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Chapter 1

Introduction

The TMS320 family of 16/32-bit single-chip digital signal processors combines
the flexibility of a high-speed controller with the numerical capability of an array
processor, offering an inexpensive alternative to custom VLSI and multichip
bit-slice processors for signal processing.

The TMS32010, the first digital signal processor in the TMS320 family, was
introduced in 1982. Since that time, the TMS320 family has established itself
as the industry standard for digital signal processing. The powerful instruction
set, inherent flexibility, high-speed number-crunching capabilities, and innova-
tive architecture make these high-performance, cost-effective processors
ideal for many telecommunications, computer, commercial, industrial, and mil-
itary applications.

Note:

Throughout this document, TMS320C2x refers to the TMS320C25,
TMS320C25-33, TMS320C25-50, TMS320E25, TMS320C26, and
TMS320C28 unless stated otherwise. Where applicable, ROM includes the
on-chip EPROM of the TMS320E25.

Topics in this chapter include
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1.1 General Description

The TMS320 family currently consists of five generations: TMS320C1x,
TMS320C2x, TMS320C3x, TMS320C4x, and TMS320C5x (see Figure 1–1).
The family expansion includes enhancements of existing generations and
more powerful new generations of digital signal processors. Many features are
common among these generations. Some specific features are added in each
processor to provide different cost/performance tradeoffs. Software compati-
bility is maintained throughout the family to protect the user’s investment in ar-
chitecture. Each processor has software and hardware tools to facilitate rapid
design.

This document discusses the TMS320C2x devices:

� TMS320C25, a CMOS 40-MHz digital signal processor capable of twice
the performance of the TMS320C1x devices

� TMS320C25-33 a CMOS 33-MHz version of the TMS32025

� TMS320C25-50, a CMOS enhanced-speed (50-MHz) version of the
TMS320C25

� TMS320E25, a version of the TMS320C25 (40-MHz) with on-chip ROM
replaced by secure, on-chip EPROM

� TMS320C26, a version of the TMS320C25 (40-MHz) with expanded confi-
gurable program/data RAM

� The TMS320C28, a version of the TMS320C25 (40-MHz) with expanded
8K-word on-chip ROM and an added power-down mode.
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Figure 1–1. TMS320 Device Evolution
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Plans for expansion of the TMS320 family include more spinoffs of the existing
generations as well as more powerful future generations of digital signal pro-
cessors.

The TMS320 family combines the high performance and specialized features
necessary in digital signal processing (DSP) applications with an extensive
program of development support, including hardware and software develop-
ment tools, product documentation, textbooks, newsletters, DSP design work-
shops, and a variety of application reports. See Appendix K for a discussion
of the wide range of development tools available.
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The combination of the TMS320’s Harvard-type architecture (separate pro-
gram and data buses) and its special digital signal processing instruction set
provide speed and flexibility to execute 12.8 MIPS (million instructions per se-
cond). The TMS320 family optimizes speed by implementing functions in
hardware that other processors implement through software or microcode.
This hardware-intensive approach provides the design engineer with power
previously unavailable on a single chip.

The TMS320C2x generation includes six members: TMS320C25,
TMS320C25-33, TMS320C25-50, TMS320E25, TMS320C26, and
TMS320C28. Table 1–1 provides an overview of the TMS320C2x generation
of processors with comparisons of memory, I/O, cycle timing, and package
type.

Table 1–1.TMS320C2x Processors Overview

Device
Memory

On-chip ROM/ Off-chip
RAM EPROM Prog Data

I/O Ports †

Ser Par DMA

Cycle
Time
(ns)

Package
 Type*

PGA  PLCC CER QFP

TMS320C25‡ 544 4K 64K 64K Yes 16 × 16 Con 100 68 68 — —

TMS320C25-33 544 4K 64K 64K Yes 16 × 16 Con 120 — 68 — —

TMS320C25-50§ 544 4K 64K 64K Yes 16 × 16 Con 80 — 68 — —

TMS320E25§ 544 4K 64K 64K Yes 16 × 16 Con 100 — — 68 80

TMS320C26 1568 256 64K 64K Yes 16 × 16 Con 100 — 68 — —

TMS320C28 544 8K 64K 64K Yes 16 × 16 Con 100 — 68 — 80

†Ser = serial; Par = parallel; DMA = direct memory access; Con = concurrent DMA.
‡Military version available; contact nearest TI Field Sales Office for availability.
§Military version planned; contact nearest TI Field Sales Office for details.
*PGA = 68-pin grid array; PLCC = plastic-leaded chip carrier; CER = surface mount ceramic-leaded chip carrier (CER-QUAD);
 QFP =  plastic quad flat package

The TMS320C25, like all members of the TMS320C2x generation, is pro-
cessed in CMOS technology. The TMS320C25 is capable of executing 10 mil-
lion instructions per second. Enhanced features such as 24 additional instruc-
tions (133 total), eight auxiliary registers, an eight-level hardware stack, 4K
words of on-chip program ROM, a bit-reversed indexed addressing mode, and
the low power dissipation inherent to the CMOS process contribute to the high
performance.

The TMS320C25-33 is a 33-MHz version of the TMS320C25. It is capable of
an instruction cycle of 120 ns. It is architecturally identical to the 40-MHz ver-
sion of the TMS320C25 and is pin-for-pin and object-code compatible with the
TMS320C25.

The TMS320C25-50 is a high-speed version of the TMS320C25. It is capable
of an instruction cycle time of 80 ns. It is architecturally identical to the 40-MHz
version of the TMS320C25 and is pin-for-pin and object-code compatible with
the TMS320C25.
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The TMS320E25 is identical to the TMS320C25, except that the on-chip
4K-word program ROM is replaced with a 4K-word on-chip program EPROM.
On-chip EPROM allows realtime code development and modification for im-
mediate evaluation of system performance.

The TMS320C26 is pin-for-pin and object-code compatible (except for RAM
configuration instructions) with the TMS320C25. It is capable of an instruction
cycle time of 100 ns.  The enhancement over the TMS320C25 consists of a
larger, configurable, on-chip RAM divided into 4 blocks, for a total 1568-word
program/data space. The TMS320C26 is similar to the TMS320C25 except for
its internal memory configuration. This is discussed in Section 3.4 and in Ap-
pendix B.

The TMS320C28 is object code-compatible with the TMS320C25. It is capable
of an instruction cycle time of 100 ns. The TMS320C28 contains an expanded
8K words of on-chip program ROM and an added power-down mode, which
conserves power while saving the contents of on-chip SRAM (B0, B1, and B2).
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1.2 Key Features

Key features of the TMS320C2x devices are listed below. Those that pertain
to a particular device are followed by the device name within parentheses.

� Instruction cycle timing:

80-ns (TMS320C25-50)
100-ns (TMS320C25, TMS320E25, TMS320C26, and TMS320C28)
120-ns (TMS320C25-33)

� 544-word programmable on-chip data RAM

� 1568-word configurable program/data RAM (TMS320C26 only)

� 4K-word on-chip program ROM (TMS320C25, TMS302C25-33, and
TMS320C25-50)

� 8K-word on-chip program ROM (TMS320C28 only)

� Secure 4K-word on-chip program EPROM (TMS320E25)

� 128K-word total data/program memory space

� 32-bit ALU/accumulator

� 16- ×16-bit parallel multiplier with a 32-bit product

� Single-cycle multiply/accumulate instructions

� Repeat instructions for efficient use of program space and enhanced
execution

� Block moves for data/program management

� On-chip timer for control operations

� Up to eight auxiliary registers with dedicated arithmetic unit

� Up to eight-level hardware stack

� Sixteen input and sixteen output channels

� 16-bit parallel shifter

� Wait states for communication to slower off-chip memories/peripherals

� Serial port for direct codec interface

� Synchronization input for synchronous multiprocessor configurations
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� Global data memory interface

� TMS320C1x source-code upward compatibility

� Concurrent DMA using an extended hold operation

� Instructions for adaptive filtering, FFT, and extended-precision arithmetic

� Bit-reversed indexed-addressing mode for radix-2 FFT

� On-chip clock generator

� Single 5-V supply

� Power-down mode (TMS320C28 only)

� Device packaging:

68-pin PGA (TMS320C25)
68-lead PLCC (TMS320C25, TMS320C26, and TMS320C28)
68-lead CER-QUAD (TMS320E25)
80-pin QFP (TMS320C28)

� Commercial and military versions available
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1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those com-
plex applications. Table 1–2 lists typical TMS320 family applications.

Table 1–2.Typical Applications of the TMS320 Family

General-Purpose DSP Graphics/Imaging Instrumentation

Digital Filtering
Convolution
Correlation
Hilbert Transforms
Fast Fourier Transforms
Adaptive Filtering
Windowing
Waveform Generation

3-D Rotation
Robot Vision
Image Transmission/
Compression
Pattern Recognition
Image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

Voice/Speech Control Military

Voice Mail
Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech

Disk Control
Servo Control
Robot Control
Laser Printer Control
Engine Control
Motor Control

Secure Communications
Radar Processing
Sonar Processing
Image Processing
Navigation
Missile Guidance
Radio Frequency Modems

Telecommunications Automotive

Echo Cancellation
ADPCM Transcoders
Digital PBXs
Line Repeaters
Channel Multiplexing
1200 to 19200-bps Modems
Adaptive Equalizers
DTMF Encoding/Decoding
Data Encryption

FAX
Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)
X.25 Packet Switching
Video Conferencing
Spread Spectrum
Communications

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning
Navigation
Voice Commands
Digital Radio
Cellular Telephones

Consumer Industrial Medical

Radar Detectors
Power Tools
Digital Audio/TV
Music Synthesizer
Toys and Games
Solid-State Answering
Machines

Robotics
Numeric Control
Security Access
Power Line Monitors

Hearing Aids
Patient Monitoring
Ultrasound Equipment
Diagnostic Tools
Prosthetics
Fetal Monitors

Many of the TMS320C2x features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate
arithmetic unit, and large on-chip RAM and ROM make the device particularly
applicable in digital signal processing systems. At the same time, general-pur-
pose applications are greatly enhanced by the large address spaces, on-chip
timer, serial port, multiple interrupt structure, provision for external wait states,
and capability for multiprocessor interface and direct memory access.
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The TMS320C2x has the flexibility to be configured to satisfy a wide range of
system requirements. This allows the device to be applied in systems currently
using costly bit-slice processors or custom ICs. These are examples of such
system configurations:

� A standalone system using on-chip memory,

� Parallel multiprocessing systems with shared global data memory, or

� Host/peripheral coprocessing using interface control signals.
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Chapter 2

Pinouts and Signal Descriptions

The TMS320C2x generation digital signal processors are available in one or
more of four package types. The TMS320C25 (40-MHz version only) is avail-
able in a 68-pin grid array (PGA) package. The TMS320C25 (33-MHz,
40-MHz, and 50-MHz versions) and the TMS320C26 are available in a plastic
68-lead chip carrier (PLCC) package. The TMS320E25 is packaged in a ce-
ramic surface mount 68-lead chip carrier (CER-QUAD) package. The
TMS320C28 is available in a 80-pin quad flat package (QFP). All TMS320
packages conform to JEDEC specifications.

Conversion sockets that accept PLCC and CER-QUAD packages and have
a PGA footprint are commercially available. For more information, refer to Ap-
pendix D.

When using the XDS emulator, refer to subsection 6.1.3 for user target design
considerations.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include
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2.1 TMS320C2x Pinouts

Figure 2–1 shows pinouts of the PGA, PLCC, and CER-QUAD packages for
the TMS320C2x devices. Note that the pinout and external dimensions of
PLCC and CER-QUAD are identical. Figure 2–2 shows preliminary pinouts
of the QFP package for the TMS320C28 device.

Figure 2–1. TMS320C2x Pin Assignments
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† Packages are shown for pinout reference only.
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Figure 2–2. TMS320C28 Pin Assignments
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2.2 TMS320C2x Signal Descriptions

The signal descriptions for the TMS320C2x devices are provided in this sec-
tion. Table 2–1 lists each signal, its pin location (PGA, PLCC, and CER-
QUAD), function, and operating mode(s): that is, input, output, or high-imped-
ance state as indicated by I, O, or Z. The signals in Table 2–1 are grouped ac-
cording to function and alphabetized within that grouping.

Table 2–1.TMS320C2x Signal Descriptions

Signal Pin 
(PGA/PLCC†)

I/O/Z‡ Description

Address/Data Buses

A15 MSB
A14
A13 
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0 LSB

L10/43
K9/42
L9/41
K8/40
L8/39
K7/38
L7/37
K6/36
K5/34
L5/33
K4/32
L4/31
K3/30
L3/29
K2/28
K1/26

O/Z Parallel address bus A15 (MSB) through A0 (LSB).
Multiplexed to address external data/program memory or I/O.
Placed in high-impedance state in the hold mode.

D15 MSB
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0 LSB

B6/2
A5/3
B5/4
A4/5
B4/6
A3/7
B3/8
A2/9
B2/11
C1/12
C2/13
D1/14
D2/15
E1/16
E2/17
F1/ 18

I/O/Z Parallel data bus D15 (MSB) through D0 (LSB). Multiplexed to
transfer data between the TMS320C2x and external data/pro-
gram memory or I/O devices. Placed in the high-impedance state
when not outputting or when RS or HOLD is asserted.

 Interface Control Signals

DS
PS
IS

K10/45
J10/47
J11/46

O/Z Data, program, and I/O space select signals. Always high unless
low level asserted for communicating to a particular external
space. Placed in high-impedance state in the hold mode.

READY B8/66 I Data ready input. Indicates that an external device is prepared for
the bus transaction to be completed. If the device is not ready
(READY = 0), the TMS320C2x waits one cycle and checks
READY again. READY also indicates a bus grant to an external
device after a BR (bus request) signal.

† Pin numbers apply to CER-QUAD as well as to PLCC.
‡ Input/Output/High-impedance state.
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Table 2–1.TMS320C2x Signal Descriptions (Continued)

Signal Pin 
(PGA/PLCC†)

I/O/Z‡ Description

 Interface Control Signals (Continued)

R/W H11/48 O/Z Read/write signal. Indicates transfer direction when communicat-
ing to an external device. Normally in read mode (high), unless
low level asserted for performing a write operation. Placed in
high-impedance state in the hold mode.

STRB H10/49 O/Z Strobe signal. Always high unless asserted low to indicate an ex-
ternal bus cycle. Placed in high-impedance state in the hold
mode.

Multiprocessing Signals

BR G11/50 O Bus request signal. Asserted when the TMS320C2x requires ac-
cess to an external global data memory space. READY is as-
serted to the device when the bus is available and the global data
memory is available for the bus transaction.

HOLD A7/67 I Hold input. When this signal is asserted, the TMS320C2x places
the data, address, and control lines in the high-impedance state.

HOLDA E10/55 O Hold acknowledge signal. Indicates that the TMS320C2x has
gone into the hold mode and that an external processor may ac-
cess the local external memory of the TMS320C2x.

SYNC F2/19 I Synchronization input. Allows clock synchronization of two or
more TMS320C2xs. SYNC is an active-low signal and must be
asserted on the rising edge of CLKIN.

Interrupt and Miscellaneous Signals

BIO B7/68 I Branch control input. Polled by BIOZ instruction. If BIO is low, the
TMS320C2x executes a branch. This signal must be active during
the BIOZ instruction fetch.

IACK B11/60 O Interrupt acknowledge signal. Output is valid only while
CLKOUT1 is low. Indicates receipt of an interrupt and that the pro-
gram is branching to the interrupt-vector location designated by
A15–A0.

INT2
INT1
INT0

H1/22
G2/21
G1/20

I External user interrupt inputs. Prioritized and maskable by the in-
terrupt mask register and the interrupt mode bit.

MP/MC A6/1 I Microprocessor/microcomputer mode select pin for the
TMS320C25. When asserted low (microcomputer mode), the pin
causes the internal ROM to be mapped into the lower 4K words
of the program memory map. In the microprocessor mode, the
lower 4K words of program memory are external.

† Pin numbers apply to CER-QUAD as well as to PLCC.
‡ Input/Output/High-impedance state.



TMS320C2x Signal Descriptions

2-6  Pinouts and Signal Descriptions

Table 2–1.TMS320C2x Signal Descriptions (Continued)

Signal Pin 
(PGA/PLCC†)

I/O/Z‡ Description

Interrupt and Miscellaneous Signals (Continued)

MSC C10/59 O Microstate complete signal. Asserted low and valid only during
CLKOUT1 low when the TMS320C2x has just completed a
memory operation, such as an instruction fetch or a data  memory
read/write. MSC can be used to generate a one wait-state
READY signal for slow memory.

RS A8/65 I Reset input. Causes the TMS320C2x to terminate execution and
forces the program counter to zero. When RS is brought to a high
level, execution begins at location zero of program memory. RS
affects various registers and status bits.

XF D11/56 O External flag output (latched software-programmable signal).
Used for signaling other processors in multiprocessor configura-
tions or as a general-purpose output pin.

Supply/Oscillator Signals

CLKOUT1 C11/58 O Master clock output signal (CLKIN frequency/4). CLKOUT1 rises
at the  beginning of quarter-phase 3 (Q3) and falls at the beginning
of quarter-phase 1 (Q1).

CLKOUT2 D10/57 O A second clock output signal. CLKOUT2 rises at the beginning of
quarter-phase 2 (Q2) and falls at the beginning of quarter-phase
4 (Q4).

VCC A10/61
B10/62
H2/23
L6/35

I Four 5-V supply pins, tied together externally. 

VSS B1/10
K11/44
L2/27

I Three ground pins, tied together externally.

X1 G10/51 O Output pin from the internal oscillator for the crystal. If a crystal is
not used, this pin should be left unconnected.

X2/CLKIN F11/52 I Input pin to the internal oscillator from the crystal. If  crystal is not
used, a clock may be input to the device on this pin

† Pin numbers apply to CER-QUAD as well as to PLCC.
‡ Input/Output/High-impedance state.
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Table 2–1.TMS320C2x Signal Descriptions (Continued)

Signal Pin 
(PGA/PLCC†)

I/O/Z‡ Description

Serial Port Signals

CLKR B9/64 I Receive clock input. External clock signal for clocking data from
the DR (data receive) pin into the RSR (serial port receive shift
register). Must be present during serial port transfers.

CLKX A9/63 I Transmit clock input. External clock signal for clocking data from
the XSR (serial port transmit shift register) to the DX (data trans-
mit) pin. Must be present during serial port transfers.

DR J1/24 I Serial data receive input. Serial data is received in the RSR (serial
port receive shift register) via the DR pin.

DX E11/54 O/Z Serial data transmit output. Serial data transmitted from the XSR
(serial port transmit shift register) via the DX pin. Placed in high-
impedance state when not transmitting.

FSR J2/25 I Frame synchronization pulse for receive input. The falling edge
of the FSR pulse initiates the data-receive process, beginning the
clocking of the RSR.

FSX F10/53 I/O Frame synchronization pulse for transmit input/output. The falling
edge of the FSX pulse initiates the data- transmit process, begin-
ning the clocking of the XSR. Following reset, the default operat-
ing condition of FSX is as an input. This pin may be selected by
software to be an output when the TXM bit in the status register
is set to 1.

† Pin numbers apply to CER-QUAD as well as to PLCC.
‡ Input/Output/High-impedance state.

Note: See Appendix C for TMS320C28 signal descriptions.
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About This Manual

The purpose of this user’s guide is to serve as a reference book for the
TMS320C2x digital signal processors. Chapters 2 through 6 provide specific
information about the architecture and operation of the devices. Appendices
A through E furnish electrical specifications and mechanical data.

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction
Description and key features of the TMS320C2x generation of digital signal
processors.

Chapter 2 Pinouts  and  Signal  Descriptions
Package drawings for TMS320C2x devices. Functional listings of the signals,
their pin locations, and descriptions.

Chapter 3 Architecture
TMS320C2x design description, hardware components, and device
operation. Functional block diagram and internal hardware summary table.

Chapter 4 Assembly  Language  Instructions
Addressing modes and format descriptions. Instruction set summary listed
according to function. Alphabetized individual instruction descriptions with
examples.

Chapter 5 Software  Applications
Software application examples for the use of various TMS320C2x instruction
set features.

Chapter 6 Hardware  Applications
Hardware design techniques and application examples for interfacing to
memories, peripherals, or other microcomputers/microprocessors. XDS
design considerations. System applications.
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Eleven appendices are included to provide additional information.

Appendix A TMS320C25  Digital  Signal Processor
Electrical specifications, timing, and mechanical data for the TMS320C25
devices.

Appendix B TMS320C26 Digital Signal Processor
Data sheet information for the TMS320C26 digital signal processor.

Appendix C TMS320C28  Digital Signal Processor
Data sheet information for the TMS320C28 digital signal processor.

Appendix D SMJ320C2x  Digital Signal Processors
Data sheet information for the SMJ320C2x digital signal processors family.

Appendix E Instruction Cycle Timings
Listings of the number of cycles for an instruction to execute in a given memory
configuration on the TMS320C25.

Appendix F TMS320E25  EPROM Programming
Programming hardware description and methodology.

Appendix G Analog Interface Peripherals and Applications
Discussion of various analog input/output devices that interface directly to
TMS320 DSPs and their applications.

Appendix H Memories , Analog  Converters , Sockets , and  Crystals
Listings of the TI memories, analog converters, and sockets available to
support the TMS320C2x devices in DSP applications. Crystal specifications
and vendors.

Appendix I ROM  Codes
Discussion of ROM codes (mask options) and the procedure for
implementation.

Appendix J Quality  and  Reliability
Discussion of Texas Instruments quality and reliability criteria for evaluating
performance.

Appendix K Development  Support
Listings of the hardware and software available to support the TMS320C2x
devices.
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Style and Symbol Conventions

This document uses the following conventions.

� Program listings, program examples, interactive displays, filenames, and
symbol names are shown in a special typeface  similar to a
typewriter’s. Examples use a bold version  of the special typeface for
emphasis; interactive displays use a bold version  of the special
typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

0011  0005  0001         .field    1, 2
0012  0005  0003         .field    3, 4
0013  0005  0006         .field    6, 3
0014  0006               .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface  font and parameters are in an italic typeface. Portions of a syntax
that are in bold  should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect  ” section name”,  address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

� Square brackets ( [ and ] ) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

LALK   16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .
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� Braces ( { and } ) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Information about Cautions

This book may contain cautions. A caution  describes a situation that could
potentially damage your software or equipment.

This is what a caution looks like.

The information in a caution is provided for your protection. Please read each
caution carefully.
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UNIX is a registered trademark of UNIX Systems Laboratories.
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If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments Digital Signal
Processing (DSP) products

Write to:
Texas Instruments Incorporated
Market Communications Manager, MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477–8924

Ask questions about product
operation or report suspected
problems

Call the DSP hotline:
(713) 274–2320

Report mistakes in this document
or any other TI documentation

Send your comments to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443
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Chapter 3

Architecture

The architectural design of the TMS320C2x emphasizes overall system
speed, communication, and flexibility in processor configuration. Control sig-
nals and instructions provide block memory transfers, communication to slow-
er off-chip devices, and multiprocessing implementations. Single-cycle multi-
ply/accumulate instructions, two large on-chip RAM Blocks, eight auxiliary
registers with a dedicated arithmetic unit, a serial port, a hardware timer, and
a faster I/O for data-intensive signal processing are features that increase
throughput for DSP applications.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.
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3.1 Architectural Overview

Harvard Architecture.  The TMS320C2x high-performance digital signal pro-
cessors, like the TMS320C1x devices, implement a Harvard-type architecture
that maximizes processing power by maintaining two separate memory bus
structures, program and data, for full-speed execution. Instructions are in-
cluded to provide data transfers between the two spaces. Externally, the pro-
gram and data memory can be multiplexed over the same bus so as to maxi-
mize the address range for both spaces while minimizing the pin count of the
device.

On-Chip Memory.  The TMS320C25 provides increased flexibility in system
design by two large on-chip data RAM blocks (a total of 544 16-bit words), one
of which is configurable either as program or data memory (see Figure 3–1).
The TMS320C26 provides three large on-chip RAM blocks, configurable ei-
ther as separate program and data spaces or as three continuous data blocks,
to provide increased flexibility in system design. An off-chip 64K-word directly
addressable data memory address space is included to facilitate implementa-
tions of DSP algorithms.

The large on-chip 4K-word masked ROM on the TMS320C25 can reduce the
cost of systems, thus providing for a true single-chip DSP solution (see
Figure 3–1). Programs of up to 4K words can be masked into the internal pro-
gram ROM. The remainder of the 64K-word program memory space is located
externally. Large programs can execute at full speed from this memory space.
Programs may also be downloaded from slow external memory to on-chip
RAM for full-speed operation.

The 4K-word on-chip EPROM on the TMS320E25 allows realtime code devel-
opment and modification for immediate evaluation of system performance.
Instructions can be executed from the EPROM at full speed. The EPROM is
equipped with a security mechanism allowing you to protect proprietary in-
formation. A programming adapter socket is available from Texas Instruments
that provides 68- to 28-pin conversion for programming with standard PROM
programmers. Refer to Appendix F for details.



 Architectural Overview

3-3

Figure 3–1. TMS320C2x Simplified Block Diagram
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Arithmetic Logic Unit.  The TMS320C2x performs 2s-complement arithmetic
using the 32-bit ALU and accumulator. The ALU is a general-purpose arithme-
tic unit that operates using 16-bit words taken from data RAM or derived from
immediate instructions or using the 32-bit result of the multiplier’s product reg-
ister. In addition to the usual arithmetic instructions, the ALU can perform Bool-
ean operations, providing the bit manipulation ability required of a high-speed
controller. The accumulator stores the output from the ALU and is the second
input to the ALU. The accumulator is 32 bits in length and is divided into a high-
order word (bits 31 through 16) and a low-order word (bits 15 through 0).
Instructions are provided for storing the high- and low-order accumulator
words in memory.

Multiplier.  The multiplier performs a 16 × 16-bit 2s-complement multiplication
with a 32-bit result in a single instruction cycle. The multiplier consists of three
elements: the T register, P register, and multiplier array. The 16-bit T register
temporarily stores the multiplicand; the P register stores the 32-bit product.
Multiplier values come from data memory, from program memory when using
the MAC/MACD instructions, or immediately from the MPYK (multiply immedi-
ate) instruction word. The fast on-chip multiplier allows the device to perform
efficiently the fundamental DSP operations such as convolution, correlation,
and filtering.
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The TMS320C2x scaling shifter has a 16-bit input connected to the data bus
and a 32-bit output connected to the ALU. The scaling shifter produces a left-
shift of 0 to 16 bits on the input data, as programmed in the instruction. The
LSBs of the output are filled with zeros, and the MSBs may be either filled with
zeros or sign-extended, depending upon the state of the sign-extension mode
bit of status register ST1. Additional shift capabilities enable the processor to
perform numerical scaling, bit extraction, extended arithmetic, and overflow
prevention.

Memory Interface.  The TMS320C2x local memory interface consists of a
16-bit parallel data bus (D15–D0), a 16-bit address bus (A15–A0), three pins
for data/program memory or I/O space select (DS, PS, and IS), and various
system control signals. The R/W signal controls the direction of a data transfer,
and the STRB signal provides a timing signal to control the transfer. When us-
ing on-chip program RAM, ROM/EPROM, or high-speed external program
memory, the TMS320C2x runs at full speed without wait states. The use of a
READY signal allows wait-state generation for communicating with slower off-
chip memories.

Up to eight levels of hardware stack are provided for saving the contents of the
program counter during interrupts and subroutine calls. Instructions are avail-
able for saving the device’s complete context. PUSH and POP instructions
permit a level of nesting restricted only by the amount of available RAM. The
interrupts used in these devices are maskable.

All control operations are supported on the TMS320C2x by an on-chip
memory-mapped 16-bit timer, a repeat counter, three external maskable user
interrupts, and internal interrupts generated by serial port operations or by the
timer. A built-in mechanism protects from instructions that are repeated or be-
come multicycle due to the READY signal and from holds and interrupts.

Serial Port.  An on-chip full-duplex serial port provides direct communication
with serial devices such as codecs, serial A/D converters, and other serial sys-
tems. The interface signals are compatible with codecs and many other serial
devices with a minimum of external hardware. The two serial port memory-
mapped registers (the data transmit/receive registers) may be operated in ei-
ther an 8-bit byte or 16-bit word mode. Each register has an external clock in-
put, a framing synchronization input, and associated shift registers.

Multiprocessing Applications.  The TMS320C2x has the capability of allo-
cating global data memory space and communicating with that space via the
BR (bus request) and READY control signals. The 8-bit memory-mapped
global memory allocation register (GREG) specifies up to 32K words of the
TMS320C2x data memory as global external memory. The contents of the reg-
ister determine the size of the global memory space. If the current instruction
addresses an operand within that space, BR is asserted to request control of
the bus. The length of the memory cycle is controlled by the READY line.
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Direct Memory Access.  The TMS320C2x supports direct memory access
(DMA) to its external program/data memory using the HOLD and HOLDA sig-
nals. Another processor can take complete control of the TMS320C2x external
memory by asserting HOLD low. This causes the TMS320C2x to place its ad-
dress, data, and control lines in the high-impedance state. Signaling between
the external processor and the TMS320C2x can be performed by using inter-
rupts. On the TMS320C2x, two modes are available: a mode in which execu-
tion is suspended during assertion of HOLD, and a concurrent DMA mode in
which the TMS320C2x continues to execute its program while operating from
internal RAM or ROM, thus greatly increasing throughput in data-intensive ap-
plications.
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3.2 Functional Block Diagram

The functional block diagram shown in Figure 3–2 and Figure 3–3 outlines the
principal blocks and data paths within the TMS320C2x processors. Further
details of the functional blocks are provided in the succeeding sections. Refer
to Section 3.3, Internal Hardware Summary, for definitions of the symbols used
in Figure 3–2. The block diagram also shows all of the TMS320C2x interface
pins. Figure 3–3 shows the block diagram of the TMS320C26.

The TMS320C2x architecture is built around two major buses: the program
bus and the data bus. The program bus carries the instruction code and im-
mediate operands from program memory. The data bus interconnects various
elements, such as the central arithmetic logic unit (CALU) and the auxiliary
register file, to the data RAM. Together, the program and data buses can carry
data from on-chip data RAM and internal or external program memory to the
multiplier in a single cycle for multiply/accumulate operations.

The TMS320C2x has a high degree of parallelism; for example, while the data
is being operated upon by the CALU, arithmetic operations may also be imple-
mented in the auxiliary register arithmetic unit (ARAU). Such parallelism re-
sults in a powerful set of arithmetic, logic, and bit-manipulation operations that
may all be performed in a single machine cycle.

LEGEND:
ACCH = Accumulator high IFR = Interrupt flag register PC = Program Counter
ACCL = Accumulator low IMR = Interrupt mask register PFC = Prefetch counter
ALU = Arithmetic logic unit IR = Instruction register RPTC = Repeat instruction counter
ARAU = Auxiliary register arithmetic unit MCS = Microcall stack GREG = Global memory allocation register
ARB = Auxiliary register pointer buffer QIR = Queue instruction register RSR = Serial port receive shift register
ARP = Auxiliary register pointer PR = Product register XSR = Serial port transmit shift register
DP = Data memory page pointer PRD = Period register for timer AR0-AR = Auxiliary registers
DRR = Serial port data receive register TIM = Timer ST0.ST = Status registers
DXR = Serial port data transmit register TR =Temporary register C = Carry bit
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Figure 3–2. TMS320C25/E25 Block Diagram
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Figure 3–3. TMS320C26 Block Diagram
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3.3 Internal Hardware Summary

The TMS320C2x internal hardware implements functions that other proces-
sors typically perform in software or microcode. For example, the device con-
tains hardware for single-cycle 16 × 16-bit multiplication, data shifting, and ad-
dress manipulation. This hardware-intensive approach provides computing
power previously unavailable on a single chip.

Table 3–1 presents a summary of the TMS320C2x internal hardware. This
summary table, which includes the internal processing elements, registers,
and buses, is alphabetized within each functional grouping. All of the symbols
used in  this table  correspond to  the symbols used  in the  block  diagram  of
Section 3.2, the succeeding block diagrams in this section, and the text
throughout this document.

Table 3–1.TMS320C2x Internal Hardware

Unit Symbol Function

Accumulator ACC (31–0)
ACCH (31–16)
ACCL (15–0)

A 32-bit accumulator split in two halves: ACCH (accumulator high) and
ACCL (accumulator low). Used for storage of ALU output.

Arithmetic Logic Unit ALU A 32-bit twos-complement arithmetic logic unit having two 32-bit input
ports and one 32-bit output port feeding the accumulator.

Auxiliary Register Arithmetic
Unit 

ARAU A 16-bit unsigned arithmetic unit used to perform operations on auxilia-
ry register data.

Auxiliary Register File AR0–AR7
(15–0)

A register file containing eight 16-bit auxiliary registers (AR0–AR7),
used for addressing data memory, temporary storage, or integer arith-
metic processing through the ARAU.

Auxiliary Register File Bus AFB(15–0) A 16-bit bus that carries data from the AR pointed to by the ARP.

Auxiliary Register Pointer ARP(2–0) A 3-bit register used to select one of five or eight auxiliary registers.

Auxiliary Register Pointer
Buffer

ARB(2–0) A 3-bit register used to buffer the ARP. Each time the ARP is loaded,
the old value is written to the ARB, except during an LST (load status
register) instruction. When the ARB is loaded with an LST1, the same
value is also copied into ARP.

Central Arithmetic Logic Unit CALU The grouping of the ALU, multiplier, accumulator, and scaling shifter.

Data Bus D(15–0) A 16-bit bus used to route data.

Data Memory Address Bus DAB(15–0) A 16-bit bus that carries the data memory address.

Data Memory Page Pointer DP(8–0) A 9-bit register pointing to the address of the current page. Data pages
are 128 words each, resulting in 512 pages of addressable data
memory space (some locations are reserved).

Direct Data Memory Address
Bus

DRB(15–0) A 16-bit bus that carries the direct address for the data memory, which
is the concatenation of the DP register with the seven LSBs of the
instruction.

Global Memory Allocation
Register

GREG(7–0) An 8-bit memory-mapped register for allocating the size of the global
memory space.
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Table 3–1.TMS320C2x Internal Hardware (Continued)

Unit Symbol Function

Instruction Register IR(15–0) A 16-bit register used to store the currently executing instruction.

Interrupt Flag Register IFR(5–0) A 6-bit flag register used to latch the active-low external user interrupts
INT(2–0), the internal interrupts XINT/RINT (serial port transmit/re-
ceive), and TINT (timer) interrupts. The IFR is not accessible through
software.

Interrupt Mask Register IMR(5–0) A 6-bit memory-mapped register used to mask interrupts.

Microcall Stack MCS (15–0) A single-word stack that temporarily stores the contents of the PFC
while the PFC is being used to address data memory with the block
move (BLKD/BLKP), multiply-accumulate (MAC/MACD), and table
read/write (TBLR/TBLW)and table read/write (TBLR/TBLW) instruction

Multiplier MULT A 16 × 16-bit parallel multiplier.

Period Register PRD (15–0) A 16-bit memory-mapped register used to reload the timer.

Prefetch Counter PFC (15–0) A 16-bit counter used to prefetch program instructions. The PFC con-
tains the address of the instruction currently being prefetched. It is up-
dated when a new prefetch is initiated. The PFC is also used to address
program memory when using the block move (BLKP), multiply-accu-
mulate (MAC/MACD), and table read/write (TBLR/TBLW) instructions
and to address data memory when using the block move (BLKD)
instruction.

Product Register PR(31–0) A 32-bit product register used to hold the multiplier product. The PR can
also be accessed as the most or least significant words by using the
SPH/SPL (store P register high/low) instructions.

Program Bus P(15–0) A 16-bit bus used to route instructions (and data for the MAC and MACD
instructions).

Program Counter PC (15–0) A 16-bit program counter used to address program memory. The PC
always contains the address of the next instruction to be executed. The
PC contents are updated following each instruction decode operation.

Program Memory Address
Bus

PAB(15–0) A 16-bit bus that carries the program memory address.

Queue Instruction Register QIR(15–0) A 16-bit register used to store prefetched instructions.

Random Access Memory
(data or program)

RAM (B0) A RAM block with 256 × 16 locations configured as either data or pro-
gram memory. (512 × 16 for TMS320C26)

Random Access Memory
(data only)

RAM (B1) A data RAM block, organized as 256 × 16 locations. (512 × 16 can be
configured as program or data for TMS320C26)

Random Access Memory
(data only)

RAM (B2) A data RAM block, organized as 32 × 16 locations.

Random Access Memory
(data or program)

RAM (B3)
(TMS320C26 only)

A RAM block with 512 × 16 locations configured as either data or pro-
gram memory (TMS320C26 only).

Read Only Memory ROM A ROM block, 4096 × 16 (256 × 16 for TMS320C26; 8192 × 16 for
TMS320C28).

Repeat Counter RPTC (7–0) An 8-bit counter to control the repeated execution of a single instruction.

Serial Port Data
Receive Register

DRR(15–0) A 16-bit memory-mapped serial port data receive register. Only the
eight LSBs are used in the byte mode.

Serial Port Data Transmit
Register

DXR(15–0) A 16-bit memory-mapped serial port data transmit register. Only the
eight LSBs are used in the byte mode.
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Table 3–1.TMS320C2x Internal Hardware (Concluded)

Unit Symbol Function

Serial Port Receive Shift 
Register

RSR(15–0) A 16-bit register used to shift in serial port data from the RX pin. RSR
contents are sent to the DRR after a serial transfer is completed. RSR
is not directly accessible through software.

Serial Port Transmit Shift
Register

XSR(15–0) A 16-bit register used to shift out serial port data onto the DX pin. XSR
contents are loaded from DXR at the beginning of a serial port transmit
operation. XSR is not directly accessible through software.

Shifters — Shifters are located at the ALU input, the accumulator output, and the
product register output. Also, an in-place shifter is located within the ac-
cumulator.

Stack Stack(15–0) A 4 × 16 or 8 × 16 hardware stack used to store the PC during interrupts
or calls. The ACCL and data memory values may also be pushed onto
and popped from the stack.

Status Registers Temporary
Register

ST0,ST1
(15–0)

Two 16-bit status registers that contain status and control bits. A 16-bit
register that holds either an operand for the multiplier or a shift code for
the scaling shifter.

Temporary Register TR(15–0) A 16-bit register that holds either an operand for the multiplier or a shift
code for the scaling shifter.

Timer TIM (15–0) A 16-bit memory-mapped timer (counter) for timing control.
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3.4 Memory Organization

The TMS320C2x provides a total of 544 16-bit words of on-chip data RAM, of
which 288 words are always data memory and the remaining 256 words may
be configured as either program or data memory. The TMS320C26 provides
a total of 1568 words of 16 bit on-chip RAM, divided into four separate bolcks
(B0, B1, B2, and B3). The TMS320C25 also provides 4K words of maskable
program ROM, while the TMS320E25 provides 4K words of EPROM. This sec-
tion explains memory management using the on-chip data and program
memory, memory maps, memory-mapped registers, auxiliary registers,
memory addressing modes, and memory-to-memory moves.

3.4.1 Data Memory

The 544 words of on-chip data RAM are divided into three separate blocks (B0,
B1, and B2), as shown in Figure 3–4. Of the 544 words, 256 words (block B0)
are configurable as either data or program memory by instructions provided
for that purpose; 288 words (blocks B1 and B2) are always data memory. A
data memory size of 544 words allows the TMS320C2x to handle a data array
of 512 words (256 words if on-chip RAM is used for program memory), while
still leaving 32 locations for intermediate storage. See subsection 3.4.3 for
memory map configurations.

In the TMS320C26, of the 1568 words, 32 words (block B2) are always data
memory, and all other words are programmable as either data or program
memory, as shown in Figure 3–5. A data memory size of 1568 words allows
the TMS320C26 to handle a data array of 1536 words, while still leaving 32
locations for intermediate storage. When using B0, B1, or B3 as program
memory, instructions can be downloaded from external program memory into
on-chip RAM, and then executed.

The TMS320C2x can address a total of 64K words of data memory. The on-
chip data memory and internally reserved locations are mapped into the lower
1K words of the data memory space. Data memory is directly expandable up
to 64K words while still maintaining full-speed operation. A READY line is pro-
vided for interface to slower, less expensive memories, such as DRAMs.

3.4.2 Program Memory

On-chip program RAM, ROM/EPROM, or high-speed external program
memory can be used at full speed with no wait states. Alternatively, the READY
line can interface the TMS320C2x to slower, less expensive external memory.
A total of 64K words of memory space is available. Internal RAM block B0 can
be configured as program memory using instructions for that purpose. Execu-
tion from this block can be initiated after the memory space has been reconfi-
gured. See subsection 3.7.1 for a description of instruction execution using
various memory configurations.
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Additionally, the TMS320C25 is internally equipped with 4K words of program-
mable ROM. This on-chip program ROM can be mask programmed at the fac-
tory with a customer’s program. The TMS320E25 provides a 4K-word, on-chip
EPROM. Either on-chip ROM or EPROM allows program execution at full
speed without the need for high-speed external program memory. The use of
this memory also allows the external data bus to be freed for access of external
data memory.

Figure 3–4. TMS320C2x On-Chip Data Memory
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Figure 3–5. TMS320C26 On-Chip Data Memory
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Mapping of the first 4K-word block of off-chip/on-chip program memory is user-
selectable by means of the MP/MC (microprocessor/microcomputer) pin on
the TMS320C2x. Setting MP/MC to a high maps in the block of off-chip
memory; holding the pin at a low maps in the block of on-chip ROM. Conse-
quently, compatible products that depend upon external memory from the
ROM can be manufactured in a shorter time frame than the TMS320C2x.
Eventually, the off-chip memory device can be replaced by an on-chip memory
device at a lower cost because the PC board will not require any modification.

In another mapping technique, the XF (external flag) pin is used to toggle the
MP/MC pin by dynamically enabling or disabling the on-chip ROM. Note that
care must be taken and the instruction pipeline operation (see subsection
3.6.2) must be understood when using this method.
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3.4.3 TMS320C2x Memory Maps

The TMS320C2x provides three separate address spaces for program
memory, data memory, and I/O, as shown in Figure 3–8. These spaces are
distinguished externally by means of the PS, DS, and IS (program, data, and
I/O space select) signals. The PS, DS, IS, and STRB signals are active only
for external bus accesses. During an internal addressing cycle, these signals
remain inactive high, thus preventing conflicts in memory addressing, for ex-
ample, when block B0 is configured as program memory.

The on-chip memory blocks (B0, B1, and B2) consist of a total of 544 words
of RAM. Program/data RAM block B0 (256 words) resides in pages 4 and 5
of the data memory map when configured as data RAM and at addresses
0FF00h to 0FFFFh when configured as program RAM. Block B1 (always data
RAM) resides in pages 6 and 7, while block B2 resides in the upper 32 words
of page 0. Note that the remainder of page 0 is composed of the memory-
mapped registers and internally reserved locations, and pages 1–3 of the data
memory map consist of internally reserved locations. The internally reserved
locations may not be used for storage, and their contents are undefined when
read. See subsection 3.4.4 for further information on the memory-mapped reg-
isters.

The on-chip RAM is mapped into either the 64K-word data memory or program
memory space, depending on the memory configuration (see Figure 3–5).
The CNFD/CNFP instructions are used to configure block B0 as either data
or program memory, respectively. The BLKP (block move from program
memory to data memory) instruction may be used to download program in-
formation to block B0 when it is configured as data RAM. Then a CNFP (config-
ure block as program memory) instruction may be used to convert it to program
RAM (see the code example in subsection 5.4.2). Regardless of the configura-
tion, you may still execute from external program memory. Note that when
accessing internal program memory, external control lines remain inactive.

Reset configures all internal RAM as data. Note that, due to internal pipelining,
when the CNFD or CNFP instruction is used to remap RAM block B0, there is
a delay before the new configuration becomes effective. This delay is one fetch
cycle if execution is from internal program RAM. On the TMS320C2x, there is
a delay of two fetch cycles if execution is from ROM or external program
memory. This is particularly important if program execution is from the loca-
tions around 0FF00h. Accordingly, a CNFP instruction must be placed at loca-
tion 0FEFDh in external memory if execution is to continue from the first loca-
tion in block B0. If a CNFP is placed at location 0FEFDh, and the instruction
at location 0FEFFh is a two-word instruction, the second word of the instruction
will be fetched from the first location in block B0. If execution is from above
location 0FF00h and block B0 is reconfigured, care must be taken to assure
that execution resumes at the appropriate point in a new configuration.



Memory Organization

3-16  Architecture

The on-chip program ROM can be mapped into the lower 4K words of program
memory. This ROM is enabled when MP/MC is set to a logic low. To disable
the on-chip ROM and use these lower addresses externally, MP/MC must be
set to a logic high.  If all internal RAM blocks are configured as data memory,
a program address in the range FF00 to FFFFh accesses external program
memory.

3.4.4 TMS320C26 Memory Maps

The memory map of the TMS320C26 is similar to that of the TMS320C25 and
is shown in Figure 3–9. The on-chip memory-mapped register and block B2
with 32 words on page 0 are unchanged.

The ROM is reduced to 256 words and contains a multi-purpose bootloader.
(See Subsection 5.1.1 and Appendix B.) Additional RAM is included, making
the TMS320C26 ideal for many applications.

If the TMS320C26 is in microcomputer mode, the address space from 0 to
0FFFh is internal. External program memory, selected via PS (Program Se-
lect), can be used starting at address 1000h. The missing space from 0100h
to 0FFFh, which would correspond to the larger ROM of the ’C25/E25, is also
reserved. If one or more of the blocks B0, B1, or B3 is configured as program
memory, the program address space from hexadecimal FA00h to FFFFh is in-
ternally reserved for these blocks and can not access external program
memory. If all internal RAM blocks are configured as data memory, a program
address in the range FA00h to FFFFh accesses external program memory.

The external data memory, selected with DS (Data Select), always starts at
address 800h (2048 decimal), regardless of the configuration mode of the in-
ternal memory.

Because internal memory blocks B0, B1, and B3 (new) are of different size,
the internal data memory blocks of the TMS320C26 reside in pages 0 and 4
to 15, while those of the TMS320C25 reside in, pages 0 and 4 to 7. Table 3–2
shows both processors and their internal memory locations. Program memory
is also affected by the different block sizes, and the results are given in
Table 3–2.
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Table 3–2.TMS320C25/26 Memory Blocks

Configured As Data Memory

TMS320C26 TMS320C25

Block Pages
Address
Decimal

Address
Hexadecimal Pages

Address
Decimal

Address
Hexadecimal

B2 0 96–127 0060h–00F7h 0 96–127 0060h–007Fh

B0 4–7 512–1023 0200h–03FFh 4–5 512–768 0200h–02FFh

B1 8–11 1024–1536 0400h–05FFh 6–7 769–1024 0300h–03FFh

B3 12–15 1537–2048 0600h–07FFh B3 does not exist

Configured As Program Memory

TMS320C26 TMS320C25

Block Pages
Address
Decimal

Address
Hexadecimal Pages

Address
Decimal

Address
Hexadecimal

B2 B2 is not configurable B2 is not configurable

B0 500–503 64000–64511 FA00h–FBFFh 510–511 65280–65535 FF00h–FFFFh

B1 504–507 64512–65023 FC00h–FDFFh B1 is not configurable

B3 508–511 65024–65535 FE00h–FFFFh B3 does not exist

As  shown  in  Table 3–2  along  with  Figure 3–6  and  Figure 3–7,  there is no
difference between the TMS320C25/26 data spaces except for the location of
memory    blocks;    therefore,    no    data    memory    modification    is    necessary.
However for an internal program (such as relocatable code), the start and stop
addresses of each RAM block must be considered.
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Figure 3–6. Comparison of Internal RAM Configured as Data Space
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Figure 3–7. Comparison of Internal RAM Configured as Program Space
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Figure 3–8. TMS320C2x Memory Maps
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Figure 3–9. TMS320C26 Memory Maps
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Figure 3–9. TMS320C26 Memory Maps (continued)
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3.4.5 Memory-Mapped Registers

The six registers mapped into the data memory space are listed in Table 3–2
and are shown in the block diagram of Figure 3–2.

The memory-mapped registers may be accessed in the same manner as any
other data memory location, with the exception that block moves using the
BLKD (block move from data memory to data memory) instruction cannot be
performed from the memory-mapped registers.

Table 3–3.Memory-Mapped Registers

Register
Name

Address
Location Definition

DRR(15–0)
DXR(15–0)
TIM(15–0)
PRD(15–0)
IMR (5–0)

GREG(7–0)

0
1
2
3
4
5

Serial port data receive register
Serial port data transmit register
Timer register
Period register
Interrupt mask register
Global memory allocation register

3.4.6 Auxiliary Registers

The TMS320C2x provides a register file containing eight auxiliary registers
(AR0–AR7). This section discusses each register’s function and how an auxil-
iary register is selected and stored.

The auxiliary registers may be used for indirect addressing of data memory or
for temporary data storage. Indirect auxiliary register addressing (see
Figure 4–2) allows placement of the data memory address of an instruction
operand into one of the auxiliary registers. These registers are pointed to by
a three-bit auxiliary register pointer (ARP) that is loaded with a value from 0
through 7, designating AR0 through AR7, respectively. The auxiliary registers
and the ARP may be loaded either from data memory or by an immediate oper-
and defined in the instruction. The contents of these registers may also be
stored in data memory. (Chapter 4 describes the programming of the indirect
addressing mode.)
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Figure 3–10. Indirect Auxiliary Register Addressing Example
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The auxiliary register files (AR0–AR7 on the TMS320C2x) are connected to
the auxiliary register arithmetic unit (ARAU), shown in Figure 3–11. The ARAU
may autoindex the current auxiliary register while the data memory location is
being addressed. Indexing by either 1 or by the contents of AR0 may be per-
formed. As a result, accessing tables of information does not require the cen-
tral arithmetic logic unit (CALU) for address manipulation, thus freeing it for
other operations.



Memory Organization

3-24  Architecture

Figure 3–11. Auxiliary Register File
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As shown in Figure 3–11, auxiliary register 0 (AR0) or the eight LSBs of the
instruction registers can be connected to one of the inputs of the ARAU. The
other input is fed by the current AR (being pointed to by ARP). AR(ARP) refers
to the contents of the current AR pointed to by ARP. The ARAU performs the
following functions:

AR(ARP) + AR0 → AR(ARP) Index the current AR by adding a 16-bit 
integer contained in AR0.

AR(ARP) – AR0 → AR(ARP) Index the current AR by subtracting a
16-bit integer contained in AR0.

AR(ARP) + 1 → AR(ARP) Increment the current AR by one.

AR(ARP) – 1 → AR(ARP) Decrement the current AR by one.

AR(ARP) → AR(ARP) AR(ARP) is unchanged.

In addition to the above functions, the ARAU on the TMS320C25 performs
functions as follows:

AR(ARP) + IR(7–0) → AR(ARP) Add 8-bit immediate value to the
current AR.

AR(ARP) – IR(7 – 0) → AR(ARP) Subtract 8-bit immediate value to the
current AR.
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AR(ARP) + rcAR0 → AR(ARP) Bit-reversed indexing, add AR0 with 
reverse-carry (rc) propagation (see
subsection 4.1.2)

AR(ARP) – rcAR0 → AR(ARP) Bit-reversed indexing, subtract AR0
with reverse-carry (rc) propagation
(see subsection 4.1.2).

Although the ARAU is useful for address manipulation in parallel with other op-
erations, it may also serve as an additional general-purpose arithmetic unit,
since the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit 2s-complement arithmetic. Instructions provide branches depen-
dent on the comparison of the auxiliary register pointed to by ARP with AR0.
The BANZ instruction permits the auxiliary registers to be used also as loop
counters.

The three-bit auxiliary register pointer buffer (ARB), shown in Figure 3–8, pro-
vides storage for the ARP on subroutine calls and interrupts.

3.4.7 Memory Addressing Modes

The TMS320C2x can address a total of 64K words of program memory and
64K words of data memory. The on-chip data memory is mapped into the 64K-
word data memory space. The on-chip ROM in the TMS320C25 is mapped
into the program memory space when in the microcomputer mode. The
memory maps, which change with the configuration of block B0, B1, and B3,
are described in detail in subsections 3.4.3 and 3.4.4.

The 16-bit data address bus (DAB) addresses data memory in one of the fol-
lowing two ways:

1) By the direct address bus (DRB) using the direct addressing mode  (for
example, ADD 10h), or

2) By the auxiliary register file bus (AFB) using the indirect addressing  mode
(for example, ADD *).

Operands are also addressed by the contents of the program counter in the
immediate addressing mode.

Figure 3–12 illustrates operand addressing in the direct, indirect, and immedi-
ate addressing modes.



Memory Organization

3-26  Architecture

Figure 3–12. Methods of Instruction Operand Addressing
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In the direct addressing mode, the 9-bit data memory page pointer (DP) points
to one of 512 pages, each page consisting of 128 words. The data memory
address (dma), specified by the seven LSBs of the instruction, points to the
desired word within the page. The address on the direct address bus (DRB)
is formed by concatenating the 9-bit DP with the 7-bit dma.

In the indirect addressing mode, the currently selected 16-bit auxiliary register
AR(ARP) addresses the data memory through the auxiliary register file bus
(AFB). While the selected auxiliary register provides the data memory address
and the data is being manipulated by the CALU, the contents of the auxiliary
register may be manipulated through the ARAU. See Figure 3–12 for an ex-
ample of indirect auxiliary register addressing. The direct and indirect addres-
sing modes are described in detail in Section 4.1.

When an immediate operand is used, it is contained either  within the instruc-
tion word itself or, in the case of 16-bit immediate operands, in the word follow-
ing the instruction opcode.
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3.4.8 Memory-to-Memory Moves

The TMS320C2x provides instructions for data and program block moves and
for data move functions that efficiently utilize the configurable on-chip RAM.

The BLKD instruction moves a block within data memory, and the BLKP
instruction moves a block from program memory to data memory. When used
with the repeat instructions (RPT/RPTK), the BLKD/BLKP instructions effi-
ciently perform block moves from on- or off-chip memory.

Implemented in on-chip RAM, the DMOV (data move) function on the
TMS320C2x is equivalent to that of the TMS320C1x. DMOV allows a word to
be copied from the currently addressed data memory location in on-chip RAM
to the next higher location while the data from the addressed location is being
operated upon in the same cycle (for example, by the CALU). An ARAU opera-
tion may also be performed in the same cycle when using the indirect addres-
sing mode. The DMOV function is useful for implementing algorithms that use
the z–1 delay operation, such as convolutions and digital filtering where data
is being passed through a time window. The data move function can be used
anywhere within blocks B0, B1, and B2 (and block B3 with the TMS320C26).
It is continuous across the boundary of blocks B0 and B1 but cannot be used
with off-chip data memory. The MACD (multiply and accumulate with data
move) and the LTD (load T register, accumulate previous product, and move
data) instructions use the data move function.

The TBLR/TBLW (table read/write) instructions allow words to be transferred
between program and data spaces. TBLR is used to read words from on-chip
ROM or off-chip program ROM/RAM into the data RAM. TBLW is used to write
words from on-chip data RAM to off-chip program RAM.
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3.5 Central Arithmetic Logic Unit (CALU)

The TMS320C2x central arithmetic logic unit (CALU) contains a 16-bit scaling
shifter, a 16 × 16-bit parallel multiplier, a 32-bit arithmetic logic unit (ALU), a
32-bit accumulator (ACC), and additional shifters at the outputs of both the ac-
cumulator and the multiplier. This section describes the CALU components
and their functions. Figure 3–13 is a block diagram showing the components
of the CALU. In the figure, note that SFL and SFR indicate shifts to the left or
right, respectively.

The following steps occur in the implementation of a typical ALU instruction:

1) Data is fetched from the RAM on the data bus,

2) Data is passed through the scaling shifter and the ALU where the arithme-
tic is performed, and

3) The result is moved into the accumulator.

One input to the ALU is always provided from the accumulator, and the other
input may be transferred from the product register (PR) of the multiplier or from
the scaling shifter that is loaded from data memory.
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Figure 3–13. Central Arithmetic Logic Unit (CALU), TMS320C2x
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3.5.1 Scaling Shifter

The TMS320C2x provides a scaling shifter that has a 16-bit input connected
to the data bus and a 32-bit output connected to the ALU (see Figure 3–13).
The scaling shifter produces a left shift of 0 to 16 bits on the input data, as pro-
grammed in the instruction. The LSBs of the output are filled with zeros, and
the MSBs may be either filled with zeros or sign-extended, depending upon
the status programmed into the SXM (sign-extension mode) bit of status regis-
ter ST1.

The TMS320C2x also contains several other shifters, which allow it to perform
numerical scaling, bit extraction, extended-precision arithmetic, and overflow
prevention. These shifters are connected to the output of the multiplier and the
accumulator.

3.5.2 ALU and Accumulator

The TMS320C2x 32-bit ALU and accumulator implement a wide range of arith-
metic and logical functions, the majority of which execute in a single clock
cycle. Once an operation is performed in the ALU, the result is transferred to
the accumulator where additional operations such as shifting may occur. Data
that is input to the ALU may be scaled by the scaling shifter.

The ALU is a general-purpose arithmetic unit that operates on 16-bit words
taken from data RAM or derived from immediate instructions. In addition to the
usual arithmetic instructions, the ALU can perform Boolean operations that
make possible the bit manipulation required of a high-speed controller. One
input to the ALU is always provided from the accumulator, and the other input
may be provided from the product register (PR) of the multiplier or the input
scaling shifter that has fetched data from the RAM on the data bus. After the
ALU has performed the arithmetic or logical operations, the result is stored in
the accumulator.

The 32-bit accumulator (see Figure 3–13) is split into two 16-bit segments for
storage in data memory: ACCH (accumulator high) and ACCL (accumulator
low). Shifters at the output of the accumulator provide a left-shift of 0 to 7
places on the TMS320C2x. This shift is performed while the data is being
transferred to the data bus for storage. The contents of the accumulator re-
main unchanged. When the ACCH data is shifted left, the LSBs are transferred
from the ACCL, and the MSBs are lost. When ACCL is shifted left, the LSBs
are zero-filled, and the MSBs are lost.

The TMS320C2x supports floating-point operations for applications requiring
a large dynamic range. The NORM (normalization) instruction performs left
shifts to normalize fixed-point numbers contained in the accumulator. The
LACT (load accumulator with shift specified by the T register) instruction de-
normalizes a floating-point number by arithmetically left-shifting the mantissa
through the input scaling shifter. The shift count, in this case, is the value of
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the exponent specified by the four low-order bits of the T register (TR). ADDT
and SUBT (add to/subtract from accumulator with shift specified by the T regis-
ter) instructions have also been provided to allow additional arithmetic opera-
tions.

The accumulator overflow saturation mode may be programmed through the
SOVM and ROVM (set/reset overflow mode) instructions. When the accumu-
lator is in the overflow saturation mode and an overflow occurs, the overflow
flag is set and the accumulator is loaded with either the most positive or the
most negative number, depending upon the direction of overflow. The value
of the accumulator upon saturation is 7FFFFFFFh (positive) or 80000000h
(negative). If the OVM (overflow mode) status register bit is reset and an over-
flow occurs, the overflowed results are loaded into the accumulator without
modification. (Note that logical operations cannot result in overflow.)

The TMS320C2x can execute a variety of branch instructions that depend on
the status of the ALU and accumulator. These instructions include the BV
(branch on overflow) and BZ (branch on accumulator equal to zero). In addi-
tion, the BACC (branch to address in accumulator) instruction provides the
ability to branch to an address specified by the accumulator. Bit test instruc-
tions (BIT and BITT), which do not affect the accumulator, allow the testing of
a specified bit of a word in data memory.

The accumulator on the TMS320C25 also has an associated carry bit that is
set or reset, depending on various operations within the device. The carry bit
allows more efficient computation of extended-precision products and addi-
tions or subtractions. It is also useful in overflow management. The carry bit
is affected by most arithmetic instructions as well as the shift and rotate instruc-
tions. It is not affected by loading the accumulator, logical operations, or other
such nonarithmetic or control instructions. It is also not affected by the multiply
(MPY, MPYK, and MPYU) instructions, but is affected by the accumulation pro-
cess in the MAC and MACD instructions. Examples of carry bit operation are
shown in Figure 3–14.

Figure 3–14. Examples of TMS320C25 Carry Bit Operation
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The value added to or subtracted from the accumulator, shown in the exam-
ples of Figure 3–14, may come from either the input scaling shifter or the shift-
er at the output of the P register. The carry bit is set if the result of an addition
or accumulation process generates a carry; it is reset to zero if the result of a
subtraction generates a borrow. Otherwise, it is reset after an addition or set
after a subtraction.

The ADDC (add to accumulator with carry) and SUBB (subtract from accumu-
lator with borrow) instructions provided on the TMS320C25 use the previous
value of carry in their addition/subtraction operation (see these instructions in
Chapter 4 for more detailed information).

The one exception to operation of the carry bit, as shown in Figure 3–14, is in
the use of the ADDH (add to high accumulator) and SUBH (subtract from high
accumulator) instructions. The ADDH instruction can set the carry bit only if
a carry is generated, and the SUBH instruction can reset the carry bit only if
a borrow is generated; otherwise, neither instruction can affect it.

Two branch instructions, BC and BNC, can execute branching on the status
of the carry bit. The SC, RC, and LST1 instructions can also be used to load
the carry bit. The carry bit is set to one on a hardware reset.

The SFL and SFR (in-place one-bit shift to the left/right) instructions on the
TMS320C2x and the ROL and ROR (rotate to the left/right) instructions on the
TMS320C25 implement shifting or rotating of the contents of the accumulator
through the carry bit. The SXM bit affects the definition of the SFR (shift accu-
mulator right) instruction. When SXM = 1, SFR performs an arithmetic right
shift, maintaining the sign of the accumulator data. When SXM = 0, SFR per-
forms a logical shift, shifting out the LSB and shifting in a zero for the MSB. The
SFL (shift accumulator left) instruction is not affected by the SXM bit and be-
haves the same in both cases, shifting out the MSB and shifting in a zero. Re-
peat (RPT or RPTK) instructions may be used with the shift and rotate instruc-
tions for multiple shift counts.

3.5.3 Multiplier, T and P Registers

The TMS320C2x utilizes a 16 × 16-bit hardware multiplier, which is capable
of computing a signed or unsigned 32-bit product in a single machine cycle.
All multiply instructions, except the MPYU (multiply unsigned) instruction on
the TMS320C25, perform a signed multiply operation in the multiplier. That is,
the two numbers being multiplied are treated as 2s complement numbers, and
the result is a 32-bit 2s complement number. As shown in Figure 3–13, the fol-
lowing two registers are associated with the multiplier:

� A 16-bit temporary register (TR) that holds one of the operands for  the
multiplier,

� A 32-bit product register (PR) that holds the product.
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The output of the product register can be left-shifted 1 or 4 bits. This is useful
for implementing fractional arithmetic or justifying fractional products. The out-
put of the PR can also be right-shifted 6 bits to enable the execution of up to
128 consecutive multiply/accumulates without the possibility of overflow.

An LT (load T register) instruction normally loads the TR to provide one oper-
and (from the data bus), and the MPY (multiply) instruction provides the se-
cond operand (also from the data bus). A multiplication can also be performed
with an immediate operand using the MPYK instruction. In either case, a prod-
uct can be obtained every two cycles.

Two multiply/accumulate instructions (MAC and MACD) fully utilize the com-
putational bandwidth of the multiplier, allowing both operands to be processed
simultaneously. The data for these operations may reside anywhere in internal
or external memory or can be transferred to the multiplier each cycle via the
program and data buses. This provides for single-cycle multiply/accumulates
when used with repeat (RPT/RPTK) instructions. Note that the DMOV portion
of the MACD instruction will not function with external data memory address-
es. On the TMS320C2x, the MAC and MACD instructions can be used with
both operands in either internal or external memory or one each in on-chip
RAM. The SQRA (square/add) and SQRS (square/subtract) instructions pass
the same value to both inputs of the multiplier for squaring a data memory val-
ue.

The MPYU instruction on the TMS320C2x performs an unsigned multiplica-
tion, which greatly facilitates extended-precision arithmetic operations. The
unsigned contents of the T register are multiplied by the unsigned contents of
the addressed data memory location, with the result placed in the P register.
This allows operands of greater than 16 bits to be broken down into 16-bit
words and processed separately to generate products of greater than 32 bits.

After the multiplication of two 16-bit numbers, the 32-bit product is loaded into
the PR on the TMS320C2x. The product from the PR may be transferred to
the ALU.

Four product shift modes (PM) are available at the PR output and are useful
when performing multiply/accumulate operations and fractional arithmetic, or
when justifying fractional products. The PM field of status register ST1 speci-
fies the PM shift mode, as shown in Table 3–4.

Table 3–4.PM Shift Modes

If PM Is: Result

00
01
10
11

No shift
Left shift of 1 bit
Left shift of 4 bits
Right shift of 6 bits
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Left shifts specified by the PM value are useful for implementing fractional
arithmetic or justifying fractional products. For example, the product of either
two normalized, 16-bit, 2s-complement numbers or two Q15 numbers con-
tains two sign bits, one of which is redundant. Q15 format, one of the various
types of Q format, is a number representation commonly used when perform-
ing operations on noninteger numbers (see subsection 5.6.7 for an explana-
tion and examples of Q15 representation). The single-bit left shift eliminates
this extra sign bit from the product when it is transferred to the accumulator.
This results in the accumulator contents being formatted in the same manner
as the multiplicands. Similarly, the product of either a normalized, 16-bit, 2s-
complement or Q15 number and a 13-bit, 2s-complement constant contains
five sign bits, four of which are redundant. This is the case, for example, when
using the MPYK instruction. Here the four-bit shift properly aligns the result as
it is transferred to the accumulator.

Using the right-shift PM value allows the execution of up to 128 consecutive
multiply/accumulate operations without the threat of an arithmetic overflow,
thereby avoiding the overhead of overflow management. The shifter can be
disabled to cause no shift in the product when working with integer or 32-bit
precision operations. This allows compatibility with TMS320C1x code to be
maintained. Note that the PM right shift is always sign-extended, regardless
of the state of SXM.

The four least significant bits of the T register (TR) also define a variable shift
through the scaling shifter for the LACT/ADDT/SUBT (load/add-to/subtract-
from accumulator with shift specified by the TR) instructions. These instruc-
tions are useful in floating-point arithmetic where a number needs to be de-
normalized, that is, floating-point to fixed-point conversion. The BITT (bit test)
instruction allows testing of a single bit of a word in data memory based on the
value contained in the four LSBs of the TR.
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3.6 System Control

System control on the TMS320C2x is supported by the program counter, hard-
ware stack, PC-related hardware, the external reset signal, interrupts (see
Section 3.8), the status registers, the on-chip timer, and the repeat counter.
The following sections describe the function of each of these components in
system control and pipeline operation.

3.6.1 Program Counter and Stack

The TMS320C2x contains a 16-bit program counter (PC) and a hardware
stack of eight locations for PC storage (see Figure 3–15). The program count-
er addresses internal and external program memory in fetching instructions.
The stack is used during interrupts and subroutines.

Figure 3–15. Program Counter, Stack, and Related Hardware
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The program counter addresses program memory, either on-chip or off-chip,
via the program address bus (PAB). Through the PAB, an instruction is fetched
from program memory and loaded into the instruction register (IR). When the
IR is loaded, the PC is ready to start the next instruction fetch cycle. The PC
may address any on-chip RAM blocks configured as program memory, or the
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on-chip ROM provided on the TMS320C25. The PC also addresses off-chip
program memory through the external address bus A15–A0 and the external
data bus D15–D0.

Data memory is addressed by the program counter during a BLKD instruction,
which moves data blocks from one section of data memory to another. The
contents of the accumulator may be loaded into the PC to implement com-
puted GOTO operations. This can be accomplished using the BACC (branch
to address in accumulator) or CALA (call subroutine indirect) instructions.

To start a new fetch cycle, the PC is loaded either with PC+1 or with a branch
address (for instructions such as branches, calls, or interrupts). In the case of
conditional branches where the branch is not taken, the PC is incremented
once more beyond the location of the branch address.

The TMS320C2x also has a feature that allows the execution of the next single
instruction N+1 times. N is defined by loading an 8-bit counter RPTC (repeat
counter). If this repeat feature is used, the instruction is executed, and the
RPTC is decremented until the RPTC goes to zero. This feature is useful with
many instructions, such as NORM (normalize contents of accumulator),
MACD (multiply and accumulate with data move), and SUBC (conditional sub-
tract). When used with some multicycle instructions, such as MACD, the re-
peat features can result in these instructions effectively executing in a single
cycle.

The stack is 16 bits wide and eight levels deep. The PC stack is accessible
through the use of the PUSH and POP instructions. Whenever the contents
of the PC are pushed onto the top of the stack, the previous contents of each
level are pushed down, and the bottom (eighth) location of the stack is lost.
Therefore, data will be lost if more than eight successive pushes occur before
a pop. The reverse happens on pop operations. Any pop after seven sequen-
tial pops yields the value at the bottom stack level. All of the stack levels then
contain the same value. Two additional instructions, PSHD and POPD, push
a data memory value onto the stack or pop a value from the stack to data
memory. These instructions allow a stack to be built in data memory for the
nesting of subroutines/interrupts beyond four/eight levels.

Note that on the TMS320C2x, the TBLR/TBLW, MAC/MACD, and BLKD/BLKP
instructions use a separate stack, MCS (microcall stack); no level of the PC
stack is used.
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3.6.2 Pipeline Operation

Instruction pipelining consists of the sequence of external bus operations that
occurs during instruction execution. The prefetch-decode-execute pipeline is
essentially invisible to the user, except in some cases where the pipeline must
be broken (such as for branch instructions). In the operation of the pipeline,
the prefetch, decode, and execute operations are independent, which allows
instruction executions to overlap. Thus, during any given cycle, three different
instructions can be active, each at a different stage of completion, resulting in
the three-level pipeline on the TMS320C2x.

The difference in pipeline levels does not necessarily affect instruction execu-
tion speed, but merely changes the fetch/decode sequence. Most instructions
execute in the same number of cycles, regardless of whether they are
executed from internal RAM, ROM, or external program memory. The effects
of pipelining are included in the instruction cycle timings for the TMS320C25
listed in Appendix D.

Additional PC-related hardware (see Figure 3–15) is provided on the
TMS320C25 to allow three-level pipelining for higher performance. Included
in the related hardware are the prefetch counter (PFC), the 16-bit microcall
stack (MCS) register, the instruction register (IR), and the queue instruction
register (QIR).

In the three-level pipeline on the TMS320C25, the PFC contains the address
of the next instruction to be prefetched. Once an instruction is prefetched, the
instruction is loaded into the IR, unless the IR still contains an instruction cur-
rently executing, in which case the prefetched instruction is stored in the QIR.
The PFC is then incremented, and after the current instruction has completed
execution, the instruction in the QIR is loaded into the IR to be executed.

The PC contains the address of the next instruction to be executed and is not
used directly in instruction fetch operations, but merely serves as a reference
pointer to the current position within the program. The PC is incremented as
each instruction is executed. When interrupts or subroutine call instructions
occur, the contents of the PC are pushed onto the stack to preserve return link-
age to the previous program context.

The prefetch, decode, and execute operations of the pipeline are independent,
thus allowing instruction executions to overlap. During any given cycle, three
different instructions can be active, each at a different stage of completion.
Figure 3–16 shows the operation of the three-level pipeline for single-word,
single-cycle instructions executing from either internal program ROM or exter-
nal memory with no wait states.



System Control

3-38  Architecture

Figure 3–16. Three-Level Pipeline Operation (TMS320C25)
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Pipelining is reduced to two levels when execution is from internal program
RAM due to the fact that an instruction in internal RAM can be fetched and de-
coded in the same cycle. Thus, separate prefetch and decode operations are
not required, as shown in Figure 3–17.

Figure 3–17. Two-Level Pipeline Operation
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The following paragraphs describe, in detail, the operation of the TMS320C25
pipeline. This description, in conjunction with Appendix D, gives sufficient in-
formation for predicting the operation of the TMS320C25 for hardware inter-
face optimization, accurate program cycle counting, and simulation modelling.
Often, it is not necessary to understand the intricate detail of the pipeline to
design with the TMS320C25. Therefore, if you are not specifically interested
in these details, you can skip this description.
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The TMS320C25 executes most of its instructions in a single cycle because
all the instructions are straight decodes and highly pipelined as opposed to mi-
crocode. The basic pipeline operation is 3.25 cycles deep where the device
sequence on any given cycle is fetching the third instruction, decoding the se-
cond instruction, and executing the first. Figure 3–18 shows the internal op-
eration of the TMS320C25 pipeline in reference to quarter phases 1 through
4 (Q1–Q4).

Figure 3–18. TMS320C25 Standard Pipeline Operation
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The TMS320C25 machine cycle, externally referenced by the falling edges of
the CLKOUT1 signal, consists of four internal cycles (or CLKIN cycles). This
allows internal operations of the pipeline to execute as fast as 1/4 the machine
cycle. The sequence of a general instruction execution in the pipeline is shown
in Table 3–5.
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Table 3–5. Instruction Pipeline Sequence

Cycle Q Phase Operation

1 1
2
3
4

New PC is output on address bus
External read of instruction
External read of instruction
External read of instruction

2 1
2
3
4

Instruction decode
Instruction decode/ARAU execution
On-chip RAM access/ARAU execution

3 1
2
3
4

On-chip RAM access/load new AR value/update ARP
ALU execution
ALU execution
Load accumulator

4 1 Load status register

When using an add instruction (for example, ADD *+,12,AR4), the device
fetches the instruction in cycle 1. During Q2 and Q3 of cycle 2, the instruction
is decoded. This includes the ALU command decode as well as generation of
the data operand fetch address. In this case, the address comes from an auxil-
iary register. During Q4 of cycle 2 and Q1 of cycle 3, the operand is fetched
from the RAM location. The increment of the auxiliary register is performed
during Q3 and Q4 of cycle 2, and the value is loaded into the auxiliary register
in Q1 of cycle 3. The ARP is also updated in Q1 of cycle 3. During Q2 and Q3
of cycle 3, the data is passed through the barrel shifter to execute the 12-bit
left-shift, and the data is added by the ALU to the contents in the accumulator.
In Q4 of the third cycle, the ALU result is loaded into the accumulator. The sta-
tus of the ALU operation is loaded into the status register in Q1 of the fourth
cycle. The bits being loaded into the status register at this time consist of the
current ALU status and the ARP associated with the next instruction.

In the case of a store instruction (for example, SACL *0–,3,AR2), the device
operates the first two cycles in the same manner as the ADD instruction. In Q1
and Q2 of the third cycle, the data in the accumulator is passed through a barrel
shifter, left-shifted 3 bits, and zero-filled. The lower 16 bits of the shifted value
are written to the address specified by the current auxiliary register. During Q3
and Q4 of the third cycle, the index register (AR0) is added to the contents of
the current auxiliary register and loaded back into the current auxiliary register
in Q1 of the fourth phase. In Q1 of the fourth cycle, the auxiliary register pointer
is changed to AR2. There is no execution phase of this instruction. Figure 3–19
shows the ADD and SACL instructions operating back-to-back in a program
sequence. It is assumed that both instructions reside in external, zero wait-
state memory and that the data resides in on-chip RAM.
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Figure 3–19. Pipeline Operation of ADD Followed by SACL
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When the device is reading instructions out of on-chip ROM, the basic internal
operation of the pipeline is the same. The only difference is that the control
lines (that is, STRB, PS, and R/W) are inactive. If the device is fetching the
instructions from on-chip RAM, the pipeline is shortened to 2.5 cycles, since
the device can fetch the instruction in half a cycle as opposed to the full cycle
required in an external or on-chip ROM fetch. The instruction is fetched during
Q4 and Q1, then decoded in Q2 and Q3. The rest of the pipeline tracks as de-
scribed above.

Some operations add additional machine cycles to the instruction execution
without damaging the integrity of the program or hardware. External wait
states, multiplexed data bus conflicts, two-word instructions, and program
counter discontinuities are included in these operations, as described in the
following paragraphs.

Wait States . The TMS320C25 is designed to be interfaced to slower external
devices through the use of hardware-generated wait states. This applies to the
program, data, and I/O memory spaces of the Harvard architecture. Wait
states are a direct delay on the instruction pipeline. Each wait state inserted
during the instruction fetch contributes an additional machine cycle in the pipe-
line execution of the instruction. In addition, any wait state incurred when
accessing external data or I/O space also contributes an additional machine
cycle to the pipeline execution of the instruction. This factor applies to all
instructions. Figure 3–20 describes how the pipeline reacts to wait states in
external program memory. Note that the wait state added in cycle 2 results in
a no-execution operation in cycle 4.
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Figure 3–20. Pipeline Operation With Wait States
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Multiplexed External Data Bus. The external data bus is multiplexed to sup-
port all three memory spaces of the TMS320C25. Therefore, external fetches
to multiple spaces in the same instruction add additional machine cycles to the
pipeline execution of the instruction. This is due to the fact that the external
fetch takes a full cycle, whereas the internal equivalent takes two quarter
phases and can be included in the execution stage of the three-deep pipeline.
Accessing the data memory space is controlled by setting of the data page
pointer or the value contained in the auxiliary register used in any instruction.
Also affecting the pipeline is the access of the I/O bus or the tables in program
memory (that is, IN, OUT, TBLR, and TBLW). Figure 3–21 shows how the pipe-
line processes an instruction with external program and data access.
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Figure 3–21. Pipeline With External Data Bus Conflict
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Two-Word Instructions . All two-word instructions take an additional cycle to
fetch the 16-bit immediate operand following the instruction mnemonic. The
first set of instructions for which this applies is the long immediate instructions.
The instruction mnemonic is followed by a 16-bit immediate operand to be
executed in the ALU. The second set applies to those instructions that use the
PFC register as a second data addressing unit on some optimized instruc-
tions—for example, the multiply/accumulate and block move instructions
(MAC, MACD, BLKP, and BLKD). In the second set, the extra cycle appears
only once in a repeat loop. The third set involves conditional branches not tak-
en.

Program Counter Discontinuities.  Because the TMS320C25 is pipelined,
a change (other than an increment) in the program counter requires that the
pipeline be flushed. This applies to all branches, subroutine calls, software
traps, interrupt traps, and returns. The pipeline, being three deep, has the next
instruction already loaded when the branch occurs. At this point, this instruc-
tion will not affect any data or registers, so it is cleared from the pipeline. There-
fore, two dead execution cycles are inserted while waiting for the pipeline to
reload. The device takes only one additional cycle if the destination of the
branch is in on-chip RAM block 0. The pipeline is only two-deep in this case
and takes only one cycle to reload. Figure 3–22 shows a branch from normal
execution to an address in on-chip RAM, and Figure 3–23 shows an example
of a return executed from on-chip RAM to a location in off-chip memory.
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Figure 3–22. Pipeline Operation of Branch to On-Chip RAM
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Figure 3–23. Pipeline Operation of RET From On-Chip RAM
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Interrupts are hardware-generated discontinuities to the sequential accessing
of the program counter. The interrupt is executed based upon instruction
execution complete, rather than memory operation complete. The instruction
that is currently executing at the time of an interrupt executes completely. The
interrupt traps following the completion of that instruction before the start of the
execution of the next instruction. In this case, the repeated instruction is con-
sidered one execution; therefore, the repeat loop finishes before the interrupt
trap is taken. This gives priority to the algorithm over the interrupt service. The
interrupt operation in reference to the pipeline execution is illustrated in the
data sheet timing diagrams (see Appendix A). Note that when interrupt vectors
reside in external memory running with one wait state, there are two interrupt
acknowledge (IACK) pulses. If this is a problem, the IACK line should be gated
with READY.

Hardware Aspects of the Pipeline. Viewing these effects on the pipeline at
the hardware level requires additional explanation due to the lack of visibility
of on-chip operations or optimization of the pipeline execution. The following
paragraphs describe the effects of HOLD/HOLDA, RS, interrupts, accumula-
tor store, on-chip program access, external data access, and repeats as they
are visible from the pins of the device. In the cases of RS, interrupts, and
HOLD/HOLDA, the effects on the pipeline are shown in the data sheet timing
diagrams (see Appendix A).
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Reset . The reset interrupt is a totally nonmaskable interrupt. When executed,
it stops operation of the pipeline and flushes the unexecuted parts. The reset
pulse must be at least three CLKOUT cycles wide. After the second CLKOUT
cycle has completed (before the third rising edge of CLKOUT1), the device has
brought all outputs into a high-impedance state. After the rising edge of RS,
the device begins to fetch the reset vector. Since the pipeline is empty, it does
not execute the reset vector branch until two cycles later. If the HOLD line is
brought low during the active reset, the device does not start the fetch of the
reset vector until after the active HOLD is removed and the device deactivates
the HOLDA line. When HOLD is activated with RS to allow bootloading of the
code, the HOLDA line will go active low in three cycles, regardless of whether
or not the RS line has gone high. This is useful in that the HOLDA line can be
used to enable the release of the RS line and guarantee the required three-
cycle reset.

Interrupts . The effects of an interrupt become apparent on the hardware
when a interrupt acknowledge (IACK) signal is valid on the rising edge of
CLKOUT2. This signifies the fetch of the first word of the interrupt vector. If wait
states are generated in the memory segment where the interrupt vector re-
sides, an additional IACK pulse occurs for each wait state added. If this causes
a problem with the external interface, IACK can be gated with READY to ac-
cept only the last interrupt acknowledge pulse. Note that the BIOZ instruction
tests the level of the BIO pin during the instruction fetch phase of the pipeline.

Hold/Hold Acknowledge .The hold operation, like that of interrupt, takes se-
cond priority to algorithm execution; therefore, the hold will not be acknowl-
edged until after the currently running instruction is completed (a minimum of
three cycles). This includes repeated instructions. The next instruction, after
the final instruction executed before HOLDA, is latched into the pipeline and
executed two cycles after the HOLDA line goes inactive high. The second
instruction after the last instruction executed is fetched two cycles again after
the HOLDA line goes inactive high. If the HM bit of status register ST1 is set
high, the TMS320C25 stops execution and sits idle until the hold is removed.
This lowers power consumption by removing the drive of the memory address
and control lines and also stopping major parts of the internal CPU circuits from
switching and drawing power. This can be used as a hardware powerdown
mode. If the HM bit is low, the TMS320C25 continues executing any instruction
that can be executed with on-chip resources only. This means both program
and data reside in on-chip memory. The device will continue to operate normal-
ly unless an off-chip access is required by an instruction, at which time the pro-
cessor adds wait states until the hold state is removed. When running from on-
chip resources with HM = 0, the processor acknowledges HOLD with HOLDA
during a multicycle instruction.

On-Chip Program Access.  When you execute from on-chip resources, the
pipeline is visible only in the MSC line, which signals microstate complete
when active low on the rising edge of CLKOUT2. Note that executing from on-
chip program memory does not allow instruction accessing of external data
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memory to run in a single cycle. The normal operation of the instruction takes
only two quarter phases of the execution cycle to fetch the on-chip data
memory, whereas off-chip access requires all four quarter phases. The pipe-
line is, however, optimized to handle a repeated instruction that accesses ex-
ternal data memory with only one extra cycle for the first external fetch.

External Program/Data Access.  Visibility of the pipeline when using external
program and data memory requires a monitoring of the MSC, STRB, PS, and
DS lines. The MSC line indicates at the rising edge of CLKOUT2 whether or
not the cycle is the beginning of a new instruction fetch; that is, MSC active low
indicates the completion of an instruction and the acquisition of another
instruction. The PS (program select) line indicates that the data bus is currently
being used to fetch an instruction. A step in the pipeline is not indicated, since
the PS line remains while the pipeline is fetching instructions externally. To
track the fetches, the STRB line, which frames external accesses, must be
monitored.

The PS line being active low does not necessarily mean that the device is
fetching an instruction. In the cases of table read/write (TBLR/TBLW), multiply/
accumulate (MAC/MACD), and block transfer (BLKP) instructions, the device
uses the PS line active low to access tables.

To monitor external data memory fetches, watch the data select (DS) line in
conjunction with the STRB line. An active low on the DS line indicates the data
bus is currently being used to access data memory space. This line remains
low for two memory fetches in the case of an accumulator store followed by
an ALU instruction, both operating with off-chip memory. However, two STRB
pulses will identify the individual access. Likewise, the line remains low for
many cycles in the case of a repeated instruction. I/O space access operates
similarily to data space operation with the OUT and IN instructions replacing
the save and ALU instruction.

A clear understanding of this information in conjunction with the data in Appen-
dix E should be sufficient to predict the operation of the TMS320C25 pipeline.

3.6.3 Reset

Reset (RS) is a nonmaskable external interrupt that can be used at any time
to put the TMS320C2x into a known state. Reset is typically applied after pow-
erup when the machine is in a random state.

Driving the RS signal low causes the TMS320C2x to terminate execution and
forces the program counter to zero. RS affects various registers and status
bits. At powerup, the state of the processor is undefined. For correct system
operation after powerup, a reset signal must be asserted low for at least three
clock cycles to guarantee a reset of the device (see Section 5.1 for other impor-
tant reset considerations). Processor execution begins at location 0, which
normally contains a B (branch) statement to direct program execution to the
system initialization routine (also see Section 5.1 for an initialization routine
example). Section 6.1 provides system control circuitry design examples.
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When an RS signal is received, the following actions take place:

1) RAM configuration bits are set so that all on-chip RAM resides in data
space.

2) The program counter (PC) is set to 0, and the address bus A15–A0 is driv-
en with all zeros while RS is low.

3) The data bus D15–D0 is placed in the high-impedance state.

4) All memory and I/O space control signals (PS, DS, IS, R/W, STRB, and
BR) are deasserted by setting them to high levels while RS is low.

5) All interrupts are disabled by setting the INTM (interrupt mode) bit to 1.
(Note that RS is nonmaskable.) The interrupt flag register (IFR) is reset to
all zeros.

6) Status bits are set:
For    all    TMS320C2x    devices,    0 → OV,    1 → XF,    0 → FO,    0 → TXM,
0 → CNF (0 → CNF0, 0 → CNF1 for the TMS320C26), 1 → SXM, 0 → PM,
1 → HM, 1 → C, and 1 → FSM. The remaining status bits on the
TMS320C2x are unchanged.

7) The global memory allocation register (GREG) is cleared to make all
memory local.

8) The RPTC (repeat counter) is cleared.

9) The DX (data transmit) pin is placed in the high-impedance state. Any
transmit/receive operations on the serial port are terminated, and the TXM
(transmit mode) bit is reset to a low level. This configures the FSX framing
pulse to be an input. A transmit/receive operation may be started by fram-
ing pulses only after the removal of RS.

10) The TIM register is set to the maximum value (0FFFFh) on reset. Also, the
PRD register on the TMS320C25 is initialized by reset to 0FFFFh. (See
Example 5–1). The TIM register begins decrementing only after RS is
deasserted.

11) The IACK (interrupt acknowledge) signal is generated in the same manner
as a maskable interrupt.

12) The state of the RAM is undefined following RS.

13) The ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset.
Therefore, it is critical that you initialize these bits in software  following re-
set.
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Execution starts from location 0 of program memory when the RS signal is tak-
en high. Note that if RS is asserted while in the hold mode, normal reset opera-
tion occurs internally, but all buses and control lines remain in the high-imped-
ance state. Upon release of HOLD and RS, execution starts from location zero.
The TMS320C2x can be held in the reset state indefinitely.

Note:

Reset does not have internal Schmidt hysteresis. To insure proper reset op-
eration, avoid slow rise and fall times.

3.6.4 Status Registers

Two status registers, ST0 and ST1, contain the status of various conditions
and modes. The status registers can be stored into data memory and loaded
from data memory, thus allowing the status of the machine to be saved and
restored for interrupts and subroutines. All status bits are written to and read
from using LST/LST1 and SST/SST1 instructions, respectively (with the ex-
ception of INTM, which cannot be loaded via an LST instruction).

Figure 3–24 shows the organization of both status registers, indicating all sta-
tus bits contained in each. Note that the DP, ARP, and ARB registers are shown
as separate registers in the processor block diagram of Figure 3–2. Because
these registers do not have separate instructions for storing them into RAM,
they are included in the status registers. As shown in Figure 3–24, several bits
in the status registers are reserved and read as logic 1s by the LST and LST1
instructions.

Figure 3–24. TMS320C2x Status Register Organization
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The status register ST1 of the TMS320C26 uses one of the unused bits and
the CNF bit of the TMS320C25 to define the four configuration modes as de-
scribed above. The bits are named CNF0 and CNF1 and can be set by the
instruction CONF const, where const is a number between 0 and 3. This two-
bit constant is loaded into the two status register bits CNF0 and CNF1.

Some additional instructions or functions may affect the status bits, as indi-
cated in Table 3–6.

The bits can also be modified by the LST1 instruction, and both are set to 0
by RESET. If TMS320C26 designs are started by using the TMS320C25 as a
base, consider defining the mask for loading the status register ST1 with the
instruction LST1 in such a way that the TMS320C26 is also configured as de-
sired.
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Figure 3–25 shows the two status registers of the TMS320C26. All bits, be-
sides the redefined CNF0 (CNF in the TMS320C25) and the new CNF1 bit, are
unchanged.

Figure 3–25. TMS320C26 Status Register Organization
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Table 3–6.Status Register Field Definitions

Field Function

ARB Auxiliary register pointer buffer. Whenever the ARP is loaded, the old ARP
value is copied to the ARB except during an LST instruction. When the ARB
is loaded via an LST1 instruction, the same value is also copied to the ARP.

ARP Auxiliary register pointer. This three-bit field selects the AR to be used in indi-
rect addressing. When ARP is loaded, the old ARP value is copied to the ARB
register. ARP may be modified by memory-reference instructions when us-
ing indirect addressing, and by the LARP, MAR, and LST instructions. ARP
is also loaded with the same value as ARB when an LST1 instruction is
executed.

C Carry bit. This bit is set to 1 if the result of an addition generates a carry, or
reset to 0 if the result of a subtraction generates a borrow. Otherwise, it is re-
set after an addition or set after a subtraction, except if the instruction is
ADDH or SUBH. ADDH can only set and SUBH only reset the carry bit, but
cannot affect it otherwise. These instructions will also affect this bit: SC, RC,
LST1, shift, and rotate. Two branch instructions, BC and BNC, have been
provided to branch on the status of C. C is set to 1 on a reset.

CNF On-chip ram configuration control bit. If set to 0, block B0 is configured as
data memory; otherwise, block B0 is configured as program memory. The
CNF may be modified by the CNFD, CNFP, and LST1 instructions. RS resets
the CNF to 0.

DP Data memory page pointer. The 9-bit DP register is concatenated with the 7
LSBs of an instruction word to form a direct memory address of 16 bits. DP
may be modified by the LST, LDP, and LDPK instructions.

CNFX X = 0 or 1: CNF0 and CNF1 are the on-chip RAM configuration control bits
for the TMS320C26. Depending on the status of these 2 bits, one of the 4 con-
figuration modes can be selected. RS resets both CNF0 and CNF1 to 0.

FO Format bit. When set to 0, the serial port registers are configured as 16-bit
registers. When set to 1, the port registers are configured to receive and
transmit eight-bit bytes. FO may be modified by the FORT and LST1 instruc-
tions. FO is reset to 0.

FSM Frame synchronization mode bit. This bit indicates whether the serial port op-
erates with or without frame sync pulses. When FSM = 1, the serial port op-
eration is initiated following a frame sync pulse on the FSX/FSR inputs. When
FSM = 0, the FSX/FSR inputs are ignored and the serial port operates contin-
uously with no frame sync pulses required. The bit is set to 1 by a reset.
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Table 3–6.Status Register Field Definitions (Continued)

Field Function

HM Hold mode bit. When HM = 1, the processor halts internal execution when
acknowledging an active HOLD. When HM = 0, the processor may continue
execution out of internal program memory but puts its external interface in
a high-impedance state. This bit is set to 1 by a reset.

INTM Interrupt mode bit. When set to 0, all unmasked interrupts are enabled. When
set to 1, all maskable interrupts are disabled. INTM is set and reset by the
DINT and EINT instructions. RS and IACK also set INTM. INTM has no effect
on the unmaskable RS interrupt. Note that INTM is unaffected by the LST
instruction.

OV Overflow flag bit. As a latched overflow signal, OV is set to 1 when overflow
occurs in the ALU. Once an overflow occurs, the OV remains set until a reset,
BV, BNV, or LST instruction clears the OV.

OVM Overflow mode bit. When set to 0, overflowed results overflow normally in the
accumulator. When set to 1, the accumulator is set to either its most positive
or its most negative value upon encountering an overflow. The SOVM and
ROVM instructions set and reset this bit, respectively. LST may also be used
to modify the OVM.

PM Product shift mode. If these two bits are 00, the multiplier’s 32-bit product is
loaded into the ALU with no shift. If PM = 01, the PR output is left-shifted one
place and loaded into the ALU, with the LSBs zero-filled. If PM = 10, the PR
output is left-shifted by four bits and loaded into the ALU, with the LSBs zero-
filled. PM = 11 produces a right shift of six bits, sign-extended. Note that the
PR contents remain unchanged. The shift takes place when transferring the
contents of the PR to the ALU. PM is loaded by the SPM and LST1 instruc-
tions. The PM bits are cleared by RS.

SXM Sign-extension mode bit. SXM = 1 produces sign extension on data as it is
passed into the accumulator through the scaling shifter. SXM = 0 suppresses
sign extension. SXM does not affect the definition of certain instructions; for
example, the ADDS instruction suppresses sign extension regardless of
SXM. This bit is set and reset by the SSXM and RSXM instructions, and may
also be loaded by LST1. SXM is set to 1 by RS.

TC Test/control flag bit. The TC bit is affected by the BIT, BITT, CMPR, LST1, and
NORM instructions. The TC bit is set to a 1 if a bit tested by BIT or BITT is
a 1, if a compare condition tested by CMPR exists between AR0 and another
AR pointed to by ARP, or if the exclusive-OR function of the two MSBs of the
accumulator is true when tested by a NORM instruction. Two branch instruc-
tions, BBZ and BBNZ, provide branching on the status of the TC.

TXM Transmit mode bit. TXM = 1 configures the serial port’s FSX pin to be an out-
put. In this mode, a pulse is produced on FSX when DXR is loaded. Transmis-
sion then starts on the DX pin. TXM = 0 configures the FSX pin to be an input.
TXM is set and reset by the STXM and RTXM instructions and may also be
loaded by LST1. RS resets TXM to 0.

XF XF pin status bit. This status bit indicates the state of the XF pin, a general-
purpose output pin. XF is set and reset by the SXF and RXF instructions or
may be loaded by LST1. XF is set to 1 by RS.
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3.6.5 Timer Operation

The TMS320C2x provides a memory-mapped 16-bit timer (TIM) register and
a 16-bit period (PRD) register, as shown in Figure 3–26. The on-chip timer is
a down counter that is continuously clocked by CLKOUT1.

Figure 3–26. Timer Block Diagram
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The TIM register is set to the maximum value (0FFFFh) on reset for the
TMS320C25. The PRD register on the TMS320C25 is also initialized by reset
to 0FFFFh. (See Example 5–1). The TIM register begins decrementing only
after RS is deasserted. Following this, the TIM and PRD registers may be re-
loaded under program control. See subsection 3.6.3 for reset information.

The TIM register, data memory location 2, holds the current count of the timer.
At every CLKOUT1 cycle the TIM register is decremented by one. The PRD
register, data memory location 3, holds the starting count for the timer. A timer
interrupt (TINT) is generated every time the timer decrements to zero. The tim-
er is reloaded with the value contained in the period (PRD) register within the
next cycle after it reaches zero so that interrupts can be programmed to occur
at regular intervals of (PRD + 1) cycles of CLKOUT1. This feature is useful for
control operations and for synchronously sampling or writing to peripherals.
By programming the PRD register from 1 to 65,535 (0FFFFh), a TINT can be
generated every 2 to 65,536 cycles on the TMS320C25. A PRD register value
of zero is not allowed.

The timer and period registers can be read from or written to on any cycle. The
count can be monitored by reading the TIM register. A new counter period can
be written to the period register without disturbing the current timer count. The
timer will then start the new period after the current count is complete. If both
the PRD and TIM registers are loaded with a new period, the timer begins
decrementing the new period without generating an interrupt. Thus, the pro-
grammer has complete control of the current and next periods of the timer.
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If the timer is not used, either TINT is to be masked or all maskable interrupts
are to be disabled by a DINT instruction. The PRD register can then be used
as a general-purpose data memory location. If TINT is used, the PRD and TIM
registers are to be programmed before unmasking the TINT.

3.6.6 Repeat Counter

The repeat counter (RPTC) is an 8-bit counter, which, when loaded with a num-
ber N, causes the next single instruction to be executed N + 1 times. The RPTC
can be loaded with a number from 0 to 255 using either the RPT (repeat) or
RPTK (repeat immediate) instructions. This results in a maximum of 256
executions of a given instruction. RPTC is cleared by reset.

The repeat feature can be used with instructions such as multiply/accumulates
(MAC/MACD), block moves (BLKD/BLKP), I/O transfers (IN/OUT), and table
read/writes (TBLR/TBLW). These instructions, which are normally multicycle,
are pipelined when using the repeat feature, and effectively become single-
cycle instructions. For example, the table read instruction may take three or
more cycles to execute, but when repeated, a table location can be read every
cycle.  Note  that  not  all  instructions  can  be  repeated  (see  Section 4.3 and
Appendix E for more information).

3.6.7 Powerdown Modes (TMS320C25)

When operated in either of two powerdown modes, the TMS320C25 enters a
dormant state and requires approximately one-half the power normally need-
ed to supply the device (see the data sheet, Appendix A). Depending upon the
application, one powerdown mode is invoked by executing an IDLE instruction
while the other mode is invoked by driving the HOLD input low while the HM
status bit is set to one.

While in a powerdown condition, all of the internal contents of the TMS320C25
are retained. This allows the operation to continue unaltered after the power-
down condition is terminated. If the powerdown mode was entered by driving
HOLD low with HM = 1, the data and address buses and the interface control
signals (PS, DS, IS, STRB, and R/W) are all maintained in the high-impedance
state. If the mode was entered by the IDLE instruction, only the data bus goes
to the high-impedance state; address bus and interface control signals are
maintained in a steady-state condition and can still be driven. In accordance
with the execution process, the powerdown mode may be terminated either
by removing the HOLD input or by applying an interrupt signal during the IDLE
operation. For application and other information, refer to the descriptions of the
IDLE instruction in Chapter 4 and the hold function in subsection 3.10.3.
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3.7 External Memory and I/O Interface

The TMS320C2x supports a wide range of system interfacing requirements.
Data, program, and I/O address spaces provide interfacing to memory and I/O,
thus maximizing system throughput. The local memory interface consists of:

� A 16-bit parallel data bus (D15–D0),

� A 16-bit address bus (A15–A0),

� Data, program, and I/O space select (DS, PS, and IS) signals, and

� Various system control signals.

The R/W (read/write) signal controls the direction of the transfer, and STRB
(strobe) provides a timing signal to control the transfer.

The TMS320C2x I/O space consists of 16 input and 16 output ports. These
ports provide the full 16-bit parallel I/O interface via the data bus on the device.
A single input or output operation, using the IN or OUT instructions, typically
takes two cycles; however, when used with the repeat counter, the operation
becomes single-cycle.

I/O design is simplified by having I/O treated the same way as memory. I/O de-
vices are mapped into the I/O address space using the processor’s external
address and data buses in the same manner as memory-mapped devices.
When addressing internal memory, the data bus must be in the high-imped-
ance state and the control signals go to an inactive state (logic high). Refer to
Chapter 5 for the effect instructions have on I/O.

Interfacing to memory and I/O devices of varying speeds is accomplished by
using the READY line. When communicating with slower devices, the
TMS320C2x   processor   waits   until   the  other  device  completes  its  function,
signals   the   processor   via   the   READY   line,   and  continues  execution
(see Chapter 6).

3.7.1 Memory Combinations

The exact sequence of operations performed as instructions execute depends
on the areas in memory where the instructions and operands are located.
There are eight possible combinations of program and data memory because
information can be located in internal RAM, external memory, or internal ROM/
EPROM (available on TMS320C25 /TMS320E25). The eight possible com-
binations are:

1) Program Internal RAM/Data Internal (PI/DI)

2) Program Internal RAM/Data External (PI/DE)

3) Program External/Data Internal (PE/DI)
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4) Program External/Data External (PE/DE)

5) Program Internal ROM/Data Internal (PR/DI) on the TMS320C25

6) Program Internal EPROM/Data Internal (PR/DI) on the TMS320E25

7) Program Internal ROM/Data External (PR/DE) on the TMS320C25

8) Program Internal EPROM/Data External (PR/DE) on the TMS320E25

Appendix E provides cycle timings for instructions, both when repeated and
when not repeated. The following is a summary of program execution, orga-
nized according to memory configuration.

PI/DI or PR/DI When both program and data memory are on-chip,
the processor runs at full speed with no wait states.
Note that IN and OUT instructions have different
cycle timings when program memory is internal; IN
requires two cycles to execute, whereas OUT re-
quires only one cycle.

PE/DI If external program memory is sufficiently fast, this
memory mode can run at full speed  because internal
data operations can occur coincidentally with exter-
nal program memory accesses. If external program
memory is not fast enough, wait states may be gener-
ated by using the READY input.

PI/DE, PE/DE, or PR/DE
Additional cycles are required to execute instructions
that reference an external data memory space. At
least two cycles are required to execute read from ex-
ternal data memory instructions such as ADD, LAR,
etc. Further additional cycles may be required be-
cause of wait states if external data memory is not
fast enough to be accessed within a single cycle.
Note, however, that the TMS320C2x has the capabil-
ity of executing write to external data memory instruc-
tions in a single cycle when program memory is inter-
nal (two cycles are required if program memory is
also external). Additional cycles are also required in
this case if external data memory is not sufficiently
fast.

In all memory configurations where the same bus is used to communicate with
external data, program, or I/O space, the number of cycles required to execute
a particular instruction may further vary, depending on whether the next
instruction fetch is from internal or external program memory. Instruction
execution and operation of the pipeline are discussed in subsection 3.6.2 and
in the succeeding subsections.
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3.7.2 Internal Clock Timing Relationships

The crystal or external clock source frequency is divided to produce an internal
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2,
as shown in Figure 3–27.

Figure 3–27. Four-Phase Clock
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3.7.3 General-Purpose I/O Pins (BIO  and XF)

The TMS320C2x has two general-purpose pins that are software-controlled.
The BIO pin is a branch control input pin, and the XF pin is an external flag out-
put pin.

The BIO pin is useful for monitoring peripheral device status. It is especially
useful as an alternative to using an interrupt when it is necessary not to disturb
time-critical loops. When the BIO input pin is active (low), execution of the
BIOZ instruction causes a branch to occur.
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In Figure 3–28, BIO is sampled at the end of Q4. The timing diagram shown
is for a sequence of single-cycle, single-word instructions without branches lo-
cated in external memory. Because of variations in pipelining due to instruc-
tions prior to and following the BIOZ instruction, this timing may vary. There-
fore, it is recommended that several cycles of setup be provided if BIO is to be
recognized on a particular cycle.

Figure 3–28. BIO Timing Diagram
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The XF (external flag) output pin is set to a high level by the SXF (set external
flag) instruction and reset to a low level by the RXF (reset external flag) instruc-
tion. XF is set high by RS.

The relationship between the time the SXF/RXF instruction is fetched before
the XF pin is set or reset is shown in Figure 3–29. As with BIO, the timing
shown for XF is for a sequence of single-cycle, single-word instructions lo-
cated in external memory. Actual timing may vary with different instruction se-
quences.
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Figure 3–29. External Flag Timing Diagram
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Notes: 1) N is the program memory location for the current instruction.

2) This example shows only the execution of single-cycle instructions fetched from external program memory.



 Interrupts

3-59

3.8 Interrupts

The TMS320C2x has three external maskable user interrupts (INT2–INT0),
available for external devices that interrupt the processor. Internal interrupts
are generated by the serial port (RINT and XINT), by the timer (TINT), and by
the software interrupt (TRAP) instruction. Interrupts are prioritized with reset
(RS) having the highest priority and the serial port transmit interrupt (XINT)
having the lowest priority.

3.8.1 Interrupt Operation

This subsection explains details interrupt organization and management. Vec-
tor locations and priorities for all internal and external interrupts are shown in
Table 3–7. The TRAP instruction, used for software interrupts, is not prioritized
but is included here because it has its own vector location. Each interrupt ad-
dress has been spaced apart by two locations so that branch instructions can
be accommodated in those locations if desired.

Table 3–7. Interrupt Locations and Priorities

Interrupt
Name

Memory
Location Priority Function

RS
INT0
INT1
INT2

TINT
RINT
XINT
TRAP

0h
1h
2h
3h

8–17h
18h
1Ah
1Ch
1Eh

1 (highest)
2
3
4

5
6

7 (lowest)
N/A

External reset signal
External user interrupt #0
External user interrupt #1
External user interrupt #2
Reserved locations
Internal timer interrupt
Serial port receive interrupt
Serial port transmit interrupt
TRAP instruction address

When an interrupt occurs, it is stored in the 6-bit interrupt flag register (IFR).
This register is set by the external user interrupts INT(2–0) and the internal in-
terrupts RINT, XINT, and TINT. Each interrupt is stored in the IFR until it is rec-
ognized, and then automatically cleared by the IACK (interrupt acknowledge)
signal or the RS (reset) signal. The RS signal is not stored in the IFR. No
instructions are provided for reading from or writing to the IFR.

The TMS320C2x has a memory-mapped interrupt mask register (IMR) for
masking external and internal interrupts. The layout of the register is shown
in Figure 3–30. A 1 in bit positions 5 through 0 of the IMR enables the corre-
sponding interrupt, provided that INTM = 0. The IMR is accessible with both
read and write operations but cannot be read using BLKD. When the IMR is
read, the unused bits (15 through 6) are read as 1s. The lower six bits are used
to write to or read from the IMR. Note that RS is not included in the IMR, and
therefore the IMR has no effect on reset.
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Figure 3–30. Interrupt Mask Register (IMR)
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The INTM (interrupt mode) bit, which is bit 9 of status register ST0, enables
or disables all maskable interrupts. INTM = 0 enables all the unmasked inter-
rupts, and INTM = 1 disables these interrupts. The INTM is set to 1 by the IACK
(interrupt acknowledge) signal, the DINT instruction, or a reset. This bit is reset
to 0 by the EINT instruction. Note that the INTM does not actually modify the
IMR or IFR.

The TMS320C2x has a built-in mechanism for protecting multicycle instruc-
tions from interrupts. If an interrupt occurs during a multicycle instruction, the
interrupt is not processed until the instruction is completed. This mechanism
also applies to instructions that become multicycle due to the READY signal.

In addition, the device does not allow interrupts to be processed when an
instruction is being repeated via the RPT or RPTK instructions. The interrupt
is stored in the IFR until the repeat counter (RPTC) decrements to zero, and
then the interrupt is processed. Even if the interrupt is not used while the
TMS320C2x is processing the RPT or RPTK, the interrupt will still be latched
by IFR and pending until RPTC decrements to zero.

If both the HOLD line and an interrupt go active during a multicycle instruction
or a repeat loop, the HOLD takes control of the processor at the end of the
instruction or loop. When HOLD is released, the interrupt is acknowledged.

Interrupts cannot be processed between EINT and the next instruction in a
program sequence. For example, if an interrupt occurs during an EINT instruc-
tion execution, the device always completes EINT as well as the following
instruction before the pending interrupt is processed. This insures that a RET
can be executed before the next interrupt is processed, assuming that a RET
instruction follows the EINT. The state of the machine, upon receiving an inter-
rupt, may be saved and restored (see subsection 5.3.1).

3.8.2 External Interrupt Interface

Interrupts may be asynchronously edge- or level-triggered. In the functional
logic organization for INT(2–0), shown in Figure 3–31, the external interrupt
INT0 is connected to an edge-triggered flip-flop. The INT0 signal is ORed with
the interrupt edge flip-flop Q output and synchronized with internal quarter-
phases 1 and 2 to produce an interrupt signal. In this way, the device can han-
dle both edge-triggered and level-triggered interrupts.
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Figure 3–31. Internal Interrupt Logic Diagram
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Due to the level sensitivity of the external interrupts and the synchronization
of the interrupts (first on Q2, then on Q1 of the following machine cycle), the
INT line must be set to an inactive high at least two cycles before the enabling
interrupts (EINT). If this criteria is not met, the TMS320C25 will immediately
take the interrupt trap following the EINT plus the next instruction.

If the INTM bit and mask register have been properly enabled, the interrupt sig-
nal is accepted by the processor. An IACK (interrupt acknowledge) signal is
then generated. The IACK clears the appropriate interrupt edge flip-flop and
disables the INTM latch. The logic is the same for INT1 and INT2.

In a typical interrupt (INT2–INT0) operation, the interrupt is generated by a
negative-going edge, and the IFR bit is set. Because INTM is disabled when
the interrupt is acknowledged, the level may continue to be present on the INT
input without generating further interrupts. If the level is removed before an
EINT instruction is executed, no further interrupts are generated. If a low level
continues to be present after the EINT, another interrupt is generated after the
EINT/next instruction sequence. In addition, if the INT pin is pulsed between
the previous IACK and EINT, another interrupt is generated after EINT/RET
because the corresponding IFR bit is again set.
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Figure 3–32 shows an interrupt, interrupt acknowledge, and various other sig-
nals for the special case of single-cycle instructions. An interrupt generated
during the current (N) fetch cycle still allows the fetch and execution of that
instruction. The N+1 and N+2 instructions are also fetched, then discarded,
and the address N+1 is pushed onto the top of the stack. The instruction is
fetched again upon a return command from the interrupt routine.

Figure 3–32. Interrupt Timing Diagram (TMS320C25)
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Notes: 1) N is the program memory location for the current instruction.

2) I is the interrupt vector location in program memory for the active interrupt.

3) For simplicity, this example shows only the execution of single-cycle instructions
fetched from external program memory, rather than multicycle instructions.

Three dummy execute cycles occur on an interrupt, as shown in the timing dia-
gram for the TMS320C25 (Figure 3–32). The IACK signal is asserted low dur-
ing CLKOUT1 low when the device initiates a fetch from the interrupt location
I. Note that IACK is a valid signal only when CLKOUT1 is low. An external de-
vice can determine which interrupt had occurred by latching the address bus
value present on A4–A1 with the rising edge of CLKOUT2 when IACK is low.
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3.9 Serial Port

A full-duplex on-chip serial port provides direct communication with serial de-
vices such as codecs, serial A/D converters, and other serial systems. The in-
terface signals are compatible with codecs and many other serial devices with
a minimum of external hardware. The serial port may also be used for inter-
communication between processors in multiprocessing applications.

Both receive and transmit operations are double-buffered on the TMS320C2x,
thus allowing a continuous bit stream even if FSX is an output. The use of the
frame sync mode (FSM) bit provides continuous operation that, once initiated,
requires no further frame synchronization pulses. No minimum CLKR/CLKX
frequency (fmin = 0 Hz) is required for serial port operation.

The bits, pins, and registers that control serial port operation are listed in
Table 3–8. Availability of a function on a particular device is also indicated.

Table 3–8.Serial Port Bits, Pins, and Registers

Serial Port Bits/Pins/Registers TMS320C25

FO Format bit
TXM Transmit mode bit
FSM Frame synchronization mode bit

Yes
Yes
Yes

CLKX Transmit clock signal 
CLKR Receive clock signal
DX Transmitted serial data signal
DR Received serial data signal
FSX Transmit framing synchronization signal
FSR Receive framing synchronization signal

Yes
Yes
Yes
Yes
Yes
Yes

DXR Data transmit register
DRR Data receive register
XSR Transmit shift register
RSR Receive shift register

Yes
Yes
Yes
Yes

The serial port uses two memory-mapped registers: the data transmit register
(DXR) that holds the data to be transmitted by the serial port, and the data re-
ceive register (DRR) that holds the received data (see Figure 3–33). Both reg-
isters operate in either the 8-bit byte mode or 16-bit word mode, and may be
accessed in the same manner as any other data memory location. Each regis-
ter has an external clock, a framing synchronization pulse, and associated
shift registers. Any instruction accessing data memory can be used to read
from or write to these registers; however, the BLKD (block move from data
memory to data memory) instruction cannot be used to read these registers.
The DXR and DRR registers are mapped into locations 0 and 1 in the data ad-
dress space. The XSR and RSR registers are not directly accessible through
software.
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Figure 3–33. The DRR and DXR Registers
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If the serial port is not being used, the DXR and DRR registers can be used
as general-purpose registers. In this case, the CLKR or FSR should be con-
nected to a logic low to prevent a possible receive operation from being initi-
ated.

Three bits in status register ST1 are used to control the serial port operation:
FO, TXM, and FSM. The FO (format) bit defines whether data to be transmitted
and received is an 8-bit byte or a 16-bit word. If FO = 0, the data is formatted
in 16-bit words. If FO = 1, the data is formatted in 8-bit bytes. In the 8-bit mode,
only the eight least significant bits are used for transmit/receive operations.
The FO bit is loaded by the FORT (format serial port registers) instruction. On
reset, FO is set to 0.

The TXM (transmit mode) bit is used to determine if the frame synchronization
pulse for the transmit operation is generated externally or internally. If TXM =
1, the FSX pin becomes an output pin, and a framing pulse is produced on the
FSX pin every time the DXR register is loaded. This framing pulse is synchro-
nized with the rising edge of CLKX. If TXM = 0, the FSX pin becomes an input
pin. The TMS320C2x then waits for an external synchronization pulse before
beginning transmission. On a reset, TXM is set to zero, configuring FSX to be
an input. The TXM bit can be loaded by the LST1, STXM, or RTXM instruc-
tions.

The FSM (frame synchronization mode) status register bit is used to determine
whether frame sync pulses are required for each serial port transfer. When
FSM = 1, frame sync pulses are required; consequently, they are not required
when FSM = 0. FSM is set by the SFSM (set frame synchronization mode)
instruction and cleared by the RFSM (reset frame synchronization mode)
instruction. When FSM = 1 and frame sync pulses are required, an FSX pulse
will cause the XSR to be loaded with data from the DXR, and transmission will
begin. If an FSX is presented prior to the last bit of the current transmission,
the XSR will be reloaded from the DXR, thus aborting the current transmission
and immediately beginning a new one.

The frame sync mode is useful in communicating to PCM highways. For ATT
T1 and CCITT G711/712 lines, the processor can communicate directly in
these formats by counting the transmitted/received bytes in software and per-
forming SFSM/RFSM instructions as needed to set/reset the FSM bit.
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3.9.1 Transmit and Receive Operations

The transmit and receive sections of the serial port are implemented separate-
ly to allow independent transmit and receive operations. Externally, the serial
port interface is implemented using the six serial port pins. Figure 3–34 shows
the registers and pins used in transmit and receive operations.

Figure 3–34. Serial Port Block Diagram
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Data is clocked onto the DX pin from the XSR of the TMS320C25 by a CLKX
signal. Data is clocked into the RSR of the TMS320C25 from the DR pin by a
CLKR signal. CLKX and CLKR are required to be present only during actual
serial port transfers, and may be stopped (at a valid logic level) when no data
is being transferred. Data bits can be transferred in either 8-bit bytes or 16-bit
words. Data is clocked out to DX on the rising edges of CLKX, while data is
clocked in from DR on the falling edges of CLKR. The MSB of the data is trans-
ferred first.

The XSR and RSR are connected to the DXR and DRR, respectively. For
transmit operations, the contents of DXR are transferred to XSR when a new
transmission begins. For a receive operation, the contents of RSR are trans-
ferred to DRR when all of the bits have been received. Thus, the serial port is
double-buffered because data may be transferred to or from the DXR or DRR
while another transmit or receive operation is being performed.

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse. The exception to this is when the continuous mode of operation is used
with FSM = 0, as described in a subsequent paragraph. Frame sync pulses are
input on FSX for transmit operations and on FSR for receive operations.
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The transmit timing diagram is shown in Figure 3–35. The transmit operation
begins when data is written into the data transmit register (DXR). The
TMS320C2x begins transmitting data when the frame synchronization pulse
(FSX) goes low while CLKX is high or going high. The data, starting with the
MSB, is then shifted out via the DX pin with the rising edge of CLKX. When all
bits have been transmitted, an internal transmit interrupt (XINT) is generated
on the rising edge of CLKX. When the serial port is not transmitting, DX is
placed in the high-impedance state.

Figure 3–35. Serial Port Transmit Timing Diagram
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DX and FSX are unaffected by assertion of the HOLD input. Upon assertion
of HOLD, any serial port transmission in progress on the DX pin is completed
before DX is placed in the high-impedance state. FSX remains configured as
either an input or output, remaining low if it is an output.

The receive operation is similar to the transmit operation. The receive timing
diagram is shown in Figure 3–36. Reception is initiated by a frame synchro-
nization pulse on the FSR pin. After FSR goes low, data on the DR pin is
clocked into the RSR register on the TMS320C25 on every negative-going
edge of CLKR. The first data bit is considered the MSB, and RSR is filled ac-
cordingly. After all the bits have been received (as specified by FO), an internal
receive interrupt (RINT) is generated on the rising edge of CLKR, and the con-
tents of RSR are transferred to DRR.



 Serial Port

3-67

Figure 3–36. Serial Port Receive Timing Diagram
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3.9.2 Timing and Framing Control

Upon completion of a serial port transfer, an internal interrupt is generated.
The RINT interrupt is generated for a receive operation, and XINT is generated
for a transmit operation. RINT and XINT are generated on the rising edge of
CLKR and CLKX, respectively, after the last bit is transferred. Note that if DRR
is read before a RINT is received, it will contain the data from the previous op-
eration. Similarly, if DXR is loaded more than once after an XINT is generated
(in the continuous transmission mode), only the last value written will be
loaded into XSR for the next transmit operation.

When the TMS320C2x is reset, TXM is cleared to zero, and DX is placed in
the high-impedance state. Any transmit or receive operation that is in progress
when the reset occurs is terminated.

The transmit framing synchronization pulse can be generated internally or ex-
ternally. The maximum speed of the serial port is 5 MHz. The timing of the seri-
al port signals is compatible with the TI/Intel 29C1x series codecs. The timing
is also compatible with the AMI S3506 series codecs if the frame synchroniza-
tion signals are inverted.

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse, except when the continuous mode of operation is used with FSM = 0.
Frame sync pulses are input on FSX for transmit operations and on FSR for
receive operations. If FSM = 1, frame sync pulses are required; if FSM = 0, they
are not required. FSM is set by the SFSM (set frame synchronization mode)
instruction and cleared by the RFSM (reset frame synchronization mode)
instruction.
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3.9.3 Burst-Mode Operation

In burst-mode serial port operation, transfers are separated in time by periods
of no serial port activity (the serial port does not operate continuously). For
burst-mode operation, FSM must be set to one. Timing of the serial port in this
mode of operation is shown in Figure 3–37 and Figure 3–38.

Figure 3–37. Burst-Mode Serial Port Transmit Operation
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Figure 3–38. Burst-Mode Serial Port Receive Operation
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When TXM = 1 (FSX is an output) and the serial port register DXR is loaded,
a framing pulse is generated on the next rising edge of CLKX. The XSR is
loaded with the current contents of DXR while FSX is high and CLKX is low.
Transmission begins when FSX goes low while CLKX is high or is going high.
Figure 3–37 shows the timing for the byte mode (FO = 1). XINT is generated
on the rising edge of CLKX after all 8 or 16 bits have been transmitted and DX
is placed in the high-impedance state. If DXR is reloaded before the next rising
edge of CLKX after XINT, FSX will again be generated as shown, and XSR will
be reloaded.

The receive operation is similar to the transmit operation. The contents of RSR
are loaded into DRR while CLKR is low, just after reception of the last bit sent
by the transmitting device (see Figure 3–38). RINT is generated on the next
rising edge of CLKR, and DRR may be read at any time before the reception
of the final bit of the next transmission. When operating in the byte mode, the
eight MSBs of the DRR are the contents of the eight LSBs of the DRR prior to
reception of the current byte, as shown in Figure 3–39 for the TMS320C25.

Figure 3–39. Byte-Mode DRR Operation (TMS320C25)
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3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25)

The TMS320C25 provides two modes of operation that allow the use of a con-
tinuous stream of serial data. When FSM = 1, frame sync pulses are required.
Because DXR is double-buffered, continuous operation is achieved even if
TXM = 1. Writing to DXR during a serial port transmission does not abort the
transmission in progress, but, instead, DXR stores that data until XSR can be
reloaded. As long as DXR is reloaded before the CLKX rising edge on the final
bit being transmitted, the FSX pulse will go high on the rising edge of CLKX
during the transmission of the final bit and fall on the next rising edge when
transmission of the word just loaded begins. If DXR is not reloaded within this
period and FSM = 1, the DX pin will be placed in a high-impedance state for
at least one CLKX cycle until DXR is reloaded (as described in the previous
section). Figure 3–40 and Figure 3–41 show the timing diagrams for the con-
tinuous operation with frame sync pulses.
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Figure 3–40. Serial Port Transmit Continuous Operation (FSM = 1)
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Figure 3–41. Serial Port Receive Continuous Operation (FSM = 1)
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Continuous receive operation with FSM = 1 is identical to that of burst-mode
operation with the exception that FSR is pulsed during reception of the final
bit.
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3.9.5 Continuous Operation Without Frame Sync Pulses (TMS320C25)

The continuous mode of operation on the TMS320C25 allows transmission
and reception of a continuous bit stream without requiring frame sync pulses
every 8 or 16 bits. This mode is selected by setting FSM = 0.

Figure 3–42 and Figure 3–43 show operation of the serial port for both states
of TXM to illustrate differences in operation for each case. FSM is initially set
to one, and frame sync pulses are required to initiate serial transfers. Before
the completion of the transmission (that is, before the next serial port interrupt),
the FSM must be reset to zero by means of an RFSM (reset FSM) instruction.
RFSM can occur either before or after the write to DXR or read from DRR.
From this point on, the FSX and FSR inputs are ignored, with transmission oc-
curring every CLKX cycle and reception occurring every CLKR cycle as long
as those clocks are present.

If FSX is configured as an output, it will remain low until FSM is set back to one
and DXR is reloaded. If DXR is not reloaded with new data every XINT (every
8 or 16 CLKX cycles, depending on FO), the last value loaded will be trans-
mitted   on  DX   continuously.  Note  that  this  is  different  from  the  case  with
FSM = 1 where DX is placed into a high-impedance state if DXR is not reloaded
before transmission of the last bit of the current word in XSR. For example, if
byte C is not loaded into DXR as indicated in Figure 3–42, bits of byte B
(B1–B8) will be retransmitted instead of bits of byte C as shown.

For receive operations, DRR is loaded from RSR (and an RINT is generated)
every 8 or 16 CLKR cycles (depending on FO), regardless of whether or not
DRR has been read. An overrun of DRR is also possible with FSM = 1 if DRR
is not read before the next RINT. The only way to stop continuous transmission
or reception once started, when FSM = 0, is either to stop CLKX or CLKR or
to perform an SFSM (set FSM) instruction.

Continuous transmission without frame sync pulses is very useful in communi-
cating directly to telephone system PCM highways. For ATT T1 and CCITT
G711/712 lines, FSX and FSR pulses are generated only every 24 or 32 bytes.
By counting the transmitted and received bytes in software after an initial FSX
or FSR and performing SFSM and RFSM instructions as required, the
TMS320C25 can easily be made to communicate in these formats.
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Figure 3–42. Serial Port Transmit Continuous Operation (FSM = 0)
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Figure 3–43. Serial Port Receive Continuous Operation (FSM = 0)
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3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses

FSM is normally initialized during an XINT or RINT service routine to enable
or disable FSX and FSR, respectively, for the next serial port operation. It is
necessary to start this mode with FSM = 1 so that the first data transferred out
of the serial port is the data written to the DXR register. Otherwise, the serial
port starts transmitting the contents of the shift register before loading it with
the value stored in the DXR register. Upon each completion of a data packet
transmission, it loads the data contained in the DXR register into the shift regis-
ter and continues transmitting. After the first frame pulse has been generated
by or sent to the TMS320C25, the FSM bit must be reset to 0 using the RFSM
instruction. This must be done before the next serial port interrupt to ensure
continuous transmission. If continuous transmission is stopped via software,
this initiation sequence must be repeated to restart the continuous mode op-
eration.

As shown in Figure 3–44 and Figure 3–45, RFSM may occur before a write to
DXR, regardless of the state of TXM. If TXM = 1, FSX is generated in a normal
manner on the next rising edge of CLKX, but only once. If TXM = 0, the
TMS320C25 waits to transmit until FSX is pulsed, but from then on, the FSX
input is ignored. Note that just as in the case of continuous-mode operation
without sync pulses described in subsection 3.9.5, the first data written to DXR
(byte A) is output twice unless DXR is reloaded before the second transmis-
sion is started. It is important to consider this dummy cycle when using continu-
ous-mode serial operation.

The receive timings are the same as those for the transmit operations with
TXM = 0. The TMS320C25 waits to receive data until FSR is pulsed, but there-
after the FSR input is ignored. No dummy cycle is associated with the receive
operation; this is because DRR has a post-buffering nature as opposed to the
prebuffering nature of DXR.
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Figure 3–44. Continuous Transmit Operation Initialization
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Figure 3–45. Continuous Receive Operation Initialization
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3.10 Multiprocessing and Direct Memory Access (DMA)

The flexibility of the TMS320C2x allows configurations to satisfy a wide range
of system requirements. Some of the system configurations using the
TMS320C2x are as follows:

� A standalone system (single processor),

� A multiprocessor with devices in parallel,

� A host/slave multiprocessor with shared global data memory space, or

� A peripheral processor interfaced using processor-controlled signals to
another device.

These system configurations are made possible by three specialized features
of the TMS320C2x: the synchronization function utilizing the SYNC input, the
global memory interface, and the hold function implemented with the HOLD
and HOLDA pins. The following sections describe these functions in detail.

3.10.1 Synchronization

In a multiprocessor environment, the SYNC input can be used to greatly ease
interface between processors. This input is used to cause each TMS320C2x
in the system to synchronize its internal clock, thereby allowing the processors
to run in lock-step operation.

Multiple TMS320C2x devices are synchronized by using common SYNC and
external clock inputs. A negative transition on SYNC sets each processor to
internal quarter-phase one (Q1). This transition must occur synchronously
with the rising edge of CLKIN. On the TMS320C25, there is a two-CLKIN-cycle
delay following the cycle in which SYNC goes low, before the synchronized Q1
occurs.

The timing diagram for the SYNC input is shown in Figure 3–46 for the
TMS320C2x.
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Figure 3–46. Synchronization Timing Diagram (TMS320C25)
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Normally, SYNC is applied while RS is active. If SYNC is asserted after a reset,
the following can occur:

1) The processor machine cycle is reset to Q1, provided that the timing re-
quirements for SYNC are met. If SYNC is asserted at the beginning of Q1,
Q3, or Q4, the current instruction is improperly executed. If SYNC is as-
serted at the beginning of Q2, the current instruction is executed properly.

2) If SYNC does not meet the timing requirements, unpredictable processor
operation occurs. A reset should then be executed to place the processor
back in a known state.

3.10.2 Global Memory

For multiprocessing applications, the TMS320C2x is capable of allocating
global data memory space and communicating with that space via the BR (bus
request) and READY control signals.

Global memory is memory shared by more than one processor; therefore, ac-
cess to it must be arbitrated. When using global memory, the processor’s ad-
dress space is divided into local and global sections. The local section is used
by the processor to perform its individual function, and the global section is
used to communicate with other processors.

A memory-mapped global memory allocation register (GREG) specifies part
of the TMS320C2x’s data memory as global external memory. GREG, which
is memory-mapped at data memory address location 5, is an eight-bit register
connected to the eight LSBs of the internal D bus. The upper eight bits of loca-
tion 5 are nonexistent and read as 1s.
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The contents of GREG determine the size of the global memory space. The
legal values of GREG and corresponding global memory spaces are shown
in Table 3–9. Note that values other than those listed in the table lead to frag-
mented memory maps.

Table 3–9.Global Data Memory Configurations

GREG Value Local Memory
Range  # Words

Global Memory
Range # Words

000000XX
10000000
11000000
11100000
11110000
11111000
11111100
11111110
11111111

0h – 0FFFFh 65,536
0h – 07FFFh 32,768
0h – 0BFFFh 49,152
0h – 0DFFFh 57,344
0h – 0EFFFh 61,440
0h – 0F7FFh 63,488
0h – 0FBFFh 64,512
0h – 0FDFFh 65,024
0h – 0FEFFh 65,280

–––––––––––––
08000h – 0FFFFh
0C000h – 0FFFFh
0E000h – 0FFFFh
0F000h – 0FFFFh
0F800h – 0FFFFh
0FC00h – 0FFFFh
0FE00h – 0FFFFh
0FF00h – 0FFFFh

0
32,768
16,384

8,192
4,096
2,048
1,024

512
256

When a data memory address, either direct or indirect, corresponds to a global
data memory address (as defined by GREG), BR is asserted low with DS to
indicate that the processor wishes to make a global memory access. External
logic then arbitrates for control of the global memory, asserting READY when
the TMS320C2x has control. The length of the memory cycle is controlled by
the READY line. One wait-state timing is shown in Figure 3–47. Note that all
signals not shown have the same timing as in the normal read or write case.

Figure 3–47. Global Memory Access Timing
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3.10.3 The Hold Function

The TMS320C2x supports direct memory access (DMA) to its local (off-chip)
program, data, and I/O spaces. Two signals, HOLD and HOLDA, are provided
to allow another device to take control of the processor’s buses. Upon receiv-
ing a HOLD signal from an external device, the processor acknowledges by
bringing HOLDA low. The processor then places its address and data buses
as well as all control signals (PS, DS, IS, R/W, and STRB) in the high-imped-
ance state. The serial port output pins, DX and FSX, are not affected by HOLD.
Signaling between the external processor and the TMS320C2x can be per-
formed by using interrupts.

The timing for the HOLD and HOLDA signals is shown in Figure 3–48. HOLD
has the same setup time as READY and is sampled at the beginning of quar-
ter-phase 3. If the setup time is met, it takes three machine cycles before the
buses and control signals go to the high-impedance state. Note that unlike the
external interrupts (INT2 – INT0), HOLD is not a latched input. The external
device must keep HOLD low until it receives a HOLDA from the TMS320C2x.

If the TMS320C2x is in the middle of a multicycle instruction, it will finish the
instruction before entering the hold state. After the instruction is completed,
the buses are placed in the high-impedance state. This also applies to instruc-
tions that become multicycle due to insertion of wait states or to the use of RPT/
RPTK instructions.

After HOLD is deasserted, program execution resumes from the same point
at which it was halted. HOLDA is removed synchronously with HOLD, as
shown in Figure 3–48. If the setup time is met, two machine cycles are required
before the buses and control signals become valid.

HOLD is not treated as an interrupt. If the TMS320C2x was executing the IDLE
instruction before entering the hold state, it resumes executing IDLE once it
leaves the hold state.

The hold function on the TMS320C25 has two distinct operating modes:

� A mode in which execution is suspended during assertion of HOLD, and

� A TMS320C25 concurrent DMA mode, in which the TMS320C25 contin-
ues to execute its program while operating from internal RAM or ROM,
thus greatly increasing throughput in data-intensive applications.
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The operating mode is selected by the HM (hold mode) status register bit on
the TMS320C25. The HOLD signal is pulled low, as shown in the first part of
Figure 3–48. When HM = 1, the TMS320C25 halts program execution and en-
ters the hold state directly. When HM = 0, the processor enters the hold state
directly, as shown in Figure 3–48, if program execution is from external
memory or if external data memory is being accessed. If program execution
is from internal memory, however, and if no external data memory accesses
are required, the processor enters the hold state externally, but program
execution continues internally. This allows more efficient system operation be-
cause a program may continue executing while an external DMA operation is
being performed.

Program execution ceases until HOLD is removed if the processor is in a hold
state with HM = 0 and an internally executing program requires an external ac-
cess, or if the program branches to an external address. Also, if a repeat
instruction that requires the use of the external bus is executing with HM = 0
and a hold occurs, the hold state is entered after the current bus cycle. If this
situation occurs with HM = 1, the hold state will not be entered until the repeat
count is completed. HM is set and reset by the SHM (set hold mode) and RHM
(reset hold mode) instructions, respectively.

All interrupts are disabled while HOLD is active with HM = 1. If an interrupt is
received during this period, the interrupt is latched and remains pending.
Therefore, HOLD itself does not affect any interrupt flags or registers. When
HM = 0, interrupts function normally.
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Figure 3–48. TMS320C25 Hold Timing Diagram
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Notes: 1) N is the program memory location for the current instruction.

2) This example shows only the execution of single-cycle instructions fetched from external program memory.
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Figure 3–48. TMS320C25 Hold Timing Diagram (Continued)
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Notes: 3) N is the program memory location for the current instruction.

4) This example shows only the execution of single-cycle instructions fetched from external program memory.
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3.11 General Description of the TMS320C26

The TMS320C26 is a spin-off of the TMS320C25. It is processed in CMOS
technology, is capable of an instruction cycle time of 100 ns, and is pin-for-pin
and object code-compatible with the TMS320C25, with the exception of the
instructions for on-chip-memory configuration. The TMS320C26’s enhance-
ment over the TMS320C25 is basically the larger on-chip RAM (see the block
diagram in Figure 3–3), divided into 4 blocks with 1568 words altogether. The
three blocks, B0, B1, and B3—each with 512 × 16 bits—are  configurable as
data or program memory. The block B2 with 32 × 16 bits is identical with the
same block of the TMS320C25 and is usable as data memory. The ROM of
the TMS320C26 consists of 256 words with a factory-programmed bootloader.

In many applications, the large internal memory of the TMS320C26 allows you
to build single-chip solutions with all data and programs internal and the option
to reload programs or algorithms. A memory size of 1568 words allows the
TMS320C26 to handle a data array of, for example, 1024 words with an on-
chip program RAM of 512 words and additional 32 words of data RAM. When
using internal blocks as program memory, instructions can be downloaded
from external program memory into on-chip RAM and then executed. The
TMS320C26 allows the DMOV function in all internal data memory blocks.  An-
FIR filter programmed with the MAC or MACD instructions can use the internal
program RAM for storing the coefficients.
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3.12 General Description of the TMS320C28

The TMS320C28 is the newest member of the TMS320C2x family. Like the
TMS320C26, it is also processed in CMOS technology, is capable of 100-ns
instruction cycle time, and is object code-compatible with the TMS320C25.
The enhancements of the TMS320C28 over the TMS320C25 are the larger
on-chip ROM (8K words) and a new powerdown mode. The TMS320C28
comes in an 80-pin QFP package that includes three new pins (PDI, PDACK,
and WAKEUP) to support the powerdown feature. This mode decreases the
current to about 100 µA compared with the 50-mA current in the TMS320C25
idle mode. See Appendix C for more details about the TMS320C28 power-
down feature. The TMS320C28 has more on-chip memory (8K-word ROM
and 544-word RAM) than the TMS320C26. The 8K-word on-chip ROM re-
duces system cost and allows large programs to execute at full speed from
memory. The large internal memory and the powerdown feature of the
TMS320C28 allow you to build a single-chip solution with all data and pro-
grams internal, while conserving power.
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Chapter 4

Assembly Language Instructions

The TMS320C2x instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. TMS320C1x source code is upward-compatible with
TMS320C2x source code.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

This chapter describes the assembly language instructions for the
TMS320C2x microprocessor. Topics include:
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4.1 Memory Addressing Modes

The TMS320C2x instruction set provides three memory addressing modes:

� Direct addressing mode

� Indirect addressing mode

� Immediate addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the nine bits
of the data memory page pointer to form the 16-bit data memory address. Indi-
rect addressing accesses data memory through the auxiliary registers. In im-
mediate addressing, the data is based on a portion of the instruction word(s).
The following sections describe each addressing mode and give the opcode
formats and some examples for each mode.

4.1.1 Direct Addressing Mode

In the direct memory addressing mode, the instruction word contains the lower
seven bits of the data memory address (dma). This field is concatenated with
the nine bits of the data memory page pointer (DP) register to form the full
16-bit data memory address. Thus, the DP register points to one of 512 pos-
sible 128-word data memory pages, and the 7-bit address in the instruction
points to the specific location within that data memory page. The DP register
is loaded through the LDP (load data memory page pointer), LDPK (load data
memory page pointer immediate), or LST (load status register ST0) instruc-
tions.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C2x development tools, however, utilize default
values for many parameters, including the data page pointer.  Because of
this, programs that do not explicitly initialize the data page pointer may
execute improperly, depending on whether they are executed on a
TMS320C2x device or by using a development tool. Thus, it is critical that
all programs initialize the data page pointer in software.
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Figure 4–1 illustrates how the 16-bit data address is formed.

Figure 4–1. Direct Addressing Block Diagram
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Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no oper-
ands. The direct addressing format is as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0Opcode dma

 

Bits 15 through 8 contain the opcode. Bit 7 =  0 defines the addressing mode
as direct, and bits 6 through 0 contain the data memory address (dma).

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location
9 left-shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

0

0 0 0 0 0 1 0 1 0 0 0 1 0 0 1

The opcode of the ADD 9,5 instruction is 05h and appears in bits 15 through
8. The notation nnh indicates nn is a hexadecimal number. The shift count of
5h appears in bits 11 through 8 of the opcode. The data memory address 09h
appears in bits 6 through 0.
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4.1.2 Indirect Addressing Mode

The auxiliary registers (AR) provide flexible and powerful indirect addressing.
Eight auxiliary registers (AR0–AR7) are provided on the TMS320C2x. To se-
lect a specific auxiliary register, the auxiliary register pointer (ARP) is loaded
with a value from 0 through 7 designating AR0 through AR7 (see Figure 4–2).

Figure 4–2. Indirect Addressing Block Diagram

AR0 (16)

AR1 (16)

AR2 (16)

AR3 (16)

AR4 (16)

AR5 (16)

AR6 (16)

AR7 (16)

ARAU (16)

ARP (3)

(ARP = 2)

ARB (3)

33

16-Bit Data Address

Auxiliary
Registers

Data Bus (16)

3

3

16

16

16

The contents of the auxiliary registers may be operated upon by the auxiliary
register arithmetic unit (ARAU), which implements 16-bit unsigned arithmetic.
The ARAU performs auxiliary register arithmetic operations in the same cycle
as the execution of the instruction. (Note that the increment or decrement of
the indicated AR is always executed after the use of that AR in the instruction.)

In indirect addressing, any location in the 64K data memory space can be ac-
cessed via the 16-bit addresses contained in the auxiliary registers. These can
be loaded by the instructions LAR (load auxiliary register), LARK (load auxilia-
ry register immediate), and LRLK (load auxiliary register long immediate). The
auxiliary registers on the TMS320C2x can be modified by ADRK (add to auxil-
iary register short immediate) or SBRK (subtract from auxiliary register short
immediate). The TMS320C2x auxiliary registers can also be modified by the
MAR (modify auxiliary register) instruction or, equivalently, by the indirect ad-
dressing field of any instruction supporting indirect addressing. AR(ARP) de-
notes the auxiliary register selected by ARP.
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The following symbols are used in indirect addressing, including bit-reversed
(BR) addressing:

* Contents of AR(ARP) are used as the data memory ad-
dress.

*– Contents of AR(ARP) are used as the data memory ad-
dress, then decremented after the access.

*+ Contents of AR(ARP) are used as the data memory ad-
dress, then incremented after the access.

*0– Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of AR0 subtracted from it after the
access.

*0+ Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of AR0 added to it after the access.

*BR0– Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of AR0 subtracted from it, with re-
verse carry (rc) propagation, after the access.

*BR0+ Contents of AR(ARP) are used as the data memory ad-
dress, and the contents of AR0 added to it, with reverse
carry (rc) propagation, after the access.

There are two main types of indirect addressing with indexing:

� Regular indirect addressing with increment or decrement, and

� Indirect addressing with indexing based on the value of AR0:
Indexing by adding or subtracting the contents of AR0, or
Indexing by adding or subtracting the contents of AR0 with the carry
propagation reversed (for FFTs on the TMS320C2x).

In either case, the contents of the auxiliary register pointed to by the ARP regis-
ter are used as the address of the data memory operand. Then, the ARAU per-
forms the specified mathematical operation on the indicated auxiliary register.
Additionally, the ARP may be loaded with a new value. All indexing operations
are performed on the current auxiliary register in the same cycle as the original
instruction.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment
or decrement by one, or it may be based upon the contents of AR0.

Bit-reversed addressing modes on the TMS320C2x allow efficient I/O to be
performed for the resequencing of data points in a radix-2 FFT program. The
direction of carry propagation in the ARAU is reversed when this mode is se-
lected and AR0 is added to/subtracted from the current auxiliary register. Typi-
cal use of this addressing mode requires that AR0 first be set to a value corre-
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sponding to one-half of the array size, and AR(ARP) be set to the base address
of the data (the first data point). See subsection 5.7.4 for an FFT example using
bit-reversed addressing modes.

Indirect addressing can be used with all instructions except immediate oper-
and instructions and instructions with no operands. The indirect addressing
format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1Opcode YIDV INC DEC NAR

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through 0 contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV determines
whether AR0 will be used to increment or decrement the current auxiliary reg-
ister. If bit 6 = 0, an increment or decrement (if any) by one occurs to the current
auxiliary register. If bit 6 = 1, AR0 may be added to or subtracted from the cur-
rent auxiliary register as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP) and
AR0. When set, bit 5 indicates that an increment is to be performed. If bit 4 is
set, a decrement is to be performed. Table 4–1 shows the correspondence of
bit pattern and arithmetic operation.

Table 4–1. Indirect Addressing Arithmetic Operations

 Bits
6 5 4

 Arithmetic Operation

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

No operation on AR(ARP)
AR(ARP) – 1 → AR(ARP)
AR(ARP) + 1 → AR(ARP)
Reserved
AR(ARP) – AR0 → AR(ARP) [reverse carry propagation]
AR(ARP) – AR0 → AR(ARP)
AR(ARP) + AR0 → AR(ARP)
AR(ARP) + AR0 → AR(ARP) [reverse carry propagation]

Bit 3 and bits 2 through 0 control the auxiliary register pointer (ARP). Bit 3
(NAR) determines if a new value is loaded into the ARP. If bit 3 = 1, the contents
of bits 2 through 0 (Y = next ARP) are loaded into the ARP. If bit 3 = 0, the con-
tents of the ARP remain unchanged.
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Table 4–2 shows the bit fields, notation, and operation used for indirect ad-
dressing. For some instructions, the notation in Table 4–2 includes a shift
code: for example, *0+,8,3 where 8 is the shift code and Y = 3.

Table 4–2.Bit Fields for Indirect Addressing

Instruction Field Bits
15 – 8 7 6 5 4 3 2 1 0

Notation Operation

← Opcode →1 0 0 0 0 ← Y → * No manipulation of ARs/ARP

← Opcode →1 0 0 0 1 ← Y → *,Y Y → ARP

← Opcode →1 0 0 1 0 ← Y → *– AR(ARP) –1 → AR(ARP)

← Opcode →1 0 0 1 1 ← Y → *–,Y AR(ARP) –1 → AR(ARP) Y → ARP

← Opcode →1 0 1 0 0 ← Y → *+ AR(ARP) +1 → AR(ARP)

← Opcode →1 0 1 0 1 ← Y → *+,Y AR(ARP)+1 → AR(ARP) Y → ARP

← Opcode →1 1 0 0 0 ← Y → *BR0– AR(ARP)–rcAR0 → AR(ARP)

← Opcode →1 1 0 0 1 ← Y → *BR0–,Y AR(ARP)–rcAR0 → AR(ARP) 
Y → ARP

← Opcode →1 1 0 1 0 ← Y → *0– AR(ARP)–AR0 → AR(ARP)

← Opcode →1 1 0 1 1 ← Y → *0–,Y AR(ARP)–AR0 → AR(ARP)
Y → RP

← Opcode →1 1 1 0 0 ← Y → *0+ AR(ARP)+AR0 → AR(ARP)

← Opcode →1 1 1 0 1 ← Y → *0+,Y AR(ARP)+AR0 → AR(ARP)
Y → ARP

← Opcode →1 1 1 1 0 ← Y → *BR0+ AR(ARP)+rcAR0 → AR(ARP)

← Opcode →1 1 1 1 1 ← Y → *BR0+,Y AR(ARP)+rcAR0 → AR(ARP)
Y → ARP

The CMPR (compare auxiliary register with AR0), and BBZ/BBNZ (branch if
TC bit equal/not equal to zero) instructions facilitate conditional branches
based on comparisons between the contents of AR0 and the contents of
AR(ARP).

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.
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The following examples illustrate the indirect addressing format:

ADD *+,8 Add to the accumulator the contents of the data
memory address defined by the contents of the current auxiliary
register. This data is left-shifted 8 bits before being added. The cur-
rent auxiliary register is autoincremented by one. The opcode is
08A0h, as shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

0

0 0 0 0 1 0 0 0 1 0 1 0 0 0 0

ADD *,8 As in Example 1, but with no autoincrement; the
opcode is 0880h.

ADD *–,8 As in Example 1, except that the current auxiliary
register is decremented by one; the opcode is 0890h.

ADD *0+,8 As in Example 1, except that the contents of auxil-
iary register AR0 are added to the current auxiliary register; the op-
code is 08E0h.

ADD *0–,8 As in Example 1, except that the contents of auxil-
iary register AR0 are subtracted from the current auxiliary register;
the opcode is 08D0h.

ADD *+,8,3 As in Example 1, except that the auxiliary register
pointer (ARP) is loaded with the value 3 for subsequent instruc-
tions;the opcode is 08ABh.

ADD *BR0–,8 The contents of auxiliary register AR0 are sub-
tracted from the current auxiliary register with reverse carry propa-
gation; the opcode is 08C0h.

ADD *BR0+,8 The contents of auxiliary register AR0 are added
to the current auxiliary register with reverse carry propagation; the
opcode is 08F0h.

4.1.3 Immediate Addressing Mode

In immediate addressing, the instruction word(s) contains the value of the im-
mediate operand. The TMS320C2x has both single-word (8-bit and 13-bit
constant) short immediate instructions and two-word (16-bit constant) long im-
mediate instructions. The immediate operand is contained within the instruc-
tion word itself in short immediate instructions. In long immediate instructions,
the word following the instruction opcode is used as the immediate operand.

The following short immediate instructions contain the immediate operand in
the instruction word and execute within a single instruction cycle. The length
of the constant operand is instruction-dependent.

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

Example 8
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ADDK Add to accumulator short immediate (8-bit absolute
constant)

ADRK Add to auxiliary register short immediate (8-bit absolute
constant)

LACK Load accumulator short immediate (8-bit absolute
constant)

LARK Load auxiliary register short immediate (8-bit absolute
constant)

LARP Load auxiliary register pointer (3-bit constant)

LDPK Load data memory page pointer immediate (9-bit
constant)

MPYK Multiply immediate (13-bit 2s-complement constant)

RPTK Repeat instruction as specified by immediate value (8-bit
constant)

SBRK Subtract from auxiliary register short immediate (8-bit
absolute constant)

SUBK Subtract from accumulator short immediate (8-bit absolute
constant).

Example of short immediate addressing format:

RPTK 99 Execute the instruction following this instruction 100 times.

With the RPTK instruction, the immediate operand is contained as a part of the
instruction opcode. The instruction format for RPTK is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 1 1 8-Bit Constant

For long immediate instructions, the constant is a 16-bit value in the word fol-
lowing the opcode. The 16-bit value can be optionally used as an absolute
constant or as a 2s-complement value.

ADLK Add to accumulator long immediate with shift (absolute or
2s complement)

ANDK AND immediate with accumulator with shift

LALK Load accumulator long immediate with shift (absolute or 2s
complement)

LRLK Load auxiliary register long immediate

ORK OR immediate with accumulator with shift

SBLK Subtract from accumulator long immediate with shift (ab-
solute or 2s complement)

XORK Exclusive-OR immediate with accumulator with shift.
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Example of long immediate addressing format:

ADLK  16384,2 Add to the accumulator the value 16384 with a shift to the
left of two, effectively adding 65536 to the contents of the
accumulator.

The ADLK instruction uses the word following the instruction opcode as the
immediate operand. The instruction format for ADLK is as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 Shift 0 0 0 0 0 0 1 0

16-Bit Constant
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4.2 Instruction Set

The following sections list the symbols and abbreviations used in the instruc-
tion set summary and in the instruction descriptions. The complete instruction
set summary is organized according to function. A detailed description of each
instruction is listed in the instruction set summary.

4.2.1 Symbols and Abbreviations

Table 4–3 lists symbols and abbreviations used in the instruction set summary
(in Table 4–4) and the individual instruction descriptions.
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Table 4–3. Instruction Symbols

Symbol Meaning

 A 
ACC 
ARB
ARn
ARP

B
BIO
C

CM
CNF
 D

DATn
dma
DP
FO 
FSM
HM

INTM
K
M 

MCS
nnh
OV

OVM
P

PA
PC

PFC
PM
pma

PRGn
R 

RPTC
S

STn
SXM

T 
TC

TOS
TXM

X
XF

Port address
Accumulator
Auxiliary register pointer buffer
Auxiliary register n (AR0, AR1 assembler symbols equal to 0 or 1)
Auxiliary register pointer
4-bit field specifying a bit code
Branch control input
Carry bit
2-bit field specifying compare mode
On-chip RAM configuration control bit
Data memory address field
Label assigned to data memory location n
Data memory address
Data page pointer
Format status bit
Frame synchronization mode bit
Hold mode bit
Interrupt mode flag bit
Immediate operand field
Addressing mode bit
Microcall stack
nnh = hexadecimal number (others are decimal values)
Overflow mode flag bit
Overflow mode bit
Product register
Port address (PA0–PA15 assembler symbols equal to 0 through 15)
Program counter
Prefetch counter
2-bit field specifying P register output shift code
Program memory address
Label assigned to program memory location n
3-bit operand field specifying auxiliary register
Repeat counter
4-bit left-shift code
Status register n (ST0 or ST1)
Sign-extension mode bit
Temporary register
Test control bit
Top of stack
Transmit mode bit
3-bit accumulator left-shift field
XF pin status bit
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Table 4–3. Instruction Symbols (Continued)

Symbol Meaning

→
| |

 italics
[ ]
( )
{  }

Is assigned to
An absolute value
User-defined items
Optional items
Contents of
Alternative items, one of which must be entered
Blanks or spaces must be entered where shown.

4.2.2 Instruction Set Summary

Table 4–4 shows the instruction set summary for the TMS320C2x processor,
which is a superset of the TMS320C1x instruction set. Included in the instruc-
tion set are four special groups of instructions to improve overall processor
throughput and ease of use.

� Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC, and
RC)

� Adaptive filtering (MPYA, MPYS, and ZALR)

� Control and I/O (RHM, SHM, RTC, STC, RFSM, and SFSM)

� Accumulator and register (SPH, SPL, ADDK, SUBK, ADRK, SBRK, ROL,
and ROR).

The instruction set summary is arranged according to function and alphabet-
ized within each functional grouping. Additional information is presented in the
individual instruction descriptions in the following section.
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Table 4–4. Instruction Set Summary

 ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

ABS Absolute value of accumulator
ADD Add to accumulator with shift
ADDC Add to accumulator with carry
ADDH Add to high accumulator
ADDK Add to accumulator short immediate
ADDS Add to low accumulator with sign-extension suppressed
ADDT Add to accumulator with shift specified by T register
ADLK Add to accumulator long immediate with shift
AND AND with accumulator
ANDK AND immediate with accumulator with shift
CMPL Complement accumulator
LAC Load accumulator with shift
LACK Load accumulator short immediate
LACT Load accumulator with shift specified by T register
LALK Load accumulator long immediate with shift
NEG Negate accumulator
NORM Normalize contents of accumulator
OR OR with accumulator
ORK OR immediate with accumulator with shift
ROL Rotate accumulator left
ROR Rotate accumulator right
SAC Store high accumulator with shift
SACL Store low accumulator with shift
SBLK Subtract from accumulator long immediate with shift
SFL Shift accumulator left
SFR Shift accumulator right
SUB Subtract from accumulator with shift
SUBB Subtract from accumulator with borrow
SUBC Conditional subtract
SUBH Subtract from high accumulator
SUBK Subtract from accumulator short immediate
SUBS Subtract from low accumulator with sign extension 

suppressed
SUBT Subtract from accumulator with shift specified by

T register
XOR Exclusive-OR with accumulator
XORK Exclusive-OR immediate with accumulator with

shift
ZAC Zero accumulator
ZALH Zero low accumulator and load high accumulator
ZALR Zero low accumulator and load high accumulator 

with rounding
ZALS Zero accumulator and load low accumulator with

sign extension suppressed

1
1
1
1
1
1
1
2
1
2
1
1
1
1
2
1
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1

1

1
2

1
1
1

1

1100 1110 0001 1011
0000 SSSS MDDD DDDD
0100 0011 MDDD DDDD
0100 1000 MDDD DDDD
1100 1100 KKKK KKKK
0100 1001 MDDD DDDD
0100 1010 MDDD DDDD
1101 SSSS 0000 0010
0100 1110 MDDD DDDD
1101 SSSS 0000 0100
1100 1110 0010 0111
0010 SSSS MDDD DDDD
1100 1010 KKKK KKKK
0100 0010 MDDD DDDD
1101 SSSS 0000 0001
1100 1110 0010 0011
1100 1110 1010 0010
0100 1101 MDDD DDDD
1101 SSSS 0000 0101
1100 1110 0011 0100
1100 1110 0011 0101
0110 1XXX MDDD DDDD
0110 0XXX MDDD DDDD
1101 SSSS 0000 0011
1100 1110 0001 1000
1100 1110 0001 1001
0001 SSSS MDDD DDDD
0100 1111 MDDD DDDD
0100 0111 MDDD DDDD
0100 0100 MDDD DDDD
1100 1101 KKKK KKKK
0100 0101 MDDD DDDD

0100 0110 MDDD DDDD

0100 1100 MDDD DDDD
1101 SSSS 0000 0110

1100 1010 0000 0000
0100 0000 MDDD DDDD
0111 1011 MDDD DDDD

0100 0001 MDDD DDDD
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Table 4–4. Instruction Set Summary (Continued)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

ADRK Add to auxiliary register short immediate
CMPR Compare auxiliary register with auxiliary 

register AR0
LAR Load auxiliary register
LARK Load auxiliary register short immediate
LARP Load auxiliary register pointer
LDP Load data memory page pointer
LDPK Load data memory page pointer immediate
LRLK Load auxiliary register long immediate 
MAR Modify auxiliary register
SAR Store auxiliary register
SBRK Subtract from auxiliary register short immediate

1
1

1
1
1
1
1
2
1
1
1

0111 1110 KKKK KKKK
1100 1110 0101 00KK

0011 0RRR MDDD DDDD
1100 0RRR KKKK KKKK
0101 0101 1000 1RRR
0101 0010 MDDD DDDD
1100 100K KKKK KKKK
1101 0RRR 0000 0000
0101 0101 MDDD DDDD
0111 0RRR MDDD DDDD
0111 1111 KKKK KKKK

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

APAC Add P register to accumulator
LPH Load high P register
LT Load T register
LTA Load T register and accumulate previous product 
LTD Load T register, accumulate previous product and 

move data
LTP Load T register and store P register in accumulator
LTS Load T register and subtract previous product
MAC Multiply and accumulate
MACD Multiply and accumulate with data move
MPY Multiply (with T register, store product in P register)
MPYA Multiply and accumulate previous product
MPYK Multiply immediate
MPYS Multiply and subtract previous product
MPYU Multiply unsigned
PAC Load accumulator with P register
SPAC Subtract P register from accumulator
SPH Store high P register
SPL Store low P register
SPM Set P register output shift mode
SQRA Square and accumulate
SQRS Square and subtract previous product

1
1
1
1
1

1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1

1100 1110 0001 0101
0101 0011 MDDD DDDD
0011 1100 MDDD DDDD
0011 1101 MDDD DDDD
0011 1111 MDDD DDDD

0011 1110 MDDD DDDD
0101 1011 MDDD DDDD
0101 1101 MDDD DDDD
0101 1100 MDDD DDDD
0011 1000 MDDD DDDD
0011 1010 MDDD DDDD
101K KKKK KKKK KKKK
0011 1011 MDDD DDDD
1100 1111 MDDD DDDD
1100 1110 0001 0100
1100 1110 0001 0110
0111 1101 MDDD DDDD
0111 1100 MDDD DDDD
1100 1110 0000 10KK
0011 1001 MDDD DDDD
0101 1010 MDDD DDDD



Instruction Set

4-16  Assembly Language Instructions

Table 4–4. Instruction Set Summary (Continued)

BRANCH/CALL INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

I/O AND DATA MEMORY OPERATIONS

B Branch unconditionally
BACC Branch to address specified by accumulator
BANZ Branch on auxiliary register not zero
BBNZ Branch if TC bit ≠ 0
BBZ Branch if TC bit = 0
BC Branch on carry
BGEZ Branch if accumulator ≠ 0
BGZ Branch if accumulator > 0
BIOZ Branch on I/O status = 0
BLEZ Branch if accumulator ≤ 0
BLZ Branch if accumulator < 0
BNC Branch on no carry
BNV Branch if no overflow
BNZ Branch if accumulator ≠ 0
BV Branch on overflow
BZ Branch if accumulator = 0
CALA Call subroutine indirect
CALL Call subroutine
RET Return from subroutine
TRAP Software interrupt

2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
1
1

1111 1111 1DDD DDDD
1100 1110 0010 0101
1111 1011 1DDD DDDD
1111 1001 1DDD DDDD
1111 1000 1DDD DDDD
0101 1110 1DDD DDDD
1111 0100 1DDD DDDD
1111 0001 1DDD DDDD
1111 1010 1DDD DDDD
1111 0010 1DDD DDDD
1111 0011 1DDD DDDD
0101 1111 1DDD DDDD
1111 0111 1DDD DDDD
1111 0101 1DDD DDDD
1111 0000 1DDD DDDD
1111 0110 1DDD DDDD
1100 1110 0010 0100
1111 1110 1DDD DDDD
1100 1110 0010 0110
1100 1110 0001 1110

I/O AND DATA MEMORY OPERATIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

BLKD Block move from data memory to data memory
BLKP Block move from program memory to data memory
DMOV Data move in data memory
FORT Format serial port registers 
IN Input data from port
OUT Output data to port
RFSM Reset serial port frame synchronization mode
RTXM Reset serial port transmit mode
RXF Reset external flag
SFSM Set serial port frame synchronization mode
STXM Set serial port transmit mode
SXF Set external flag
TBLR Table read
TBLW Table write

2
2
1
1
1
1
1
1
1
1
1
1
1
1

1111 1101 MDDD DDDD
1111 1100 MDDD DDDD
0101 0110 MDDD DDDD
1100 1110 0000 111K
1000 AAAA MDDD DDDD
1110 AAAA MDDD DDDD
1100 1110 0011 0110
1100 1110 0010 0000
1100 1110 0000 1100
1100 1110 0011 0111
1100 1110 0010 0001
1100 1110 0000 1101
0100 1000 MDDD DDDD
0101 1001 MDDD DDDD
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Table 4–4. Instruction Set Summary (Continued)

CONTROL INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

BIT Test bit
BITT Test bit specified by T register
CNFD† Configure block as data memory
CNFP† Configure block as program memory
CONF† Configure block as data/program memory
DINT Disable interrupt
EINT Enable interrupt
IDLE Idle until interrupt
LST Load status register ST0
LST1 Load status register ST1
NOP No operation
POP Pop top of stack to low accumulator
POPD Pop top of stack to data memory
PSHD Push data memory value onto stack
PUSH Push low accumulator onto stack
RC Reset carry bit
RHM Reset hold mode
ROVM Reset overflow mode
RPT Repeat instruction as specified by data memory 

value
RPTK Repeat instruction as specified by immediate value
RSXM Reset sign-extension mode
RTC Reset test/control flag
SC Set carry bit 
SHM Set hold mode
SOVM Set overflow mode
SST Store status register ST0
SST1 Store status register ST1
SSXM Set sign-extension mode
STC Set test/control flag

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1001 BBBB MDDD DDDD
0101 0111 MDDD DDDD
1100 1110 0000 0100
1100 1110 0000 0101
1100 1110 0011 11KK
1100 1110 0000 0001
1100 1110 0000 0000
1100 1110 0001 1111
0101 0000 MDDD DDDD
0101 0001 MDDD DDDD
0101 0101 0000 0000
1100 1110 0001 1101
0111 1010 MDDD DDDD
0101 0100 MDDD DDDD
1100 1110 0001 1100
1100 1110 0011 0000
1100 1110 0011 1000
1100 1110 0000 0010
0100 1011 MDDD DDDD

1100 1011 KKKK KKKK
1100 1110 0000 0110
1100 1110 0011 0010
1100 1110 0011 0001
1100 1110 0011 1001
1100 1110 0000 0011
0111 1000 MDDD DDDD
0111 1001 MDDD DDDD
1100 1110 0000 0111
1100 1110 0011 0011

†) The CONF instruction is specific to the TMS320C26 instruction set; the instructions CNFD and CNFP are undefined.
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4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as as-
sembler syntax, operands, operation, encoding, description, words, cycles,
and examples, is provided for each instruction. An example instruction is pro-
vided to familiarize you with the special format used and to explain its content.
Refer to Section 4.1 for further information on memory addressing. Code ex-
amples   using   many   of   the   instructions   are   given   in   Chapter  5,   Software
Applications.
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Syntax Direct: [ label ] EXAMPLE dma [, shift ]
Indirect: [ label ] EXAMPLE {ind} [, shift  [ next ARP ]]
Immediate: [ label ] EXAMPLE [ constant ]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax expres-
sion. Space(s) are required between each field ( label, command, operand,
and comment fields) as shown in the syntax. The syntax example illustrates
both direct and indirect addressing, as well as immediate addressing in which
the operand field includes constant.

The indirect addressing operand options, including bit-reversed (BR) addres-
sing, are as follows:

TMS320C25: { * | * + | * – | * 0 + | * 0 – | * BRO + | * BRO –}

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
0 ≤ constant ≤ 255

Operands may be constants or assembly-time expressions referring to
memory, I/O and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown.

Execution (PC) + 1 → PC
(ACC) + [(dma) × 2 shift ] → ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C.
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An example of the instruction operation sequence is provided, describing the
processing that takes place when the instruction is executed. Conditional ef-
fects of status register specified modes are also given. Those bits in the
TMS320C2x status registers affected by the instruction are also listed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 shift

10 0 0 0  shift

Data Memory Address

See Section 4.1

1 0 0 13-Bit Constant

Direct:

Indirect:

Immediate:

Encoding

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.

Description Instruction execution and its effect on the rest of the processor or memory con-
tents are described. Any constraints on the operands imposed by the proces-
sor or the assembler are discussed. The description parallels and supple-
ments the information given by the execution block.

Words 1

The digit specifies the number of memory words required to store the instruc-
tion and its extension words.

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

The table shows the number of cycles required for a given TMS320C2x
instruction to execute in a given memory configuration when executed as a
single instruction or in the repeat mode. The column headings in the tables in-
dicate the program source location (PI, PE, or PR) and data destination or
source (DI or DE), defined as follows:
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PI The instruction executes from internal program memory (RAM).

PR The instruction executes from internal program memory (ROM).

PE The instruction executes from external program memory.

DI The instruction executes using internal data memory.

DE The instruction executes using external data memory.

The number of cycles required for each instruction is given in terms of the pro-
gram/data memory and I/O access times as defined in the following listing:

p Program memory wait states. Represents the number of clock cycles
the device waits for external program memory to respond to an ac-
cess. Tac is the access time, in nanoseconds, (maximum) required by
the TMS320C2x for an external memory access to be made with no
wait states. Tmem is the memory device access time, and Tp is the
clock period (4/crystal frequency).

p = 0; If Tmem ≤ Tac

p = 1; If Tac < Tmem ≤ (Tp + Tac)

p = 2; If (Tp + Tac) < Tmem ≤ (Tp × 2 + Tac)

p = k; If [Tp × (k–1) + Tac] < Tmem ≤ (Tp × k + Tac)

d Data memory wait states. Represents the number of cycles the device
must wait for external data memory to respond to an access. This
number is calculated in the same way as the p number.

i I/O memory wait states. Represents the number of cycles the device
must wait for external I/O memory to respond to an access. This num-
ber is calculated in the same way as the p number.

Other abbreviations used in the tables and their meanings are as follows:

br Branch from ...

int Internal program memory.

INT Interrupt.

ext External program memory.

n The number of times an instruction is executed when using the RPT
or RPTK instruction.

Refer to Appendix D for further information on instruction cycle classifications
and timings.
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Example ADD DAT1,3 ;(DP = 10)

 or
ADD *,3 ;If current auxiliary register contains 1281.

Before Instruction After Instruction

8h 8h

2h 42h

Data
Memory

1281

Data
Memory

1281

X 0ACC ACC

C C

The sample code presented in the above format shows the effect of the code
on memory and/or registers. The use of the carry bit (C) provided on the
TMS320C25 is shown in the small box.
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Syntax [ label ] ABS

Operands None

Execution (PC) + 1 → PC
|(ACC)| → ACC

Affects OV; affected by OVM.
Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 1 1 0 1 1

Encoding

Description If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.

Note that 80000000h is a special case. When the overflow mode is not set, the
ABS of 80000000h is 80000000h. In the overflow mode, the ABS of
80000000h is 7FFFFFFFh. In either case, the OV status bit is set. The carry
bit (C) on the TMS320C2x is always reset to zero by the execution of this
instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n



ABS Absolute Value of Accumulator
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Example ABS

Before Instruction After Instruction

1234h 1234h

0FFFFFFFFh 1hX 0ACC ACC

C C

ACC ACC 0X

C C
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Syntax Direct: [ label ] ADD dma[, shift ]
Indirect: [ label ] ADD {ind} [, shift [, next ARP ]]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
0 ≤ shift ≤ 15 (defaults to 0)

Execution (PC) + 1 → PC
(ACC) + [(dma) x 2 shift ] → ACC

If SXM = 1:
Then (dma) is sign-extended.

 If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 shift

10 0 0 0  shift

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

Description The contents of the addressed data memory location are left- shifted and add-
ed to the accumulator. During shifting, low-order bits are zero-filled. High-order
bits are sign-extended if SXM = 1 and zero-filled if SXM = 0. The result is
stored in the accumulator.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



ADD Add to Accumulator With Shift
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Example ADD DAT1,3 ;(DP = 10)

or
ADD *,3 ;If current auxiliary register contains 1281.

Before Instruction After Instruction

8h 8h

2h 42h

Data
Memory

1281

Data
Memory

1281

X 0ACC ACC

C C
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Syntax Direct: [ label ] ADDC dma
Indirect: [ label ] ADDC {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(ACC) + (dma) + (C) → ACC

Affects OV and C; affected by OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 1 1

1 100

Description The contents of the addressed data memory location and the value of the carry
bit are added to the accumulator. The carry bit is then affected in the normal
manner.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example 1 ADDC DAT5 ;(DP = 8)

or
ADDC * ;If current auxiliary register contains 1029.

Before Instruction After Instruction

4h 4h

13h 18h

Data
Memory

1029

Data
Memory

1029

1 0ACC ACC

C C



ADDC Add to Accumulator With Carry
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Example 2 ADDC DAT5 ;(DP = 8)

or
ADDC * ;If current auxiliary register contains 1029.

Before Instruction After Instruction

0h 0h

0FFFFFFFFh 0h

Data
Memory

1029

Data
Memory

1029

1 1ACC ACC

C C
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Syntax Direct: [ label ] ADDH dma
Indirect: [ label ] ADDH {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(ACC) + [(dma) × 216] → ACC

Affects OV; affected by OVM.
Affects C.
Low-order bits of the ACC not affected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 0

0 001

Description The contents of the addressed data memory location are added to the upper
half of the accumulator (bits 31 through 16). Low-order bits are unaffected by
ADDH. The carry bit (C) on the TMS320C2x is set if the result of the addition
generates a carry; otherwise, C is unaffected. The carry bit can only be set, not
reset, by the ADDH instruction.

The ADDH instruction may be used in performing 32-bit arithmetic.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



ADDH Add to High Accumulator
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Example ADDH DAT5 ;(DP = 8)

or
ADDH * ;If current auxiliary register contains 1029.

Before Instruction After Instruction

4h 4h

13h 40013h

Data
Memory

1029

Data
Memory

1029

1 1ACC ACC

C C



 Add to Accumulator Short Immediate ADDK
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Syntax [ label ] ADDK  constant 

Operands 0 ≤ constant ≤ 255

Execution (PC) + 1 → PC
(ACC) + 8-bit positive constant → ACC

Affects OVM and C; affected by OVM.
Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 1 0 0 8-Bit constant

Description The 8-bit immediate value is added, right-justified, to the accumulator with the
result replacing the accumulator contents. The immediate value is treated as
an 8-bit positive number, regardless of the value of SXM.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1 + p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example ADDK 5h

Before Instruction After Instruction

79B2E1h 79B2E6hX 0ACC ACC

C C



ADDS Add to Accumulator With Sign-Extension Suppressed
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Syntax Direct: [ label ] ADDS dma
Indirect: [ label ] ADDS {ind}[, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(ACC) + (dma) → ACC
(dma) is a 16-bit unsigned number.

Affects OV; affected by OVM.
Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 1

0 101

Description The contents of the specified data memory location are added with sign-exten-
sion suppressed. The data is treated as a 16-bit unsigned number, regardless
of SXM. The accumulator behaves as a signed number. Note that ADDS pro-
duces the same results as an ADD instruction with SXM =  0 and a shift count
of 0.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd
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Example ADDS DAT11 ;(DP = 6)

or
ADDS * ;If current auxiliary register contains 779.

Before Instruction After Instruction

0F006h 0F006h

3h 0F009h

Data
Memory

779

Data
Memory

779

0ACC ACC

C C

X



ADDT Add to Accumulator With Shift Specified by T Register
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Syntax Direct: [ label ] ADDT dma
Indirect: [ label ] ADDT {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC

(ACC) + [(dma) × 2T register(3–0)] → (ACC)

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by SXM and OVM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 0

1 001

Description The data memory value is left- shifted and added to the accumulator, with the
result replacing the accumulator contents. The left- shift is defined by the four
LSBs of the T register, resulting in shift options from 0 to 15 bits. Sign extension
on the data memory value is controlled by SXM.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



 Add to Accumulator With Shift Specified by T Register ADDT
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Example ADDT DAT127 ;(DP = 4)

or
ADDT * ;If current auxiliary register contains 639.

Before Instruction After Instruction

9h 9h

0F715h 0F7A5h

Data
Memory

639

Data
Memory

639

0ACC ACC

C C

X

0FF94h0FF94hT T



ADLK Add to Accumulator Long Immediate With Shift
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Syntax [ label ] ADLK  constant [, shift ]

Operands 16-bit constant
0 ≤ shift ≤ 15 (defaults to 0)

Execution (PC) + 2 → PC
(ACC) + [ constant x 2 shift ] → ACC

If SXM = 1:
Then –32768 ≤ constant ≤ 32767.

If SXM = 0:
Then 0 ≤ constant ≤ 65535.

Affects OV; affected by OVM and SXM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0

Encoding
 shift 0 0 0 0 00 1 0

16-Bit Constant

Description The 16-bit immediate value, left- shifted as specified, is added to the accumu-
lator. The result replaces the accumulator contents. SXM determines whether
the constant is treated as a signed 2s-complement number or as an unsigned
number. The shift count is optional and defaults to zero.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example ADLK 5,8

Before Instruction After Instruction

10EFh 15EFhX 0ACC ACC

C C



 Add to Auxiliary Register Short Immediate ADRK
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Syntax [ label ] ADRK  constant 

Operands 0 ≤ constant ≤ 255

Execution (PC) + 1 → PC
AR(ARP) + 8-bit positive constant → AR(ARP)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1Direct: 1 1 1 0 8-Bit constant

Description The 8-bit immediate value is added, right-justified, to the currently selected
auxiliary register with the result replacing the auxiliary register contents. The
addition takes place in the ARAU, with the immediate value treated as an 8-bit
positive integer.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1 + p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example ADRK 80h ;(ARP = 5)

Before Instruction After Instruction

4321h 43A1hAR5 AR5



AND AND With Accumulator
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Syntax Direct: [ label ] AND dma
Indirect: [ label ] AND {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(ACC(15–0)) AND (dma) → ACC(15–0)
0 → ACC(31–16)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 1 0

1 011

Description The lower half of the accumulator is ANDed with the contents of the addressed
data memory location. The upper half of the accumulator is ANDed with all ze-
roes. Therefore, the upper half of the accumulator is always zeroed by the AND
instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



 AND With Accumulator AND
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Example AND DAT16 ;(DP = 4)

or
AND * ;If current auxiliary register contains 528.

Before Instruction After Instruction

0FFh 0FFh

12345678h 00000078h

Data
Memory

528

Data
Memory

528

XACC ACC

C C

X



ANDK AND Immediate With Accumulator With Shift
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Syntax [ label ] ANDK  constant [, shift ]

Operands 16-bit constant
0 ≤ shift ≤ 15 (defaults to 0)

Execution (PC) + 2 → PC
(ACC(30–0)) AND [( constant × 2 shift )] → ACC(30–0)
0 → ACC(31) and all other bit positions unoccupied by shifted constant.

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0Direct:

Indirect:

Encoding
 shift 0 0 0 0 01 0 0

16-Bit constant

Description The 16-bit immediate constant is left-shifted as specified and ANDed with the
accumulator. The result is left in the accumulator. Low-order bits below and
high-order bits above the shifted value are treated as zeros, clearing the corre-
sponding bits in the accumulator. Note that the accumulator’s most-significant
bit is always zeroed regardless of the shift-code value.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example ANDK  0FFFFh,12

Before Instruction After Instruction

12345678h 02345000hX XACC ACC

C C



 Add P Register to Accumulator APAC
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Syntax [ label ] APAC

Operands None

Execution (PC) + 1 → PC
(ACC) + ( shifted P register) → ACC

Affects OV; affected by PM and OVM.
Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 1 0 1 0 1

Encoding

Description The contents of the P register are shifted as defined by the PM status bits and
added to the contents of the accumulator. The result is left in the accumulator.
APAC is not affected by the SXM bit of the status register; the P register is al-
ways sign-extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACD, MPYA, and
SQRA instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example APAC ;(PM = 0)

Before Instruction After Instruction

20h 60h0ACC ACC

C C

X

40h40hP P



B Branch Unconditionally
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Syntax [ label ] B pma [,{ind} [, next ARP ] ]

Operands 0 ≤ pma ≤ 65535
0 ≤  next ARP ≤ 7

Execution pma → PC
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
1 1 1 1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified, and control
passes to the designated program memory address (pma). Note that no AR
or ARP modification occurs if nothing is specified in those fields. The pma can
be either a symbolic or a numeric address.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable

Example B PRG191 ;191 is loaded into the program counter,

;and the program continues running from

;that location.



 Branch to Address Specified by Accumulator BACC
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Syntax [ label ] BACC

Operands None

Execution (ACC(15–0)) → PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 1 0 0 1 0 1

Encoding

Description The branch uses the lower half of the accumulator (bits 15 – 0) for the branch
address.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Destination on-chip RAM:

2 2 2+p 2+p 2 2
Destination on-chip ROM:

3 3  3+p  3+p 3 3
Destination external memory:

3+p 3+p 3+2p 3+2p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable

Example BACC

Before Instruction After Instruction

0F7FF9545h 0F7FF9545hACC ACC

C C

X

9545h16E4hPC PC

X



BANZ Branch on Auxiliary Register Not Zero
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Syntax [ label ] BANZ pma [,{ind} [, next ARP ]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP ≤ 7

Execution If AR (ARP) ≠ 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR (ARP) as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
1 0 1 1

Program Memory Address

Description Control is passed to the designated program memory address (pma) if the cur-
rent auxiliary register is not equal to zero. Otherwise, control passes to the next
instruction. The current auxiliary register and ARP are also modified as speci-
fied.

Description The current auxiliary register is either incremented or decremented from zero
when the branch is not taken. Note that the AR modification defaults to *-
(decrement current AR by one) when nothing is specified, making it compat-
ible with the TMS320C1x. The pma can be either a symbolic or a numeric ad-
dress.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable



 Branch on Auxiliary Register Not Zero BANZ

4-45

Example 1 BANZ PRG35, * —

Before Instruction After Instruction

46h 35hPC PC

0h1hAR AR

PC

AR

PC

AR

46h

0h

48h

0FFFFh

or

Example 2 BANZ PRG64, * +

Before Instruction After Instruction

117h 64hPC PC

0h0FFFFhAR AR

PC

AR

PC

AR

117h

0h

119h

1h

or

 

Note:

BANZ is designed for loop control using the auxiliary registers as loop count-
ers. Using *0 + or *0 – allows modification of the loop counter by a variable
step size.  Care must be exercised when doing this, however, because the
auxiliary registers behave as modulo 65536 counters, and zero may be
passed without being detected if ARO > 1.



BBNZ Branch on TC Bit Not Equal to Zero
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Syntax [ label ] BBNZ pma [,{ind} [, next ARP ]]

Operands 0 ≤ pma ≤ 65536
0 ≤ next ARP ≤ 7

Execution If test/control (TC) status = 1:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR (ARP) and ARP as specified.

Affected by TC bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
1 0 0 1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if TC = 1. Otherwise, con-
trol passes to the next instruction. Note that no AR or ARP modification occurs
if nothing is specified in those fields. The pma can be either a symbolic or nu-
meric address. Note that the TC bit may be affected by the BIT, BITT, CMPR,
LST1, NORM, RTC, and STC instructions.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BBNZ PRG650 ;If TC = 1, 650 is loaded into the program

;counter ; otherwise, the program counter

;is incremented by 2.



 Branch on TC Bit Equal to Zero BBZ
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Syntax [ label ] BBZ pma [,{ind} [, next ARP ]]

Operands 0 ≤ pma ≤ 65536
0 ≤ next ARP ≤ 7

Execution If test/control (TC) status bit = 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR (ARP) and ARP as specified.

Affected by TC bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
1 0 0 0

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if TC = 0. Otherwise, con-
trol passes to the next instruction. No AR or ARP modification occurrs if noth-
ing is speciified in those fields. The pma can be either a symbolic or a numeric
address. Note that the TC bit is affected by the BIT, BITT, CMPR, LST1,
NORM, RTC, and STC instructions.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BBZ PRG325 ;If TC = 0, 325 is loaded into the program

;counter; otherwise, the program counter
;is incremented by 2.



BC Branch on Carry

4-48  Assembly Language Instructions

Syntax [ label ] BC pma [,{ind} [, next ARP ]]

Operands 0 ≤ pma ≤ 65536
0 ≤ next ARP ≤ 7

Execution If carry bit C = 1:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR (ARP) and ARP as specified.

Affected by TC bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 See Section 4.1

Encoding
1 1 1 0

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address if the carry bit C is high.
Otherwise, control passes to the next instruction. Note that no AR or ARP mod-
ification occurs if nothing is specified in those fields. The pma can be either a
symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instruc-
tions. The carry bit is not affected by execution of BC, BNC, or nonarithmetic
instructions.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BC PRG512 ;If the carry bit C = 1, 512 is loaded into the

;program counter. Otherwise, the PC is

;incremented by 2.



 Branch if Accumulator Greater Than or Equal to Zero BGEZ
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Syntax [ label ] BGEZ pma [ , {ind} [ , next ARP ]]

Operands 0 ≤ pma ≤ 65536
0 ≤ next ARP ≤ 7

Execution If (ACC) ≥ 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR (ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
0 1 0 0

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are greater than or equal to zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if nothing
is specified in those fields. The pma can be either a symbolic or a numeric ad-
dress.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BGEZ PRG217 ;217 is loaded into the program counter if the
;accumulator is greater than or equal to zero.



BGZ Branch if Accumulator Greater Than Zero

4-50  Assembly Language Instructions

Syntax [ label ] BGZ pma [ , {ind} [ , next ARP ] ]

Operands 0 ≤ pma ≤ 65536
0 ≤ next ARP ≤ 7

Execution If (ACC) > 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR (ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
0 0 0 1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are greater than zero. Otherwise, control passes to the next
instruction. Note that no AR or ARP modification occurs if nothing is specified
in those fields. The pma can be either a symbolic or a numeric address.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BGZ PRG342 ;342 is loaded into the program counter if the
;accumulator is greater than or equal to zero.



 Branch on I/O Status Equal to Zero BIOZ

4-51

Syntax [ label ] BIOZ pma [ , {ind} [ , next ARP ] ]

Operands 0 ≤ pma ≤ 65536
0 ≤ next ARP ≤ 7

Execution If BIO = 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR (ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
1 0 1 0

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control then
passes to the designated program memory address (pma) if the BIO pin is low.
Otherwise, control passes to the next instruction. Note that no AR or ARP mod-
ification occurs if nothing is specified in those fields. The pma can be either a
symbolic or a numeric address.

BIOZ in conjunction with the BIO pin can be used to test if a peripheral is ready
to send or receive data. Polling the BIO pin by using BIOZ may be preferable
to an interrupt when executing time-critical loops.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BIOZ PRG64 ;If the BIO  pin is active (low), then a branch
;to location 64 occurs.



BIT Test Bit

4-52  Assembly Language Instructions

Syntax Direct: [ label ] BIT dma , bit code 
Indirect : [ label ] BIT {ind} , bit code [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
0 ≤ bit code ≤ 15

Execution (PC) +  → PC
(dma bit at bit address (15-bit code) ) → TC.

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0Bit Code

11 0 0 1 Bit Code

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

Description The BIT instruction copies the specified bit of the data memory value to the TC
bit of status register ST1. Note that the BITT, CMPR, LST1, and NORM instruc-
tions also affect the TC bit in status register ST1. A bit code value is specified
that corresponds to a certain bit address in the instruction, as given by the fol-
lowing table:

Bit Code
Bi t Address 11 10  9  8  

(LSB) 0 1 1 1 1
1 1 1 1 0

 2 1 1 0 1
3 1 1 0 0
4 1 0 1 1
5 1 0 1 0
6 1 0 0 1
7 1 0 0 0
8 0 1 1 1
9 0 1 1 0

10 0 1 0 1
11 0 1 0 0
12 0 0 1 1
13 0 0 1 0
14 0 0 0 1

(MSB) 15 0 0 0 0

Words 1

Cycles



 Test Bit BIT
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Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example BIT 0h, 8h ;(DP = 488)

or
BIT *,8 ;If current auxiliary register contains 0F400h.

Before Instruction After Instruction

0h

7E98h7E98h
Data

Memory
F400h

1h

Data
Memory
F400h

TC TC



BITT Test Bit Specified by T Register

4-54  Assembly Language Instructions

Syntax Direct: [ label ] BITT dma
Indirect: [ label ] BITT {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma bit at bit address (15–T register(3–0) )) → TC

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 1 1

1 110

Description The BITT instruction copies the specified bit of the data memory value to the
TC bit of status register ST1. Note that the BIT, CMPR, LST1, and NORM
instructions also affect the TC bit in status register ST1. The bit address is spe-
cified by a bit code value contained in the LSBs of the T register, as given in
the following table:

Bit Code

Bi t Address 3 2 1 0

(LSB) 0 1 1 1 1
1 1 1 1 0
2 1 1 0 1
3 1 1 0 0
4 1 0 1 1
5 1 0 1 0
6 1 0 0 1
7 1 0 0 0
8 0 1 1 1
9 0 1 1 0

10 0 1 0 1
11 0 1 0 0
12 0 0 1 1
13 0 0 1 0
14 0 0 0 1

(MSB) 15 0 0 0 0

Words 1

Cycles



 Test Bit Specified by T Register BITT
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Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example BITT 0h ;Value in T register points to bit 14 of 

;data word (DP = 240).

or
BITT * ;If current auxiliary register contains 7800h.

Before Instruction After Instruction

4DC8h 4DC8h

1h

Data
Memory
7800h

Data
Memory
7800h

TC TC

1h1hTR TR

0h



BLEZ Branch if Accumulator Less Than or Equal to Zero

4-56  Assembly Language Instructions

Syntax [ label ] BLEZ pma [,{ind} [, next ARP ]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP ≤ 7

Execution If (ACC) ≤ 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 See Section 4.1

Encoding
0 0 1 0

Program Memory Address

Description The current auxiliary register and ARP are modified as specified.  Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are less than or equal to zero.  Otherwise, control passes to
the next instruction.  Note that no AR or ARP modification occurs if nothing is
specified in those fields.  The pma can be either a symbolic or a numeric ad-
dress.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BLEZ PRG63 ;63 is loaded into the program counter if the

;accumulator is less than or equal to zero.



 Block Move From Data Memory to Data Memory BLKD

4-57

Syntax Direct: [ label ] BLKD  dma1  , dma2 
Indirect: [ label ] BLKD  dma1  ,{ind} [, next ARP]

Operands 0 ≤ dma1 ≤ 65535
0 ≤ dma2 ≤127
0 ≤ next ≤ ARP ≤ 7

Execution  (PC) + 2 → PC
(PFC) → MCS
dma1 → PFC

If (repeat counter) ≠ 0:
Then (dma1, addressed by PFC) → dma2,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 → PFC,
(repeat counter) – 1 → repeat counter.

Else (dma1, addressed by PFC) → dma2
Modify AR(ARP) and ARP as specified.
(MCS) → PFC



BLKD Block Move From Data Memory to Data Memory

4-58  Assembly Language Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0Direct:

Indirect:

Encoding

1 1 0 Data Memory Address

Data Memory Address 1

1 1 1 1 11 1 0

Data Memory Address 1

See Section 4.1

1

1

Description Consecutive memory words are moved from a source data memory block to
a destination data memory block.  The starting address (lowest) of the source
block is defined by the second word of the instruction.  The starting address
of the destination block is defined by either the dma contained in the opcode
(for direct addressing) or the current AR (for indirect addressing).  In the indi-
rect addressing mode, both the current AR and ARP may be modified in the
usual manner.  In the direct addressing mode, dma2 is used as the destination
address for the block move but is not modified upon repeated executions of
the instruction.  Thus, the contents of memory at the dma2 address will be the
same as the contents of memory at the last dma1 address in a repeat se-
quence.

RPT or RPTK must be used with the BLKD instruction, in the indirect addres-
sing mode, if more than one word is to be moved.  The number of words to be
moved is one greater than the number contained in the repeat counter RPTC
at the beginning of the instruction.  At the end of this instruction, the RPTC con-
tains zero and, if using indirect addressing, AR(ARP) will be modified to con-
tain the address after the end of the destination block.  Note that the source
and destination blocks do not have to be entirely on-chip or off-chip. However,
BLKD cannot be used to transfer data from a memory-mapped register to any
other location in data memory.

The PC points to the instruction following BLKD after execution.  Interrupts are
inhibited during a BLKD operation used with RPT or RPTK.

Words  2

Cycles



 Block Move From Data Memory to Data Memory BLKD
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Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Source data in on-chip RAM:
3 3+d 3+2p 3+d+2p 3 3+d

Source data in external memory:
4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d

Cycle Timings for a Repeat Execution

Source data in on-chip RAM:
2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd

Source data in external memory:
3+n+nd 2+n+ nd 3+n+nd+2p 2+2n+2nd+ 2p 3+n+nd 2+2n+2nd

Example RPTK 2
BLKD 0F400h,*+ ;If current auxiliary register contains 1030.

Before Instruction After Instruction

7F98h 7F98h
Data

Memory
62464

Data
Memory
62464

0FFE6h 0FFE6h
Data

Memory
62465

Data
Memory
62465

9522h 9522h
Data

Memory
62466

Data
Memory
62466

dma1

Before Instruction After Instruction

7F98h 7F98h
Data

Memory
1030

Data
Memory

1030

9315h 0FFE6h
Data

Memory
1031

Data
Memory

1031

2531h 9522h
Data

Memory
1032

Data
Memory

1032

dma2



BLKP Block Move From Program Memory to Data Memory

4-60  Assembly Language Instructions

Syntax Direct: [ label ] BLKP pma, dma 
Indirect: [ label ] BLKP pma,{ind}[, next ARP]

Operands 0 ≤ pma ≤ 65535
0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 2 → PC
(PFC) → MCS
pma → PFC

If (repeat counter) ≠ 0:
Then (pma, addressed by PFC) → dma,
Modify AR(ARP) and ARP as specified,
(PFC)  + 1 → PFC,
(repeat counter) – 1 → repeat counter.

Else (pma, addressed by PFC) → dma
Modify AR(ARP) and ARP as specified.
(MCS) → PFC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0Direct:

Indirect:

Encoding

1 1 0 Data Memory Address

1 1 1 1 11 1 0 See Section 4.1

0

0

Program Memory Address

Program Memory Address

Description Consecutive memory words are moved from a source program memory block
to a destination data memory block.  The starting address (lowest) of the
source block is defined by the second word of the instruction.  The starting ad-
dress of the destination block is defined by either the dma contained in the op-
code (for direct addressing) or the current AR (for indirect addressing).  In the
indirect addressing mode, both the ARP and the current AR may be modified
in the usual manner.  In the direct addressing mode, dma is used as the des-
tination address for the block move but is not modified by repeated executions
of the instruction.  Thus, the contents of memory at the dma address will be
the same as the contents of memory at the last pma address in a repeat se-
quence.

RPT or RPTK must be used with the BLKP instruction if more than one word
is to be moved.  The number of words to be moved is one greater than the num-
ber contained in the repeat counter RPTC at the beginning of the instruction.
At the end of this instruction, the RPTC contains zero and, if  using indirect ad-
dressing, AR(ARP) will be modified to contain the address after the end of the
destination block.  Note that source and destination blocks do not have to be
entirely on-chip or off-chip.



 Block Move From Program Memory to Data Memory BLKP

4-61

The PC points to the instruction following BLKP after execution.  Interrupts are
inhibited during a BLKP operation.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an on-
chip ROM location will be read.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Table in on-chip RAM:

3 3+d 4+2p 4+d+2p 4 4+d
Table in on-chip ROM:

4 4+d 4+2p 4+d+2p 4 4+d
Table in external memory:

4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p

Cycle Timings for a Repeat Execution

Table in on-chip RAM:

2+n 2+n+nd 2+n+2p 2+n+nd+2p — —
Table in on-chip ROM:

3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd
Table in external memory:

3+n+np 2+2n+nd+np 3+n+np+2p 2+2n+nd+ np+2p 3+n+n p 2+2n+nd+np



BLKP Block Move From Program Memory to Data Memory

4-62  Assembly Language Instructions

Example RPTK 2
BLKP 65120,*+ ;If current auxiliary register contains 2048.

Before Instruction After Instruction

0A089h 0A089h
Data

Memory
65120

Data
Memory
65120

2DCEh 2DCEh
Data

Memory
65121

Data
Memory
65121

3A9Fh 3A9Fh
Data

Memory
65122

Data
Memory
65122

pma

Before Instruction After Instruction

1234h 0A089h
Data

Memory
2048

Data
Memory

2048

2005h 2DCEh
Data

Memory
2049

Data
Memory

2049

0E98Ch 3A9Fh
Data

Memory
2050

Data
Memory

2050

dma



 Branch if Accumulator Less Than Zero BLZ

4-63

Syntax [ label ] BLZ pma [,{ind} [, next ARP]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP  ≤ 7

Execution If (ACC) < 0:
Then  pma → PC;

Else  (PC) + 2 → PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Encoding
1 1 1 1 10 0 1 1 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified.  Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are less than zero.  Otherwise, control passes to the next
instruction.  Note that no AR or ARP modification occurs when nothing is speci-
fied in those fields.  The pma can be either a symbolic or a numeric address.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BLZ PRG481 ;481 is loaded into the program counter if

;the accumulator is less than zero.



BNC Branch on No Carry

4-64  Assembly Language Instructions

Syntax [ label ] BNC pma [,{ind} [, next ARP]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP ≤ 7

Execution If carry bit C = 0:
Then  pma → PC;

Else  (PC) + 2 → PC.
Modify AR(ARP) and ARP as specified.

Affected by C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Encoding
0 1 0 1 11 1 1 1 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified.  Control then
passes to the designated program memory address if the carry bit C is low.
Otherwise, control passes to the next instruction.  Note that no AR or ARP
modification occurs when nothing is specified in those fields.  The pma can be
either a symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift instruc-
tions.  The carry bit is not affected by execution of the BC, BNC, or  nonarith-
metic instructions.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p 3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BNC PRG325 ;If the carry bit C = 0, 325 is loaded into
;program counter. Otherwise, the PC is the
;incremented by 2.



 Branch if No Overflow BNV
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Syntax [ label ] BNV pma [,{ind} [, next ARP]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP ≤ 7

Execution If overflow OV status bit = 0:
Then pma → PC;

Else (PC) + 2 → PC and 0 → OV.
Modify AR(ARP) and ARP as specified.

Affects OV; affected by OV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Encoding
1 1 1 1 10 1 1 See Section 4.11

Program Memory Address

Description The current auxiliary register and ARP are modified as specified.  Control then
passes to the designated program memory address (pma) if the OV (overflow
flag) is clear.  Otherwise, the OV is cleared, and control passes to the next
instruction.  Note that no AR or ARP modification occurs if nothing is specified
in those fields.  The pma can be either a symbolic or a numeric address.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BNV PRG315 ;315 is loaded into the program counter if the
;overflow flag is clear.  OV is cleared.



BNZ Branch if Accumulator Not Equal to Zero

4-66  Assembly Language Instructions

Syntax [ label ] BNZ pma [,{ind} [, next ARP]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP ≤ 7

Execution If (ACC) ≠ 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Encoding
1 1 1 1 10 1 0 See Section 4.1

Program Memory Address

1

Description The current auxiliary register and ARP are modified as specified.  Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are not equal to zero.  Otherwise, control passes to the next
instruction.  Note that no AR or ARP modification occurs if nothing is specified
in those fields.  The pma can be either a symbolic or a numeric address.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BNZ PRG320 ;320 is loaded into the program counter if the
;accumulator does not equal zero.



 Branch on Overflow BV
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Syntax [ label ] BV pma [,{ind} [, next ARP]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP ≤ 7

Execution If overflow (OV) status bit = 1:
Then pma → PC and 0 → OV;

Else (PC) + 2 → PC.
Modify AR(ARP) and ARP as specified.

Affects OV; affected by OV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Encoding
1 1 1 1 10 0 0 See Section 4.10

Program Memory Address

Description The current auxiliary register and ARP are modified as specified, and the over-
flow flag is cleared.  Control passes to the designated program memory ad-
dress (pma) if the OV (overflow flag) is set.  Otherwise, control passes to the
next instruction.  Note that no AR or ARP modification occurs if nothing is spe-
cified in those fields.  The pma can be either a symbolic or a numeric address.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BV PRG610 ;If an overflow has occurred since the overflow
;flag was last cleared, then 610 is loaded in
;the program counter and OV is cleared.



BZ Branch if Accumulator Equals Zero

4-68  Assembly Language Instructions

Syntax [ label ] BZ pma [,{ind} [, next ARP]]

Operands 0 ≤ pma  ≤ 65535
0 ≤ next ARP ≤ 7

Execution If (ACC) = 0:
Then pma → PC;

Else (PC) + 2 → PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Encoding
1 1 1 1 10 1 1 0 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified.  Control then
passes to the designated program memory address (pma) if the contents of
the accumulator are equal to zero.  Otherwise, control passes to the next
instruction.  Note that no AR or ARP modification occurs if nothing is specified
in those fields.  The pma can be either a symbolic or a numeric address.

Words 2

Cycles Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example BZ PRG102 ;102 is loaded into the program counter if
;the accumulator is equal to zero.



 Call Subroutine Indirect CALA

4-69

Syntax [ label ] CALA

Operands None

Execution (PC) + 1 → TOS
(ACC(15–0)) → PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0Encoding
1 1 0 0 01 1 1 0 0 0 0 0 01 1

Description The current program counter is incremented and pushed onto the top of the
stack.  Then, the contents of the lower half of the accumulator are loaded into
the PC.  The carry bit on the TMS320C25 is unaffected by this  instruction.

The CALA instruction is used to perform computed subroutine calls.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Destination on-chip RAM:

2 2 2+p 2+p 2 2
Destination on-chip ROM:

3 3  3+p  3+p 3 3
Destination external memory:

3+p 3+p 3+2p 3+2p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable



CALA Call Subroutine Indirect

4-70  Assembly Language Instructions

Example CALA

Before Instruction After Instruction

25h 83hPC

32h

PC

Stack

75h

84h

49h

0h

0h

0h

0h

Stack

49h

0h

0h

0h

26h

32h

75h

84h

83h 83hACC ACC



 Call Subroutine CALL

4-71

Syntax [ label ] CALL pma [,{ind} [, next ARP]]

Operands 0 ≤ pma ≤ 65535
0 ≤ next ARP ≤ 7

Execution (PC) + 2 → TOS
pma → PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 11 1 1 0

Encoding

Program Memory Address

See Section 4.1

Description The current auxiliary register and ARP are modified as specified, and the PC
(program counter) is incremented by two and pushed onto the top of the stack.
The specified program memory address (pma) is then loaded into the PC.
Note that no AR or ARP modification occurs if nothing is specified in those
fields.  The pma can be either a symbolic or a numeric address.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3  3+2p  3+2p 3 3
Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable



CALL Call Subroutine

4-72  Assembly Language Instructions

Example CALL   PRG109

Before Instruction After Instruction

33h 6DhPC

71h

pma

PC

Stack

48h

16h

80h

0h

0h

0h

0h

Stack

80h

0h

0h

0h

35h

71h

48h

16h



 Complement Accumulator CMPL
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Syntax [ label ] CMPL

Operands None

Execution (PC) + 1 → PC
(ACC) → ACC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 1 0 0 1 1 1

Encoding

Description The contents of the accumulator are replaced with its logical inversion (1s
complement).

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example CMPL

Before Instruction After Instruction

0F7982513h 0867DAEChXACC ACC

C C

X



CMPR Compare Auxiliary Register With Auxiliary Register AR0

4-74  Assembly Language Instructions

Syntax [ label ] CMPR constant

Operands 0 ≤ CM ≤ 3

Execution (PC) + 1 → PC
Compare AR(ARP) to AR0, placing result in TC bit of status register ST1.

Affects TC.
Not affected by SXM; does not affect SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 1 0 1 0 0

Encoding

CM

Description The CMPR instruction performs the following comparisons dependent on the
value of CM:

If CM = 00, test if AR(ARP) = AR0

If CM = 01, test if AR(ARP) < AR0

If CM = 10, test if AR(ARP) > AR0

If CM = 11, test if AR(ARP) ≠ AR0

If the result of a test is true, a one is loaded into the TC status bit. Otherwise,
TC is loaded with a zero. The auxiliary registers are treated as unsigned inte-
gers in the comparison.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example CMPR 2 ;(ARP = 4)

Before Instruction After Instruction

0FFFFh 0FFFFh

0hTC TC

7FFFh7FFFhAR4 AR4

1h

AR0 AR0



 Configure Block as Data Memory CNFD
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Syntax [ label ] CNFD

Operands None

Execution (PC) + 1 → PC
0 → RAM configuration control (CNF) status bit

Affects CNF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 0 0 1 0 0

Encoding

Description On-chip RAM block 0 is configured as data memory. The block is mapped to
locations 512 through 767 in data memory. This instruction is the complement
of the CNFP instruction and sets the CNF bit in status register ST1 to a zero.
CNF is also loaded by the CNFP and LST1 instructions.

On the TMS320C25, the next two instruction fetches immediately following a
CNFD or CNFP instruction use the old value of CNF.

On the TMS320C26 this instruction is not valid and is undefined.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example CNFD ;A zero is loaded into the CNF status bit,
;thus configuring block B0 as data memory
;(see memory maps in Section 3.4).



CNFP Configure Block as Program Memory

4-76  Assembly Language Instructions

Syntax [ label ] CNFP

Operands  None

Execution (PC) + 1 → PC
1 → RAM configuration control (CNF) status bit

 Affects CNF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 0 0 1 0 1

Encoding

Description On-chip RAM block 0 is configured as program memory. The block is mapped
to locations 65280 through 65535 in program memory space. This instruction
is the complement of the CNFD instruction and sets the CNF bit in status regis-
ter ST1 to a one. CNF is also loaded by the CNFD and LST1 instruction.

Configuring this block as program memory allows the use of the program
counter as an address generator to access data from on-chip RAM. Used in
conjunction with the repeat instructions, this allows two data memory locations
to be addressed simultaneously, one from the auxiliary registers and one from
the program counter. Instructions that take advantage of this feature are the
MAC, MACD, BLKD, and BLKP instructions.

On the TMS320C25, the next two instruction fetches immediately following a
CNFD or CNFP instruction use the old value of CNF.

On the TMS320C26, this instruction is not valid and is undefined.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example CNFP ;The CNF bit is set to a logic 1, thus
;configuring block B0 as program memory
;(see memory maps in Section 3.4).



 Configure Blocks as Data/Program Memory (TMS320C26 Only) CONF

4-77

Syntax [ label ] CONF constant

Operands  o ≤ constant ≤ 3

Execution (PC) + 1 → PC
Constant → program/data memory configuration mode status bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 1 1 1 1 CNF1 CNF0

Encoding

Description The two low-order CNF bits of the instruction word are copied into the CNF0
and CNF1 field of status register ST1. The CNF0 and CNF1 status bits config-
ure the on-chip RAM blocks into program or data memory. The bit combina-
tions and their meanings are shown below in the CONF mode decoding table.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

TMS320C26 1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

TMS320C26 n n n+p n+p n n

CONF Mode Decoding Table

CNF1 CNF0 B0 B1 B2 B3

0 0 data data data data

0 1 program data data data

1 0 program program data data

1 1 program program data program

Example CONF 2 ;Status register bit CNF1 is set to 1 and
;Status register bit CNF0 is set to 0, thus
;configuring the blocks B0 and B1 as
;program memory, B2 and B3 as data memory.



DINT Disable Interrupt

4-78  Assembly Language Instructions

Syntax [ label ] DINT

Operands None

Execution (PC) + 1 → PC
1 → interrupt mode (INTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 0 0 0 0 1

Encoding

Description The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts are
disabled immediately after the DINT instruction executes. Note that the LST
instruction does not affect INTM.

The unmaskable interrupt, RS, is not disabled by this instruction, and the inter-
rupt mask register (IMR) is unaffected. Interrupts are also disabled by a reset.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1  1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example DINT ;Maskable interrupts are disabled, and INTM is
;set to one.



 Data Move in Data Memory DMOV
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Syntax Direct: [ label ] DMOV  dma
Indirect: [ label ] DMOV {ind} [,<next ARP>]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → dma + 1

Affected by CNF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 1 0

110 0

Description The contents of the specified data memory address are copied into the con-
tents of the next higher address. DMOV works only within the on-chip data
RAM blocks B0, B1, and B2. It works within block B0 if it is configured as data
memory and the data move function is continuous across the boundaries of
blocks B0 and B1; that is, it works for locations 512 to 1023. The data move
function cannot be used on external data memory. If used on external data
memory or memory-mapped registers, DMOV will read the specified memory
location but will perform no other operations.

When data is copied from the addressed location to the next higher location,
the contents of the addressed location remain unaltered.

The data move function is useful in implementing the z–1 delay encountered
in digital signal processing. The DMOV function is included in the LTD and
MACD instructions (see the LTD and MACD instructions or more information).

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



DMOV Data Move in Data Memory

4-80  Assembly Language Instructions

Example DMOV DAT8 ;(DP=4)

or
DMOV * ;If current auxiliary register contains 520.

Before Instruction After Instruction

43h 43h

2h 43h

Data
Memory

520

Data
Memory

520

Data
Memory

521

Data
Memory

521



 Enable Interrupt EINT

4-81

Syntax [ label ] EINT

Operands None

Execution (PC) + 1 → PC
0 → interrupt-mode (INTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 0 0 0 0 0

Encoding

Description The interrupt-mode flag (INTM) in the status register is cleared to logic 0.
Maskable interrupts are enabled after the instruction following EINT executes.
This allows an interrupt service routine to re-enable interrupts and execute a
RET instruction before any other pending interrupts are processed. Note that
the LST instruction does not affect INTM. (See the DINT instruction for further
information.)

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example EINT ;Unmasked interrupts are enabled, and INTM is
;set to zero.



FORT Format Serial Port Registers

4-82  Assembly Language Instructions

Syntax [ label ] FORT constant

Operands Constant = 0 or 1

Execution (PC) + 1 → PC
Constant → format (FO) status bit

Affects FO.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 0 1 1

Encoding

FO1

Description The format (FO) status bit is loaded by the instruction with the LSB specified
in the instruction. The FO bit is used to control the formatting of the transmit
and receive shift registers of the serial port. If FO = 0, the registers are config-
ured to receive/transmit 16-bit words. If FO = 1, the registers are configured
to receive/transmit 8-bit bytes. FO is set to zero on a reset.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example FORT 1 ;The FO status bit is loaded with 1, making the
;bit length of the serial port 8 bits.



 Idle Until Interrupt IDLE

4-83

Syntax [ label ] IDLE

Operands None

Execution TMS320C25 :

(PC) + 1 → PC
0 → interrupt mode (INTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 01 1 1 0 0 0 1 1 1 1 1

Encoding

Description The IDLE instruction forces the program being executed to wait until an inter-
rupt or reset occurs. The PC is incremented only once, and the device remains
in an idle state until interrupted. On the TMS320C25, INTM is automatically set
to zero. Execution of the IDLE instruction causes the TMS320C25 to enter the
powerdown mode (see subsection 3.6.7). The on-chip timer continues to oper-
ate normally after execution of an IDLE instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

(Interrupt) destination on-chip ROM
3 (min waits for INT)

(Interrupt) destination external memory:
3+2p (min waits for INT)

Cycle Timings for a Repeat Execution

not repeatable

Example IDLE ;The processor idles until a reset or
;unmasked interrupt occurs.



IN Input Data From Port

4-84  Assembly Language Instructions

Syntax Direct: [ label ] IN  dma,PA
Indirect: [ label ] IN {ind}, PA [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
0 ≤ port address PA ≤ 15

Execution (PC) + 1 → PC
Port address → address bus A3–A0
0 → address bus A15–A4
Data bus D15–D0 → dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0Port Address

11 0 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

Port Address

Description The IN instruction reads a 16-bit value from one of the external I/O ports into
the specified data memory location. The IS line goes low to indicate an I/O ac-
cess, and the STRB, R/W, and READY timings are the same as for an external
data memory read.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2+i  2+d+i 2+p+i 3+d+p+i 2+i 2+d+i

Cycle Timings for a Repeat Execution

1+n+ni 2n+nd+ni 1+n+p+ni 1+2n+nd+p+
ni

1+n+ni 2n+nd+ni

Example IN STAT,PA5 ;Read in word from peripheral on port address
;5. Store in data memory location STAT.

or
LRLK 1,520 ;Load AR1 with decimal 520.
LARP 1 ;Load ARP with decimal 520.
IN *–,PA1,0 ;Read in word from peripheral on port address

;1. Store in data memory location 520.
;Decrement AR1 to 519.
;Load the ARP with 0.



 Load Accumulator With Shift LAC

4-85

Syntax Direct: [ label ] LAC  dma [, shift ]
Indirect : [ label ] LAC {ind} [, shift [, next ARP ]]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
0 ≤ shift ≤ 15 (defaults to 0)

Execution (PC) + 1 → PC
(dma) x 2 shift → ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0Shift

10 0 1 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

Shift

Description The contents of the specified data memory address are left-shifted and loaded
into the accumulator. During shifting, low-order bits are zero-filled. High-order
bits are sign-extended if SXM = 1 and zeroed if SXM = 0.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example LAC DAT6,4 ;(DP = 8)

or
LAC *,4 ;If current auxiliary register contains 1030.

Before Instruction After Instruction

1h 1h

12345678h 10h

Data
Memory

1030

Data
Memory

1030

X XACC ACC

C C



LACK Load Accumulator Immediate Short

4-86  Assembly Language Instructions

Syntax [ label ] LACK constant

Operands 0 ≤ constant ≤ 255

Execution (PC) + 1 → PC
8-bit positive constant → ACC

Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 1 0 8-Bit Constant

Description The 8-bit constant is loaded into the accumulator right-justified. The upper 24
bits of the accumulator are zeroed (that is, sign extension is suppressed).

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example LACK 15h

Before Instruction After Instruction

31h 15hX XACC ACC

C C



 Load Accumulator With Shift Specified by T Register LACT

4-87

Syntax Direct: [ label ] LACT dma
Indirect: [ label ] LACT {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution  (PC) + 1 → PC
(dma) x 2T register(3–0) → ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 1 0

100 0

Description The LACT instruction loads the accumulator with a data memory value that has
been left-shifted. The left-shift is specified by the four LSBs of the T register,
resulting in shift options from 0 to 15 bits. Using the T register’s contents as
a shift code provides a variable shift mechanism.

LACT may be used to denormalize a floating-point number if the actual expo-
nent is placed in the four LSBs of the T register and the mantissa is referenced
by the data memory address. Note that this method of denormalization can be
used only when the magnitude of the exponent is four bits or less.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



LACT Load Accumulator With Shift Specified by T Register

4-88  Assembly Language Instructions

Example LACT DAT1 ;(DP = 6)

or
LACT * ;If current auxiliary register contains 769.

Before Instruction After Instruction

1376h 1376h

3014h 3014h

Data
Memory

769

Data
Memory

769

XACC ACC

C C

X 13760h98F7EC83h

T T



 Load Accumulator Long Immediate With Shift LALK

4-89

Syntax [ label ] LALK constant [, shift ]

Operands 16-bit constant
0 ≤ shift ≤ 15 (defaults to 0)

Execution (PC) + 2 → PC
Constant x 2shift → ACC

If SXM = 1:
Then –32768 ≤ constant ≤ 32767.

If SXM = 0:
Then 0 ≤ constant ≤ 65535.

Affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0

Encoding
shift 0 0 0 0 00 0 1

16-Bit Constant

Description The left-shifted 16-bit immediate value is loaded into the accumulator. The
shifted 16-bit constant is sign-extended if SXM  = 1; otherwise, the high-order
bits of the accumulator (past the shift) are set to zero. Note that the MSB of the
accumulator can be set only if SXM = 1 and a negative number is loaded. The
shift count is optional and defaults to zero.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example 1 LALK 0F794h,8 ;(SXM=1):

Before Instruction After Instruction

12345678h 0FFF79400hX XACC ACC

C C

Example 2 LALK 0F794h,8 ;(SXM=0):

Before Instruction After Instruction

12345678h 0F79400hX XACC ACC

C C



LAR Load Auxiliary Register

4-90  Assembly Language Instructions

Syntax Direct: [ label ] LAR AR   dma
Indirect:[ label ] LAR AR, {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ auxiliary register AR ≤ 7
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → auxiliary register AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0

0

AR

AR

Description The contents of the specified data memory address are loaded into the desig-
nated auxiliary register (AR).

The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If an
auxiliary register is not being used for indirect addressing, LAR and SAR en-
able the register to be used as an additional storage register, especially for
swapping values between data memory locations without affecting the con-
tents of the accumulator.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p n 2n+nd



 Load Auxiliary Register LAR

4-91

Example 1 LAR AR0,DAT10 ;(DP = 4)

Before Instruction After Instruction

18h 18h

6h 18h

Data
Memory

522

Data
Memory

522

AR0 AR0

Example 2 LARP AR4
LAR AR4,*–

Before Instruction After Instruction

32h 32h

617h 32h

Data
Memory

617

Data
Memory

617

AR4 AR4

Note:

LAR, in the indirect addressing mode, ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.



LARK Load Auxiliary Register Immediate Short

4-92  Assembly Language Instructions

Syntax [ label ] LARK  AR, constant

Operands 0 ≤ constant  ≤ 255
0 ≤ auxiliary register AR ≤ 7

Execution (PC) + 1 → PC
8-bit constant → auxiliary register AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 8-Bit Constant

Encoding
0 AR

Description The 8-bit positive constant is loaded into the designated auxiliary register (AR)
right-justified and zero-filled (that is, sign-extension suppressed).

LARK is useful for loading an initial loop counter value into an auxiliary register
for use with the BANZ instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example LARK AR0,15

Before Instruction After Instruction

0h 15hAR0 AR0



 Load Auxiliary Register Pointer LARP

4-93

Syntax [ label ] LARP constant

Operands  0 ≤ constant ≤ 7

Execution (PC) + 1 → PC
(ARP) → ARB
Constant → ARP

Affects ARP and ARB.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 10 1 0 1 0 0 0 1

Encoding

ARP

Description The auxiliary register pointer is loaded with the contents of the three LSBs of
the instruction (a 3-bit constant identifying the desired auxiliary register). The
old ARP is copied to the ARB field of status register ST1. ARP can also be mo-
dified by the LST, LST1, and MAR instructions, as well as any instruction that
is used in the indirect addressing mode.

The LARP instruction is a subset of MAR; that is, the opcode is the same as
MAR in the indirect addressing mode. The following instruction has the same
effect as LARP:

MAR *, constant

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example LARP 1 ;Any succeeding instructions will use auxiliary
;register AR1 for indirect addressing.



LDP Load Data Memory Page Pointer
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Syntax Direct: [ label ] LDP  dma
Indirect: [ label ] LDP {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
Nine LSBs of (dma) → data page pointer register (DP) status bits

Affects DP.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 1 0

100 0

Description The nine LSBs of the contents of the addressed data memory location are
loaded into the DP (data memory page pointer) register. The DP and 7-bit data
memory address are concatenated to form 16-bit data memory addresses.
The DP may also be loaded by the LST and LDPK instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p n 2n+nd

Example LDP DAT127 ;(DP = 511)

or
LDP * ;If current auxiliary register contains 65535.

Before Instruction After Instruction

0FEDCh 0FEDCh

0DChDP DP1FFh

Data
Memory
65535

Data
Memory
65535



 Load Data Memory Page Pointer Immediate LDPK
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Syntax [ label ] LDPK constant

Operands 0 ≤ constant ≤  511

Execution (PC) + 1 → PC
Constant → data memory page pointer (DP) status bits

Affects DP.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 0 DP

Description The DP (data memory page pointer) register is loaded with a 9-bit constant.
The DP and 7-bit data memory address are concatenated to form 16-bit direct
data memory addresses. DP ≥ 8 specifies external data memory. DP = 4
through 7 specifies on-chip RAM blocks B0 or B1. Block B2 is located in the
upper 32 words of page 0. DP may also be loaded by the LST and LDP instruc-
tions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example LDPK 64 ;The data page pointer is set to 64.



LPH Load High P Register
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Syntax Direct: [ label ] LPH  dma
Indirect: [ label ] LPH {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → P register (31 – 16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 1 1

100 1

Description The P register high-order bits are loaded with the contents of data memory.
The low-order P register bits are unaffected.

The LPH instruction is particularly useful for restoring the high-order bits of the
P register after subroutine calls or interrupts.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example LPH DAT0 ;(DP = 4)

or
LPH * ;If current auxiliary register contains 512.

Before Instruction After Instruction

0F79Ch 0F79Ch
Data

Memory
512

30079844h F79C9844hP P

Data
Memory

512



 Load Auxiliary Register Long Immediate LRLK
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Syntax [ label ] LRLK  AR, constant

Operands 0 ≤ auxiliary register ≤ 7
0 ≤ constant ≤ 65535

Execution (PC) + 2 → PC
Constant → AR

Not affected by SXM; does not affect SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0

Encoding
0 0 0 0 0 0 0

16-Bit Constant

AR0

Description The 16-bit immediate value is loaded into the auxiliary register specified by the
AR field. The specified constant must be an unsigned integer, and its value is
not affected by SXM.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example LRLK AR3,3080h

Before Instruction After Instruction

7F80h 3080hAR3 AR3



LST Load Status Register ST0
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Syntax Direct: [ label ] LST  dma
Indirect: [ label ] LST {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → status register ST0

Affects ARP, OV, OVM, and DP.
Does not affect INTM or ARB.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 0 0

000 0

Description Status register ST0 is loaded with the addressed data memory value. Note that
the INTM (interrupt mode) bit is unaffected by LST. ARB is also unaffected
even though a new ARP is loaded. If a next ARP value is specified via the indi-
rect addressing mode, the specified value is ignored. Instead, ARP is loaded
with the value contained within the addressed data memory word.

The LST instruction is used to load status register ST0 after interrupts and sub-
routine calls. The ST0 contains the status bits: OV (overflow flag) bit, OVM
(overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary register pointer),
and DP (data memory page pointer). These bits were stored (by the SST
instruction) in the data memory word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARP OV OVM 1 INTM DP

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p n 2n+nd
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Example 1 LARP 0
LST *,1 ;The data memory word addressed by the contents

;of auxiliary register AR0 is loaded into
;status register ST0, except for the INTM bit.
;Note that even though a next ARP value is
;specified, that value is ignored, and even
;though a new ARP is loaded, the old ARP is not
;loaded into ARB.

Example 2 LST 60h ;(DP = 0)

Before Instruction After Instruction

2404h 2404h

6E00h 2604h

Data
Memory

96

Data
Memory

96

ST0 ST0

0580h 0580hST1 ST1

Example 3 LARP AR4 ;(AR4 = 3FFh)
LST *–

Before Instruction After Instruction

0CE06h 0CE06h

0FC04h 0CC06h

Data
Memory

1023

Data
Memory

1023

ST0 ST0

0E780h 0E780hST1 ST1

3FFh 3FEhAR4 AR4

Example 4 LARP AR4 ;(AR4= 3FFh)
LST *–,1

Before Instruction After Instruction

0EE04h 0EE04h

0EE00h 0EE04h

Data
Memory

1023

Data
Memory

1023

ST0 ST0

0F780h 0F780hST1 ST1

3FFh 3FEhAR4 AR4



LST1 Load Status Register ST1
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Syntax Direct: [ label ] LST1 dma
Indirect: [ label ] LST1 {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → status register ST1
(ARB) → ARP

Affects ARP, ARB, CNF, TC, SXM, XF, FO, TXM, and PM.
Affects C, HM, and FSM (TMS320C25)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 0 1

000 1

Description Status register ST1 is loaded with the data memory value. The bits of the data
memory value, which are loaded into ARB, are also loaded into ARP to facili-
tate context switching. Note that if a next ARP value is specified via the indirect
addressing mode, the specified value is ignored.

LST1 is used to load status bits after interrupts and subroutine calls. ST1 con-
tains these status bits: ARB (auxiliary register pointer buffer), CNF (RAM con-
figuration control), TC (test/control), SXM (sign-extension mode), XF (external
flag), FO (serial port format), TXM (transmit mode), and the PM (product regis-
ter shift mode). ST1 on the TMS320C25 also contains status bits: C (carry),
HM (hold mode), and FSM (frame synchronization mode). The bits loaded into
status register ST1 from the data memory word are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARB CNF † C FSMTC SXM PMTXMFOXFHM1 1†

† On the TMS320C26, bits 12 and 7 hold CONF0 and CNF1, respectively (see the CONF
instruction for decoding).

Words 1
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Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p n 2n+nd

Example 1 LARP 3
LST1 *– ;The data memory word addressed by the contents

;of auxiliary register AR3 replaces the status
;bits of status register ST1, and AR3 is
;decremented.

Example 2 LST1 61h ;(DP = 0)

Before Instruction After Instruction

0580h 0580h

0AC00h 0C00h

Data
Memory

97

Data
Memory

97

ST0 ST0

0581h 0580hST1 ST1

Example 3 LARP AR4 ;(AR4 = 3FEh)
LST1 *–

Before Instruction After Instruction

4F90h 4F90h

0FC04h 5C04h

Data
Memory

1022

Data
Memory

1022

ST0 ST0

0E780h 4F90hST1 ST1

3FEh 3FDhAR4 AR4



LST1 Load Status Register ST1
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Example 4 LARP AR4 ;(AR4 = 3FEh)
LST1 *–,1

Before Instruction After Instruction

6190h 6190h

0FE04h 7E04h

Data
Memory

1022

Data
Memory

1022

ST0 ST0

0593h 6190hST1 ST1

3FEh 3FDhAR4 AR4
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Syntax Direct: [ label ] LT  dma
Indirect: [ label ] LT {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → T register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 0 0

011 0

Description The T register is loaded with the contents of the specified data memory ad-
dress (dma). The LT instruction may be used to load the T register in prepara-
tion for multiplication. See the LTA, LTD, LTP, LTS, MPY, MPYK, MPYA, MPYS,
and MPYU instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example LT DAT24 ;(DP = 8)

or
LT * ;If current auxiliary register contains 1048.

Before Instruction After Instruction

62h 62h

3h 62h

Data
Memory

1048

Data
Memory

1048

T T



LTA Load T Register and Accumulate Previous Product
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Syntax Direct: [ label ] LTA dma
Indirect: [ label ] LTA {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → T register
(ACC) + (shifted P register) → ACC

Affects OV; affected by OVM and PM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 0 1

011 1

Description The T register is loaded with the contents of the specified data memory ad-
dress (dma). The contents of the product register, shifted as defined by the PM
status bits, are added to the accumulator, with the result left in the accumulator.

The function of the LTA instruction is included in the LTD instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd
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Example LTA DAT36 ;(DP = 6, PM = 0)

or
LTA * ;If current auxiliary register contains 804.

Before Instruction After Instruction

3h 62h

0Fh 0Fh

Data
Memory

804

Data
Memory

804

P P

5h 14hACC ACC

62h 62h

T T

X 0

C C



LTD Load T Register, Accumulate Previous Product, and Move Data

4-106  Assembly Language Instructions

Syntax Direct: [ label ] LTD dma
Indirect: [ label ] LTD {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → T register
(dma) → dma + 1
(ACC) + (shifted P register) → ACC

Affects OV; affected by OVM and PM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 1 1

111 1

Description The T register is loaded with the contents of the specified data memory ad-
dress (dma). The contents of the P register, shifted as defined by the PM status
bits, are added to the accumulator, and the result is placed in the accumulator.
The contents of the specified data memory address are also copied to the next
higher data memory address.

This instruction is valid for blocks B1 and B2 and is also valid for block B0 if
block B0 is configured as data memory. The data move function is continuous
across the boundary of blocks B0 and B1 but cannot be used with external data
memory or memory-mapped registers. This function is described under the
instruction DMOV. Note that if used with external data memory, the function
of LTD is identical to that of LTA.

Words 1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd
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Example LTD DAT126 ;(DP = 7, PM = 0)

or
LTD * ;If current auxiliary register contains 1022.

Before Instruction After Instruction

3h 62h

0Fh 0Fh

Data
Memory

1022

Data
Memory

1022

P P

5h 14hACC ACC

62h 62h

T T

X 0

C C

Data
Memory

1023

Data
Memory

1023
0h 62h



LTP Load T Register and Store P Register in Accumulator

4-108  Assembly Language Instructions

Syntax Direct: [ label ] LTP dma
Indirect: [ label ] LTP {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → T register
(shifted P register) → ACC

Affected by PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 1 0

111 0

Description The T register is loaded with the contents of the addressed data memory loca-
tion, and the product register is stored in the accumulator. The shift at the out-
put of the product register is controlled by the PM status bits.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example LTP DAT36 ;(DP = 6, PM = 0)

or
LTP * ;If current auxiliary register contains 804.

Before Instruction After Instruction

3h 62h

0Fh 0Fh

Data
Memory

804

Data
Memory

804

P P

5h FhACC ACC

62h 62h

T T

X X

C C



 Load T Register and Subtract Previous Product LTS
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Syntax Direct: [ label ] LTS dma
Indirect: [ label ] LTS [ind] [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(dma) → T register
(ACC) – (shifted P register) → ACC

Affects OV; affected by PM and OVM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 1

101 1

Description The T register is loaded with the contents of the addressed data memory loca-
tion. The contents of the product register, shifted as defined by the contents
of the PM status bits, are subtracted from the accumulator. The result is left
in the accumulator.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



LTS Load T Register and Subtract Previous Product

4-110  Assembly Language Instructions

Example LTS DAT36 ;(DP = 6, PM = 0)

or
LTS * ;If current auxiliary register contains 804.
 

Before Instruction After Instruction

3h 62h

0Fh 0Fh

Data
Memory

804

Data
Memory

804

P P

5h 0FFFFFFF6hACC ACC

62h 62h

T T

X 0

C C
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Syntax Direct: [ label ] MAC pma, dma
Indirect: [ label ] MAC pma, {ind} [, next ARP ]

Operands 0 ≤ pma ≤ 65535
0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution TMS320C25:

(PC) + 2 → PC
(PFC) → MCS
(pma) → PFC

If (repeat counter) ≠ 0:
Then (ACC) + (shifted P register) → ACC,
(dma) → T register,
(dma) × (pma, addressed by PFC) → P register,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 → PFC,
(repeat counter) – 1 → repeat counter.

Else (ACC) + (shifted P register) → ACC
(dma) → T register
(dma) × (pma, addressed by PFC) → P register
Modify AR(ARP) and ARP as specified.
(MCS) → PFC

Affects C and OV; affected by OVM and PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

Encoding

Program Memory Address

1 1 0 1 Data Memory AddressDirect:

0 1 0 1 1

Program Memory Address

1 1 0 1 See Section 4.1Indirect:

Description The MAC instruction multiplies a data memory value (specified by dma) by a
program memory value (specified by pma). It also adds the previous product,
shifted as defined by the PM status bits, to the accumulator.

The data and program memory locations on the TMS320C25 may be any non-
reserved, on-chip or off-chip memory locations. If the program memory is
block B0 of on-chip RAM, then the CNF bit must be set to one. Note that the
upper eight bits of the program memory address should be set to 0FFh in order
to address B0 program RAM, and the upper six bits of dma should be set to
0 to address a location below 1024. When used in the direct addressing mode,
the dma cannot be modified during repetition of the instruction.



MAC Multiply and Accumulate

4-112  Assembly Language Instructions

When the MAC instruction is repeated, the program memory address con-
tained in the PC/PFC is incremented by one during its operation. This enables
accessing a series of operands in memory. MAC is useful for long sum-of-
products operations, since MAC becomes a single-cycle instruction once the
RPT pipeline is started.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Table in on-chip RAM:

3 4+d 4+2p 5+d+2p 4 5+d

Table in on-chip ROM:

4 5+d 4+2p 5+d+2p 4 5+d

Table in external memory:

4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p

Cycle Timings for a Repeat Execution

Table in on-chip RAM:

 2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd

Table in on-chip ROM:

3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd

Table in external memory:

3+n+np 3+2n+nd
+np

3+n+np
+2p

3+2n+nd+p
+2p

3+n+np 3+2n+nd
+np
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Example SPM 3 ;Select a shift-right-by-6 mode on PR output.

;on PR output.

CNFP ;Configure block B0 as program memory

;(0FFXXh).

LARP 1 ;Use AR1 to address block B1.

LRLK 1,768 ;Point to lowest location in RAM block B1

RPTK 255 ;Compute 256 sum-of-product operations.

MAC 0FF00h,*+ ;Multiply/accumulate and increment AR1.

The following example shows register and memory contents before and after
the third step repeat loop:

Before Instruction After Instruction

302h 303h

0FDh 0FCh

Data
Memory

770

Data
Memory

770

RPT RPT

723EC41h 7250266hACC ACC

23h 23h

AR1 AR1

X 0

C C

Program
Memory
65282

Program
Memory
65282

0FAAAh 0FAAAh

0FF02h 0FF03hPC/PFC PC/PFC

458972h 0FFFF453EhP P



MACD Multiply and Accumulate With Data Move

4-114  Assembly Language Instructions

Syntax Direct: [ label ] MACD pma, dma
Indirect: [ label ] MACD pma, {ind} [, next ARP]

Operands 0 ≤ pma ≤ 65535
0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution TMS320C25:

(PC) + 2 → PC
(PFC) → MCS
(pma) → PFC

If (repeat counter) ≠ 0:
Then (ACC) + (shifted P register) → ACC,
(dma) → T register,
(dma) × (pma, addressed by PFC) → P register,
(dma) → dma + 1,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 → PFC,
(repeat counter) – 1 → repeat counter.

Else (ACC) + (shifted P register) → ACC
(dma) → T register,
(dma) × (pma, addressed by PFC) → P register
(dma) → dma + 1,
Modify AR(ARP) and ARP as specified.
(MCS) → PFC

Affects C and OV; affected by OVM and PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

Encoding

Program Memory Address

1 1 0 0 Data Memory AddressDirect:

0 1 0 1 1

Program Memory Address

1 1 0 0 See Section 4.1Indirect:

Description The MACD instruction multiplies a data memory value (specified by dma) by
a program memory value (specified by pma). It also adds the previous product,
shifted as defined by the PM status bits, to the accumulator.

The data and program memory locations on the TMS320C25 may be any non-
reserved, on-chip or off-chip memory locations. If the program memory is
block B0 of on-chip RAM, then the CNF bit must be set to one. Note that the
upper eight bits of the program memory address should be set to 0FFh in order
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to address B0 program RAM, and the upper six bits of dma should be set to
0 to address a location below 1024. When used in the direct addressing mode,
the dma cannot be modified during repetition of the instruction. If MACD ad-
dresses one of the memory-mapped registers or external memory as a data
memory location, the effect of the instruction will be that of a MAC instruction
(see the DMOV instruction description).

MACD functions in the same manner as MAC, with the addition of data move
for block B0, B1, or B2. Otherwise, the effects are the same as for MAC. This
feature makes MACD useful for applications such as convolution and trans-
versal filtering.

When the MACD instruction is repeated, the program memory address con-
tained in the PC/PFC is incremented by one during its operation. This enables
accessing a series of operands in memory. When used with RPT or RPTK,
MACD becomes a single-cycle instruction, once the RPT pipeline is started.

Note:

The data move function for MACD can occur only within the data blocks
B0 – B2 of the on-chip RAM. B3 can also be used for the TMS320C26.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Table in on-chip RAM:

3 4+d 4+2p 5+d+2p 4 5+d

Table in on-chip ROM:

4 5+d 4+2p 5+d+2p 4 5+d

Table in external memory:

4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p

Cycle Timings for a Repeat Execution

Table in on-chip RAM:

 2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd

Table in on-chip ROM:

3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd

Table in external memory:

3+n+np 3+2n+nd
+np

3+n+np
+2p

3+2n+nd+np
+2p

3+n+np 3+2n+nd
+np



MACD Multiply and Accumulate With Data Move
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Example SPM 0 ;Select no shift mode on PR output.
SOVM ;Set overflow mode.
CNFP ;Configure block B0 as program memory

;(0FFXXh).
LARP 3 ;Use AR3 to address block B1.
LRLK 3,1023 ;Point to highest location in RAM block B1.
RPTK 255 ;Compute 1 sample of a length-256 

;convolution.
MACD 0FF00h,*– ;Multiply/accumulate, shift data word in

;block B1 and decrement AR3.

The following example shows register and memory contents before and after
the third step repeat loop:

Before Instruction After Instruction

3FDh 3FCh

0FDh 0FCh

Data
Memory

1021

Data
Memory

1021

RPT

723EC41h 76975B3hACC

23h 23h

AR1

X 0

C C

Program
Memory
65282

0FAAAh 0FAAAh

0FF02h 0FF03hPC/PFC

458972h 0FFFF453EhP

Data
Memory

1022

Data
Memory

1022
7FCh 23h

RPT

AR1

PC/PFC

Program
Memory
65282

P

ACC



 Modify Auxiliary Register MAR

4-117

Syntax Direct: [ label ] MAR dma
Indirect: [ label ] MAR {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
Modifies ARP, AR(ARP) as specified by the indirect addressing field (acts as
a NOP in direct addressing).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 0 1

010 1

Description The MAR instruction acts as a no-operation instruction in the direct addressing
mode. In the indirect addressing mode, the auxiliary registers and the ARP are
modified; however, no use is made of the memory being referenced. MAR is
used only to modify the auxiliary registers or the ARP. If a next ARP is specified,
the old ARP is copied to the ARB field of status register ST1. Note that any op-
eration that MAR performs can also be performed with any instruction that sup-
ports indirect addressing. ARP may also be loaded by an LST instruction.

In the direct addressing mode, MAR is a NOP. Also, the instruction LARP is
a subset of MAR (that is, MAR *,4 performs the same function as LARP 4).

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n



MAR Modify Auxiliary Register

4-118  Assembly Language Instructions

Example 1 MAR *,1 ;Load the ARP with 1.

Before Instruction After Instruction

0 1ARP ARP

Example 2 MAR *– ;Decrement current auxiliary register (in this

;case, AR1).

Before Instruction After Instruction

35h 34hAR1 AR1

Example 3 MAR *+,5 ;Increment current auxiliary register (AR1) and

;load ARP with 5.

Before Instruction After Instruction

34h 35hAR1 AR1

1 5ARP ARP



 Multiply MPY

4-119

Syntax Direct: [ label ] MPY dma
Indirect: [ label ] MPY {ind} [, next ARP]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(T register) × (dma) → P register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 0

001 0

Description The contents of the T register are multiplied by the contents of the addressed
data memory location. The result is placed in the P register.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example MPY DAT13 ;(DP = 8)

or
MPY * ;If current auxiliary register contains 1037 .

Before Instruction After Instruction

6h 6hT T

36h 2AhP P

7h 7h
Data

Memory
1037

Data
Memory

1037



MPYA Multiply and Accumulate Previous Product

4-120  Assembly Language Instructions

Syntax Direct: [ label ] MPYA dma
Indirect: [ label ] MPYA {ind} [, next ARP]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(ACC) + (shifted P register) → ACC
(T register) × (dma) → P register

Affects C and OV; affected by OVM and PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 0

101 0

Description The contents of the T register are multiplied by the contents of the addressed
data memory location. The result is placed in the P register. The previous prod-
uct, shifted as defined by the PM status bits, is also added to the accumulator.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example MPYA DAT13 ;(DP = 6, PM = 0)

or
MPYA * ;If current auxiliary registe r contains 781 .

Before Instruction After Instruction

6h 6h

36h 2Ah

Data
Memory

781

Data
Memory

781

P P

54h 8AhACC ACC

7h 7h

T T

X 0

C C



 Multiply Immediate MPYK

4-121

Syntax [ label ] MPYK constant

Operands –4096 ≤ constant ≤  4095
–212 ≤ constant ≤ 212 – 1

Execution (PC) + 1 → PC
(T register) × constant → P register

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 13-Bit Constant

Encoding

Description The contents of the T register are multiplied by the signed, 13-bit constant. The
result is loaded into the P register. The immediate field is right-justified and
sign-extended before multiplication, regardless of SXM.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example MPYK –9

Before Instruction After Instruction

7h 7hT T

2Ah 0FFFFFFC1hP P



MPYS Multiply and Subtract Previous Product

4-122  Assembly Language Instructions

Syntax Direct: [ label ] MPYS dma
Indirect: [ label ] MPYS {ind} [, next ARP]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(ACC) – (shifted P register) → ACC
(T register) × (dma) → P register

Affects C and OV; affected by OVM and PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 1

101 1

Description The contents of the T register are multiplied by the contents of the addressed
data memory location. The result is placed in the P register. The previous prod-
uct, shifted as defined by the PM status bits, is also subtracted from the accu-
mulator.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example MPYS DAT13 ;(DP = 6, PM = 0)

or
MPYS * ;If current auxiliary register contains 781.

Before Instruction After Instruction

6h 6h

36h 2Ah

Data
Memory

781

Data
Memory

781

P P

54h 1EhACC ACC

7h 7h

T T

X 0

C C



 Multiply Unsigned MPYU

4-123

Syntax Direct: [ label ] MPYU dma
Indirect : [ label ] MPYU {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
Unsigned (T register) × unsigned (dma) → P register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0

11 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 1 1

111 1

Description The unsigned contents of the T register are multiplied by the unsigned con-
tents of the addressed data memory location. The result is placed in the P reg-
ister. Note that the multiplier acts as a 17 ×17-bit signed multiplier for this
instruction, with the MSB of both operands forced to zero.

The shifter at the output of the P register will always invoke sign-extension on
the P register when PM = 3 (right-shift by 6 mode). Therefore, this shift mode
should not be used if unsigned products are desired.

The MPYU instruction is particularly useful for computing multiple-precision
products, such as when multiplying two 32-bit numbers to yield a 64-bit prod-
uct.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd



MPYU Multiply Unsigned

4-124  Assembly Language Instructions

Example MPYU DAT16 ;(DP = 4)

or
MPYU * ;If current auxiliary register contains 528 .

Before Instruction After Instruction

0FFFFh 0FFFFh

1h 0FFFE0001h

Data
Memory

528

Data
Memory

528

P P

0FFFFh 0FFFFh

T T



 Negate Accumulator NEG

4-125

Syntax [ label ] NEG

Operands None

Execution (PC) + 1 → PC
(ACC) × –1 → ACC

Affects OV; affected by OVM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 0 0 0 1 1

Description The contents of the accumulator are replaced with its arithmetic complement
(2s  complement). The  OV bit  is set when  taking the  NEG of 80000000h. If
OVM  =  1,  the   accumulator  contents   are  replaced   with  7FFFFFFFh.  If
OVM = 0, the result is 80000000h. The carry bit C on the TMS320C2x is reset
to zero by this instruction for all nonzero values of the accumulator and is set
to one if the accumulator equals zero.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example NEG

Before Instruction After Instruction

0FFFFF228h 0DD8hACC ACCX 0

C C



NOP No Operation

4-126  Assembly Language Instructions

Syntax [ label ] NOP

Operands None

Execution (PC) + 1 → PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0

Encoding

1 1 0 1 0 1 0 0 0 0 0 0 0 0

Description No operation is performed. The NOP instruction affects only the PC. NOP
functions in the same manner as the MAR instruction in the direct addressing
mode; NOP has the same opcode as MAR in the direct addressing mode with
dma = 0.

The NOP instruction is useful as a pad or temporary instruction during program
development.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example NOP



 Normalize Contents of Accumulator NORM

4-127

Syntax [ label ] NORM {ind} (TMS320C25)

Operands None

Execution TMS320C25:

(PC) + 1 → PC
If (ACC) = 0:

Then 1 → TC;
Else, if (ACC(31)) XOR (ACC(30)) = 0:

Then 0 → TC,
(ACC) × 2 → ACC,
Modify AR(ARP) as specified;

Else 1 → TC.

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 1 0 0 1 0Modify AR

Description The NORM instruction is provided for normalizing a signed number that is con-
tained in the accumulator. Normalizing a fixed-point number separates it into
a mantissa and an exponent. To do this, the magnitude of a sign-extended
number must be found. ACC bit 31 is exclusive-ORed with ACC bit 30 to deter-
mine if bit 30 is part of the magnitude or part of the sign extension. If they are
the same, they are both sign bits, and the accumulator is left-shifted to elimi-
nate the extra sign bit.

The AR(ARP) is modified as specified to generate the magnitude of the expo-
nent. It is assumed that AR(ARP) is initialized before the normalization begins.
The default modification of the AR(ARP) is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the accumulator. Although using NORM with
RPT or RPTK does not cause execution of NORM to fall out of the repeat loop
automatically when the normalization is complete, no operation is performed
for the remainder of the repeat loop. Note that NORM functions on both posi-
tive and negative 2s-complement numbers.

Words 1

Cycles



NORM Normalize Contents of Accumulator

4-128  Assembly Language Instructions

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example 1 31-Bit Normalization:

LARP 1 ;Use AR1 for exponent storage.

LARK 1,0 ;Clear out exponent counter.

LOOP NORM *+ ;One bit is normalized.

BBZ LOOP ;If TC = 0, magnitude not found yet.

Example 2 15-Bit Normalization:

ARP 1 ;Use AR1 to store the exponent.

LARK 1,15 ;Initialize exponent counter.

RPTK 14 ;15-bit normalization is specified

;(yielding a 4-bit exponent and

;16-bit mantissa).

NORM *– ;NORM automatically stops shifting

;when the first significant magnitude

;bit is found, performing NOPs for

;the remainder of the repeat loop.

The first method is used to normalize a 32-bit number and yields a 5-bit expo-
nent magnitude. The second method is used to normalize a 16-bit number and
yields a 4-bit exponent magnitude. If the number requires only a small amount
of normalization, the first method may be preferable to the second. This results
because Example 1 runs only until normalization is complete. Example 2 al-
ways executes all 15 cycles of the repeat loop. Specifically, Example 1 is more
efficient if the number requires five or less shifts. If the number requires six or
more shifts, Example 2 is more efficient.



 OR With Accumulator OR

4-129

Syntax Direct: [ label ] OR dma
Indirect: [ label ] OR {ind} [, next ARP]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(ACC(15–0)) OR dma → ACC(15–0)
(ACC(31–16)) → ACC(31–16)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 0 1

011 1

Description The low-order bits of the accumulator are ORed with the contents of the ad-
dressed data memory location. The high-order bits of the accumulator are
ORed with all zeros. Therefore, the upper half of the accumulator is unaffected
by this instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example OR DAT8 ;(DP = 8)

or
OR* ;Where current auxiliary register contains

;1032.

Before Instruction After Instruction
Data

Memory
1032

Data
Memory
1032

100002h 10F002hACC ACC

0F000h 0F000h

X

C C



ORK OR Immediate With Accumulator With Shift

4-130  Assembly Language Instructions

Syntax [ label ] ORK constant  [,shift ]

Operands 16-bit constant
0 ≤ shift ≤ 15 (defaults to 0)

(PC) + 2 → PC
(ACC(30–0)) OR [constant x 2shift ] → ACC(30–0)
(ACC(31)) → ACC(31)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0

Encoding

16-Bit Constant

Shift 0 0 0 0 1 0 1

Description The left-shifted 16-bit immediate constant is ORed with the accumulator. The
result is left in the accumulator. Low-order bits below and high-order bits above
the shifted value are treated as zeroes. The corresponding bits of the accumu-
lator are unaffected. Note that the most significant bit of the accumulator is not
affected, regardless of the shift code value.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example ORK 0FFFFh,8

Before Instruction After Instruction

12345678h 12FFFF78hACC ACCX X

C C

Execution



 Output Data to Port OUT

4-131

Syntax Direct: [ label ] OUT dma, PA
Indirect: [ label ] OUT {ind}, PA [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
0 ≤ port address PA ≤ 15
(PC) + 1 → PC
Port address PA → address bus A3 – A0
0 → address bus A15 – A4
(dma) → data bus D15 – D0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0

11 1 1 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

Port Address

Port Address

Description The OUT instruction writes a 16-bit value from a data memory location to the
specified I/O port. The IS line goes low to indicate an I/O access, and the
STRB, R/W, and READY timings are the same as for an external data memory
write. OUT is a single-cycle instruction when in the PI/DI memory configuration
(see Appendix D).

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1+i  2+d+i  2+p+i 3+d+p+i 1+i 2+d+i

Cycle Timings for a Repeat Execution

n+ni 2n+nd+ni 1+n+p+ni 1+2n+nd+p 
+ni

n+ni 2n+nd+ni

Example OUT 78h,7 ;(DP = 4) Output data word stored in data
;memory location 78h to peripheral on port
;address 7.

or
OUT *,0Fh ;Output data word referenced by current

;auxiliary register to peripheral on port
;address 0Fh.

Execution



PAC Load Accumulator With P Register

4-132  Assembly Language Instructions

Syntax [ label ] PAC

Operands None

(PC) + 1 → PC
(shifted P register) → ACC

Affected by PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 1 0 1 0 0

Description The contents of the P register are loaded into the accumulator, shifted as spe-
cified by the PM status bits.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example PAC ;(PM = 0)

Before Instruction After Instruction

23h 144hACC

144h 144h

X

C

P P

ACC X

C

Execution



 Pop Top of Stack to Low Accumulator POP

4-133

Syntax [ label ] POP

Operands None

(PC) + 1 → PC
(TOS) → ACC(15 – 0)
0 → ACC(31 –16)
Pop stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

0 1 1 1 0 0 0 0 1 1 1 0 1

Description The contents of the top of the stack (TOS) are copied to the low accumulator,
and the stack is popped after the contents are copied. The upper half of the
accumulator is set to all zeros.

The hardware stack is a last-in, first-out stack with eight (TMS320C2x) loca-
tions. Any time a pop occurs, every stack value is copied to the next higher
stack location, and the top value is removed from the stack. After a pop, the
bottom two stack words will have the same value. Because each stack value
is copied, if more than seven pops (due to POP, POPD, or RET instructions)
occur before any pushes occur, all levels of the stack contain the same value.
No provision exists to check stack underflow.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example POP

Before Instruction After Instruction

45h

82h 45hACC ACCX 0

C C

16h
7h

33h
42h
56h

37h
61h

Stack 16h
7h

33h
42h
56h
37h

61h
61h

Stack

Execution



POPD Pop Top of Stack to Data Memory

4-134  Assembly Language Instructions

Syntax Direct: [ label ] POPD dma
Indirect: [ label ] POPD {ind} [, next ARP]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(TOS) → dma
POP stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0

10 1 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 0

101 0

Description The value from the top of the stack is transferred into the data memory location
specified by the instruction. The values are also popped in the lower seven
locations (TMS320C2x) of the stack. The hardware stack is described in the
previous instruction POP. The lowest stack location remains unaffected. No
provision exists to check stack underflow.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n+nd n+p 1+n+nd+p n  n+nd

Example POPD DAT100 ;(DP = 8)

or
POPD * ;If current auxiliary register contains 1124.

Before Instruction After Instruction

92h

55h 92h

72h
8h

44h
81h
75h

32h
0AAh

Stack 72h
8h

44h
81h
75h
32h

0AAh
0AAh

Stack

Data
Memory
1124

Data
Memory
1124

Execution



 Push Data Memory Value Onto Stack PSHD

4-135

Syntax Direct: [ label ] PSHD dma
Indirect: [ label ] PSHD {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP →  7

(dma) → TOS
(PC) + 1 → PC
Push all stack locations down one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 0 0

010 0

Description The value from the data memory location specified by the instruction is trans-
ferred to the top of the stack. The values are also pushed down in the lower
seven locations (TMS320C2x) of the stack, as described in the instruction
PUSH. The lowest stack location is lost.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n  1+n+nd

Example PSHD DAT127 ;(DP = 3)

or
PSHD * ;If current auxiliary register contains 511.

Before Instruction After Instruction

2h

65h 65h

33h
78h
99h
42h
50h

0h
0h

Stack 65h
2h

33h
78h
99h
42h

50h
0h

Stack

Data
Memory

511

Data
Memory

511

Execution



PUSH Push Low Accumulator Onto Stack

4-136  Assembly Language Instructions

Syntax [ label ] PUSH

Operands None

(PC) + 1 → PC
Push all stack locations down one level.
(ACC(15–0)) → TOS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 1 1 1 0 0

Description The contents of the lower half of the accumulator are copied onto the top of
the hardware stack. The stack is pushed down before the accumulator value
is copied.

The hardware stack is a last-in, first-out stack with eight locations
(TMS320C2x). If more than eight pushes (due to CALA, CALL, PSHD, PUSH,
or TRAP instructions) occur before a pop, the first data values written will be
lost with each succeeding push.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example PUSH:

Before Instruction After Instruction

2h

7h 7h

5h
3h

0h
12h
86h

54h
3Fh

Stack 7h
2h
5h

3h
0h

12h

86h
54h

Stack

ACC X

C

ACC X

C

Execution



 Reset Carry Bit RC

4-137

Syntax [ label ] RC

Operands None

(PC) + 1 → PC
0 → carry bit C in status register ST1

Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

0 1 1 1 0 0 0 1 1 0 0 0 0

Description The carry bit C in status register ST1 is reset to logic zero. The carry bit may
also be loaded directly by the LST1 and SC instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example RC ;The carry bit C is reset to logic zero.

Execution



RET Return From Subroutine

4-138  Assembly Language Instructions

Syntax [ label ] RET

Operands None

(TOS) → PC
Pop stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

0 1 1 1 0 0 0 1 0 0 1 1 0

Description The contents of the top stack register are copied into the program counter. The
stack is then popped one level. RET is used with CALA and CALL for subrou-
tines.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Destination on-chip RAM:

2 2 2 + p 2 + p 2 2

Destination on-chip ROM:

3 3 3 + p 3 + p 3 3

Destination external memory:

3 + p 3 + p 3 + 2p 3 + 2p 3 + p 3 + p

Cycle Timings for a Repeat Execution

not repeatable

Example RET
Before Instruction After Instruction

37h

96h 37h

45h
75h
21h
3Fh
45h

6Eh
6Eh

Stack 45h
75h
21h
3Fh
45h
6Eh

6Eh
6Eh

Stack

PC PC

Execution



 Reset Serial Port Frame Synchronization Mode RFSM

4-139

Syntax [ label ] RFSM

Operands None

(PC) + 1 → PC
0 → FSM status bit in status register ST1

Affects FSM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 0 1 1 0

Description The RFSM status bit resets the FSM status bit to logic zero. In this mode, exter-
nal FSR pulses are not required to initiate the receive operation for each word
received, but rather only one FSR pulse is required to initiate a continuous
mode of operation. The same holds true for FSX when TXM = 0. After the first
FSR/FSX pulse, these inputs are then in a don’t care state. If TXM = 1, FSX
is pulsed the first time DXR is loaded but remains low thereafter. See Section
3.9 for further details on the operation of the serial port. FSM may also be
loaded by the LST1 and SFSM instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example RFSM ;FSM is reset, putting the serial port in a
;mode of operation where frame
;synchronization pulses are not required.
;This allows a continuous bit stream to be
;transmitted/received without FSX/FSR pulses
;every 8/16 bits.

Execution



RHM Reset Hold Mode

4-140  Assembly Language Instructions

Syntax [ label ] RHM

Operands None

(PC) + 1 → PC
0 → HM status bit in status register ST1

Affects HM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 1 0 0 0

Description The RHM instruction clears internal execution when acknowledging an active
HOLD (HM = 1). When HM = 0, the processor may continue execution out of
internal memory but puts its external interface in a high-impedance state.

HM can also be loaded by the LST1 and SHM instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example RHM ;HM is reset, implementing the TMS320C25 hold
;mode for on-chip program execution.

Execution



 Rotate Accumulator Left ROL

4-141

Syntax [ label ] ROL

Operands None

(PC) + 1 → PC
(ACC(31)) → C
(ACC(30 – 0)) → ACC(31 –1)
(C, before ROL) → ACC(0)

Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 0 1 0 0

Description The ROL instruction rotates the accumulator left one bit. The MSB is shifted
into the carry bit, and the value of the carry bit from before the execution of the
instruction is shifted into the LSB.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example ROL

Before Instruction After Instruction

0B0001234h 060002469hACC ACC1 1

C C

Execution



ROR Rotate Accumulator Right

4-142  Assembly Language Instructions

Syntax [ label ] ROR

Operands None

(PC) + 1 → PC
(ACC(0)) → C
(ACC(31–1)) → ACC(30–0)
(C, before ROR) → ACC(31)

Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 0 1 0 1

Description The ROR instruction rotates the accumulator right one bit. The LSB is shifted
into the carry bit, and the value of the carry bit from before the execution of the
instruction is shifted into the MSB.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example ROR

Before Instruction After Instruction

0B0001234h 5800091AhACC ACC0 0

C C

Execution



 Reset Overflow Mode ROVM

4-143

Syntax [ label ] ROVM

Operands None

(PC) + 1 → PC
0 → OVM status bit in status register ST0

Affects OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 0 0 0 1 0

Description The OVM status bit is reset to logic zero, which disables the overflow mode.
If an overflow occurs with OVM reset, the OV (overflow flag) is set, and the
overflowed result is placed in the accumulator.

OVM may also be loaded by the LST and SOVM instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example ROVM ;The overflow mode bit OVM is reset, disabling
;the overflow mode on any subsequent arithmetic
;operations.

Execution



RPT Repeat Instructions as Specified by Data Memory Value

4-144  Assembly Language Instructions

Syntax Direct: [ label ] RPT dma
Indirect: [ label ] RPT {ind} [,next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(dma(7–0)) → RPTC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 1

101 1

Description The eight LSBs of the addressed data memory value are loaded into the repeat
counter (RPTC). This causes the following instruction to be executed one time
more than the number loaded into the RPTC (provided that it is a repeatable
instruction). Interrupts are masked out until the next instruction has been
executed the specified number of times. (Interrupts cannot be allowed during
the RPT/next instruction sequence, because the RPTC cannot be saved dur-
ing a context switch.) The RPTC counter is cleared on a RS.

RPT and RPTK are especially useful for repeating instructions, such as BLKP,
BLKD, IN, MAC, MACD, NORM, OUT, TBLR, TBLW, and others.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2 + d

Cycle Timings for a Repeat Execution

not repeatable

Example RPT DAT127 ;(DP = 31)
SFR
or
RPT * ;If current auxiliary register contains 4095.
SFR

Before Instruction After Instruction

12345678h 12345hACC ACC

0Ch 0Ch

X 0

C C

Data
Memory

4095

Data
Memory

4095

Execution



 Repeat Instructions as Specified by Immediate Value RPTK

4-145

Syntax [ label ] RPTK constant

Operands 0 ≤ constant ≤ 255

(PC) + 1 → PC
Constant → RPTC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 0 1 1 8–Bit Constant

Description The 8-bit immediate value is loaded into the RPTC (repeat counter). This
causes the following instruction to be executed one time more than the number
loaded into the RPTC (provided that it is a repeatable instruction). Interrupts
are masked out until the next instruction has been executed the specified num-
ber of times. (Interrupts cannot be allowed during the RPT/next instruction se-
quence, because the RPTC cannot be saved during a context switch.) The
RPTC is cleared on a RS.

RPT and RPTK are especially useful for repeating instructions, such as BLKP,
BLKD, IN, MAC, MACD, NORM, OUT, TBLR, TBLW, and others.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example LRLK AR2,200h ;Load AR2 with the address of X.
LARP 2
ZAC ;Clear the accumulator.
MPYK 0 ;Clear the P register.
RPTK 2 ;Repeat next instruction 3 times.
SQRA *+ ;Compute X**2 + Y**2 + Z**2.
APAC

Execution



RSXM Reset Sign-Extension Mode

4-146  Assembly Language Instructions

Syntax [ label ] RSXM

Operands None

(PC) + 1 → PC
0 → SXM sign-extension mode status bit

Affects SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 0 0 1 1 0

Description The RSXM instruction resets the SXM status bit to logic zero, which sup-
presses sign-extension on shifted data memory values for the following arith-
metic instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and
SUBT.

The RSXM instruction affects the definition of the SFR instruction. SXM may
also be loaded by the LST1 and SSXM instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example RSXM ;SXM is reset, disabling sign-extension on
;subsequent instructions.

Execution



 Reset Test/Control Flag RTC

4-147

Syntax [ label ] RTC

Operands None

(PC) + 1 → PC
0 → TC test/control flag in status register ST1

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 0 0 1 0

Description The TC (test/control) flag in status register ST1 is reset to logic zero. TC can
also be loaded by the LST1 and STC instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example RTC ;TC (test/control) flag is reset to logic zero.

Execution



RTXM Reset Serial Port Transmit Mode

4-148  Assembly Language Instructions

Syntax [ label ] RTXM

Operands None

(PC) + 1 → PC
0 → TXM transmit mode status bit

Affects TXM mode bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 0 0 0 0 0

Description The RTXM instruction resets the TXM status bit, which configures the serial
port transmit section in a mode where it is controlled by an FSX (external fram-
ing pulse). The transmit operation is started when an external FSX pulse is ap-
plied. TXM may also be loaded by the LST1 and STXM instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example RTXM ;TXM is reset, configuring FSX as an input.

Execution



 Rest External Flag RXF

4-149

Syntax [ label ] RXF

Operands None

(PC) + 1 → PC
0 → XF external flag pin and status bit

Affects XF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 0 1 1 0 0

Description The XF pin and XF status bit in status register ST1 are reset to logic zero. XF
may also be loaded by the LST1 and SXF instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example RXF ;XF pin and status bit are reset to logic zero.

Execution



SACH Store High Accumulator With Shift

4-150  Assembly Language Instructions

Syntax Direct: [ label ] SACH dma [, shift ]
Indirect: [ label ] SACH {ind} [, shift [, next ARP ]]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
0 ≤ shift ≤ 7 (defaults to 0)

(PC) + 1 → PC
16 MSBs of (ACC) x 2shift → dma

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0

10 1 1 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

1

1

Shift

Shift

Description The SACH instruction copies the entire accumulator into a shifter, where it
shifts the entire 32-bit number anywhere from 0 to 7 bits on the TMS320C2x.
It then copies the upper 16 bits of the shifted value into data memory. The accu-
mulator itself remains unaffected.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n+nd n+p 1+n+nd+p n  n+nd

Example SACH DAT10,4 ;(DP = 4)

or
SACH *,4 ;If current auxiliary register contains 522.

Before Instruction After Instruction

0h 4208h

ACC 4208001h 4208001hX

C
Data

Memory
522

Data
Memory

522

ACC X

C

Execution



 Store Low Accumulator With Shift SACL

4-151

Syntax Direct: [ label ] SACL dma [ , shift ]
Indirect: [ label ] SACL {ind} [, shift [, next ARP ]]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
0 ≤ shift ≤ 7 (defaults to 0)

(PC) + 1 → PC
16 LSBs of (ACC) × 2shift → dma

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0

10 1 1 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

0

0

Shift

Shift

Description The low-order bits of the accumulator are shifted left 0 to 7 bits on the
TMS320C2x, as specified by the shift code, and stored in data memory. The
low-order bits are filled with zeros, and the high-order bits are lost. The accu-
mulator itself is unaffected.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n+nd n+p 1+n+nd+p n  n+nd

Example SACL DAT11,1 ;(DP = 4)
or
SACL *,1 ;If current auxiliary register contains 523.

Before Instruction After Instruction

5h 842h

ACC ACC7C638421h 7C638421hX

C C
Data

Memory
523

Data
Memory

523

X

Execution



SAR Store Auxiliary Register

4-152  Assembly Language Instructions

Syntax Direct: [ label ] SAR  AR , dma
Indirect: [ label ] SAR  AR , {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ auxiliary register AR ≤ 7
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(AR) → dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0

10 1 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

0

0

AR

AR

Description The contents of the designated auxiliary register (AR) are stored in the ad-
dressed data memory location.

When you are modifying the contents of the current auxiliary register in the in-
direct addressing mode, SAR ARn (when n = ARP) stores the value of the aux-
iliary register contents before it is incremented, decremented, or indexed by
AR0.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n+nd n+p 1+n+nd+p n  n+nd

Execution



 Store Auxiliary Register SAR

4-153

Example 1 SAR AR0,DAT30 ;(DP = 6)

or
SAR AR0,* ;If current auxiliary register contains 798.

Before Instruction After Instruction

18h 37h

AR0 AR037h 37h

Data
Memory

798

Data
Memory

798

Example 2 LARP AR0
SAR AR0,*0+

Before Instruction After Instruction

0h 401h

AR0 AR0401h 802h

Data
Memory

1025

Data
Memory

1025



SBLK Subtract From Accumulator Long Immediate With Shift

4-154  Assembly Language Instructions

Syntax [ label ] SBLK  constant [, shift ]

Operands 16-bit constant
0 ≤ shift ≤ 15 (defaults to 0)

(PC) + 2 → PC
(ACC) –[constant × 2shift] → ACC

If SXM = 1:
Then –32768 ≤ constant ≤ 32767.

If SXM = 0:
Then 0 ≤ constant ≤ 65535.

Affects OV; affected by OVM and SXM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0

Encoding

16-Bit Constant

Shift 0 0 0 0 0 1 1

Description The immediate field of the instruction is subtracted from the accumulator. The
result replaces the accumulator contents. SXM determines whether the
constant is treated as a signed 2s-complement number or as an unsigned
number. The shift count is optional and defaults to zero.

Words 2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example SBLK 5,12

Before Instruction After Instruction

3FC0EFh 3F70EFhACC ACCX 1

C C

Execution



 Subtract From Auxiliary Register Short Immediate SBRK

4-155

Syntax [ label ] SBRK  constant 

Operands 0 ≤ constant ≤ 255

(PC) + 1 → PC
AR(ARP) – 8-bit positive constant → AR(ARP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1

Encoding

1 1 1 1 1 1 8-Bit Constant

Description The 8-bit immediate value is subtracted, right-justified, from the currently se-
lected auxiliary register with the result replacing the auxiliary register contents.
The subtraction takes place in the ARAU, with the immediate value treated as
an 8-bit positive integer.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example SBRK 0FFh ;(ARP = 7)

Before Instruction After Instruction

0h 0FF01hAR7 AR7

Execution



SC Set Carry Bit

4-156  Assembly Language Instructions

Syntax [ label ] SC

Operands None

(PC) + 1 → PC
1 → carry bit C in status register ST1

Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 0 0 0 1

Description The carry bit C in status register ST1 is set to logic one. The carry bit may also
be loaded directly by the LST1 and RC instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SC ;Carry bit C is set to logic one.

Execution



 Shift Accumulator Left SFL

4-157

Syntax [ label ] SFL

Operands None

(PC) + 1 → PC
(ACC(31) ) → C
(ACC(30–0) ) → ACC(31–1)
0 → ACC(0)

Affects C.
Not affected by SXM bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 1 1 0 0 0

Description The SFL instruction shifts the entire accumulator left one bit. The least signifi-
cant bit is filled with a zero. On the TMS320C2x, the most significant bit is
shifted into the carry bit (C). Note that SFL, unlike SFR, is unaffected by SXM.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SFL

Before Instruction After Instruction

0B0001234h 060002468hACC ACCX 1

C C

Execution



SFR Shift Accumulator Right

4-158  Assembly Language Instructions

Syntax [ label ] SFR

Operands None
(PC) + 1 → PC
If SXM = 0:

Then (ACC(0)) → C
(ACC(31–1)) → ACC (30–0) and 0 → ACC(31)

If SXM = 1:
Then (ACC(0)) → C
(ACC(31–1)) → ACC(30–0) and (ACC(31)) → ACC(31)

Affects C.

Affected by SXM bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 1 1 0 0 1

Description The SFR instruction shifts the accumulator right one bit.

If SXM = 1, the instruction produces an arithmetic right shift. The sign bit (MSB)
is unchanged and is also copied into bit 30. Bit 0 is shifted into the carry bit (C).

If SXM = 0, the instruction produces a logical right shift. All of the accumulator
bits are shifted by one bit to the right. The least significant bit is shifted into the
carry bit, and the most significant bit is filled with a zero.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example 1 SFR ;(SXM = 0)

Before Instruction After Instruction

0B0001234h 5800091AhACC ACCX 0

C C

Example 2 SFR ;(SXM = 1)

Before Instruction After Instruction

0B0001234h 0D800091AhACC ACCX 0

C C

Execution



 Set Serial Port Frame Synchronization Mode SFSM

4-159

Syntax SFSM

Operands None

(PC) + 1 → PC
1 → FSM status bit in status register ST1

Affects FSM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 0 1 1 1

Description The SFSM instruction sets the FSM status bit to logic one. In this mode, an
external FSR pulse is required for a receive operation, and an external FSX
pulse is required if TXM = 0. If TXM = 1, FSX pulses are generated in the nor-
mal manner every time the transmit shift register XSR is loaded. See Section
3.7 for details on the operation of the serial port. FSM may also be loaded by
the LST1 and RFSM instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SFSM ;FSM is set, putting the serial port in a mode
;of operation where frame synchronization
;pulses are required for each word to be
;transmitted or received.

Execution



SHM Set Hold Mode

4-160  Assembly Language Instructions

Syntax [ label ] SHM

Operands None

(PC) + 1 → PC
1 → HM status bit in status register ST1

Affects HM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 1 0 0 1

Description The SHM instruction halts internal execution when acknowledging an active
HOLD (HM = 1). When HM = 0, the processor may continue execution out of
internal memory but puts its external interface in a high-impedance state. This
bit is set to 1 by a reset.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SHM ;HM is set

Execution



 Set Overflow Mode SOVM

4-161

Syntax [ label ] SOVM

Operands None

(PC) + 1 → PC
1 → overflow mode (OVM) status bit

Affects OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 0 0 0 1 1

Description The OVM status bit is set to logic one, which enables the overflow (saturation)
mode. If an overflow occurs with OVM set, the overflow flag OV is set, and the
accumulator is set to the largest representable 32-bit positive (7FFFFFFFh)
or negative (80000000h) number according to the direction of overflow.

OVM may also be loaded by the LST and ROVM instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SOVM ;The overflow mode bit OVM is set, enabling the
;overflow mode on any subsequent arithmetic
;operations.

Execution



SPAC Subtract P Register From Accumulator

4-162  Assembly Language Instructions

Syntax [ label ] SPAC

Operands None

PC) + 1 → PC
(ACC) – (shifted P register) → ACC

Affects OV; affected by PM and OVM.
Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 1 0 1 1 0

Description The contents of the P register, shifted as defined by the PM status bits, are sub-
tracted from the contents of the accumulator. The result is stored in the accu-
mulator. Note that SPAC is unaffected by SXM; the P register is always sign-
extended.

The SPAC instruction is a subset of LTS, MPYS, and SQRS.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SPAC ;(PM = 0)

Before Instruction After Instruction

3Ch 18hACC ACCX 1

C C

24h 24hP P

Execution



 Store High P Register SPH

4-163

Syntax Direct: [ label ] SPH dma
Indirect: [ label ] SPH {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(PR shifter output (31–16)) → dma

Affected by PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0

10 1 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 0 1

011 1

Description The high-order bits of the P register, shifted as specified by the PM bits, are
stored in data memory. Neither the P register nor the accumulator are affected
by this instruction. High-order bits are sign-extended when the right-shift by 6
mode is selected. Low-order bits are taken from the low P register when left-
shifts are selected.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n + nd n+p 1 + n +nd +p n n + nd

Example SPH DAT3 ;(DP = 4, PM = 2)

or
SPH * ;If current auxiliary register contains 515.

Before Instruction After Instruction

4567h 0E079h
Data

0FE079844h 0FE079844hP P

Memory
515

Data
Memory

515

Execution



SPL Store Low P Register

4-164  Assembly Language Instructions

Syntax Direct: [ label ] SPL dma
Indirect: [ label ] SPL {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

Execution (PC) + 1 → PC
(PR shifter output (15–0)) → dma

Affected by PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0

10 1 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 0 0

011 0

Description The low-order bits of the P register, shifted as specified by the PM bits, are
stored in data memory. Neither the P register nor the accumulator are affected
by this instruction. High-order bits are taken from the high P register when the
right-shift by 6 mode is selected. Low-order bits are zero-filled when left-shifts
are selected.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n+nd n+p 1+n+nd+p n n+nd

Example SPL DAT3 ;(DP = 4, PM = 2)

or
SPL * ;If current auxiliary register contains 515.

Before Instruction After Instruction

4567h 9844h
Data

0FE079844h 0FE079844hP P

Memory
515

Data
Memory

515



 Set P Register Output Shift Mode SPM

4-165

Syntax [ label ] SPM constant

Operands 0 ≤ constant ≤ 3
Execution (PC) + 1 → PC

Constant → product register shift mode (PM) status bits

Affects PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 0 1 0 PM

Description The two low-order bits of the instruction word are copied into the PM field of
status register ST1. The PM status bits control the P register output shifter.
This shifter has the ability to shift the P register output either one or four bits
to the left or six bits to the right, or to perform no shift. The bit combinations and
their meanings are shown below.

PM ACTION
00 No shift of multiplier output
01 Output left-shifted 1 place and zero-filled
10 Output left-shifted 4 places and zero-filled
11 Output right-shifted 6 places, sign-extended; LSB bits lost.

The left-shifts allow the product to be justified for fractional arithmetic. The
right-shift by six bits has been incorporated to implement up to 128 multiply–
accumulate processes without the possibility of overflow occurring. PM may
also be loaded by an LST1 instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example SPM 3 ;Product register shift mode 3 is selected,
;causing all subsequent transfers from the
;product register to the ALU to be shifted
;to the right six places.



SQRA Square and Accumulate Previous Product

4-166  Assembly Language Instructions

Syntax Direct: [ label ] SQRA dma 
Indirect: [ label ] SQRA {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(ACC) + (shifted P register) → ACC
(dma) → T register
(dma) × (dma) → P register

Affects OV; affected by PM and OVM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0

10 0 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 1

001 1

Description The contents of the P register, shifted as defined by the PM status bits, are add-
ed to the accumulator. The addressed data memory value is then loaded into
the T register, squared, and stored in the P register.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example SQRA DAT30 ;(DP = 6, PM = 0)

or
SQRA * ;If current auxiliary register contains 798.

Before Instruction After Instruction

0Fh 0Fh
Data

12Ch 0E1hP P

Memory
798

Data
Memory

798

3h 0FhT T

ACC ACC1F4h 320hX 0

C C

Execution



 Square and Subtract Previous Product SQRS

4-167

Syntax Direct: [ label ] SQRS dma 
Indirect: [ label ] SQRS {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(ACC) – (shifted P register) → ACC
(dma) → T register
(dma) × (dma) → P register

Affects OV; affected by PM and OVM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 0

101 0

Description The contents of the P register, shifted as defined by the PM status bits, are sub-
tracted from the accumulator. The addressed data memory value is then
loaded into the T register, squared, and stored into the P register.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example SQRS DAT9 ;(DP = 6, PM = 0)

or
SQRS * ;If current auxiliary register contains 777.

Before Instruction After Instruction

8h 8h
Data

190h 40hP P

Memory
777

Data
Memory

777

1124h 8hT T

ACC ACC1450h 12C0hX 1

C C

Execution



SST Store Status Register ST0

4-168  Assembly Language Instructions

Syntax Direct: [ label ] SST dma
Indirect: [ label ] SST {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(status register ST0) → dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0

10 1 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 0

001 0

Description Status register ST0 is stored in data memory.

In the direct addressing mode, status register ST0 is always stored in page 0,
regardless of the value of the DP register. The processor automatically forces
the page to be 0, and the specific location within that page is defined in the
instruction. Note that the DP register is not physically modified. This allows
storage of the DP register in the data memory on interrupts, etc., in the direct
addressing mode without having to change the DP. In the indirect addressing
mode, the data memory address is obtained from the auxiliary register se-
lected. (See the LST instruction for more information.)

The SST instruction can be used to store status register ST0 after interrupts
and subroutine calls. The ST0 contains the status bits: OV (overflow flag),
OVM (overflow mode), INTM (interrupt mode), ARP (auxiliary register pointer),
and DP (data memory page pointer). The status bits are stored in the data
memory word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DPARP OVMOV 1 INTM

Note that SST * may be used to store status register ST0 anywhere in data
memory, while SST in the direct addressing mode is forced to page 0.

Words 1

Cycles

Execution



 Store Status Register ST0 SST

4-169

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n+nd n+p 1+n+nd+p n n+nd

Example SST DAT96 ;(DP = don’t care)

or
SST * ;If current auxiliary register contains 96.

Before Instruction After Instruction

0A408h 0A408h
Status

Register
STO

Status
Register

STO

0Ah 0A408h
Data

Memory
96

Data
Memory

96



SST1 Store Status Register ST1

4-170  Assembly Language Instructions

Syntax Direct: [ label ] SST1 dma
Indirect : [ label ] SST1 {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(status register ST1) → dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0

10 1 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 1

001 1

Description Status register ST1 is stored in data memory. In the direct addressing mode,
status register ST1 is always stored in page 0, regardless of the value of the
DP register. The processor automatically forces the page to be 0, and the spe-
cific location within that page is defined in the instruction. Note that the DP reg-
ister is not physically modified. This allows the storage of the DP in the data
memory on interrupts, etc., in the direct addressing mode without having to
change the DP. In the indirect addressing mode, the data memory address is
obtained from the auxiliary register selected. (See the LST1 instruction for
more information.)

SST1 is used to store status bits after interrupts and subroutine calls. ST1 con-
tains the status bits: ARB (auxiliary register pointer buffer), CNF (RAM configu-
ration control), TC (test/control), SXM (sign-extension mode), XF (external
flag), FO (serial port format), TXM (transmit mode), and the PM (product regis-
ter shift mode). ST1 on the TMS320C2x also contains the status bits: C (carry)
bit, HM (hold mode), and FSM (frame synchronization mode). The bits loaded
into status register ST1 from the data memory word are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARB SXMCNF † TC C 1 1† HM TXM PMFOXFFSM

† On   the  TMS320C26,   bits  12   and  7   hold  CNF0   and  CNF1,   respectively  (see   the  CONF
instruction for decoding).

Note that SST1 * may be used to store status register ST1 anywhere in data
memory, while SST1 in the direct addressing mode is forced to page 0.

Words 1

Cycles

Execution



 Store Status Register ST1 SST1

4-171

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1+d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n n+nd n+p 1+n+nd+p n n+nd

Example SST1 DAT97 ;(DP = don’t care)

or
SST1 * ;If current auxiliary register contains 97.

Before Instruction After Instruction

0A7E0h 0A7E0h
Status

Register
ST1

Status
Register

ST1

0Bh 0A7E0h
Data

Memory
97

Data
Memory

97



SSXM Set Sign-Extension Mode

4-172  Assembly Language Instructions

Syntax [ label ] SSXM

Operands None

(PC) + 1 → PC
1 → SXM status bit in status register ST1

Affects SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 0 0 1 1 1

Description The SSXM instruction sets the SXM status bit to logic 1, which enables sign-
extension on shifted data memory values for the following arithmetic instruc-
tions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and SUBT.

In addition, SSXM affects the definition of the SFR instruction. You can load
SXM with the LST1 and RSXM instructions, as well.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SSXM ;SXM is set, enabling sign extension on
;subsequent instructions.

Execution



 Set Test/Control Flag STC

4-173

Syntax [ label ] STC

Operands None

(PC) + 1 → PC
1 → TC test/control flag in status register ST1

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 1 0 0 1 1

Description The TC (test/control) flag in status register ST1 is set to logic one. TC may also
be loaded by the LST1 and RTC instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1 + p 1 1

Cycle Timings for a Repeat Execution

n n n+p n + p n n

Example STC ;TC (test/control) flag is set to logic one.

Execution



STXM Set Serial Port Transmit Mode

4-174  Assembly Language Instructions

Syntax [ label ] STXM

Operands None

(PC) + 1 → PC
1 → TXM status bit in status register ST1

Affects TXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 1 0 0 0 0 1

Description The STXM instruction sets the TXM status bit to logic 1, which configures the
serial port transmit section to a mode where the FSX pin behaves as an output.
A pulse is produced on the FSX pin each time the DXR register is loaded inter-
nally. The transmission is initiated by the negative edge of this pulse. TXM may
also be loaded by the LST1 and RTXM instructions. If the FSM status bit is a
logic zero and serial port operation has already started, the FSX pin will be driv-
en low if TXM = 1.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example STXM ;TXM is set, configuring FSX as an output.

Execution



 Subtract from Accumulator with Shift SUB

4-175

Syntax Direct: [ label ] SUB dma [, shift ]
Indirect: [ label ] SUB {ind} [, shift [ next ARP ]]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
0 ≤ shift ≤ 15 (defaults to 0)
(PC) + 1 → PC
(ACC) – [(dma) × 2shift] → ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0

10 0 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding

Shift

Shift

Description The contents of the addressed data memory location are left-shifted and sub-
tracted from the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended if SXM is high and zero-filled if SXM is low.
The result is stored in the accumulator.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example SUB DAT80 ;(DP = 8)

or
SUB * ;If current auxiliary register contains 1104.

Before Instruction After Instruction

24h 13hACC ACC

11h 11h

X 1

C C

Data
Memory

1104

Data
Memory

1104

Execution



SUBB Subtract from Accumulator with Borrow

4-176  Assembly Language Instructions

Syntax Direct: [ label ] SUBB dma 
Indirect : [ label ] SUBB {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(ACC) – (dma) – (C) → ACC

Affects C and OV; affected by OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 1 1

111 1

Description The contents of the addressed data memory location and the value of the carry
bit are subtracted from the accumulator. The carry bit is then affected in the
normal manner (see subsection 3.5.2).

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example SUBB DAT5 ;(DP = 8)

or
SUBB * ;If current auxiliary register contains 1029.

Before Instruction After Instruction

6h 0FFFFFFFFhACC ACC

6h 6h

0 0

C C

Data
Memory

1029

Data
Memory

1029

In the above example, C is originally zeroed, presumably from the result of a
previous subtract instruction that performed a borrow. The effective operation
performed was 6 – 6 – (0)–1, generating another borrow (and resetting carry
again) in the process.

The SUBB instruction can be used in performing multiple-precision arithmetic.

Execution



 Conditional Subtract SUBC

4-177

Syntax Direct: [ label ] SUBC dma 
Indirect: [ label ] SUBC {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(ACC) – [(dma) × 215] → ALU output

If ALU output ≥ 0:
Then (ALU output) × 2 + 1 → ACC;

Else (ACC) × 2 → ACC.

Affects OV.
Affects C.
Not affected by OVM (no saturation); is affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 1 1

110 1

Description The SUBC instruction performs conditional subtraction, which may be used for
division. The 16-bit numerator is placed in the low accumulator, and the high
accumulator is zeroed. The denominator is in data memory. SUBC is executed
16 times for 16-bit division. After completion of the last SUBC, the quotient of
the division is in the lower-order 16-bit field of the accumulator, and the remain-
der is in the high-order 16 bits of the accumulator. SUBC provides the normally
expected results for division when both the denominator and numerator are
positive. The denominator is affected by the SXM bit. If SXM=1, then the de-
nominator must have a 0 value in the MSB. If SXM=0, then any 16-bit denomi-
nator value will produce the expected results. The numerator, which is in the
accumulator, must initially be positive (that is, bit 31 must be 0) and must re-
main positive following the accumulator shift, which occurs during the SUBC
operation.

If the 16-bit numerator contains less than 16 significant bits, the numerator
may be placed in the accumulator left-shifted by the number of leading nonsig-
nificant zeroes. The number of executions of SUBC is reduced from 16 by that
number. One leading zero is always significant.

Note that SUBC affects OV but is not affected by OVM, and therefore the accu-
mulator does not saturate upon positive or negative overflows when this
instruction is executed.

Words 1

Execution



SUBC Conditional Subtract

4-178  Assembly Language Instructions

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example RPTK 15
SUBC DAT2 ;(DP = 4)
or
RPTK 15
SUBC * ;If current auxiliary register contains 514.

Before Instruction After Instruction

41h 20009hACC ACC

7h 7h

X 1

C C

Data
Memory

514

Data
Memory

514



 Subtract from High Accumulator SUBH

4-179

Syntax Direct: [ label ] SUBH dma
Indirect: [ label ] SUBH {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7

(PC) + 1 → PC
(ACC) – [(dma) × 216] → ACC

Affects OV; affected by OVM
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 0 0

010 0

Description The contents of the addressed data memory location are subtracted from the
upper 16 bits of the accumulator. The 16 low-order bits of the accumulator are
unaffected. The result is stored in the accumulator. The carry bit C on the
TMS320C2x is reset if the result of the subtraction generates a borrow; other-
wise, C is unaffected.

The SUBH instruction can be used for performing 32-bit arithmetic.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example SUBH DAT33 ;(DP = 6)

or
SUBH * ;If current auxiliary register contains 801.

Before Instruction After Instruction

0A0013h 60013hACC ACC

4h 4h

x 1

C C

Data
Memory

801

Data
Memory

801

Execution



SUBK Subtract from Accumulator Short Immediate

4-180  Assembly Language Instructions

Syntax [ label ] SUBK constant 

Operands 0 ≤ constant ≤ 255

(PC) + 1 → PC
(ACC) – 8-bit positive constant → ACC

Affects C and OV: affected by OVM.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 0 1 8-Bit Constant

Description The 8-bit immediate value is subtracted, right-justified, from the accumulator
with the result replacing the accumulator contents. The immediate value is
treated as an 8-bit positive number, regardless of the value of SXM.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example SUBK 12h

Before Instruction After Instruction

37h 25hACC ACCX 1

C C

Execution



 Subtract from Low Accumulator with Sign-Extension Supressed SUBS

4-181

Syntax Direct: [ label ] SUBS dma
Indirect: [ label ] SUBS {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(ACC) – (dma) → ACC

Affects OV; affected by OVM.
Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 0 1

010 1

Description The contents of the addressed data memory location are subtracted from the
accumulator with sign-extension suppressed. The data is treated as a 16-bit
unsigned number, regardless of SXM. The accumulator behaves as a signed
number. SUBS produces the same result as a SUB instruction with SXM = 0
and a shift count of 0.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example SUBS DAT2 ;(DP = 16)

or
SUBS * ;If current auxiliary register contains 2050.

Before Instruction After Instruction

0F105h 102hACC ACC

0F003h 0F003h

X 1

C C

Data
Memory

2050

Data
Memory

2050

Before Instruction After Instruction

Execution



SUBT Subtract from Accumulator with Shift Specified by T Register

4-182  Assembly Language Instructions

Syntax Direct: [ label ] SUBT dma 
Indirect: [ label ] SUBT {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(ACC) - [(dma) × 2 T register (3 – 0)] → (ACC)

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by SXM and OVM.
Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 1 1 0

110 0

Description The data memory value is left-shifted and subtracted from the accumulator.
The left-shift is defined by the four LSBs of the T register, resulting in shift op-
tions from 0 to 15 bits. The result replaces the accumulator contents. Sign-ex-
tension on the data memory value is controlled by the SXM status bit.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example SUBT DAT127 ;(DP = 4)

or
SUBT * ;If current auxiliary register contains 639.

Before Instruction After Instruction

0FDA5h 0F7A5hACC ACC

6h 6h

X 1

C C

Data
Memory

639

Data
Memory

639

T T0FF98h 0FF98h

Execution



 Set External Flag SXF

4-183

Syntax [ label ] SXF

Operands None

(PC) + 1 → PC
1 → external flag (XF) pin and status bit

Affects XF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 0 1 1 0 1

Description The XF pin and the XF status bit in status register ST1 are set to logic 1. XF
may also be loaded by the LST1 and RXF instructions.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p n n

Example SXF ;The XF pin and status bit are set to logic 1.

Execution



TBLR Table Read

4-184  Assembly Language Instructions

Syntax Direct: [ label ] TBLR dma
Indirect: [ label ] TBLR {ind} [, next ARP ]]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(PFC) → MCS
(ACC(15–0)) → PFC

If (repeat counter) ≠ 0:
Then (pma, addressed by PFC) → dma,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 → PFC,
(repeat counter) – 1 → repeat counter.

Else (pma, addressed by PFC) → dma
Modify AR(ARP) and ARP as specified.
(MCS) → PFC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 0

001 0

Description The TBLR instruction transfers a word from a location in program memory to
a data memory location specified by the instruction. The program memory ad-
dress is defined by the low-order 16 bits of the accumulator. For this operation,
a read from program memory is performed, followed by a write to data memory.
In the repeat mode, TBLR effectively becomes a single-cycle instruction, and
the program counter that contains the ACCL is incremented once each cycle.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an on-
chip ROM location will be read.

Words 1

Execution



 Table Read TBLR
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Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Table in on-chip RAM:

2 2+d 3+p 3 + d + p 3 3+d
Table in on-chip ROM:

3 3+d 4+p 4 + d + p 4 4+d
Table in external memory:

3+p 3+d+p 4+2p 4+d+2p 4+p 4+d+p

Cycle Timings for a Repeat Execution

Table in on-chip RAM:

1+n 1+n+nd 2+n+p 2+n+nd+p  2+n 2+n+nd
Table in on-chip ROM:

2+n 2+n+nd 3+n+p 3+n+nd+p 3+n 3+n+nd
Table in external memory:

2+n+np 1+2n+nd+np 3+n+np+p 2+2n+nd+np
+p

3+n+np 2+2n+nd+np

Example TBLR DAT6 ;(DP = 4)

or
TBLR * ;If current auxiliary register contains 518.

Before Instruction After Instruction

306h 306h
Program
Memory

23

75h 306h
Data

Memory
518

Data
Memory

518

ACC ACC

Program
Memory

23

23h 23h



TBLW Table Write

4-186  Assembly Language Instructions

Syntax Direct: [ label ] TBLW dma
Indirect: [ label ] TBLW {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(PFC) → MCS
(ACC(15–0)) → PFC

If (repeat counter) ≠ 0:
Then dma → (pma, addressed by PFC),
Modify AR(ARP) and ARP as specified,
(PFC) + 1 → PFC,
(repeat counter) – 1 → repeat counter.

Else dma → (pma, addressed by PFC),
Modify AR(ARP) and ARP as specified.
(MCS) → PFC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0

10 1 0 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 0 1

001 1

Description The TBLW instruction transfers a word in data memory to program memory.
The data memory address is specified by the instruction, and the program
memory address is specified by the lower 16 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete the
instruction. In the repeat mode, TBLW effectively becomes a single-cycle
instruction, and the program counter that contains the ACCL is incremented
once each cycle.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an on-
chip ROM location will be addressed but not written to.

Words 1

Execution
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Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Table in on-chip RAM:

2 3+d 3+p 4 + d + p 3 4+d
Table in on-chip ROM:

not applicable
Table in external memory:

2+p 3 + d + p 3+2p 4+d+2p 3+p 4+d+p

Cycle Timings for a Repeat Execution

Table in on-chip RAM:

1+n 2+n+nd 2+n+p 3+n+nd+p  2+n 3+n+nd
Table in on-chip ROM:

not applicable
Table in external memory:

1+n+np 1+2n+nd+np 2+n+np+p 2+2n+nd+np
+p

2+n+np 2+2n+nd+np

Example TBLW DAT5 ;(DP = 32)

or
TBLW * ;If current auxiliary register contains 4101.

Before Instruction After Instruction

4339h 4339h
Data

Memory
4101

306h 4339h
Program
Memory

257

Program
Memory

257

ACC ACC

Data
Memory

4101

257h 257h



TRAP Software Interrupt

4-188  Assembly Language Instructions

Syntax [ label ] TRAP

Operands None

(PC) + 1 → stack
30 → PC

Not affected by INTM; does not affect INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0

Encoding

1 0 1 1 1 0 0 0 0 1 1 1 1 0

Description The TRAP instruction is a software interrupt that transfers program control
to program memory location 30 and pushes the program counter plus one onto
the hardware stack. The instruction at location 30 may contain a branch
instruction to transfer control to the TRAP routine. Putting PC + 1 onto the stack
enables an RET instruction to pop the return PC (points to instruction after the
TRAP) from the stack.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

Destination on-chip RAM:

2 2 2+p 2+p 2 2

Destination on-chip ROM:

3 3  3+p  3+p 3 3
Destination external memory:

3+p 3+p 3+2p 3+2p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable

Example TRAP ;Control is passed to program memory location
;30. PC + 1 is pushed on to the stack.

Execution



 Exclusive-OR with Accumulator XOR
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Syntax Direct: [ label ] XOR dma
Indirect: [ label ] XOR {ind} [, next ARP ]

Operands 0 ≤ dma ≤ 127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
(ACC(15–0)) XOR dma → ACC(15–0)
(ACC(31–16)) → ACC(31–16)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 1 0 0

011 0

Description The low half of the accumulator is exclusive-ORed with the contents of the ad-
dressed data memory location. The upper half of the accumulator is not af-
fected by this instruction.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example XOR DAT127 ;(DP = 511)

or
XOR * ;If current auxiliary register contains 65535.

Before Instruction After Instruction

0F0F0h 0F0F0h
Data

Memory
65535

ACC ACC

Data
Memory
65535

12345678h 1234A688hX X

C C

Execution



XORK XOR Immediate with Accumulator with Shift

4-190  Assembly Language Instructions

Syntax [ label ] XORK constant [, shift ]

Operands 16-bit constant
0 ≤ shift ≤ 15 (defaults to 0)
(PC) + 2 → PC
(ACC(30–0)) XOR [constant × 2shift] → ACC(30–0)
(ACC(31)) → ACC(31)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0

Encoding

16-Bit Constant

Shift 0 0 0 0 1 1 0

Description The left-shifted 16-bit immediate constant is exclusive-ORed with the accumu-
lator, leaving the result in the accumulator. Low-order bits below and high-or-
der bits above the shifted value are treated as zeros, thus not affecting the cor-
responding bits of the accumulator. Note that the MSB, most significant bit, of
the accumulator is not affected, regardless of the shift code value.

Words  2

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

Example XORK 0FFFFh,8

Before Instruction After Instruction

ACC ACC012345678h 12CBA978hX X

C C

Execution



 Zero Accumulator ZAC
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Syntax [ label ] ZAC

Operands None

(PC) + 1 ≤ PC
0 ≤ ACC

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Description The contents of the accumulator are replaced with zero. The ZAC instruction
has been implemented as a special case of LACK. (ZAC assembles as LACK
0.)

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable

Example ZAC

Before Instruction After Instruction

ACC ACC0A5A5A5A5h 0hX X

C C

Execution



ZALH Zero Low Accumulator and Load High Accumulator

4-192  Assembly Language Instructions

Syntax Direct: [ label ] ZALH dma
Indirect: [ label ] ZALH [ {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
0 → ACC(15–0)
(dma) → ACC(31–16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 0 0

000 0

Description ZALH loads a data memory value into the high-order half of the accumulator.
The low-order bits of the accumulator are zeroed.

ZALH is useful for 32-bit arithmetic operations.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example ZALH DAT3 ;(DP = 32)

or
ZALH * ;If current auxiliary register contains 4099.

Before Instruction After Instruction

3F01h 3F01h
Data

Memory
4099

ACC ACC

Data
Memory

4099

77FFFFh 3F010000hX X

C C

Execution



 Zero Low Accumulator, Load High Accumulator with Rounding ZALR
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Syntax Direct: [ label ] ZALR dma
Indirect: [ label ] ZALR {ind} [, next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
8000h → ACC(15–0)
(dma) → ACC(31–16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0

10 1 1 1

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
1 0 1 1

101 1

Description The ZALR instruction loads a data memory value into the high-order half of the
accumulator and rounds the value by adding 1/2 LSB; that is, the 15 low bits
(bits 0 –14) of the accumulator are set to zero, and bit 15 of the accumulator
is set to one.

ZALR is a derivative instruction from ZALH.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example ZALR DAT3 ;(DP = 32)

or
ZALR * ;If current auxiliary register contains 4099.

Before Instruction After Instruction

3F01h 3F01h
Data

Memory
4099

ACC ACC

Data
Memory

4099

77FFFFh 3F018000hX X

C C

Execution



ZALS Zero Accumulator, Load Low Accumulator with Sign-Extension Suppressed

4-194  Assembly Language Instructions

Syntax Direct: [ label ] ZALS dma 
Indirect: [ label ] ZALS {ind} [ next ARP ]

Operands 0 ≤ dma ≤127
0 ≤ next ARP ≤ 7
(PC) + 1 → PC
0 → ACC(31–16)
(dma) → ACC(15–0)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0

10 1 0 0

Data Memory Address

See Section 4.1

Direct:

Indirect:

Encoding
0 0 0 1

000 1

Description The contents of the addressed data memory location are loaded into the 16
low-order bits of the accumulator. The upper half of the accumulator is zeroed.
The data is treated as a 16-bit unsigned number rather than a 2s-complement
number. Therefore, there is no sign-extension with this instruction, regardless
of the state of SXM. (ZALS behaves the same as a LAC instruction with no
shift, and SXM = 0.)

ZALS is useful for 32-bit arithmetic operations.

Words 1

Cycles

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 1+n+nd n+p 1+n+nd+p n 1+n+nd

Example ZALS DAT1 ;(DP = 6)

or
ZALS * ;If current auxiliary register contains 769.

Before Instruction After Instruction

0F7FFh 0F7FFh
Data

Memory
769

ACC ACC

Data
Memory

769

7FF00033h 0F7FFhX X

C C

Execution
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Chapter 5

Software Applications

The TMS320C2x microprocessor/microcomputer design emphasizes overall
speed, communication, and flexibility. Many instructions are tailored to digital
signal processing tasks and provide single-cycle multiply/accumulates, adap-
tive filtering support, and many other features. General-purpose instructions
support floating-point, extended-precision, logical processing, and control ap-
plications.

This chapter provides explanations of how to use the various TMS320C2x pro-
cessor and instruction set features along with assembly language coding ex-
amples. More information about specific applications can be found in the book,
Digital Signal Processing Applications with the TMS320 Family (literature
number SPRA012A).

The assembly source code examples in this chapter contain directives and
commands specific to the Texas Instruments Assembly Language Tools. Pub-
lication TMS320 Fixed-Point DSP Assembly Language Tools (literature num-
ber SPRU018B) is highly recommended as a reference.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include:

Topic Page

5.1 Processor Initialization 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Program Control 5-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Interrupt Service Routine 5-29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Memory Management 5-33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.5 Fundamental Logical and Arithmetic Operations 5-43. . . . . . . . . . . . . . . 

5.6 Advanced Arithmetic Operations 5-46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.7 Application-Oriented Operations 5-68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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5.1 Processor Initialization

Prior to the execution of a digital signal processing algorithm, it is necessary
to initialize the processor. Generally, initialization takes place anytime the pro-
cessor is reset.

When reset is activated by applying a low level voltage to the RS (reset) input
for at least three cycles, the TMS320C2x terminates execution and forces the
program counter (PC) to zero. Program memory location 0 normally contains
a B (branch) instruction to direct program execution to the system initialization
routine. The hardware reset also initializes various registers and status bits.

After reset, the processor should be initialized to meet the requirements of the
system. Instructions should be executed that set up operational modes,
memory pointers, interrupts, and the remaining functions necessary to meet
system requirements.

To configure the processor after reset, the following internal functions should
be initialized:

� Memory-mapped registers

� Interrupt structure

� Mode control (OVM, SXM, FO, TXM, PM; plus HM and FSM on
TMS320C25)

� Memory control (CNF)

� Auxiliary registers and the auxiliary register pointer (ARP)

� Data memory page pointer (DP)

The OVM (overflow mode), TC (test/control flag), and IMR (interrupt mask reg-
ister) bits are not initialized by reset. The auxiliary register pointer (ARP), auxil-
iary register pointer buffer (ARB), and data memory page pointer (DP) are also
not initialized by reset.

Example 5–1, and Example 5–2 show coding for initializing the TMS320C25,
and TMS320C26, respectively, to the following machine state, in addition to
the initialization performed during the hardware reset:

� All interrupts enabled

� OVM disabled

� DP set to zero

� ARP set to seven (TMS320C25 and TMS320C26)

� Internal memory filled with zeros
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Example 5–1.Processor Initialization (TMS320C25)
.title ’PROCESSOR INITIALIZATION’
.def RESET,INT0,INT1,INT2
.def TINT,RINT,XINT,USER
.ref ISR0,ISR1,ISR2
.ref TIME,RCV,XMT,PROC

*
* PROCESSOR INITIALIZATION FOR THE TMS320C25.
* RESET AND INTERRUPT VECTOR SPECIFICATION.
* BRANCHES FOR EXTERNAL AND INTERNAL INTERRUPTS.
*

.sect ”vectors”
RESET B INIT ; RS– BEGINS PROCESSING HERE.
*
INT0 B ISR0 ; INT0– BEGINS PROCESSING HERE.
INT1 B ISR1 ; INT1– BEGINS PROCESSING HERE.
INT2 B ISR2 ; INT2– BEGINS PROCESSING HERE.
* 

.space (18h–($–RESET))*16
TINT B TIME ; TIMER INTERRUPT PROCESSING.
RINT B RCV ; SERIAL PORT RECEIVE PROCESSING.
XINT B XMT ; SERIAL PORT TRANSMIT PROCESSING.
*
USER B PROC ; TRAP VECTOR PROCESSING BEGINS.
*
* THE BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS EXECUTION TO BEGIN
* HERE FOR RESET PROCESSING THAT INITIALIZES THE PROCESSOR. WHEN RESET IS
* APPLIED,THE FOLLOWING CONDITIONS ARE ESTABLISHED FOR THE STATUS AND OTHER 
* INTERNAL REGISTERS:
*
* ARP OV OVM 1 INTM DP
* ST0: XXX 0 X 1 1 XXXXXXXXX
*
* ARB CNF TC SXM C 11 HM FSM XF FO TXM PM
* ST1: XXX 0 X 1 1 11 1 1 1 0 0 00
*
* REGISTER ADDRESS DATA
* DRR 0000h XXXX XXXX XXXX XXXX
* DXR 0001h XXXX XXXX XXXX XXXX
* TIM 0002h 1111 1111 1111 1111
* PRD 0003h 1111 1111 1111 1111
* IMR 0004h 1111 1111 11XX XXXX
* GREG 0005h 1111 1111 0000 0000
*
* RESERVED XINT RINT TINT INT2 INT1 INT0
* MR: 1111111111 X X X X X X
 
*

.text
INIT ROVM ; DISABLE OVERFLOW MODE.

LDPK 0 ; POINT DP REGISTER TO DATA PAGE 0.
LARP 7 ; POINT TO AUXILIARY REGISTER 7.
LACK 3Fh ; LOAD ACCUMULATOR WITH 3Fh.
SACL 4 ; ENABLE ALL INTERRUPTS VIA IMR.

*
* INTERNAL DATA MEMORY INITIALIZATION.
*
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ZAC ; ZERO THE ACCUMULATOR.
LARK AR7,60h ; POINT TO BLOCK B2.
RPTK 31
SACL *+ ; STORE ZERO IN ALL 32 LOCATIONS.

*
LRLK AR7,200h ; POINT TO BLOCK B0.
RPTK 255
SACL *+ ; ZERO ALL OF PAGES 4 AND 5.

*
LRLK AR7,300h ; POINT TO BLOCK B1.
RPTK 255
SACL *+ ; ZERO ALL OF PAGES 6 AND 7.

*
* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-DEPENDENT PART OF
* THE SYSTEM (BOTH ON- AND OFF-CHIP) SHOULD NOW BE INITIALIZED.

*
EINT ; ENABLE ALL INTERRUPTS.

Example 5–2.Processor Initialization (TMS320C26)
.title ’INIT26’
.title ’TMS320C26 PROCESSOR INITIALIZATION’
.width 100
.option ×
.def RESET,INT0,INT1,INT2
.def TINT,RINT,XINT,USER
.ref ISR0,ISR1,ISR2
.ref TIME,RCV,XMT,PROC

*
* RESET AND INTERRUPT VECTOR SPECIFICATION:

BRANCHES FOR EXTERNAL AND INTERNAL INTERRUPTS
*
*
RESET B INIT ; RS- will begin processing here
*
INT0 B ISR0 ; INT0– PROCESSING
INT1 B ISR1 ; INT1– PROCESSING
INT2 B ISR2 ; INT2– PROCESSING

.space 16*16 ; RESERVED TIME
TINT B TIME ; TIMER INTERRUPT PROCESSING
RINT B RCV ; SERIAL PORT RECEIVE PROCESSING
XINT B XMT ; SERIAL PORT TRANSMIT PROCESSING
USER B PROC ; TRAP VECTOR PROCESSING

*

* THE BRANCH INSTRUCTION AT LOCATION 0 DIRECTS EXECUTION TO BEGIN HERE FOR
RESET
* PROCESSING TO INITIALIZE THE PROCESSOR. WHEN RESET IS APPLIED, THE FOLLOW-
ING
* CONDITIONS ARE ESTABLISHED FOR THE STATUS AND OTHER INTERNAL REGISTER.

*

* IN THIS EXAMPLE THE BRANCH INCLUDES THAT THE ARP IS SET TO 7.

* THE AUXILIARY REGISTIER POINTER IS NOT SET FROM RESET.

*
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* ARP OV OVM 1 INTM DP
* ST0: 111 0 X 1 1 XXXXXXXXX

*
* ARB CNF0 TC SXM C 1 CNF1 HM FSM XF F0 TXM PM
* ST1: XXX X 1 1 1 0 1 1 1 0 0 00
*
* REGISTER ADDRESS DATA
* DRR 0000h XXXX XXXX XXXX XXXX
* DXR 0001h XXXX XXXX XXXX XXXX
* TIM 0002h 1111 1111 1111 1111
* PRD 0003h XXXX XXXX XXXX XXXX
* IMR 0004h 1111 1111 11XX XXXX
* GREG 0005h 1111 1111 0000 0000
*
* RESERVED XINT RINT TINT INT2 INT1 INT0
IMR: 1111111111 X X X X X X
*

def INIT
B0 .set 0200h ; DATA MEMORY BLOCK B0
B2 .set 0060H ; DATA MEMORY BLOCK B2
IMR .set 4 ; INTERRUPT MASK REGISTER

.TEXT
INIT ROVM ; DISABLE OVERFLOW MODE

LDPK 0 ; POINT TO DATA MEMORY PAGE 0
LARP 7 ; POINT TO AUXILIARY REGISTER 7
CONF 0 ; CONFIGURE ALL INTERNAL RAM

; BLOCKS AS DATA MEMORY
LACK 03FH ; LOAD ACCUMULATOR WITH INTERRUPT MASK
SACL IMR ; ENABLE ALL INTERRUPTS

*
* INTERNAL DATA MEMORY INITIALIZATION
*

.sect ”INIT_RAM”
ZAC ; ZERO THE ACCUMULATOR
LARK AR7,B2 ; POINT TO BLOCK B2
RPTK 31
SACL *+ ; STORE ZERO IN ALL 32 LOCATIONS

*
LRLK AR7,B0 ; POINT TO BLOCK B0
LARK AR6,5 ; REPEAT LOOP1 6 TIMES

LOOP1: RPTK 255 ; ZEROING BLOCK B0, B1 AND B3
SACL *+ ; ZERO THE PAGES: 4–15
LARP AR6
BANZ LOOP1,*–,AR7 ; REPEAT 6 TIMES

*
* THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION DEPENDENT PART OF THE

SYSTEM (BOTH ON- AND OFF-CHIP) SHOULD NOW BE INITIALIZED.
*

EINT ; ENABLE ALL INTERRUPTS
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5.1.1 TMS320C26 Download/Bootstrapping Modes

The TMS320C26 boot program allows three types of download:

� Mode 1: parallel download from an I/O port

� Mode 2: serial download from an RS232 port

� Mode 3: external memory (EPROM) download.

Note: In all three modes,

� The download begins at data block B0 (0200h) in internal space and con-
tinues until the length specified by the download mode is reached. The
appropriate memory blocks are then configured as program, and execu-
tion transfers to the first address in program block B0 (0FA00h).

� The ROM interrupt vector table uses AR modification. To save context
on an interrupt, the user-defined vector table in program block B0 should
not modify the auxiliary registers. This is especially important in external
global memory downloads in which an unmodified B(ranch) instruction
is used to identify valid code.

� If the RS signal is not a clean TTL signal, the various processor sections
may not be properly synchronized with each other. This is because the
RS pin does not have an internal Schmidt trigger built into it.  It is there-
fore recomended that you use a Schmidt-triggered gate with an RC time
constant and external switch to avoid this.

5.1.1.1 Mode 1: Parallel Download From an I/O Port

You can perform a parallel download through a parallel interface to a host pro-
cessor via parallel I/O port zero (PA0). Both 8- and 16-bit wide data words can
be transferred. BIO and XF are used as handshake signals to the host.

If the BIO signal is low at reset, a parallel I/O mode download will be initiated.
Otherwise, bootloader control passes to modes 2 and 3. The BIOZ (BIO pin)
test is made 36+2d cycles after reset, but it is recommended that the BIO pin
be initialized at power-up or reset. The value of d is the number of wait states
used at global memory address 08000h. In this case, a read of memory loca-
tion 08000h is used as a delay and is part of the global EPROM download op-
tion. However, the status of that test is not used until after the BIO pin has been
polled.

Each transfer of program data from the host is accomplished through a BIO
and XF handshake with the host. A data transfer is initiated by the host, driving
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the BIO pin low. When the BIO pin goes low, the C26 inputs the data from port
address zero and stores it in the currently available memory location. The C26
then drives the XF pin high to indicate to the host that the data has been re-
ceived. The C26 then waits for the BIO pin to go high before setting the XF pin
low. The low status of the XF line can then be polled by the host to indicate that
the C26 is ready for another piece of data.

Example 5–3. BIO–XF Transfer Protocol
BIO low    ;at reset initiates parallel I/O mode
;–––––––––––––––––––––––––––––––––––––––––––––––––––––
BIO high   ;host requests to transmit
XF  low    ;C26 indicates ready to receive
BIO low    ;host indicates data valid; C26 inputs STATUS
XF  high   ;C26 indicates word was received
BIO high   ;host requests to transmit
XF  low    ;C26 indicates ready to receive
BIO low    ;host indicates data valid; C26 inputs INTERRUPT
XF  high   ;C26 indicates word was received
BIO high   ;host requests to transmit
XF  low    ;C26 indicates ready to receive
  : :      ;
  : :      ;This is repeated as many times as needed
  : :      ;
BIO high   ;host requests to transmit
XF  low    ;C26 indicates ready to receive
BIO low    ;host indicates data valid; C26 inputs CHECKSUM
XF/PA0     ;C26 indicates CHECKSUM status; HIGH=pass LOW=fail
;–––––––––––––––––––––––––––––––––––––––––––––––––––––
; Synchronization word
;–––––––––––––––––––––––––––––––––––––––––––––––––––––
BIO high   ;host requests transmit
XF  low    ;C26 indicates ready to receive
BIO low    ;C26 branches to execute program (data input
            but not used)
BRANCH PROG;program is now running

Figure 5–1. BIO–XF Handshake

Host 
Requests
Transmit

’C26 Ready 
 to Receive

Data
Input

Data
Was
Received

Repeat

BIO

XF

Note : The falling edge of BIO acts like a latch, causing the C26 to input the data.



Processor Initialization

5-8  Software Applications

Figure 5–2. Sequence for 8-Bit Transfers

STATUS WORD

INTERRUPT WORD

PROGRAM LENGTH

PROG WORD 1 LOW

PROG WORD 1 HIGH

PROG WORD 2 LOW

PROG WORD 2 HIGH

REPEAT

CHECKSUM LOW

CHECKSUM HIGH

SYNCHRO (DUMMY)

2× Length Transfers

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

15 8 7 0

Figure 5–3. Sequence for 16-Bit Transfers

STATUS WORD

INTERRUPT WORD

PROGRAM LENGTH

PROGRAM WORD 1

PROGRAM WORD 2

REPEAT

CHECKSUM

SYNCHRO (DUMMY)

Length Transfers

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

X  X  X  X  X  X  X  X

15 8 7 0

Note : In all transfers, the XF pin can be ignored as long as the host allows
sufficient time for the C26 to get ready for the next transfer.
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Configuration Word Definitions

STATUS (1 BIO–XF transfer)

This is the first word sent to the C26. The bit fields for this word are given below.

Bits D0, D1, D2 are the MSBs of the program length.
Bit D3 selects the reset/download mode:

0 = reset only (no download)
1 = start download of the program

Bit D4 selects the transmission/memory format:
0 =  8-bit format
1 = 16-bit format (not allowed in serial mode)

Bits D5–D7 should be set low (Do not use them.)

INTERRUPT (1 BIO–XF transfer)

This word defines the interrupt and final memory configuration to be installed
after bootstrapping. During the bootload process, blocks B0, B1, and B3 are
configured as data and always loaded first. This word is loaded into the C26
by a single transfer with the upper bits being masked off. The configuration is
as follows.

Bits D0–D5 are loaded into the interrupt mask register (IMR).
Bits D6 & D7 define the memory configuration after download:

D7 D6 Program Memory Data Memory
0 0 B0 B1, B2, B3
0 1 B0, B1 B2, B3
1 0 B0, B1, B3 B2

PROGRAM LENGTH (1 BIO –XF transfer)

The third word to be transferred is the program length, starting at block B0
(0200h) followed by B1 and B3. The 8 LSBs of the LENGTH word are com-
bined with bits D0, D1, and D2 of the STATUS word to form the total program
length (up to 2K words in length). The length does not include any of the con-
trol, CHECKSUM, or SYNCHRONIZATION words.

Figure 5–4. Building LENGTH From STATUS and PROGRAM LENGTH Words

D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

X X X X X LA L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

Don’t Care STATUS
Word Bits

PROGRAM LENGTH
Word Bits
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PROGRAM WORD (1 or 2 BIO –XF transfers)

The next LENGTH program words are then loaded into the internal RAM fol-
lowed by external data RAM at 0800h. In the 8-bit mode, two words are trans-
ferred for each complete program word. That is, 4K transfers will result in up
to 2K program words received. Also note that the maximum length can extend
past the last address of block B3, into external data memory, by 512 words.
In the 8-bit mode, the byte sequence is low to high.

CHECKSUM (1 or 2 BIO –XF transfers)

The CHECKSUM word verifies the correct result of the transfer. The checksum
is defined as the lower 16 bits of the sum of all program words transferred. The
checksum does not include any control words or the final checksum sent by
the host. After completing the program transfer, the host transmits a precalcu-
lated checksum, and the C26 returns the status on the XF line and port PA0.
The checksum status definitions are shown below. In the 8-bit mode, the byte
sequence is low to high.

XF=0 or PA0= 00h, indicates a checksum error.
XF=1 or PA0=0FFh, indicates a correct checksum.

Note : If  a  checksum  error  occurs,  this  will  cause  the  normal BIO–XF hand-
shake to fail. A host timeout (loop count) can be used to verify a failed
handshake and is a good method to detect a failed checksum as well.

SYNCHRONIZATION (1 BIO–XF transfer)

After loading the CHECKSUM, the value previously transmitted in the configu-
ration word reconfigures the internal memory and interrupts. The C26 then
waits for a falling edge on the BIO pin before program control is passed to the
first address of B0. If a checksum error has occurred, this allows the host to
check the status and possibly reboot the system. When BIO goes low, program
control is always passed to the first address of program block B0, regardless
of the checksum status.

Note : Because the XF pin is used as a handshake signal during transfers with
the   host,  suitable  software  control  must  verify  the  correct sumcheck
status.
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5.1.1.2 Mode 2: Serial Download From an RS232 Port (8 Data Bits, 2 Stop Bits, 1 Start Bit)

If the BIO signal is found to be high 39+2d cycles after reset, a test is made
to determine if external global memory (EPROM, mode 3) is present. If this
fails, a serial download is performed. It is recommended that you initialize the
BIO pin at reset to avoid inadvertently selecting the wrong mode. The value
of d is the number of wait states for global memory address 08000h and be-
comes part of the delay before polling the BIO pin.

The presence of an unmodified B instruction in the global data space (but not
in normal data space) determines whether there is an external EPROM in glob-
al memory. For more information, refer to subsection 5.1.1.3.

The serial link is RS232 standard, using TTL levels at the BIO and XF pins. In
this case, the BIO pin receives the data from the host via an RS232 line receiv-
er, and the XF pin sends status back to the host via a line driver. The receive
levels and data format are shown below.

Figure 5–5. RS232 Connection to the TMS320C26

RS232 (DB25) TMS320C26

TX

RX

GND

2

3

7

1/4 75189

1/4 75188

BIO

XF

Vss

C26 BIO PIN (RS232 TRANSMIT DATA ’TX’)

Stop Bits = TTL logic high (1)
Start  Bit = TTL logic low  (0)
Data Bits = MSB received first

Stop
Bits

Start
Bit

Data
(D7)
MSB

D6 D5
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C26 XF PIN (RS232 RECEIVE DATA ’RX’)

On reset, XF is driven high, indicating that a transfer has been initiated. If the
download is not successful and the checksum fails, XF is driven low, indicating
a failure. The host should wait until this time to poll the checksum verification
status. The levels are given below.

Logic high (1) = Transmission in progress or checksum valid
Logic low  (0) = Checksum error

RS232 line levels are not TTL-compatible. RS232 line drivers and
receivers, such as the Texas Instruments 75188 and 75189, must be
used to interface to the RS232 level.

Example 5–4. RS232 Transfer Protocol

BIO high   ;at reset signals either serial or EPROM load
EPROM ?    ;Global and normal data space is checked for an EPROM
  :    :   ;signiture.  If found mode 3 download is entered.
  :    :   ;––––––––––––––––––––––––––––––––––––––––––––––
BIO high   ;stop bit (has been high since reset)
BIO low    ;start bit, this bit is timed for baud rate
BIO DATA_7 ;high, signals end of start bit for baud rate detect
BIO DATA_6 ;rest of data bits for baud rate detect are don’t care
BIO DATA_5 ;don’t care
BIO DATA_4 ;don’t care
BIO DATA_3 ;don’t care
BIO DATA_2 ;don’t care
BIO DATA_1 ;don’t care
BIO DATA_0 ;don’t care
BIO high   ;stop bit 1, end of baud rate detect transfer
BIO high   ;stop bit 2,
BIO low    ;start bit, begin STATUS word transfer
BIO DATA_7 ;
  :    :   ;This process is repeated until all the control words,
  :    :   ;program words and checksum have been transferred.
  :    :   ;Finally, one final word (SYNCH) is used to hold the
  :    :   ;C26 momentarily before execution of the users program.
  :    :   ;
BIO high   ;stop bit, signals end of CHECKSUM HIGH transfer
XF/PA0     ;C26 indicates CHECKSUM status HIGH=pass Low=fail
BIO low    ;C26 branches to execute program (data input but not used)
BRANCH PROG;program is now running
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Figure 5–6. Sequence for RS232 Transfer (8 Data Bits Only)

BAUD DETECT WORD

STATUS WORD

INTERRUPT WORD

PROGRAM LENGTH

PROG WORD 1 LOW

PROG WORD 1 HIGH

PROG WORD 2 LOW

PROG WORD 2 HIGH

REPEAT

CHECKSUM LOW

CHECKSUM HIGH

SYNCHRO (DUMMY)

2× Length Transfers

Configuration Word Definitions

BAUD DETECT (1 RS232 transfer)

The first word transmitted by the host detects the baud rate by sampling the
low period of the start bit. In this case, the stop bits have been previously hold-
ing the BIO line high, and the start bit drives the line low. The next bit is data
and must be driven high. Since the data is received MSB first, the synchroniza-
tion word sent to the serial port may be 1xxxxxxx. The low period of the start
bit is sampled by using a software timing loop. The C26 then times out the re-
maining data bits (dummy bits) and waits for the next start bit (BIO going low).
Note that the serial link is not interrupt driven and therefore uses all of the avail-
able processor overhead for timing the incoming data stream.

STATUS (1 RS232 transfer)

The second word sent to the C26 is the 8-bit STATUS word. The bit fields are
given below.

Bits D0, D1, and D2 are the MSBs of the program length.
Bit D3 selects the reset/download mode:

0 = reset only (no download)
1 = start download of the program

Bit D4 selects the transmission/memory format:
0 = 8-bit format
1 = 16-bit format (not allowed in serial mode)

Bits D4–D7 should be set low. (Do not use them).
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INTERRUPT (1 RS232 transfer)

The third word defines the interrupt and final memory configuration to be
installed after bootstrapping. During the bootload process, blocks B0, B1 and
B3 are configured as data and are always loaded first. This word is loaded into
the C26 with a single transfer with the upper bits being masked off. The config-
uration is as follows.

Bits D0–D5 are loaded into the interrupt mask register (IMR)
Bits D6 & D7 define the memory configuration after download

D7 D6 Program Memory Data Memory
0 0 B0 B1, B2, B3
0 1 B0, B1 B2, B3
1 0 B0, B1, B3 B2

PROGRAM LENGTH (1 RS232 transfer)

The fourth word is the program length to be transferred starting at block B0
(0200h) followed by B1 and B3. The 8 LSBs of the LENGTH word are com-
bined with bits D0, D1, and D2 of the STATUS word to form the total program
length (up to 2K words in length). The length does not include any of the con-
trol, CHECKSUM, or SYNCHRONIZATION words.

Figure 5–7. Building LENGTH From STATUS and PROGRAM LENGTH Words

D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

X X X X X LA L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

Don’t Care STATUS
Word Bits

PROGRAM LENGTH
Word Bits

PROGRAM WORD (2 RS232 transfers each)

The next LENGTH program words are then loaded into the internal RAM fol-
lowed by external data RAM at 0800h. In the RS232 mode, two words are
transferred for each complete program word. That is, 4K word transfers will re-
sult in up to 2K program words received. Also note that the maximum length
can extend past the last address of block B3, into external data memory, by
512 words. In the RS232 mode, the byte sequence is low to high.

CHECKSUM (2 RS232 transfers)

The CHECKSUM word is used to verify correct result of the transfer. The
checksum is defined as the lower 16 bits of the sum of all program words trans-
ferred. The checksum does not include any control words or the final check-
sum sent by the host. After completing the program transfer, the host transmits
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a precalculated checksum, and the C26 returns the status on the XF line and
port PA0. The checksum status definitions are shown below. In the RS232
mode, the byte sequence is low to high.

XF=0 or PA0= 00h, indicates a checksum error.
XF=1 or PA0=0FFh, indicates a correct checksum.

SYNCHRONIZATION (1 RS232 transfer)

After loading the CHECKSUM, the value previously transmitted in the configu-
ration word reconfigures the internal memory and interrupts. The C26 then
waits for a falling edge on the BIO pin before program control is passed to the
first address of B0. If a checksum error has occurred, this allows the host to
check the status and possibly reboot the system. When BIO goes low, program
control is always passed to the first address of program block B0, regardless
of the checksum status.

Note : XF is driven high by reset and remains high to indicate that a transfer
is in progress. A high level on XF also indicates that a checksum is cor-
rect. If needed, a host timeout can be used to determine if the XF status
indicates a transfer is in progress or a correct checksum has been re-
ceived.

5.1.1.3 Mode 3: External Memory (EPROM) Download

If the BIO signal is found to be high 39+2d cycles after reset, a test is made
to determine if external global memory is present. If this fails, a serial download
(mode 2) is performed. It is recommended that BIO pin be initialized at power-
up or reset to avoid inadvertently selecting the wrong mode. The value of d is
the number of wait states used at global memory address 08000h and be-
comes part of the delay before polling the status of BIO.

The presence of an EPROM is determined by a test pattern check for an un-
modified B instruction in the first download location. Both global and normal
data spaces are checked. The test pattern must be found in the global data
space but not in normal data space.

This bit pattern test was chosen because the ROM-coded vector table uses
ARP modification while branching to your vector table in block B0. If your pro-
gram were also to use ARP modification, the ARP buffer (ARB) would be over-
written, and ARP recovery during an interrupt service routine would not be pos-
sible. The conclusion is that the unmodified B instruction is an excellent test
because you should never modify it. Furthermore, since most systems do not
decode the global memory space when selecting external memory, a random
bit pattern resembling an unmodified branch instruction will be rejected as a
valid EPROM signature. Global memory decoding must therefore be used to
download from external memory (EPROM).
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It is impossible to download from an EPROM if the global memory
select pin BR  (bus request) is not used to enable the EPROM. The
advantage of this method is that BR  can also be ORed with MSC  to
generate a one-wait state ready condition for global memory
access.

The signature test subtracts the value of a B instruction (0FF80h) from the re-
sulting combined 16 bits of the first two words in location 08000h. If a zero is
returned in the accumulator, it indicates that a branch was found. The
TMS320C26 performs this test in global memory by setting GREG=080h. If a
B instruction is present, it indicates that a valid EPROM may have been found.
The ’C26 performs the same test in normal data space by setting GREG=0h.
If a B instruction is present again, mode 3 is aborted and mode 2 (RS232 serial
port) operation is entered.

The downloading then continues until all of B0, B1, and B3 are filled with data
(1536 words). If additional data recovery is needed, your downloaded program
can take over. The memory to be loaded is recovered from the lower 8 data
bits (D0–D7) in a HI,LO,HI,LO order. The upper byte is masked out. The byte
ordering for the first few words, including the test branch, is shown in
Figure 5–8.

Figure 5–8. External Memory Byte Ordering

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

PA High

PA Low

X X X X X X X X

X X X X X X X X

X X X X X X X X

D15 D8 D7 D0

1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

08000h

08001h

08002h

08003h

08004h

08005h

08006h

D15 D0

B (0FF80h) 0200h

Prog_Addr 0201h

B (0FF80) 0202h

Ext_Global_Mem Int_Data_Mem

.. .. .. ..

In this mode, no checksum is performed because no host connection is used
to perform the download. If you still want a checksum, your program can per-
form this task.
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Example 5–5.TMS320C26BFNL Bootloader
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––;
;                                                         ;
;  TMS320C26BFNL Bootloader           1/15/92             ;
;                                                         ;
;–––––––––––––––––––––––––––––––––––––––––––––––––––––––––;
 .text
 .title ”***  Texas Instruments  TMS320C26 Bootloader  ***”
 .mmregs
*––––––––––––––––––––––––––––––––––––––––––––––––––
MEMORY: .set 060h ;Temporary Register
LENGTH: .set 061h ;Program–Length
CHECK:  .set 062h ;Checksum
MASKFF: .set 063h ;Low–Byte–Mask
WORD8L: .set 064h ;Low–Byte Data Word
WORD8H: .set 065h ;High–Byte Data Word
BITLEN: .set 066h ;RS232 bit length
MODE:   .set 067h ;Functional mode
STATUS: .set 07Eh ;Statusword
INTER:  .set 07Fh ;Interrupt–Word
***************************************************
POSST:  .set     0Bh      ;Statusbit–Position
POSRD:  .set     0Ch      ;Reset\Downl.–Bit–Pos
BCB1:   .set     09h      ;Block–Config–Bit1–Po
BCB2:   .set     08h      ;Block–Config–Bit2–Po
ADRESS: .set     0200h    ;Data–Adress of B0
PROG:   .set     0FA00h   ;Prog–Adress of B0
EPROM:  .set     08000h   ;EPROM address
LEPROM: .set     0BFFh    ;EPROM length
*–––––––––––––––––––––––––––––––––––––––––––––––––*
*         RESET AND INTERRUPTS                    *
*–––––––––––––––––––––––––––––––––––––––––––––––––*
          B    START,*,AR7  ;Reset
          B    PROG+2,*,AR0 ;Interrupt 0
          B    PROG+4,*,AR0 ;Interrupt 1
          B    PROG+6,*,AR0 ;Interrupt 2
          .space 16 * 16    ;reserve 16 words
          B    PROG+8,*,AR0 ;Timer–Interrupt
          B    PROG+10,*,AR0;Serial–Port–Int.
          B    PROG+12,*,AR0;Serial–Port–Int.
          B    PROG+14,*,AR0;Software–Interrupt
*–––––––––––––––––––––––––––––––––––––––––––––––––*
*   DOWNLOAD PROGRAM AREA      *
*–––––––––––––––––––––––––––––––––––––––––––––––––*
GLITCH:                      ;
START     ldpk  0            ;
          rsxm               ;
          lack  0FFh         ;Clear Checksum and load Mask
          sacl  MASKFF       ;
          sach  CHECK        ;
          lark  AR1,0        ;Load AR1+1 words (last in accum)
          call  Test_Load1   ;Test GLOBAL EPROM(must return 0)
*––––––––––––––––––––––––––––––––––––––––––––––––––
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*  READ FUNCTIONAL MODE 36+2d CYCLES AFTER RESET
*     BIO = 0 –––> COPROCESSOR (PARALLEL I/O) LOAD
*     BIO = 1 –––> MULTIPROCESSOR (SERIAL) MODE
*                  –OR– BYTE WIDE EPROM LOAD  <–– NEW
*––––––––––––––––––––––––––––––––––––––––––––––––––
         bioz  COPRO1       ;BIO low –> COPROCESSOR
          bnz   MULTI        ;Zero indicates B –>PASS
          lark  AR1, 0       ;if pass test NORMAL data space
          call  Test_Load2   ;
          bz    MULTI        ;Zero indicates B –>FAIL
          call  Full_Load    ;OK to load EPROM
          conf  3            ;B0, B1 & B3 as program
   ;NOP                      ;NOP adds extra latency
          B     NEED2        ;Double B for CONF 3 latency
MULTI:   ;––––––––––––––––––––––––––––––––––––––––––––––;
         ; MULTIPROCESSOR (SERIAL) MODE (BIO=INPUT)     ;
         ;             *** WARNING ***   ;
         ; First word must be 1 (ONE)to synchronize low ;
         ; period.  Treated as a dummy word. (Not used) ;
         ;––––––––––––––––––––––––––––––––––––––––––––––;
         lark   AR1,0        ;init. bitlen counter
         LACK   1            ;MODE=1 MULTIPROCESSOR/UART
AUTOBO   bioz   STBIT,*,AR1  ;wait for start bit
         b      AUTOBO       ;
STBIT    BIOZ   STBIT,*+     ;Bit length = 3*(AR0) cycles
         SAR    AR1,BITLEN   ;
         LARK   AR2,9        ;wait for 8 bits + 2 stop bit
         SACL   MODE         ; MODE=1 (MULTIPROCESSOR)
AUTOB2   LAR    AR1, BITLEN  ;
         BANZ   $,*–         ;wait (BITLEN +2) cycles
         LARP   AR2          ;
         BANZ   AUTOB2,*–,AR1;last bit in word?
         B      COMMON       ;execute common download PG
COPRO1   ;–––––––––––––––––––––––––––––––––––––––––––––––
         ; COPROCESSOR (PARALLEL I/O) MODE
         ;–––––––––––––––––––––––––––––––––––––––––––––––
         BIOZ   COPRO        ;BIO low –> COPROCESSOR
         B      GLITCH       ;BIO high –> Made mistake
COPRO    LACK   0            ;
         SACL   MODE         ;init MODE 0=COPROCESSOR
COMMON:  ;–––––––––––––––––––––––––––––––––––––––––––––––
         CALL   READ         ;read status word
         SACL   MEMORY       ;
         BIT    MEMORY,POSRD ;D3 (download) = high?
         BBZ    BLOCK        ;No, then >BLOCK CONFIG
         LAC    MEMORY       ;Store Statusword in
         SACL   STATUS       ;STATUS
         CALL   READ         ;read interrupt mask
         SACL   INTER        ;
         CALL   READ         ;Read Program–Length
         AND    MASKFF       ;mask unused bit
         SACL   LENGTH       ;
         LAC    STATUS,8     ;high–Byte
         ANDK   0700h        ;mask unused bit
         OR     LENGTH       ;High–Byte and Low–Byte
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         SACL   LENGTH       ;into Program–Length
         LRLK   AR7,ADRESS   ;Init. address
         LAR    AR6,LENGTH   ;Init. counter value
         BIT    STATUS,POSST ;D4 (16 bit format)= high?
         BBZ    LOW8L,*,AR7  ;No, then go to LOW8L
         ZAC                 ;
LOW16    BIOZ   LOW16        ;BIO–Input = high?
         RXF                 ;Set Ready–Signal
HIGH16   BIOZ   READ16       ;BIO–Input = low?
         B      HIGH16       ;
READ16   IN     *,PA0        ;Read Program–Data
         SXF                 ;Reset Ready–Signal
         ADD    *+,0,AR6     ;Accumulate Checksum
         BANZ   LOW16,*–,AR7 ;Last Word?
         SACL   CHECK        ;
         CALL   READ         ;read checksum
         CALL   CHKSUM       ;test checksum
         B      BLOCK        ;
LOW8L    CALL   READ         ;Read Program–Data LSB
         AND    MASKFF       ;mask unused bit
         SACL   WORD8L       ;––> Low–Byte
         CALL   READ         ;Read Program–Data MSB
         SACL   WORD8H       ;––> high–Byte
         LAC    CHECK        ;
         ADD    WORD8L       ;Accumulate Checksum
         ADD    WORD8H,8     ;Accumulate Checksum
         SACL   CHECK        ;
         LAC    WORD8H,8     ;Modify Program–Data
         OR     WORD8L       ;––> High–Byte+Low–Byte
         SACL   *+,0,AR6     ;Store Block B0\1\3
         BANZ   LOW8L,*–,AR7 ;Last Word?
CHKRID   CALL   READ         ;read checksum LSB
         AND    MASKFF       ;mask unused bit
         SACL   WORD8L       ;
         CALL   READ         ;read checksum MSB
         SACL   WORD8H       ;
         LAC    WORD8H,8     ;
         OR     WORD8L       ;––> High–Byte+Low–Byte
         CALL   CHKSUM       ; test checksum
*–––––––––––––––––––––––––––––––––––––––––––––*
* CONFIGURE B0, B1 & B3 AND THEN WAIT FOR     *
* FOR START SIGNAL (BIO=0) TO JUMP TO PROGRAM *
*–––––––––––––––––––––––––––––––––––––––––––––*
BLOCK    BIT    INTER,BCB2   ;Block–Config–Bit2=1?
         conf   3            ;Set all Prog.–Memory
         bbnz   POINT0       ;
         BIT    INTER,BCB1   ;Block–Config–Bit1=1?
         conf   2            ;Set B0,B1 Prog.–Mem.
         bbnz   POINT0       ;
         CONF   1            ;Set B0 Prog.–Memory
POINT0   LAC    INTER        ;init Interrupts
         SACL   IMR          ;of Interrupt–Word
         CALL   READ         ;dummy read for synchro
NEED2    SSXM                ;
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         B      PROG,*,AR0   ;branch to user prog (B0)
          ;–––––––––––––––––––––––––––––
READ      LAC   MODE         ;
          BZ    READP        ;MODE ?
READS:                       ;MULTIPROCESSOR–>RS232 link
          LARK  AR2,0        ;init. byte value
WSTBIT    BIOZ  STOK,*,AR1   ;wait for start bit falling edge
          B     WSTBIT       ;
          ;–––––––––––––––––––––––––––––––––––––––––––––––––;
          ; Note: The following sequence uses a shift and   ;
          ; decriment arangement to scale BITLEN for proper ;
          ; RS232 timing.  In this case the time in the     ;
          ; loop is 1/2 the length of the start bit         ;
          ;–––––––––––––––––––––––––––––––––––––––––––––––––;
STOK      lac   BITLEN,6     ;BITLEN is scaled and
half_len  subk  171          ;decremented by 8/3 for
          bgz   half_len     ;BITLEN/2 wait
          ;––––––––––––––––––––––––––––––––––––––––––––
          LARK  AR3,7        ;number of bits – 1
          LARK  AR0,1        ;bit number 1 value
WTBIT     CALL  BIT          ;wait for a bit
          BANZ  WTBIT,*–,AR1 ;last bit ?
          LARK  AR0,0        ;stop bit value
          CALL  BIT          ;wait for stop bit
          SAR   AR2,MEMORY   ;
          LAC   MEMORY       ;ACC == RS232 byte value
          LARP  AR7          ;
          RET                ;ACC = read value
BIT       LAR   AR1,BITLEN   ;
          BANZ  $,*–         ;wait for a bit
          BIOZ  ZEROBT,*,AR2 ;test bit value = 0 ?
          MAR   *0+          ;add bit value
ZEROBT    LARP  AR0          ;
          MAR   *0+,AR3      ;dble bit val for next bit
          RET                ;
          ;–––––––––––––––––––––––––––––––––––––––––––––––
READP:                       ;COPROCESSOR –>par intface
          BIOZ  READP        ;BIO–Input = high?
          RXF                ;Set Ready–Signal
HIGHST    BIOZ  READP2       ;BIO–Input = low?
          B     HIGHST       ;
READP2    IN    MEMORY,PA0   ;Read value
          SXF                ;Reset Ready–Signal
          LAC   MEMORY       ;ACC = read value
          RET                ;
CHKSUM:   ;–––––––––––––––––––––––––––––––––––––––––––––
          SXF                ; XF =   1 –>checksum OK
          LARK  AR6,0FFh     ;AR6 = >FF –>checksum OK
          SUB   CHECK        ;
          BZ    CHKOK        ;checksum OK ?
          RXF                ;XF =    0 –>checksum error
          LARK  AR6,00h      ;AR6 = >00 –>checksum error
CHKOK     SAR   AR6,MEMORY   ;
          OUT   MEMORY,PA0   ;OUTPUT PORT–>checksum flag
          RET                ;
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***********************************************************
*                   EPROM BOOTLOAD                        *
***********************************************************
Full_Load:  lrlk   AR1, LEPROM      ;
Test_Load1: lark   AR2, 080h        ; Entry = Global DS
            sar    AR2, GREG        ; Load length = AR1
Test_Load2: lrlk   AR7, EPROM–1     ; Entry = Norm DS
            lrlk   AR3, ADRESS      ; load destination
moreEPROM:  adrk   2                ; point to LOW word
            lac    MASKFF           ; only load lower 8 bits
            and    *–               ; get upper 8 bits
            add    *+,8,AR3         ; store value
            sacl   *                ; reloading clears MSB’s
            lac    *+,AR1           ; Mask upper bits
            banz   moreEPROM,*–,AR7 ; Finished load?
            sach   GREG             ; Set normal DS
            sblk   0FF80h           ; Accu = B(ranch)?
            ret                     ;
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5.2 Program Control

To facilitate the use of the TMS320C2x in general-purpose high-speed proces-
sing, a variety of instructions are provided for software stack expansion, sub-
routine calls, timer operation, single-instruction loops, and external branch
control. Descriptions and examples of how to use these features of the
TMS320C2x are given in this section.

5.2.1 Subroutines

The TMS320C2x has a 16-bit program counter (PC) and a eight-level hard-
ware stack for PC storage. The CALL and CALA subroutine calls store the cur-
rent contents of the program counter on the top of the stack. The RET (return
from subroutine) instruction then pops the top of the stack to the program
counter.

Example 5–6 illustrates the use of a subroutine to determine the square root
of a 16-bit number. Processing proceeds in the main routine to the point where
the square root of a number should be taken. At this point a CALL is made to
the subroutine, transferring control to that section of the program memory for
execution and then returning to the calling routine via the RET instruction when
execution has completed.

Example 5–6.Subroutines
* AUTOCORRELATION
*
* THIS ROUTINE PERFORMS A CORRELATION OF TWO VECTORS AND THEN CALLS A SQUARE ROOT
* SUBROUTINE THAT WILL DETERMINE THE RMS AMPLITUDE OF THE WAVEFORM.
*
AUTOC

.

.

.
LAC ENERGY
CALL SQRT
SACL ENERGY
.
.
.

*
* SQUARE ROOT
*
* THIS SUBROUTINE DETERMINES THE SQUARE ROOT OF A NUMBER X THAT IS LOCATED IN THE
* LOW HALF OF THE ACCUMULATOR WHEN THE ROUTINE IS CALLED. THE FRACTIONAL SQUARE
* ROOT OF XS TAKEN, WHERE 0 < X < 1 AND WHERE 1 IS REPRESENTED BY 7FFFh. THE
* RESULT IS RETURNED TO THE CALLING ROUTINE IN THE ACCUMULATOR.
*
ST0 .set 60h ; SAVED STATUS REGISTER ST0 ADDRESS
ST1 .set 61h ; SAVED STATUS REGISTER ST1 ADDRESS
NUMBER .set 62h ; NUMBER X WHOSE SQUARE ROOT IS TAKEN
TEMPR .set 63h ; INTERMEDIATE ROOTS
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GUESS .set 64h ; SQUARE ROOT OF X*

*
.text

SQRT SST ST0 ; SAVE STATUS REGISTER ST0.
SST1 ST1 ; SAVE STATUS REGISTER ST1.
LDPK 0 ; LOAD DATA PAGE POINTER = 0.
SSXM ; SET SIGN-EXTENSION MODE.
SPM 1 ; LEFT-SHIFT PR OUTPUT TO ACCUMULATOR.
SACL NUMBER ; SAVE X.
LARP AR1 ; INITIALIZE VARIABLES FOR SQUARE ROOT.
LARK AR1,11 ; 12 ITERATIONS
LALK 800h ; ASSUME X IS LESS THAN 200h.
SACL GUESS ; SET INITIAL GUESS TO 800h.
SACL TEMPR ; SET FIRST INTERMEDIATE ROOT TO 800h.
SACH ROOT ; SET SQUARE ROOT VALUE TO 0.
LAC NUMBER ; LOAD X INTO THE ACCUMULATOR.
SBLK 200h ; TEST IF X IS LESS THAN 200h.
BLZ SQRTLP ; IF YES, TAKE THE ROOT;
LAC GUESS,3 ; IF NO, THEN REINITIALIZE.
SACL GUESS ; SET INITIAL GUESS TO 4000h.
SACL TEMPR ; SET FIRST INTERMEDIATE ROOT TO 4000h.
LARK AR1,14 ; 15 ITERATIONS

*
* SQUARE ROOT LOOP
*
SQRTLP SQRA TEMPR ; SQUARE TEMPORARY (INTERMEDIATE) ROOT.

ZALH NUMBER ; CHECK IF RESULT IS LESS THAN X.
SPAC
BLZ NEXTLP ; IF IT’S NOT, SKIP ROOT UPDATE.
ZALH TEMPR ; IF IT IS, SET ROOT EQUAL TEMPR.
SACH ROOT

NEXTLP LAC GUESS,15 ; SCALE DOWN GUESS BY 2 TO CONVERGE.
SACH GUESS
ADDH ROOT ; ADD CURRENT ROOT ESTIMATE.
SACH TEMPR ; UPDATE TEMPORARY ROOT VALUE.
BANZ SQRTLP ; REPEAT SPECIFIED NO. OF ITERATIONS.
LAC ROOT ; LOAD THE ROOT OF X.
LST1 ST1 ; RESTORE STATUS REGISTER ST1.
LST ST0 ; RESTORE STATUS REGISTER ST0.
RET

The hardware stack is allocated for use in interrupts, subroutine calls, pipe-
lined instructions, and debugging. The TMS320C2x disables all interrupts
when it takes an interrupt trap. If interrupts are enabled more than one instruc-
tion before the return of the interrupt service routine, the routine can also be
interrupted, thus using another level of the hardware stack. This condition
should be considered when managing the use of the stack. When nesting sub-
routine calls, each call uses a level of the stack. The number of levels used by
the interrupt must be remembered as well as the depth of the nesting of sub-
routines. One level of the stack is reserved for debugging, to be used for break-
point/single-step operations. If debugging is not used, this extra level is avail-
able for internal use.
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5.2.2 Software Stack

Provisions have been made on the TMS320C2x for extending the hardware
stack into data memory. This is useful for deep subroutine nesting or stack
overflow protection.

Use the PUSH and POP instructions to access the hardware stack via the ac-
cumulator. Two additional instructions, PSHD and POPD, are included in the
instruction set so that the stack may be directly stored to and recovered from
data memory.

A software stack can be implemented by using the POPD instruction at the be-
ginning of each subroutine in order to save the PC in data memory. Then be-
fore returning from a subroutine, a PSHD is used to put the proper value back
onto the top of the stack.

When the stack has seven values stored on it and two or more values are to
be put on the stack before any other values are popped off, a subroutine that
expands the stack is needed, such as shown in Example 5–7. In this example,
the main program stores the stack starting location in memory in AR2 and indi-
cates to the subroutine whether to push data from memory onto the stack or
pop data from the stack to memory. If a zero is loaded into the accumulator
before calling the subroutine, the subroutine pushes data from memory to the
stack. If a one is loaded into the accumulator, the subroutine pops data from
the stack to memory.

Because the CALL instruction uses the stack to save the program counter, the
subroutine pops this value into the accumulator and utilizes the BACC (branch
to address specified by accumulator) instruction to return to the main program.
This prevents the program counter from being stored into a memory location.
The subroutine in Example 5–7 uses the BANZ (branch on auxiliary register
not zero) instruction to control all of its loops.

Example 5–7.Software Stack Expansion
* THIS ROUTINE EXPANDS THE STACK WHILE LETTING THE MAIN PROGRAM DETERMINE WHERE
* TO STORE THE STACK CONTENTS OR FROM WHERE TO RECOVER THEM.
*
STACK LARP 2 ; USE AR2.

BNZ PO ; IF POPD IS NEEDED, GO TO PO.
POP ; ELSE, SAVE PROGRAM COUNTER.
RPTK 6 ; LOAD REPEAT COUNTER.
PSHD *+ ; PUT MEMORY IN STACK.
BACC ; RETURN TO MAIN PROGRAM.

PO POP ; SAVE PROGRAM COUNTER.
MAR *– ; ALIGN STACK POINTER.
RPTK 6 ; LOAD REPEAT COUNTER.
POPD *– ; PUT STACK IN MEMORY.
MAR *+ ; REALIGN STACK POINTER.
BACC ; RETURN TO MAIN PROGRAM.
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5.2.3 Timer Operation

The TMS320C2x 16-bit on-chip timer and its associated interrupt perform vari-
ous functions at regular time intervals. On the TMS320C25, the timer is a down
counter that is continuously clocked by CLKOUT1 and counts (PRD + 1)
cycles of CLKOUT1. By programming the period (PRD) register from 1 to
65,535 (0FFFFh), a timer interrupt (TINT) can be generated every 2 to 65,536
cycles. (A period register value of zero is not allowed.)

Two memory-mapped registers operate the timer. The timer (TIM) register,
data memory location 2, holds the current count of the timer. At every
CLKOUT1 cycle, the TIM register is decremented by one. The PRD register,
data memory location 3, holds the starting count for the timer. When the TIM
register decrements to zero, a timer interrupt (TINT) is generated. In the follow-
ing cycle, the contents of the PRD register are loaded into the TIM register. In
this way, a TINT is generated every (PRD + 1) cycles of CLKOUT1 on the
TMS320C25.

You can read from or write to the timer and period registers on any cycle. You
can monitor the count by reading the TIM register and write a new counter peri-
od to the PRD register without disturbing the current timer count. The timer will
then start the new period after the current count is complete. If both the PRD
and TIM registers are loaded with a new period, the timer begins decrementing
the new period without generating an interrupt. Thus, you have complete con-
trol of the current and next periods of the timer.

For the TMS320C25, the TIM register is set to the maximum value on reset
(0FFFFh), and the PRD register is also initialized by reset to 0FFFFh. The TIM
register begins decrementing only after RS is deasserted. If the timer is not
used, TINT should be masked. The PRD register can then be used as a gener-
al-purpose data memory location. If you use TINT, you should program the
PRD and TIM registers before unmasking the TINT.

Example 5–8 shows the assembly code that implements the timer to divide
down the CLKOUT1 signal. To generate a 9600-Hz clock signal, load the PRD
register with 520. In the timer interrupt service routine, the XF line is toggled.
The XF output is used also as an input for BIO in this example. The output of
XF will provide a 50-percent duty cycle clock signal as long as the main routine
or other interrupt routines do not disable interrupts. Interrupts may be disabled
by direct or implied use of DINT or by executing instructions in the repeat
mode. The value for the PRD register is calculated as follows:

TMS320C25:

CLKOUT1/(PRD + 1) = 2 × frequency of signal
10 MHz/(520 + 1) = 2 × 9600 Hz (= 9597 Hz for divided signal)
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Example 5–8.Clock Divider Using Timer (TMS320C25)
* SETUP FOR INTERRUPT SERVICE ROUTINE.
*

LALK 520
SACL DMA3 ; LOAD THE PERIOD REGISTER.
LACK 8
OR DMA4
SACL DMA4 ; ENABLE THE TIMER INTERRUPT.
EINT ; ENABLE INTERRUPTS.

.

.

.
* I/O SERVICE ROUTINE.
*
TIME BIOZ SET1 ; CHECK THE CURRENT XF STATE.

RXF ; XF WAS HIGH; SET IT LOW.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED CODE.

SET1 SXF ; XF WAS LOW; SET IT HIGH.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED CODE.

5.2.4 Single-Instruction Loops

When programming time-critical high-computational tasks, it is often neces-
sary to repeat the same operation many times. For these tasks, the
TMS320C2x has repeat instructions that allow the execution of the next single
instruction N+1 times. N is defined by an eight-bit repeat counter (RPTC),
which is loaded by the RPT or RPTK instructions. The instruction immediately
following is then executed, and the RPTC is decremented until it reaches zero.

When you use the repeat feature, the instruction being repeated is fetched
only once. As a result, many multicycle instructions become single-cycle when
repeated. This is especially useful for I/O instructions, such as TBLR/TBLW,
IN/OUT, or BLKD/BLKP.

Since the instruction is fetched and internally latched, the program bus can be
used to fetch or write a second operand in parallel to operations using the data
bus. With the instruction latched for repeated execution, the program counter
can be loaded with a data address and incremented on succeeding executions
to fetch data in successive memory locations. As an example, the MAC
instruction fetches the multiplicand from program memory via the program
bus. Simultaneously with the program bus fetch, the second multiplicand is
fetched from data memory via the data bus. In addition to these data fetches,
preparation is made for accesses in the following cycles by incrementing the
program counter and by indexing the auxiliary register. TBLR is another exam-
ple of an instruction that benefits from simultaneous transfers of data on both
the program and data buses. In this case, data values from a table in program
memory may be read and transferred to data memory. When repeated, the
program overhead of reading the instruction from program memory must be
executed only once, thus allowing the rest of the executions to operate in a
single cycle.
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Programs, such as those implementing digital filters, require loops that
execute in a minimum amount of time. Example 5–9 shows the use of the RPT
or RPTK instructions.

Example 5–9.Instruction Repeating
* THIS ROUTINE USES THE RPT INSTRUCTION TO SET UP THE LOOP COUNTER IN ONE CYCLE.
* THE FOLLOWING EQUATION IS IMPLEMENTED IN THIS ROUTINE:
* 10
* –––––
* \ X(I) x Y(I)
* /
* –––––
* I = 1
*
* THIS ROUTINE ASSUMES THAT THE X VALUES ARE LOCATED IN ON-CHIP RAM BLOCK B0, AND
* THE Y VALUES IN BLOCK B1. WHEN REPLACING RPT NUM WITH RPTK 9, THE PROGRAM WILL
* EXECUTE THE SAME WAY.
*
SERIES LARP AR4

CNFP ; CONFIG BLOCK B0 AS PROGRAM MEMORY.
LACK 9 ; SET COUNTER TO 9.
SACL NUM ; (NUM) = 9.
LRLK AR4,300h ; POINT AT BEGINNING OF DATA.
MPYK 0h ; CLEAR P REGISTER.
ZAC ; CLEAR ACCUMULATOR.
RPT NUM ; EXECUTE NEXT INSTRUCTION 10 TIMES.
MAC 0FF00h,*+ ; MULTIPLY-ACCUMULATE; INCREMENT AR4.
APAC
RET ; RETURN TO MAIN PROGRAM.
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5.2.5 Computed GOTOs

Processing may be executed in a time- and process-dependent or selected
way. Following a specific time or data processing path may then result in se-
lecting one of several processing options.

You can program a simple computed GOTO in the TMS320C2x by using the
CALA instruction. This instruction uses the contents of the accumulator as the
direct address of the call. Thus, the call address can be computed in the ALU,
as shown in Example 5–10.

Example 5–10. Computed GOTO
* TASK CONTROLLER
*
* THIS MAIN TASK ROUTINE CONTROLS THE ORDER OF EXECUTION AND SCHEDULING OF TASKS.
* WHEN AN INTERRUPT OCCURS, THE INTERRUPT SERVICE ROUTINE IS EXECUTED TO PROCESS
* THE INPUT AND OUTPUT DATA SAMPLES. AFTER THE INTERRUPT SERVICE ROUTINE HAS
* COMPLETED,THE PROCESSOR BEGINS EXECUTION WITH THE INSTRUCTION FOLLOWING THE
* IDLE INSTRUCTION. THIS ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT
* SAMPLE CYCLE, CALLS THE TASK AS A SUBROUTINE, AND BRANCHES BACK TO THE IDLE TO
* WAIT FOR THE NEXT SAMPLE INTERRUPT  WHEN THE SCHEDULED TASK HAS COMPLETED 
* EXECUTION.
*
WAIT IDLE ; WAIT FOR SAMPLE INTERRUPT.

LAC SAMPLE ; FETCH SAMPLE COUNT VALUE.
SUB ONE ; DECREMENT THE SAMPLE COUNT.
BGEZ OVRSAM ; TEST FOR END OF BAUD INTERVAL.
LACK 15 ; INIT COUNT FOR NEW BAUD INTERVAL.

OVRSAM SACL SAMPLE ; SAVE NEW COUNT VALUE.
ADLK TSKSEQ ; ADD TASK TABLE BASE ADDRESS.
TBLR TEMP ; READ SUBROUTINE TASK ADDRESS.
LAC TEMP ; LOAD ACCUMULATOR FOR TASK CALL.
CALA ; EXECUTE APPROPRIATE TASK.
B WAIT

*
TSKSEQ

.word DUMMY ; 15 – UNUSED CYCLE

.word DUMMY ; 14 – UNUSED CYCLE

.word DUMMY ; 13 – UNUSED CYCLE

.word DUMMY ; 12 – UNUSED CYCLE

.word BDCLK2 ; 11 – COMPUTE ENERGY E(11)

.word DUMMY ; 10 – UNUSED CYCLE

.word OUT ; 9 – COMMUNICATE WITH U-CONTROLLER

.word DECODE ; 8 – DECODE/GET SCRAMBLED DIBIT

.word DEMODB ; 7 – DEMODULATE IN MIDDLE OF BAUD

.word DUMMY ; 6 – UNUSED CYCLE

.word AGCUPT ; 5 – UPDATE AGC EVERY 3RD BAUD

.word DUMMY ; 4 – UNUSED CYCLE

.word BDCLK1 ; 3 – COMPUTE ENERGY E(3)

.word DUMMY ; 2 – UNUSED CYCLE

.word DUMMY ; 1 – UNUSED CYCLE

.word DUMMY ; 0 – UNUSED CYCLE
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5.3 Interrupt Service Routine

Interrupts on the TMS320C2x are prioritized and vectored. When an interrupt
occurs, the corresponding flag is set in the interrupt flag register (IFR). If the
corresponding bit in the interrupt mask register (IMR) is set and interrupts are
enabled (INTM=0), then interrupt processing begins.

When the interrupt vector is loaded into the program counter, interrupts are
disabled (INTM=1) and a branch is made to the appropriate routine via the
branch instruction stored at the associated vector location. Since all interrupts
are disabled, interrupt processing will proceed without further interruption un-
less the interrupt service routine (ISR) re-enables interrupts.

Unless the interrupt service routines are simple I/O handlers, the processing
in each ISR generally must assure that the processor context is preserved dur-
ing execution. The context must be saved before the routine executes and
must be restored when the routine is finished. A common routine or routines
individualized for each interrupt may be used to secure the context of the pro-
cessor during interrupt processing. Context switching is also useful for subrou-
tine calls, especially when extensive use is made of the stack or auxiliary regis-
ters. Code examples of context switching and an interrupt service routine are
provided in this section.

5.3.1 Context Switching

Context switching, commonly required when processing a subroutine call or
interrupt, may be quite extensive or simple, depending on the system require-
ments. On the TMS320C2x, the program counter is stored automatically on
the hardware stack. If there is any important information in the other
TMS320C2x registers, such as the status or auxiliary registers, these must be
saved by software command. A stack in data memory, identified by an auxiliary
register, is useful for storing the machine state when processing interrupts.

Example 5–11 and Example 5–12 show how to save and restore the state of
the TMS320C25. Auxiliary register 7 (AR7) in both examples is the stack point-
er. As the stack grows, it expands into lower memory addresses. The status
registers (ST0 and ST1), accumulator (ACCH and ACCL), product register
(PR), temporary register (TR), all eight levels of the hardware stack, and the
auxiliary registers (AR0 through AR6) are saved.

The routines in Example 5–11 and Example 5–12 are protected against inter-
rupts, allowing context switches to be nested. This is accomplished by the use
of the MAR*– and MAR*+ instructions at the beginning of the context save and
context restore routines, respectively. Note that the last instruction of the con-
text save decrements AR7, while the context restore is completed with an addi-
tional increment of AR7. This prevents the loss of data if a context save or re-
store routine is interrupted.
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Example 5–11. Context Save (TMS320C25)
.title ’CONTEXT SAVE’
.def SAVE

*
* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT.
*
* ASSUME AR7 IS THE STACK POINTER AND AR7 = 128.
*
SAVE LARP AR7 ;(ARP) → ARB, 7 → ARP, AR7 = 128

MAR *– ; AR7 = 127
*
* SAVE THE STATUS REGISTERS.

SST1 *– ; ST1 → (127), AR7 = 126
SST *– ; ST0 → (126), AR7 = 125

*
* SAVE THE ACCUMULATOR.

SACH *– ; ACCH → (125), AR7 = 124
SACL *– ; ACCL → (124), AR7 = 123

*
* SAVE THE P REGISTER.

SPM 0 ; NO SHIFT ON PR OUTPUT
SPH *– ; PRH → (123), AR7 = 122
SPL *– ; PRL → (122), AR7 = 121

*
* SAVE THE T REGISTER.

MPYK 1 ; PR = TR
SPL *– ; TR → (121), AR7 = 120

*
* SAVE ALL EIGHT LEVELS OF THE HARDWARE STACK.

RPTK 7
POPD *– ; TOS (8) → (120), AR7 = 119

* ; STACK(7) → (119), AR7 = 118
* ; STACK(6) → (118), AR7 = 117
* ; STACK(5) → (117), AR7 = 116
* ; STACK(4) → (116), AR7 = 115
* ; STACK(3) → (115), AR7 = 114
* ; STACK(2) → (114), AR7 = 113
* ; BOS (1) → (113), AR7 = 112
*
* SAVE AUXILIARY REGISTERS AR0 THROUGH AR6.

SAR AR0,*– ; AR0 → (112), AR7 = 111
SAR AR1,*– ; AR1 → (111), AR7 = 110
SAR AR2,*– ; AR2 → (110), AR7 = 109
SAR AR3,*– ; AR3 → (109), AR7 = 108
SAR AR4,*– ; AR4 → (108), AR7 = 107
SAR AR5,*– ; AR5 → (107), AR7 = 106
SAR AR6,*– ; AR6 → (106), AR7 = 105

*
* SAVE IS COMPLETE.
*
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Example 5–12. Context Restore (TMS320C25)
.title ’CONTEXT RESTORE’
.def RESTOR

*
* CONTEXT RESTORE AT THE END OF A SUBROUTINE OR INTERRUPT.
*
* ASSUME AR7 IS THE STACK POINTER AND AR7 = 105.
*
RESTOR LARP AR7 ; (ARP), → ARB, 7 → ARP, AR7 = 105

MAR *+ ; AR7 = 106
*
* RESTORE AUXILIARY REGISTERS AR0 THROUGH AR6.

LAR AR6,*+ ; (106) → AR6, AR7 = 107
LAR AR5,*+ ; (107) → AR5, AR7 = 108
LAR AR4,*+ ; (108) → AR4, AR7 = 109
LAR AR3,*+ ; (109) → AR3, AR7 = 110
LAR AR2,*+ ; (110) → AR2, AR7 = 111
LAR AR1,*+ ; (111) → AR1, AR7 = 112
LAR AR0,*+ ; (112) → AR0, AR7 = 113

*
* RESTORE ALL EIGHT LEVELS OF THE HARDWARE STACK.

RPTK 7
PSHD *+ ; (113) → BOS (1), AR7 = 114

; (114) → STACK(2), AR7 = 115
; (115) → STACK(3) , AR7 = 116

* ; (116) → STACK(4), AR7 = 117
* ; (117) → STACK(5), AR7 = 118
* ; (118) → STACK(6), AR7 = 119
* ; (119) → STACK(7), AR7 = 120
* ; (120) → TOS (8), AR7 = 121
*
* THE RETURN PC IS NOW ON TOP OF THE STACK FOR THE RET INSTRUCTION. THE LOWER 16
* BITS OF THE P REGISTER MUST BE LOADED VIA THE T REGISTER AND THE STACK POINTER
* BE POINTING AT THE VALUE TO BE LOADED IN THE T REGISTER.
*
* RESTORE THE LOW P REGISTER.

MAR *+ ; SKIP T REGISTER, AR7 = 122
LT *– ; (122) → TR, AR7 = 121
MPYK 1 ; (TR) → PRL

*
* RESTORE THE T REGISTER.

LT *+ ; (121) → TR, AR7 = 122
MAR *+ ; SKIP P REGISTER LOW, AR7 = 123

*
* RESTORE THE HIGH P REGISTER.

LPH *+ ; (123) → PRH, AR7 = 124
*
* RESTORE THE ACCUMULATOR.

ZALS *+ ; (124) → ACCL, AR7 = 125
ADDH *+ ; (125) → ACCH, AR7 = 126

*
* RESTORE THE STATUS REGISTERS.

LST *+ ; (126) → ST0, AR7 = 127
LST1 *+ ; (127) → ST1, AR7 = 128

*
* RESTORE IS COMPLETE.

EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTS OR

; CALLING ROUTINE.
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5.3.2 Interrupt Priority

Interrupts on the TMS320C2x are prioritized in hardware. This allows inter-
rupts that occur simultaneously to be serviced in a prioritized order. Some-
times priority may be determined by frequency or rate of occurrence. An infre-
quent, but lengthy, ISR might need to be interrupted by a more frequently oc-
curring interrupt. In the routine of Example 5–13, the ISR for INT1 temporarily
modifies the IMR to permit interrupt processing when an interrupt on INT0 (but
no other interrupt) occurs. When the routine has finished processing, the IMR
is restored to its original state.

Example 5–13. Interrupt Service Routine
.title ’INTERRUPT SERVICE ROUTINE’
.def ISR1
.ref IMR

*
* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INT1–.
*
* THIS ROUTINE MAY BE INTERRUPTED BY AN INTERRUPT FROM THE EXTERNAL INTERRUPT
* INT0–, BUT NO OTHER.
*
*
ISR1 LARP AR7 ; 7 → ARP

MAR *– ; AR7 = AR7 – 1
SST1 *– ; ST1 → *AR7, AR7 = AR7 – 1
SST *– ; ST0 → *AR7, AR7 = AR7 – 1
SACH *– ; ACCH → *AR7, AR7 = AR7 – 1
SACL *– ; ACCL → *AR7, AR7 = AR7 – 1
LDPK 0 ; DP = 0
PSHD IMR ; IMR → TOS
LACK 0001h ; MASK FOR INT0–
AND IMR ; MASK CURRENT IMR CONTENTS.
SACL IMR ; ACC → IMR
EINT ; ENABLE INTERRUPTS.

*
* MAIN PROCESSING SECTION FOR ISR1.

.

.

.
*

DINT ; DISABLE INTERRUPTS.
LDPK 0 ; DP = 0
POPD IMR ; TOS → IMR
LARP AR7 ; AR7 → ARP
MAR *+ ; AR7 = AR7 + 1
ZALS *+ ; *AR7 → ACCL, AR7 = AR7 + 1
ADDH *+ ; *AR7 → ACCH, AR7 = AR7 + 1
LST *+ ; *AR7 → ST0, AR7 = AR7 + 1
LST1 *+ ; *AR7 → ST1, AR7 = AR7 + 1
EINT ; ENABLE INTERRUPTS.
RET
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5.4 Memory Management

The structure of the TMS320C2x memory map is programmable and can vary
for each application. Instructions are provided for moving blocks of data or pro-
gram memory, configuring a block of on-chip data RAM as program memory,
and defining part of external data memory as global. Explanations and exam-
ples of moving, configuring, and manipulating memory are provided in this
section.

5.4.1 Block Moves

Since the TMS320C2x directly addresses a large amount of memory, blocks
of data or program code can be stored off-chip in slow memories and then
loaded on-chip for faster execution. Data can also be moved from on-chip to
off-chip for storage or for multiprocessor data transfers.

The BLKD and BLKP instructions facilitate memory-to-memory block moves
on the TMS320C2x. The BLKD instruction moves a block within data memory
as shown in Example 5–14. Data may also be transferred between data
memory and program memory by means of the TBLR and TBLW instructions.
The instructions IN and OUT are used to transfer data between the data
memory and the I/O space.

Example 5–14. Moving External Data to Internal Data Memory With BLKD
* THIS ROUTINE USES THE BLKD INSTRUCTION TO MOVE A BLOCK OF EXTERNAL DATA MEMORY
* (DATA PAGES 8 AND 9) TO INTERNAL BLOCK B1 (DATA PAGES 6 AND 7).
*
MOVED LARP AR2

LRLK AR2,300h ; DESTINATION IS BLOCK B1 IN RAM.
RPTK 255 ; REPEAT NEXT INSTRUCTION 256 TIMES.
BLKD 400h,*+ ; MOVE EXTERNAL BLOCK TO BLOCK B1.
RET ; RETURN TO MAIN PROGRAM.

For systems that have external program memory but no external data memory,
BLKP can be used to move program memory blocks into data memory.
Example 5–15 demonstrates how to use the BLKP instruction.

Example 5–15. Moving Program Memory to Data Memory with BLKP
* THIS ROUTINE USES THE BLKP INSTRUCTION TO MOVE DATA VALUES FROM PROGRAM MEMORY
* INTO DATA MEMORY. SPECIFICALLY, THE VALUES IN LOCATIONS 2, 3, 4, AND 5 IN
* PROGRAM MEMORY ARE MOVED TO LOCATIONS 512, 513, 514, AND 515 IN DATA MEMORY.
*
MOVEP LARP AR2 ; SET REFERENCE FOR INDIRECT ADDRESSING.

LRLK AR2,512 ; LOAD BEGINNING OF BLOCK B0 IN AR2.
RPTK 3 ; SET UP LOOP.
BLKP 2h,*+ ; PUT DATA INTO DATA RAM.
RET ; RETURN TO MAIN PROGRAM.
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The TBLR instruction is another method for transferring data from program
memory into data memory. When the TBLR instruction is used, a calculated,
rather than predetermined, location of a block of data in program memory may
be specified for transfer. A routine using this approach is shown in
Example 5–16.

Example 5–16. Moving Program Memory to Data Memory With TBLR
* THIS ROUTINE USES THE TBLR INSTRUCTION TO MOVE DATA VALUES FROM P ROGRAM MEMORY
* INTO DATA MEMORY. BY USING THIS ROUTINE, THE PROGRAM MEMORY LOCATION IN THE
* ACCUMULATOR FROM WHICH DATA IS TO BE MOVED TO A SPECIFIC DATA MEMORY LOCATION
* CAN BE SPECIFIED. ASSUME THAT THE ACCUMULATOR CONTAINS THE ADDRESS IN PROGRAM
* MEMORY FROM WHICH TO TRANSFER THE DATA.
*
TABLER LARP AR3

LRLK AR3,380 ; DESTINATION ADDRESS = PAGE 7.
RPTK 127 ; TRANSFER 128 VALUES.
TBLR *+ ; MOVE DATA INTO DATA RAM.
RET ; RETURN TO CALLING PROGRAM.

In cases where systems require that temporary storage be allocated in the pro-
gram memory, TBLW can be used to transfer data from internal data memory
to external program memory. The code in Example 5–17 demonstrates how
to do this.

Example 5–17. Moving Internal Data Memory to Program Memory With TBLW
* THIS ROUTINE USES THE TBLW INSTRUCTION TO MOVE DATA VALUES FROM INTERNAL DATA
* MEMORY TO EXTERNAL PROGRAM MEMORY. THE CALLING ROUTINE MUST SPECIFY THE
* DESTINATION PROGRAM MEMORY ADDRESS IN THE ACCUMULATOR. ASSUME THAT THE
* ACCUMULATOR CONTAINS THE ADDRESS IN PROGRAM MEMORY INTO WHICH THE DATA IS
* TRANSFERRED.
*
*
*
*
*
*
TABLEW LARP AR4

LRLK AR4,380 ; SOURCE ADDRESS = PAGE 7.
RPTK 127 ; TRANSFER 128 VALUES.
TBLW *+ ; MOVE DATA TO EXTERNAL PROGRAM RAM.
RET ; RETURN TO CALLING PROGRAM.

The IN and OUT instructions are used to transfer data between the data
memory and the I/O space, as shown in Example 5–18 and Example 5–19.

Example 5–18. Moving Data From I/O Space Into Data Memory With IN
* THIS ROUTINE USES THE IN INSTRUCTION TO MOVE DATA VALUES FROM THE I/O SPACE
* INTO DATA MEMORY. DATA ACCESSED FROM I/O PORT 15 IS TRANSFERRED TO SUCCESSIVE
* MEMORY LOCATIONS ON DATA PAGE 5.
*
INPUT LARP AR2

LRLK AR2,2C0h ; DESTINATION ADDRESS = PAGE 5.
RPTK 63 ; TRANSFER 64 VALUES.
IN *+,PA15 ; MOVE DATA INTO DATA RAM.
RET ; RETURN TO CALLING PROGRAM.
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Example 5–19. Moving Data From Data Memory to I/O Space With OUT
* THIS ROUTINE USES THE OUT INSTRUCTION TO MOVE DATA VALUES FROM THE DATA MEMORY
* TO THE I/O SPACE. DATA IS TRANSFERRED TO I/O PORT 8 FROM SUCCESSIVE MEMORY
* LOCATIONS ON DATA PAGE 4.
*
OUTPUT LARP AR4

LRLK AR4,200h ; SOURCE ADDRESS = PAGE 4.
RPTK 63 ; TRANSFER 64 VALUES.
OUT *+,PA8 ; MOVE DATA FROM DATA RAM.
RET ; RETURN TO CALLING PROGRAM.

5.4.2 Configuring On-Chip RAM

TMS320C2x

The large amount of external memory and the configurability of on-chip RAM
simplify the downloading of data or program memory into the TMS320C2x.
Also, since data in the RAM is preserved when redefining on-chip RAM, block
B0 can be configured dynamically as either data or program memory.
Figure 5–9 illustrates the changes in on-chip RAM when switching configura-
tions.

On-chip memory is configured by a reset or by the CNFD and CNFP instruc-
tions. Block B0 is configured as data memory by executing CNFD or reset. A
CNFP instruction configures block B0 as program memory.

TMS320C26

The reconfigurable memory space of the TMS320C26 is different in both the
number of configurable blocks and the size of the blocks. For the TMS320C2x,
only 256 words in Block B0 are reconfigurable using the CNFD and CNFP
instructions. The TMS320C26 has three reconfigurable blocks—B0,  B1 and
B3—each 512 words in length.

Four possible configurations for the three blocks of the TMS320C26 are set
with the immediate instruction CONF. The configuration instructions CNFD
and CNFP are not defined for  the TMS320C26, and CONF is not defined for
the TMS320C2x.

Because the start and stop addresses of internal memory are not the same,
applications using the reconfigurable memory of the TMS320C2x will need to
be redefined. The memory maps and block descriptions are given in subsec-
tion 3.4.3 and in Appendix B.
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Figure 5–9. On-Chip RAM Configurations
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Configuring block B0 as program memory is useful for implementing adaptive
filters or similar applications at full speed with only on-chip memories.
Example 5–20 illustrates the use of the configuration modes to utilize block B0
as data and program memory while executing from its on-chip program ROM.
Note that a more definitive example of the use of the TMS320C25 for adaptive
filtering is provided in subsection 5.7.3.
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Example 5–20. Configuring and Using On-Chip RAM
.title ’ADAPTIVE FILTER’
.def ADPFIR
.def X, Y

*
* THIS 128-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK B0 FOR COEFFICIENTS
* AND BLOCK B1 FOR DATA SAMPLES. THE NEWEST INPUT SHOULD BE IN MEMORY LOCATION X
* WHEN CALLED. THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED.
*
COEFFP .set 0FF00h ; B0 PROGRAM MEMORY ADDRESS
COEFFD .set 0200h ; B0 DATA MEMORY ADDRESS
ONE .set 7Ah ; CONSTANT ONE (DP = 6)
BETA .set 7Bh ; ADAPTATION CONSTANT (DP = 6)
ERR .set 7Ch ; SIGNAL ERROR (DP = 6)
ERRF .set 7Dh ; ERROR FUNCTION (DP = 6)
Y .set 7Eh ; FILTER OUTPUT (DP = 6)
X .set 7Fh ; NEWEST DATA SAMPLE (DP = 6)
FRSTAP .set 0380h ; NEXT NEWEST DATA SAMPLE
LASTAP .set 03FFh ; OLDEST DATA SAMPLE
*
* FINITE IMPULSE RESPONSE (FIR) FILTER.
*
ADPFIR CNFP ; CONFIGURE B0 AS PROGRAM:

MPYK 0 ; CLEAR THE P REGISTER.
LAC ONE,14 ; LOAD OUTPUT ROUNDING BIT.
LARP AR3
LRLK AR3,LASTAP ; POINT TO THE OLDEST SAMPLE.

FIR RPTK 127
MACD COEFFP, *– ; 128-TAP FIR FILTER.
CNFD ; CONFIGURE B0 AS DATA:
APAC
SACH Y,1 ; STORE THE FILTER OUTPUT.
NEG
ADD X,15 ; ADD THE NEWEST INPUT.
SACH ERR,1 ; ERR(N) = X(N) – Y(N)

*
* LMS ADAPTATION OF FILTER COEFFICIENTS.
*

LT ERR
MPY BETA ; 128-TAP FIR FILTER.
PAC ; ERRF(N) = BETA * ERR(N)
ADD ONE,14 ; ROUND THE RESULT.
SACH ERRF,1
LARP AR3
LARK AR1,127 ; 128 COEFFICIENTS TO UPDATE.
LRLK AR2,COEFFD ; POINT TO THE COEFFICIENTS.
LRLK AR3,LASTAP ; POINT TO THE DATA SAMPLES.
DMOV X ; INCLUDE NEWEST SAMPLE.
LT ERRF
MPY *–,AR2 ; P = 2*BETA*ERR(N)*X(N – K)

*
ADAPT ZALH *,AR3 ; LOAD ACCH WITH AK(N).

ADD ONE,15 ; LOAD ROUNDING BIT.
APAC ; AK(N + 1) = AK(N) + P

* MPY *–,AR2 ; P = 2*BETA*ERR(N)*X(N–K)
SACH *+,0,AR1 ; STORE AK(N + 1).
BANZ ADAPT,*–,AR2 ; END OF LOOP TEST.
RET ; RETURN TO CALLING ROUTINE.
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5.4.3 Using On-Chip RAM for Program Execution

To use on-chip memory (block B0) for program execution, you must first load
this memory with executable code from external memories while it is config-
ured as data memory. On-chip execution is initiated by using the CNFP instruc-
tion to reconfigure block B0 as program memory and performing a branch or
call to an on-chip RAM address. By configuring block B0 as program memory
and executing from this internal memory, you can achieve full-speed execution
in systems using slower external memory. Example 5–21 illustrates how to
write a program to be loaded into and executed from on-chip memory.

One group of instructions, the branch/call instructions, are impacted by the
location of execution. Normally, by using labels, the assembler properly deter-
mines the location to which a branch is taken. Because the code is relocated
prior to execution from on-chip memory, it is necessary to alter the address de-
termined by the assembler for branch instructions. This alteration is necessary
so that the branch address that is determined can be consistent with the ad-
dress space used during execution. In Example 5–21, this is accomplished by
use of the .asect directive. The .asect directive simply indicates that the named
section is to be assembled as if it were at the specified address. The addresses
defined within this named section are absolute with respect to the specified ad-
dress. The section may, then, be placed in any area of program memory by
the linker and relocated at runtime to its fixed location for execution as is shown
in this example. The code in Example 5–22 for the TMS320C26 is equivalent
to the code in Example 5–21 written for the rest of the TMS320C2x.
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Example 5–21. Program Execution from On-Chip Memory
.title ”ON-CHIP RAM PROGRAM EXECUTION EXAMPLE”
.width 96
.option X
.text  

RESET B    INIT
*
* BRANCHES FOR EXTERNAL OR INTERNAL INTERRUPTS FOLLOW HERE AT THE DESIGNATED 
* LOCATIONS AS REQUIRED.
*
*

.space (32–($–RESET))*16
*
* A BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS PROCESSOR EXECUTION
* HERE.
*
*
* INITIALIZE THE PROCESSOR.
*
INIT ROVM ; DISABLE OVERFLOW MODE.

SSXM ; SET SIGN EXTENSION.
LDPK 0 ; POINT DP REGISTER TO DATA MEMORY PAGE 0.
SPM 0 ; NO SHIFT ON PRODUCT REGISTER OUTPUT.
LARP AR4 ; USE AUXILIARY REGISTER 4 (SET ARP = 4).
LARK AR4,PRD ; POINT AR4 TO PERIOD REGISTER.
LALK 0FFFFh ; SET ACCUMULATOR TO 0000FFFFh.
SACL *+ ; LOAD PERIOD REGISTER WITH MAXIMUM VALUE.
SACL *+ ; ENABLE ALL INTERRUPTS VIA IMR.
ZAC ; CLEAR ACCUMULATOR.
SACH * ; CLEAR GREG TO MAKE ALL MEMORY LOCAL.

*
* LOAD T IME-CRITICAL CODE FROM EXTERNAL SLOW MEMORY TO INTERNAL RAM
*

LARP AR1 ; USE AUXILIARY REGISTER 1 (SET ARP = 1).
LRLK AR1,PROGR ; POINT AR1 TO RECONFIGURABLE BLOCK B0.
RPTK PROGL–1 ; LOAD REPEAT COUNTER WITH BLOCK LENGTH.
BLKP P1_START,*+ ; MOVE CODE FROM PROG MEMORY TO ON-CHIP RAM

*
* INITIALIZE PARAMETERS FOR EXECUTION.
*

LDPK 6 ; POINT DP REGISTER TO DATA MEMORY PAGE 6.
LACK 1 ; SET ACCUMULATOR TO 0001h.
SACL ONE ; STORE VALUE OF 1.
LRLK AR1,COEFF ; POINT AR1 TO INTERNAL MEMORY ADDRESS.
RPTK COEFL–1 ; LOAD REPEAT COUNTER WITH BLOCK LENGTH.
BLKP C1_START,*+ ; MOVE DATA FROM PROG MEMORY TO ON-CHIP RAM.
CNFP ; CONFIGURE BLOCK B0 AS PROGRAM MEMORY.
LALK LPTS ; LOAD ACC WITH PROG ADDR IN INTERNAL RAM.
BACC ; BRANCH TO ON-CHIP EXECUTION ADDRESS.

*
* SIGNAL PROCESSING CODE TO BE EXECUTED FROM ON-CHIP RAM.
*

.asect ”on-chip”,0FF00h
PROG .label P1_START
LPTS BIOZ GET ; WAIT FOR INPUT SIGNAL.

B LPTS ; BRANCH IF NO SIGNAL.
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GET OUT FILOUT,PA2 ; OUTPUT LAST FILTER OUTPUT.
IN FILIN,PA2 ; INPUT NEW SIGNAL SAMPLE.
LRLK AR1,SIGNAL ; POINT AR1 TO SIGNAL DATA TO PROCESS.
ZAC ; CLEAR THE ACCUMULATOR.
MPYK 0 ; CLEAR THE P REGISTER.
RPTK 15 ; REPEAT MACD INSTRUCTION FOR 16 TAPS.
MACD COEF,*– ; MULTIPLY, ACCUMULATE, SAMPLE DELAY.
APAC ; ACCUMULATE THE LAST PRODUCT.
SACH FILOUT,1 ; SAVE THE RESULT.
B PTS ; LOOP TO WAIT FOR NEXT SAMPLE.

PROGE .label P1_END
PROGL .equ PROGE–PROG ; PROGRAM CODE LENGTH.
*
* COEFFICIENT DATA TO BE LOADED INTO ON-CHIP RAM.
*
COEF .label C1_START

.word 385,–1196,1839,–2009

.word 1390,407,–4403,19958

.word 19958,–4403,407,1390

.word –2009,1839,–1196,385
COEFE .label C1_END
COEFL .equ COEFE-COEF ; COEFFICIENT DATA LENGTH.
* DATA PAGE 0 (BLOCK B2) – DATA MEMORY LABELS.
*

.bss DRR,1 ; SERIAL PORT DATA RECEIVE REGISTER.

.bss DXR,1 ; SERIAL PORT DATA TRANSMIT 

.bss TIM,1 ; TIMER REGISTER.

.bss PRD,1 ; PERIOD REGISTER.

.bss IMR,1 ; INTERRUPT MASK REGISTER.

.bss GREG,1 ; GLOBAL MEMORY ALLOCATION REGISTER.
*

.bss RSVRD0,05Ah
*

.bss B2,020h
*

.bss RSVRD1,0180h
*
* DATA PAGE 4 (BLOCK B0) – DATA MEMORY LABELS.
*
B0 .bss PROGR,PROGL ; LOCATIONS FOR INTERNAL PROGRAM CODE.

.bss COEFF,COEFL ; LOCATIONS FOR COEFFICIENT MEMORY.

.bss FREE0,0100h–(PROGL+COEFL)
*
* DATA PAGE 6 (BLOCK B1) – DATA MEMORY LABELS.
*

B1 .bss ONE,1 ; RESERVED FOR DATA VALUE OF 1.
.bss FILOUT,1 ; FILTER OUTPUT SIGNAL VALUE.
.bss FILIN,1 ; FILTER INPUT SIGNAL VALUE.
.bss SIG,13
.bss SIGNAL,1 ; LAST SIGNAL DELAY VALUE.
.end
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Example 5–22. Program Execution From On-Chip Memory (TMS320C26)
.file onchip26
.title ON-CHIP RAM PROGRAM EXECUTION EXAMPLE FOR THE TMS320C26
.width 96
.option X

PGMBO .set 0FA00h ;
BLKSIZ .set 00200h ; BLOCKSIZE OF TMS320C26

.text  
RESET B INIT,*,AR1 ; ARP = AR1
*
* BRANCHES FOR EXTERNAL OR INTERNAL INTERRUPTS FOLLOW HERE AT THE DESIGNATED
* LOCATIONS AS REQUIRED.
*

.space (32-($-RESET))*16
*
* A BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS PROCESSOR EXECUTION
* HERE.
*
*
INIT ROVM ; DISABLE OVERFLOW MODE

LDPK 0 ; POINT DP REGISTER TO DATA MEMORY PAGE 0
*
* LOAD TIME-CRITICAL CODE FROM EXTERNAL SOW MEMORY TO INTERNAL RAM
*

LRLK AR1,PROGR ; POINT AR1 INTO RECONFIGURABLE BLOCK B0
RPTK PROGL-1 ; LOAD REPEAT COUNTER WITH BLOCK LENGTH
BLKP P1_START,*+ ; MOVE CODE FROM PROGRAM MEMORY TO ON-CHIP RAM

*
* INITIALIZE PARAMETERS FOR EXECUTION.
*

LDPK 8 ; POINT DP REGISTER TO DATA MEMORY PAGE 8
LACK 1 ; SET ACCUMULATOR TO 0001h
SACL ONE ; STORE VALUE OF 1
LRLK AR1,COEFF ; POINT AR1 TO INTERNAL MEMORY ADDRESS
RPTK COEFL-1 ; LOAD REPEAT COUNTER WITH BLOCK LENGTH
CONF 1 ; BLOCK B0 = PROGRAM MEMORY / B1, B3 = DATA MEMORY
B LPTS ; BRANCH TO ON-CHIP EXECUTION ADDRESS

*
* SIGNAL PROCESSING CODE TO BE EXECUTED FROM ON-CHIP RAM.
*

.asect ”ONCHIP”, PGMBO
PROG .LABEL P1_START
LPTS BIOZ GET ; WAIT FOR SIGNAL = LOW

B LPTS ; BRANCH IF SIGNAL = HIGH
GET OUT FILOUT,PA2 ; OUTPUT LAST FILTER OUTPUT

IN FILIN,PA2 ; INPUT NEW SIGNAL SAMPLE
LRLK AR1,SIGNAL ; POINT AR1 TO SIGNAL DATA TO PROCESS
ZAC ; CLEAR THE ACCUMULATOR
MPYK 0 ; CLEAR THE P REGISITER
RPTK 15 ; REPEAT MACD INSTRUCTION FOR 16 TAPS
MACD COEF,*– ; MULTIPLY/ACCUMULATE, SAMPLE DELAY
APAC ; Accumulate the last product
SACH FILOUT,1 ; Save the result
B LPTS ; Loop to wait for next sample

PROGE .label P1_END
PROGL .equ PROGE-PROG ; Program code lenth
*
* Coefficient data to be loaded into on-chip RAM
*
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COEF .label C1_START
.word 385,-1196,1839,-2009
.word 1390,407,-4403,19958
.word 19958,-4403,407,1390
.word -2009,1839,-1196,385

COEFE .label C1_END
COEFL .equ COEFE-COEF ; Coefficient data length
*
* Data page 0 (Block B2) – Data memory labels.
*

.bss DRR,1 ; Serial port data receive register

.bss DXR,1 ; Serial port data transmit register

.bss TIM,1 ; Timer register

.bss PRD,1 ; Period register

.bss IMR,1 ; Interrupt mask register

.bss GREG,1 ; Global memory allocation register
*

.bss RSVRD0,05Ah
*

.bss B2,020h
*

.bss RSVRD1,0180h
*
* Data page 4 (Block B0) – Data memory labels.
*
B0 .bss PROGR,PROGL ; Location for internal program code

.bss COEFF,COEFL ; Location for coefficent memory

.bss FREE0,0100h – (PROGL + COEFL)
*
* Data page 6 (block B1) – data memory labels
B1 .bss ONE,1 ; Reserved for data value of 1

.bss FILOUT,1 ; Filter output signal value

.bss FILIN,1 ; Filter input signal value

.bss SIG,13

.bss SIGNAL,1 ; Last signal delay value

.end
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5.5 Fundamental Logical and Arithmetic Operations

Although the TMS320C2x instruction set is oriented toward digital signal pro-
cessing, the same fundamental operations of a general-purpose processor
are included. This section explains basic operations of the TMS320C2x cen-
tral arithmetic logic unit (CALU), particularly accumulator operations, the sta-
tus register effect on data processing, and bit manipulation.

The TMS320C2x provides a complete set of logical operations, including
AND, OR, XOR, and CMPL (complement) instructions. This enables the de-
vice to perform any logical function. These instructions can convert sign mag-
nitude to 2s complement or the reverse.

You can store the contents of the accumulator in data memory with the SACH
and SACL instructions or in the stack with the PUSH instruction. You can load
the accumulator from data memory with the ZALH and ZALS instructions,
which zero the accumulator before loading the data value. The ZAC  instruc-
tion zeros the accumulator. POP can be used to restore the accumulator con-
tents from the stack.

The accumulator is also affected by the ABS and NEG instructions. ABS re-
places the contents of the accumulator with the absolute value of its contents.
NEG generates the arithmetic complement of the accumulator in complement
form.

5.5.1 Status Register Effect on Data Processing

Three data processing options allow the ALU to automatically suppress sign
extension, manage overflow, or scale product accumulations. These options
are enabled or disabled through bits in the status registers and function in par-
allel with normal execution of the instructions. They cause no additional ma-
chine cycles and therefore no performance overhead.

The sign-extension mode option is used to determine whether or not the
shifted data values fetched for ALU operations should be sign-extended. The
SXM status bit controls this operation. The SSXM instruction sets this bit to 1
for enabling sign extension, and the RSXM instruction sets it to 0 for suppres-
sing sign extension. This operation affects all the instructions that include a
shift of the incoming data value, that is, ADD, ADDT, ADLK, LAC, LACT, LALK,
SBLK, SFR, SUB, and SUBT.

The overflow mode option minimizes the effects of an arithmetic overflow by
forcing the accumulator to saturate at the largest positive value (or in the case
of underflow, the largest negative value). The OVM status bit controls this op-
eration. The overflow mode is enabled by setting the OVM bit to a 1 with the
SOVM instruction, and reset with the ROVM instruction. This feature affects
all arithmetic operations in the ALU.
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The product register shift mode option forces all products to be shifted before
they are accumulated. The products can be left-shifted one bit to delete the
extra sign bit when two 16-bit signed numbers are multiplied. The products can
be left-shifted four bits to delete the extra sign bits in multiplying a 16-bit data
value by a 13-bit constant. The product shifter can also be used to shift all prod-
ucts six bits to the right to allow up to 128 product accumulations without the
threat of an arithmetic overflow, thereby avoiding the overhead of overflow
management. The shifter can be disabled to cause no shift in the product when
working with integer or 32-bit precision operations. This also maintains com-
patibility with TMS320C1x code. These operations are controlled by the value
contained in the PM bits of status register ST1. The SPM instruction sets the
PM bits. This feature affects all the instructions that use the product of the mul-
tiplier, that is, APAC, LTA, LTD, LTP, LTS, MAC, MACD, MPYA, MPYS, PAC,
SPAC, SPH, SPL, SQRA, and SQRS.

5.5.2 Bit Manipulation

The BIT instruction tests any of the 16 bits of the addressed data word. The
specified bit is copied into the TC of the status register. The bit tested is speci-
fied by a bit code in the opcode of the instruction. Both the BBZ (branch on TC
bit = 0) and BBNZ (branch on TC bit = 1) instructions check the bit and allow
branching to a service routine.

Bit testing is useful in control applications where a number of states or condi-
tions may be latched externally and read into the TMS320C2x via an IN
instruction. At this point, individual bits can be tested and branches taken for
appropriate processing.

Because the BIT instruction requires the bit code to be specified with the
instruction, it cannot be placed in a loop to test several different bits of a data
word or bits determined by prior processing for efficient use. The TMS320C2x
also has a BITT instruction in which the bit code is specified in the T register.
Because the T register can easily be modified, BITT may be used to test all
bits of a data word if placed within a loop or to test a bit location determined
by past processing.
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Example 5–23. Using BIT and BBZ
* THIS ROUTINE USES THE BIT INSTRUCTION TO TEST THE CONDITION OF AN EXTERNAL MUX.
* BIT 4 DETERMINES THE UTILITY OF THE R EMAINING DATA. IF ZERO, A COUNTER IS
* INCREMENTED. IF ONE, ADDITIONAL PROCESSING OCCURS AND THE COUNTER IS CLEARED.
* THE ROUTINE IS INVOKED WHENEVER A TIMER INTERRUPT OCCURS.
*
TIME SST ST0 ; SAVE STATUS REGISTER ST0.

LDPK 0
LARP AR3
IN DAT,PA8 ; READ IN VALUE.
BIT DAT,0Bh ; TEST BIT 4.
BBZ INCR ; BRANCH AND INCREMENT IF POSITIVE.
.
.
.
LARK AR3,0 ; CLEAR THE COUNTER.
LST ST0 ; RELOAD THE STATUS REGISTER.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED ROUTINE.

*
INCR MAR *+ ; INCREMENT THE COUNTER.

LST ST0 ; RELOAD THE STATUS REGISTER.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED ROUTINE.

Example 5–24. Using BITT and BBNZ
* THIS ROUTINE USES THE BITT INSTRUCTION TO TEST THE CONDITION OF AN EXTERNAL
* MUX. A BIT IN THE MUX IS SIGNIFICANT ONLY WHEN PRIOR PROCESSING HAS DESIGNATED
* THE BIT TO BE ACTIVE. INDIVIDUAL PROCESSING WILL TAKE PLACE BASED UPON THE
* STATE OF THE TESTED BIT. THE BITS ARE TESTED EACH TIME A TIMER INTERRUPT 
* OCCURS.
*
TIME SST ST0 ; SAVE STATUS REGISTER ST0.

LDPK 0
LARP AR3
LAR AR3,BCNT ; LOAD COUNT OF ACTIVE BITS.
LRLK AR4,BTBL ; LOAD THE BIT TABLE ADDRESS.
IN DAT,PA8 ; READ IN VALUE.
B LTEST,*–,4

TMLOOP LT *+,3 ; LOAD BIT CODE.
BITT DAT ; TEST SPECIFIED BIT.
BBNZ LTEST ; BRANCH IF BIT IS ONE.
.
.
.

LTEST BANZ TMLOOP,*–,4
LST ST0 ; RELOAD THE STATUS REGISTER.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTED ROUTINE.
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5.6 Advanced Arithmetic Operations

The TMS320C2x provides instructions, such as MACD, SQRA, SUBC, and
NORM, that facilitate efficient execution of arithmetic-intensive DSP algo-
rithms. Explanations and examples of how to use these instructions with over-
flow management and for data move, multiplication-accumulation, division,
floating-point arithmetic, indexed addressing, and extended-precision arith-
metic are included in this section.

5.6.1 Overflow Management

The TMS320C2x has four features that can be used to handle overflow man-
agement: the branch on overflow conditions, accumulator saturation (overflow
mode), product register right shift, and accumulator right shift. These features
provide several options for overflow protection within an algorithm.

A program can branch to an error handler routine on an overflow of the accu-
mulator by using the BV (branch on overflow) instruction or bypass an error
handler by using the BNV (branch if no overflow) instruction. These instruc-
tions can be performed after any ALU operation that may cause an accumula-
tor overflow.

The overflow mode is a useful feature for DSP applications. This mode simu-
lates the saturation effect characteristic of analog systems. When enabled,
any overflow in the accumulator results in the accumulator contents being re-
placed with the largest positive value (7FFFFFFFh) if the overflowed number
is positive, or the largest negative value (80000000h) if negative. The overflow
mode is controlled by the OVM bit of status register ST0 and can be changed
by the SOVM (set overflow mode), ROVM (reset overflow mode), or LST (load
status register) instructions. Overflows can be detected in software by testing
the OV (overflow) bit in status register ST0. When a branch is used to test the
overflow bit, OV is automatically reset. Note that the OV bit does not function
as a carry bit. It is set only when the absolute value of a number is too large
to be represented in the accumulator, and it is not reset except by specific
instructions.

Another method of overflow management, which applies to multiply-accumu-
late operations, is the use of the right shifter of the product register. The right
shifter, which operates with no cycle overhead, allows up to 128 accumula-
tions without the possibility of an overflow. The least significant six bits of the
product are lost, and the MSBs are filled with sign bits. This feature is initiated
by setting the PM bits of status register ST1 to 11 with the SPM or LST1 instruc-
tions.

The TMS320C2x also has a right shift of the accumulator (using the SFR
instruction) to scale down the accumulator when it nears overflow.
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5.6.2 Scaling

Scaling the data coming into the accumulator or already in the accumulator is
useful in signal processing algorithms. This is frequently necessary in adapta-
tion or other algorithms that must compute and apply correction factors or
normalize intermediate results. Scaling and normalizing are implemented on
the TMS320C2x via right and left shifts in the accumulator and shifts of data
on the incoming path to the accumulator.

Right and left shifts of the accumulator can be performed using the SFL and
SFR instructions. SFL performs a logical left shift. SFR performs logical or
arithmetic right shifts depending on the state of the SXM bit in the status regis-
ter. A one in the SXM bit, corresponding to sign-extension enabled, causes an
arithmetic shift to be performed.

In addition to the shift instructions, data can be left-shifted 0 to 15 bits when
the accumulator is loaded by using a LAC instruction, and left-shifted 0 to 7 bits
on the TMS320C2x when storing from the accumulator by using SACH or
SACL instructions. These shifts can be used for loading numbers into the high
16 bits of the accumulator and renormalizing the result of a multiply. The in-
coming left shift of 0 to 15 bits can be supplied in the instruction itself or can
be taken from the lowest four bits of the T register. Left shifts of data fetched
from data memory are available for loading the accumulator (LAC/LACT), ad-
ding to the accumulator (ADD/ADDT), and subtracting from the accumulator
(SUB/SUBT). The contents of the P register may also be shifted prior to accu-
mulation.

5.6.3 Shifting Data

You can perform a logical right or left shift on the TMS320C25 in parallel with
another instruction without disturbing the accumulator, multiplier or any other
part of the ALU. Two important features of the ARAU — besides its capacity
to increment, decriment, and index — make this possible.

First, to double the value of a number, you need only to add it to itself. Simply
stated, the ARAU can have the current ARP=0 such that a *0+ modification will
add AR0 to itself.  The code would look this way:

lrlk AR0,Value  ; load a value into AR0
larp AR0  ; point the current ARP to AR0
mar *0+  ; add AR0 to itself (logical left shift!)
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Second, for bit-reversed carry addition in the ARAU, the logic of the ARAU pro-
pogates the carries from any half adder to the right, instead of left as in a nor-
mal addition. In otherwords, bit-reversed carry addition works as if you were
looking at the inputs and outputs with a mirror; it reverses the order. Note that
this also causes the LSBs to swap places with the MSBs. Two examples are
given. Example 5–25 shows AR0 bit reverse added to itself (ARP=0).
Example 5–26 shows what is normally used in FFT bit reversals and other
DSP algorithms (ARP != 0), with a “mirror” line drawn for reference.

Example 5–25. Bit-Reversed Carry Addition

LRLK AR0,07191h ;
LARP AR0 ;
MAR *BR0+ ; Note carries propogate right

C C C C C 1
0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 <–– AR0

+ 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 <–– AR0
0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 <–– New AR0

C> C> C> C> C> C> C> (last carry
 is lost)

Example 5–26. FFT Bit Reversals

LRLK AR1,0800h
LRLK AR0,0080h
LARP AR1
RPTK 7
MAR *BR0+

LSB MSB

Mirror
Line

LSBMSB

*BR0+

AR1 Bits

0000100000000000
0000000010000000

0000000000010000
0000000100000000

0000100000000000
0000100010000000
0000100001000000
0000100011000000
0000100000100000
0000100010100000
0000100001100000
0000100011100000
0000100000010000

0000000000010000
0000000100010000
0000001000010000
0000001100010000
0000010000010000
0000010100010000
0000011000010000
0000011100010000
0000100000010000

Bit Reversed carry –––>> <<––– Normal carry

+
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Bit-reversed carry addition is effective as a logical shifter that does not use the
accumulator in any way.  Here are some other applications:

� Suppose you want to do a decimation in frequency FFT.  In this case, the
DFT block size decreases by one-half for every stage of the FFT.  When
finished, the DFT block size will be two, and the address will be offset by
one. If you  use a BANZ Not_done,*BR0+, excess code is eliminated in a
tightly looped and reasonably efficient FFT.  Also, the value of AR0 can be
used at the same time to access a bit-reversed twiddle table lookup.  The
advantage here is that the same lookup table will work for any size FFT
smaller than the overall size of the table permits.

� In another application, AR0 can be loaded with a single bit. This bit is then
shifted during each pass through the main loop and used as a test bit.  This
test is a successive approximation approach to calculating the square root
of a 32-bit integer. Example 5–27 shows what the code will look like.
Compare this to the same algorithm in subsection 5.2.1.
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Example 5–27. Using the AR0 Test Bit to Calculate the Square Root of a Long Integer

***********************************************************
* LNG_SQRT.ASM  Calculates the 16 bit sqrt of a long int  *
*                                                         *
* long lng_sqrt(long);    /* C prototype */               *
*                                                         *
*   s    |–––––––––––|    This routine uses a succesive   *
*   t    |    AR0    |    approximation technique that    *
*   a    |–––––––––––|    holds both the test bit and     *
*   c    |    AR2    |    the guess in ARx registers      *
*   k    |–––––––––––|                                    *
* entry> |   guess   |    mem config   |pi/di|            *
*        |–––––––––––|    –––––––––––––|–––––|            *
*        | input hi  |    cycles (pos) | 243 |            *
*        |–––––––––––|         (0/neg) |   7 |            *
*        | input lo  |                                    *
*        |–––––––––––|                                    *
***********************************************************
         .global _lng_sqrt
_lng_sqrt:
         blez  ret_0            ;
         adrk  2                ;                  >AR0
         sar   AR0,*–           ;store AR0         >AR2
         sar   AR2,*–           ;store AR2         >AR3
         lrlk  AR0,08000h       ;initial test bit
         lrlk  AR2,08000h       ;initial guess 0
;––––––––––––––––––––––––––––––––––––––––––––––––;
; This section performs successive aproximation  ;
;––––––––––––––––––––––––––––––––––––––––––––––––;
more:    sar   AR2,*            ;store guess
         lt    *                ;square guess (unsigned)
         mpyu  *–               ;
         pac                    ;
         subh  *–               ;ACCU = guess – input
         subs  *+               ;
         mar   *+,AR0           ;
         bgz   too_hi,*BR0+,AR2 ;AR0>>1;  guess^2 > input?
too_low  mar   *0+,AR0          ;add test bit if guess too low
         banz  more,*,AR1       ;more test bits?
         b     done             ;
too_hi:  mar   *0–,AR0          ;sub test bit if guess too
high
         banz  more,*,AR1       ;more test bits
         larp  AR2              ;Always +1 LSB error
         mar   *–,AR1           ;subtract LSB
done:    sar   AR2,*            ;store final guess (result)
         zals  *+               ;load result in ACCU
         lar   AR2,*+           ;restore AR0 & AR2
         lar   AR0,*            ;
         sbrk  2                ;restore AR1
         ret                    ;
ret_0:   zac                    ;if input <=0
         ret                    ;then return 0
         .end
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5.6.4 Moving Data

Many DSP applications must perform convolution operations or other opera-
tions similar in form. These operations require data to be shifted or delayed.
The DMOV, LTD, and MACD instructions can perform the needed data moves
for convolution.

The data move function allows a word to be copied from the currently ad-
dressed data memory location in on-chip RAM to the next higher location while
the data from the addressed location is being operated upon (that is, by the
CALU). The data move and the CALU operation are performed in the same
cycle. In addition, an ARAU operation may also be performed in the same
cycle when using the indirect addressing mode. The data move function is use-
ful in implementing algorithms, such as convolutions and digital filtering, where
data is being passed through a time window. It models the z–1 delay operation
encountered in those applications. The data move function is continuous
across the boundary of the on-chip data memory blocks B0, B1, and B2. How-
ever, the data move function cannot be used if off-chip memory is referenced.

In Example 5–28, the following equation is implemented:

Y(n)� �
2

k�0

H(k)X(n� k)

where the H values stay the same, and the X values are shifted each time the
microprocessor performs one of the following series of multiplications (similar
to operations performed in FIR filters):

First Series: Y(2)  =  (H0) (X2) + (H1) (X1) + (H2) (X0)

Second Series: Y(3)  =  (H0) (X3) + (H1 )(X2) + (H2) (X1)

Third Series: Y(4)  =  (H0) (X4) + (H1) (X3) + (H2) (X2)

The MACD instruction, which combines accumulate and multiply operations
with a data move, is tailored to the type of calculation shown in the summation
equation above. In order to use MACD, the H values have been stored in block
B0 and configured as program RAM; the X values have been read into block
B1 of data RAM as shown in Figure 5–10.



Advanced Arithmetic Operations

5-52  Software Applications

Figure 5–10. MACD Operation

H0

H1

H2

X0

X1

X2

AR1

PC

Program
Block B0

Data
Block B1

(Coefficients) (Samples)

0FF00h

0FF01h

0FF02h

300h

301h

302h

Also, in Example 5–28, the summation in the above equation is performed in
the reverse order, that is, from K = 2 to 0, because of the operation of the data
move function. This results in the oldest X value being used and discarded first.

If the MACD instruction is replaced with the following two instructions, then the
MAC instruction can be utilized with the same results.

   MAC *
   DMOV *–

In cases where many more than three MACD instructions are required, the
RPT or RPTK instructions may be used with MACD, yielding the same com-
putational results but using less assembly code.

Example 5–28. Using MACD for Moving Data
* THIS ROUTINE IMPLEMENTS A SINGLE PASS OF A THIRD-ORDER FIR F ILTER. IT IS
* ASSUMED THAT THE H AND X VALUES HAVE ALREADY BEEN LOADED INTO THEIR RESPECTIVE
* MEMORY LOCATIONS, THAT THE ACCUMULATOR AND P REGISTER ARE BOTH RESET TO ZERO,
* AND THAT AR1 IS P OINTING AT X0. NOTE THAT THE MACD INSTRUCTION MAY BE USED IN
* THE REPEAT MODE, BUT IT IS NOT IMPLEMENTED HERE.
*
*
FIR CNFP ; CONFIGURE BLOCK B0 AS PROGRAM MEMORY.

LARP 1 ; AR1 SHOULD POINT AT THE X VALUES.
MAC 0FF00h,*– ; P = (X0)(H2)
MACD 0FF01h,*– ; ACC = (X0)(H2)
MACD 0FF02h,* ; ACC = (X0)(H2) + (X1)(H1)
APAC ; ACC = (X0)(H2) + (X1)(H1) + (X2)(H0)
CNFD ; CONFIGURE BLOCK B0 AS DATA MEMORY.
RET ; RETURN TO MAIN PROGRAM.
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5.6.5 Multiplication

The TMS320C2x hardware multiplier normally performs 2s-complement
16-bit by 16-bit multiplies and produces a 32-bit result in one processor cycle.
A single TMS320C2x instruction, MPYU, can be used to multiply two 16-bit un-
signed numbers. To multiply two operands, one operand must be loaded into
the T register (TR). The second operand is moved by the multiply instruction
to the multiplier, which then produces the product in the P register (PR). Before
another multiply can be performed, the contents of the PR must be moved to
the accumulator. A single-multiply program is shown in Example 5–29. Pipe-
lining multiplies and PR moves makes it possible to perfom most multiply op-
erations in a single cycle.

A common operation in DSP algorithms is the summation of products. The
MAC instruction, normally performed in multiple cycles, adds the contents of
the PR to the accumulator and then simultaneously reads two values and mul-
tiplies them. When you use the MAC instruction, a data memory value is multi-
plied by a program memory value. One of the operands can come from block
B1 or B2 in on-chip data memory while the other operand may come from block
B0. Block B0 must be configured as program memory when it supplies the se-
cond operand. Pipelining of the MAC instruction with a repeat instruction re-
sults in an execution time for each succeeding multiply-and-accumulate op-
eration of only one cycle.

Example 5–29. Multiply
* THIS ROUTINE MULTIPLIES TWO VALUES IN DATA MEMORY LOCATIONS 200h AND 201h WITH
* THE RESULT STORED IN 202h AND 203h.
*
MUL LRLK AR1,200h ; POINT AT BLOCK B0.

LARP 1
LT *+ ; GET FIRST VALUE AT 200h.
MPY *+ ; MULTIPLY BY VALUE AT 201h.
PAC ; PUT RESULT IN ACCUMULATOR.
SACL *+ ; STORE LOW WORD AT 202h.
SACH * ; STORE HIGH WORD AT 203h.
RET ; RETURN TO MAIN PROGRAM.

The pipelining of the MAC and MACD instructions incurs a certain amount of
overhead in execution. In those cases where speed is more critical than pro-
gram memory, it may be beneficial to use LTA or LTD and MPY instructions
rather than MAC or MACD. Example 5–30 and Example 5–31 show an imple-
mentation of multiply-accumulates using the MAC instruction. Example 5–31
shows an implementation of multiply-accumulates using the LTA-MPY instruc-
tion pair. Figure 5–11 and Figure 5–12 provide graphically the information
necessary to determine the efficiency of use for each of the techniques.
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Example 5–30. Multiply-Accumulate Using the MAC Instruction (TMS320C25)
* CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM
* CYCLES CYCLES MEMORY MEMORY
*

LARP AR1 ; 1 1
LRLK AR1,300h ; 2 2
CNFP ; 1 1
ZAC ; 1 1
MPYK 0 ; 1 1
RPTK N–1 ; 1 1
MAC 0FF00h,*+ ; 3 + N 2
APAC ; 1 11 + N 1 10

Example 5–31. Multiply-Accumulate Using the LTA-MPY Instruction Pair
* CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM
* CYCLES CYCLES MEMORY MEMORY
*

ZAC ; 1 1
LT D1 ; 1 1
MPY C1 ; 1 1
LTA D2 ; 1 1
MPY C2 ; 1 1

.

. ;  2N 2N

. ;
LTA DN ; 1 1
MPY CN ; 1 1
APAC ; 1 2+2N 1 2+2N
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Figure 5–11. Execution Time vs. Number of Multiply-Accumulates (TMS320C25)
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Figure 5–12. Program Memory vs. Number of Multiply-Accumulates
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In numerical analysis, it is often necessary to square numbers as well as add
or subtract. The TMS320C2x has two instructions, SQRA and SQRS, that ac-
complish this in a single machine cycle. The result of the previous operation
in the PR is first added to the accumulator if SQRA is used, or subtracted from
the accumulator if SQRS is used. Then the data value addressed is squared,
and the result is stored in the PR. Example 5–32 uses the SQRA instruction
to perform the computation.
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Example 5–32. Using SQRA
* THIS ROUTINE USES THE SQRA INSTRUCTION TO COMPUTE THE SQUARE OF THE DISTANCE
* BETWEEN TWO POINTS WHERE D**2 IS DEFINED AS FOLLOWS:
*
* D**2 = (XA – XB)**2 + (YA – YB)**2
*
DIST LAC XA

SUB XB
SACL XT ; XT = XA – XB

*
LAC YA
SUB YB
SACL YT ; YT = YA – YB

*
SQRA XT ; (P) = XT**2
ZAC ; (ACC) = 0
SQRA YT ; (P) = YT**2, (ACC) = XT**2
APAC ; (ACC) = XT**2 + YT**2 = D**2

*
RET ; RETURN TO MAIN PROGRAM.

When performing multiply-and-accumulate operations, you may choose to
shift the product before adding it to the accumulator. You can do both simulta-
neously with the MAC instruction by using the product shift mode on the
TMS320C2x. This mode, controlled by two bits in the PM field of status register
ST1, shifts the value from the PR while it is transferred to the accumulator. The
contents of the PR are not shifted.

5.6.6 Division

Division is implemented on the TMS320C2x by repeated subtractions using
SUBC, a special conditional subtract instruction. Given a 16-bit positive nu-
merator and denominator, the repetition of the SUBC command 16 times pro-
duces a 16-bit quotient in the low accumulator and a 16-bit remainder in the
high accumulator.

SUBC implements binary division in the same manner as is commonly done
in long division. The numerator is shifted until subtracting the denominator no
longer produces a negative result. For each subtraction that does not produce
a negative answer, a one is put in the LSB of the quotient and then shifted. The
shifting of the remainder and quotient after each subtraction produces the sep-
aration of the quotient and remainder in the low and high halves of the accumu-
lator.

There are similarities between long division and the SUBC method of division.
Both methods are used to divide 33 by 5 in Example 5–33.

The condition of the denominator, less than the shifted numerator, is deter-
mined by the sign of the result; both the numerator and denominator must be
positive when you use the SUBC command. Thus, you must determine the
sign of the quotient and compute the quotient with the absolute value of the
numerator and denominator.
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Integer and fractional division can be implemented with the SUBC instruction
as shown in Example 5–34 and Example 5–35, respectively. When you imple-
ment a divide algorithm, it is important to know if the quotient can be repre-
sented as a fraction and the degree of accuracy to which the quotient is to be
computed. For integer division, the absolute value of the numerator must be
greater than the absolute value of the denominator. For fractional division, the
absolute value of the numerator must be less than the absolute value of the
denominator.

Example 5–33. Divide 33 by 5

Long Division:

0000000000000101 

SUBC Method: 

32 HIGH ACC
| |
0000000000000000

–10
–10

| |
0000000000000000

–10
–10

•
•
•

| |
0000000000000100

–10
0000000000000001

| |
0000000000000011

–10
0000000000000000

| |
0000000000000001

–10
–

0000000000000011

| Remainder |

000000000000110
)000000000100001 

–101
110 

–101 
11

LOW ACC 0
| |
0000000000100001
1000000000000000
0111111111011111

| |
0000000001000010
1000000000000000
0111111110111110

| |
0010000000000000
1000000000000000
1010000000000000

| |
0100000000000001
1000000000000000
11000000000000001
| |
1000000000000011
1000000000000000
1111111111111101

0000000000000110

| Quotient |

Quotient

Remainder

Comment

(1) Numerator is loaded into ACC. The
denominator is left-shifted 15 and
subtracted from ACC. The subtrac-
traction is negative, so discard the
result and shift the ACC left one bit.

(2) 2nd subtract produces negative an-
swer, so discard result and shift ACC
(numerator) left.

•
•
•

(14) 14th SUBC command. The result is
positive. Shift result left and replace
LSB with 1.

(15) Result is again positive. Shift result
left and replace LSB with 1.

(16) Last subtract. Negative answer, so
discard result and shift ACC left.

Answer reached after 16 SUBC
instructions.
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Example 5–34. Using SUBC for Integer Division
* THIS ROUTINE IMPLEMENTS INTEGER DIVISION.
*

DN1 LT NUMERA ; GET SIGN OF QUOTIENT.
MPY DENOM
PAC
SACH TEMSGN ; SAVE SIGN OF QUOTIENT.
LAC DENOM
ABS
SACL DENOM ; MAKE DENOMINATOR POSITIVE.
LAC NUMERA ; ALIGN NUMERATOR.
ABS

*
* IF denominator AND numerator ARE ALIGNED, DIVISION CAN START HERE.
*

RPTK 15
SUBC DENOM ; 16-CYCLE DIVIDE LOOP.
SACL QUOT
LAC TEMSGN
BGEZ DONE ; DONE IF SIGN IS POSITIVE.
ZAC
SUB QUOT
SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE.

DONE LAC QUOT
RET ; RETURN TO MAIN PROGRAM.

Example 5–35. Using SUBC for Fractional Division
* THIS ROUTINE IMPLEMENTS FRACTIONAL DIVISION.
*
DN1 LT NUMERA ; GET SIGN OF QUOTIENT.

MPY DENOM
PAC
SACH TEMSGN ; SAVE SIGN OF QUOTIENT.
LAC DENOM
ABS
SACL DENOM ; MAKE DENOMINATOR POSITIVE.
ZALH NUMERA ; ALIGN NUMERATOR.
ABS

*
* IF denominator AND numerator ARE ALIGNED, DIVISION CAN START HERE.
*

RPTK 14
SUBC DENOM ; 15-CYCLE DIVIDE LOOP.
SACL QUOT
LAC TEMSGN
BGEZ DONE ; DONE IF SIGN IS POSITIVE.
ZAC
SUB QUOT
SACL QUOT ; NEGATE QUOTIENT IF NEGATIVE.

DONE LAC QUOT
RET ; RETURN TO MAIN PROGRAM.
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5.6.7 Floating-Point Arithmetic

Floating-point numbers are often represented on microprocessors in a two-
word format of mantissa and exponent. The mantissa is stored in one word.
The exponent, the second word, indicates how many bit positions from the left
the decimal point is located. If the mantissa is 16 bits, a 4-bit exponent is suffi-
cient to express the location of the decimal point. Because of its 16-bit word
size, the 16/4-bit floating-point format functions most efficiently on the
TMS320C2x. The theory and implementation of floating-point arithmetic has
been presented in an application report in the book, Digital Signal Processing
Applications with the TMS320 Family (literature number SPRA012A).

Operations in the TMS320C2x central ALU are performed in 2s-complement
fixed-point notation. To implement floating-point arithmetic, operands must be
converted to fixed point for arithmetic operations, and then converted back to
floating point.

Conversion to floating-point notation is performed by normalizing the input
data, that is, shifting the MSB of the data word into the MSB of the internal
memory word. The exponent word then indicates how many shifts are re-
quired. To multiply two floating-point numbers, the mantissas are multiplied
and the exponents added. The resulting mantissa must be renormalized; since
the input operands are normalized, no more than one left shift is required to
renormalize the result.

Floating-point addition or subtraction requires shifting the mantissa so that the
exponents of the two operands match. The difference between the exponents
is used to left-shift the lower power operand before adding. Then, the output
of the add must be renormalized.

TMS320C2x instructions useful in floating-point operations are the NORM,
LACT, ADDT, and SUBT instructions. NORM may be used to convert fixed-
point numbers to floating-point. LACT may be used to convert back to fixed-
point numbers. Addition and subtraction can be computed in floating point by
using ADDT and SUBT.

Example 5–36 shows a floating-point multiply on the TMS320C25. The man-
tissas are assumed to be in Q15 format. Q15, one of the various types of Q
format, is a number representation commonly used when performing opera-
tions on noninteger numbers. In Q format, the Q number (15 in Q15) denotes
how many digits are located to the right of the binary point. A 16-bit number
in Q15 format, therefore, has an assumed binary point immediately to the right
of the most significant bit. Since the most significant bit constitutes the sign of
the number, the numbers in Q15 may take on values from +1 (represented by
+0.99997...) to –1.
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Example 5–36. Using NORM for Floating-Point Multiply
* THIS SUBROUTINE PERFORMS A FLOATING-POINT MULTIPLY USING THE NORM INSTRUCTION.
* THE INPUTS AND OUTPUTS ARE OF THE FORM:
*
* C = MC * 2**EC
*
* SINCE THE MANTISSAS, MA AND MB, ARE NORMALIZED, MC CAN BE NORMALIZED WITH A
* LEFT SHIFT OF EITHER 0 OR 1 IN THE ACCUMULATOR. THE EXPONENT OF THE RESULT IS
* ADJUSTED APPROPRIATELY. FOR EXAMPLE, MULTIPLICATION OF THE TWO NUMBERS A AND B,
* WHERE A = 0.1 * 2**2 AND B = 0.1 * 2**4, PROCEEDS AS FOLLOWS:
*
* 1) A * B = 0.01 * 2**6
* 2) A * B = 0.1 * 2**5 (NORMALIZED RESULT)
*
MULT LAC EA

ADD EB ; EC = EXPONENT OF RESULT BEFORE
SACL EC ; NORMALIZATION.
LT MA
MPY MB
PAC ; (ACC) = MA * MB

*
SFL ; TAKES CARE OF REDUNDANT SIGN BIT.
LARP AR5
LAR AR5,EC ; AR5 IS INITIALIZED WITH EC.

*
NORM *– ; FINDS MSB AND MODIFIES AR5.

*
SACH MC ; MC = MA * MB (NORMALIZED)
SAR AR5,EC
RET ; RETURN TO MAIN PROGRAM.

Floating-point implementation programs often require denormalization as well
as normalization to return results in a 16-bit format. Example 5–37 illustrates
the denormalizing of numbers that were normalized with the NORM instruc-
tion. This program assumes that the mantissa is in the accumulator and that
the exponent is in an auxiliary register, which is the format of the NORM
instruction after execution.

Example 5–37. Using LACT for Denormalization
* THIS ROUTINE DENORMALIZES NUMBERS NORMALIZED BY THE NORM INSTRUCTION (NORM *–).
* THE DENORMALIZED NUMBER WILL BE IN THE ACCUMULATOR
*
DENORM LARP 1 ; USE AR1 TO POINT AT BLOCK B0.

LRLK AR1,200h
SAR AR4,*+ ; STORE EXPONENT AT 200h.
SACH *– ; STORE MANTISSA AT 201h.

*
LAC * ; LOAD ACCUMULATOR WITH EXPONENT.
BZ OUT ; CHECK FOR ZERO EXPONENT.
LT *+
LACT * ; DENORMALIZE NUMBER.
RET ; RETURN TO MAIN PROGRAM.

OUT MAR *+ ; POINT TO MANTISSA.
ZALH * ; LOAD ACCUMULATOR WITH RESULT.
RET ; RETURN TO MAIN PROGRAM.
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5.6.8 Indexed Addressing

The auxiliary register arithmetic unit (ARAU) makes it possible to calculate the
next indirect address by increment/decrement or by indexed addressing in
parallel to the current arithmetic operation. For example, in the multiplication
of two matrices, the operation requires addressing across the rows (incre-
menting the address by one) or down the columns (incrementing by n).
Example 5–38 gives the code for multiplying a row times a column of two
10×10 matrices. The first matrix resides in data RAM block B1, and the second
matrix resides in block B0.

Example 5–38. Row Times Column
LARK 0,0Ah ; SET INDEX TO 10.
LARP 1 ; AR1 FOR ADDRESSING THE COLUMN.
LRLK 1,300h ; POINT AR1 TO THE START OF BLOCK B1.
CNFP ; SET B0 TO PROG A DDRESS FOR PIPELINE.
ZAC ; INITIALIZE THE ACCUMULATOR.
MPYK 0 ; CLEAR THE PRODUCT REGISTER.
RPTK 9 ; REPEAT 10 TIMES AS MATRIX DIMENSION.
MAC 0FF00h,*0+ ; MULTIPLY ROW TIMES COLUMN.
APAC ; EXECUTE FINAL ACCUMULATION.

; ACCUMULATOR CONTAINS PRODUCT.

The algorithm in Example 5–38 executes in 22 machine cycles. The key to this
performance is the parallel addressing of both multiplicands simultaneously.
The operation is made possible by the use of the data bus to fetch one multipli-
cand and the program bus to fetch the other. The auxiliary register indexes
down the column of one matrix while the PC generates incremental addres-
sing of each row of the other matrix. Each cycle of the repeat loop performs
the following operations:

1) Accumulates the previous product,

2) Multiplies the row element times the column element,

3) Increments the row address, and

4) Indexes the column address.

5.6.9 Extended-Precision Arithmetic

Numerical analysis, floating-point computations, or other operations may re-
quire arithmetic to be executed with more than 32 bits of precision. Since the
TMS320C2x processors are 16/32-bit fixed-point devices, software is required
for the extended-precision of arithmetic operations. A subroutine that performs
the extended-arithmetic function for the TMS320C25 is provided in the exam-
ples of this section. The technique consists of performing the arithmetic by
parts, similar to the way in which longhand arithmetic is done.
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The TMS320C25 has two features that help to make extended-precision cal-
culations more efficient. One of the features is the carry status bit. This bit is
affected by all arithmetic operations of the accumulator (ABS, ADD, ADDC,
ADDH, ADDK, ADDS, ADDT, ADLK, APAC, LTA, LTD, LTS, MAC, MACD,
MPYA, MPYS, NEG, SBLK, SPAC, SQRA, SQRS, SUB, SUBB, SUBC, SUBH,
SUBK, SUBS, and SUBT). The carry bit is also affected by the rotate and shift
accumulator instructions (ROL, ROR, SFL, and SFR) or may be explicitly mo-
dified by the load status register ST1 (LST1), reset carry (RC), and set carry
(SC) instructions. For proper operation, the overflow mode bit should be reset
(OVM = 0) so that the accumulator results will not be loaded with the saturation
value. Note that this means that some additional code may be required if over-
flow of the most significant portion of the result is expected.

The carry bit is set whenever the addition of a value from the input scaling shift-
er or the P register to the accumulator contents generates a carry out of bit 31.
Otherwise, the carry bit is reset because the carry out of bit 31 is a zero. One
exception to this case is the ADDH instruction, which can only set, not reset,
the carry bit. This allows the accumulation to generate the proper single carry
when the addition to either the lower or upper half of the accumulator actually
causes the carry. The following examples help to demonstrate the significance
of the carry bit on the TMS320C25 for additions:
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Example 5–39 shows an implementation of two 64-bit numbers added to each
other to obtain a 64-bit result. This example adds 32-bit parts and generates
a carry (C) bit in the accumulator.

Example 5–39. 64-Bit Addition
* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING A 64-BIT RESULT. THE
* NUMBERS X (X3,X2,X1,X0) AND Y (Y3,Y2,Y1,Y0) ARE ADDED RESULTING IN W
* (W3,W2,W1,W0).
*
*
*
* X3 X2 X1 X0
* + Y3 Y2 Y1 Y0
* –––––––––––––
* W3 W2 W1 W0
*
ADD64 ZALH X1 ; ACC = X1 00

ADDS X0 ; ACC = X1 X0
ADDS Y0 ; ACC = X1 X0 + 00 Y0
ADDH Y1 ; ACC = X1 X0 + Y1 Y0 = W1 W0
SACL W0
SACH W1
ZALH X3 ; ACC = X3 00
ADDC X2 ; ACC = X3 X2 + C
ADDS Y2 ; ACC = X3 X2 + 00 Y2 + C
ADDH Y3 ; ACC = X3 X2 + Y3 Y2 + C = W3 W2
SACL W2
SACH W3
RET

As in addition, the carry bit on the TMS320C25 is reset whenever the input
scaling shifter or the P-register value subtracted from the accumulator con-
tents generates a borrow into bit 31. Otherwise, the carry bit is set because no
borrow into bit 31 is required. One exception to this case is the SUBH instruc-
tion, which can only reset the carry bit. This allows the generation of the proper
single carry when the subtraction from either the lower or upper half of the ac-
cumulator actually causes the borrow. The following examples help to demon-
strate the significance of the carry bit for subtractions:
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The coding in Example 5–40 shows the advantage of  using the carry (C) sta-
tus bit on the TMS320C25.

Example 5–40. 64-Bit Subtraction
* TWO 64-BIT NUMBERS ARE SUBTRACTED, PRODUCING A 64-BIT RESULT. THE NUMBER Y
* (Y3,Y2,Y1,Y0) IS SUBTRACTED FROM X (X3,X2,X1,X0) RESULTING IN W (W3,W2,W1,W0).
*
* X3 X2 X1 X0
* – Y3 Y2 Y1 Y0
* –––––––––––––
* W3 W2 W1 W0
*
SUB64 ZALH X1 ; ACC = X1 00

ADDS X0 ; ACC = X1 X0
SUBS Y0 ; ACC = X1 X0 – 00 Y0
SUBH Y1 ; ACC = X1 X0 – Y1 Y0 = W1 W0
SACL W0
SACH W1
ZALS X2 ; ACC = 00 X2
SUBB Y2 ; ACC = 00 X2 – 00 Y2 – C
ADDH X3 ; ACC = X3 X2 – 00 Y2 – C
SUBH Y3 ; ACC = X3 X2 – Y3 Y2 – C = W3 W2
SACL W2
SACH W3
RET
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The second feature of the TMS320C25 that assists in extended-precision cal-
culations is the MPYU (unsigned multiply) instruction. The MPYU instruction
allows two unsigned 16-bit numbers to be multiplied and the 32-bit result to be
placed in the product register in a single cycle. Efficiency is gained by generat-
ing partial products from the 16-bit portions of a 32-bit or larger value instead
of having to split the value into 15-bit or smaller parts.

Example 5–41 shows the implementation of multiplying two 32-bit numbers to
obtain a 64-bit result. The advantage in using the MPYU instruction can be ob-
served when executed on the TMS320C25.

Example 5–41. 32 × 32-Bit Multiplication
* TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT RESULT. THE NUMBERS X
* (X1,X0) AND Y (Y1,Y0) ARE MULTIPLIED RESULTING IN W (W3,W2,W1,W0).
*
* X1 X0
* x Y1 Y0
* ––––––––––––––
* X0*Y0
* X1*Y0
* X0*Y1
* X1*Y1
* –––––––––––
* W3 W2 W1 W0
*
* DETERMINE THE SIGN OF THE PRODUCT.
*
MPY32 ZALS X1 ; ACCL = S X X X XX X XX X X XX X X
X

XOR Y1 ; ACCL = S - - - -- - -- - - -- - -
-

SACH SIGN,1 ; SAVE THE PRODUCT SIGN 0 = +, 1 = –.

*
* TAKE THE ABSOLUTE VALUE OF BOTH X AND Y.
*
ABSX ZALH X1 ; ACC = X1 00

ADDS X0 ; ACC = X1 X0
ABS
SACH X1 ; SAVE   X1  .
SACL X0 ; SAVE   X0  .

ABSY ZALH Y1 ; ACC = Y1 00
ADDS Y0 ; ACC = Y1 Y0
ABS
SACH Y1 ; SAVE   Y1  .
SACL Y0 ; SAVE   Y0  .

*
* MULTIPLY |X| AND |Y| TO PRODUCE | W |.
*
MULT LT X0 ; T = X0

MPYU Y0 ; T = X0, P = X0*Y0
SPL W0 ; SAVE  W0  .
SPH W1 ; SAVE PARTIAL  W1  .
MPYU Y1 ; T = X0, P = X0*Y1
LTP X1 ; T = X1, P = X0*Y0, ACC = X0*Y1
MPYU Y0 ; T = X1, P = X1*Y0, ACC = X0*Y1
ADDS W1 ; T = X1, P = X1*Y0,
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* ; ACC = X0*Y1 + X0*Y0*2**–16
MPYA Y1 ; T = X1, P = X1*Y1,

* ; ACC = X1*Y0 + X0*Y1 + X0*Y0*2**–16
SACL W1 ; SAVE  W1  .
SACH W2 ; SAVE PARTIAL  W2  .
ZALS W2 ; P = X1*Y1,

* ; ACC = (X1*Y0 + X0*Y1)*2**–16
BNC SUM ; TEST FOR CARRY FROM W2.
ADDH ONE

SUM APAC ; ACC = X1*Y1 + (X1*Y0 + X0*Y1)*2**–16
SACL W2 ; SAVE   W2  .
SACH W3 ; SAVE   W3  .

*
* TEST THE SIGN OF THE PRODUCT; NEGATE IF NEGATIVE.
*

LAC SIGN
BZ DONE ; RETURN IF POSITIVE.

*
ZALH W1 ; ACC =   W1  00 
ADDS W0 ; ACC =  W1  W0 
CMPL
ADD ONE ; ACC = W1 W0 AND CARRY GENERATION
SACL W0 ; SAVE W0.
SACH W1 ; SAVE W1.
ZALS W2 ; ACC =   00  W2 
ADDH W3 ; ACC =  W3  W2 
CMPL
ADDC ZERO ; ACC = W3 W2
SACL W2 ; SAVE  W2  .
SACH W3 ; SAVE   W3  .

DONE RET
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5.7 Application-Oriented Operations

The TMS320C2x efficiently implements many common digital signal proces-
sing algorithms. The architecture discussed in Chapter 3 supports features
that solve numerically intensive problems usually characterized by multiply/
accumulates. Some device-specific features that aid in the implementation of
specific algorithms include companding, filtering, Fast Fourier Transforms
(FFT), and PID control. These applications require I/O performed either in par-
allel  or serial.  Hardware requirements  for  I/O are  discussed in  Chapters 3
and 6.

5.7.1 Companding

In the area of telecommunications, one of the primary concerns is the I/O band-
width in the communications channel. One way to minimize this bandwidth is
by companding (COMpress/exPAND). Companding is defined by two interna-
tional standards, A-law and µ-law, both based on the compression of the
equivalent of 13 bits of dynamic range into an 8-bit code. The standard
employed in the United States and Japan is µ-law; the European standard is
A-law. Detailed descriptions and code examples of both types are presented
in an application report on companding routines included in the book, Digital
Signal Processing Applications with the TMS320 Family (literature number
SPRA012A).

The technique of companding allows the digital sample information corre-
sponding to a 13-bit dynamic range to be transmitted as 8-bit data. For proces-
sing in the TMS320C2x, it is necessary to convert the 8-bit (logarithmic) sign-
magnitude data to a 16-bit 2s-complement (linear) format. Prior to output, the
linear result must be converted to the compressed or companded format.
Table lookup or conversion subroutines may be used to implement these func-
tions.

Software routines for µ-law and A-law companding, flowcharts, companding
algorithms, and detailed descriptions are provided in the application report on
companding routines mentioned above. The algorithm space and time re-
quirements for µ-law and A-law companding on the TMS320C25 are given in
Table 5–1.
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Table 5–1.Program Space and Time Requirements for µ-/A-Law Companding

Function Memory Words
Program Data

Program Cycles 
Initialization Loop ‡

Time (µs) Required †

TMS320C25

µ-Law:
Compression
Expansion

74 8
276 2

19 45
14  5

4.5
0.5

A-Law:
Compression
Expansion

100 8
276 2

19 50
14  5

 5
0.5

† Assuming initialization
‡ Worst case

In expanding from the 8-bit data to the 13-bit linear representation, table look-
up is very effective because the table length is only 256 words. This is especial-
ly true for a microcomputer design because the TMS320C25 has 4K words of
mask-programmable ROM, and the TMS320E25 has 4K words of EPROM.
The table lookup technique requires three instructions (four words of program
memory), one data memory location, 256 words of table memory, and seven
instruction cycles (program in on-chip ROM) to execute.
LAC SAMPLE ;LOAD 8-BIT DATA.
ADLK MUTABL ;ADD THE CONVERSION TABLE BASE ADDRESS.
TBLR SAMPLE ;READ THE CORRESPONDING LINEAR VALUE.

The above conversion could be programmed as a subroutine. This would elim-
inate the need for a table but would increase execution time and require addi-
tional data memory locations.

When the output data has been determined in a system transmitting compan-
ded data, a compression of the data must be performed. The compression re-
duces the data back to the 8-bit format. Unless memory for a table of length
16384 is acceptable, the table lookup approach must be abandoned for con-
version routines. Details of these implementations may be found in the ap-
plication report on companding.

Access to new companding code as it becomes available is provided via the
TMS320 DSP Bulletin Board Service. The bulletin board contains TMS320
source code from application reports included in Digital Signal Processing Ap-
plications with the TMS320 Family (literature number SPRA012A). See the
TMS320 Family Development Support Reference Guide (literature number
SPRU011A) for information on how to access the bulletin board.
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5.7.2 FIR/IIR Filtering

Digital filters are a common requirement for digital signal processing systems.
The filters fall into two basic categories: finite impulse response (FIR) and Infi-
nite impulse response (IIR) filters. For either category of filter, the coefficients
of the filter (weighting factors) may be fixed or adapted during the course of
the signal processing. Presented in Digital Signal Processing Applications
with the TMS320 Family (literature number SPRA012A), an application report
discusses the theory and implementation of digital filters.

The 100-ns instruction cycle time of the TMS320C25 reduces the execution
time of all filters—especially the IIR filters—because fewer multiply/accumu-
late routines are required. Correspondingly, the amount of data memory for
samples and coefficients is not usually the limiting factor. Because of sensitiv-
ity to quantization of the coefficients themselves, IIR filters are usually imple-
mented in cascaded second-order sections. This translates to instruction code
consisting  of  LTD-MPY  instruction  pairs  rather  than  MACDs.  Example 5–42
illustrates an implementation of a second-order IIR filter.

Example 5–42. Implementing an IIR Filter
*
* THE FOLLOWING EQUATIONS ARE USED TO IMPLEMENT AN IIR FILTER:
*
* d(n) = x(n) + d(n – 1)a1 + d(n – 2)a2
* y(n) = d(n)b0 + d(n – 1)b1 + d(n – 2)b2
*
START IN XN,PA0 ; INPUT NEW VALUE XN

LAC XN,15 ; LOAD ACCUMULATOR WITH XN
*

LT DNM1
MPY A1

*
LTD DNM2
MPY A2

*
APAC 
SACH DN,1 ; d(n) = x(n) + d(n – 1)a1 + d(n – 2)a2
ZAC
MPY B2

*
LTD DNM1
MPY B1

*
LTD DN
MPY B0

*
APAC
SACH YN,1 ; y(n) = d(n)b0 + d(n – 1)b1 + d(n – 2)b2
OUT YN,PA1 ; YN IS THE OUTPUT OF THE FILTER
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FIR filters also benefit from the faster instruction cycle time. An FIR filter re-
quires many more multiply/accumulates than does the IIR filter with equivalent
sharpness at the cutoff frequencies and distortion and attenuation in the pass-
bands and stopbands. The TMS320C2x can help solve this problem by mak-
ing longer filters feasible to implement. This is accomplished by allowing the
coefficients to be fetched from program memory at the same time as a sample
is being fetched from data memory. The simple implementation of this process
uses the MACD instruction with the RPT/RPTK instruction.
RPTK 255
MACD COEFFP,*–

The coefficients on the TMS320C25 may be stored anywhere in program
memory (reconfigurable on-chip RAM, on-chip ROM, or external memories).
When the coefficients are stored in on-chip ROM or externally, the entire on-
chip data RAM may be used to store the sample sequence. Ultimately, this al-
lows filters of up to 512 taps to be implemented on the TMS320C25. The filter
executes at full speed or 100 ns per tap as long as the memory supports full-
speed execution.

5.7.3 Adaptive Filtering

With FIR/IIR filtering, the filter coefficients may be fixed or adapted. If the coef-
ficients are adapted or updated with time, then another factor impacts the com-
putational capacity. This factor is the requirement to adapt each of the coeffi-
cients, usually with each sample. The MPYA or MPYS and ZALR instructions
on the TMS320C25 aid with this adaptation to reduce the execution time.

A means of adapting the coefficients on the TMS320C2x is the least-mean-
square (LMS) algorithm given by the following equation:

bk (i + 1) = bk(i) + 2B e(i) ×(i–k)

where e(i) = x(i) – y(i)

and y(i)� �
N�1

K�0

bkx(i� k)

Quantization errors in the updated coefficients can be minimized if the result
is obtained by rounding rather than truncating. For each coefficient in the filter
at a given point in time, the factor 2*B*e(i) is a constant. This factor can then
be computed once and stored in the T register for each of the updates. Thus,
the computational requirement has become one multiply/accumulate plus
rounding. Without the new instructions, the adaptation of each coefficient is
five instructions corresponding to five clock cycles. This is shown in the follow-
ing instruction sequence:
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LRLK AR2,COEFFD ; LOAD ADDRESS OF COEFFICIENTS.
LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA SAMPLES.
LARP AR2
LT ERRF ; errf = 2*B*e(i)
.
.
.
ZALH *,AR3 ; ACC = bk(i)*2**16
ADD ONE,15 ; ACC = bk(i)*2**16 + 2**15
MPY *–,AR2
APAC ; ACC = bk(i)*2**16 + errf*x(i – k) + 2**15
SACH *+ ; SAVE bk(i + 1).
.
.
.

When the MPYA and ZALR instructions on the TMS320C25 are used, the
adaptation reduces to three instructions corresponding to three clock cycles,
as shown in the following instruction sequence. Note that the processing order
has been slightly changed to incorporate the use of the MPYA instruction. This
is due to the fact that the accumulation performed by the MPYA is the accu-
mulation of the previous product.
LRLK AR2,COEFFD ; LOAD ADDRESS OF COEFFICIENTS.
LRLK AR3,LASTAP ; LOAD ADDRESS OF DATA SAMPLES.
LARP AR2
LT ERRF ; errf = 2*B*e(i)
.
.
.
ZALR *,AR3 ; ACC = bk(i)*2**16 + 2**15
MPYA *–,AR2 ; ACC = bk(i)*2**16 + errf*x(i – k) + 2**15

; PREG = errf*x(i – k + 1)
SACH *+ ; SAVE bk(i + 1).
.
.
.

Example 5–43 shows a routine to filter a signal and update the coefficients.
Example 5–44 provides the conclusion to the adaptive FIR filter routine for the
TMS320C25.

Adaptive filter length is restricted both by execution time and memory. Due to
the adaptation, there is more processing to be completed per sample , and the
adaptation itself dictates that the coefficients be stored in the reconfigurable
block of on-chip RAM. Thus, the practical limit of an adaptive filter with no ex-
ternal data memory is 256 taps.
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Example 5–43. 256-Tap Adaptive FIR Filter
.title ’ADAPTIVE FILTER’
.def ADPFIR
.def X,Y

*
* THIS 256-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK B0 FOR COEFFICIENTS
* AND BLOCK B1 FOR DATA SAMPLES. THE NEWEST INPUT SHOULD BE IN MEMORY LOCATION X
* WHEN CALLED. THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED. ASSUME THAT
* THE DATA PAGE IS 0 WHEN THE ROUTINE IS CALLED.
*
COEFFP .set 0FF00h ; B0 PROGRAM MEMORY ADDRESS
COEFFD .set 0200h ; B0 DATA MEMORY ADDRESS
*
ONE .set 7Ah ; CONSTANT ONE (DP = 0)
BETA .set 7Bh ; ADAPTATION CONSTANT (DP = 0)
ERR .set 7Ch ; SIGNAL ERROR (DP = 0)
ERRF .set 7Dh ; ERROR FUNCTION (DP = 0)
Y .set 7Eh ; FILTER OUTPUT (DP = 0)
X .set 7Fh ; NEWEST DATA SAMPLE (DP = 0)
FRSTAP .set 0300h ; NEXT NEWEST DATA SAMPLE
LASTAP .set 03FFh ; OLDEST DATA SAMPLE

.text
*
*
FINITE IMPULSE RESPONSE (FIR) FILTER.
*
ADPFIR CNFP ; CONFIGURE B0 AS PROGRAM:

MPYK 0 ; Clear the P register.
LAC ONE,14 ; Load output rounding bit.
LARP AR3
LRLK AR3,LASTAP ; Point to the oldest sample.

FIR RPTK 255
MACD COEFFP,*– ; 256-tap FIR filter.
CNFD ; CONFIGURE B0 AS DATA:
APAC
SACH Y,1 ; Store the filter output.
NEG
ADD X,15 ; Add the newest input.
SACH ERR,1 ; err(i) = x(i) – y(i)

*
* LMS ADAPTATION OF FILTER COEFFICIENTS.
*

LT ERR
MPY BETA
PAC ; errf(i) = beta * err(i)
ADD ONE,14 ; ROUND THE RESULT.
SACH ERRF,1

*
MAR *+

 LAC X ; INCLUDE NEWEST SAMPLE.
SACL *

*
LRLK AR2,COEFFD ; POINT TO THE COEFFICIENTS.
LRLK AR3,LASTAP ; POINT TO THE DATA SAMPLES.
LT ERRF
MPY *–,AR2 ; P = 2*beta*err(i)*x(i–255)
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Example 5–44. Adaptive Filter Routine Concluded
*
ADAPT ZALR *,AR3 ; LOAD ACCH WITH b255(i) & ROUND.

MPYA *–,AR2 ; b255(i + 1) = b255(i) + P
* ; P = 2*beta*err(i)*x(i–254)

SACH *+ ; STORE b255(i + 1).
*

ZALR *,AR3 ; LOAD ACCH WITH b254(i) & ROUND.
MPYA *–,AR2 ; b254(i + 1) = b254(i) + P

* ; P = 2*beta*err(i)*x(i–253)
SACH *+ ; STORE b254(i + 1).

*
ZALR *,AR3 ; LOAD ACCH WITH b253(i) & ROUND.
MPYA *–,AR2 ; b253(i + 1) = b253(i) + P

* ; P = 2*beta*err(i)*x(i–252)
SACH *+ ; STORE b253(i + 1).
.
.
ZALR *,AR3 ; LOAD ACCH WITH b1(i) & ROUND.
MPYA *–,AR2 ; b1(i + 1) = b1(i) + P

* ; P = 2*beta*err(i)*x(i – 0)
SACH *+ ; STORE b1(i + 1).

*
ZALR * ; LOAD ACCH WITH b0(i) & ROUND.
APAC ; b0(i + 1) = b0(i) + P
SACH *+ ; STORE b0(i + 1).

*
RET ; RETURN TO CALLING ROUTINE.

Table 5–2 provides data memory, program memory, and CPU cycles for a
256-tap adaptive FIR filter implementation using the TMS320C25. Note that
n = 256 in the table.

Table 5–2.256-Tap Adaptive Filtering Memory Space and Time Requirements

Device Words In Memory
Data Program

CPU Cycles

TMS320C25 5 + 2n 30 + 3n 33 + 4n
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5.7.4 Fast Fourier Transforms (FFT)

Fourier transforms are an important tool used often in digital signal processing
systems. The purpose of the transform is to convert information from the time
domain to the frequency domain. The inverse Fourier transform converts in-
formation back to the time domain from the frequency domain. Implementa-
tions of Fourier transforms that are computationally efficient are known as Fast
Fourier Transforms (FFTs). The theory and implementation of FFTs has been
discussed in an application report in the book, Digital Signal Processing Ap-
plications with the TMS320 Family (literature number SPRA012A).

The TMS320C25 reduces the execution time of all FFTs by virtue of its 100-ns
instruction cycle time. In addition to the shorter cycle time, an addressing fea-
ture has been added to the TMS320C25, which provides execution speed and
program memory enhancements for radix-2 FFTs. As demonstrated in
Figure 5–13 and Figure 5–14, the inputs or outputs of an FFT are not in se-
quential order—that is, they are scrambled. The scrambling of the data ad-
dressing is a direct result of the radix-2 FFT derivation. Observation of the fig-
ures and the relationship of the input and output addressing in each case re-
veal that the address indexing is a bit-reversed order, as shown in Table 5–3.
As a result, either the data input sequence or the data output sequence must
be scrambled in association with the execution of the FFT.
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Figure 5–13. An In-Place DIT FFT With In-Order Outputs and Bit-Reversed Inputs
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Figure 5–14. An In-Place DIT FFT With In-Order Inputs but Bit-Reversed Outputs
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Table 5–3.Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT

Index Bit Pattern Bit-reversed Pattern Bit-reversed Index

0
1
2
3
4
5
6
7

000
001
010
011
100
101
110
111

000
100
010
110
001
101
011
111

0
4
2
6
1
5
3
7

An addressing feature that uses reverse carry-bit propagation allows the
TMS320C25 to scramble the inputs or outputs while it is performing the I/O.
The addressing mode is part of the indirect addressing implemented with the
auxiliary registers and the associated arithmetic unit. In this mode (a derivative
of indexed addressing), a value (index) contained in AR0 is either added to or
subtracted from the auxiliary register being pointed to by the ARP. However,
the carry bit is propagated in the reverse direction rather than the forward
direction. The result is a scrambling in the address access.

The procedure for generating the bit-reversal address sequence is to load AR0
with a value corresponding to one-half the length of the FFT and to load anoth-
er auxiliary register, for example, AR1, with the base address of the data array.
Implementations of FFTs involve complex arithmetic; as a result, there are two
data memory locations (one real and one imaginary) associated with every
data sample. Generally, the samples are stored in memory in pairs with the real
part in the even address locations and the imaginary part in the odd address
location. This means that the offset from the base address for any given sam-
ple is twice the sample index. Real input data is easily transferred into the data
memory and stored in the scrambled order, with every other location in the data
memory representing the imaginary part of the data.
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The following list shows the contents of auxiliary register AR1 when AR0 is ini-
tialized with a value of 8 (8-point FFT) and when data is being transferred by
the code that follows.

MSB LSB

AR0: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8-Point FFT

AR1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Base Address

RPTK 7
IN *BR0+,PA0

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 XR(0)

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 XR(4)

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 XR(2)

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 XR(6)

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 XR(1)

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 XR(5)

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 XR(3)

AR1: 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 XR(7)

Example 5–45 consists of lists of macros used in the implementation of FFTs.
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Example 5–45. FFT Macros
COMBO $MACRO R1,I1,R2,I2,R3,I3,R4,I4
* CALCULATE PARTIAL TERMS FOR R3, R4, I3, AND I4.

LAC :R3:,14 ; ACC : = (1/4) (R3)
ADD :R4:,14 ; ACC : = (1/4) (R3 + R4)
SACH :R3:,1 ; R3 : = (1/2) (R3 + R4)
SUB :R4:,15 ; ACC : = (1/4) (R3 + R4)–(1/2)(R4)
SACH :R4:,1 ; R4 : = (1/2) (R3 – R4)
LAC :I3:,14 ; ACC : = (1/4) (I3)
ADD :I4:,14 ; ACC : = (1/4) (I3 + I4)
SACH :I3:,1 ; I3 : = (1/2) (I3 + I4)
SUB :I4:,15 ; ACC : = (1/4) (I3 + I4)–(1/2)(I4)
SACH :I4:,1 ; I4 : = (1/2) (I3 – I4)

* CALCULATE PARTIAL TERMS FOR R2, R4, I2, AND I4.
LAC :R1:,14 ; ACC : = (1/4) (R1)
ADD :R2:,14 ; ACC : = (1/4) (R1 + R2)
SACH :R1:,1 ; R1 : = (1/2) (R1 + R2)
SUB :R2:,15 ; ACC : = (1/4) (R1 + R2) – (1/2)(R2)
ADD :I4:,15 ; ACC : = (1/4) [(R1 – R2) + (I3 – I4)]
SACH :R2: ; R2 : = (1/4) [(R1 – R2) + (I3 – I4)]
SUBH :I4: ; ACC : = (1/4) [(R1 – R2) – (I3 – I4)]
DMOV :R4: ; I4 : = R4 = (1/2)(R3–R4)

 SACH :R4: ; R4 : = (1/4) (R1 – R2) – (I3 – I4)]
LAC :I1:,14 ; ACC : = (1/4) (I1)
ADD :I2:,14 ; ACC : = (1/4) (I1 + I2)
SACH :I1:,1 ; I1 : = (1/2) (I1 + I2)
SUB :I2:,15 ; ACC : = (1/4) (I1 + I2) – (1/2) (I2)
SUB :I4:,15 ; ACC : = (1/4) [(I1 – I2) – (I3 – I4)]
SACH :I2: ; I2 : = (1/4) [(I1 – I2) – (I3 – I4)]
ADDH :I4: ; ACC : = (1/4) [(I1 – I2) + (I3 – I4)]
SACH :I4: ; 14 : = (1/4) [(I1 – I2) + (I3 – I4)]

* CALCULATE PARTIAL TERMS FOR R1, R3, I1, AND I3.
LAC :R1:,15 ; ACC : = (1/4) (R1+R2)
ADD :R3:,15 ; ACC : = (1/4) [(R1 + R2) + (R3 + R4)]
SACH :R1: ; R1 : = (1/4) [(R1 + R2) + (R3 + R4)]
SUBH :R3: ; ACC : = (1/4) [(R1 + R2) – (R3 + R4)]
SACH :R3: ; R3 : = (1/4) [(R1 + R2) – (R3 + R4)]
LAC :I1:,15 ; ACC : = (1/4) (I1 + I2)
ADD :I3:,15 ; ACC : = (1/4) [(I1 + I2) + (I3 + I4)]
SACH :I1: ; I1 : = (1/4) [(I1 + I2) + (I3 + I4)]
SUBH :I3: ; ACC : = (1/4) [(I1 + I2) – (I3 + I4)]
SACH :I3: ; I3 : = (1/4) [(I1 + I2) – (I3 + I4)]
$END

ZERO $MACRO       PR,PI,QR,QI
* CALCULATE Re[P+Q] AND Re[P–Q]

LAC :PR:,15 : ACC : = (1/2) (PR)
ADD :QR:,15 ; ACC : = (1/2) (PR + QR)
SACH :PR: ; PR : = (1/2) (PR + QR)
SUBH :QR: ; ACC : = (1/2) (PR + QR) – (QR)
SACH :QR: ; QR : = (1/2) (PR – QR)
SUBH :QI: ; ACC : = (1/2) (PI + QI) – (QI)
SACH :QI: ; QI : = (1/2) (PI – QI)
$END

PIBY4 $MACRO      PR,PI,QR,QI,W
* CALCULATE Im[P+Q] AND Im[P–Q]

LAC :PI:,15 ; ACC : = (1/2) (PI)
ADD :QI:,15 ; ACC : = (1/2) (PI + QI)
SACH :PI: ; PI : = (1/2) (PI + QI)
LT :W: ; T REGISTER : = W = COS(PI/4) = SIN(PI/4)
LAC :QI:,14 ; ACC : = (1/4) (QI)
SUB :QR:,14 ; ACC : = (1/4) (QI – QR)
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Example 5–45. FFT Macros (Continued)

SACH :QI:,1 ; QI : = (1/2) (QI – QR)
ADD :QR:,15 ; ACC : = (1/4) (QI + QR)
SACH :QR:,1 ; QR : = (1/2) (QI + QR)
LAC :PR:,14 ; ACC : = (1/4) (PR)
MPY :QR: ; P REGISTER : = (1/4) (QI – QR) *W
APAC ; ACC : = (1/4) [PR + (QI + QR) *W]
SACH :PR:,1 ; PR : = (1/2) [PR + (QI + QR) *W]
SPAC ; ACC : = (1/4) (PR)
SPAC ; ACC : = (1/4) [PR – (QI + QR) *W]
SACH :QR:,1 : QR : = (1/2) [PR – (QI + QR) *W]
LAC :PI:,14 ; ACC : = (1/4) (PI)
MPY :QI: ; P REGISTER : = (1/4) (QI – QR) *W
APAC ; ACC : = (1/4) [PI + (Q1 – QR) *W]
SACH :PI:,1 ; PI : = (1/2) [PI + (QI – QR) *W]
SPAC ; ACC : = (1/4) (PI)
SPAC ; ACC : = (1/4) [PI – (QI – QR) *W]
SACH :QI:,1 ; QI : = (1/2) [PI – (QI – QR) *W]
$END

PIBY2 $MACRO     PR,PI,QR,QI
* CALCULATE Re[P+jQ] AND Re[P–jQ]

LAC :PI:,15 ; ACC : = (1/2) (PI)
SUB :QR:,15 ; ACC : = (1/2) (PI – QR)
SACH :PI: ; PI : = (1/2) (PI – QR)
ADDH :QR: ; ACC : = (1/2) (PI – QR) + (QR)
SACH :QR: ; QR : = (1/2) (PI + QR)

* CALCULATE Im[P+jQ] AND Im[P–jQ]
LAC :PR:,15 ; ACC : = (1/2) (PR)
ADD :QI:,15 ; ACC : = (1/2) (PR + QI)
SACH :PR: ; PR : = (1/2) (PR + QI)
SUBH :QI: ; ACC : = (1/2) (PR + QI) – (QI)
DMOV :QR: ; QR → QI
SACH :QR: ; QR : = (1/2) (PR – QI)
$END

PI3BY4 $MACRO PR,PI,QR,QI,W
LT :W: ; T REGISTER : = W = COS (PI/4) = SIN (PI/4)
LAC :QI:,14 ; ACC : = (1/4) (QI)
SUB :QR:,14 ; ACC : = (1/4) (QI – QR)
SACH :QI:,1 ; QI : = (1/2) (QI – QR)
ADD :QR:,15 ; ACC : = (1/4) (QI + QR)
SACH :QR:,1 ; QR : = (1/2) (QI + QR)
LAC :PR:,14 ; ACC : = (1/4) (PR)
MPY :QI: ; P REGISTER : = (1/4) (QI – QR) *W
APAC ; ACC : = (1/4) [PR + (QI – QR) *W]
SACH :PR:,1 ; PR : = (1/2) [PR + (QI – QR) *W]
SPAC ; ACC : = (1/4) (PR)
SPAC ; ACC : = (1/4) [PR – (QI – QR) *W]
MPY :QR: ; P REGISTER : = (1/4) (QI + QR) *W
SACH :QR:,1 ; QR : = (1/2) [PR – (QI – QR) *W]
LAC :PI:,14 ; ACC : = (1/4) (PI)
SPAC ; ACC : = (1/4) [PI – (QI + QR) *W]
SACH :PI:,1 ; PI : = (1/2) [PI – (QI + QR) *W]
APAC ; ACC : = (1/4) (PI)
APAC ; ACC : = (1/4) [PI + (QI + QR) *W]
SACH :QI:,1 ; QI : = (1/2) [PI + (QI + QR) *W]
$END
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Example 5–46. An 8-Point DIT FFT

X0R .set 00
X0I .set 01
X1R .set 02
X1I .set 03
X2R .set 04
X2I .set 05
X3R .set 06
X3I .set 07
X4R .set 08
X4I .set 09
X5R .set 10
X5I .set 11
X6R .set 12
X6I .set 13
X7R .set 14
X7I .set 15
W .set 16
WVALUE .set 5A82h ; VALUE FOR SIN(45) OR COS(45)

.text*
* INITIALIZE FFT PROCESSING.
FFT SPM 0 ; NO SHIFT OF PR OUTPUT

SSXM ; SET SIGN-EXTENSION MODE.
ROVM ; RESET OVERFLOW MODE.
LDPK 4 ; SET DATA PAGE POINTER TO 4.
LALK WVALUE ; GET TWIDDLE FACTOR VALUE.
SACL W ; STORE SIN(45) OR COS(45).

* INPUT SAMPLES, STORING IN BIT-REVERSED ORDER.
*

LARK AR0,8 ; LOAD LENGTH OF FFT IN AR0.
LRLK AR1,200h ; LOAD AR1 WITH DATA PAGE 4 ADDRESS.
LARP AR1
RPTK 7
IN *BR0+,PA0 ; ONLY REAL-VALUED INPUT

*
* 1ST & 2ND STAGES COMBINED WITH DIVIDE-BY-4 INTERSTAGE SCALING.

COMBO X0R,X0I,X1R,X1I,X2R,X2I,X3R,X3I,
COMBO X4R,X4I,X5R,X5I,X6R,X6I,X7R,X7I.

*
* 3RD STAGE WITH DIVIDE-BY-2 INTERSTAGE SCALING.

ZERO X0R,X0I,X4R,X4I
PIBY4 X1R,X1I,X5R,X5I,W
PIBY2 X2R,X2I,X6R,X6I

 PI3BY4 X3R,X3I,X7R,X7I,W
* OUTPUT SAMPLES, SUPPLYING IN SEQUENTIAL ORDER.

LRLK AR1,200h ; LOAD AR1 WITH DATA PAGE 4 ADDRESS.
RPTK 15
OUT *+,PA0 ; COMPLEX-VALUED OUTPUT
RET

Table 5–4 shows execution speed, program memory, and data memory for an
8-point DIT FFT implementation using the TMS320C25.

Table 5–4.FFT Memory Space and Time Requirements

Device Words In Memory
Data Program

CPU Cycles Time
(µs)

TMS320C25 17 153 178 17.8
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5.7.5 PID Control

Control systems are concerned with regulating a process and achieving a de-
sired behavior or output from the process. A control system consists of three
main components: sensors, actuators, and a controller. Sensors measure the
behavior of the system. Actuators supply the driving force to ensure the de-
sired behavior. The controller generates actuator commands corresponding
to the error conditions observed by the sensors and the control algorithms pro-
grammed in the controller. The controller typically consists of an analog or digi-
tal processor.

Analog control systems are usually based on fixed components and are not
programmable. They are also limited to using single-purpose characteristics
of the error signal, such as P (proportional), I (integral), and D (derivative), or
a combination. These limitations, along with other disadvantages of analog
systems, such as component aging and temperature drift, are reasons why
digital control systems increasingly replace analog systems in most control ap-
plications.

Digital control systems that use a microprocessor/microcontroller are able to
implement more sophisticated algorithms of modern control theory, such as
state models, deadbeat control, state estimation, optimal control, and adaptive
control. Digital control algorithms deal with the processing of digital signals
and are similar to DSP algorithms. The TMS320C2x instruction set can there-
fore be used very effectively in digital control systems.

The most commonly used algorithm in both analog and digital control systems
is the PID (Proportional, Integral, and Derivative) algorithm. The classical PID
algorithm is given by

u(t) � Kpe(t)� Ki� edt� Kd
de
dt

The PID algorithm must be converted into a digital form for implementation on
a microprocessor. Using a rectangular approximation for the integral, the PID
algorithm can be approximated as

u(n) = u(n–1) + K1 e(n) + K2 e(n–1) + K3 e(n–2)

This algorithm is implemented in Example 5–47.
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Example 5–47. PID Control
.title ’PID CONTROL’
.def PID

*
* THIS ROUTINE IMPLEMENTS A PID ALGORITHM.
*
UN .set 0 ; OUTPUT OF CONTROLLER
E0 .set 1 ; LATEST ERROR SAMPLE
E1 .set 2 ; PREVIOUS ERROR SAMPLE
E2 .set 3 ; OLDEST ERROR SAMPLE
K1 .set 4 ; GAIN CONSTANT
K2 .set 5 ; GAIN CONSTANT
K3 .set 6 ; GAIN CONSTANT

.text
*
* ASSUME DATA PAGE 0 IS SELECTED.
*
PID IN E0,PA0 ; READ NEW ERROR SAMPLE

LAC UN ; ACC = u(n–1)
LT E2 ; LOAD T REG WITH OLDEST SAMPLE
MPY K2 ; P = K2*e(n – 2)
LTD E1 ; ACC = u(n – 1) + K2*e(n – 2)
MPY K1 ; P = K1*e(n – 1)
LTD E0 ; ACC = u(n – 1) + K1*e(n – 1) + K2*e(n – 2)
MPY K0 ; P = K0*e(n)
APAC ; ACC = u(n – 1) + K0*e(n) + K1*e(n – 1)
* ; +K2*e(n – 2)
SACH UN,1 ; STORE OUTPUT
OUT UN,PA1 ; SEND IT

The PID loop takes 13 cycles to execute (1.3 µs at a 40-MHz clock rate). The
TMS320 can also be used to implement more sophisticated algorithms, such
as state modeling, adaptive control, state estimation, Kalman filtering, and op-
timal control. Other functions that can be implemented are noise filtering, sta-
bility analysis, and additional control loops.
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Chapter 6

Hardware Applications

The TMS320C2x has the power and flexibility to satisfy a wide range of system
requirements. The 128K-word address space for program and data memory
can be used to interface external memories or to implement single-chip solu-
tions. Peripheral devices can be interfaced to the TMS320C2x to perform ana-
log signal acquisition at different levels of signal quality.

Information and examples on how to interface the TMS320C2x to external de-
vices are presented in this section. The examples given are general enough
to be adapted easily for a particular system requirement. For more detailed in-
formation, refer to the application reports included in the book, Digital Signal
Processing Applications with the TMS320 Family, Volume I (literature number
SPRA012A).    Refer    also    to    the    application   report,   Hardware   Interfacing
to   the   TMS320C25   (literature   number   SPRA014A),   published   separately.
Appendix G discusses analog interface peripherals and their applications, and
Appendix H provides listings and brief information regarding TI memories and
analog conversion devices that are used in many of the applications in this
chapter.

The TMS320C26 is similar to the TMS320C25 except for its internal memory
configuration. This is discussed in Section 3.4 and in Appendix B.

Topics in this chapter include:

Topic Page

6.1 System Control Circuitry 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2 Interfacing Memories 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Direct Memory Access (DMA) 6-32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.4 Global Memory 6-35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.5 Interfacing Peripherals 6-37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.6 Systems Applications 6-48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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6.1 System Control Circuitry

The system control circuitry performs functions that are critical for proper sys-
tem initialization and operation. A powerup reset circuit design and a crystal
oscillator circuit design are presented in this chapter. The powerup reset circuit
assures that a reset of the part occurs only after the oscillator is running and
stabilized. This oscillator circuit allows the use of third-overtone crystals, which
are readily available at frequencies above 20 MHz. For a more detailed discus-
sion of system control circuitry, refer to the application report, Hardware Inter-
facing to the TMS320C25 (literature number SPRA014A).

6.1.1 Powerup Reset Circuit

The reset circuit shown in Figure 6–1 performs a powerup reset, that is, the
TMS320C2x is reset when power is applied. Note that the switch circuit must
include debounce circuitry. Driving the RS signal low initializes the processor.
Reset affects several registers and status bits (see subsection 3.6.2 for a de-
tailed description of the effect of reset on processor status).

Note:

Reset does not have internal Schmidt hysterisis. Avoid slow rise and fall
times to insure proper reset operation.
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Figure 6–1. Powerup Reset Circuit

TMS320C25
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A8
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R1 = 1 MΩ

C1 = 0.47 µF

DGND

For proper system initialization, the reset signal must be applied for at least
three CLKOUT cycles, that is, 300 ns for a TMS320C25 operating at 40 MHz.
Upon powerup, it can take from several to hundreds of milliseconds before the
system oscillator reaches a stable operating state. Therefore, the powerup re-
set circuit should generate a low pulse on the reset line until the oscillator is
stable (that is, 100 to 200 ms).

The voltage on the reset pin RS is controlled by the R1C1 network (see
Figure 6–1). After a reset, this voltage rises exponentially according to the time
constant R1C1, as shown in Figure 6–2. The Schmidt-Trigger inverter in this
case could be a 74HC14. If a TTL device were used, the low-level input current
(IIL) would initially cause the voltage on C1 to rise faster than expected.
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Figure 6–2. Voltage on TMS320C25 Reset Pin

Voltage

VCC

V1

t0 = 0 t1 Time

V = VCC (1 – e – t /τ )

The duration of the low pulse on the reset pin is approximately t1, which is the
time it takes for the capacitor C1 to be charged to 1.5 V. This is approximately
the voltage at which the reset input switches from a logic level 0 to a logic level
1. The capacitor voltage is given by

V � VCC�1� e � t
�� (1)

where τ = R1C1 is the reset circuit time constant. Solving (1) for τ gives

t �� R1C1 ln�1� V
VCC

� (2)

For example, setting the following:

R1 = 1 MΩ VCC = 5 V
C1 = 0.47 µF V = V1 = 1.5 V

gives t = t1 = 167 ms. In this case, the reset circuit of Figure 6–1 can generate
a low pulse of long enough duration (167 ms) to ensure the stabilization of the
oscillator upon powerup in most systems.
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6.1.2 Crystal Oscillator Circuit

The crystal oscillator circuit shown in Figure 6–3 is designed to operate at
40.96 MHz. Since crystals with fundamental oscillation frequencies of 30 MHz
and above are not readily available, a parallel-resonant third-overtone oscilla-
tor is used. If a packed clock oscillator is used, oscillator design is of no con-
cern.

The master clock frequency of 40.96 MHz is chosen because it can be conve-
niently converted to the timing signals of interface circuits used by the commu-
nications industry. A combo-codec example is given in subsection  6.5.1.

Figure 6–3. Crystal Oscillator Circuit

CLKIN

L = 1.8 µH

0.1 µF

20 pF
C=10 kΩ

47 pF

10 KΩ
F11

74AS04

4.7 kΩ

fcrystal+5 V

74AS04

TMS320C25

= Digital Ground

The 74AS04 inverter in Figure 6–3 provides the 180-degree phase shift that
a parallel oscillator requires. The 4.7-kΩ resistor provides the negative feed-
back that keeps the oscillator in a stable state; that is, the poles of the system
are constrained in a narrow region about the jω axis of the s-plane (analog do-
main). The 10-kΩ potentiometer is used to bias the 74AS04 in the linear re-
gion.

In a third-overtone oscillator, the crystal fundamental frequency must be atte-
nuated so that oscillation is at the third harmonic. This is achieved with an LC
circuit that filters out the fundamental.

The impedance of the LC network must be inductive below and capacitive
above the second harmonic. The impedance of the LC circuit is given by

z(�) �
L
C

j��L � 1
�C
� (3)

Therefore, the LC circuit has a pole at

�p �
1
LC� (4)
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At frequencies significantly lower than ωp , the 1/(ωC) term in (3) becomes the
dominating term, while ωL can be neglected. This gives

z(�)� j�L for � � � �p (5)

In (5), the LC circuit appears inductive at frequencies lower than ωp. On the
other hand, at frequencies much higher than ωp, the ωL term is the dominant
term in (3), and 1/(ωC) can be neglected. This gives

for � � � �p (6)z(�) � 1
j�C

The LC circuit in (6) appears increasingly capacitive as frequency increases
above ωp. This is shown in Figure 6–4, which is a plot of the magnitude of the
impedance of the LC circuit of Figure 6–3 versus frequency.

Based on the discussion above, the design of the LC circuit proceeds as fol-
lows: choose the pole frequency ωp  approximately halfway between the crys-
tal fundamental and the third harmonic. The circuit now appears inductive at
the fundamental frequency and capacitive at the third harmonic.

In the oscillator of Figure 6–3, ωp = 26.5 MHz, which is approximately halfway
between the fundamental and the third harmonic;  The values used in this case
are determined by using C = 20 pF; then, using (4), L = 1.8 µH.

Figure 6–4. Magnitude of Impedance of Oscillator LC Network
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6.1.3 User Target Design Considerations for the XDS

The architecture for the TMS320C2x emulator (XDS) maximizes speed and
performance. No external serial logic levels have been added to any of the ad-
dress, data, or control signals other than those added to the setup times of
READY, RS, BIO, and HOLD, and the propagation delay of HOLDA (hold ac-
knowledge). The additional loading on outputs induced by the XDS is compre-
hended in the XDS and TMS320C2x device design, thus allowing the user the
full drive as specified in the TMS320C2x device data sheet. The DC loading
characteristics of inputs is defined in Chapter 9 of the XDS/22 TMS320C2x
Emulator User’s Guide (literature number SPDU055).

The emulator architecture works closely with the user’s system design to allow
the user’s memory to have maximum access times. Areas of close interaction
between the emulator and target system are:

� Bus control

� READY timing and memory substitution

� Reset and hold

� Miscellaneous considerations

Bus Control

When the emulator is halted from the keyboard or any of the breakpoint func-
tions, the current state of the device being emulated is extracted by the control
processor. This processor communicates with the emulated device over the
emulated device’s data bus. Additional communication is generated by com-
mands entered from the keyboard.

Before communication between the control processor and the device being
emulated begins, the control processor generates an interlock sequence on
the emulated device’s HOLD input in order to define data bus ownership. Once
the target HOLD is deactivated, this interlock prevents the target system from
receiving an active HOLDA until the emulator has completed accessing the
processor resources. The emulator will not attempt to use the data bus until
the interlock is successful, thus guaranteeing that it will not try to use the data
bus when HOLDA is asserted to the target system.

When communication between the control processor and the device being
emulated is complete, the hold interlock is released, and the target system can
again receive hold acknowledge when HOLD is asserted. At this point, the
emulator is waiting for another command from the keyboard. Communication
between the device being emulated and the control process occurs when DS,
PS, IS, and HOLDA are all high.
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The target system should drive the data bus only when the following conditions
are met:

�  HOLDA is active, or

�  DS, PS, or IS is active and R/W is high.

The XDS hardware uses the data bus only while the above signals are inactive.
When these rules are not followed, the XDS gives a PROCESSOR SYNC
LOST 1160 error. This error may also be caused by signal-to-signal shorts in
the target system, misalignment of the target connector, poor grounding of the
target connector, or wiring errors on the target system.

READY and Memory Substitution

Because the XDS adds one internal level of 7 ns in series with the READY in-
put, your system is left with only 10 ns to generate READY. This can be accom-
plished by generating READY with a 10-ns TIBPAL16R4 device. READY
should be generated from DS, PS, or IS and the decode of the address lines.

The target system must present a valid READY high on each external access,
even when using the XDS substitution memory. Suggested implementation of
READY logic on the target system should hold READY high until target
memory requiring wait states is addressed.

The XDS provides two types of memory substitution: fast static RAM at a fixed
address and slower dynamic RAM at mappable addresses. You are is respon-
sible for deselecting target memory residing in the same address of the emula-
tor’s fast static memory if this emulator memory is mapped in. (Note that the
target should not drive the data bus on a read.) This fast static emulator sub-
stitution memory consists of 8K words of fast static RAM, which can be individ-
ually mapped in as 4K words of program memory starting at address 0000 and
4K words of data memory starting at location 0000. In this case, the target sys-
tem cannot drive the data bus even though DS or PS is active. Although this
emulator static RAM can operate with zero wait states, you can model target
wait states by using the target READY signal. However, this requires the target
system to eventually respond with a valid READY high. The emulator gener-
ates wait states until it does.

The slower dynamic RAM controls bus access through the DS or PS control
signals. The target system can drive the data bus when PS or IS is asserted.
Emulator logic assures that DS, PS, and IS are returned to their inactive state
when the dynamic RAM substitution memory uses the data bus on reads.
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The dynamic RAM substitution memory always uses more than one clock to
return data. An access to address space mapped to the dynamic substitution
memory is accompanied by the assertion of DS or PS, and STRB. When the
target logic generates a READY high condition, the device appears to com-
plete the memory cycle by driving DS, PS, IS, or STRB to their inactive states
at their normal switching times. The device under emulation is held not ready
for at least one extra clock cycle or until the memory substitution data is avail-
able. The memory substitution data is then driven onto the data bus on reads
while all bus control signals at the target connector are high.

Additional wait states can be added with the use of the target READY line. In
this case, the memory control lines model the target access timing. However,
the program cycle count is affected by the additional cycles internal to the emu-
lator’s access of the dynamic RAM. Since the system responds to the READY
line, the target must eventually return a valid READY high on each access.

Miscellaneous Considerations

When the XDS is powered up, the device under emulation is placed in the run
mode with all memory substitution turned off. The control processor does not
attempt to communicate with the device under emulation until you communi-
cate with the emulator. If the target system is asserting RS, HOLD, or not
READY continuously to the device under emulation, the control processor
cannot gain control of the device under emulation and reports a PROCESSOR
SYNC LOST 1160 error. This condition can be caused by a powered-up emu-
lator plugged into a powered-down target system. Although the RS, HOLD,
and READY are pulled up with resistors on the emulator, the impedance of the
powered-down target system can assert a control signal or load the data bus
so that the XDS cannot function properly.

The conductive foam on the XDS target cable must be removed along with the
foam on the logic show pod prior to XDS powerup. Failure to do so can also
cause the PROCESSOR SYNC LOST 1160 error.

TMS320C25 Designs Using HOLD  and HOLDA . When the target system as-
serts HOLD active low while the emulator is processing user-invoked com-
mands requiring access of the device-under-emulation resources, the target
will not receive HOLDA until the command is complete.

When interfacing to dynamic RAM in the target system, use READY rather
than HOLD to insert refresh cycles. A user-invoked command could hold off
HOLDA long enough to lose charge in the dynamic cells. Likewise, if the ad-
dress lines to the DRAMs are not buffered, the refresh cycle in a RAS ONLY
REFRESH system could conflict with the emulator system that controls ad-
dressing during command processing.
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Stack Usage . An interrupt is used to halt the device being emulated, thereby
using one of the emulated device stack locations. When an XDS is to be used,
the applications programmer should reserve one level of the stack for code de-
velopment.

Transmission Line Phenomena.  Because the XDS target cable is approxi-
mately 20 inches, use of advanced CMOS or fast/advanced Schottky TTL may
cause line reflections (ringing above input thresholds) on input lines to the
XDS. Series termination resistors (22 to 68 ohms) can help eliminate this prob-
lem. In some cases where significant additional signal length is added to XDS
outputs, the series resistors on the XDS may not be sufficient to control reflec-
tions. In this case, additional corrective actions may be necessary.

Clock Source . The XDS does not support the use of a crystal in the target sys-
tem. The emulator’s clock source can be selected from three sources:

� A clock (with TTL levels) driven up the target cable on pin F11 (PGA) or
pin 35 (PLCC),

� A socketed changeable crystal on the emulator board (Y1), or

� A socketed changeable canned TTL oscillator on the EMU (U9).
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6.2 Interfacing Memories

The following buses, port, and control signals provide system interface to the
TMS320C2x processor:

� 16-bit address bus (A15 – A0)

� 16-bit data bus (D15 – D0)

� Serial port

� PS, DS, IS (program, data, I/O space select)

� R/W (read/write) and STRB (strobe)

� READY and MSC (microstate complete)

� HOLD and HOLDA (hold acknowledge)

� INT (2–0) and IACK (interrupt acknowledge)

� BIO (branch control) and XF (external flag)

� SYNC (synchronization) and BR (bus request)

The TMS320C2x can be interfaced with PROMs, EPROMs, and static RAMs.
The speed, cost, and power limitations imposed by a particular application de-
termine the selection of a specific memory device. If speed and maximum
throughput are desired, the TMS320C2x can run with no wait states. In this
case, memory accesses are performed in a single machine cycle. Alternative-
ly, slower memories can be accessed by introducing an appropriate number
of wait states or slowing down the system clock. The latter approach is more
appropriate when interfacing to memories with access times slightly longer
than those required by the TMS320C2x at full speed.

When wait states are required, the number of wait states depends on the
memory access time (see subsection 6.2.3). With no wait states, the READY
input to the TMS320C2x can be pulled high. If one or more wait states are re-
quired, the READY input must be driven low during the cycles in which the
TMS320C2x enters a wait state.

The TMS320C2x implements two separate and distinct memory spaces: pro-
gram space (64K words) and data space (64K words). Distinction between the
two spaces is made through the use of the PS (program space) and DS (data
space) pins. A third space, the I/O space, is also available for interfacing with
peripherals. This space is selected by the IS (I/O space) pin, and is discussed
in Section 6.5.



Interfacing Memories

6-12  Hardware Applications

The following brief discussion describes the TMS320C2x read and write
cycles. For the memory read and write timing diagrams, refer to the
TMS320C2x Data Sheets in Appendix A. For further information about read
and write operation, see subsection 3.7.3 . Throughout this chapter, Q is used
to indicate the duration of a quarter phase of the output clock (CLKOUT1 or
CLKOUT2). Memory interfaces discussed in this chapter assume that the
TMS320C2x is running at 40 MHz; that is, Q = 25 ns.

In a read cycle, the following sequence occurs:

1) Near the beginning of the machine cycle (CLKOUT1 goes low), the ad-
dress bus and one of the memory select signals (PS, DS, or IS) becomes
valid. R/W goes high to indicate a read cycle.

2) STRB goes low no less than tsu(A) = Q –12 ns after the address bus is valid.

3) Early in the second half of the cycle, the READY input is sampled. READY
must be stable (low or high) at the TMS320C25 no later than td(SL–R) =
Q–20 ns after STRB goes low.

4) With no wait states (READY is high), data must be available no later than
ta(SL) = ta(A) – tsu(A) = 2Q – 23 ns after STRB goes low.

The sequence of events that occurs during an external write cycle is the same
as the above, with the following differences:

1) R/W goes low to indicate a write cycle.

2) The data bus begins to be driven approximately concurrently with  STRB
going low.

3) After STRB goes high, the data bus must enter a high-impedance state no
later than tdis(D) = Q+15 ns.

6.2.1 Interfacing PROMs

Program memory in a TMS320C2x system can be implemented through the
use of PROMs. Two different approaches for interfacing PROMs to the
TMS320C2x can be taken, depending on whether or not any of the memories
in the system require wait states. When no wait states are required for any of
the memories, READY can be tied high, and the interface to the PROMs be-
comes a direct connection. In this first approach, address decoding is not re-
quired, because the system contains only a small amount of one type of
memory. When some of the system memories require wait states, address de-
coding must be performed to distinguish between two or more memory types
with different access times. In the second approach, a valid READY signal that
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meets the TMS320C2x timing requirements must be provided. An efficient
method of accomplishing this is to use one section of circuitry to generate the
address decode, and a second, independent section to generate the READY
signal. These two approaches are discussed in this section. For more detailed
information, see Hardware Interfacing to the TMS320C25 (literature number
SPRA014A).

An example of a no-wait-state memory system is the direct PROM interface
design shown in Figure 6–5. In this design, the TMS320C25 is interfaced with
the Texas Instruments TBP38L165-35, a low-power 2K × 8-bit PROM. The in-
terface timing for the design of Figure 6–5 is shown in Figure 6–6. The same
techniques can be used with all TMS320C2x devices.

The TMS320C25 expects data to be valid no later than 2Q–23 ns after STRB
goes low. (This is 27 ns for a TMS320C25 operating at 40 MHz.) The access
times of the TBP38L165-35 are 35 ns maximum from address ta(A), and 20 ns
maximum from chip enable ta(S). On the TMS320C25, address becomes valid
a minimum of tsu(A) = Q–12 ns = 13 ns before STRB goes low. Therefore, the
data appears on the data bus within 27 ns after STRB goes low, as required
by the TMS320C25.

When a read cycle is followed by a write cycle, take care to avoid bus conflict.
Bus conflict also may occur when a TMS320C25 write cycle is followed by a
memory read cycle. In this case, the TMS320C25 data lines must be in a high-
impedance state before the memory starts driving the data bus.
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Figure 6–5. Direct Interface of TBP38L165-35 to TMS320C25
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Figure 6–6. Interface Timing of TBP38L165-35 to TMS320C25
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The most critical timing parameters of the TBP38L165 -35 direct interface to
the TMS320C25 are summarized in Table 6–1.

Table 6–1.Timing Parameters of TBP38L165-35 Direct Interface to TMS320C25

Description Symbol Used in
Figure 6–6

Value

TMS320C25 address setup before strobe low tsu(A) 13 ns (min)

TMS320C25 data setup time after strobe low ta(SL) 27 ns (max)

TMP38L165-35 disable time tdis 15 ns (max)

TMP38L165-35 access time from address ta(A) 35 ns (max)†

TMP38L165-35 access time from chip enable ta(S) 20 ns (max)

74ALS04 inverter rise time tPLH 11 ns (max)

Total address access time = ta(A) – tsu(A) ta(A–SL) 22 ns (max)†

Total enable access time = ta(S) + tPLH– tsu(A) ta(E–SL) 18 ns (max)†

† Because ta(E–SL) < ta(A–SL), the specification ta(A) dominates performance. All timing compari-

sons are made from strobe low.

The second design example illustrates the interface of PROMs to the
TMS320C25 using address decoding. An approach that can be used to meet
the READY timing requirements is shown in Figure 6–7. This design utilizes
one address decoding scheme to generate READY, and a second address de-
coding scheme to enable the different memory banks. In this design, the me-
mories with no wait states are mapped at the upper half (upper 32K) of the pro-
gram space. The lower half is used for memories with one or more wait states.
This decoding is implemented with the 74AS20 four-input NAND gate.
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Address decoding is implemented by the 74AS138. This decoding separates
the program space into eight segments of 8K words each. The first four of
these segments (lower 32K of address space) are enabled by the Y0, Y1, Y2,
and Y3 outputs of the 74AS138. These segments are used for memories with
one or more wait states. The other four segments select memories with no wait
states (the TBP38L165s are mapped in segment 5, starting at address 8000h).
Note that in Figure 6–7, R/W is used to enable the 74AS138. This prevents a
bus conflict from occurring if an attempt is made to write to the PROMs.
Figure 6–8 shows the timing for the circuit shown in Figure 6–7. READY goes
high 10 ns (worst case) after the address has become valid.
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Figure 6–7. Interface of TBP38L165-35 to TMS320C25
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Figure 6–8. Interface Timing of TBP38L165-35 to TMS320C25 (Address Decoding)
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The most critical timing parameters of the TBP38L165-35 interface with ad-
dress decoding to the TMS320C25 are summarized in Table 6–2.
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Table 6–2.Timing Parameters of TBP38L165-35 to TMS320C25 (Address Decoding)

Description Symbol Used in
Figure 6–8

Value

Propagation delay through the 74AS04 t1 5 ns (max)

Propagation delay through the 74AS138 t2 10 ns (max)

Address valid to READY t3 10 ns (max)

TBP38L165-35 disable time tdis 15 ns (max)

TBP38L165-35 address access time t4 35 ns (max)

TBPL165-35 enable access time ta(S) 20 ns (max)

Data latch setup time after strobe low ta(SL) 27 ns (max)

6.2.2 Wait-State Generator

The READY input of the TMS320C2x allows it to interface with memory and
peripherals that cannot be accessed in a single cycle. The number of cycles
in a memory or I/O access is determined by the state of the READY input. If
READY is high when the TMS320C2x samples the READY input, the memory
access ends at the next falling edge of CLKOUT1. If READY is low, the
memory cycle is extended by one machine cycle, and all other signals remain
valid. Figure 6–9 shows a one-wait-state memory access. Note that for on-
chip program and data memory accesses, the READY input is ignored. Refer
to Hardware Interfacing to the TMS320C25 for detailed information regarding
wait-state generation.

You can automatically generate one wait state by using the microstate com-
plete (MSC) signal. The MSC output is asserted low during CLKOUT1 low to
indicate the beginning of an internal or external memory or I/O operation (see
Figure 6–9). By gating MSC with the address and PS, DS, and/or IS, you can
generate a one-wait state READY signal. Note that MSC is a valid signal only
when CLKOUT1 is low; see page A–44.

A wait-state generator is an alternative approach for generating wait states
when interfacing with memories and peripherals. In this design, READY must
be valid (low or high) no later than Q–20 ns = 5 ns after STRB goes low. If
READY is high, then the memory/peripheral access is completed with the
present machine cycle. If READY is low, the access is extended to the next
machine cycle; that is, a wait state is introduced. The number of wait states
required depends on the access time ta of the particular memory device or pe-
ripheral. If ta < 40 ns, no wait states are required. If 40 ns < ta < 140 ns, one
wait state must be inserted. In general, N wait states are required for a particu-
lar access if

TMS320C25: [100 (N–1) + 40] ns < ta ≤ [100N + 40] ns
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Figure 6–9. One Wait-State Memory Access Timing
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The information on the number of wait states required for a memory or periph-
eral access is summarized in Table 6–3.

Table 6–3.Wait States Required for Memory/Peripheral Access

Number Of Wait
States Required

TMS320C25
Access Time

0
1
2
3
4

ta < 40 ns
40 ns < ta < 140 ns
140 ns < ta < 240 ns
240 ns < ta < 340 ns
340 ns < ta < 440 ns

Design and timing of a wait-state generator are shown in Figure 6–10 and
Figure 6–11, respectively. In the case of one wait state, time t1 in Figure 6–11
is the time from address valid to memory select of the particular device that
requires the wait state. This corresponds to the propagation delay through the
address decode logic. For a 74AS138 decoder, t1 = 10 ns (max).

Time t2 is the time from memory select going low to CLKOUT2 going low.

t2 = tp + tsu = 11 ns + 20 ns = 31 ns

Time t3 is the time from CLKOUT2 going low to READY going high.

t3 = 19 ns + 5 ns = 24 ns
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READY must remain high until it is sampled again, shortly after CLKOUT1
goes high. In Figure 6–10, READY remains high well after CLKOUT1 goes
high. On the falling edge of CLKOUT2, J = 1 and K = Q = 1 are the inputs to
the J-K flip-flop; this places the flip-flop in a toggle mode. When CLKOUT2
goes low, Q goes back to logic 1. READY goes low and stays low until one of
the inputs of the 74AS30 is pulled low.

To implement two wait states, a second J-K flip-flop is utilized as shown in
Figure 6–10. This delays READY going high by an additional machine cycle
(see Figure 6–11). If more wait states are required, additional J-K flip-flops
must be included in the wait-state generator design.

Figure 6–10. Wait-State Generator Design
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Figure 6–11. Wait-State Generator Timing
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6.2.3 Interfacing EPROMs

EPROMs can be a valuable tool for debugging TMS320C2x algorithms during
the prototyping stages of a design, and may even be desirable for production.
Two different EPROM interfaces to the TMS320C2x are discussed: a direct in-
terface of an EPROM that requires no wait states, and EPROM interfaces that
require one and two wait states.

A direct interface similar to that used for PROMs may be implemented when
EPROM access time meets the TMS320C2x timing specifications. A Texas
Instruments TMS27C292-35 2K × 8-bit EPROM can interface directly to the
TMS320C25 with no wait states. The TMS27C292-35 is a CMOS EPROM with
access times of 35 ns from valid address and 25 ns from chip select.

When slower, less costly EPROMs are used, a simple flip-flop circuit (see sub-
section 6.2.2 for wait-state generator design) can be used to generate one or
more wait states. Figure 6–12 shows an EPROM interface with one wait state,
where Wafer Scale WS57C64F-12 8K × 8-bit EPROMs are interfaced to the
TMS320C25. The WS57C64F-12 is the slowest member of the WS57C64F
EPROM series but still meets the specifications for one wait state. With slower
EPROMs, however, data output turnoff can be slow and must be taken into
consideration in the design. The WS57C64F-12s are mapped at address
2000h. Figure 6–13 provides the interface timing diagram.
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Figure 6–12. Interface of WS57C65F-12 to TMS320C25
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Figure 6–13. Interface Timing of WS57C65F-12 to TMS320C25
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Table 6–4 summarizes the most critical timing parameters of the
WS57C64F-12 interface to the TMS320C25.

Table 6–4.Timing Parameters of WS57C64F-12 Interface to TMS320C25

Description Symbol Used in
Figure 6–13

Value

Address valid to MEMSEL low t1 10 ns (max)

STRB low to DTSTR low) t2 5.8 ns (max)

TMS320C25 address valid to WS57C64F-12 data
valid

t3 130 ns (max)

STRB high to WS57C64F-12 output disable t4 40.8 ns (max)

An EPROM interface with two wait states is shown in Figure 6–14, in which the
TMS27C64-20 is interfaced to the TMS320C25. The TMS27C64-20 is a
CMOS 8K × 8-bit EPROM with an access time of 200 ns. The timing diagram
is shown in Figure 6–15.
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Figure 6–14. Interface of TMS27C64-20 to TMS320C25
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Figure 6–15. Interface Timing of TMS27C64-20 to TMS320C25
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Table 6–5 summarizes the most critical timing parameters of the
TMS27C64-20 interface to the TMS320C25.

Table 6–5.Timing Parameters of TMS27C64-20 Interface to TMS320C25

Description Symbol Used In
Figure 6–15

Value

Address valid to MEMSEL low t1 10 ns (max)

STRB low to DTSTR low t2 5.8 ns (max)

TMS320C25 address valid to TMS27C64-20 data
valid

t3 220 ns (max)

STRB high to TMS27C64-20 output disable t4 18.8 ns (max)

For detailed information regarding EPROM interfacing, see the application re-
port, Hardware Interfacing to the TMS320C25 (literature number SPRA014A).

6.2.4 Interfacing Static RAMs

Interfacing external RAM to the TMS320C2x can be useful for expanding inter-
nal data memory or implementing additional RAM program memory. Static
RAM can be used as data memory to extend the TMS320C2x 544-word inter-
nal RAM. When used as program memory, object code can be downloaded
into the RAM and executed. In the first case, the static RAM is mapped into
the data space, while in the second case it is mapped into the program space.



 Interfacing Memories

6-27

In cases where RAMs of different speeds are used, separate schemes for ad-
dress decoding and READY generation can be used to meet READY timing
requirements in a manner similar to that used for the PROM interface de-
scribed in subsection 6.2.1. RAMs with similar access times may then be
grouped together in one segment of memory.

The static RAM for this interface is the Cypress Semiconductor CY7C169-25
4K × 4-bit static RAM. This RAM has a 25-ns access time from address ta(A)
and a 15-ns access time from chip enable ta(CE). Note that these access times
are fast enough so that a wait-state generator is not required for this interface.
If, however, RAMs that require wait states are used in the system, the wait-
state generator described in subsection 6.2.2 can be used.

The design shown in Figure 6–16 utilizes an approach similar to the one de-
scribed in subsections 6.2.1 and 6.2.3; that is, one address decoding scheme
is used to generate READY, and a second address decoding scheme enables
the static RAM. In this design, RAMs with no wait states are mapped at the low-
er half (lower 32K words) of the TMS320C25 data space. The upper half is
used for memories with one or more wait states. Figure 6–17 shows the timing
for memory read and write cycles.

Table 6–6 summarizes the most critical timing parameters of the CY7C169-25
interface to the TMS320C25.

Table 6–6.Timing Parameters of CY7C169-25 Interface to TMS320C25

Description Symbol Used In
Figure 6–17

Value

Address valid to READY valid t1 10.8 ns (max)

STRB low to MEMSEL low t2 8.5 ns (max)

STRB high to MEMSEL high t3 7.5 ns (max)

CLKOUT1 low to TMS320C25 data bus entering the
high-impedance state

t4 15 ns (max)

MEMSEL low to CY7C169-25 driving the data bus t5 5 ns (min)

MEMSEL low to CY7C169-25 data valid t6 15 ns (max)

MEMSEL high to CY7C169-25 entering the high-im-
pedance state

t7 15 ns (max)

Data setup time for a write t8 32 ns (min)

Data hold time t9 7.5 ns (min)
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Figure 6–16. Interface of CY7C169-25 to TMS320C25
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Figure 6–17. Interface Timing of CY7C169-25 to TMS320C25
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6.2.5 Interface Timing Analysis

When interpreting TMS320C25 timing specifications, particularly in the area
of memory interface timing, it is necessary to understand clock input and clock
timing relationships shown in timing diagrams as compared with the actual
data sheet specifications. If interpreted incorrectly, the specifications may sug-
gest that interfacing to the device is more constrained than necessary. Without
exception, the TMS320C25 meets every specification given in the data sheet
(Appendix A). Some timings are specified more conservatively than others,
due to yield distributions, etc.; but each TMS320C25 is guaranteed by Texas
Instruments to conform explicitly with the minimum values as stated in the
tables and shown in the timing diagrams of the data sheet.
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Clock input and internal clock timing relationships must be considered in the
interpretation of output timing characteristics and requirements. At the clock
input to the device, only the rising edges of the clock are used to initiate transi-
tions on internal clocks and output signals. Thus, with an input clock of a stable
frequency (regardless of duty cycle variation within specifications), extremely
symmetric timing is exhibited throughout the device. A significant conse-
quence of this is that CLKOUT1, CLKOUT2, and STRB timing skew with re-
spect to each other, and high and low pulse widths are integer multiples of Q
(the input clock period or one-fourth of the output clock period) to within a few
nanoseconds. This occurs because transitions on the output signals are initi-
ated directly from the internal clocks (Q1–Q4) and driven through identical out-
put buffer circuits. Since the internal clocks are very symmetric, close tracking
of these outputs results. The large skews in these timings, as shown in the data
sheet, are a factor of temperature and process. Because there is no variation
in process and negligible variation in temperature across a single device, the
skew of the outputs relative to the inputs is consistent for all outputs. Regard-
less of the magnitude of such skews, interfaces to the TMS320C25 can be de-
signed independently of these skews in most cases.

This section discusses three interface timings: READY, memory read, and
MSC. For READY, there are two pairs of related timings; one timing can be met
without the other one being met, and the device still guaranteed to function
properly. These pairs of timings are td(SL–R) and td(C2H–R), and th(SL–R) and
th(C2H–R). These front-end and back-end READY timings are specified with re-
spect to STRB and CLKOUT2. For zero wait-state accesses, READY is refer-
enced to STRB, but for wait-state accesses, STRB remains low and another
timing reference is required. Note that the actual timings for each of these pa-
rameter pairs are identical, and the timings with respect to CLKOUT2 and
STRB are equivalent. Therefore, if READY timing meets the requirements with
respect to one of these references (but not necessarily the other), the timing
requirements of the device are satisfied regardless of the actual skews be-
tween the two signals. For the purpose of interface timing, td(C2–S) can be as-
sumed to be 0 ns with respect to other signals on the TMS320C25. The same
is also true of td(C1–S) and tw(SL); these timings can be assumed to be Q and
2Q, respectively. These relationships are accounted for in specifications and
device testing.

In memory read operations, the two key timings, ta(A) and tsu(D)R, are related
by ta(A) = tsu(A) + tw(SL) – tsu(D)R. However, when the worst case tw(SL) specifica-
tions are used in this equation to generate an expression for ta(A), the result
differs from the specification for ta(A) in the data sheet. Both the specification
for ta(A) and tsu(D)R are tested explicitly on the device and guaranteed. This
again justifies the assumption of tw(SL) to be 2Q with respect to other signals
on the device. This is confirmed by the fact that if tw(SL) = 2Q is used to calcu-
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late ta(A), consistency results in all of these related timings. If an interface is
designed where tsu(D)R is met but ta(A) is not met because of actual signal
skews, the interface is still guaranteed to function with the TMS320C25. The
same is true (but is not as likely) if an interface is designed where ta(A) is met
but tsu(D)R is not. Thus, even if tw(SL) is actually less than 2Q, meeting either
ta(A) or tsu(D)R is still sufficent to guarantee a valid memory cycle because both
parameters are guaranteed independently.

Note that when considered in the absolute sense, timings such as tw(SL) will
have some finite tolerance, although considerably less than that specified. For
example, if STRB is used to generate a WE pulse for a device that specifies
a minimum WE low pulse width, the data sheet specification for STRB low
pulse width must be used for a worst-case design.

When you design a multiwait-state generator and use the CLKOUT1 and
CLKOUT2 signals for sequencing a state machine, specifications td(C2H–R)
and th(C2H–R) must be met. Note that these signals are measured from
CLKOUT2. If you design a single wait state, you can logically combine MSC
with the address and memory strobes to generate READY. In the latter, the pa-
rameters td(M–R) and th(M–R) must be met. In either case, both sets of param-
eters are tested and guaranteed.

Note that td(MSC) is also a parameter. As such, td(MSC) is given to locate MSC
with respect to CLKOUT1 and CLKOUT2 for a multiwait-state design.  In this
case, it would be inappropriate to relate the READY timing requirements from
the CLKOUT1 signal when considering a single wait state generated directly
from MSC.
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6.3 Direct Memory Access (DMA)

Some advanced hardware design concepts supported by the TMS320C2x in-
clude direct memory access (DMA) and global memory (see Section 6.4). Di-
rect memory access can be used for multiprocessing by temporarily halting the
execution of one or more processors to allow another processor to read from
or write to the halted processor’s local off-chip memory. Direct memory access
to external program/data memory is performed by using the HOLD and HOL-
DA signals.

Multiprocessing is typically a master-slave configuration where the master
may initialize a slave by downloading a program into its program memory
space and/or by providing the slave with the necessary data to complete a
task. In a typical TMS320C2x direct memory access scheme, the master may
be a general-purpose CPU, another TMS320C2x, or perhaps even an analog-
to-digital converter. A simple TMS320C2x master-slave configuration is
shown in Figure 6–18. The master TMS320C2x takes complete control of the
slave’s external memory by asserting HOLD low via its external flag (XF). This
causes the slave to place its address, data, and control lines in a high-imped-
ance state. By asserting RS in conjunction with HOLD, the master processor
can load the slave’s local program memory with the necessary initialization
code on reset or powerup. The two processors can be synchronized by using
the SYNC pin to make the transfer over the memory bus faster and more effi-
cient.

After control of the slave’s buses is given up to the master processor, the slave
alerts the master to this fact by asserting HOLDA. This signal may be tied to
the master TMS320C2x’s BIO pin. The slave’s XF pin may be used to indicate
to the master when it has finished performing its task and needs to be repro-
grammed or requires additional data to continue processing. In a multiple
slave configuration, priority of each slave’s task may be determined by tying
the slave’s XF signals to the appropriate INT(2–0) pin on the master
TMS320C2x.
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Figure 6–18. Direct Memory Access Using a Master-Slave Configuration
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A PC environment presents another example of a potential direct memory ac-
cess scheme in which a system bus (the PC bus) is used for data transfer. In
this configuration, either the master CPU or a disk controller may place data
onto the system bus, which can be downloaded into the local memory of the
TMS320C2x. Here, the TMS320C2x acts more like a peripheral processor
with multifunction capability. In a speech application, for example, the master
can load the TMS320C2x’s program memory with algorithms to perform such
tasks as speech analysis, synthesis, or recognition, and fill the TMS320C2x’s
data memory with the required speech templates. In another application ex-
ample, the TMS320C2x can serve as a dedicated graphics engine. Programs
can be stored in TMS320C2x program ROM or downloaded via the system bus
into program RAM. Data can come from PC disk storage or provided directly
by the master CPU.

Figure 6–19 depicts a direct memory access using a PC environment. In this
configuration, decode and arbitration logic is used to control the direct memory
access. When the address on the system bus resides in the local memory of
the peripheral TMS320C2x, this logic asserts the HOLD signal of the
TMS320C2x while sending the master a not-ready indication to allow wait
states. After the TMS320C2x acknowledges the direct memory access by as-
serting HOLDA, READY is asserted and the information transferred.
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Figure 6–19. Direct Memory Access in a PC Environment
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6.4 Global Memory

For multiprocessing applications, the external memory of the TMS320C2x can
be divided into local and global sections. Special registers and pins included
on the TMS320C2x allow multiple processors to share up to 32K words of glob-
al data memory space. This implementation facilitates efficient shared data
multiprocessing in which data is transferred between two or more processors.
Unlike a direct memory access (DMA) scheme, reading or writing global
memory does not require one of the processors to be halted.

Global memory can be used in various digital signal processing tasks such as
filters or modems, where the algorithm being implemented may be divided into
sections with a distinct processor dedicated to each section. In this multipro-
cessor scheme, the first and second processors may share global data
memory, as well as the second and third, the third and fourth, etc. Arbitration
logic is required to determine which section of the algorithm is executing and
which processor has access to the global memory. With multiple processors
dedicated to distinct sections of the algorithm, throughput may be increased
via pipelined execution.

By loading the global register (GREG), you can program the size of the global
memory between 256 and 32K locations in data memory. After global memory
is defined in the GREG, the TMS320C2x asserts the BR (bus request) signal
before each global memory access. The BR signal stays low on back-to-back
cycles in the TMS320C25. The processor then inserts wait states until a bus
grant is given by asserting the READY line. Figure 6–20 illustrates such a glob-
al memory interface. Because the processors can be synchronized by using
the SYNC pin, the arbitration logic can be simplified, and the address and data
bus transfers can be more efficient (see subsection 3.10.1 for information on
synchronization).

The SYNC pin on the TMS320C2x may also be used to synchronize several
processors to allow for execution of redundant fail-safe systems. SYNC per-
mits instruction broadcasting between several processors and lock-step
execution after initial synchronization.
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Figure 6–20. Global Memory Communication
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6.5 Interfacing Peripherals

Most DSP systems implement some amount of I/O by using peripherals in
addition to any memory included in the system. This usually includes analog
input and output, which can be performed through the parallel and serial I/O
ports on the TMS320C2x.

When you access the external parallel I/O ports, the access to the data bus
is multiplexed over the same pins as for a program/data memory access. The
I/O space is selected by the IS signal going active low, and the address of the
port is placed on address bits A3–A0. Address bits A15–A4 are held low.

This section describes hardware interfaces to a TCM29C16 combo-codec, a
TLC32040 analog interface circuit (AIC), a digital-to-analog (D/A) converter,
and an analog-to-digital (A/D).

6.5.1 Combo-Codec Interface

Some areas of speech, telecommunications, and many other applications re-
quire low-cost analog-to-digital (A/D) and digital-to-analog (D/A) converters.
Combo-codecs are most effective in serving DSP system data-conversion re-
quirements. Combo-codecs are single-chip pulse-code-modulated encoders
and decoders (PCM codecs), designed to perform the encoding (A/D conver-
sion) and decoding (D/A conversion), as well as the antialiasing and smooth-
ing filtering functions. Since combo-codecs perform these functions in a single
300-mil DIP package at low cost, they are extremely economical for providing
system data-conversion functions.

Combo-codecs interface directly to the TMS320C2x by means of the serial
port and provide a companded, PCM-coded digital representation of analog
input samples. This PCM code is easily translated into linear form by the
TMS320C2x for use in processing. The design discussed here and shown in
Figure 6–21 uses a Texas Instruments TCM29C16 codec, interfaced through
using the serial port of the TMS320C25.

The TMS320C2x serial port provides direct synchronous communication with
serial devices. The interface signals are compatible with codecs and other se-
rial components so that minimal external hardware is required. Externally, the
serial port interface is implemented via the following pins on the TMS320C25:

� DX (transmitted serial data)
� CLKX (transmit clock)
� FSX (transmit framing synchronization signal)
� DR (received serial data)
� CLKR (receive clock)
� FSR (receive framing synchronization signal)
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Data on DX and DR are clocked by CLKX and CLKR, respectively. These
clocks are required only during serial transfers on the TMS320C25. Note that
the TMS320C25 is double-buffered.

Figure 6–21. Interface of TMS320C25 to TCM29C16 Codec
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Serial port transfers are initiated by framing pulses on the FSX and FSR pins
for transmit and receive operations, respectively. For transmit operations, the
FSX pin can be configured as an input or an output. This option is selected by
the transmit mode (TXM) bit of status register ST1. In this design, FSX is as-
sumed to be configured as an input; therefore, transmit operations are initiated
by a framing pulse on the FSX pin. Upon completion of receive and transmit
operations, an RINT (serial port receive interrupt) and an XINT (serial port
transmit interrupt) are generated, respectively. Interface timing of the
TMS320C25 to the TCM29C16 corresponds to the burst-mode serial port
transmit and receive operations shown in Figure 3–37 and Figure 3–38, re-
spectively. Continuous-mode operation with or without framing pulses is also
possible.
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The format (FO) bit of status register ST1 is used to select the format (8-bit byte
or 16-bit word) of the data to be received or transmitted. For interfacing the
TMS320C25 to a codec, the format bit should be set to 1, formatting the data
in 8-bit bytes.

The TMS320C25 interfaces directly to the codec, as shown in Figure 6–21,
with no additional logic required. The PCM µ-law data generated by the codec
at the PCMOUT pin is read by the TMS320C25 from the data receive (DR) pin,
which is internally connected to the receive serial register (RSR). The data
transmitted from the data transmit (DX) pin of the TMS320C25 is received by
the PCMIN input of the codec. During the digital-to-analog conversion, this
µ-law companded data must be converted back to a linear representation for
use in the TMS320C25. The resulting analog waveform is lowpass-filtered by
the codec’s internal smoothing filter. Therefore, no additional filtering is re-
quired at the codec output (PWRO+). Software companding routines appropri-
ate for use on the TMS320C25 are provided in the book, Digital Signal Proces-
sing Applications with the TMS320 Family (literature number SPRA012A).

The software required to initialize the TMS320C25-codec interface is provided
in the combo-codec interface section of the application report, Hardware Inter-
facing to the TMS320C25 (literature number SPRA014A). This report also
presents detailed information regarding codec interfacing.

A combo-codec configured in the fixed-data-rate mode requires the following
external clock signals:

� A 2.048-MHz clock to be used as the master clock, and

� 8-kHz framing pulses to initialize the data transfers.

Both of these signals can be derived from the 40.96-MHz system clock with
appropriate divider circuitry. This is the primary justification for selecting 40.96
MHz as the system clock frequency. The clock divider circuit consists of a
74AS74 D-type flip-flop, a 74HC390 decade counter, and a 74AS869 8-bit up/
down counter. The hardware connections between these devices are shown
in Figure 6–21.

To generate the 2.048-MHz master clock for the combo-codec, a division by
20 of the 40.96-MHz system clock is required. The 74HC390 contains on-chip
two divide-by-2 and two divide-by-5 counters. Because the 74HC390 cannot
be clocked with frequencies above approximately 27 MHz, a 74AS74 config-
ured as a divide-by-2 of the 40.96-MHz clock is used.

The 74AS869 is configured to generate the 8-kHz clock pulse (the ripple carry
output is 2.048 MHz/256 = 8 kHz). This pulse is used by the TMS320C25 and
codec as a framing pulse to initiate data transfers.
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The level of the analog input signal is controlled by using the TL072 opamp
connected in the inverting configuration (see Figure 6–21). Using the 500-kΩ
potentiometer, the gain of this circuit can be varied from 0 to 5. The output of
the 0.01-µF coupling capacitor drives the TCM29C16’s internal opamp. This
opamp is connected in the inverting configuration with unity gain (feedback
and input impedances having the same value of 100 kΩ).

6.5.2 AIC Interface

For applications such as modems, speech, control, instrumentation, and ana-
log interface for DSPs, a complete analog-to-digital (A/D) and digital-to-analog
(D/A) input/output system on a single chip may be desired. The TLC32040
analog interface circuit (AIC) integrates on a single monolithic CMOS chip a
bandpass, switched-capacitor, antialiasing-input filter, 14-bit resolution A/D
and D/A converters, and a lowpass, switched-capacitor, output-reconstruction
filter. The TLC32040 offers numerous combinations of master clock input fre-
quencies and conversion/sampling rates, which can be changed via digital
processor control.

Four serial port modes on the TLC32040 allow direct interface to TMS320C2x
processors. When the transmit and receive sections of the AIC are operating
synchronously, it can interface to two SN54299 or SN74299 serial-to-parallel
shift registers. These shift registers can then interface in parallel to the
TMS320C2x, to other TMS320 digital signal processors, or to external FIFO
circuitry. Output data pulses are emitted to inform the processor that data
transmission is complete or to allow the DSP to differentiate between two
transmitted bytes. A flexible control scheme is provided so that the functions
of the AIC can be selected and adjusted coincidentally with signal processing
via software control. Refer to the TLC32040 data sheet for detailed information
on timing and device functions.

The AIC is easily interfaced to the TMS320C2x serial ports, as shown in
Figure 6–22. The TMS320C2x can communicate with the AIC either synchro-
nously or asynchronously, depending on the information in the control register.
The operating sequence for synchronous communication with the
TMS320C2x, shown in Figure 6–23, is as follows:

1) The FSX or FSR pin is brought low.

2) One 16-bit word is transmitted, or one 16-bit word is received.

3) The FSX or FSR pin is brought high.

4) The EODX or EODR pin emits a low-going pulse.



 Interfacing Peripherals

6-41

For asynchronous communication, the operating sequence is similar, but FSX
and FSR do not occur at the same time (see Figure 6–24). For proper opera-
tion, the TXM bit in the TMS320C2x control register should be set to 0 so that
the FSX pin of the TMS320C2x is configured as an input, the format (FO) sta-
tus bit is set to 0, and the AIC WORD/BYTE pin is at logic high. After each re-
ceive and transmit operation, the TMS320C2x asserts an internal receive
(RINT) and transmit (XINT) interrupt, which may be used to control program
execution.

Figure 6–22. Interface of TLC32040 to TMS320C2x
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Figure 6–23. Synchronous Timing of TLC32040 to TMS320C2x
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Figure 6–24. Asynchronous Timing of TLC32040 to TMS320C2x
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For further information regarding the AIC interface, see page 11–196 of Linear
and Interface Circuits Applications, Volume 3: Peripheral Drivers, Data Ac-
quisition Systems, Hall-Effect Devices (literature number SLYA003), pub-
lished by Texas Instruments.

6.5.3 Digital-to-Analog (D/A) Interface

The high-speed operation of the internal logic circuitry of the TLC7524 8-bit
digital-to-analog (D/A) converter allows an interface to the TMS320C2x with
a minimum of external circuitry. Figure 6–25 shows the interface circuitry,
which consists of one SN74ALS138 3-to-8-line decoder used to decode the
address of the peripheral.

Figure 6–25. Interface of TLC7524 to TMS320C2x
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When the TMS320C2x executes an OUT instruction (see Figure 6–28), the
peripheral address is placed on the address bus and the IS line goes low, indi-
cating that the address on the bus corresponds to an I/O port and not external
data or program memory. A low level at IS enables the 74ALS138 decoder, and
the Y-output, corresponding to the address on the bus, is brought low. When
the Y-output is brought low, the TLC7524 is enabled and the data appearing
on the data bus is latched into the D/A converter by STRB. The controlling soft-
ware for the D/A interface is given on page 11-204 of Linear and Interface Cir-
cuits Applications, Volume 3: Peripheral Drivers, Data Acquisition Systems,
Hall-Effect Devices (literature number SLYA003), published by Texas Instru-
ments.

Figure 6–26. Interface Timing of TLC7524 to TMS320C2x
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6.5.4 Analog-to-Digital (A/D) Interface

The TMS320C2x can be interfaced to 8-bit A/D converters, such as the
TLC0820. However, because the control circuitry of the TLC0820 operates
much more slowly than the TMS320C2x, it cannot be directly interfaced. In the
TLC0820 to TMS320C2x interface design shown in Figure 6–27, the following
logic devices are used in the interface circuit:

� A 3-line to 8-line decoder (SN74ALS138)
� A quad 2-input NAND gate (SN74LS00)
� A hex inverter (SN74LS04)
� A quad 2-input OR gate (SN74LS32)
� A quad D-type flip-flop (SN74LS175)
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Figure 6–27. Interface of TLC0820 to TMS320C2x
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The 74LS138 decodes the addresses assigned to the TLC0820. One of the
addresses is used for a write operation; the other is used for a read operation.
The two different addresses are necessary to ensure that the correct number
of wait states is provided for the write and read operations. The controlling soft-
ware for the A/D interface is given on page 11–206 of Linear and Interface Cir-
cuits Applications, Volume 3: Peripheral Drivers, Data Acquisition Systems,
Hall-Effect Devices (literature number SLYA003), published by Texas Instru-
ments.
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With the TMS320C2x running at 20 MHz and the TLC0820 configured as slow
memory, three wait states are necessary to provide a write pulse of sufficient
length. After conversion has begun (with the rising edge of the WR signal), the
TMS320C2x must wait at least 600 ns before the conversion result can be
read. Sufficient delay should be provided in software. To read the conversion
result, an adequate number of wait states must be provided to allow for the
data access time (320 ns minimum) of the TLC0820. As shown in the IN
instruction timing diagram of Figure 6–28, two wait states are provided when
accessing port 1.

Figure 6–28. Interface Timing of TLC0820 to TMS320C2x
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6.5.5 I/O Ports

I/O design on the TMS320C2x is treated the same way as memory. The I/O
address space is distinguished from the local program/data memory space by
the IS signal. IS goes low at the beginning of the memory cycle. All other con-
trol signals and timing parameters are the same as those for the program/data
external memory interface.

The TMS320C2x software instructions can access 16 input and 16 output
ports. The four least significant bits of the address bus specify the particular
port being accessed. A pair of 74AS138s can be used to fully decode these
address bits (see Figure 6–29).

Figure 6–29. I/O Port Addressing
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A simple interface between two processors can be implemented by using up
to 16 bidirectional I/O ports connected to the TMS320C2x. An interprocessor
communication path can be formed by memory-mapping peripherals to the I/O
ports of the TMS320C2x. In this manner, the TMS320C2x can connect to par-
allel A/Ds, registers, FIFOs, two-port memories, or other peripheral devices.
In a multiprocessing scheme, intelligent peripherals can be memory-mapped
into the I/O ports. Here the TMS320C2x can communicate with UARTs, gener-
al-purpose microprocessors, disk controllers, video controllers, or other pe-
ripheral processors.
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Using an 8-bit general-purpose microprocessor, such as TI’s TMS70C42, for
a keyboard interface is an example of a TMS320C2x I/O-port multiprocessing
scheme, as shown in Figure 6–30. The TMS70C42 may be mapped into the
TMS320C2x I/O space by using latches to store the transferred data. In a
single or multiple I/O-port multiprocessing configuration, the four LSBs of the
address bus are decoded to determine which of the 16 I/O ports on the
TMS320C2x is being accessed. The TMS320C2x selects the I/O space (IS)
for its external bus and reads/writes data using the IN/OUT instructions.

Processor-controlled signals between the TMS320C2x and the peripheral de-
vice indicate when data is available to be read. This interprocessor commu-
nication is facilitated by using the input and output pins of the TMS70C42 (or
other peripheral processor). In an I/O multiprocessing configuration, the I/O
port address space is limited, and data transfers are relatively slow compared
to a direct memory access or global memory configuration.

Figure 6–30. I/O Port Processor-to-Processor Communication
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6.6 System Applications

The TMS320C2x is used in a wide variety of systems. Several applications in
the areas of telecommunications, graphics and image processing, high-speed
control, instrumentation, and numeric processing are described in the follow-
ing paragraphs to illustrate basic approaches to system design with the
TMS320C2x.

6.6.1 Echo Cancellation

Digital signal processing is extensively used in telecommunications applica-
tions. In echo cancellation, an adaptive FIR filter performs the modeling rou-
tine and signal modifications required to adaptively cancel the echo caused by
impedance mismatches in telephone transmission lines. The TMS320C25’s
large on-chip RAM of 544 words and on-chip ROM of 4K words allow it to
execute a 256-tap adaptive filter (32-ms echo cancellation) without external
data or program memory. Figure 6–31 shows a common configuration for an
echo canceller that uses a TCM29C16 codec interface.

Figure 6–31. Echo Canceler
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6.6.2 High-Speed Modem

In high-speed modems, a signal processor performs functions such as modu-
lation/demodulation, adaptive equalization, and echo cancellation. The
TMS320C2x large memory space allows it to support multiple standards such
as Bell 103, Bell 212A, V.22 bis, V.29, V.32, and V.33, as well as proprietary
algorithms. The modem shown in Figure 6–32 consists of the host interface,
controller, DSP, and analog front-end.
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Figure 6–32. High-Speed Modem
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6.6.3 Voice Coding

Voice coding techniques, such as full-duplex 32-kbps adaptive differential
pulse-code modulation (CCITT G.721), 16-kbps sub-band coding, and linear
predictive coding, are frequently used in voice transmission and storage. The
speed of the TMS320C2x in performing arithmetic computations, normaliza-
tion, and bit manipulation enables it to implement these functions usually inter-
nally (that is, with no external devices). Figure 6–33 shows a voice coding sys-
tem consisting of a TMS320C2x DSP, TCM29C16 codec or TLC32040 AIC,
and optional external memory.

Figure 6–33. Voice Coding System
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6.6.4 Graphics and Image Processing

In graphics and image processing applications, a signal processor’s ability to
interface with a host processor is important. The TMS320C2x multiprocessor
interface enables it to be used in a variety of host/coprocessor configurations
(see Figure 6–34 for an example of a graphics system configuration). Graph-
ics and image processing applications can use the large, directly addressable
external data memory space and global memory capability to share graphical
images in memory with a host processor, thus minimizing data transfers. In-
dexed indirect addressing modes on the TMS320C2x allow matrices to be pro-
cessed row by row when matrix multiplication is performed for 3-D image rota-
tion, translation, and scaling.

Figure 6–34. Graphics System
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6.6.5 High-Speed Control

High-speed control applications, such as robotics, use the TMS320C2x gener-
al-purpose features for bit manipulation, logical operations, timing synchro-
nization, and fast data transfers (10 million 16-bit words per second). In addi-
tion to the numeric-intensive control functions typical of robotic applications,
the TMS320C2x provides a host interface whereby a robot can communicate
to a central host processor (see Figure 6–35). The TMS320C2x is also used
in the closed-loop systems of disk drives for signal conditioning, filtering, high-
speed computing, and multichannel multiplexing.

Figure 6–35. Robot Axis Controller Subsystem
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6.6.6 Instrumentation and Numeric Processing

Instrumentation, such as spectrum analyzers, requires a large data memory
space and a processor, such as the TMS320C2x, that is capable of performing
long-length FFTs and generating high-precision functions with minimal exter-
nal hardware. Figure 6–36 shows an example of an instrumentation system.
Numeric processing applications benefit from the high throughput, multipro-
cessing, and data memory expansion capabilities of the TMS320C2x.

Figure 6–36. Instrumentation System
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Appendix A

TMS320C25 and TMS320E25
Digital Signal Processors

This appendix contains data sheet information on the TMS320C25 digital sig-
nal processors family, which includes the following devices:

� TMS320C25

� TMS320C25-33

� TMS320C25-50

� TMS320E25

Refer to Appendix B for data sheet information on the TMS320C26, to Appen-
dix C for the TMS320C28, and to Appendix D for the military versions.
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Appendix B

TMS320C26 Digital Signal Processor

This appendix contains data sheet information on the TMS320C26 digital sig-
nal processor.
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Appendix C

TMS320C28 Digital Signal Processor

This appendix contains data sheet information on the TMS320C28 digital sig-
nal processor.



TMS320C28 Digital Signal Processor

C-2  TMS320C28 Digital Signal Processor



D-1

Appendix D

Instruction Cycle Timings

This appendix details the instruction cycle timings for the TMS320C2x proces-
sor. Instructions are first listed in a table according to cycle classification. Then
each class of instructions is listed in another table, showing the number of
cycles required for a TMS320C2x instruction to execute in a given memory
configuration singly or in repeat mode. The column headings in the tables indi-
cate the program source location (PI, PE, or PR) and data destination or
source (DI or DE), defined as follows:

PI The instruction executes from internal program memory (RAM).
PR The instruction executes from internal program memory (ROM).
PE The instruction executes from external program memory.
DI The instruction executes using internal data memory.
DE The instruction executes using external data memory.

The number of cycles required for each instruction is given in terms of the pro-
gram/data memory and I/O access times as defined in the following listing:
p Program memory wait states. Represents the number of clock cycles the

device waits for external program memory to respond to an access. Tac is
the TMS320C2x access time, in nanoseconds (maximum), required for
an external memory access with no wait states. Tmem is the memory ac-
cess time, and Tp is the clock period (4/crystal frequency).
p = 0; If Tmem ≤ Tac
p = 1; If Tac < Tmem ≤ (Tp + Tac )
p = 2; If (Tp + Tac ) < Tmem ≤ (Tp × 2 + Tac)
p = k; If [Tp × (k – 1) + Tac] < Tmem ≤ (Tp × k + Tac)

d Data memory wait states. Represents the number of cycles the device
must wait for external data memory to respond to an access. This num-
ber is calculated in the same way as the p number.

i I/O memory wait states. Represents the number of cycles the device
must wait for external I/O memory to respond to an access. This number
is calculated in the same way as the p number.

Other abbreviations used in the tables and their meanings are as follows:
br Branch from ...
int Internal program memory.
INT Interrupt.
ext External program memory.
n The number of times an instruction is executed when using the RPT or

RPTK instruction.
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D.1 TMS320C2x Instruction Cycle Timings

Table D–1 lists the TMS320C2x instructions according to cycle classification.
Table D–2 and Table D–3 show the number of cycles required for a given
TMS320C2x instruction to execute in a given memory configuration when
executed as a single instruction or in the repeat mode, respectively.

Table D–1. TMS320C2x Instructions by Cycle Class

CLASS INSTRUCTION

I ADD ADDC ADDH ADDS ADDT AND BIT BITT DMOV LAC
LACT LPH LT LTA LTD LTP LTS MPY MPYA MPYS
MPYU PSHD OR RPT SQRA SQRS SUB SUBB SUBC SUBH
SUBS SUBT XOR ZALH ZALR ZALS (RPT not repeatable)

II LAR LDP LST LST1

III POPD SACH SACL SAR SPH SPL SST SST1

IV ABS ADDK ADRK APAC CMPL CMPR CNFD CNFP DINT EINT
FORT LACK LARK LARP LDPK MAR MPYK NEG NOP NORM
PAC POP PUSH RC RFSM RHM ROL ROR ROVM RPTK
RSXM RTC RTXM RXF SBRK SC SFL SFR SFSM SHM
SOVM SPAC SPM SSXM STC STXM SUBK SXF ZAC
(ADDK, ADRK, LACK, LARK, LDPK, MPYK, RPTK, SBRK, SPM, SUBK, and ZAC not repeatable)

V ADLK ANDK LALK LRLK ORK SBLK XORK (all not repeatable)

VI MAC MACD

VI B BANZ BBNZ BBZ BC BGEZ BGZ BIOZ BLEZ BLZ
BNC BNV BNZ BV BZ CALL (all not repeatable)

VIII BACC CALA RET TRAP (all not repeatable)

IX IN

X OUT

XI TBLR

XII TBLW (table in ROM not applicable)

XIII BLKD

XIV BLKP

XV IDLE (not repeatable)
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Table D–2. Cycle Timings for Cycle Classes When Not in Repeat Mode

CLASS PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

I 1 2+d 1+p 2+d+p 1 2+d

II 1 2+d 1+p 2+d+p 1 2+d

III 1 1+d 1+p 2+d+p 1 1+d

IV 1 1 1+p 1+p 1 1

V 2 2 2+2p 2+2p 2 2

VI Table in on-chip RAM:

3 4+d 4+2p 5+d+2p 4 5+d

Table in on-chip ROM:

4 5+d 4+2p 5+d+2p 4 5+d

Table in external memory:

4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p

VII True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2

Destination on-chip ROM:

3 3 3+2p 3+2p 3 3

Destination external memory:

3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

VIII Destination on-chip RAM:

2 2 2+p 2+p 2 2

Destination on-chip ROM:

3 3 3+p 3+p 3 3

Destination external memory:

3+p 3+p 3+2p 3+2p 3+p 3+p

IX 2+i  2+d+i 2+p+i 3+d+p+i 2+ i 2+d+i

X 1+i  2+d+i 2+p+i 3+d+p+i 1+i 2+d+i

XI Table in on-chip RAM:

2 2+ d 3+p 3+d+p 3 3+d

Table in on-chip ROM:

3 3+d 4+p 4+d+p 4 4+d

Table in external memory:

3+p 3+d+p 4+2p 4+d+2p 4+p 4+d+p

XII Table in on-chip RAM:

2 3+d 3+p 4+d+p 3 4+d

Table in on-chip ROM:

not applicable

Table in external memory:

2+p 3+d+p 3+2p 4+d+2p 3+p 4+d+p
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Table D–2. Cycle Timings for Cycle Classes When Not in Repeat Mode (Concluded)

CLASS PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

XIII Source data in on-chip RAM:

3 3+d 3+2p 3+d+2p 3 3+d
Source data in external memory:

4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d

XIV Table in on-chip RAM:

3 3+d 4+2p 4+d+2p 4 4+d

Table in on-chip ROM:

4 4+d 4+2p 4+d+2p 4 4+d

Table in external memory:

4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p

XV (Interrupt) destination on-chip ROM
3 (minimum waits for INT)

(Interrupt) destination external memory
3+2p (minimum waits for INT)
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Table D–3. Cycle Timings for Cycle Classes When in Repeat Mode
CLASS PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

I n 1+n+nd n+p 1+n+nd+p n 1+n+nd

II n 2n+nd n+p 2n+nd+p n 2n+nd

III n n+nd n+p 1+n+nd+p n n+nd

IV n n n+p n+p n n

V not repeatable

VI Table in on-chip RAM:

2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd

Table in on-chip ROM:

3+n  3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd

Table in external memory:

3+n+np 3+2n+nd+np 3+n+np+2p 3+2n+nd+np
+2p

3+n+np 3+2n+nd+np

VII not repeatable

VIII not repeatable

IX 1+n+ni 2n+nd+ni 1+n+p+ni 1+2n+nd+p
+ni

1+n+ni  2n+nd+ni

X n+ni 2n+nd+ni 1+n+p+ni 1+2n+nd+p
+ni

n+ni 2n+nd+ni

XI Table in on-chip RAM:

1 + n 1 + n + nd 2+n+p 2+n+nd+p 2+n 2+n+nd

Table in on-chip ROM:

2+n 2+n+nd 3+n+p 3+n+nd+p 3+n 3+n+nd

Table in external memory:

2+n+np 1+2n+nd+np 3+n+np+p 2+2n+nd+np
+p

3+n+np 2+2n+nd+np

XII Table in on-chip RAM:

1+n 2+n+nd 2+n+p 3+n+nd+p 2+n 3+n+nd

Table in on-chip ROM:

not applicable

Table in external memory:

1+n+np 1+2n+nd+np 2+n+np+p 2+2n+nd+np+p 2+n+np 2+2n+nd+np

XIII Source data in on-chip RAM:

2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd

Source data in external memory:

3+n+nd 2+2n+2nd 3+n+nd+2p 2+2n+2nd
+2p

3+n+nd  2+2n+2nd

XIV Table in on-chip RAM:

2+n 2+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd

Table in on-chip ROM:

3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd

Table in external memory:

3+n+np 2+2n+nd+np 3+n+np+2p 2+2n+nd+np
+2p

3+n+np 2+2n+nd+np

XV not repeatable
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Appendix E

SMJ320C2x Digital Signal Processors

This appendix contains data sheet information on the SMJ320C2x digital sig-
nal processors family.
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PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
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See Pin Assignments Table (Page 2) and Pin
Nomenclature Table (Page 3) for location and
description of all pins.

†



Running Title—Attribute Reference

E-4  Appendix Title—Attribute Reference

• 100-ns Instruction Cycle Time

• 1568 Words of Configurable On-Chip
Data/Program RAM

• 256 Words of On-Chip Program ROM

• 128K Words of Data/Program Space

• Pin-for-Pin Compatible with the SMJ320C25

• 16 Input and 16 Output Channels

• 16-Bit Parallel Interface

• Directly Accessible External Data Memory
Space

• Global Data Memory Interface

• 16-Bit Instruction and Data Words

• 32-Bit ALU and Accumulator

• Single-Cycle Multiply/Accumulate
Instructions

• 0 to 16-Bit Scaling Shifter

• Bit Manipulation and Logical Instructions

• Instruction Set Support for Floating-Point
Operations, Adaptive Filtering, and
Extended-Precision Arithmetic

• Block Moves for Data/Program
Management

• Repeat Instructions for Efficient Use of
Program Space

• Eight Auxiliary Registers and Dedicated
Arithmetic Unit for Indirect Addressing

• Serial Port for Direct Codec Interface

• Synchronization Input for Multiprocessor
Configurations

• Wait States for Communications to Slow
Off-Chip Memories/Peripherals

• On-Chip Timer for Control Operations

• Three External Maskable User Interrupts

• Input Pin Polled by Software Branch
Instruction

• Programmable Output Pin for Signalling
External Devices

• 1.6-µm CMOS Technology

• Single 5-V Supply

• Packaging:

–  68-Pin Leaded Ceramic Chip Carrier
(FJ Suffix)

–  68-Pin Leadless Ceramic Chip Carrier
(FD Suffix)

–  68-Pin Grid Array Ceramic Package
(GB Suffix)

• Military Operating Temperature
Range . . . – 55° to 125°C
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description

The SMJ320C26 Digital Signal Processor is a member of the TMS320 family
of VLSI digital signal processors and peripherals. The TMS320 family sup-
ports a wide range of digital signal processing applications, such as telecom-
munications, modems, image processing, speech processing, spectrum anal-
ysis, audio processing, digital filtering, high-speed control, graphics, and other
computation intensive applications.

With a 100-ns instruction cycle time and an innovative memory configuration,
the SMJ320C26 performs operations necessary for many real time digital sig-
nal processing algorithms. Since most instructions require only one cycle, the
SMJ320C26 is capable of executing ten million instructions per second. On-
chip programmable data/program RAM of 1568 words of 16 bits, on-chip pro-
gram ROM of 256-words, direct

addressing of up to 64K-words of
external program and 64K-words of
data memory space, and multipro-
cessor interface features for sharing
global memory minimize unneces-
sary data transfers to take full
advantage of the capabilities of the
processor.

The SMJ320C26 scaling shifter has
a 16-bit input connected to the data
bus and a 32-bit output connected to
the ALU. The scaling shifter pro-
duces a left shift of 0 to 16 bits on the
input data, as programmed in the
instruction. The LSBs of the output
are filled with zeroes, and the MSBs
may be either filled with zeroes or
sign-extended, depending upon the
status programmed into the SXM
(sign-extension mode) bit of status
register ST1.

PGA/LCCC/JLCC PIN ASSIGNMENTS

FUNCTION PIN FUNCTION PIN FUNCTION PIN FUNCTION PIN FUNCTION PIN FUNCTION PIN

A0 K1/26 A12 K8/40 D2 E1/16 D14 A5/3 INT2 H1/22 VCC H2/23
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A1 K2/28 A13 L9/41 D3 D2/15 D15 B6/2 IS J11/46 VCC L6/35
A2 L3/29 A14 K9/42 D4 D1/14 DR J1/24 MP/MC A6/1 VSS B1/10
A3 K3/30 A15 L10/43 D5 C2/13 DS K10/45 MSC C10/59 VSS K11/44
A4 L4/31 BIO B7/68 D6 C1/12 DX E11/54 PS J10/47 VSS L2/27
A5 K4/32 BR G11/50 D7 B2/11 FSR J2/25 READY B8/66 XF D11/56
A6 L5/33 CLKOUT1 C11/58 D8 A2/9 FSX F10/53 RS A8/65 X1 G10/51
A7 K5/34 CLKOUT2 D10/57 D9 B3/8 HOLD A7/67 R/W H11/48 X2/CLKIN F11/52
A8 K6/36 CLKR B9/64 D10 A3/7 HOLDA E10/55 STRB H10/49
A9 L7/37 CLKX A9/63 D11 B4/6 IACK B11/60 SYNC F2/19
A10 K7/38 D0 F1/18 D12 A4/5 INT0 G1/20 VCC A10/61
A11 L8/39 D1 E2/17 D13 B5/4 INT1 G2/21 VCC B10/62
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PIN NOMENCLATURE

NAME I/O/Z† DEFINITION

VCC I 5-V supply pins.

VSS I Ground pins.

X1 O Output from internal oscillator for crystal.

X2/CLKIN I Input to internal oscillator from crystal or external clock.

CLKOUT1 O Master clock output (crystal or CLKIN frequency/4).

CLKOUT2 O A second clock output signal.

D15–D0 I/O/Z 16-bit data bus D15 (MSB) through D0 (LSB). Multiplexed between program, data and I/O spaces.

A15–A0 O/Z 16-bit address bus A15 (MSB) through A0 (LSB).

PS, DS, IS O/Z Program, data and I/O space select signals.

R/W O/Z Read/write signal.

STRB O/Z Strobe signal.

RS I Reset input.

INT2, INT1, INT0 I External user interrupt inputs.

MP/MC I Microprocessor/microcomputer mode select pin.

MSC O Microstate complete signal.

IACK O Interrupt acknowledge signal.

READY I
Data ready input. Asserted by external logic when using slower devices to indicate that the current bus transaction
is complete.

BR O Bus request signal. Asserted when the SMJ320C26 requires access to an external global data memory space.

XF O External flag output (latched software – programmable signal).

HOLD I
Hold input. When asserted, SMJ320C26 goes into an idle mode and places the data address and control lines
in the high-impedance state.

HOLDA O Hold acknowledge signal.

SYNC I Synchronization input.

BIO I Branch control input. Polled by BIOZ instruction.

DR I Serial data receive input.

CLKR I Clock input for serial port receiver.

FSR I Frame synchronization pulse for receive input.

DX O/Z Serial data transmit output.

CLKX I Clock input for serial port transmitter.

FSX I/O/Z Frame synchronization pulse for transmit. May be configured as either an input or an output.
† I/O/Z denotes input/output/high-impedance state.
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functional block diagram
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RSR(16)
XSR(16)
DRR(16)
DXR(16)
TIM(16)
PRD(16)
IMR(6)

GREG(8)

QIR(16)
IR(16)

ST0(16)
ST1(16)
RPTC(8)

IFR(6)

MUX

MUX MUX MUX MUX

MUXMUXMUX

MUX

MUX

MUX

PROGRAM BUS
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16
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6
8
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DR
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1616
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16 16
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1616
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32
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1616

161616
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16 16 16 16
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7 LSB
FROM
IR9
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1616

3

3

3

3

16

16
16
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3

16

PC(16)

STACK
(8 - 16)

ADDRESS

PROGRAM
ROM

(256 x 16)

INSTRUCTION

PFC(16)

MCS(16)

ARP(3)

ARS(3)

DATA
RAM (32 x 16)

BLOCK B2

DATA/PROG
RAM (512 x 16)

BLOCK B3

DATA/PROG
RAM (512 x 16)

BLOCK B1

DATA/PROG
RAM (512 x 16)

BLOCK B0

SHIFTERS (0–7)

C ACCH(16) ACCL(16)

ALU(32)

SHIFTER (6.0.1.4)

TR(16)

MULTIPLIER

PR(32)

SHIFTER(0–16)

DP(9)

AR0(16)
AR1(16)
AR2(16)
AR3(16)
AR4(16)
AR5(16)
AR6(16)
AR7(16)

ARAU(16)
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X
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DATA BUS

R/W
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16

LEGEND:
ACCH = Accumulator high
ACCL = Accumulator low
ALU = Arithmetic logic unit
ARAU = Auxiliary register arithmetic unit
ARS = Auxiliary register pointer buffer
ARP = Auxiliary register pointer
DP = Data memory page pointer
DRR = Serial port data receive register
DXR = Serial port data trademark register

IFR = Interrupt flag register
IMR = Interrupt mask register
IR = Instruction register
MCS = Microcall stack
QIR = Queue instruction register
PR = Product register
PRD = Product register for timer
TIM = Timer
TR = Temporary register

PC = Program counter
PFC = Prefetch counter
RPTC = Repeat instruction counter
GREG = Global memory allocation register
RSR = Serial port receive shift register
XSR = Serial port to transmit shift register
AR0–AR7 = Auxiliary registers
ST0, ST1 = Status registers
C = Carry bit

32

9
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architecture

The SMJ320C26 architecture is based on the SMJ320C25 with a different in-
ternal RAM and ROM configuration. The SMJ320C26 integrates 256 words of
on-chip ROM and 1568 words of on-chip RAM compared to 4K words of on-
chip ROM and 544 words of on-chip RAM for the SMJ320C25. The
SMJ320C26 is pin for pin compatible with the SMJ320C25.

Increased throughput on the SMJ320C26 for many DSP applications is ac-
complished by means of single cycle multiply/accumulate instructions with a
data move option, eight auxiliary registers with a dedicated arithmetic unit, and
faster I/O necessary for data intensive signal processing.

The architectural design of the SMJ320C26 emphasizes overall speed, com-
munication, and flexibility in the processor configuration. Control signals and
instructions provide floating point support, block memory transfers, communi-
cation to slower off-chip devices, and multiprocessing implementations.

Three large on-chip RAM blocks, configurable either as separate program and
data spaces or as three contiguous data blocks, provide increased flexibility
in system design. Programs of up to 256 words can be masked into the internal
program ROM. The remainder of the 64K-word program memory space is lo-
cated externally. Large programs can execute at full speed from this memory
space. Programs can also be downloaded from slow external memory to high
speed on-chip RAM. A data memory address space of 64K words is included
to facilitate implementation of DSP algorithms. The VLSI implementation of
the SMJ320C26 incorporates all of these features as well as many others, in-
cluding a hardware timer, serial port, and block data transfer capabilities.

32-bit ALU accumulator

The SMJ320C26 32-bit Arithmetic Logic Unit (ALU) and accumulator perform
a wide range of arithmetic and logic instructions, the majority of which execute
in a single clock cycle. The ALU executes a variety of branch instructions de-
pendent on the status of the ALU or a single bit in a word. These instructions
provide the following capabilities:

� Branch to an address specified by the accumulator.

� Normalize fixed point numbers contained in the accumulator.

� Test a specified bit of a word in data memory.

One input to the ALU is always provided from the accumulator, and the other
input may be provided from the Product Register (PR) of the multiplier or the
input scaling shifter which has fetched data from the RAM on the data bus. Af-
ter the ALU has performed the arithmetic or logical operations, the result is
stored in the accumulator.
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The 32-bit accumulator is split into two 16-bit segments for storage in data
memory. Additional shifters at the output of the accumulator perform shifts
while the data is being transferred to the data bus for storage. The contents
of the accumulator remain unchanged.

scaling shifter

The SMJ320C26 scaling shifter has a 16-bit input connected to the data bus
and a 32-bit output connected to the ALU. The scaling shifter produces a left
shift of 0 to 16-bits on the input data, as specified in the instruction word. The
LSBs of the output are filled with zeroes, and the MSBs may be either filled with
zeroes or sign extended, depending upon the value of the SXM (sign extension
mode) bit of status register STO.

16 × 16 bit parallel multiplier

The SMJ320C26 has a 16 × 16 bit-hardware multiplier, which is capable of
computing a signed or unsigned 32-bit product in a single machine cycle. The
multiplier has the following two associated registers:

� A 16-bit Temporary Register (TR) that holds one of the operands for the
multiplier, and

� A 32-bit Product Register (PR) that holds the product.

Incorporated into the SMJ320C26 instruction set are single-cycle multiply/ac-
cumulate instructions that allow both operands to be fetched simultaneously.
The data for these operations may reside anywhere in internal or external
memory, and can be transferred to the multiplier each cycle via the program
and data buses.

Four product shift modes are available at the Product Register (PR) output that
are useful when performing multiply/accumulate operations, fractional arith-
metic, or justifying fractional products.

timer

The SMJ320C26 provides a memory mapped 16-bit timer for control opera-
tions. The on-chip timer (TIM) register is a down counter that is continuously
clocked by CLKOUT1. A timer interrupt (TINT) is generated every time the tim-
er decrements to zero, provided the timer interrupt is enabled. The timer is re-
loaded with the value contained in the period (PRD) register within the next
cycle after it reaches zero so that interrupts may be programmed to occur at
regular intervals of PRD + 1 cycles of CLKOUT1.

memory control

The SMJ320C26 provides a total of 1568 words of 16 bit on-chip RAM, divided
into four separate blocks (B0, B1, B2, and B3). Of the 1568 words, 32 words
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(block B2) are always data memory, and all other blocks are programmable as
either data or program memory. A data memory size of 1568 words allows the
SMJ320C26 to handle a data array of 1536 words, while still leaving 32 loca-
tions for intermediate storage. When using B0, B1, or B3 as program memory,
instructions can be downloaded from external memory into on-chip RAM, and
then executed.

When using on-chip program RAM, ROM, or high speed external program
memory, the SMJ320C26 runs at full speed without wait states. However, the
READY line can be used to interface the SMJ320C26 to slower, less expen-
sive external memory. Downloading programs from slow off-chip memory to
on-chip program RAM speeds processing and cuts overall system costs.

The SMJ320C26 provides three separate address spaces for program
memory, data memory, and I/O. The on-chip memory is mapped into either the
data memory or program memory space, depending upon the choice of
memory configuration.

The instruction configuration (parameter) is used as follows to configure the
blocks B0, B1, and B3 as program or as data memory.

CONFIGURATION B0 B1 B3

0
1
2
3

Data
Program
Program
Program

Data
Data
Program
Program

Data
Data
Data
Program

Regardless of the configuration, the user may still execute from external pro-
gram memory.

The SMJ320C26 provides a ROM of 256 words. The ROM is sufficient to allow
the programming of a bootstrap program and interrupt handler, or to imple-
ment self test routines.

The SMJ320C26 has six registers that are mapped into the data memory
space at the locations 0–5; a serial port data receive register, serial port data
transmit register, timer register, period register, interrupt mask register, and
global memory allocation register.
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Figure 1A. Memory Maps
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Figure 1B. Memory Maps
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Figure 1C. Memory Maps
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Figure 1D. Memory Maps
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interrupts and subroutines

The SMJ320C26 has three external maskable user interrupts INT2–INT0,
available for external devices that interrupt the processor. Internal interrupts
are generated by the serial port (RINT and XINT), by the timer (TINT), and by
the software interrupt (TRAP) instruction. Interrupts are prioritized with reset
(RS) having the highest priority and the serial port transmit interrupt (XINT)
having the lowest priority. All interrupt locations are on two-words boundaries
so that branch instructions can be accommodated in those locations if desired.

A built in mechanism protects multicycle instructions from interrupts. If an in-
terrupt occurs during a multicycle instruction, the interrupt is not processed un-
til the instruction is completed. This mechanism applies both to instructions
that are repeated or become multicycle due to the READY signal.

external interface

The SMJ320C26 supports a wide range of system interfacing requirements.
Program, data, and I/O address spaces provide interface to memory and I/O,
thus maximizing system throughput. I/O design is simplified by having I/O
treated the same way as memory. I/O devices are mapped into the I/O address
space using the processor’s external address and data busses in the same
manner as memory-mapped devices. Interface to memory and I/O devices of
varying speeds is accomplished by using the READY line. When transactions
are made with slower devices, the SMJ320C26 processor waits until the other
device completes its function and signals the processor via the READY line,
the SMJ320C26 then continues execution.

A serial port provides communication with serial devices, such as codecs, seri-
al A/D converters, and other serial systems. The interface signals are compat-
ible with codecs and many other serial devices with a minimum of external
hardware. The serial port may also be used for intercommunication between
processors in multiprocessing applications.

The serial port has two memory mapped registers; the data transmit register
(DXR) and the data receive register (DRR). Both registers operate in either the
byte mode or 16-bit word mode, and may be accessed in the same manner
as any other data memory location. Each register has an external clock, a
framing signal, and associated shift registers. One method of multiprocessing
may be implemented by programming one device to transmit while the others
are in the receive mode.
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multiprocessing

The flexibility of the SMJ320C26 allows configurations to satisfy a wide range
of system requirements. The SMJ320C26 can be used as follows:

� A standalone processor.

� A multiprocessor with devices in parallel.

� A multiprocessor with global memory space.

� A peripheral processor interfaced via processor controlled signals to
another device.

For multiprocessing applications, the SMJ320C26 has the capability of allo-
cating global data memory space and communicating with that space via the
BR (bus request) and READY control signals. Global memory is data memory
shared by more than one processor. Global data memory access must be arbi-
trated. The 8-bit memory mapped GREG (global memory allocation register)
specifies part of the SMJ320C26’s data memory as global external memory.
The contents of the register determine the size of the global memory space.
If the current instruction addresses a location within that space, BR is asserted
to request control of the data bus. The length of the memory cycle is controlled
by the READY line.

The SMJ320C26 supports DMA (direct memory access) to its external pro-
gram/data memory using the HOLD and HOLDA signals. Another processor
can take complete control of the SMJ320C26’s external memory by asserting
HOLD low. This causes the SMJ320C26 to place its address, data, and control
lines in a high impedance state, and assert HOLDA.

addressing modes

The SMJ320C26 instruction set provides three memory addressing modes; di-
rect, indirect, and immediate addressing.

Both direct and indirect addressing can be used to access data memory. In di-
rect addressing, seven bits of the instruction word are concatenated with the
nine bits of the data memory page pointer to form the 16-bit data memory ad-
dress. Indirect addressing accesses data memory through the eight auxiliary
registers. In immediate addressing, the data is embedded in the instruction
word(s).

In direct addressing, the instruction word contains the lower seven bits of the
data memory address. This field is concatenated with the nine bits of the data
memory page pointer to form the full 16-bit address. Thus, memory is paged
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in the direct addressing mode with a total of 512 pages, each page containing
128 words.
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Eight auxiliary registers (AR0–AR7) provide flexible and powerful indirect ad-
dressing. To select a specific auxiliary register, the Auxiliary Register Pointer
(ARP) is loaded with a value from 0 through 7 for AR0 through AR7 respective-
ly.

There are seven types of indirect addressing: auto increment, auto decrement,
post indexing by either adding or subtracting the contents of AR0, single indi-
rect addressing with no increment or decrement and bit reversal addressing
(used in FFTs) with increment or decrement. All operations are performed on
the current auxiliary register in the same cycle as the original instruction, fol-
lowed by an ARP update.

repeat feature

A repeat feature, used with instructions such as multiply/accumulates, block
moves, I/O transfers, and table read/writes, allows a single instruction to be
executed up to 256 times. The repeat counter (RPTC) is loaded with either a
data memory value (RPT instruction) or an immediate value (RPTK instruc-
tion). The value of this operand is one less than the number of times that the
next instruction is executed. Those instructions that are normally multicycle
are pipelined when using the repeat feature, and effectively become single-
cycle instructions.

instruction set

The SMJ320C26 microprocessor implements a comprehensive instruction set
that supports both numeric intensive signal processing operations as well as
general purpose applications, such as multiprocessing and high speed con-
trol.

For maximum throughput, the next instruction is prefetched while the current
one is being executed. Since the same data lines are used to communicate
to external data/program or I/O space, the number of cycles may vary depend-
ing upon whether the next data operand fetch is from internal or external pro-
gram memory. Highest throughput is achieved by maintaining data memory
on-chip and using either internal or fast program memory.

Table 1 lists the symbols and abbreviations used in Table 2, the instruction set
summary. Table 2 consists primarily of single-cycle, single-word instructions.
Infrequently used branch, I-O, and CALL instructions are multicycle. The in-
struction set summary is arranged according to function and alphabetized
within each functional grouping. The symbol (‡) indicates instructions that are
not included in the SMJ320C25 instruction set.

Table F–1. Instruction Symbols

SYMBOL MEANING

B 4-bit field specifying a bit code
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CM 2-bit field specifying compare mode

D Data memory address field

FO Format status bit

M Addressing mode bit

K Immediate operand field

PA
Port address (PA0 through PA 15 are predefined assembler
symbols equal to 0 through 15 respectively).

PM 2-bit field specifying P register output shift code

R 3-bit operand field specifying auxiliary register

S 4-bit left-shift code

CNF Internal RAM configuration bits

X 3-bit accumulator left-shift field
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Table F–2. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

MNEMONIC DESCRIPTION
WORDS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABS Absolute value of accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1
ADD Add to accumulator with shift 1 0 0 0 0 M

ADDC Add to accumulator with carry 1 0 1 0 0 0 0 1 1 M
ADDH Add to high accumulator 1 0 1 0 0 1 0 0 0 M
ADDK Add to accumulator short immediate 1 1 1 0 0 1 1 0 0

ADDS Add to low accumulator with sign extension suppressed 1 0 1 0 0 1 0 0 1 M
ADDT† Add to accumulator with shift specified by T register 1 0 1 0 0 1 0 1 0 M

ADLK† Add to accumulator long immediate with shift 2 1 1 0 1 0 0 0 0 0 0 0 1 0
AND AND with accumulator 1 0 1 0 0 1 1 1 0 M

ANDK† AND immediate with accumulator with shift 2 1 1 0 1 0 0 0 0 0 1 0 0
CMPL† Complement accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1

LAC Load accumulator with shift 1 0 0 1 0 M
LACK Load accumulator immediate short 1 1 1 0 0 1 0 1 0

LACT† Load accumulator with shift specified by T register 1 0 1 0 0 0 0 1 1 M
LALK† Load accumulator long immediate with shift 2 1 1 0 1 0 0 0 0 0 0 0 1

NEG† Negate accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1
NORM† Normalize contents of accumulator 1 1 1 0 0 1 1 1 0 M X X X 0 0 1 0

OR OR with accumulator 1 0 1 0 0 1 1 0 1 M
ORK† OR immediate with accumulator with shift 2 1 1 0 1 0 0 0 0 0 1 0 1

ROL Rotate accumulator left 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0
ROR Rotate accumulator right 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1

SACH Store high accumulator with shift 1 0 1 1 0 1 M
SACL Store low accumulator with shift 1 0 1 1 0 0 M

SBLK† Subtract from accumulator long immediate with shift 2 1 1 0 1 0 0 0 0 0 0 1 1
SFL† Shift accumulator left 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0

SFR† Shift accumulator right 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1
SUB Subtract from accumulator with shift 1 0 0 0 1 M

SUBB Subtract from accumulator with borrow 1 0 1 0 0 1 1 1 1 M
SUBC Conditional subtract 1 0 1 0 0 0 1 1 1 M

SUBH Subtract from high accumulator 1 0 1 0 0 0 1 0 0 M
SUBK Subtract from accumulator short immediate 1 1 1 0 0 1 1 0 1

SUBS Subtract from low accumulator with sign extension suppressed 1 0 1 0 0 0 1 0 1 M
SUBT† Subtract from accumulator with shift specified by T register 1 0 1 0 0 0 1 1 0 M

XOR Exclusive-OR with accumulator 1 0 1 0 0 1 1 0 0 M
XORK† Exclusive-OR immediate with accumulator with shift 2 1 1 0 1 0 0 0 0 0 1 1 0

ZAC Zero accumulator 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
ZALH Zero low accumulator and load high accumulator 1 0 1 0 0 0 0 0 0 M

ZALR Zero low accumulator and load high accumulator with rounding 1 0 1 1 1 1 0 1 1 M
ZALS Zero accumulator and load low accumulator with sign extension suppressed 1 0 1 0 0 0 0 0 1 M

† These instructions are not included in the SMJ32010 instruction set.
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Table 2. Instruction Set Summary (continued)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

MNEMONIC DESCRIPTION
WORDS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADRK Add to auxiliary register short immediate 1 0 1 1 1 1 1 1 0

CMPR† Compare auxiliary register with auxiliary register AR0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0
LAR Load auxiliary register 1 0 0 1 1 0 M

LARK Load auxiliary register short immediate 1 1 1 0 0 0
LARP Load auxiliary register pointer 1 0 1 0 1 0 1 0 1 M 0 0 0 1

LDP Load data memory page pointer 1 0 1 0 1 0 0 1 0 M
LDPK Load data memory page pointer immediate 1 1 1 0 0 1 0 0

LRLK† Load auxiliary register long immediate 2 1 1 0 1 0 0 0 0 0 0 0 0 0
MAR Modify auxiliary register 1 0 1 0 1 0 1 0 1 M

SAR Store auxiliary register 1 0 1 1 1 0 M
SBRK Subtract from auxiliary register short immediate 1 0 1 1 1 1 1 1 1

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

MNEMONIC DESCRIPTION
WORDS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

APAC Add P register to accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1
LPH† Load high P register 1 0 1 0 1 0 0 1 1 M

LT Load T register 1 0 0 1 1 1 1 0 0 M
LTA Load T register and accumulator previous product 1 0 0 1 1 1 1 0 1 M

LTD Load T register, accumulate previous product, and move data 1 0 0 1 1 1 1 1 1 M
LTP† Load T register and store P register in accumulator 1 0 0 1 1 1 1 1 0 M

LTS† Load T register and subtract previous product 1 0 1 0 1 1 0 1 1 M
MAC† Multiply and accumulate 2 0 1 0 1 1 1 0 1 M

MACD† Multiply and accumulate with data move 2 0 1 0 1 1 1 0 0 M
MPY Multiply (with T register, store product in P register) 1 0 0 1 1 1 0 0 0 M

MPYA Multiply and accumulate previous product 1 0 0 1 1 1 0 1 0 M
MPYK Multiply immediate 1 1 0 1

MPYS Multiply and subtract previous product 1 0 0 1 1 1 0 1 1 M
MPYU Multiply unsigned 1 1 1 0 0 1 1 1 1 M

PAC Load accumulator with P register 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0
SPAC Subtract P register from accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0

SPH Store high P register 1 0 1 1 1 1 1 0 1 M
SPL Store low P register 1 0 1 1 1 1 1 0 0 M

SPM† Set P register output shift mode 1 1 1 0 0 1 1 1 0 0 0 0 0 1 0
SQRA† Square and accumulate 1 0 0 1 1 1 0 0 1 M

SQRS† Square and subtract previous product 1 0 1 0 1 1 0 1 0 M

† These instructions are not included in the SMJ32010 instruction set.
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Table 2. Instruction Set Summary (continued)

BRANCH/CALL INSTRUCTIONS

MNEMONIC DESCRITPION
NO. INSTRUCTION BIT CODE

MNEMONIC DESCRITPION
WORDS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B Branch unconditionally 2 1 1 1 1 1 1 1 1 1
BACC† Branch to address specified by accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1

BANZ Branch on auxiliary register not zero 2 1 1 1 1 1 0 1 1 1

BBNZ† Branch if TC bit ≠ 0 2 1 1 1 1 1 0 0 1 1

BBZ† Branch if TC bit = 0 2 1 1 1 1 1 0 0 0 1
BC Branch on carry 2 0 1 0 1 1 1 1 0 1

BGEZ Branch if accumulator ≥ 0 2 1 1 1 1 0 1 0 0 1

BGZ Branch if accumulator > 0 2 1 1 1 1 0 0 0 1 1

BIOZ Branch on I/O status = 0 2 1 1 1 1 1 0 1 0 1

BLEZ Branch if accumulator ≤ 0 2 1 1 1 1 0 0 1 0 1

BLZ Branch if accumulator < 0 2 1 1 1 1 0 0 1 1 1

BNC Branch on no carry 2 0 1 0 1 1 1 1 1 1
BNV† Branch if no overflow 2 1 1 1 1 0 1 1 1 1

BNZ Branch if accumulator ≠ 0 2 1 1 1 1 0 1 0 1 1

BV Branch on overflow 2 1 1 1 1 0 0 0 0 1

BZ Branch if accumulator = 0 2 1 1 1 1 0 1 1 0 1
CALA Call subroutine indirect 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0

CALL Call subroutine 2 1 1 1 1 1 1 1 0 1
RET Return from subroutine 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0

I/O AND DATA MEMORY OPERATIONS

MNEMONIC DESCRITPION
NO. INSTRUCTION BIT CODE

MNEMONIC DESCRITPION
WORDS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLKD Block move from data memory to data memory 2 1 1 1 1 1 1 0 1 M

BLKP† Block move from program memory to data memory 2 1 1 1 1 1 1 0 0 M
DMOV Data move in data memory 1 0 1 0 1 0 1 1 0 M

FORT† Format serial port registers 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1
IN Input data from port 1 1 0 0 0 M

OUT Output data to port 1 1 1 1 0 M
RFSM Reset serial port frame synchronization mode 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0

RTXM† Reset serial port transmit mode 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0
RXF† Reset external flag 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0

SFSM Set serial port frame synchronization mode 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1
STXM† Set serial port transmit mode 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1

SXF† Set external flag 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1
TBLR Table read 1 0 1 0 1 1 0 0 0 M

TBLW Table write 1 0 1 0 1 1 0 0 1 M

† These instructions are not included in the SMJ32010 instruction set.
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Table 2. Instruction Set Summary (concluded)

CONTROL INSTRUCTIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

MNEMONIC DESCRIPTION
WORDS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIT† Test bit 1 1 0 0 1 M

BITT† Test bit specified by T register 1 0 1 0 1 0 1 1 1 M
CONF‡ Configure RAM blocks as Data or program 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1

DINT Disable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1
EINT Enable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0

IDLE† Idle until interrupt 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1
LST Load status register ST0 1 0 1 0 1 0 0 0 0 M

LST1† Load status register ST1 1 0 1 0 1 0 0 0 1 M
NOP No operation 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

POP Pop top of stack to low accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1
POPD† Pop top of stack to data memory 1 0 1 1 1 1 0 1 0 M

PSHD† Push data memory value onto stack 1 0 1 0 1 0 1 0 0 M
PUSH Push low accumulator onto stack 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0

RC Reset carry bit 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0
RHM Reset hold mode 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0

ROVM Reset overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0
RPT† Repeat instruction as specified by data memory value 1 0 1 0 0 1 0 1 1 M

RPTK† Repeat instruction as specified by immediate value 1 1 1 0 0 1 0 1 1
RSXM† Reset sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0

RTC Reset test/control flag 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0
SC Set carry bit 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1

SHM Set hold mode 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1
SOVM Set overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1

SST Store status register ST0 1 0 1 1 1 1 0 0 0 M
SST1† Store status register ST1 1 0 1 1 1 1 0 0 1 M

SSXM† Set sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1
STC Set test/control flag 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1

TRAP† Software interrupt 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0

† These instructions are not included in the SMJ32010 instruction set.
‡ This instruction replaces CNFD and CNFP in the SMJ320C25 instruction set.
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development support

Together, Texas Instruments and its authorized third-party suppliers offer an
extensive line of development support products to assist the user in all aspects
of TMS320 second-generation-based design and development. These prod-
ucts range from development and application software to complete hardware
development and evaluation systems. Table 3 lists the development support
products for the second-generation TMS320 devices.

System development may begin with the use of the simulator, Software Devel-
opment System (SWDS), or emulator (XDS) along with an assembler/linker.
These tools give the TMS320 user various means of evaluation, from software
simulation of the second-generation TMS320s (simulator) to full-speed in-cir-
cuit emulation with hardware and software breakpoint trace and timing capa-
bilities (XDS).

Software and hardware can be developed simultaneously by using the macro
assembler/linker, C compiler, and simulator for software development, the
XDS for hardware development, and the Software Development System for
both software development and limited hardware development.

Many third-party vendors offer additional development support for the second-
generation TMS320s, including assembler/linkers, simulators, high-level lan-
guages, applications software, algorithm development tools, applications
boards, software development boards, and in-circuit emulators. Refer to the
TMS320 Family Development Support Reference Guide (SPRU011A) for fur-
ther information about TMS320 development support products offered by both
Texas Instruments and its third-party suppliers.

Additional support for the TMS320 products consists of an extensive library of
product and applications documentation. Three-day DSP design workshops
are offered by the TI Regional Technology Centers (RTCs). These workshops
provide insight into the architecture and the instruction set of the second-gen-
eration TMS320s as well as hands-on training with the TMS320 development
tools. When technical questions arise regarding the TMS320 family, contact
the Texas Instruments TMS320 Hotline at (713) 274–2320. Or, keep informed
on the latest TI and third-party development support tools by accessing the
DSP Bulletin Board Service (BBS) at (713) 274–2323. The BBS serves 2400-,
1200-, and 300-bps modems. Also, TMS320 application source code may be
downloaded from the BBS.

Table 3 gives a complete list of SMJ320C26 software and hardware develop-
ment tools.
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Table F–3. Software and Hardware Support

MACRO ASSEMBLER/LINKER

HOST COMPUTER OPERATING SYSTEMS PART NUMBER

DEC VAX VMS
TMDS3242250-0
8

IBM PC MS/PS DOS
TMDS3242850-0
2

VAX ULTRIX
TMDS3242260-0
8

SUN 3 UNIX
TMDS3242550-0
8

C COMPILER AND MACRO ASSEMBLER/LINKER

HOST COMPUTER OPERATING SYSTEMS PART NUMBER

DEC VAX VMS
TMDS3242255-0
8

IBM PC MS/PC DOS
TMDS3242855-0
2

VAX ULTRIX
TMDS3242265-0
8

SUN 3 UNIX
TMDS3242555-0
8

SIMULATOR

HOST COMPUTER OPERATING SYSTEMS PART NUMBER

DEC VAX VMS
TMDS3242251-0
8

IBM PC MS/PC DOS
TMDS3242851-0
2

EMULATOR

MODEL POWER SUPPLY PART NUMBER

XDS/22 INCLUDED TMDS3262292

SOFTWARE DEVELOPMENT SYSTEM ON PC

HOST COMPUTER OPERATING SYSTEMS PART NUMBER

IBM PC MS/PC DOS TMDX3268828

IBM PC MS/PC DOS TMDX3268821†

† Includes assembler/linker
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absolute maximum ratings over specified temperature range (unless otherwise noted) †

Supply voltage range, VCC‡  – 0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Input voltage range  – 0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Output voltage range  – 0.3 V to 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Continuous power dissipation  1.0 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Storage temperature range  – 55°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. This is a stress
rating only, and functional operation of the device at these or any other conditions beyond those indicated in the “recommended
operating conditions” section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended
periods may affect device reliability.

‡ All voltages are with respect to VSS.

This device contains circuits to protect its inputs and outputs against damage due to high static voltages or
electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD)
of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid
application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage
or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a
circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either VCC or
ground. Specific guidelines for handling devices of this type are contained in the publication Guidelines for Handling
Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies available from Texas Instruments.

recommended operating conditions

MIN NOM MAX UNIT

VCC Supply voltage 4.5 5 5.5 V

VSS Supply voltage 0 V

D15–D0, FSX 2.2

VIH High-level input voltage CLKIN, CLKR, CLKX 3.50 V

All others 3.00

VIL Low level input voltage
D15–D0, FSX, CLKIN, CLKR, CLKX 0.8

µAVIL Low-level input voltage
All others 0.7

µA

IOH High-level output current 300 µA

IOL Low-level output current 2 mA

TA
Minimum operating free-air tem-
perature

–55 °C

TC
Maximum operating case tem-
perature

125 °C

electrical characteristics over specified free-air temperature range (unless otherwise
noted)

PARAMETER TEST CONDITIONS MIN TYP§ MAX UNIT

VOH High-level output voltage
VCC = MIN, IOH =
MAX

2.4 3 V

VOL Low-level output voltage
VCC = MIN, IOL =
MAX

0.3 0.6 V
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IOZ High-impedance-state output leakage current VCC = MAX ± 20 µA

II Input current VI = VSS to VCC ± 10 µA

ICC Supply current
Normal VCC = MAX, fx = 185

mAICC Supply current
Idle/HOLD

CC , x
MAX 100

mA

CI Input capacitance 15 pF

CO Output capacitance 15 pF

§ All typical values are at VCC = 5 V, TA = 25°C.
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CLOCK CHARACTERISTICS AND TIMING

The SMJ320C26 can use either its internal oscillator or an external frequency
source for a clock.

internal clock option

The internal oscillator is enabled by connecting a crystal across X1 and
X2/CLKIN (see Figure 2). The frequency of CLKOUT1 is one-fourth the crystal
fundamental frequency. The crystal should be either fundamental or overtone
mode, and parallel resonant, with an effective series resistance of 30 ohms,
a power dissipation of
1 mW, and be specified at a load capacitance of 20 pF. Note that overtone crys-
tals require an additional tuned LC circuit (see the application report, Hard-
ware Interfacing to the TMS320C25).

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

fx Input clock frequency† TA = –55°C MIN 6.7 40.0 MHz

C1, C2 TC = 125°C MAX 10 pF
† This parameter is not production tested.

X1 X2/CLKIN

CRYSTAL

C2C1

Figure 1. Internal Clock Option

external clock option

An external frequency source can be used by injecting the frequency directly
into X2/CLKIN with X1 left unconnected. The external frequency injected must
conform to the specifications listed in the table below.

switching characteristics over recommended operating conditions (see Note 1)
PARAMETER MIN TYP† MAX UNIT

tc(C) CLKOUT1/CLKOUT2 cycle time 100 600 ns
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td(CIH-C) CLKIN high to CLKOUT1/CLKOUT2/STRB high/low 5 32 ns

tf(C) CLKOUT1/CLKOUT2/STRB fall time 5 ns

tr(C) CLKOUT1/CLKOUT2/STRB rise time 5 ns

tw(CL) CLKOUT1/CLKOUT2 low pulse duration 2Q–8 2Q 2Q+8 ns

tw(CH) CLKOUT1/CLKOUT2 high pulse duration 2Q–8 2Q 2Q+8 ns

td(C1-C2) CLKOUT1 high to CLKOUT2 low, CLKOUT2 high to CLKOUT1 high, etc. Q–6 Q Q+6 ns

† This parameter is not production tested.
NOTE 1: Q = 1/4tc(C)
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timing requirements over recommended operating conditions (see Note 1)

MIN NOM MAX UNIT

tc(CI) CLKIN cycle time 25 150 ns

tw(CIL) CLKIN low pulse duration, tc(C) = 25 ns (see Note 2) 10 15 ns

tw(CIH) CLKIN high pulse duration, tc(CI) = 25 ns (see Note 2) 10 15 ns

tsu(S) SYNC setup time before CLKIN low 5 Q–5 ns

th(S) SYNC hold time from CLKIN low 8 ns

NOTES: 1. Q = 1/4tc(C)
2. CLKIN duty cycle [tr(CI) + tw(CIH)]/tc(CI) must be within 40-60%. CLKIN rise and fall times must be less than 5 ns.

Test
Point

From Output
Under Test

CL = 80 pF

IOH/IOL
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Figure 2. Test Load Circuit

VIH (MIN)

VIL (MAX)

VOH (MIN)

VOL (MAX)

90%

10%

0

(a) Input

2.4 V

0

(b) Outputs

2.2 V

0.8 V

0.6 V

Figure 3. Voltage Reference Levels

MEMORY AND PERIPHERAL INTERFACE TIMING
switching characteristics over recommended operating conditions  (see Note 1)

PARAMETER MIN TYP MAX UNIT

td(C1-S) STRB from CLKOUT1 (if STRB is present) Q–6 Q Q+6 ns

td(C2-S) CLKOUT2 to STRB (if STRB is present) –6 0 6 ns

tsu(A) Address setup time before STRB low (see Note 3) Q–12 ns

th(A) Address hold time after STRB high (see Note 3) Q–8 ns

tw(SL) STRB low pulse duration (no wait states, see Note 4) 2Q–5 2Q 2Q+5 ns

tw(SH) STRB high pulse duration (between consecutive cycles, see Note 4) 2Q ns

tsu(D)W Data write setup time before STRB high (no wait states) 2Q–20 ns

th(D)W Data write hold time from STRB high Q–10 Q ns

ten(D) Data bus starts being driven after STRB low (write cycle) 0† ns

tdis(D) Data bus three-state after STRB high (write cycle) Q Q+15† ns

td(MSC) MSC valid from CLKOUT1 – 10† 0 10 ns

timing requirements over recommended operating conditions (see Note 1)
MIN NOM MAX UNIT

ta(A)
Read data access time from address time (read cycle) (see Notes 3
and 5)

3Q–40 ns
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tsu(D)R Data read setup time before STRB high 23 ns

th(D)R Data read hold time from STRB high 0 ns

td(SL-R) READY valid after STRB low (no wait states) Q–22 ns

td(C2H-R) READY valid after CLKOUT2 high Q – 22† ns

th(SL-R) READY hold time after STRB low (no wait states) Q+3 ns

th(C2H-R) READY hold after CLKOUT2 high Q + 3† ns

td(M-R) READY valid after MSC valid 2Q –25† ns

th(M-R) READY hold time after MSC valid 0† ns

RS, INT, BIO, AND XF TIMING

switching characteristics over recommended operating conditions (see Note 1)
PARAMETER MIN TYP MAX UNIT

td(RS) CLKOUT1 low to reset state entered 22† ns

td(IACK) CLKOUT1 to IACK valid – 8† 0 8 ns

td(XF) XF valid before falling edge of STRB Q–12 ns

timing requirements over recommended operating conditions (see Note 1)
MIN NOM MAX UNIT

tsu(IN) INT/BIO/RS setup before CLKOUT1 high (see Note 6) 32 ns

th(IN) INT/BIO/RS hold after CLKOUT1 high (see Note 6) 0 ns

tw(IN) NT/BIO low pulse duration tc(C) ns

tw(RS) RS low pulse duration 3tc(C) ns
† This parameter is not production tested.
NOTES: 1. Q = 1/4tc(C)

3. A15–A0, PS, DS, IS, R/W, and BR timings are all included in timings referenced as “address.”
4. Delays between CLKOUT1/CLKOUT2 edges and STRB edges track each other, resulting in tw(SL) and tw(SH) being

2Q with no wait states.
5. Read data access time is defined as ta(A) = tsu(A) + tw(SL) – tsu(D)R.
6. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified

setup time is met, the exact sequence shown in the timing diagram will occur. INT/BIO fall time must be less than
8 ns.

HOLD TIMING

switching characteristics over recommended operating conditions (see Note 1)
PARAMETER MIN TYP MAX UNIT

td(C1L-AL) HOLDA low after CLKOUT1 low 0† 10 ns

tdis(AL-A) HOLDA low to address three-state 0 ns

tdis(C1L-A) Address three-state after CLKOUT1 low (HOLD mode) (see Note 7) 20† ns

td(HH-AH) HOLD high to HOLDA high 25 ns

ten(A-C1L) Address driven before CLKOUT1 low (HOLD mode) (see Note 7) 8† ns

timing requirements over recommended operating conditions (see Note 1)
MIN NOM MAX UNIT

td(C2H-H) HOLD valid after CLKOUT2 high Q–24 ns
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NOTES: 1. Q = 1/4tc(C)
7. A15–A0, PS, DS, IS, STRB, and R/W timings are all included in timings referenced as “address.”

SERIAL PORT TIMING

switching characteristics over recommended operating conditions (see Note 1)

PARAMETER MIN TYP MAX UNIT

td(CH-DX) DX valid after CLKX rising edge (see Note 8) 80 ns

td(FL-DX) DX valid after FSX falling edge (TXM = 0) (see Note 8) 45 ns

td(CH-FS) FSX valid after CLKX rising edge (TXM = 1) 45 ns

timing requirements over recommended operating conditions (see Note 1)

MIN NOM MAX UNIT

fsx Serial port frequency 1.25 5,000 kHz

tc(SCK) Serial port clock (CLKX/CLKR) cycle time 200 800,000 ns

tw(SCK) Serial port clock (CLKX/CLKR) low pulse duration (see Note 9) 80 ns

tw(SCK) Serial port clock (CLKX/CLKR) high pulse duration (see Note 9) 80 ns

tsu(FS) FSX/FSR setup time before CLKX/CLKR falling edge (TXM = 0) 18 ns

th(FS) FSX/FSR hold time after CLKX/CLKR falling edge (TXM = 0) 20 ns

tsu(DR) DR setup time before CLKR falling edge 10 ns

th(DR) DR hold time after CLKR falling edge 20 ns

NOTES: 1. Q = 1/4tc(C)
8. The last occurrence of FSX falling and CLKX rising.
9. The duty cycle of the serial port clock must be within 40–60%. Serial port clock (CLKX/CLKR) rise and fall times

must be less than
25 ns.
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PARAMETER MEASUREMENT INFORMATION

Timing measurements are referenced to and from a low voltage of 0.8 volts
and a high voltage of 2.2 volts unless otherwise noted.

tc(CI)

X/2CLKIN

SYNC

CLKOUT1

STRB

CLKOUT2

tr(CI)

tw(CIH)
tsu(S)

th(S)
tsu(S)

tc(C)

tw(CL)

tw(CH)
tf(C)tr(C)

td(CIH-C)

td(CIH-C)

td(C1-C2)

tw(CH)
tf(C) tr(C)

tw(CL)
tc(C)

td(C1-C2)
td(C1-C2)

td(C1-C2)

td(CIH-C) td(CIH-C)

tf(CI)

tw(CIL)

Figure 4. Clock Timing
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PARAMETER MEASUREMENT INFORMATION

td(C1-S)

td(C1-S)

td(C2-S)td(C2-S)

tw(SL)
tw(SH)

th(A)tsu(A)

ta(A)

tsu(D)R
td(SL-R)

th(D)R

CLKOUT1

CLKOUT2

A15–A0,
BR, PS, DS,

OR IS

R/W

READY

D15–D0

STRB

DATA IN

VALID

th(SL-R)

Figure 5. Memory Read Timing
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PARAMETER MEASUREMENT INFORMATION

tsu(A)

CLKOUT1

CLKOUT2

A15–A0,
BR, PS, DS,

OR IS

R/W

READY

D15–D0

STRB

th(A)

th(D)Wtsu(D)W

ten(D) tdis (D)

VALID

DATA OUT

Figure 6. Memory Write Timing
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PARAMETER MEASUREMENT INFORMATION

th(C2H-R)

CLKOUT1

CLKOUT2

A15–A0, BR
PS, DS, R/W,

OR IS

READY

STRB

MSC

D15–D0,
(FOR READ

OPERATION)

D15–D0,
(FOR WRITE
OPERATION)

th(M-R)
td(M-R) td(M-R)

th(M-R)

td(MSC)td(MSC)

VALID

DATA IN

td(C2H-R) td(C2H-R)
th(C2H-R)

Figure 7. One Wait-State Memory Access Timing
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PARAMETER MEASUREMENT INFORMATION

CLKOUT1

RS

A15–A0

D15–D0

PS

STRB

CONTROL
SIGNALS†

IACK

SERIAL PORT
CONTROLS‡

tsu(IN) td(RS) th(IN)
tsu(IN)

tw(RS)

FETCH
LOCATION 0

BEGIN
PROGRAM

EXECUTION

VALID

† Control signals are DS, IS, R/W, and XF.
‡ Serial port controls are DX and FSX.
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Figure 8. Reset Timing

CLKOUT1

STRB

INT2–INT0

A15–A0

IACK

tsu(IN) th(IN)
tw(N)

tf(IN)

td(IACK)td(IACK)

FETCH N FETCH N + 1 FETCH N + 2 FETCH 1

Figure 9. Interrupt Timing
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PARAMETER MEASUREMENT INFORMATION

CLKOUT1

STRB

BIO

A15–A0

th(IN)

VALID

tsu(IN)

PC = N PC = N + 1 PC = N + 3
OR BRANCH ADDRESS

FETCH NEXT
INSTRUCTION

FETCH BRANCH
ADDRESSFETCH BIOZ

PC = N + 2

Figure 10. BIO  Timing

CLKOUT1

STRB

A15–A0

td(XF)

FETCH
SXF/RXF

XF

VALID VALID VALID

PC = N + 1 PC = N + 2 PC = N + 3PC = N

VALID

Figure 11. External Flag Timing
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PARAMETER MEASUREMENT INFORMATION

CLKOUT1

PS, DS,
OR IS

STRB

HOLD

HOLDA

R/W

D15–D0

A15–A0

CLKOUT2

N N + 1 – –

N –  2 N  –  1 N –

FETCH

EXECUTE

td(C2H-H) (see note A)

tdis(C1L-A)

td(C1L-AL)

N N + 1 N + 2

VALIDVALID

IN IN

tdis(AL-A)

NOTE A: HOLD is an asynchronous input that can occur at any time during a clock cycle. If the specified timing is met, the exact
sequence shown will occur; otherwise, a delay of one CLKOUT2 cycle will occur.

Figure 12. HOLD  Timing (Part A)
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PARAMETER MEASUREMENT INFORMATION

CLKOUT1

PS, DS,
OR IS

STRB

HOLD

D15–D0

HOLDA

R/W

CLKOUT2

FETCH

EXECUTE

A15–A0

ten(A-C1L)

td(C2H-H) (see note A)

td(HH-AH)

VALID

IN

N + 2 N + 2

N + 2

N + 1

–

–

–

–

–

–

NOTE A: HOLD is an asynchronous input that can occur at any time during a clock cycle. If the specified timing is met, the exact
sequence shown will occur; otherwise, a delay of one CLKOUT2 cycle will occur.

Figure 13. HOLD  Timing (Part B)
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PARAMETER MEASUREMENT INFORMATION

CLKR

DR

FSR

tc(SCK)
tw(SCK)

tr(SCK)

tw(SCK)

tf(SCK)
th(DR)

th(FS)

tsu(FS) tsu(DR)
N = 8, 16

Figure 14. Serial Port Receive Timing

CLKX

DX

FSX
(INPUT, TXM = 0)

FSX
(OUTPUT, TXM = 1)

tr(SCK)

tc(SCK)

tw(SCK)

td(CH-DX)

tw(SCK)
tf(SCK)

th(FS)

tsu(FS) td(CH-DX)
tsu(FS)

td(CH-FS) td(CH-FS)

td(FL-DX)

N = 1 N = 8, 16

Figure 15. Serial Port Transmit Timing



CL

Lid
0,38 (0.015)
0,13(0.005)

25,40 (1.000)
24,89 (0.980)

CL

24,38 (0.960)
23,88 (0.940)

20,52 (0.808)
20,19 (0.795)

1,98 (0.078)
1,07 (0.042) 0,38 (0.015) MIN.

1,27 (0.050) NOM.

2,16 (0.085)
1,65 (0.065)

0,51 (0.020)
0,25 (0.010)

1,27 (0.050)
0,76 (0.030)

CL

24,13 (0.950)
23,11 (0.910)

0,58 (0.023)
0,33 (0.013)

3,43 (0.135)
2,92 (0.115)

0,89 (0.035)
0,64 (0.025)

0,81 (0.032)
0,51 (0.020)

2,41 (0.095)
1,91 (0.075)

0,28 (0.011)
0,18 (0.007)

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

TOP VIEW
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MECHANICAL DATA

FJ package leaded chip carrier package

PARAMETER MAX UNIT

RθJA
Junction-to-free-air
thermal resistance 50 °C/W

RθJC
Junction-to-case
thermal resistance 7 °C/W
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MECHANICAL DATA

FD ceramic leadless (pad) chip carrier package

PARAMETER MAX UNIT

RθJA
Junction-to-free-air
thermal resistance 39.9 °C/W

RθJC
Junction-to-case
thermal resistance 7 °C/W
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INDEX CORNER

21,89 (0.862) MAX

0,20 (0.008) R
TYP.

CLCL

CL

CL

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES WITH THE INCHES GOVERNING

TOP VIEW

24, 38 (0.960)
23, 88 (0.940)

24, 38 (0.960)
23, 88 (0.940)

21,89 (0.862)
MAX

20, 57 (0.810)
20, 07 (0.790)

0, 76 (0.030)
0, 25 (0.010)

3, 050 (0.120)
2, 08 (0.082)

2, 36 (0.093)
1, 96 (0.077)

0, 71 (0.028)
0, 56 (0.022)

1,27 (0.050)
TYP

1, 40 (0.055)
1, 14 (0.045)

1, 27 (0.050)
0, 77 (0.030)

X45° CHAM
TYP., 3PLS.

X45° CHAM



ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TOP VIEW

BOTTOM VIEW

A

B

C

D

E

F

G

H

J

K

L

1110987654321

1,27 (0.050) NOM

1,778 (0.070) NOM
68 PLACES

2,54 (1.00) T.P.

2,54 (0.100) T.P.

4,572 (0.180)
2,794 (0.110)

1,397 (0.055)
1,143 (0.045)

1,575 (0.062)
1,473 (0.058)

0,508 (0.020)
0,406 (0.016)

3,556 (0.140)
3,048 (0.120)

15,37 (0.605)
NOM

28,448 (1.120)
27,422 (1.080)

28,448 (1.120)
27,422 (1.080)

15,37 (0.605)
NOM
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MECHANICAL DATA

68-pin GB grid array ceramic package

PARAMETER MAX UNIT

RθJA
Junction-to-free-air
thermal resistance 36 °C/W

RθJC
Junction-to-case
thermal resistance 6 °C/W
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Appendix F

TMS320E25 EPROM Programming

This appendix describes the TMS320E25 EPROM cell. The TMS320E25 in-
corporates a 4K × 16-bit EPROM, which is implemented from a standard
TMS27C64 EPROM cell. This expands the capabilities of the TMS320E25 in
the areas of prototyping, early field testing, and production.

Key features of the EPROM cell include standard programming techniques
with verification capability of all bits. The EPROM cell features an internal
mechanism for security purposes. This prevents all proprietary data from be-
ing read and, thereby, protects privileged information against possible copy-
right violations. The mechanism also prevents the EPROM contents from be-
ing read. An adapter socket (part number TMDX3270120) provides the 68-pin
to 28-pin conversion that is necessary when programming the TMS320E25.
Refer to the data sheet in Appendix A.

This appendix describes erasure, programming and verification, and EPROM
protection and verification. The major topics are as follows:

Topic Page

F.1 Using the EPROM Programmer Adapter Socket F-2. . . . . . . . . . . . . . . . . 

F.2 Programming and Verification F-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

F.3 EPROM Protection and Verification F-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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F.1 Using the EPROM Programmer Adapter Socket

Most EPROM programmers have a 28-pin DIP-type socket for use with
EPROM devices such as the TMS27C64. In order to use this type of program-
mer to program a TMS320  40-pin DIP or PLCC/CLCC, you must use a special
adapter that converts the programmer socket into a socket that can accept a
TMS320E25 device.

Figure F–1 shows an example of a PLCC/CLCC-type adapter socket so that
you can see the socket for the device and the portion that plugs into the
EPROM programmer.

Figure F–1. EPROM Programming Adapter Socket

TMS320E25 device plugs 
into this socket

Plugs into an EPROM programmer
or the R-bit programmer

F.1.1 Supplying External Power

The adapter socket has two sets of jumpers that indicate whether the power
supply is internal (from the EPROM programmer) or external. The adapter
socket is shipped from the factory with the jumpers at the internal power set-
ting. In some cases, the EPROM programmer cannot supply the VCC power
needs of the TMS320E25 device, so it becomes necessary to supply external
VCC.

The following conditions will determine whether external power is needed.

� The TMS320E25’s clock must be disabled during programming. Because
the device uses a dynamic logic for much of its internal circuitry, the ICC
requirements for VCC are significantly greater than a typical 27C64-type
EPROM. As a result, many EPROM programmers sense this condition
and erroneously indicate that the chip is plugged in backwards. To prevent
this from occurring, a jumper connection and test point are available for
an external 5-V logic supply. This effectively bypasses the EPROM pro-
grammer’s ICC test and allows the device to be programmed.
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� Additionally, a jumper and test point are available for the VPP supply. The
VPP signal is a pulsed signal and fully complies with the standards for a
27C64 EPROM device. This option is never needed, and the jumpers
should be left in the internal position at all times.

To supply external V CC:

1) Find the jumper nearest the VCC pin and move the jumper so that it is over
the EXT and center pins.

2) Connect the external VCC to the pin labeled VCC.

Figure F–2 shows the jumper setting placement for internal and external pow-
er. The VCC and VPP pins are also shown.

Figure F–2. VCC and VPP Jumper Settings for External Power

EXT

INT

VCC Setting

EXT

INT

VPP Setting

VCC VPP

Whenever supplying an external V CC, you must  connect a common
ground lead between the power supply and the programmer
adapter.
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F.2 Programming and Verification

The TMS320E25 EPROM cell is similar to the TMS27C64 8K × 8-bit EPROM.
Their memories can be erased by using an ultraviolet light source and electri-
cally programmed by using the same family and device codes. The
TMS320E25, like the TMS27C64, requires a 5-V supply for reading and a
12.5-V supply for programming. All programming signals are TTL level. Loca-
tions may be systematically or randomly programmed as a singular or blocked
address. Unlike some EPROM cells that may require the high byte before the
low byte, each byte of data must be loaded into the TMS320E25 EPROM cell
with the low byte preceding the high byte (see Figure F–3). To avoid memori-
zation of the proper order, an inverter is placed in the circuit of Figure F–4 and
performs the necessary byte reversal for the TMS320E25.

Figure F–3. EPROM Programming Data Format
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Figure F–4 shows the wiring diagram when the TMS320E25 is programmed
with the TMS27C64 in its 28-pin output form. The illustration furnishes a table
for each pin nomenclature on the TMS27C64 with a description of that pin. Pro-
gramming the code into the device should be done in the serial mode.

Although acceptable by some EPROM programmers, the signature
mode cannot  be used on any TMS320C25 device. The signature
mode will input a high-level voltage (12.5 V DC) onto pin A9. Since
the TMS320E25 EPROM cell is not designed for high voltage, the
cell will be damaged. To prevent an accidental application of
voltage, Texas Instruments has inserted a 3.9-k Ω resistor between
A9 of the TI programmer socket and the programmer itself.
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Figure F–4. TMS320E25 EPROM Conversion to TMS27C64 EPROM Pinout
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Table G–1. Pin Nomenclature (TMS320E25)

Signals I/O Definition

A12(MSB)–A0 (LSB)
CLKIN
E
EPT
G
GND
PGM
Q8(MSB)–Q1(LSB)
RS
VCC
VPP

I
I
I
I
I
I
I

 I/O
I
I
I

On-chip EPROM programming address lines
Clock oscillator input
EPROM chip select
EPROM test mode select
EPROM read/verify select
Ground
EPROM write/program select
Data lines for byte-wide programming of on-chip 8K bytes of EPROM
Reset for initializing the device
5-V power supply
12.5-V power supply
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Table G–2 shows the programming levels that are required when program-
ming, verifying, and reading the EPROM cell. Following the table are individual
descriptions of each programming level.

Table G–2. TMS320E25 Programming Mode Levels

Signal
Name†

TMS320E25
Pin

TMS27C64
Pin

Program Program
Verify

Read EPROM
Protect

Protect
Verify

E 22 20 VIL VIL VIL VIH VIL

G 42 22 VIH PULSE PULSE VIH VIL

PGM 41 27 PULSE VIH VIH VIH VIH

VPP 25 1 VPP VPP VCC VPP VCC + 1

VCC 61,35 28 VCC + 1 VCC + 1 VCC VCC + 1 VCC + 1

VSS 27,44,10 14 VSS VSS VSS VSS VSS

CLKIN 52 14 VSS VSS VSS VSS VSS

RS  65 14 VSS VSS VSS VSS VSS

EPT 24 26 VSS VSS VSS VPP VPP

Q8–Q1 11–18 19–15,13–11 DIN QOUT QOUT Q8=PULSE Q8=RBIT

A12–A7 40–36,34 2,23,21,
24,25,3

ADDR ADDR ADDR  X X

A6 33 4 ADDR ADDR ADDR X VIL

A5 32 5 ADDR ADDR ADDR X X

A4 31 6 ADDR ADDR ADDR VIH X

A3–A0 30–28,26 7–10 ADDR ADDR ADDR X  X

LEGEND:
† =TMS320E25 EPROM programming mode produces these TMS27C64 signals.
VIH = TTL high level
VIL = TTL low level
ADDR = byte address bit
VPP = 12.5 ± 0.25 V (FAST) or 13 ± 0.25 V (SNAP!)
VCC = 5 ± 0.25 V
VCC + 1 = 6 ± 0.25 V (FAST) or 6.5 V ± 0.25 V (SNAP!)
X = don’t care
PULSE = low-going TTL pulse
DIN = byte to be programmed at ADDR
QOUT = byte stored at ADDR
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F.2.1 Erasure

Before programming, the memory must be erased by exposing high-intensity
ultraviolet light (wavelength = 2537 angstroms) into the chip through its trans-
parent lid. Note that normal ambient light contains the correct wavelength for
erasure. Therefore, the window should be covered with an opaque label after
programming the TMS320E25. The recommended minimum exposure dose
(UV intensity × exposure time) is 15 watt-seconds per square centimeter. If lo-
cated about 2.5 centimeters above the transparent lid, a typical filterless UV
lamp with a 12-milliwatt-per-square-centimeter output will erase the memory
in 21 minutes. After the memory is erased, all bits are in a high state.

F.2.2 FAST Programming

After erasure, all memory bits in the cell are a logic one. Logic zeros must now
be programmed into their desired location. The FAST programming algorithm,
shown in Figure F–5, is normally used to program the entire EPROM contents,
although individual locations may be programmed separately. A programmed
logic zero can be erased only by ultraviolet light. Data is presented in parallel
(eight bits) from pins D7–D0 of the TMS320E25 to pins Q8–Q1 of the
TMS27C64. Once addresses and data are stable, PGM is pulsed. The pro-
gramming mode is achieved when VPP = 12.5 V, PGM = VIL, VCC = 6.0 V, G
= VIH, and E = VIL. More than one TMS320E25 can be programmed if these
devices are connected in parallel with each other. Locations can be pro-
grammed in any order.

FAST programming uses two types of programming pulses: prime and final.
The length of the prime pulse is 1 ms. After each prime pulse, the byte being
programmed is verified. If correct data is read, the final programming pulse is
applied; if correct data is not read, an additional 1-ms prime pulse is applied
up to a maximum of 25 times. The final programming pulse is 3x times the num-
ber of prime programming pulses applied. This sequence of programming and
verifying is performed at VCC = 6.0 V, and VPP = 12.5 V. When the full FAST
programming routine has been completed, all bits are verified with VCC = VPP
= 5 V.
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F.2.3 SNAP! Pulse Programming

The EPROM can be programmed by using the TI SNAP! pulse programming
algorithm; as illustrated in the flowchart of Figure F–6, programming time is
greatly reduced to a nominal duration of one second. Actual programming time
varies as a function of the programmer that is being used. Data is presented
in parallel (eight bits) on pins Q8 through Q1. Once addresses and data are
stable, PGM is pulsed.

The SNAP! pulse programming algorithm uses pulses of 100 microseconds,
followed by a byte verification to determine if the addressed byte has been suc-
cessfully programmed. Up to ten 100-microsecond pulses per byte are verified
before a failure is recognized.

The programming mode is achieved when VPP = 13.0 V, VCC = 6.5 V, and G
= VIH, and E = VIL. More than one TMS320E25 can be programmed by con-
necting the devices in parallel with each other. Locations may be programmed
in any order. When the SNAP! pulse programming routine has been com-
pleted, all bits are verified with VCC = VPP = 5 V.

F.2.4 Program Verify

Programmed bits may be verified with VPP = 12.5 V when G = VIL, E = VIL, and
PGM = VIH. Figure F–7 shows the timing of the program and verification opera-
tions for both FAST and SNAP! pulse programming.
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Figure F–5. FAST Programming Flowchart
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Figure F–6. SNAP! Pulse Programming Flowchart
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Figure F–7. Programming Timing
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F.2.5 Program Inhibit

Programming can be inhibited by maintaining a high-level input on the E pin
or PGM pin.

F.2.6 Read

The EPROM contents can be read outside of the programming cycle if the
RBIT (ROM protect bit) has not been programmed. The read mode is accom-
plished by setting E to zero and pulsing G low. The contents of the EPROM
location, selected by the value on the address inputs, appear on D7–D0.

F.2.7 Output Disable

During the EPROM programming process, the EPROM data outputs can be
disabled, if desired, by setting the output disable mode. Depending upon the
application, the output disable mode can be selected by setting either the G
or the E pin on the TMS320E25 high. The selection of the pin determines the
duration for which the outputs, pins Q8–Q1, of the TMS27C64 are in the high-
impedance state. During this mode, pins D7–D0 on the TMS320E25 are in the
high-impedance state.
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F.3 EPROM Protection and Verification

This section describes the code protection feature of the EPROM cell; an inter-
nal mechanism protects the customer’s code from being illegally copied by its
competitors. Table G–3 shows the programming levels required for protecting
the EPROM contents and verifying that protection. Following the table, individ-
ual paragraphs describe the function of the protect and verify modes.

Table G–3. TMS320E25 EPROM Protect and Protect Verify Mode Levels

SIGNAL† TMS320E25 PIN TMS27C64 PIN EPROM PROTECT PROTECT VERIFY

E 22 20 VIH VIL

G 42 22 VIH VIL

PGM 41 27 VIH VIH

VPP 25 1 VPP VCC + 1

VCC 61,35 28 VCC + 1 VCC + 1

VSS 27,44,10 14 VSS VSS

CLKIN 52 14 VSS VSS

RS 65 14 VSS VSS

 EPT 24 26 VPP VPP

Q8–Q1 11–18 9–15,13–11 Q8=PULSE Q8=RBIT

A12–A10 40–38 2,23,21 X X

A9–A7 37,36,34 24,25,3 X X

A6 33 4 X VIL

A5 32 5 X X

A4 31 6 VIH X

A3–A0 30–28,26 7–10 X X

LEGEND:
† = Signal names are in accordance with TMS27C64.
VIH = TTL high level; VIL = low-level TTL; VCC = 5 ± 0.25 V; VPP = 12.5± 0.25 V (FAST); or 13 ± 0.25 V (SNAP!);

VCC + 1 = 6 ± 0.25 V (FAST) or 6.5 ± 0.25 V (SNAP!);
X = don’t care; PULSE = low-going TTL level pulse; RBIT = ROM protect bit

F.3.1 EPROM Protection

The EPROM protection mechanism is used to prevent an intentional or acci-
dental reading of the memory contents; this guarantees security of all propri-
etary algorithms. This special feature is implemented by a unique EPROM cell
called the RBIT (ROM protect bit) cell.  Once the contents are programmed into
the EPROM, the RBIT can be programmed, this prevents access to the
EPROM contents and disables the microprocessor mode. Once programmed,
the RBIT can be disabled only by erasing the entire EPROM array with ultravio-
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let light, thereby maintaining security of all proprietary algorithms. Program-
ming   of  the   RBIT  is   accomplished  by  the  EPROM  protection  cycle,  which
consists   of   setting  the   E,   G,  PGM,   and  A4  pins   to  a  high   level,  applying
12.5 ± 0.25 V to both VPP and EPT, and pulsing the Q8 pin to a low level. The
complete sequence of operations for programming the RBIT is shown in the
flowchart of Figure F–8. The required setups in the figure are detailed in
Table G–3.  For  more  detailed  information  about  how  the  RBIT  works,
see
subsection F.3.2.

Figure F–8. EPROM Protection Flowchart
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F.3.2 How the RBIT Works

When enabled, the RBIT disconnects the internal program memory bus
(PBUS) from the MUX that combines the internal data bus (DBUS) to create
the external program/data bus. This disconnect takes place at the MUX. For
the TMS320E25, the internal nodes are left floating.

Figure F–9 shows a portion of the TMS320C2x block diagram and includes the
RBIT to show how it disconnects the external and internal program spaces.

Figure F–9. How the RBIT Fits Into the TMS320E25 Block Diagrams
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Programming the RBIT has some side effects that may, at first, give the ap-
pearance that the device isn’t operating properly. However, because enabling
the RBIT protects the EPROM space, this is normal operation. These side ef-
fects include:

� Instructions.  Some instructions that use the external program space for
storage will not operate in the same manner when the RBIT is set.

For example, on the TMS320E25, TBLW, BLKP, and similar commands
may seem to work when used to transfer external program memory to the
internal data space connected to DBUS. However, a transfer from the in-
ternal program space to the external bus will not work. This happens be-
cause the RBIT feature is protecting this memory space.

Similarly, the MAC instruction cannot read tables stored in external pro-
gram space. In this case, the data and program must be swapped, sacrific-
ing one cycle per repeated instruction.
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� Invalid microprocessor mode.  Microprocessor mode can’t be used after
enabling the RBIT, because the PBUS is disconnected from the external
program space.

F.3.3 Protect Verify

Following the EPROM protect mode, the protect verify mode reviews and veri-
fies the programming of the RBIT (see Figure F–8) for accuracy. When using
this mode, D7 outputs the state of the RBIT. When RBIT = 1, the EPROM is
unprotected; when RBIT = 0, the EPROM is protected. The EPROM protection
and verification timings are shown in Figure F–10.

Figure F–10. EPROM Protection Timing
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† 12.5 V = VPP and 6.0 V = VCC for FAST Programming; for SNAP! Programming, 13.0 V = VPP and 6.5 V = VCC.
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Appendix G

Analog Interface Peripherals and
Applications

Texas Instruments offers many products for total system solutions, including
memory options, data acquisition, and analog input/output devices. This ap-
pendix describes a variety of devices that interface directly to the TMS320
DSPs in rapidly expanding applications.

Topic Page

G.1 Multimedia Applications G-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

G.2 Telecommunications Applications G-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

G.3 Dedicated Speech Synthesis Applications G-10. . . . . . . . . . . . . . . . . . . . 

G.4 Servo Control/Disk Drive Applications G-12. . . . . . . . . . . . . . . . . . . . . . . . 

G.5 Modem Analog Front-End Applications G-15. . . . . . . . . . . . . . . . . . . . . . . 

G.6 Advanced Digital Electronics Applications for Consumers  G-18. . . . 
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G.1 Multimedia Applications

Multimedia integrates different media through a centralized computer. These
media can be visual or audio and can be input to or output from the central
computer via a number of technologies. The technologies can be digital based
or analog based (such as audio or video tape recorders). The integration and
interaction of media enhances the transfer of information and can accommo-
date both analysis of problems and synthesis of solutions.

Figure G–1 shows both the central role of the multimedia computer and the
multimedia system’s ability to integrate the various media to optimize informa-
tion flow and processing.

Figure G–1. System Block Diagram
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G.1.1 System Design Considerations

Multimedia systems can include various grades of audio and video quality. The
most popular video standard currently used (VGA) covers 640 × 480 pixels
with 1, 2, 4, and 8-bit memory-mapped color. Also, 24-bit true color is sup-
ported, and 1024 × 768 (beyond VGA) resolution has emerged. There are two
grades of audio. The lower grade accommodates 11.25-kHz sampling for 8-bit
monaural systems, while the higher grade accommodates 44.1-kHz sampling
for 16-bit stereo.

Audio specifications include a musical instrument digital interface (MIDI) with
compression capability, which is based on keystroke encoding, and an input/
output port with a 3-disc voice synthesizer. In the media control area, video
disc, CD audio, and CD ROM player interfaces are included. Figure G–2
shows a multimedia subsystem.
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The TLC32047 wide-band analog interface circuit (AIC) is well suited for multi-
media applications because it features wide-band audio and up to 25-kHz
sampling rates. The TLC32047  is a complete analog-to-digital and digital-to-
analog interface system for the TMS320 DSPs. The nominal bandwidths of the
filters accommodate 11.4 kHz, and this bandwidth is programmable. The
application circuit shown in Figure G–2 handles both speech encoding and
modem communication functions, which are associated with multimedia appli-
cations.

Figure G–2. Multimedia Speech Encoding and Modem Communication
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Figure G–3 shows the interfacing of the TMS320C25 DSP to the TLC32047
AIC that constitutes the building blocks of the 9600-bps V.32 bis modem
shown in Figure G–2.

Figure G–3. TMS320C25 to TLC32047 Interface
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G.1.2 Multimedia-Related Devices

As shown in Table H–1, TI provides a complete array of analog and graphics
interface devices. These devices support the TMS320 DSPs for complete mul-
timedia solutions.

Table H–1. Data Converter ICs

Device Description I/O Resolution
(Bits)

Conversion
CLK Rate Application

TLC320AC01 Analog interface (5 V only) Serial 14 43.2 kHz Portable modem and
speech, multimedia

TLC32047 Analog interface
(11.4 kHz BW) (AIC)

Serial 14 25 kHz Speech, modem, and
multimedia

TLC32046 Analog interface (AIC) Serial 14 25 kHz Speech and modems

TLC32044 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems

TLC32040 Analog interface (AIC) Serial 14 19.2 kHz Speech and modems

TLC34075/6 Video palette Parallel Triple 8 135 MHz Graphics

TLC34058 Video palette Parallel Triple 8 135 MHz Graphics

TLC5502/3 Flash ADC Parallel 8 20 MHz Video

TLC5602 Video DAC Parallel 8 20 MHz Video

TLC5501 Flash ADC Parallel 6 20 MHz Video

TLC5601 Video DAC Parallel 6 20 MHz Video

TLC1550/1 ADC Parallel 10 150 kHz Servo ctrl / speech

TLC32071 Analog interface (AIC) Parallel 8 1 MHz Servo ctrl / disk drive

TMS57013/4 Dual audio DAC+ digital
filter

Serial 16/18 32, 37.8,
44.1, 48 kHz

Digital audio

Table H–2. Switched-Capacitor Filter ICs

Device Function Order Roll-Off Power Out Power Down

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes

TLC10/20 General-purpose dual filter 2 CLK ÷ 50
CLK ÷ 100

N/A No

TLC04/14 Low pass, Butterworth filter 4 CLK ÷ 50
CLK ÷ 100

N/A No

For application assistance or additional information, please call TI Linear
Applications  at (214) 997–3772.
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G.2 Telecommunications Applications

The TI linear product line focuses on three primary telecommunications appli-
cation areas: subscriber instruments (telephones, modems, etc.),  central of-
fice line card products, and personal communications. Subscriber instruments
include the TCM508x DTMF tone encoder family, the TCM150x tone ringer
family, the TCM1520 ring detector, and the TCM3105 FSK modem. Central of-
fice line card products include the TCM29Cxx combo (combined PCM filter
plus codec) family, the TCM420x subscriber line control circuit family, and the
TCM1030/60 line card transient protector. Personal communication (PCN)
and cellular products include the TCM320AC3x family of 5-volt voice-band au-
dio processors (VBAP).

TI continues to develop new telecom integrated circuits, such as a high-perfor-
mance 3-volt combo family for personal communications applications, and an
RF power amplifier family for hand-held and mobile cellular phones.

System Design Considerations. The size, network complexity, and com-
patibility requirements of telecommunications central office systems create
demanding performance requirements. Combo voice-band filter performance
is typically ± 0.15 dB in the passband. Idle channel noise must be on the order
of 15 dBrnc0. Gain tracking (S/Q) and distortion must also meet stringent re-
quirements. The key parameters for a SLIC device are gain, longitudinal bal-
ance, and return loss.
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Figure G–4. Typical DSP/Combo Interface
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The TCM320AC36 combo interfaces directly to the TMS320C25 serial port
with a minimum of external components, as shown in Figure G–4. Half of hex
inverter U3 and crystal Y1 form an oscillator that provides clock timing to the
TCM320AC36. The synchronous 4-bit counters U1 and U2 generate an 8-kHz
frame sync signal. DCLKR on the TCM320AC36 is connected to VDD, placing
the combo in fixed data-rate mode. Two 20-kΩ resistors connected to ANLGIN
and MIC_GS set the gain of the analog input amplifier to 1. The timing is shown
in Figure G–5.
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Figure G–5. DSP/Combo Interface Timing
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Telecommunications-Related Devices . Data sheets for the devices in
Table H–3 are contained in the 1991 Telecommunications Circuits Databook
(literature number SCTD001B). To request your copy, contact your nearest
Texas Instruments field sales office or call the Literature Response Center at
(800) 477–8924.

For further information on these telecommunications products, please call TI
Linear Applications at (214) 997–3772.
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Table H–3. Telecom Devices

Device Number Coding
Law

Clock Rates
MHz† # of Bits Comments

Codec/Filter

TCM29C13 A and µ 1.544, 1.536, 2.048 8 C.O. and PBX line cards

TCM29C14 A and µ 1.544, 1.536, 2.048 8 Includes 8th-bit signal

TCM29C16 µ 2.048 8 16-pin package

TCM29C17 A 2.048 8 16-pin package

TCM29C18 µ 2.048 8 Low-cost DSP interface

TCM29C19 µ 1.536 8 Low-cost DSP interface

TCM29C23 A and µ Up to 4.096 8 Extended frequency range

TCM29C26 A and µ Up to 4.096 8 Low-power TCM29C23

TCM320AC36 µ and Linear Up to 4.096 8 and 13 Single voltage (+5) VBAP

TCM320AC37 A and Linear Up to 4.096 8 and 13 Single voltage (+5) VBAP

TCM320AC38 µ and Linear Up to 4.096 8 and 13 Single voltage (+5) GSM

TCM320AC39 A and Linear Up to 4.096 8 and 13 Single voltage (+5) GSM

TP3054/64 µ 1.544, 1.536, 2.048 8 National Semiconductor
second source

TP3054/67 A 1.544, 1.536, 2.048 8 National Semiconductor
second source

TLC320AC01 Linear 43.2 kHz 14 5-volt-only analog interface

TLC32040/1 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity

TLC32044/5 Linear Up to 19.2-kHz sampling 14 For high-dynamic linearity

TLC32046 Linear Up to 25-kHz sampling 14 For high-dynamic linearity

TLC32047 Linear Up to 25-kHz sampling 14 For high-dynamic linearity

Transient Suppressor

TCM1030 Transient suppressor for SLIC-based line card (30 A max)

TCM1060 Transient suppressor for SLIC-based line card (60 A max)
† Unless otherwise noted

Table H–4. Switched-Capacitor Filter ICs

Device Function Order Roll-Off Power Out Power Down

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes

TLC10/20 General-purpose dual filter 2
CLK ÷ 50
CLK ÷ 100

N/A No

TLC04/14 Low pass, Butterworth filter 4
CLK ÷ 50
CLK ÷ 100

N/A No
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Figure G–6. General Telecom Applications
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Figure G–7. Generic Telecom Application
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G.3 Dedicated Speech Synthesis Applications

For dedicated speech synthesis applications, Texas Instruments offers a fami-
ly of dedicated speech synthesizer chips. This speech technology has been
used in a wide range of products including games, toys, burglar alarms, fire
alarms, automobiles, airplanes, answering machines, voice mail, industrial
control machines, office machines, advertisements, novelty items, exercise
machines, and learning aids.

Dedicated speech synthesis chips are effective in low-cost applications. The
speech synthesis technology provided by the dedicated chips is either LPC (li-
near-predictive coding) or CVSD (continuously variable slope delta modula-
tion). Table H–5 shows the characteristics of the TI voice synthesizers.

Table H–5. Voice Synthesizers

TI Voice Synthesizers:

Device Microprocessor Synthesis
Method I/O Pins On-Chip

Memory (Bits)
External
Memory

Data Rate
(Bits/Sec)

TSP50C4x 8-bit LPC–10 20/32 64K/128K VROM 1200–2400

TSP50C1x 8-bit LPC–12 10 64K/128K VROM 1200–2400

TSP53C30 8-bit LPC–10 20 N/A From host µP 1200–2400

TSP50C20 8-bit LPC–10 32 N/A EPROM 1200–2400

TMS3477 N/A CVSD 2 None DRAM 16K–32K

TI has low-cost memories that are ideal to use with speech synthesis chips.
Texas Instruments can also be of assistance in developing and processing the
speech data that is used in these speech synthesis systems. Table H–6 shows
speech memory devices of different capabilities. Additionally, audio filters are
outlined in Table H–7.

Table H–6. Speech Memories

TSP60Cxx Family of Speech ROMs

TSP60C18 TSP60C19 TSP60C20 TSP60C80 TSP60C81

Size 256K 256K 256K 1M 1M

No. of Pins 16 16 28 28 28

Interface Parallel 4-bit Serial Parallel/serial
8-bit Serial Parallel 4-bit

For use with: TSP50C1x TSP50C4x TSP50C4x TSP50C4x TSP50C1x
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Table H–7. Switched-Capacitor Filter ICs

Device Function Order Roll-Off Power Out Power Down

TLC2470 Differential audio filter amplifier 4 5 kHz 500 mW Yes

TLC2471 Differential audio filter amplifier 4 3.5 kHz 500 mW Yes

TLC10/20 General-purpose dual filter 2
CLK ÷ 50
CLK ÷ 100

N/A No

TLC04/14 Low pass, Butterworth filter 4
CLK ÷ 50
CLK ÷ 100

N/A No

Speech Synthesis Development Tools

Software:
EVM Code development tool
Speech:
SAB Speech audition board
SD85000 PC-based speech analysis

system

System:
SEB System emulator board
SEB60Cxx System emulator boards for speech

memories

For further information on these speech synthesis products, please call TI Linear Applications at
(214)  997–3772.
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G.4 Servo Control/Disk Drive Applications

Several years ago, most servo control systems used only analog circuitry.
However, the growth of digital signal processing has made digital control
theory a reality. Figure G–8 shows a block diagram of a generic digital control
system using a  DSP, along with an ADC and DAC.

Figure G–8. Generic Servo Control Loop
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In a DSP-based control system, the control algorithm is implemented via soft-
ware. No component aging or temperature drift is associated with digital con-
trol systems. Additionally, sophisticated algorithms can be implemented and
easily modified to upgrade system performance.

System Design Considerations. TMS320 DSPs have facilitated the de-
velopment of high-speed digital servo control for disk drive and industrial con-
trol applications. Disk drives have increased storage capacity from 5 mega-
bytes to over 1 gigabyte in the past decade, which equates to a 23,900 percent
growth in capacity. To accommodate these increasingly higher densities, the
data on the servo platters, whether servo-positioning or actual storage infor-
mation, must be converted to digital electronic signals at increasingly closer
points in relation to the platter “pick-off” point. The ADC must have increasingly
higher conversion rates and greater resolution to accommodate the increasing
bandwidth requirements of higher storage densities. In addition, the ADC con-
version rates must increase to accommodate the shorter data retrieval access
time.
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Figure G–9 shows a block diagram of a disk drive control system.

Figure G–9. Disk Drive Control System Block Diagram

To
Host

SCSI
Data
Bus

Control

SCSI
Interface

RAM
Buffer

Buffer Control
and

Data Sequencer

Data
Separator

Disk Drive Motor
Controller

TMS320C14

EPROM
TMS2764

Servo
Demodulator

TLC32071

Address
Decode

Disk Head
Select

Spindle
Motor

To/From Disk HeadsTo

FromSN74LS393

Control

Control

Table H–8 lists analog/digital interface devices used for servo control.

Table H–8. Control-Related Devices

Function Device Bits Speed Channels Interface

ADC TLC1550 10 3–5 µs 1 Parallel

TLC1551 10 3–5 µs 1 Parallel

TLC5502/3 8 50 ns (flash) 1 Parallel

TLC0820 8 1.5 µs 1 Parallel

TLC1225 13 12 µs 1 (Diff.) Parallel

TLC1558 10 3–5 µs 8 Parallel

TLC1543 10 21 µs 11 Serial

TLC1549 10 21 µs 1 Serial

DAC TLC7524 8 9 MHz 1 Parallel

TLC7628 8 9 MHz (Dual) Parallel

TLC5602 8 30 MHz 1 Parallel

AIC TLC32071 8 (ADC) 1 µs
9 MHz

8
1 Parallel
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Figure G–10 shows the interfacing of the TMS320C14 and the TLC32071.

Figure G–10. TMS320C14 – TLC32071 Interface
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For further information on these servo control products, please call TI Linear
Applications at (214) 997–3772.
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G.5 Modem Applications
High-speed modems (9,600 bps and above) require a great deal of analog sig-
nal processing in addition to digital signal processing. Designing both high-
speed capabilities and slower fall-back modes poses significant engineering
challenges. TI offers a number of analog front-end (AFE) circuits to support
various high-speed modem standards.

The TLC32040, TLC32044, TLC32046, TLC32047, and TLC320AC01 analog
interface circuits (AIC) are especially suited for modem applications by the in-
tegration of an input multiplexer, switched capacitor filters, high resolution
14-bit ADC and DAC, a four-mode serial port, and control and timing logic.
These converters feature adjustable parameters, such as filtering characteris-
tics, sampling rates, gain selection, (sin x)/x correction (TLC32044,
TLC32046, and TLC32047 only), and phase adjustment. All these parameters
are software programmable, making the AIC suitable for a variety of applica-
tions. Table H–9 has the description and characteristics of these devices.

Table H–9. Modem AFE Data Converters

Device Description I/O Resolution
(Bits)

Conversion
Rate

TLC32040 Analog interface chip (AIC) Serial 14 19.2 kHz

TLC32041 AIC without on-board VREF Serial 14 19.2 kHz

TLC32044 Telephone speed/modem AIC Serial 14 19.2 kHz

TLC32045 Low-cost version of the TLC32044 Serial 14 19.2 kHz

TLC32046 Wide-band AIC Serial 14 25 kHz

TLC32047 AIC with 11.4-kHz BW Serial 14 25 kHz

TLC320AC01 5-volt-only AIC Serial 14 43.2 kHz

TCM29C18 Companding codec/filter PCM 8 8 kHz

TCM29C23 Companding codec/filter PCM 8 16 kHz

TCM29C26 Low-power codec/filter PCM 8 16 kHz

TCM320AC36 Single-supply codec/filter
PCM
and

Linear
8 25 kHz

The AIC interfaces directly with serial-input TMS320 DSPs, which execute the
modem’s high-speed encoding and decoding algorithms. The TLC3204x fami-
ly performs level-shifting, filtering, and A/D and D/A data conversion. The
DSP’s many software-programmable features provide the flexibility required
for modem operations and make it possible to modify and upgrade systems
easily. Under DSP control, the AIC’s sampling rates permit designers to in-
clude fall-back modes without additional analog hardware in most cases.
Phase adjustments can be made in real time so that the A/D and D/A conver-
sions can be synchronized with the upcoming signal. In addition, the chip has
a built-in loopback feature to support modem self-test requirements.
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For further information or application assistance, please call TI Linear Applica-
tions at (214) 997–3772.

Figure G–11. High-Speed V.32 Bis and Multistandard Modem With the TLC320AC01 AIC
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Figure G–11 shows a V.32 bis modem implementation using the TMS320C25
and a TLC320AC01. The upper TMS320C25 performs echo cancellation and
transmit data functions, while the lower TMS320C25 performs receive data
and timing recovery functions. The echo canceler simulates the telephone
channel and generates an estimated echo of the transmit data signal. The
TLC320AC01 performs the following functions:

Upper TLC320AC01 D/A Path : Converts the estimated echo, as com-
puted by the upper TMS320C25, into an
analog signal, which is subtracted from
the receive signal.

Upper TLC320AC01 A/D Path : Converts the residual echo to a digital sig-
nal for purposes of monitoring the residu-
al echo and continuously training the echo
canceler for optimum performance. The
converted signal is sent to the upper
TMS320C25.
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Lower TLC320AC01 D/A Path : Converts the upper TMS320C25 transmit
output to an analog signal, performs a
smoothing filter function, and drives the
DAC.

Lower TLC320AC01 D/A Path : Converts the echo-free receive signal to
a digital signal, which is sent to the lower
TMS320C25 to be decoded.

Note: Modem Implementation in Figure G–11

The example in Figure G–11 is for illustration only. In reality, one single
TMS320C5x DSP can implement high-speed modem functions.
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G.6 Advanced Digital Electronics Applications for Consumers

With the extensive use of the TMS320 DSPs in consumer electronics, much
electromechanical control and signal processing can be done in the digital do-
main. Digital systems generally require some form of analog interface, usually
in the form of high-performance ADCs and DACs. Figure G–12 shows the
general performance requirements for a variety of applications.

Figure G–12. Applications Performance Requirements
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Advanced Television System Design Considerations . Advanced
Digital Television (ADTV) is a technology that uses digital signal processing to
enhance video and audio presentations and to reduce noise and ghosting. Be-
cause of these DSP techniques, a variety of features can be implemented, in-
cluding frame store, picture-in-picture, improved sound quality, and zoom. The
bandwidth requirements remain at the existing 6-MHz television allocation.
From the IF(intermediate frequency) output, the video signal is converted by
an 8-bit video ADC. The digital output can be processed in the digital domain
to provide noise reduction, interpolation or averaging for digitally increased
sharpness, and higher quality audio. The DSP digital output is converted back
to analog by a video DAC, as shown in Figure G–13.
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Figure G–13. Video Signal Processing Basic System
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VCRs, compact disc and DAT players, and PCs are a few of the products that
have taken a major position in the marketplace in the last ten years. The audio
channels for compact disc and DAT require 16-bit A/D resolution to meet the
distortion and noise standards. See Figure G–14 for a block diagram of a typi-
cal digital audio system.

Figure G–14. Typical Digital Audio Implementation
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The motion and motor control systems usually use 8- to 10-bit ADCs for the
lower frequency servo loop. Tape or disc systems use motor or motion control
for proper positioning of the record or playback heads. With the storage me-
dium compressing data into an increasingly smaller physical size, the position-
ing systems require more precision.
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The audio processing becomes more demanding as higher fidelity is required.
Better fidelity translates into lower noise and distortion in the output signal.

The TMS57013DW/57014DW 1-bit digital-to-analog converters (DAC) in-
clude an 8 times over sampling digital filter designed for digital audio systems,
such as CDPs, DATs, CDIs, LDPs, digital amplifiers, car stereos, and BS tun-
ers. They are also suitable for all systems that include digital sound processing
like TVs, VCRs, musical instruments, NICAM systems, multimedia, etc.

The converters have dual channels so that the right and left stereo signals can
be transformed into analog signals with only one chip. There are some func-
tions that allow the customers to select the conditions according to their appli-
cations, such as muting, attenuation, de-emphasis, and zero data detection.
These functions are controlled by external 16-bit serial data from a controller
like a microcomputer.

The TMS5703DW/57014DW adopt 129-tap FIR filter and third-order ∆ Σ mod-
ulation to get –75-dB stop band attenuation and 96-dB SNR. The output is
PWM wave, which facilitates analog signal through a low-pass filter.

Table H–10 lists TI products for analog interfacing to digital systems.

Table H–10. Audio/Video Analog/Digital Interface Devices

Function Device Bits Speed Channels Interface

Dual audio DAC+ digital filter TMS57013/4 16/18 32, 37.8,
44.1, 48 kHz

2 Serial

Analog interface
A/D
D/A

TLC32071
8
8

2 µs
15 µs

8
1

Parallel
Parallel

A/D TLC1225 12 12 µs 1 Parallel

A/D TLC1550 10 6 µs 1 Parallel

Video D/A TLC5602 8 50 ns 1 Parallel

Video D/A TL5602 8 50 ns 1 Parallel

Triple video D/A TL5632 8 16 ns 3 Parallel

Triple flash A/D TLC5703 8 70 ns 3 Parallel

Flash A/D TLC5503 8 100 ns 1 Parallel

Flash A/D TLC5502 8 50 ns 1 Parallel

For further information or application assistance, please call TI Linear Applica-
tions at (214) 997–3772.
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Appendix H

Memories, Analog Converters,
Sockets, and Crystals

This appendix provides product information regarding memories, analog con-
verters, and sockets, which are manufactured by Texas Instruments and are
compatible with the TMS320C2x. Information is also given regarding crystal
frequencies, specifications, and vendors.

The contents of the major areas in this appendix are listed below.

Topic Page

H.1 Memories and Analog Converters H-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

H.2 Sockets H-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

H.3 Crystals H-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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H.1 Memories and Analog Converters

This section provides product information for EPROM memories, codecs, ana-
log interface circuits, and A/D and D/A converters.

All of these devices can be interfaced with TMS320C2x processors (see
Chapter 6 for hardware interface designs). Refer to Digital Signal Processing
Applications with the TMS320 Family for additional information on interfaces
using memories and analog conversion devices.

The following paragraphs give the name of each device and where the data
sheet for that device is located in order to obtain further specification informa-
tion if desired.

Data sheets for EPROM memories are located in the MOS Memory Data Book
(literature number SMYD008).

TMS27C64
TMS27C128
TMS27C256
TMS27C512

Another EPROM memory, TMS27C291/292, is described in a data sheet ((lit-
erature number SMLS291A).

The TCM29C13/14/16/17 codecs and filters are described in the data sheet
beginning on page 2–111 of the Telecommunications Circuits Data Book (liter-
ature number SCT001). An analog interface for the DSP using a codec and
filter is provided by the TCM29C18/19 data sheet (literature number SCT021).

The data sheet for the TLC32040 analog interface circuit is provided in the In-
terface Circuits Data Book (literature number SLYD002).

In the same book are data sheets for A/D and D/A converters. The names of
the devices are as follows:

TLC0820
TLC1205/1225
TLC7524
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H.2 Sockets

The sockets produced by Texas Instruments are designed for high-density
packaging needs. The production sockets and burn-in/test sockets for PGA,
PLCC,    and   CER-QUAD    packages   are   compatible    with   the   TMS320C2x
devices.

For additional information about TI sockets, contact the nearest TI sales office
or:

Texas Instruments Incorporated
Connector Systems Dept, M/S 14–3
Attleboro, MA 02703
(617) 699–5242/5269
Telex: 92–7708
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H.3 Crystals

This section lists the commonly used crystal frequencies, crystal specification
requirements, and the names of suitable vendors.

Table I–1 lists the commonly used crystal frequencies and the devices with
which they can be used.

Table I–1. Commonly Used Crystal Frequencies

Device Frequency

TMS320C25 40.96 MHz

When connected across X1 and X2/CLKIN of the TMS320 processor, a crystal
enables the internal oscillator; see Figure F–1. The frequency of CLKOUT is
one-fourth the crystal fundamental frequency. Crystal specification require-
ments are listed below.

Load capacitance = 20 pF
Series resistance = 30 ohm
Power dissipation = 1 mW

Parallel resonant crystals of 20 MHz and below use fundamental mode.
25-MHz operation may require a third-overtone crystal.
40-MHz operation requires a third-overtone crystal.

Figure H–1.Crystal Connection

X2/CLKIN

Crystal

X1

C1 C2

The TMS320C25 operating at 40.96 MHz requires a parallel-resonant third-
overtone oscillator (see subsection 6.1.2 for a detailed description of this oscil-
lator design). If a packed clock oscillator is used, oscillator design is of no con-
cern.
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Vendors of crystals suitable for use with TMS320 devices are listed below.

RXD, Inc.
Norfolk, NB
(800) 228–8108

N.E.L. Frequency Controls, Inc.
Burlington, WI
(414) 763–3591

CTS Knight, Inc.
Contact the local distributor.
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Appendix I

ROM Codes

The size of a printed circuit board must be considered in many DSP applica-
tions. To fully utilize the board space, Texas Instruments offers two options that
reduce the chip count and provide a single-chip solution to its customers.
These options incorporate 4K words of on-chip program from either a mask
programmable ROM or an EPROM. This allows the customer to use a code-
customized processor for a specific application while taking advantage of the
following:

� Greater memory expansion
� Lower system cost
� Less hardware and wiring
� Smaller PCB

If used often, the routine or entire algorithm can be programmed into the on-
chip ROM of a TMS320 DSP. TMS320 programs can also be expanded by us-
ing external memory; this reduces chip count and allows for a more flexible
program memory. Multiple functions are easily implemented by a single de-
vice, thus enhancing system capabilities.

TMS320 Development Tools are used to develop, test, refine, and finalize the
algorithms. The microprocessor/microcomputer (MP/MC) mode is available
on all ROM-coded TMS320 DSP devices when accessing either on-chip or off-
chip memory is required. The microprocessor mode is used to develop, test,
and refine a system application. In this mode of operation, the TMS320 acts
as a standard microprocessor by using external program memory. When the
algorithm has been finalized, the designer may submit the code to Texas
Instruments for masking into the on-chip program ROM. At that time, the
TMS320 becomes a microcomputer that executes customized programs out
of the on-chip ROM. Should the code need changing or upgrading, the
TMS320 may once again be used in the microprocessor mode. This shortens
the field upgrade time and avoids the possibility of inventory obsolescence.

Figure I–1 illustrates the procedural flow for TMS320 masked parts. When or-
dering, there is a one-time/nonrefundable charge for mask-tooling. A minimum
production order per year is required for any masked-ROM device. ROM
codes will be deleted from the TI system one year after the last delivery.

A digital signal processor with the EPROM option is the solution for low-volume
production orders. The EPROM option allows for form-factor emulation. Field
upgrades and changes are possible with the EPROM option.
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Figure I–1. TMS320 ROM Code Flowchart

Customer TMS320 Design

Customer Submits:
— TMS320 New Code Release Form
— Print Evaluation and Acceptance Form (PEAF)
— Purchase Order for Mask Charge Prototypes
— TMS320 Code

Texas Instruments Responds:
— Customer Code Input into TI System
— Code Sent Back to Customer for Verification

Customer
Approves
Algorithm

TI Produces Prototypes

Customer
Approves

Prototypes (Minimum
Production Order

Required)

TMS320 Production

Yes

Yes

No

No



 ROM Codes

I-3

A TMS320 ROM code may be submitted in one of the following formats (the
preferred media is 5 1/4-in floppies):

5 1/4-in Floppy: TI-tagged or COFF format from cross-assembler

EPROM (TMS320): TMS320E14, TMS320E15, TMS320E17, TMS320E25

EPROM (others): TMS27C64

PROM: TBP28S166, TBP28S86

Modem (BBS): TI-tagged or COFF format from cross-assembler

When a code is submitted to Texas Instruments for masking, the code is refor-
matted to accommodate the TI mask generation system. System-level verifi-
cation by the customer is therefore necessary. Although the code has been re-
formatted, it is important that the changes remain transparent to the user and
do not affect the execution of the algorithm. The formatting changes involve
the removal of address relocation information (the code address begins at the
base address of the ROM in the TMS320 device and progresses without gaps
to the last address of the ROM on the TMS320 device) and the addition of data
in the reserved locations of the ROM for device ROM test. Note that because
these changes have been made, a checksum comparison is not a valid means
of verification.

With each masked device order, the customer must sign a disclaimer stating:

”The units to be shipped against this order were assembled, for expediency
purposes, on a prototype (that is, non-production qualified) manufacturing
line, the reliability of which is not fully characterized. Therefore, the antici-
pated inherent reliability of these prototype units cannot be expressly de-
fined.”

and a release stating:

”Any masked ROM device may be resymbolized as TI standard product
and resold as though it were an unprogrammed version of the device at the
convenience of Texas Instruments.”

Contact the nearest TI Field Sales Office for more information on procedures,
leadtimes, and cost.
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Appendix J

Quality and Reliability

The quality and reliability performance of Texas Instruments Microprocessor
and Microcontroller Products, which include the five generations of TMS320
digital signal processors, relies on feedback from:

� Our customers
� Our total manufacturing operation from front-end wafer fabrication to final

shipping inspection
� Product quality and reliability monitoring.

Our customer’s perception of quality must be the governing criterion for judg-
ing performance. This concept is the basis for Texas Instruments Corporate
Quality Policy, which is as follows:

“For every product or service we offer, we shall define the requirements that
solve the customer’s problems, and we shall conform to those requirements
without exception.”

Texas Instruments offers a leadership reliability qualification system, based on
years of experience with leading-edge memory technology as well as years
of research in customer requirements. Quality and reliability programs at TI
are therefore based on customer input and internal information to achieve
constant improvement in quality and reliability.

Note:

Texas Instruments reserves the right to make changes in MOS semiconduc-
tor test limits, procedures, or processing without notice. Unless prior ar-
rangements for notification have been made, TI advises all customers to re-
verify current test and manufacturing conditions prior to relying on published
data.
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J.1 Reliability Stress Tests

Accelerated stress tests are performed on new semiconductor products and
process changes to ensure product reliability excellence. The typical test envi-
ronments used to qualify new products or major changes in processing are:

� High-temperature operating life

� Storage life

� Temperature cycling

� Biased humidity

� Autoclave

� Electrostatic discharge

� Package integrity

� Electromigration

� Channel-hot electrons (performed on geometries less than 2.0µm).

Typical events or changes that require internal requalification of product in-
clude:

� New die design, shrink, or layout

� Wafer process (baseline/control systems, flow, mask, chemicals, gases,
dopants, passivation, or metal systems)

� Packaging assembly (baseline control systems or critical assembly
equipment)

� Piece parts (such as lead frame, mold compound, mount material, bond
wire, or lead finish)

� Manufacturing site.

TI reliability control systems extend beyond qualification. Total reliability con-
trols and management include a product reliability monitor and final product
release controls. MOS memories, utilizing high-density active elements, serve
as leading indicators in wafer-process integrity at TI MOS fabrication sites, en-
hancing all MOS logic device yields and reliability. Thousands of logic devices
per month are randomly tested to ensure product reliability and excellence.
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Table K–1 lists the microprocessor and microcontroller reliability tests, the
duration of the test, and sample size. The following terms define or describe
these tests:

AOQ (Average Outgoing Quality )
Amount of defective product in a population, usu-
ally expressed in terms of parts per million (PPM).

FIT (Failure in Time) Estimated field failure rate in number of failures
per billion power-on device hours; 1000 FIT =
0.1% failure per 1000 device hours.

Operating lifetest Device dynamically exercised at a high ambient
temperature (usually 125°C) to simulate field
usage that would expose the device to a much
lower ambient temperature (such as 55°C). Using
a derived high temperature, a 55° C ambient fail-
ure rate can be calculated.

High-temperature storage
Device exposed to 150°C unbiased condition.
Bond integrity is stressed in this environment.

Biased humidity Moisture and bias used to accelerate corrosion-
type failures in plastic packages. Conditions must
include 85°C ambient temperature with an 85%
relative humidity (RH). Typical bias voltage is +5V
and ground on alternating pins.

Autoclave (pressure cooker)
Plastic-packaged devices exposed to moisture at
121° C using a pressure of one atmosphere above
normal pressure. The pressure forces moisture
permeation of the package and accelerates corro-
sion mechanisms (if present) on the device. Exter-
nal package contaminants can also be activated
and caused to generate inter-pin current leakage
paths.

Temperature cycle Device exposed to severe temperature extremes
in an alternating fashion (–65°C for 15 minutes
and 150°C for 15 minutes per cycle) for at least
1000 cycles. Package strength, bond quality, and
consistency of assembly process are stressed in
this environment.

Thermal shock Test similar to the temperature cycle test, but in-
volving a liquid-to-liquid transfer, per MIL-
STD-883C, Method 1011.

PIND Particle Impact Noise Detection test. A nonde-
structive test to detect loose particles inside a de-
vice cavity.
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Mechanical Sequence:

Fine and gross leak Per MIL-STD-883C, Method 1014.5
Mechanical shock Per MIL-STD-883C, Method 2002.3,

1500g, 0.5 ms, Condition B
PIND (optional) Per MIL-STD-883C, Method 2020.4
Vibration, variable frequency Per MIL-STD-883C, Method 2007.1,

20g, Condition A
Constant acceleration Per MIL-STD-883C, Method 2001.2,

20 kg, Condition D, Y1 Plane min
Fine and gross leak Per MIL-STD-883C, Method 1014.5
Electrical test To data sheet limits

Thermal Sequence:

Fine and gross leak Per MIL-STD-883C, Method 1014.5
Solder heat (optional) Per MIL-STD-750C, Method 1014.5
Temperature cycle Per MIL-STD-883C, Method 1010.5,
(10 cycles minimum) –65 to +150°C, Condition C
Thermal shock Per MIL-STD-883C, Method 1011.4,
(10 cycles minimum) –55 to +125°C, Condition B
Moisture resistance Per MIL-STD-883C, Method 1004.4
Fine and gross leak Per MIL-STD-883C, Method 1014.5
Electrical test To data sheet limits

Thermal/Mechanical Sequence:

Fine and gross leak Per MIL-STD-883C, Method 1014.5
Temperature cycle Per MIL-STD-883C, Method 1010.5,
(10 cycles minimum) -65 to +150°C, Condition C
Constant acceleration Per MIL-STD-883C, Method 2001.2,

30 kg, Y1 Plane
Fine and gross leak Per MIL-STD-883C, Method 1014.5
Electrical test To data sheet limits
Electrostatic discharge Per MIL-STD-883C, Method 3015
Solderability Per MIL-STD-883C, Method 2003.3
Solder heat Per MIL-STD-750C, Method 2031,

10 sec
Salt atmosphere Per MIL-STD-883C, Method 1009.4,

Condition A, 24 hrs min
Lead pull Per MIL-STD-883C, Method 2004.4,

Condition A
Lead integrity Per MIL-STD-883C, Method 2004.4,

Condition B1
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Electromigration Accelerated stress testing of con-
ductor patterns to ensure acceptable
lifetime of power-on operation

Resistance to solvents Per MIL-STD-883C, Method 2015.4

Table K–1.Microprocessor and Microcontroller Tests

Test Duration Sample Size
Plastic Ceramic

Operating life, 125°C, 5.0 V
Operating life, 150°C, 5.0 V
Storage life, 150°C
Biased 85°C/85 percent RH, 5.0 V
Autoclave, 121°C, 1 ATM
Temperature cycle, -65 to 150°C
Thermal shock, -65 to 150°C
Electrostatic discharge ± 2 kV
Latch-up (CMOS devices only)
Mechanical sequence
Thermal sequence
Thermal/mechanical sequence
PIND
Internal water vapor
Solderability
Solder heat
Resistance to solvents
Lead integrity
Lead pull
Lead finish adhesion
Salt atmosphere
Flammability (UL94-V0)
Thermal impedance

1000 hrs
1000 hrs
1000 hrs
1000 hrs
240 hrs

1000 cyc
500 cyc

129 129
77† 77
77 77

129 –
77 –

129 129
77 77
15 15
5 5

– 38
– 38
– 38
– 45
– 3
22 22
22 22
15 15
15 15
22 –
15 15
15 15

3 –
5 5

† If junction temperature does not exceed plasticity of package.

Table K–2 provides a list of the TMS320C2x devices, the approximate number
of transistors, and the equivalent gates. The numbers have been determined
from design verification runs.

Table K–2.TMS320C2x Transistors

Device  # Transistors  # Gates

CMOS: TMS320C25
TMS320E25
TMS320C26

160K
160K
160K

40K
40K
40K

TI qualification test updates are available upon request at no charge. TI will
consider performing any additional reliability test(s), if requested. For more in-
formation on TI quality and reliability, programs, contact the nearest TI Field
Sales Office.
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Appendix K

Development Support

Texas Instruments offers an extensive line of development tools for the
TMS320C2x generation of DSPs, including tools to evaluate the performance
of the processors, generate code, develop algorithm implementations, and ful-
ly integrate and debug software and hardware modules.

The following products support development of TMS320C2x-based applica-
tions:

Code Generation Tools:
Optimizing ANSI C compiler (TMS320C25 only)
Macro assembler/linker
Digital filter design package

System Integration and Debug Tools:
Simulator
Evaluation module (EVM)
In-circuit emulator (XDS/22)
Analog interface board (AIB2)

Each TMS320C2x support product is described in the TMS320 Family Devel-
opment Support Reference Guide (literature number SPRU011C). In addition,
more than 100 TMS320 third-party developers provide support products to
complement TI’s offering. For more information on third-party support refer to
the TMS320 Third Party Reference Guide (literature number SPRU052A). To
request a copy of either document, contact the TI Literature Response Center
at (800) 477–8924.

For information on pricing and availability, contact the nearest TI Field Sales
Office or authorized distributor.
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K.1 Device and Development Support Tool Nomenclature

To designate the stages in the product development cycle, Texas Instruments
assigns prefixes to the part numbers of all TMS320 devices and support tools.
Each TMS320 member has one of three prefixes: TMX, TMP, and TMS. Texas
Instruments recommends two of three possible prefix designators for its sup-
port tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (TMX/TMDX) through fully
qualified production devices/tools (TMS/TMDS). This development flow is de-
fined below.

Device Development Evolutionary Flow:

TMX Experimental device that is not necessarily representative of the final
device’s electrical specifications.

TMP Final silicon die that conforms to the device’s electrical specifications
but has not completed quality and reliability verification.

TMS Fully qualified production device.

Support Tool Development Evolutionary Flow:

TMDX Development support product that has not yet completed Texas
Instruments internal qualification testing.

TMDS Fully qualified development support product.

TMX and TMP devices and TMDX development support tools are shipped
against the following disclaimer:

“Developmental product is intended for internal evaluation purposes.”

TMS devices and TMDS development support tools have been fully character-
ized, and the quality and reliability of the device has been fully demonstrated.
Texas Instruments standard warranty applies.

Note:

Predictions show that prototype devices (TMX or TMP) will have a greater
failure rate than the standard production devices. Texas Instruments recom-
mends that these devices not be used in any production system because
their expected end-use failure rate is still undefined. Only qualified produc-
tion devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This
suffix indicates the package type (for example, N, FN, or GB) and temperature
range (for example, L). Figure K–1 provides a legend for reading the complete
device name for any TMS320 family member.
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Figure K–1.TMS320 Device Nomenclature

PREFIX TEMPERATURE RANGE

TMS 320 C 25 GB L

TMX = experimental device
TMP = prototype device
TMS = qualified device
SMJ = MIL–STD–883C

DEVICE FAMILY
320 = TMS320 Family

TECHNOLOGY

E = CMOS EPROM

H = 0 to 50°C
L = 0 to 70°C
S = -55 to 100°C
M = -55 to 125°C
A = -40 to 85°C

PACKAGE TYPE
N    = plastic DIP
J    =  ceramic CER-DIP
JD =  ceramic DIP

side-brazed
GB =  ceramic PGA
FZ =  ceramic CER-QUAD
FN =  plastic leaded CC
FD = ceramic leadless CC
QFP = quad flat pack

C = CMOS

DEVICE
C1x DSP:

10
14
15
16
17

C2x DSP:
25
26
28

C3x DSP:
30
31

C4x DSP:
40

C5x DSP:
50
51
53
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Figure K–2 provides a legend for reading the part number for any TMS320
hardware or software development tool.

Figure K–2.TMS320 Development Tool Nomenclature

TMDS 32 4 28 1 0 – 0 2

QUALIFICATION STATUS MEDIUM †

2 = 5-1/4” floppy disk
8 = 1600 BPI magnetic tape

TMDX = prototype
TMDS = qualified

DEVICE FAMILY S/W FORMAT †
32 = TMS320 family 0 = object code

1 = source code

PRODUCT TYPE SEQUENCE NUMBER‡

4 = software
6 = hardware
8 = upgrade

MODEL‡ GENERATION‡

11 = XDS/11
22 = XDS/22
88 = upgrade kits

1 = C1x
2 = C2x
3 = C3x
4 = C4x
5 = C5x

OPERATING SYSTEM† FORMAT†

02 = C1x VAX/VMS
08 = C1x IBM MS/PC-DOS
22 = C2x VAX/VMS
28 = C2x IBM MS/PC-DOS
32 = C3x VAX/VMS
38 = C3x IBM MS/PC-DOS
42 = C4x VAX/VMS
48 = C4x IBM MS/PC-DOS
52 = C5x VAX/VMS
58 = C5x IBM MS/PC-DOS

1 = TI-tagged
5 = COFF

† Software only.
‡ Hardware only.
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A
A/D interface, 6-43–6-45

A-law, 5-68

ABS, 4-23

ACC, 3-9

accumulator, 3-9, 3-30
carry bit, 3-31

adapter socket. See EPROM programmer

adaptive filtering, 5-71

ADD, 4-25

ADDC, 4-27

ADDH, 4-29

addition, 3-31
’C25 and ’C26, 5-64

ADDK, 4-9, 4-31

address bus, 3-9

address bus (A15–A0), 2-4

addressing modes, 3-25, 3-26
direct, 3-25
indirect, 3-25

ADDS, 4-32

ADDT, 4-34

ADLK, 4-9, 4-36

ADRK, 4-9, 4-37

ADTV, G-18

AFB, 3-9

AIB2, K-1

ALU, 3-9, 3-30

analog converters, H-2

analog interface peripherals
advanced digital applications, G-18–G-20

audio/video analog/digital interface devices,
G-20

digital audio, G-19
video signal processing, G-19

applications, G-1–G-20
disk drive applications, G-12–G-14
modem applications, G-15–G-17

data converters, G-15
multimedia, G-2–G-4

modem communication, G-3
related devices, G-4
speech encoding, G-3
system design consideration, G-2

servo control, G-12–G-14
related devices, G-13

speech synthesis, G-10
development tools, G-11
memory, G-10
voice synthesizers, G-10

telecommunications, G-5–G-9
general applications, G-9
related devices, G-7
telecom devices, G-8

AND, 4-38
ANDK, 4-9, 4-40
APAC, 4-41
application-oriented operations, 5-68

adaptive filtering, 5-71–5-76
bit-reversed addressing, 5-77
companding, 5-68
fast Fourier transforms, 5-75–5-81
FFT inputs and outputs, 5-76
FFT macros, 5-79
FIR/IIR filters, 5-70
PID control, 5-82

applications, 1-8
AR, 3-9, 3-24
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ARAU, 3-9

ARB, 3-9

architectural overview, 3-2
arithmetic logic unit (ALU), 3-3
diagram, 3-3
direct memory access, 3-5
memory interface, 3-4
multiplier, 3-3
multiprocessing, 3-4
on-chip memory, 3-2
serial port, 3-4

architecture, 3-1

arithmetic logic unit (ALU), 3-3, 3-9, 3-30

arithmetic operations, 5-46–5-67
division, 5-57–5-59

using SUBC, 5-57–5-59
extended-precision arithmetic, 5-62–5-67

addition, 5-64
multiplication, 5-66
subtraction, 5-65

floating-point, 5-60–5-62
denormalization, 5-61
using LACT, 5-61
using NORM, 5-61

indexed addressing, 5-62
moving data, 5-51

using MACD, 5-52
multiplication, 5-53–5-57

measuring efficiency, 5-55
using LTA–MPY, 5-54
using MAC, 5-54
using SQRA, 5-57

overflow management, 5-46
scaling, 5-47
shifting data, 5-47–5-50

bit-reversed carry addition, 5-48
FFT bit reversals, 5-48
other applications, 5-49

ARP, 3-9

assembly language instructions, 4-1

auxiliary register, arithmetic unit, 3-9

auxiliary registers, 3-9, 3-22–3-25
bus, 3-9
pointer, 3-9
pointer buffer, 3-9

B
B, 4-42
BACC, 4-43
BANZ, 4-44
BBNZ, 4-46, 5-45
BBZ, 4-47, 5-45
BC, 4-48
BGEZ, 4-49
BGZ, 4-50
BIO, 2-5, 4-56
BIOZ, 4-51
BIT, 4-52, 5-44, 5-45
bit manipulation, 5-44
bit-reversed (BR) addressing, 5-77
BITT, 4-54, 5-45
BLEZ, 4-56
BLKD, 3-27, 4-57, 5-33
BLKP, 4-60, 5-33
block B0, 5-38
block diagram

’C26, 3-8
’C2x, 3-7

block moves, 3-27, 5-33
BLZ, 4-63
BNC, 4-64
BNV, 4-65
BNZ, 4-66
bootloader, 5-6–5-21

configuration words
BAUD DETECT, 5-13
CHECKSUM, 5-10, 5-14
INTERRUPT, 5-9, 5-14
PROGRAM LENGTH, 5-9, 5-14
PROGRAM WORD, 5-10, 5-14
STATUS, 5-9, 5-13
SYNCHRONIZATION, 5-10, 5-15

external memory (EPROM) download, 5-15–5-21
byte ordering, 5-16

parallel download, 5-6–5-10
16-bit transfer sequence, 5-8
8-bit transfer sequence, 5-8
BIO–XF handshake example, 5-7
BIO–XF transfer protocol, 5-7
configuration words, 5-9, 5-13–5-15
program length, 5-9
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bootloader (continued), 5-6–5-21
serial download, 5-11–5-15

program length, 5-14
RS232 serial link, 5-11
RS232 transfer protocol, 5-12
RS232 transfer sequence, 5-13

software listing, 5-17–5-21
types of download, 5-6

BR, 2-5

branches, 3-32

BV, 4-67

byte mode, DRR operation, 3-69

BZ, 4-68

C
CAL, 5-22

CALA, 4-69, 5-22

CALL, 4-71

CALU, 3-28
components of, 3-28–3-34

central arithmetic logic unit (CALU), 3-9, 3-28
ALU and accumulator, 3-30
components of, 3-28–3-34
diagram, 3-29
multiplier, 3-32
scaling shifter, 3-30
shift modes, 3-33
T and P registers, 3-32

CLKOUT1, 2-6, 3-56

CLKOUT2, 2-6, 3-56

CLKR, 2-7

CLKX, 2-7

clock divider, ’C25, 5-26

clock phases, 3-56

clock timing, 3-56

CMPL, 4-73

CMPR, 4-74

CNFD, 4-75

CNFP, 4-76

code generation tools, K-1
assembler/linker, K-1
C compiler, K-1
digital filter design package, K-1

combo-codec interface, 6-37–6-40

companding, 5-68

comparison of internal RAM, 3-18

computed GOTO, 5-28

CONF, 4-77

configuring on-chip RAM, 5-35–5-37
diagram, 5-36
example, 5-37, 5-39

consumer electronics
advanced digital applications, G-18
advanced digital television, G-18
digital audio, G-19
video signal processing, G-19

context restore, ’C25, 5-31

context save, ’C25, 5-30

context switching, 5-29

continuous mode operation, 3-69–3-74

control circuitry, 6-2
crystal oscillator, 6-5
emulator architecture, 6-7–6-10
powerup reset, 6-2

crystal oscillator circuit, 6-5

crystals, H-4
frequencies, H-4
specifications, H-4
vendors, H-4

D
D/A interface, 6-42

DAB, 3-9

DAC, G-20

data bus, 2-4, 3-9

data bus (D15–D0), 2-4, 3-9

data memory, 3-17

data moves, 3-27, 5-51

data pointer, 3-9

data sheets
SMJ320C2x, 4-1
TMS320C25, A-1
TMS320C26, B-1
TMS320C28, C-1
TMS320E25, A-1

debugging tools, K-1

development support, K-1–K-4
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development systems, K-1
analog interface board (AIB2), K-1
emulator (XDS/22), K-1
evaluation module (EVM), K-1
simulator, K-1

development tool nomenclature, K-4

device evolution, K-2
TMP, K-2
TMS, K-2
TMX, K-2

device nomenclature, K-3

digital audio, G-19

DINT, 4-78

direct addressing, 4-2
diagram, 4-3

direct memory access (DMA), 3-5, 3-75
See also DMA

DIT, 5-81

division, 5-57–5-59

DMA, 3-75, 6-32
in a PC environment, 6-34
master-slave configuration, 6-33

DMOV, 3-27, 4-79

download/bootstrapping mode (’C26). 
See bootloader

DP, 3-9

DR, 2-4, 2-7

DRB, 3-9

DRR, 3-10

DS, 3-16

DSP hotline, ix

DX, 2-7

DXR, 3-10

E
echo cancellation, 6-48

EINT, 4-81

emulator (XDS), 6-7
bus control, 6-7
miscellaneous considerations, 6-9
READY and memory substitution, 6-8
TMS320C25 designs, 6-9

EPROM, adapter socket, F-2

EPROM programmer, F-2

EPROM programming, F-1
code protection, F-12–F-15
data format, F-4
erasure, F-7
FAST programming, F-7, F-9
output disable, F-11
pin nomenclature, F-5
program inhibit, F-11
program verify, F-8
programming modes, F-6
programming the RBIT, F-12–F-15
protect verify, F-15
RBIT operation, F-14
RBIT side effects, F-14
read mode, F-11
SNAP! pulse programming, F-8, F-10
timing, F-11
verification, F-4
wiring diagram, F-5

EPROMs, 6-22–6-26
EVM, K-1
EXAMPLE, 4-19
extended-precision arithmetic, 5-62–5-67

addition, 5-64
multiplication, 5-66
subtraction, 5-65

external memory interface, 3-54–3-58
clock timing, 3-56
I/O pins, 3-56
memory combinations, 3-54

external program/data access, 3-47

F
fast Fourier transforms (FFT), 5-75
FAST programming, F-7

flowchart, F-9
FFT, 5-81
FFT macros, 5-79
FFT requirements, 5-81
filtering, 5-70
FIR filters, 5-70
floating-point arithmetic, 5-60

denormalization, 5-61
using LACT, 5-61
using NORM, 5-61

floating-point multiply, ’C25, 5-61
FORT, 4-82
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Fourier transforms, 5-75
framing control, 3-67
FSR, 2-7
FSX, 2-7
functional block diagram, 3-6–3-8

G
gates, J-5
global memory, 3-76, 6-35

access timing, 3-77
communication, 6-36
configurations, 3-77

global memory allocation register (GREG), 3-77
global register, 3-9
graphics and image processing, 6-50
GREG, 3-9, 3-77
ground pin, 2-6

H
hardware applications, 6-1

direct memory access (DMA), 6-32–6-34
global memory, 6-35
interfacing memories, 6-11–6-30
interfacing peripherals, 6-37–6-47
system applications, 6-48–6-52

Harvard architecture, 3-2
HOLD, 2-5, 3-46, 3-78, 6-9
hold function, 3-78
hold operation, 3-46
hold timing, 3-80
HOLDA, 2-5, 3-46, 3-78, 6-9
hotline, ix

I
I/O

addressing, 6-46
pins, 3-56
ports, 6-46
processor communication, 6-47

IACK, 2-5
IDLE, 4-83
IIR filters, 5-70

immediate addressing, 4-8–4-10

IMR, 3-10, 3-60

IN, 4-84, 5-34

indexed addressing, 5-62

indirect addressing, 4-4–4-8
arithmetic operations, 4-6
bit fields, 4-7
diagram, 4-4
format examples, 4-8
symbols used, 4-5
types of, 4-5

initialization, 5-2
’C25, 5-3
’C26, 5-4
examples, 5-3–5-5
processor configuration, 5-2
TMS320C26, download/bootstrapping mode. 

See bootloader

instruction cycle timings, ’C25, 5-2

instruction register, 3-10

instruction set, 4-11
example, 4-19–4-22
ABS, 4-23
ADD, 4-25
ADDC, 4-27
ADDH, 4-29
ADDK, 4-31
ADDS, 4-32
ADDT, 4-34
ADLK, 4-36
ADRK, 4-37
AND, 4-38
ANDK, 4-40
APAC, 4-41
B, 4-42
BACC, 4-43
BANZ, 4-44
BBNZ, 4-46
BBZ, 4-47
BC, 4-48
BGEZ, 4-49
BGZ, 4-50
BIOZ, 4-51
BIT, 4-52
BITT, 4-54
BLEZ, 4-56
BLKD, 4-57
BLKP, 4-60
BLZ, 4-63
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instruction set (continued), 4-11
BNC, 4-64
BNV, 4-65
BNZ, 4-66
BV, 4-67
BZ, 4-68
CALA, 4-69
CALL, 4-71
CMPL, 4-73
CMPR, 4-74
CNFD, 4-75
CNFP, 4-76
CONF, 4-77
DINT, 4-78
DMOV, 4-79
EINT, 4-81
FORT, 4-82
IDLE, 4-83
IN, 4-84
LAC, 4-85
LACK, 4-86
LACT, 4-87
LALK, 4-89
LAR, 4-90
LARK, 4-92
LARP, 4-93
LDP, 4-94
LDPK, 4-95
LPH, 4-96
LRLK, 4-97
LST, 4-98
LST1, 4-100
LT, 4-103
LTA, 4-104
LTD, 4-106
LTP, 4-108
LTS, 4-109
MAC, 4-111
MACD, 4-114
MAR, 4-117
MPY, 4-119
MPYA, 4-120
MPYK, 4-121
MPYS, 4-122
MPYU, 4-123
NEG, 4-125
NOP, 4-126
NORM, 4-127
OR, 4-129
ORK, 4-130

instruction set (continued), 4-11
OUT, 4-131
PAC, 4-132
POP, 4-133
POPD, 4-134
PSHD, 4-135
PUSH, 4-136
RC, 4-137
RET, 4-138
RFSM, 4-139
RHM, 4-140
ROL, 4-141
ROR, 4-142
ROVM, 4-143
RPT, 4-144
RPTK, 4-145
RSXM, 4-146
RTC, 4-147
RTXM, 4-148
RXF, 4-149
SACH, 4-150
SACL, 4-151
SAR, 4-152
SBLK, 4-154
SBRK, 4-155
SC, 4-156
SFL, 4-157
SFR, 4-158
SFSM, 4-159
SHM, 4-160
SOVM, 4-161
SPAC, 4-162
SPH, 4-163
SPL, 4-164
SPM, 4-165
SQRA, 4-166
SQRS, 4-167
SST, 4-168
SST1, 4-170
SSXM, 4-172
STC, 4-173
STXM, 4-174
SUB, 4-175
SUBB, 4-176
SUBC, 4-177
SUBH, 4-179
SUBK, 4-180
SUBS, 4-181
SUBT, 4-182
SXF, 4-183
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instruction set (continued), 4-11
TBLR, 4-184
TBLW, 4-186
TRAP, 4-188
XOR, 4-189
XORK, 4-190
ZAC, 4-191
ZALH, 4-192
ZALR, 4-193
ZALS, 4-194

instruction set summary, 4-13–4-17
special groups, 4-13

instructions
accumulator, 4-14
auxiliary register/page pointer, 4-15
branch/call, 4-16
control, 4-17
I/O and memory, 4-16
individual descriptions, 4-18–4-194
register and multiply, 4-15

instrumentation, 6-51
interface

AIC, 6-40–6-42
analog-to-digital (A/D), 6-43–6-45
combo-codec, 6-37–6-40
digital-to-analog (D/A), 6-42

interface timing analysis, 6-29–6-31
interfacing memories, 6-11

EPROMs, 6-22–6-26
port, buses, and control signals, 6-11
PROMs, 6-12–6-19
read and write cycles, 6-12
SRAMs, 6-26–6-29
timing analysis, 6-29–6-31
wait-state generator, 6-19

interfacing peripherals, 6-37
interfacing PROMs, address decoding, 6-12–6-19
internal hardware, 3-9–3-11
interrupt, flag register, 3-10
interrupt acknowledge, 2-5
interrupt mask register, 3-10
interrupt mask register (IMR), 3-60
interrupt service routine (ISR), 5-29–5-32

interrupts, 2-5, 3-46, 3-59–3-62
external interface, 3-60
locations, 3-59
logic diagram, 3-61
operation, 3-59
priorities, 3-59, 5-32
timing diagram, 3-62

IR, 3-10

IS, 2-4

K
key features, 1-6

L
LAC, 4-85

LACK, 4-9, 4-86

LACT, 4-87

LALK, 4-9, 4-89

LAR, 4-90

LARK, 4-9, 4-92

LARP, 4-93

LC circuit, 6-5

LDP, 4-94

LDPK, 4-9, 4-95

Literature Response Center, ix

logical and arithmetic operations, 5-43

long immediate addressing, 4-10

LPH, 4-96

LRLK, 4-9, 4-97

LST, 4-98

LST1, 4-100

LT, 4-103

LTA, 4-104, 5-54

LTD, 4-106

LTP, 4-108

LTS, 4-109
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M
µ-law, 5-68
MAC, 4-111
MACD, 4-114
MACD operation, 5-52
MAR, 4-117
masked parts, I-1
MCS, 3-10
memories, H-2
memory

’C26 maps, 3-16, 3-20
’C2x maps, 3-15, 3-19
addressing modes, 4-2
blocks, 3-12, 3-16, 3-17
combinations, 3-54
data, 3-12
DMA, 3-5
global, 3-76
interface, 3-4
management, 5-33
organization, 3-12
program, 3-12

memory organization, 3-12
data memory, 3-12
memory maps, 3-15
program memory, 3-12–3-14

’C26 diagram, 3-14
’C2x diagram, 3-13

memory-mapped registers, 3-22
microcall stack, 3-10
microcall stack (MCS) register, 3-36
microcomputer mode, 2-5
microprocessor mode, 2-5
military data sheets, D-1
modem, 6-48
modem applications, G-15

data converters, G-15
MP/MC, 2-5
MPY, 4-119, 5-54
MPYA, 4-120
MPYK, 4-9, 4-121
MPYS, 4-122
MPYU, 4-123
MSC, 2-6
MULT, 3-10

multimedia applications, G-2
multimedia-related devices, G-8

multiplexed external data bus, 3-42
multiplication, 5-53–5-57

’C25, 5-66
multiplier, 3-3, 3-10, 3-32
multiprocessing, 3-75–3-81

global memory, 3-76
hold function, 3-78–3-81
synchronization, 3-75

N
NEG, 4-125
NOP, 4-126
NORM, 4-127
numeric processing, 6-51

O
on-chip EPROM, 3-12
on-chip memory, 3-2
on-chip program access, 3-46
on-chip program execution, example, 5-41
on-chip RAM, 3-12

configuration, 5-35–5-37
configuration diagram, 5-36
program execution, 5-38

on-chip ROM, 3-12, I-1
OR, 4-129
ORK, 4-9, 4-130
oscillator circuit

diagram, 6-5
LC circuit, 6-5
magnitude of impedance, 6-6

OUT, 4-131, 5-35
overflow management, 5-46

P
P, 3-10
P register (PR), 3-32
PAB, 3-10
PAC, 4-132
PC, 3-10
period register, 3-10
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PFC, 3-10

PIC, ix

PID control, 5-82

pin assignments, 2-2

pinouts, 2-1

pipeline hardware, 3-45

pipeline operation, 3-37–3-47
ADD followed by SACL, 3-41
branch to on-chip RAM, 3-44
’C25, 3-39
decode, 3-37
execute, 3-37
fetch, 3-37
instruction sequence, 3-40
prefetch, 3-37
RET from on-chip RAM, 3-45
three-level, 3-38
two-level, 3-38
wait states, 3-41
with external data bus conflict, 3-43

PLCC/CLCC adapter socket, F-2

POP, 4-133

POPD, 4-134

powerdown modes (’C25), 3-53

powerup reset, 6-2–6-4

PR, 3-10

PRD, 3-10

prefetch counter, 3-10

processors overview, 1-4

Product Information Center, ix

product register, 3-10

program bus, 3-10

program control, 5-22

program counter (PC), 3-10, 3-35, 3-43

program execution, 5-38

program memory, 3-17
address bus, 3-10

program verify, F-8

PS, 2-4

PSHD, 4-135

pulse programming, F-8

PUSH, 4-136

Q
QIR, 3-10
quality and reliability, J-1–J-5
queue instruction register, 3-10

R
R/W, 2-5
RAM(B0), 3-10
RAM(B1), 3-10
random access memory

data only, 3-10
data or program, 3-10

RBIT, F-12
RC, 4-137
read only memory, 3-10
READY, 2-4
registers

auxiliary, 3-22
DRR, 3-64
DXR, 3-64
indirect addressing, 3-23
memory-mapped, 3-22
serial port, 3-63

reliability stress tests, J-2
microcontroller tests, J-5
microprocessor tests, J-5
test environments, J-2
types of tests, J-3

repeat counter, 3-10
repeat counter (RPTC), 3-53
reset, 2-6, 3-46, 3-47
reset circuit, 6-2–6-4

diagram, 6-3
RET, 4-138
RFSM, 4-139
RHM, 4-140
robotics, 6-51
ROL, 4-141
ROM, 3-10
ROM code flowchart, I-2
ROM code media, I-3
ROM codes, I-1–I-3
ROM protect bit, F-12
ROR, 4-142
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ROVM, 4-143

RPT, 4-144, 5-27

RPTC, 3-10
RPTK, 4-9, 4-145

RS, 2-6

RSR, 3-11
RSXM, 4-146

RTC, 4-147

RTXM, 4-148
RXF, 4-149

S
SACH, 4-150

SACL, 4-151
SAR, 4-152

SBLK, 4-9, 4-154

SBRK, 4-9, 4-155
SC, 4-156

scaling, 5-47

scaling shifter, 3-30
second generation devices, 1-2

serial port, 3-4, 3-63–3-74
block diagram, 3-65
burst mode, 3-68
continuous mode, 3-69–3-74
data receive register, 3-10
data transmit register, 3-10
framing, 3-67
receive timing diagram, 3-67
registers, 3-63
shift register, 3-11
timing, 3-67
transmit and receive, 3-65–3-67, 3-68, 3-70
transmit shift register, 3-11
transmit timing diagram, 3-66

servo control/disk drive applications, G-12

servo control-related devices, G-13
SFL, 4-157

SFR, 4-158

SFSM, 4-159
shift modes, 3-33

shifters, 3-11

shifting data, 5-47–5-50
SHM, 4-160

short immediate addressing, 4-9
signal descriptions, 2-4–2-7
single-instruction loops, 5-26
SMJ320C2x, data sheets, D-1
SNAP! pulse programming, F-8

flowchart, F-10
sockets, H-3
software stack, 5-24
software stack expansion, 5-24
SOVM, 4-161
SPAC, 4-162
speech

development tools, G-11
memories, G-10
synthesis applications, G-10

SPH, 4-163
SPL, 4-164
SPM, 4-165
SQRA, 4-166, 5-57
SQRS, 4-167
SST, 4-168
SST1, 4-170
SSXM, 4-172
ST0, 3-11, 3-49
ST1, 3-11, 3-49
stack, 3-11, 3-35
static RAMs, 6-26–6-29
status registers, 3-49

data processing, 5-43
field definitions, 3-50
temporary register, 3-11

STC, 4-173
STRB, 2-5
STXM, 4-174
SUB, 4-175
SUBB, 4-176
SUBC, 4-177

fractional division, 5-59
integer division, 5-59

SUBH, 4-179
SUBK, 4-9, 4-180
subroutines, 5-22

example, 5-22
SUBS, 4-181
SUBT, 4-182
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supply voltage pin, 2-6

support tool evolution
TMDS, K-2
TMDX, K-2

support tools nomenclature, K-2

SXF, 4-183

symbols, 3-10

symbols and abbreviations, 4-11–4-13

SYNC, 2-5, 3-75

synchronization, 3-75
timing (’C25), 3-76

system applications, 6-48
echo cancellation, 6-48
graphics and image processing, 6-50
high-speed control, 6-51
instrumentation, 6-51
modem, 6-48
numeric processing, 6-51
voice coding, 6-49

system control, 3-35–3-53
See also control circuitry
’C25 powerdown modes, 3-53
diagram, 3-35
hardware stack, 3-35
pipeline operation, 3-37–3-47
program counter, 3-35
repeat counter, 3-53
reset, 3-47
status registers, 3-49–3-52
timer, 3-52

T
T register (TR), 3-32

TBLR, 4-184, 5-34

TBLW, 4-186, 5-34

telecom devices, G-8

telecommunications applications, G-5
DSP/combo, G-6

temporary register, 3-11

TIM, 3-11

TIM register, 3-52

timer, 3-11, 5-25

timer block diagram, 3-52

timer operation, 3-52

timing
BIO, 3-57
external flag (XF), 3-58
memory, 3-80

timing control, 3-67

TLC32046, G-3

TLC32070, G-14

TMS320C25, 1-4
data sheets, A-1

TMS320C25-33, 1-4

TMS320C25-50, 1-4

TMS320C26, 1-4
data sheet, B-1

TMS320C26 block diagram, 3-8

TMS320C26 description,

TMS320C28, 1-1–1-7, 2-3,
data sheet, C-1

TMS320C2x, instruction cycle timings, E-2

TMS320C2x block diagram, 3-7

TMS320E25, 1-4

TR, 3-11

transistors, J-5

TRAP, 4-188

two-word instructions, 3-43

U
user design considerations, 6-7–6-10

V
VCC, 2-6

video signal processing, G-19

voice coding, 6-49

voice synthesizers, G-10

VSS, 2-6

W
wait-state generator, 6-19

design, 6-21
memory/peripheral access, 6-20
timing, 6-22
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X
X1, 2-6
X2/CLKIN, 2-6
XDS/22, K-1
XF, 2-6, 3-56
XOR, 4-189
XORK, 4-9, 4-190
XSR, 3-11

Z
ZAC, 4-191
ZALH, 4-192
ZALR, 4-193
ZALS, 4-194
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