2-6
SWDS, 1-11

for debugger options
simulator, 2-6, 2-13
SWDS, 1-12, 1-13

identifying auxiliary directories
simulator, 2-5
SWDS, 1-11

identifying source directories
simulator, 2-6
SWDS, 1-11

errors, SWDS, system configuration, 1-15

EVAL command, 9-3, 12-15
modifying PC, 8-10
side effects, 9-5

executing code, 3-11, 8-10—8-15
See also run commands
benchmarking, 3-17, 8-12
conditionally, 3-20, 8-15
function key method, 12-38
halting execution, 3-15, 8-16
program entry point, 3-15, 3-17, 8-10—8-15

ind

Index-6

single stepping, 3-19, 12-11, 12-13, 12-25, 12-32
while disconnected from the target system, 8-14,

12-28
executing commands, 6-3
exiting the debugger, 1-15, 2-14, 3-28, 12-25
expressions, 13-1—13-6

addresses, 9-7
evaluation

with ? command, 9-3, 12-7, 12-34
with EVAL command, 9-3, 12-15

expression analysis, 13-4
operators, 13-2—13-3
restrictions, 13-4
side effects, 9-5
void expressions, 13-4

extensions, 4-9

F
F4 key, 5-28, 9-14, 12-38
FILE command, 3-11, 3-14, 5-8, 8-6, 12-15

changing the current directory, 6-14, 12-10
pulldown selection, 6-11

FILE window, 3-11, 3-14, 5-8, 8-6
colors, 11-5
customizing, 11-5

file/load commands
ADDR command, 8-5, 8-7, 12-7
CALLS command, 8-7, 12-10
DASM command, 8-5, 12-13
FILE command, 3-11, 3-14, 8-6, 12-15
FUNC command, 3-14, 8-6, 12-16
LOAD command, 3-5, 8-8, 12-17
pulldown menu, 6-11
RELOAD command, 8-8, 12-26
RESTART command, 12-26
SLOAD command, 8-8, 12-31

files
connecting to I/O ports, 7-10, 12-19
disconnecting from I/O ports, 7-13, 12-21
saving memory to a file, 9-9, 12-24

FILL command, 9-10, 12-16
floating point

display format, 3-25, 5-14
operations, 13-4

FO control bit, 7-11, 7-13, 12-20
FUNC command, 3-14, 5-8, 8-6, 12-16
function calls

displaying functions, 12-16
keyboard method, 5-10
mouse method, 5-10

executing function only, 12-27
in expressions, 9-5, 13-4
stepping over, 12-11, 12-25
tracking in CALLS window, 5-9—5-10, 8-7, 12-10

G
–g shell option, 4-8, 4-9
GO command, 3-11, 8-11, 12-17
graphics card requirements, 1-2, 2-2
grouping/reference operators, 13-2

H
HALT command, 8-14, 12-17
halting

batch file execution, 6-13
debugger, 1-15, 2-14, 12-25
program execution, 1-15, 2-14, 3-15, 8-10, 8-16

function key method, 8-16, 12-37
mouse method, 8-16

target system, 12-17
hardware checklist

simulator
PC systems, 2-2
SUN systems, 2-11
VMS systems, 2-8

SWDS, 1-2
hexadecimal notation, addresses, 9-7
history, of commands, 6-4
home key, scrolling, 5-26, 12-39
host system

simulator
PC systems, 2-2
SUN systems, 2-11
VMS systems, 2-8

SWDS, 1-2

I
–i debugger option

simulator, 2-13, 8-9
SWDS, 1-13, 8-9
with D_OPTIONS environment variable

simulator, 2-6

 ind

Index-7

SWDS, 1-12
I/O memory

adding to memory map, 7-6, 12-18
deleting from memory map, 7-8, 12-20
simulating, 7-10—7-14, 12-19, 12-21

increment operator, 13-3

index numbers, for data in WATCH window, 5-15,
9-16

indirection operator (*), 9-8

init.clr, 11-9, 11-10, 12-30, A-1
SWDS, 1-3

initdb.bat
invoking, 1-10, 2-5
sample

simulator, 2-4
SWDS, 1-10

simulator, 2-4—2-14
SWDS, 1-9—1-16

installation
debugger software

simulator
PC systems, 2-3
VMS systems, 2-9

SWDS version, 1-9
simulator, Sun version, 2-12
SWDS

board, 1-4—1-8
debugger software, 1-9

integer, display format, 5-14

interrupts
receive, 7-11, 7-13, 12-20
transmit, 7-11, 7-13, 12-20

invoking
autoexec.bat

simulator, 2-5
SWDS, 1-10

custom displays, 11-11
debugger, 3-4

simulator, 2-13
SWDS, 1-13

initdb.bat
simulator, 2-5
SWDS, 1-10

shell program, 4-9

J
jumper settings

I/O address space, SWDS, 1-12
wait state, 1-7

K
key sequences

displaying functions, 12-39
displaying previous commands (command histo-

ry), 12-36
editing

command line, 6-3, 12-36
data values, 5-27, 12-39

halting actions, 12-37
moving a window, 5-24, 12-38
opening additional DISP windows, 12-39
pulldown selections, 12-37
restrictions

SUN version of simulator, 2-12
VMS version of simulator, 2-10

running code, 12-38
scrolling, 5-26, 12-39
selecting the active window, 5-18, 12-38
setting/clearing breakpoints, 12-39
single stepping, 8-13
sizing a window, 5-22, 12-38
switching debugging modes, 12-37

L
labels, for data in WATCH window, 3-18, 5-15, 9-16
limits

breakpoints, 10-2
file size, 8-7
open DISP windows, 5-14
paths, 8-9
window positions, 5-23
window sizes, 5-21

linker, 1-3, 2-2, 2-8, 2-11, 4-7, 4-8
command files, MEMORY definition, 7-2

LOAD command, 3-5, 8-8, 12-17
load/file commands, 12-16

ADDR command, 8-5, 12-7
CALLS command, 8-7, 12-10
DASM command, 8-5, 12-13
FILE command, 3-11, 8-6, 12-15
FUNC command, 3-14, 8-6, 12-16
LOAD command, 3-5, 8-8, 12-17
pulldown menu, 6-11
RELOAD command, 8-8, 12-26
RESTART command, 12-26

ind

Index-8

SLOAD command, 8-8, 12-31
loading

batch files, 6-13
custom displays, 11-10
object code, 3-4, 8-8

after invoking the debugger, 8-8
symbol table only, 8-8, 12-31
while invoking the debugger, 8-8

simulator, 2-13
SWDS, 1-13

without symbol table, 8-8, 12-26
logical operators, 13-2

conditional execution, 8-15

M
MA command, 7-6, 7-9, 12-18—12-19

pulldown selection, 6-12
managing data, 9-1—9-18

basic commands, 9-2—9-3
MAP command, 7-7, 12-19

pulldown selection, 6-12
MC command, 7-10, 12-19

pulldown selection, 6-12
MD command, 7-8, 12-20

pulldown selection, 6-12
MEM command, 3-6, 5-11, 9-6, 12-22
memory

commands
FILL command, 9-10, 12-16
MA command, 7-6, 7-9, 12-18—12-19
MAP command, 7-7, 12-19
MC, 7-10, 12-19
MD command, 7-8, 12-20
MI, 7-13, 12-21
ML command, 7-7, 12-21
MR command, 7-8, 12-24
MS command, 9-9, 12-24
pulldown menu, 6-12

default map, 7-3
simulator, 2-11

PC systems, 2-2
VMS version, 2-8

SWDS, 1-3
displaying in different numeric format, 3-25, 9-8
filling, 9-10, 12-16
invalid locations, 7-7
map

adding ranges, 12-18

deleting ranges, 12-20
resetting, 12-24

mapping, 7-1—7-14
adding ranges, 7-6
dbinit.cmd, SWDS, 1-3
defining a memory map, 7-2
deleting ranges, 7-8
enabling/disabling, 7-7
listing current map, 7-7
modifying, 7-8
resetting, 7-8
returning to default, 7-9
siminit.cmd, simulator

PC systems, 2-2
SUN systems, 2-11
VMS version, 2-8

simulating I/O ports, 7-10, 7-13, 12-19, 12-21
nonexistent locations, 7-2
pseudoregisters, 7-12
requirements

simulator, PC systems, 2-2
SWDS, 1-2

saving, 9-9, 12-24
serial port, 7-11
simulating I/O memory, 7-10—7-14, 12-19, 12-21
valid types, 7-6

MEMORY window, 3-6, 5-11, 9-2, 9-6, 12-22
colors, 11-6
customizing, 11-6
modifying display, 12-22

menu bar, 3-5, 6-6
customizing its appearance, 11-7
items without menus, 6-10
using menus, 6-6—6-12

messages, B-1—B-18
MI command, 7-13, 12-21

pulldown selection, 6-12
MIX command, 3-13, 8-3, 12-22

pulldown selection, 6-12, 8-3
mixed mode, 3-12, 5-4

selection, 8-3
ML command, 7-7, 12-21

pulldown selection, 6-12
modes, 5-2—5-4

assembly mode, 5-3
auto mode, 5-2
commands

ASM command, 3-13
C command, 3-13, 12-10
MIX command, 3-13, 12-22

 ind

Index-9

mixed mode, 5-4
pulldown menu, 3-12, 3-13, 6-12, 8-3
restrictions, 5-4
selection, 3-12, 8-3

commands, 8-3
function key method, 8-3, 12-37
mouse method, 8-3

modifying
colors, 11-2—11-7
command line, 6-3
command-line prompt, 11-12
current directory, 6-14, 12-10
data values, 9-4
memory map, 7-8
window borders, 11-8

mono.clr, 11-9
SWDS, 1-3

monochrome monitors, 11-9

mouse
cursor, 5-16
requirements, 2-2, 2-11

SWDS, 1-2
restrictions, VMS version of simulator, 2-10

MOVE command, 3-9, 5-23, 12-23
effect on entering other commands, 6-4

moving a window, 5-22, 12-23
function key method, 3-9, 5-24, 12-38
mouse method, 3-9, 5-22
MOVE command, 3-9, 5-23
XY screen limits, 5-23

MR command, 7-8, 12-24
pulldown selection, 6-12

MS command, 9-9, 12-24
pulldown selection, 6-12

–mv debugger option, 2-6, 2-13

N
natural format, 3-25, 13-5

NEXT command, 3-19, 8-13, 12-25
from the menu bar, 6-10
function key entry, 6-10, 12-38

nonexistent locations, 7-2

O
object files

creating, 8-8
loading, 12-17

after invoking the debugger, 8-8
simulator, 2-13
SWDS, 1-13
symbol table only, 1-14, 2-14, 12-31
while invoking the debugger, 3-4, 8-8

simulator, 2-13
SWDS, 1-13

without symbol table, 8-8, 12-26
object format converter, 4-7
operators, 13-2—13-3

& operator, 9-7
* operator (indirection), 9-8
side effects, 9-5

overwrite editing, 9-4

P
–p debugger option

SWDS, 1-14
with D_OPTIONS environment variable, SWDS,

1-12

page-up/page-down keys, scrolling, 5-26, 12-39

parameters
db2x command, 1-13—1-16
dspcl shell, 4-9
entering in a dialog box, 6-9
sim2x command, 2-13—2-14

PATH statement, simulator, 1-11, 2-5
PC, 8-10

displaying contents of, 3-6
finding the current PC, 5-7

pointers
displaying/modifying contents, 3-23, 9-12
format in a DISP window, 5-14
format in DISP window, 3-23, 9-13, 12-14
natural format, 13-5
typecasting, 13-5

port address
simulator, 7-10—7-14
SWDS, 1-12, 1-14

ports, simulating, 7-10—7-11, 7-13—7-14,
12-19—12-36

power requirements, SWDS, 1-2

program
entry point, 8-10

resetting, 12-26

ind

Index-10

execution, halting, 1-15, 2-14, 3-15, 8-10, 8-16,
12-37

preparation for debugging, 4-8

program counter (PC), 9-11

program memory
adding to memory map, 7-6, 12-18
deleting from memory map, 7-8, 12-20
filling, 9-10, 12-16
saving, 9-9, 12-24

PROMPT command, 11-12, 12-25
pulldown selection, 6-12

pseudoregisters, BIO, 9-17

pulldown menus, 6-6
colors, 11-7
correspondence to commands, 6-11
customizing their appearance, 11-7
entering parameter values, 6-9
escaping, 6-8
function key methods, 6-8, 12-37
list of menus, 6-6
mouse methods, 6-7
moving to another menu, 6-8
usage, 6-7

Q
QUIT command, 1-15, 2-14, 3-28, 12-25

R
re-entering commands, 6-4, 12-36

registers
BIO pseudoregister, 9-17
CLK pseudoregister, 3-17, 8-17
displaying/modifying, 9-11
DRR, 7-11, 7-13, 12-20
DXR, 7-11, 7-13, 12-20
program counter (PC), 9-11
referencing by name, 13-4
stack pointer (SP), 9-11
status register (ST), 9-11
TDXR, 7-11, 7-13, 12-20
TRCV, 7-11, 7-13, 12-20

relational operators, 13-2
conditional execution, 8-15

relative pathnames, 6-14, 8-9, 12-10

RELOAD command, 12-26
pulldown selection, 6-11

required tools, 1-3, 2-2, 2-8, 2-11

RESET command, 3-5, 8-14, 12-26
pulldown selection, 6-11

resetting
memory map, 12-24
program entry point, 12-26
SWDS, 1-3, 1-12
target system, 3-5, 8-14, 12-26

RESTART (REST) command, 3-15, 3-17, 8-10,
12-26
pulldown selection, 6-11

restrictions
See also limits and complaints
C expressions, 13-4
simulator

PC systems, 2-6
Sun version, 2-12
VAX version, 2-10

RETURN (RET) command, 8-11, 12-27

RUN command, 3-15, 8-11, 12-27
from the menu bar, 6-10
function key entry, 6-10, 8-11, 12-38
menu bar selections, 6-10
with conditional expression, 3-20

run commands, 3-11
CNEXT command, 8-13, 12-11
conditional parameters, 3-20
CSTEP command, 3-19, 8-13, 12-13
GO command, 8-11, 12-17
HALT command, 8-14, 12-17
menu bar selections, 6-10, 12-38
NEXT command, 3-19, 8-13, 12-25
RESET command, 8-14
RESTART command, 3-15, 3-17, 8-10
RETURN command, 8-11, 12-27
RUN command, 3-15, 8-11, 12-27
RUNB command, 3-17, 8-12, 8-17, 12-28
RUNF command, 8-14, 12-28
STEP command, 3-19, 8-12, 12-32

RUNB command, 3-17, 8-12, 8-17, 12-28

RUNF command, 8-14, 12-28

running programs, 8-10—8-15
conditionally, 8-15
halting execution, 8-16
program entry point, 8-10—8-15
while disconnected from the target system, 8-14

 ind

Index-11

S
–s debugger option

simulator, 2-14, 8-8
SWDS, 1-14, 8-8
with D_OPTIONS environment variable

simulator, 2-6
SWDS, 1-12

saving custom displays, 11-10

SCOLOR command, 11-2, 12-29
pulldown selection, 6-12

SCONFIG command, 11-10, 12-30
pulldown selection, 6-12

screen-customization commands
BORDER command, 11-8, 12-9
COLOR command, 11-2, 12-12
PROMPT command, 11-12, 12-25
pulldown menu, 6-12
SCOLOR command, 11-2, 12-29
SCONFIG command, 11-10, 12-30
SSAVE command, 11-10, 12-32

scrolling, 3-10, 5-25
function key method, 3-10, 5-26, 12-39
mouse method, 3-10, 5-26, 9-7

serial port, pseudoregister
RIRP, 7-12
RIRT, 7-12
XIRP, 7-12
XIRT, 7-12

serial ports
simulation, 7-11, 7-13, 12-20
TDM mode, 7-11, 7-13, 12-20

shell program, 4-9

side effects, 9-5, 13-3
valid operators, 9-5

sim2x command, 3-4
options

–mv, 2-13
–b, 2-13
D_OPTIONS environment variable, 2-6
–i, 2-13
–s, 2-14
–t, 2-14
–v, 2-14
–z, 2-14

sim2x command, 8-8, 8-9
options, 2-13—2-14

siminit.cmd, A-1

simulator, 2-11
PC systems, 2-2
VMS version, 2-8

simulator, 2-1—2-14
BIO simulation, 9-17
I/O memory, 7-10—7-14, 12-19, 12-21
PC systems, 2-2—2-7

debugger environment, 2-4—2-7
hardware requirements, 2-2
restrictions, 2-6
software installation, 2-3—2-7
software requirements, 2-2

restrictions
benchmarking, 8-17
CLK, 8-17
color displays, 2-10, 2-12
keyboard mapping, 2-10, 2-12
memory map size, 2-6
mouse use, 2-10
PC version, 2-6
Sun version, 2-12
VMS version, 2-10

SUN systems, 2-11—2-12
debugger restrictions, 2-12
hardware requirements, 2-11
installation, 2-12
software requirements, 2-11

VMS systems, 2-8—2-10
debugger restrictions, 2-10
hardware requirements, 2-8
installation, 2-9
software requirements, 2-8

single step
commands

CNEXT command, 8-13, 12-11
CSTEP command, 3-19, 8-13, 12-13
menu bar selections, 6-10
NEXT command, 3-19, 8-13, 12-25
STEP command, 3-19, 8-12, 12-32

execution, 8-12
assembly language code, 8-12, 12-32
C code, 8-13, 12-13
function key method, 8-13, 12-38
mouse methods, 8-13
over function calls, 8-13, 12-11, 12-25

SIZE command, 3-8, 5-21, 12-30
effect on entering other commands, 6-4

sizeof operator, 13-4
sizes

display, 5-23

ind

Index-12

displayable files, 8-7
windows, 5-21

sizing a window, 5-20
function key method, 3-8, 5-22, 12-38
mouse method, 3-8, 5-20
SIZE command, 3-8, 5-21
size limits, 5-21
while moving it, 5-23, 12-23

SLOAD command, 8-8, 12-31
pulldown selection, 6-11
–s debugger option

simulator, 2-14
SWDS, 1-14

software checklist, simulator
PC systems, 2-2
SUN systems, 2-11
VMS systems, 2-8

SPC control bit, 7-11, 7-13, 12-20

SSAVE command, 11-10, 12-32
pulldown selection, 6-12

stack pointer (SP), 9-11

status register (ST), 9-11

STEP command, 3-19, 8-12, 12-32
from the menu bar, 6-10
function key entry, 6-10, 12-38

structures
direct reference operator, 13-2
displaying/modifying contents, 9-12
format in DISP window, 3-24, 9-13, 12-14
indirect reference operator, 13-2

SWDS
benchmarking, 8-18
debugger installation, 1-1—1-16
hardware requirements, 1-2
installation

board, 1-4—1-8
preparation, 1-4

jumper settings
PC memory segment selections, 1-6
wait state, 1-7

power requirements, 1-2
resetting, 1-3, 1-12

switch settings, I/O address space, SWDS, 1-14

symbol table, loading without object code, 1-14,
2-14, 8-8, 12-31

symbolic addresses, 9-7

system commands, 6-14
CD command, 3-22, 6-14, 8-9, 12-10

CLS command, 3-22, 6-5, 12-11
DIR command, 3-22, 6-14, 12-14
QUIT command, 3-28, 12-25
RESET command, 3-5, 12-26
TAKE command, 6-13, 7-9, 12-33
USE command, 8-9, 12-33

system configuration errors, 1-15

T
–t debugger option, 2-6

simulator, 2-14
SWDS, 1-14
with D_OPTIONS environment variable

simulator, 2-6
SWDS, 1-12

TAKE command, 6-13, 7-9, 12-33
target system

memory definition for debugger, 7-1—7-14
resetting, 3-5, 12-26

TDM serial-port mode, 7-11, 7-13, 12-20
terminating the debugger, 12-25
text files, displaying, 3-14, 8-7
troubleshooting, SWDS, 1-15
type casting, 3-25, 13-4
type checking, 3-21, 9-2

U
USE command, 8-9, 12-33

V
–v debugger option

simulator, 2-14
SWDS, 1-14
with D_OPTIONS environment variable

simulator, 2-6
SWDS, 1-12

variables
aggregate values in DISP window, 3-22, 5-14,

9-12, 12-14
determining type, 9-2
displaying in different numeric format, 3-25, 13-5
displaying/modifying, 9-15
scalar values in WATCH window, 5-15,

9-15—9-16
versions, simulator memory map, 2-13

 Index

Index-13

void expressions, 13-4

W
WA command, 3-18, 5-15, 9-15, 12-34

pulldown selection, 6-11
watch commands

pulldown menu, 6-11, 9-15
WA command, 3-18, 9-15, 12-34
WD command, 3-20, 9-16, 12-34
WR command, 3-20, 9-16, 12-35

WATCH window, 3-18, 5-15, 9-2, 9-15, 12-34, 12-35
adding items, 9-15
closing, 5-28, 9-16, 12-35
colors, 11-6
customizing, 11-6
deleting items, 9-16, 12-34
labeling watched data, 9-16
opening, 9-15

WD command, 3-20, 5-15, 9-16, 12-34
pulldown selection, 6-11

WHATIS command, 3-21, 9-2, 12-34
WIN command, 3-6, 5-19, 12-35
windows, 5-5—5-15

active window, 5-17—5-19
border styles, 11-8, 12-9
closing, 5-28
commands

ADDR command, 5-7, 5-8
CALLS command, 5-9
DASM command, 5-7
DISP command, 5-14
FILE command, 5-8

FUNC command, 5-8
MEM command, 5-11
MOVE command, 3-9
SIZE command, 3-8, 12-30
WA command, 5-15
WD command, 5-15
WIN command, 3-6, 5-19, 12-23, 12-35
WR command, 5-15

editing, 5-27
moving, 3-9, 5-22, 12-23

function keys, 5-24, 12-38
mouse method, 5-22
MOVE command, 5-23
XY positions, 5-23

resizing, 3-8, 5-20
function keys, 5-22, 12-38
mouse method, 5-20
SIZE command, 5-21
while moving, 5-23, 12-23

scrolling, 3-10, 5-25
size limits, 5-21

WR command, 3-20, 5-15, 9-16, 12-35
pulldown selection, 6-11

X
–x debugger option

simulator, 2-14
SWDS, 1-14

Z
–z shell option, 4-9

	IMPORTANT NOTICE
	Read This First
	What Is This Book About?
	How to Use This Manual
	Notational Conventions
	Information About Cautions
	Related Documentation From Texas Instruments
	If You Need Assistance
	Trademarks

	Contents
	Figures
	Tables
	Installing the SWDS and the C Source Debugger
	What You'll Need
	Hardware checklist
	Software checklist

	Step 1: Installing the SWDS Board in Your PC
	Preparing the SWDS board for installation
	SWDS memory map
	Selecting wait state (jumper P5)
	SWDS board installation

	Step 2: Installing the Debugger Software
	Step 3: Setting Up the Debugger Environment
	Invoking the new or modified batch file
	Modifying the PATH statement
	Setting up the environment variables
	Identifying the correct jumper settings
	Resetting the SWDS

	Invoking the Debugger
	Troubleshooting
	Exiting the Debugger

	Installing the Simulator and the C Source Debugger
	Installing the Simulator on PC Systems
	What You'll Need
	Hardware checklist
	Software checklist

	Step 1: Installing the Simulator and Debugger Software
	Step 2: Setting Up the Debugger Environment
	Invoking the new or modified batch file
	Modifying the PATH statement
	Setting up the environment variables

	Restrictions Associated With the PC Version of the Simulator
	Using the Simulator With Microsoft Windows

	Installing the Simulator on VAX/VMS Systems
	What You'll Need
	Hardware checklist
	Software checklist

	Installing the Simulator and Debugger Software
	Restrictions Associated With the VMS Version of the Simulator

	Installing the Simulator on Sun Systems
	What You'll Need
	Hardware checklist
	Software checklist

	Installing the Simulator and Debugger Software
	Restrictions Associated With the Sun Version of the Simulator

	Invoking the Debugger
	Exiting the Debugger

	An Introductory Tutorial to the C Source Debugger
	How to use this tutorial
	A note about entering commands
	An escape route (just in case)
	Invoke the debugger and load the sample program s object code
	Take a look at the display...
	What s in the DISASSEMBLY window?
	Select the active window
	Resize the active window
	Move the active window
	Scroll through a window s contents
	Display the C source version of the sample file
	Execute some code
	Become familiar with the three debugging modes
	Open another text file, then redisplay a C source file
	Use the basic run command
	Set some breakpoints
	Benchmark a section of code
	Watch some values and single-step through code
	Run code conditionally
	WHATIS that?
	Clear the COMMAND window display area
	Display the contents of an aggregate data type
	Display data in another format
	Change some values
	Define a memory map
	Close the debugger

	Overview of a Code Development and Debugging System
	Description of the ’C2x C Source Debugger
	Key features of the debugger

	Developing Code for the ’C2x
	Preparing Your Program for Debugging
	Debugging ’C2x Programs

	The Debugger Display
	Debugging Modes and Default Displays
	Auto mode
	Assembly mode
	Mixed mode
	Restrictions associated with debugging modes

	Descriptions of the Different Kinds of Windows and Their Contents
	COMMAND window
	DISASSEMBLY window
	FILE window
	CALLS window
	MEMORY window
	CPU window
	DISP windows
	WATCH window

	Cursors
	The Active Window
	Identifying the active window
	Selecting the active window

	Manipulating Windows
	Resizing a window
	Moving a window

	Manipulating a Window’s Contents
	Scrolling through a window’s contents
	Editing the data displayed in windows

	Closing a Window

	Entering and Using Commands
	Entering Commands From the Command Line
	How to type in and enter commands
	Sometimes, you can’t type a command
	Using the command history
	Clearing the display area

	Using the Menu Bar and the Pulldown Menus
	Using the pulldown menus
	Escaping from the pulldown menus
	Entering parameters in a dialog box
	Using menu bar selections that don’t have pulldown menus
	How the menu selections correspond to commands

	Entering Commands From a Batch File
	Additional System Commands

	Defining a Memory Map
	The Memory Map: What It Is and Why You Must Define It
	A Sample Memory Map
	Defining a memory map for the simulator
	Defining a memory map for the SWDS

	Identifying Usable Memory Ranges
	Enabling Memory Mapping
	Checking the Memory Map
	Modifying the Memory Map During a Debugging Session
	Returning to the original memory map

	Simulating I/O Space
	Connecting an I/O port
	Observing serial port data
	Configuring memory to use serial port simulation
	Disconnecting an I/O port

	Loading, Displaying, and Running Code
	Code-Display Windows: Viewing Assembly Language Code, C Code, or Both
	Selecting a debugging mode

	Displaying Your Source Programs (or Other Text Files)
	Displaying assembly language code
	Displaying C code
	Displaying other text files

	Loading Object Code
	Loading code while invoking the debugger
	Loading code after invoking the debugger

	Where the Debugger Looks for Source Files
	Running Your Programs
	Defining the starting point for program execution
	Running code
	Single-stepping through code
	Running code while disconnected from the target system
	Running code conditionally

	Halting Program Execution
	Benchmarking
	Benchmarking with the simulator
	Benchmarking with the SWDS

	Managing Data
	Where Data Is Displayed
	Basic Commands for Managing Data
	Basic Methods for Changing Data Values
	Editing data displayed in a window
	Advanced “editing”—using expressions with side effects

	Managing Data in Memory
	Displaying memory contents
	Displaying program memory
	Displaying memory contents while you’re debugging C
	Saving memory values in a file
	Filling a block of memory

	Managing Register Data
	Displaying register contents

	Managing Data in a DISP (Display) Window
	Displaying data in a DISP window
	Closing a DISP window

	Managing Data in a WATCH Window
	Displaying data in the WATCH window
	Deleting watched values and closing the WATCH window

	Managing Signal Information (Simulator Only)
	Monitoring the BIO\ pin

	Using Breakpoints
	Setting a Breakpoint
	Clearing a Breakpoint
	Finding the Breakpoints That Are Set

	Customizing the Debugger Display
	Changing the Colors of the Debugger Display
	area names: common display areas
	area names: window borders
	area names: COMMAND window
	area names: DISASSEMBLY and FILE windows
	area names: data-display windows
	area names: menu bar and pulldown menus

	Changing the Border Styles of the Windows
	Saving and Using Custom Displays
	Changing the default display for monochrome monitors
	Saving a custom display
	Loading a custom display
	Invoking the debugger with a custom display
	Returning to the default display

	Changing the Prompt

	Summary of Commands and Special Keys
	Functional Summary of Debugger Commands
	Changing modes
	Managing windows
	Performing DOS-like tasks
	Managing and displaying data
	Displaying files and loading programs
	Managing breakpoints
	Customizing the screen
	Memory mapping
	Running programs

	Alphabetical Summary of Debugger Commands
	?
	addr
	asm
	ba
	bd
	bl
	border
	br
	c
	calls
	cd, chdir
	cls
	cnext
	color
	cstep
	dasm
	dir
	disp
	eval
	file
	fill
	func
	go
	halt
	load
	ma
	map
	mc
	md
	mi
	ml
	mem
	mix
	move
	mr
	ms
	next
	prompt
	quit
	reload
	reset
	restart
	return
	run
	runb
	runf
	scolor
	sconfig
	size
	sload
	ssave
	step
	take
	use
	wa
	wd
	whatis
	win
	wr

	Summary of Special Keys
	Editing text on the command line
	Using the command history
	Switching modes
	Halting or escaping from an action
	Displaying pulldown menus
	Running code
	Selecting or closing a window
	Moving or sizing a window
	Scrolling through a window s contents
	Editing data or selecting the active field

	Basic Information About C Expressions
	C Expressions for Assembly Language Programmers
	Restrictions and Features Associated With Expression Analysis in the De\bugger
	Restrictions
	Additional features

	What the Debugger Does During Invocation
	Debugger Messages
	Alphabetical Summary of Debugger Messages
	Additional Instructions for Expression Errors
	Additional Instructions for Hardware Errors

	Registers and Pseudoregisters
	Glossary
	Reference Cards
	Index

	window:

