*i’
TEXAS Application Report
INSTRUMENTS SPRA494

Implementation of Vector Control for
PMSM Using the TMS320F240 DSP

Michel Platnic Digital Signal Processor Solutions

Abstract

This document presents a solution for controlling a permanent magnet synchronous motor using
the Texas Instruments (TI™) TMS320C24x digital signal processor (DSP). The new TMS320C24x
family of DSPs offers a cost-effective design of intelligent controllers for brushless motors that
can fulfill enhanced operations consisting of fewer system components, lower system cost, and
increased performances. The control method presented relies on the field orientated control
(FOC) together with a field-weakening operation. This algorithm maintains efficiency in a wide
range of speeds, above nominal speed, and takes into consideration torque changes with
transient phases by controlling the flux directly from the rotor coordinates. This report describes a
practical solution and corresponding results.

Contents
(T geTo [0 ox1To] o IHU PSP O PP P UPPPP PP 3
PaY o] o] or= i o] gl D=1 ol] o] (o] o PP UUUPRPPTRRPNE 4
(001 01Y=T 01 o] o PSR RRPUPR 9
FOC SOftWArE OFQANIZATIONccoiuiiiieiiieee ettt ettt e et s et e e et e e et e e e s bt e e e e sbb et e e anbe e e e e e anbneeeabbeeennee 11
Parameter AQAPLATIONooueiiei ittt e ettt e e e e e bttt e e e e e s a bbb et e e e e e e s nb b e et e e e e aa e e e e anrbeeeeeeeaannraes 15
FIEIO WEBKENING ...ttt b et bt e e sttt e e s ab e e e e bbb e e s e enbe e e e snneeeeantbeeenanee 27
RESUILS ..ttt e h oot e oo bt oo bt e e R bt e e R b et e e e b et e e b b e e e b e e e e ner e nanee 31
(0=t] 1 (T o = Lo = PP T S OP R PTPR 36
(0] o1 1] o] o H PO T PO OT PP PUPPPOUPPPTPTRP 36
RETEIENCES . ..ottt e ettt e e 37
Appendix A. TMS320F240 FOC SOFtWAIEuueiiiieiiiiiiiiee ettt e e e et e e e e e e anbbeeeeaeeaaan sennnnnes 37
APPENIX B. LINKEE FlE ...ttt ettt e e et e e s nbn e e e nnnneas 64
AppPeNndix C. SINEWAVE TADIE ..o et e e et e e e e e s e abbe s atbe e e e e e e e annenee 65
Appendix D. QbasiC USEI INTEITACEc.ueiiiiiiie e e et 67
Figures
Figure 1. Three-Phase Synchronous Motor with One Permanent Magnet Pair Pole Rotor 3
Figure 2. Three BEMF Waveforms at L000FPIMccuoiiiiiiiiiieiiee e ettt e e e e e st e e e e e e e sibbaeeeaae e e e asnebaeeens 5
Figure 3. [a1Y=T g =] g o] o o] (oo | V2RO PT T PPPPPRTRT 5
Figure 4. Top View of TMS320F240 EVM BOAIG........ccoiiiiiiiiiiiiiiiiiiee ettt 6
Figure 5. ACPM750E With @ MCK240......ccciiiiiiiiiei ettt ettt e e e e e et e e e e e e s e sbtbeeaeaeeeeesnsreneeeas 7

Digital Signal Processing Solutions December 1998

Figure 6. Stator Current and Magnet Flux Space Vectors in the d,q Rotating Reference Frame and its
Relationship with the a, b, cStationary Reference Frame

Figure 7. PMSM Control with Field Orientation

Figure 8. Format Correspondence Diagramccccceevvveeernnneenns

Figure 9. FOC Software Initialization and Operating System

Figure 10. General Software Flowchartcccccooiiiiieiiinnnnnns

Figure 11. Control Algorithm Timingcccccceeen.

Figure 12. Waiting Loop/User Interface

Figure 13. Control Routine Block Diagram

Figure 14. Block Diagram of the FOC Including Closed Loop Field Weakening Control

Figure 15. Current Measurement Chainouiii i e e e e e e e s e san s ennees

Figure 16. Current Sensing Interface Block Diagram

Figure 17. Sensed Current Values before SCaling..........ceiiiiiiiiiiiei it e e ee e

Figure 18. Sind Calculation Using the Sine LOOK-Up Tablecoccvviiiiiiiiiii e

Figure 19. SVPWM, Vectors and Sectors..........cccceevriiiiieieeeennninnnes

Figure 20 Assigning the Right Duty Cycle to the Right Motor Phase

Figure 21. Field Weakening Real OPEIratioNcc.uuuiiiiiaiiiiiiiieea e et ee e e e et e e e e e s aaibeeeeaa e e s enbees snnees

Figure 22. Maximum and Nominal Torque vs Speed...................

Figure 23. Field Weakening Voltage Constraints.............c.....o....

Figure 24. Control Range of a PMSM in Steady State.....................

Figure 25. Field Weakening Function Structure.............c.ccccccoeue.

Figure 26. Speed Transient from 0 rpm t0 1000 rPMceeveeeiiiiiiiieeeeesiiiiieeee e

Figure 27. Speed Transient from 0 rpm to 3000 rpm at Nominal Torque........

Figure 28. Speed Transient from -1000 rpm to 1000 rpm at Nominal Torque

Figure 29. Speed Transient from 0 rpm to 3000 rpm Graphl without Torque, Graph2 with 1.1Nm........... 34

Figure 30. Steady-State Speed at Nominal Speed and 33% Above at Maximal Torqueccccceeeeennee 35

Figure 31. SPeeA/TOrQUE PlIOL..........eiiiiiiie ittt e e e e e e e e e e st e e e e e e s e sntbaeeeaeraaeeeannnnres 35

[[0 [T P U Y= g T (=11 o DSOS PPPPRRNS 36

Application Report Q’
SPRA494

Introduction

The Texas Instruments TMS320F240 DSP Controller is suitable for a wide range of
motor drives. The TMS320F240 provides a single chip solution by integrating on-chip a
high computational power along with all of the peripherals necessary for electrical motor
control. The main effect of this combination is the possible implementation of advanced
controls such as vector control. High range controls increase system performance,
reliability, efficiency, and cost. This application report describes a speed control
implemented on a TMS320F240 for a three-phase Permanent Magnet drive with
sinewave currents.

The AC Permanent Magnet Motor

There are mainly two kinds of three-phase synchronous motors (SM). One uses rotor
windings fed from the stator. The other one uses permanent magnets.

A motor fitted out with rotor windings requires brushes to obtain its current supply and
generate the rotor flux. The contacts are, in this case, made of rings and do not have any
commutator segment. The lifetime of both the brushes and the motor may be similar. The
drawbacks of this structure — maintenance needs and lower reliability — are then limited.

Replacing common rotor field windings and pole structure with permanent magnets put
the motor into the category of brushless motors. It is possible to build brushless
permanent magnet motors with any even number of magnet poles. The use of magnets
enables an efficient use of the radial space and replaces the rotor windings, therefore
suppressing the rotor copper losses. Advanced magnet materials permit a considerable
reduction in motor dimensions while maintaining a very high power density.

Figure 1. Three-Phase Synchronous Motor with One Permanent Magnet Pair Pole
Rotor

The application studied in this report concerns the permanent magnet motor.
The Sinewave Currents

Two configurations of permanent magnet brushless motor drives are usually considered,
depending on the back-electromagnetic force (BEMF) waveform:

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 3

Application Report Q’
SPRA494

O Sinusoidal type
O Trapezoidal type
Different control strategies (and control hardware) are implemented for each.

The trapezoidal BEMF motor is usually called the DC brushless motor (BLDC). Its
appropriate control turns the stator phases on and off using a coarse rotor position. This
control is described in the application report, Implementation of a Speed Controlled
Brushless DC Drive Using TMS320F240, literature number BPRAO64.

Sinewave stator currents drive the sinusoidal BEMF drive called the three-phase
permanent magnet synchronous motor (PMSM). The stator magnetic field is set in
accordance to the rotor field. This application report describes the TMS320F240 DSP
Controller together with system considerations that allow high performance to be
extracted from this category of motor drives, also called BLDC 3 phases-on.

Application Description

Motor Characteristics

The synchronous machine with permanent magnets described in this application report is
a three-phase (Y) connected motor. The motor includes the following characteristics:

O Stator phase line-to-line inductance: 4.8mH
Line-to-line resistance: 2.1Q

Pole pairs: 3

Nominal Torque Tn: 2.2Nm

Nominal speed: 3000rpm

Motor nominal power Pn: 690W
Mechanical time constant: 1.5ms

Electrical time constant: 2.3ms

Thermal time constant: 30min

Torque constant: 0.76Nm/A rms

Voltage constant; 65Vpk/krpm

I I I I I I e L |

Magnet material: NdFeB
The above values are given at 20°C.

The back electromagnetic force has a sinusoidal shape and its stator phases are
supplied with sinusoidal currents.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 4

Application Report Q’
SPRA494

Figure 2. Three BEMF Waveforms at 1000rpm

Tk ZHIEIRE 10.0k% ik s
I [
A BEIEW
LR B A
1 { ¢ 1
- et
y i
I i
'
(=1 N'ﬁ:.-" ThY AT Wildms Al 7~ LTFV 3% jum 1867
B ooy b B

The Power Electronics Hardware

The ACPM750E used in this application is built around the 750W POWIRTRAIN integrated
power stage IRPT1056C from International Rectifier, which includes a rectifier bridge and
a three-phase ultra-fast IGBT inverter.

The converter topology supports either sinusoidal currents (three phases ON operation)
or direct currents (two phases ON operation). The first control is implemented in this
application report. Figure 3 shows the inverter topology used. All of the power device
securities are wired (Shutdown, Fault, Clearfault, Itrip, reverse battery diode, varistor
peak current protection). The current sensing is insured by 2 L.E.M. directly interfaced
with the TMS320F240. The power board also supports the voltage supply of an

incremental encoder.
- jLSb jL %L
Ia\
Ib

Ic

Ea—\ EE\:TL E—c\} 'ba

Figure 3. Inverter Topology

ude [————

The DSP Control Board

The control hardware is the Texas Instruments TMS320F240 Evaluation Module (EVM).
It can be directly interfaced to the power electronics board. This evaluation board has a
TMS320F240 DSP Controller with an oscillator, JTAG link, RS232 link, and the
necessary output connectors. See Figure 4 depicting the EVM board.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 5

Application Report ”
SPRA494

Figure 4. Top View of TMS320F240 EVM Board

An Integrated Solution

This part describes the features of the ACPM750E and provides an overview of the
intelligent AC drive unit, which results when the ACPM750E is connected with
Technosoft's Motion Control Kit MCK240 board.

The ACPM750E is a power module for three-phase AC motors, which can directly be
controlled with the MCK240 board. Both devices use the universal motion control bus
(MC-BUS). They can be connected by simply plugging the MCK240 on top of the
ACPM750E.

The ACPM750E offers galvanic isolated feedback signals for two motor currents and the
DC bus voltage. Motor speed provided by a tachometer can be measured through an
adjustable-gain circuit. Motor position given by an incremental encoder and three Hall
sensor signals can also be read through the MCK240.

When the ACPM750E is combined with the MCK240, it results in an intelligent AC drive
unit. This unit represents an ideal development platform for design and implementation of
high performance control algorithms for three-phase AC motors using the Texas
Instruments TMS320F240 (‘F240) DSP controller.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 6

Application Report Q’
SPRA494

Figure 5. ACPM750E with a MCK240

Field Orientated Control Principle

The vector control principle consists of controlling the angle and amplitude components
of the stator field. For ease of motor equation representation, the components of the
stator current are represented in a rotating reference frame d,q aligned with the rotor
axis, i.e., with the magnet flux. The motor torque for a permanent magnet machine
depends only on the quadrature (g) current component (torque component). In this case,
the most convenient control strategy is to set to zero the direct (d) current component to
minimize the torque vs. current ratio and then increase the motor (and converter)
efficiency. The control of current components requires the knowledge of the
instantaneous rotor position.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 7

Application Report %
SPRA494

Figure 6. Stator Current and Magnet Flux Space Vectors in the d,q Rotating Reference
Frame and its Relationship with the a, b, cStationary Reference Frame

STATOR

The control scheme proposed for the PM synchronous motor drive is shown in Figure 7.
It is based on the vector control principle arranged in the d,q rotating frame introduced in
the TI application report, DSP Solution for Permanent Magnet Asynchronous Motor,
literature number BPRA044. Two of three motor phase currents are measured with
current sensor, the Clarke transform is applied and then modifies a three-phase system
into a two-phase orthogonal system. The output of this transformation is indicated as i,s
and izs. These two components of the stator current are the input of the Park transform
that gives the stator current in the d,q rotating reference frame. Note that this second
transformation needs the rotor flux position. The quadrature current component is
regulated to the reference value given by the speed controller, while the direct current
component is set to zero to minimize the current vs. torque ratio of the motor. The
outputs of the current controllers, representing the voltage references, are then
impressed to the motor using the Space Vector Modulation technique, once an inverse
transformation from the rotating to the fixed stator reference is performed. An outer
speed control loop completes the scheme. All of the controllers used are standard Pl
regulators. Figure 7 shows this basic scheme.

Figure 7. PMSM Control with Field Orientation

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 8

Application Report
SPRA494

Convention

Software Variables

ia, ib, ic

isq isp

fa

la

Iar, Igr

[

Va, Vg

VSaref, Vspref
Vbc

VpcinvTe

Va, Vb, Ve
sector

ti, 2

taon, thon, tcon
XY Z

n, Nref

/idrmin, /idrmax
Ismax

iqrmin, iqrmax
Vmin, Vmax

Ki, Kpi, Kcar
Kispeed, Kpispeed, Kcorspeed
Kiweak, Kpiweak, Kcorweak
SPEEDSTEP
speedstep
encincr,
speedtmp

Base Values

phase currents

stator current (a,3) components

flux component of the stator current
torque component of the stator current
flux and torque command

rotor flux position

(d,q) components of the stator voltage
() components of the stator voltage (input of the SVPWM)
DC bus voltage

constant using in the SVPWM

voltage reference used for sector determination in the SVPWM
sector variable used in SVPWM

time vector application in SVPWM
PWM commutation instant

SVPWM variables

speed and speed reference

voltage regulator output limitation
phase current limitation

speed regulator output limitation

d,q current regulator output limitation
current regulator parameters

speed regulator parameters

field weakening regulator parameters
speed loop period

speed loop counter

encoder pulses storing variable
number of pulses in SPEEDSTEP

Since the TMS320F240 is a fixed-point DSP, a per unit (p.u.) model is used for the motor
variable representations. In this model all quantities are referred to base values. The
advantage of this method is that it can be used for any motor (different parameters,
power, user requirements, etc.) by simply changing the base values without changing any
part of the software.

The base values are determined from the nominal values with the following equations:

Ibase = \/EI n

V,..= V2BEMF

Dhase = 27 n

Where |,,, the BEMF are rms values. The BEMF is measured at nominal speed.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 9

Application Report Q’
SPRA494

The base RMS values of the motor used in this synchronous drive are as follows:

Lo = V21, =4/2-29=41A
V.= 3* 652195/

e

0, = 2 = 27.50=31415"4
sec

The quantities in p.u. are defined:

V=——
Vbase

synchronous spee@)
a)base

speed=

Numerical Consideration

The p.u. model has been developed so that the software representation of speed,
currents, and voltages are equal to one when the drive has reached its nominal speed
under nominal load. Knowing that during transients, the current might reach higher values
than the nominal current (l,,s¢) to achieve a short response time. Assuming also that the
motor speed range might be extended above the nominal speed (wpase), €VErY per unit
value may be greater than one. This fact forces the implementation to handle these
situations and thus determine the best suited numerical format.

The Numeric Format

The numeric format used is 4 bit for integer number and 12 bit for fractional number. This
numeric format is noted: 4.12 format. The resolution of this format is:

1
? =0.00024414

The correspondence from rated magnitude to 16 bit DSP variable is the following:
(-8; 7.99975586) < (-32768 ; 32767)

This format has been chosen because the drive control quantities are (most of the time)
not greater than four times their nominal values (in other words not greater than four
when the per unit model is considered). Otherwise, a different format will be chosen. So
using a representation range of [-8;8] ensures that the software values can handle each
drive control quantity not only during steady state operation but during transient operation
as well.

In this format if the p.u. variable is 1, the correspondent word is 01000h (212:4096). This
representation allows for both of the above mentioned variables to be eight times bigger
than the base quantities.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 10

Application Report ”
SPRA494

With sign extension mode set, the link between the real quantity and its 4.12
representation is given by Figure 8.

Figure 8. Format Correspondence Diagram

32767 v

54 4e-5 7.99975586

-32768

FOC Software Organization

Software Synchronization

This software is based on two modules: the initialization and control modules. The first
one is performed only once at the beginning. The second module is based on a waiting
loop interrupted by the PWM underflow event. When this interrupt flag is set the
corresponding Interrupt Service Routine (ISR) is acknowledge and serviced.

Figure 9 shows the time diagram for the initialization and the operating system.

Figure 9. FOC Software Initialization and Operating System

PWM Underflow

Interrupt
_ o
T1CNT sampling Period T= §&=2*PWMPRD /
A A
PWMPRD=600*50ns=305
Initialization talgorithm | Waiting Time ¢ algorithm

Software
Start

The complete FOC algorithm is computed within the PWM ISR and thus runs at the
same frequency as the PWM frequency. The waiting loop could be easily replaced by a
human machine interface. The interface software presentation is beyond the scope of
this report but is useful to fit the control code and to monitor the control variables. The
overview of the software is given in the flow chart below:

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 11

Application Report

*i’
SPRA494

Figure 10. General Software Flowchart

Hardware
Initialization

SW Variables
Initialization

)

The DSP Controller Full Compare Unit is handled to generate the necessary pulsed
signals to the power electronics board. It is set to generate symmetrical complementary
PWM signals at the frequency of 16.6kHz with TIMER1 as time base and with the

DEADBAND unit disabled. The sampling period (T) of 60us can be achieved by setting
the timer period T1PER to 600 (PWMPRD=258h).

Figure 11. Control Algorithm Timing

PERIOD interrupt

N2 N
Tcmp Temp3!
Temp 2 e f. mp2 e[
Temp L—"" Templ
PWM 1 | : C | [:]
PWM 2 : : : ‘ T
PWM 3 : ‘ |
‘ : — —— : t
To© ta “t2' To To ‘tai tz Tol - S
2 2 2 2
Tpwm,k-1 Tpwm,k
f 1
: Calculation cycle k Calculation cycle k+1

Flow Chart

After the F240 features and variable initializations, the software jumps to the waiting loop.
Below is presented the user interface. It is interrupted every time an interrupt occurs to

start the control. This algorithm is asynchronous from the control and uses the MIPS not
used by the control code. It behaves like a waiting loop.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 12

Application Report ”

SPRA494

Figure 12. Waiting Loop/User Interface

User Interface

. Is there any
N data available

Getit and store it
into ‘option’

Is it option 1

-
..
No

Get it and store it
into ‘variable'

Get it and store it
into ‘variable'

L Isitoption 6 i Yes —p

The next block diagram shows the control interrupt service routine. It is executed at the
same frequency as the PWM.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

13

Application Report
SPRA494

Figure 13. Control Routine Block Diagram

Start Control
Routine

sampling currents
la, Ib

teta = -90
iq reference = Igrinit
initialize some variables

YES.

Read encoder pulses
calculate position (teta)

Calculate speed?
eedstep=SPEEDSTEP.

YES—— Calculate speed (n)

v
speed Pl regulator with
limitations and integral

component correction

v

Stator Voltage (Vr)
calculation

v

Voltage Pl regulator

calculation of the flux
componant idr

v

B calculation of igrmax and
igrmin from idr

(a,b,¢)->(a.p)
Park Transform

v NO

Calulate sin(Teta) and
cos(Teta)

(e.p)->(d,q)
Clarke Transform

q-current Pl regulator with
limitations and integral
component correction

d-current Pl regulator with
limitations and integral
component correction

(d,q)->(.p)
Inverse Clarke Transform

End Control
Routine

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

Application Report ”
SPRA494

Block Diagram

Figure 14. Block Diagram of the FOC Including Closed Loop Field Weakening Control

7
Vdr _ i Vdr Vor i
e e e 0 S e e L
Id dq |[3 (XB |a
i of o ab ib
n D/A
interface
LJ
0

Parameter Adaptation

This section deals with parameter adaptation depending on the motor specifications.
Changes will be done depending on motor poles, rated speed, encoder resolution and
current sensor scaling. The proportional integral regulators will be explained for the user
to handle the coefficient optimization. All of the parameter adaptation described here
needs to be done in the initialization part of the software.

Motor Poles

Depending on the motor poles, the pulse increments have to be multiplied by Kencoder
so that the number of QEP counts is equal to 360° after an electrical period (the angle
360° is equivalent to 1000h). In the general case Kencoder is calculated as follow:

1024
Encoder_ resolution

Kencoder= N
N is the number of pair poles.

In the case of a three-pair pole motor having a 1024 pulse encoder, set the variable
Kencoder to 3 and make a filter as follows:

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 15

Application Report Q’
SPRA494

Kencoder .word 0c000h ;equivalent to 3.0 in 4.12 format

It encoder ;multiply encoder pulses by Kencoder to have therotor electrical
position

mpyu Kencoder ;encoder pulses = 1365 -> theta = Offfh = 360 degrees

pac ;encoder pulses = 2731 -> theta = 1fffh = 1*360 degrees
;encoder pulses = 4096 -> theta = 2fffh = 2*360 degrees

sach theta,2 ;shift right by 12 for 4.12 format then by 2 to be scaled
;between 0 and 2fffh

lacl theta

and #0fffh filter to get an angle between 0 and Offfh

sacl theta

Initialization Vector

Idr and igr are the reference values of id and ig. In permanent state, these values
correspond to a current generating a constant flux perpendicular to the magnet’s flux and
produce a constant torque. In the initialization phase, the stator flux is not rotating, theta
must be set to place the rotor aligned with phase A. The rotor will be aligned with iq being
different from 0, id angle equals -90°.

INITANGLE .set fcO0Oh ;setto -90°

At this point the motor should be able to rotate until it reaches a position aligned with
phase A. It is then able to generate some torque if forced to another position. The
amplitude of the starting current is fixed in amplitude, the value capable of driving the
maximum load torque at open loop. Id and iq are respectively equal to zero and Igrinit.

Igrinit .set 1000h ;set to nominal current

DC Voltage

The voltage constant is usually found as a motor characteristic Ke in V/rpm
The maximum inverter voltage is equal to VDC 310V

The rated voltage is determined by the BEMF voltage measurement at nominal speed.
VDCpu is the variable that sets this magnitude.

VDC is determined as the maximum inverter voltage (ex: 310V) divided by the
normalizing factor Vbase, scaled in format 4.12, e.g., VDC = (310/195) *1,

VDC . set 196fh

VDCinvTc is the invert of VDC multiplied by the PWM period PWMPRD,
VDCinvTc = (195/310)*PWMPRD

PWMPRD .set 258h ,equivalent to 60us
VDCinvTc .set 179h

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 16

Application Report %
SPRA494

Current Sensing and Scaling

Hardware Interface

The FOC structure needs as input two-phase currents. In this application, the two
currents are sensed by current-voltage transducers (LEM). The current sensor output
needs then to be rearranged and scaled so that they can be used by the control software
as 4.12 format values. The complete structure of the current obtained is depicted in
Figure 15.

Figure 15. Current Measurement Chain

l !

I

|

I

1023 10-bit !

I

I

m :
! LEM

I

X=a,b TMS320F240 !

In this application the LEM output signal can be either positive or negative. This signal
thus needs to be translated in the range of (0;5V) by the analog interface to allow the
single voltage ADC module to read positive and negative values.

(_I max;I max) g (0!5/)

The resolution for the current measurements is:

max

210

resolution=

The integrated DSP A/D converters have a 10 bit resolution. The corresponding voltage
step is: 25 = 4.88- 10°V . Figure 16 shows the different stages of the implemented
current sensing:

Figure 16. Current Sensing Interface Block Diagram

2.5V analog
Offset

% Je ‘ LEM
‘ LEM Output D
v

OA Output Voltage
ADC Input Voltage 9

Volts Volts Volts,
[S IMax .5} IMAX

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 17

Application Report Q’
SPRA494

Note that Iqax represents the maximum measurable current, which is not necessarily
equal to the maximum phase current. The 2.5V analog offset is digitally subtracted from
the conversion result, giving thus a signed integer value of the sensed current. The result
of this process is represented below:

Figure 17. Sensed Current Values before Scaling

Numerical Value
before Scaling

Sensed Currén

Scaling the Sensed Currents

Like every other quantity in this application, the sensed phase currents must now be
expressed with the p.u. model and then be converted into the 4.12 format. Knowing that
the p.u. representation of the current is defined as the ratio between the measured
current and the base current and that the maximum current handled by the hardware is
represented by 512, the p.u. current representation into the 4.12 format is performed by
multiplying the sensed current by the following constant:

409
current — 512 |
(7

l base)

K

max

This constant can be evaluated in one single calculation, not only the p.u. modeling but
also the numerical conversion into 4.12 format. When nominal current flows in the motor
running at nominal speed the current sensing and scaling block output is 1000h
(equivalent to 1pu). You may change the numerical format by simply changing the
numerator value. You may adapt this constant to its own current sensing range by simply
recalculating Keyrren With its own I,y Value.

Below is given the dedicated code to scale the current stored in ADCFIFO1. For each
current measured, one A/D converter input is used. In this way two currents are
converted at the same time (the conversion time for one channel is 6.6us). In the
application, channel 1 for i1 and channel 9 for i2 were selected.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 18

Application Report Q’
SPRA494

* Calculate I, from LEM measurement *

Idp #0eOh

NoConv bit ADCTRL1,1000b
bend NoConv, TC ;wait the EOC
laccADCFIFO1,10

ldp #lb
sach ISR_Temp ;temporary variable
lacl ISR_Temp
and #03ffh
sub#512 ;the range is [0fe00;01ffh]
sacllISR_Temp
spm 2 ;PM=10,
It ISR_Temp
mpy Kcurrent ;Kcurrent is defined like .word
pac

sach Ib ;lbf4.12 (1pu=1000h)
spm 0 ;PM=00

As an example, we consider an input of 0 to 5V representing a current from -10A to 10A.
The register range is then:

Input Related ADC_FIFO ADC_FIFO

Voltage Current hexa. Value Binary Value

Oov -10A 0000h 0000 0000 0000 0000b
5v +10A FFCOh 1111 1111 1100 0000b

All the variables in the software are normalized. The currents are set as 1000h, which
represents lbase (4.1Amps). To give better flexibility, the constant Kcurrent is defined
with a format 8.8. This does not influence the format of the currents i1 and i2, which
remain in format 4.12.

The scaling factor required is:
Kcurrent:(4096*10)/(512*4.l)*2821383h. In format 8.8
Kcurrent .set 1383h

The next step is to verify that the currents sampled i1 and i2 are equal to O after scaling.
To see this, emulate the software until you step into the label ‘go’. Set a breakpoint after
sacl 11, display the memory where 11 is contained or look at the F240 accumulator. If the
memory is not exactly 0, it is possible to adjust it directly in the software with the addition
of an offset (see comment DC offset in the software).

Current Regulation

The currents id and ig are controlled with a PI regulator to match their reference values
idr and igr. The output upi from the regulator is limited between Vmin and Vmax. This is
the anti-windup reset. Xig, the Pl integral component, is then adjusted from upi limitation.

The following figure illustrates the block scheme and the algorithm:

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 19

Application Report
SPRA494

reference error

Yr .

INPUT

OUTPUT

y

quantity
controlled

output
limitered
U,

output regulator
u

Umax

Yo ¥
e=y-y,
u=x+K,e
u=u
IFu 1, THENu=sy,
IFu<u,, THEN y=y,,
y
g=u-y
x=x+tKe+K, ¢

The proportional component is named Kpi, the Integral is Ki and the PI output limitation
error elpi is fed back in the xiq integral component with a coefficient Kcor and the relation

Kcor=Ki/Kpi.

Below is the PI regulator used to control iq. The same scheme is used for id.

;epig =iar - iq

;upi = xiq + Kpi*(igr - iq)

;scale in 4.12
;test if upi is negative

bend upimagzeroq,NTC

;value of upi is valid

;if upi<Vmin branch to saturate

; set ACC to neg saturation Vmin

lacc iqr

sub iq

sacl epiq

lacc xiq,12

It epiq

mpy #Kpi

apac

sach upi,4

bit upi,0

lacc #Vmin

sub upi

bend neg_satq,GT

lacc upi

b limiterq
neg_satq

lacc #Vmin

b limiterq

upimagzeroq
lacc #Vmax

sub upi
bcnd pos_satq,LT
lacc upi
b limiterg
pos_satq
lacc #Vmax
limiterqg

;upi was positive

;value of upi is valid

;if upi>Vmax branch to saturate

;set ACC to pos saturation
;at this point: Vmin < Vgr < Vmax

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 20

Application Report Q’
SPRA494

sacl vVar ;Save ACC as reference value

sub upi

sacl elpi ;elpi = Var - upi

It elpi

mpy #Kcor

pac

It epiq

mpy #Ki

apac

add xiq,12 ;calculation of the integral coefficient xig
sach xiq,4 ;Xiq = Keor*(Var - upi) + Ki*(igr - iq) + xiq

If Kcor is set as Kcor=Ki/Kpi and upi replaced by upi = xiq + Kpi*(igr - iq), the last
equation

xiq = Keor*(Vgr - upi) + Ki*(iqr - iq) + xiq
becomes

Xiqg = Kcor*(\Vqr - xiq) + xiq

Speed Regulation

The speed is given by a 1024 point incremental encoder. The two sensor output channels
(A and B) are directly wired to the QEP unit of the TMS320F240 DSP Controller . The
QEP assigned timer counts the number of pulses, given by the timer counter register
(T3CNT). At each sampling period this value is stored in a variable named encincr. As
the mechanical time constant is much lower than the electrical one, the speed regulation
loop frequency might be lower than the current loop frequency. The speed regulation loop
frequency is realized in this application using a software counter. This counter increments
on PWM interrupts. Its period is the software variable called SPEEDSTEP. The counter
variable is named speedstep. When speedstep is equal to SPEEDSTEP, the number of
counted pulses is stored in another variable called speedtmp and multiplied by KSPEED
to get the motor speed. SPEEDSTEP multiplied by the current cycle time determines the
speed cycle time

Encoder Constant

The TMS320F 240 QEP needs two input signals to count the pulses generated by the
encoder. They consist of two pulse sequences with variable frequency shifted of a
guarter of a period (90 degrees) apart. The QEP circuit counts both edges of these
guadrature-encoded input pulses. Therefore, the frequency of the generated clock to the
GP timer is four times the one of each input sequence. For example, if the encoder has
1024 pulses per revolution, the edges counted by the QEP circuit are 4096 for one
revolution. This constant is indicated with “Encpulses” and the number of pulses is
normalized in the range [0; Encpulses].

Encpulses .set 4096

In the case of an encoder with a number of steps not being a power of 2, the process
remains the same.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 21

Application Report %
SPRA494

*Read Encoder Pulses and Normalize to [0;EncoderPulses] *

Idp #0e8h

lacc T3CNT

ldp #ISR_Temp

sacl ISR_Temp

sub encoderold ;... subtract the previous sampling period value to have
;the increment that we'll accumulate in encoder

sacl encincr

add encoder

bcnd encmagzero,GT,EQ ;here we start to normalize encoder value to the

;range [0;Encpulses-1]

add #Encpulses ;the value of encoder could be negative, it depends on
;the rotating direction (depends on motor windings to
;PWM Channels connections)

encmagzero

sacl encoder ;now encoder value is positive but could be
;greater than Encpulses-1

sub #Encpulses ;we subtract Encpulses and we check whether the
;difference is negative. If it is we already have the
;right value in encoder

becnd encminmax,LT

sacl encoder ;otherwise the value of encoder is greater than
;Encpulses and so we have to store the right value

encminmax ;0k, now encoder contains the right value in the range

lacc tmp ;[0,Encpulses-1]
;the actual value will be the old one during the next

sacl encoderold ;sampling period

Speed Calculation

The speedtmp variable holds the number of pulses in SPEEDSTEP. The following figure
explains all of the steps in the speed calculation.

encoder

Kspeed is the constant that multiplies the encoder increment to calculate the real speed
named in the assembly software speed. In case the encoder detects only one increment
during a speed control time, the motor speed in 4.12 format is equal to:

Kspeedpu = (60 / (speed_cycle_time*Encpulses*speedpu))*4096
The encoder constant in 8.8 format is equal to:
Kspeed=Kspeedpu*256

To determine the speed with speedtmp as the number of encoder steps during a speed
cycle time, the code is:

It speedtmp ;multiply encoder pulses by Kspeed (8.8 format constant)
mpy Kspeed ;to have the value of speed

pac

sfl ;shift by 8 to recover from Kspeed being in 8.8 format
sach speed,7 ;speed is in 4.12 format

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 22

Application Report
SPRA494

As an example, to calculate Kspeed:.

Control cycle time = SPEEDSTEP * PWMPRD = 28*60 us

Encpulses = 4096 incr
speedpu = 3000 rpm

Kspeed = (60/Encpulses) * (1/SPEEDSTEP *PWMPRD) * (4096/speedpu) * 2°

Kspeed = (60/4096) * (1/(28*60*10°)) * (4096/ 3000))*256 = 11.9*256

Kspeed = 3048 = Obe7h
Kspeed .set Obe7h ;14.28 in 8.8 format

Coordinate Transformation

Generation of Sine and Cosine Values

To generate sine and cosine values a sine look-up table and indirect addressing mode by
auxiliary register AR5 have been implemented. As a compromise between the position
accuracy and the used memory minimization, this table contains 2°=256 words to
represent the [0;2n] range. The above computed position (16 bits integer value) thus
needs to be shifted 8 positions to the right. This new position (8 bits integer value) is used
as a pointer (named /ndex) to access this table. The output of the table is the SIN@ value
represented in 4.12 format. Figure 18 shows theta, the Index and the sine look-up table.

Figure 18. Sing Calculation Using the Sine Look-Up Table

Sine Table 0

Q

Address 101

0T

J 4091

4095

Index
0 —>*>® 2095
2096
.

4091

0T

10T

Y
65435

65335

61445

61441

61440

61441

61445

65335

65435

1
|

\

3n/2

Note that to have the cosine value, 256/4=40h must be added to the sine Index. The
assembly code to address the sine look-up table is given below:

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 23

Application Report
SPRA494

* sinTheta, cosTheta calculation

mar *arb

It theta

mpyu SR8BIT

pac

sach Index

lacl Index

and #0ffh

add #sintab

sacl tmp

lar ars,tmp

lacl *

sacl sine ;sine Theta value, 4.12 format

lacl Index ;The same for Cos ...
;cos(theta)=sin(theta+90g)

add #40h ;90g = 40h elements of the table

and #0ffh

add #sintab

sacl tmp

lar ar5,tmp

lacc*

saclcosine ;cosine Theta value, 4.12 format

* END sinTheta, cosTheta calculation

The (a,b,c)->(a,p) Transform (Clarke Transform)

For more details, refer to the Tl application report, Clarke & Park Transforms on the
TMS320C2xx, literature number BPRA048, where the theory is explained. The format
used is also 4.12 format.

* Clarke transform

* (a,b,c)->(alfa,beta)

* jalfaS=la

* ibetaS=(2*Ib+la)/sqrt(3)

lacc
sacl
lacc
add
sacl
spm
It
mpy
pac
sach
spm

la

ialfaS sialfaS=la

Ib,1

la

ISR_Temp

2 ;shift 4 places after multiplication
ISR_Temp

#SQRT3inv

ibetaS ;ibetaS=(2*Ib+la)/sqrt(3)
0 ;no shift after multiplication

END Clarke transform *

where SQRT3inv is the following constant (.set):

1
SORB inv=—==0577«< 093dh
Q 73

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 24

Application Report Q’
SPRA494

The (a,B)->(d,q) Transform (Park Transform)

For more details refer to Tl application report, Clarke & Park Transforms on the
TMS320C2xx, literature number BPRA048, where the theory is explained. The format
used is also 4.12 format. With the quantity Theta we consider the rotor flux position.

* Park transform

* (alfa, beta)->(d,q)

* id=ialfaS*cos(theta)+ibetaS*sin(theta)
* ig=-ialfaS*sin(theta)+ibetaS*cos(theta)

spm 2

It ibetaS
mpy sinTheta
Ita ialfaS
mpy cosTheta
mpya sinTheta
sach idS ; shift 4 places after multiplication
lacc #0

It ibetaS
mpys cosTheta
apac

sach iqS

spm 0

* END Park transform *

Inverse matrixes are used to perform the back transformation from currents [id, iq] to [i1,
i2,i3].

Space Vector Modulation

Using a three-leg inverter, eight transistor configurations are possible. These
configurations generate eight vectors two of which are ‘zero’ vectors. The remaining
vectors divide the plane into six sectors.

Figure 19. SVPWM, Vectors and Sectors

V,(010) BT Ve (110)

50 30
V3(011) V7(111) \ / V(000) 74(011)4({
40 2
60
V1(001) veti01)

The first step in generating software PWM is to determine the sector where the reference
voltage Vref is located. To do this, Vref is transformed into the stator coordinate system
Va, Vb and Vc, and the following criteria is applied:

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 25

Application Report ”
SPRA494

IFv,>0 THENA=l, ELSEA®
IFv,>0 THENB=, ELSEB®
IFv,>0 THENC-=l, ELSEC9®
sedor:= A+2B+4C

Depending on the sector, two adjacent vectors are chosen. The binary representations of
two adjacent basic vectors are different by only one bit, so that only one of the upper
transistor switches when the switching pattern switches from one vector to the adjacent
one. The two vectors are time weighted by [t1, t2] in a sample period T to produce the

desired output voltage®.

The PWM pattern retained for the output signal is symmetrical PWM where t1 and t2 are
centered. TO, the remaining time, is shared equally on each side of t1 and t2 within a half
PWM period as shown in the following graph.

A

PWM 1

PWM 2

PWM 3

To * tg 512: To

2 2

The following equations give the method to determinate the right value for the compare
register depending on [t1,t2] and the sector.

The first step is to perform saturation control of t1 and t2:

IF (t, +t,) > PWMPRD THEN

_, PWMPRD
t-1SAT_ ti tl+t2

_, PWMPRD
tZSAT_ 2 t1+t2

The second step is to compute the three necessary duty cycles. This is shown below:

PWMPRD- {- t
taon =
2
tbon = taon+ t1
tcon = tbon+ t2

! More details about space vectors are given in the application note BPRAO73.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 26

Application Report Q’
SPRA494

The last step is to give the right duty cycle (txon) to the right motor phase (in other words
to the correct CMPRX) according to the sector. Figure 20 depicts how this is determined.

Figure 20 Assigning the Right Duty Cycle to the Right Motor Phase

Sector
Phase 1 2 3 4 5 6

CMPR1 | tbon | tbaon| taon | tcon | tcon | tbon

CMPR2 | taon | tcon | tbon | thon | taon | tcon

CMPR3 | tcon | tbon | tcon | taon | tbon | taon

Field Weakening

The Field Weakening

Under certain assumptions it is possible to extend the control speed range beyond the
motor’s nominal speed. This section explains one possible process to perform this speed
range extension.

Field Weakening Principles

Under nominal load the mechanical power increases as a linear function of speed, up to
the nominal power (reached when speed is equal to its nominal value). Knowing that
mechanical power is proportional to the torque T times the speed n and that its nominal
value has been reached when speed is equal to 3000rpm (nominal value), the torque
production must be reduced if the desired speed is to be greater than 3000rpm. This is
shown in Figure 21.

Figure 21. Field Weakening Real Operation

Constant Torqué Constant PowérConstant Power*Speed
Region Region Region

Pnominal |...........cccc.ccocooco... :

Nominal
Torque BN

Mechanical Power

S o \ — — — Output Torque
By

~
~
~
~

~
-~

Normal Nominal Extended Speed
Speed RangeSpeed Speed Range

Note the three different zones. In the constant power region the nominal torque
production behaves like the inverse function of speed, allowing thus constant power
production (P=Tw). In the constant Power*Speed region the nominal torque production
behaves as the inverse function of the squared speed.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 27

Application Report Q’
SPRA494

The maximum torque function is equal to a constant in the first region as V (the phase
voltage) increases linearly with speed. Above the nominal speed the phase voltage is
maintained constant and equal to its nominal value, thus making the maximum torque an
inverse function of the squared speed. This results in the curve shown in Figure 22.

Figure 22. Maximum and Nominal Torque vs Speed

4 Constant Torqug Constant Power Constant Power*Speed
Region Region | Region

Maximum :

Torque

Nominal
Torque

Normal Nominal Extended Speed
Speed RangeSpeed Speed Range

Note that the nominal torque curve crosses the maximum torque curve. This cross point
is the brake point, delimiting the constant power region and the constant power*speed
region. Note also that the nominal torque curve crosses the depicted steady state torque
curves in the stability zone (making nominal torque to be smaller than the maximum
torque) until the brake point. Once this point has been crossed the nominal torque is
forced equal to the maximum torque, thus making the power behave as the inverse
function of speed.

These characteristics are only related to the motor capabilities. Good control will enable
the full speed, torque and efficiency of the drive to be exploited.

Field Weakening Constraints

The drive constraints for the extended speed range are first the phase voltages and
second the phase currents. Knowing that the phase voltage references increase with
speed and as their value can not exceed the nominal value, the flux component must
then be reduced down to a value that allows the nominal phase voltage to be maintained
and the desired speed to be reached.

Knowing that phase currents increase with load, the maximum resistive torque put on the
drive during the extended speed range operation must be set to a value that keeps the
phase currents not greater than their nominal value. The maximum resistive torque
decreases then as a function of speed.

Both the maximum phase voltage and flux references are given for normal and extended
speed range in the following scheme (see Figure 23).

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 28

Application Report Q’
SPRA494

Figure 23. Field Weakening Voltage Constraints

Phase Voltage
— - - Flux

Nominal Flux

Normal Nominal Extended

Speed Range Speed Speed Range SPeed

Note that both voltage and current constraints must be respected in steady state
operation. In fact, during transient operation the phase current might reach several times
its nominal value without any risk for the drive. This only assumes that the resulting drive
overheating can be dissipated before performing another transient operation.

Field Weakening of the Motor at High Speeds with Closed Loop
Scheme

The stator current frequency is increased to achieve high speeds. The stator voltage is
directly proportional to the motor flux and the angular speed. In normal condition the
motor flux is kept constant. It is then obvious that a maximum stator speed is reached
with the limit output voltage of the power converter. To reach a higher speed, the flux is
reduced as an inverse of the angular speed to keep the stator voltage constant and equal
to its maximum.

Figure 24. Control Range of a PMSM in Steady State

A
%

Field control: Voltagg control ~ : Field control
range range range

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 29

Application Report Q’
SPRA494

Practically, if we consider the stator current in the d,q rotating reference frame and its
relationship with the a,b stationary reference frame, below the speed where the maximum
output voltage is reached, the best choice is 8=+n/2 and i;=0. The effect of the field
weakening can be achieved by advancing the current vector beyond 6=n/2, which means
introducing a current component in the negative d-axis. As a consequence, i; and then
the torque are reduced so as not to exceed the maximum output current ismax:

- _ -2 -2 .
Is—qlld-l-lqﬁl smax

Two schemes are possible to implement the field weakening operation. The simplest is
the standard open loop control for the d axis current reference. Despite the relative
simplicity of this realization, it has the following drawbacks:

O The reference current equation must be set in the worst-case condition of operation
because it corresponds to the lower line voltage and gives a low utilization of the
inverter with higher voltages.

O High-speed reliability: to guarantee the correct operation of control at high speeds, it
is necessary to reduce further the voltage capability of the inverter.

O The reference current equation depends on the motor electrical characteristics, and it
is necessary to consider these parameter variations in the determination.

A closed loop control avoids these negative effects. It consists of feeding back a
proportional integral (PI) regulator with the motor d and g axis voltages applied to the
motor and calculating a new reference for the d-current component. This diagram allows
us to exploit the full voltage capability of the inverter independently of the line voltage and
the motor characteristics. Idr being determined, the new igr limitation range set by
[igrmin,igrmax] is then calculated to not exceed ismax, as explained before.

TMS320F240 Field Weakening Implementation
This section describes in detail the field weakening closed-loop control system. All

calculations are performed in real time. No look-up table or approximation of steady-state
characteristics is used for this implementation.

Figure 25. Field Weakening Function Structure

Vbase

Vr
HR Saturation to .
N sqrt(x) %—P Pl »IdrminlldrmaxT idr
A

* |

vdr P x"2

vagr —¥» x"2

X2

v

Ismax”2 - x

L igrmin

igrmax

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 30

Application Report ”
SPRA494

Vdr and Vqr are used to determine the neutral-phase voltage.

Vr = yVvdr® +Vagr?

The square root is calculated in real time using the Newton-Raphson method with the
recursive equation:

X(n) = 0.5 * (X(n-1) + N/X(n-1))

* Macro

isqrt .macro

lacc *+ ;lacc Vr, X(0)

sfr ;Initial approximate root=N/2

sacl *+ ;(AR5+1) = X(0)/2

splk #10,* ;(AR5+2) = 10 (iterations for square root)
isqrt?: X(n) =0.5* (X(n-1) + N/X(n-1)):

sbrk #2

lacc *+

rpt #15

subc *

and #OFFFFh

add *

sfr

sacl *+

lacc * ;Repeat until iterations completed:
sub #1

sacl *

bend isqrt?,NEQ

mar *- ;Restore AR5 & put result in acclow:
lacc *

mar *-

.endm

Vr and the reference value Vbase are controlled with a Pl regulator to generate the
output idr. In the field weakening region, [idr| increases. In order not to go over the
nominal stator current ismax, igmax is decreased with the relation:

iqg max= +is max—idr?

The new igmax calculated serves as limitation for iqr, the result of the speed controller.
As igr is directly proportional to the motor torque, modifying igmax also changes the
torque available on the motor.

Results

Software Implementation
The proposed control scheme has been implemented on the TMS320F240 EVM. All of

the control routines are implemented using assembler language with fixed-precision
numerical representation.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 31

Application Report Q’
SPRA494

The calculation time of the whole control algorithm is described below:

PWM (us) | Control (us)| MIPS
FOC 60 32,6 10,9
FOC+speed control 60 35 11,7
FOC+field weakening 60 35,6 11,9
FOC+speed control+
field weakening 60 38 12,7

The inverter switching frequency is 16.6 kHz. The timing of the control algorithm is shown
in Figure 4. The control algorithm is run by an interrupt (PERIOD interrupt) generated by
the event manager PWM unit to synchronize the control and the PWM generating ramp.
The speed reference and the main parameters of the control scheme can be changed in
real time by means of a host PC linked to the evaluation board via a RS232 link.

Experimental Results

This section handles the results of the different drive operations. The motor has been
mounted on a test bench with adjustable resistive torque.

At power up, a constant flux is imposed to the drive so that the shaft aligns to a position
that is defined as zero angle (index mark). This initialization phase is performed so that a
non-absolute encoder may be used as position sensor. This phase does not take into
account the direction of shaft at start up. The current amplitude during the initialization
phase is the nominal current so that the shaft can be aligned even at nominal torque.

Results until Nominal Speed

Figure 26. Speed Transient from 0 rpm to 1000 rpm
Tek Run: 2.50kS5/s Hi Res _rlm

H .
H AL

A 100.0ms
l@: 49.2ms

|

|
500mV _ Ch2 500mV__ M20.0ms Ch2 7 3.23V 2 Mar 1998
1.00 vV Y

Ch4 2.00 08:09:31

This speed transient picture is given with no torque. The values observed on the
oscilloscope are directly derived from control variables through four digital-to-analog
converters included in the F240 EVM.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 32

Application Report Q’
SPRA494

plotl: n_ref the reference speed
plot2: n the sensed speed

plot3: id the magnetizing current

0 I I R |

plot4: ig the current proportional to the torque

The scaling factor for the variables are 1.25 volts for 1 pu (1000h). In this case:
O 415mV is equivalent to 1000rpm.

O 1.56V is equivalent to 5.12Amps, the maximum current.

The first part of the plot illustrates the Pl behavior in steady-state at initialization phase. Id
is maintained to 0 and iq to Igrinit = 1.5Amps, the starting phase current.

After the speed reference step, iq is set to its maximum value for a better dynamic
response, then goes back to its steady-state value related to the low torque implied.

Figure 27. Speed Transient from O rpm to 3000 rpm at Nominal Torque
Tek HIE Single S$q+1.00k5fs | .
i f

I 4

Ch2 zoom: 0.3X Vert 0.2XHorz 1A: 865ms
. . . i :@:Sﬁoms

Chi~ 7.00v M ;lﬂ T~ T.00V WM 250ms Ch2J 3.00V 6 Mar 1998
ch3 1.00v Chd 200V 02:4%:26

This plot is a speed transient from zero speed to nominal speed (3000rpm) at nominal
torque (2.2Nm). Id is always kept at zero, iq during transient reaches the maximum
current which is 25% higher (5.12Amps) than the nominal current (4.1Amps). In steady
state iq is equal to its nominal current as the conditions are nominal power.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 33

Application Report Q’
SPRA494

Figure 28. Speed Transient from -1000 rpm to 1000 rpm at Nominal Torque

Tek Single S([aq I2.50ka5
H T
I

1
1

I
| Chdzoom: T.0XVert 0.2xHorz |]A:378ms
1 . . . i ‘;@: 344ms
T "

Chi~S00mv — Ch2 500mv W 100ms CA2 7 3.14V 6 Mar 1998
Ch3 1.00v [@E 2.00v 02:34:44

The speed transient from -1000rpm to 1000rpm is done in two phases. The first step from
-1000rpm to zero speed is helped by the resistive torque and the acceleration phase from
0 to 1000rpm. All the transient times can be increased by increasing the maximum iq
value to more than 25% of the base value.

Field-Weakening Operation

Figure 29. Speed Transient from 0 rpm to 3000 rom Graphl without Torque, Graph2

with 1.1Nm

Tek single Seq 500 S/s Tek single Seq 500 S/s -t

1

i 1

I

Chd zoom; 1.0X Vert 1.0X Horz A: 220ms
|

Chd zoom: 1.0X[Vert 1.0X Horz A: 392ms
@: 350ms

@: Z12ms I

wk A

I
|
13T
I
1

24|

AT

M T00ms Chd \ 4.7V 26 Mar 1998

i

I

L
W To0ms CRd X 4.7V 26 Mar 1998 CRT 100V ChZ 1.0
Ch3 1.00v o 03:08:09

500 Ve 03:06:52 . é ”Q
Plotl is id. It remains constant even during transients, as the voltage Vr (plot3) does not
exceed its maximum value equal to Vbase, the BEMF at nominal speed.

Iq (plot2) increases to its maximum value igrmax and goes back to a value related to the
torque imposed when the speed reference is reached.

The break observed in Vr comes from the fact that this variable is only calculated for
voltage above Vbase/2.

The last plot is the phase current. It illustrates the control performance never losing the
motor position.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 34

Application Report Q’
SPRA494

Figure 30. Steady-State Speed at Nominal Speed and 33% Above at Maximal Torque

Tek 10.0ks/s T [7 Acqs} Tek 10.0kS/s 487 Acqs,

1 - 14

A AP AP O i AN PN I

SR P SO SR SN PRI OU
27 24|

VAN WMWY

200V Chz 2.00V _ M5.00ms Chd \ 200mV 27 Mar 1998 Chi 200V~ Ch2 200V
200V Chd 5.00vVQ 02:08:35 200V Chd 5.00vVQ

=
e

M5.00ms Chd \ 200mV 27 Mar 1998
02:14:49

The first graph is done at nominal conditions 3000rpm and 2.2Nm. Id is equal to zero and
ig to its maximum value igrmax. Vr is equal to Vbase.

The second graph is done at 4000rpm with 1.3Nm. Id is controlled negative. 2.2Nm can’t
be achieved, as iqr is limited to igrmax, which is updated so that the stator current

. .2 -2 . R R
Iy =+/l4 H q remains constant and equal to its maximum ismax during field weakening
operation.

Figure 31. Speed/Torque Plot

The maximum speed reached is 60% above the nominal speed. The table below gives
the results in term of torque and efficiency achieved depending on the speed.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 35

Application Report Q’
SPRA494

Speed (rpm) | Torque (Nm)| Efficiency (%) | Power (W)
1000 2,21 74 690
2000 2,21 82 690
3000 2,21 85 690
3500 1,91 85 690
3650 1,81 85 690
4000 1,31 80 540
4500 1,04 78 490
5000 0 0 0

User Interface

The user interface is implemented to help the programmer while optimizing some of the
control parameters. It allows changing the speed, or selection of any of the control
variables to be visualized through any of the four DAC outputs, to run and stop the motor
or to change in real-time the PI parameters. Many other options may be implemented.
The main program is written in Qbasic. Below is the appearance of the User screen:

Figure 32. User Screen

Digital Control of a Permanent Magnet Motor

1 Saeed_reFerence [B rpm . <Br KEpi [& pul

2> DAC_Outputs OACL: [iqel DACZ2: [ig5] Ki [.83 pu)
i AC3: (1 DAC#: [(LU=) Koor [.85 pu)

<8y Init_phase (B=Init) (Init) <6 Kpispeed [6.5 pul

<4> Ubaze [128 Uolts) Kizpeed [883 pul

Kcorspesed [LABA4E pul
Choice 3

[Al ia (111 Ub (221 ide (331 n_ref

[1) ib (121 Uc (23] igr 134] epispeed

L2 ic [12) UoC (24) idg 12E) nispeed

[3 Ua (14) taon (28] g3 =

[4] Ub (151 thon [26] Ldr (=T

[5] Uz [1&) tcon [27) Ugr (281 £

L &) senol [17) teta [22) epl 129)] sector

[| (121 ialfa (23] epl (48] initphase

[=1 -] (131 ibeta (3a) =i 1411

L 3] coseno [26] Ualfar [21) wi L4z)

1) Ua (211 Ubetar (22) n 142

The Qbasic code is given in the appendix. Another part is needed to perform the data
exchange from the DSP serial communication interface to the PC. The code is found at
the end of the assembly code.

Conclusion

This document presented a field orientated control scheme for a three-phase permanent
magnet drive based on the Texas Instruments TMS320F240 DSP Controller. It has been
shown how the real-time processing capabilities of this DSP controller can lead to a
highly reliable and effective drive. Not only is drive reliability and efficiency improved, but
so is the motor and drive cost effectiveness.

This document also described the speed variation capability, direct torque and flux
control, and excellent dynamic behavior. This level of performance has been reached by
utilizing only 10.6 MIPS from the 20 MIPS available with the code size not exceeding
1.1Kword of program memory with 300 words of data memory.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 36

Application Report
SPRA494

g

References

Texas Instruments, Field Orientated Control of Three-Phase AC-Motors, Literature

number: BPRAO73, December 1997.

Texas Instruments, DSP Solution for Permanent Magnet Asynchronous Motor, Literature

number: BPRAO44, Nov. 1996.

Werner Leonard, Control of Electrical Drives, 2nd Completely Revised and Enlarged

Edition, Springer, ISBN 3-540-59380-2.

Texas Instruments, Current Measurement Using a Single Shunt Resistor, Literature

number: BPRAO77, December 1997.

T.J.E. Miller, Brushless Permanent-Magnet and Reluctance Motor Drives, Oxford

Science Publications, ISBN 0-19-859369-4.

Texas Instruments, Implementation of a Speed Controlled Brushless DC Drive Using

TMS320F240, Literature number BPRA064, July 1997,

Texas Instruments, Clarke & Park Transforms on the TMS320C2xx, literature number

BPRAO048, June 1998,

Appendix A. TMS320F240 FOC Software

* % ok

TEXAS INSTRUMENTS *
Field Orientated Control for PMSM *
with field weakening *

I R N R I R S R T

File Name: focmck7.asm *
Originator: Michel Platnic *
Description: The software includes *
-PMSM field oriented control *
-2 phase current measurement *
-PDPINT routine for fault *
-Current closed-loop initialization phase *
-Vr BEMF real-time calculation *
-igr real-time limit calculation /idr ~ *
-idr PI calculation *
-User Interface *

Function list: -c_int0 *

Target: TMS320F240, MCK240 *
Code can be Flashed *
ACPM750E Power board *
Digiplan Motor MD3450 *

*

status: Working *

*

History: Completed on 26 March 98 *

.include ".\c240app.h"
.mmregs

* Start

.globl _c_int0 ;set _c_int0 as global symbol

.sect "vectors"
b _c_int0 ;reset interrupt handler

_c_intl b _c_intl ;RTI,SPI,SCI,Xint interrupt handler

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

37

Application Report
SPRA494

b _cC_int2 ;PWM interrupt handler

_c_int3 b _c_int3;
_c_int4 b _c_int4;
_c_ints b _c_int5;
_c_int6é b _C_int6 ;capture/ encoder Interrupts

.space 16*6 ;reserve 6 words in interrupt table

* Auxiliary Register used

*ard pointer for context save stack

*ar5 used in the interruption c_int2 for control calculation
*ar6 for main program

stack .usect "blockb2",15 ;space for Status Register context save in Page 0
dac_val .usect "blockb2",5 ;space for dac values in Page 0

*** Motor Digiplan ***

*** Numeric formats: all 4.12 fixed point format twos complement for negative values
*** (4 integer & sign + 12 fractional) except otherwise specified

* - Nominal current 4.1 Amps max= 2.2/0.76 *sqrt(2) (max value)

* - Nominal Torque 2.2 Nm

* - Rated Power 1150W

* - Currents: 1000h (4.12)= 4.1 A = Ibase (max value)

* - Voltages: 1000h (4.12)= 325 V = Vbase (max value) phase-neutral
* - Angles : [O;ffffh] =[0;360] degrees

* - Speed :[0;1000h] (4.12) = [0;3000] rpm

*** END Numeric formats

* Look-up tables .includes
* N.B. all tables include 256 elements

sintab .usect "table",256 ;space to copy sine table in RAM

.sect "table_f* ;sine table in ROM
sintab_flash .include sine.tab
;sine wave look-up table for sine and cosine waves generation
;generated by the BASIC program "SINTAB.BAS"
;4.12 format

*** END look-up tables .includes

* Variables and constants initializations
* To program the flash array all variable are set to bss
* A'V'is added in front of the variable initialized later

.data

*** current sampling constants
VKcurrent .set 00b38h ;8.8 format (*11.22) sampled currents normalization
constant
;ADCING (il current sampling)
;ADCIN14 (i2 current sampling)
;+/- 5.75 Amps for Ibase = 4.1 Amps
*** axis transformation constants
VSQRT3inv .set 093dh ;1/SQRT(3) 4.12 format
VSQRT32 .set 0ddbh ;SQRT(3)/2 4.12 format

*** PWM modulation constants

PWMPRD .set 258h ;PWM Period=2*600 -> Tc=2*600*50ns=60us
;(50ns resolution)
Tonmax set O ;minimum PWM duty cycle
MAXDUTY .set PWMPRD-2*Tonmax ;maximum utilization of the
;inverter

*** P| current regulators parameters
VKi .set 07Ah ;4.12 format = 0.03

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

38

Application Report

SPRA494
VKpi .set 999h ;4.12 format = 0.60 (include period)
VKcor .set Occh ;4.12 format = 0.05

;Kcor = Ki/Kpi
*** P| speed regulators parameters
VKispeed .set 7ah ;4.12 format = 0.03
VKpispeed .set 06800h ;4.12 format = 6.5
VKcorspeed .set 12h ;4.12 format = 0.0046

*** P| field-weakening regulators parameters

VKiweak .set 07Ah ;4.12 format = 0.03

VKpiweak .set 999h ;4.12 format = 0.60 (include period)
VKcorweak .set Occh ;4.12 format =0.05

***\/gr and Vdr limitations

Vbase .set 01000h ;BEMF at base speed

Vmin .set 0ecO0Oh ;4.12 format = -1.25 pu

Vmax .set 01400h ;4.12 format = 1.25 pu

*** |s and Idr limitations

Vismax .set Obb5h ;4.12 format = 3Amps Limitation for
;ACPM750E

Idrmin .set 0f44bh ;4.12 format = -3Amps limit. for ACPM750E

Idrmax .set 00000h ;4.12 format = OA (1000h = Ibase)

*** |nitialization phase Iqr
Igrinit .set 009clh ;4.12 format = 2.5A (1000h = Ibase)

*** Encoder variables and constants
VKencoder .set 0c000h ;this constant is needed only with
encoder !
;itis used to convert encoder pulses [0;4095] to an
electric angle [0;360]=[0000h;1000h]
;2.14 format unsigned = 3.0 (see "Theta calculation” block
for details)
Encpulses .set 4096 ;this constant is needed only with encoder !
;number of encoder pulses per round (mechanical)

*** Speed and estimated speed calculation constants
Nbase .set 1000h ;Base speed
Kspeed .set Obe7h ;this constant is needed only with encoder !
;itis used to convert encoder pulses to a speed value.
;8.8 format = 11.9 (see manual for details about this constant
calculation)
;base speed 3000rpm, PWMPR 258h
SPEEDSTEP .set 28 ;speed samplig period = current sampling period * 10

*** Speed and estimated speed calculation constants

.bss tmp,1 ;stemporary variable (to use in ISR only !!!)
.bss option,1 ;virtual menu option number

.bss daout,1 ;address of the variable to send to the DACs
.bss daouttmp,1 ;value to send to the DACs

*** DAC displaying table starts here

bss 1,1 ;phase current il

.bss 2,1 ;phase current i2

.bss 3,1 ;phase current i3

.bss Ua,1 ;Phase 1 voltage

.bss Ub,1 ;Phase 2 voltage

.bss Uc,1 ;Phase 3 voltage

.bss senol,1 ;generated sine wave value

.bss t1,1 ;SVPWM T1 (see SV PWM references for details)
bss 12,1 ;SVPWM T2 (see SV PWM references for details)
.bss coseno,1 ;generated cosine wave value

.bss Va1l ;Phase 1 voltage for sector calculation

.bss Vb,1 ;Phase 2 voltage for sector calculation

.bss Vc,1 :Phase 3 voltage for sector calculation

.bss vDC,1 ;DC Bus Voltage

.bss taon,1 ;PWM commutation instant phase 1

.bss thon,1 ;PWM commutation instant phase 2

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

39

Application Report

SPRA494
.bss tcon,1 ;PWM commutation instant phase 3
.bss theta,l ;rotor electrical position in the range [0;1000h]
;4.12 format = [0;360] degrees
.bss ialfa,1 ;alfa-axis current
.bss ibeta,1 ;beta-axis current
.bss Valfar,1 ;alfa-axis reference voltage
.bss Vbetar,1 ;beta-axis reference voltage
.bss idr,1 ;d-axis reference current
.bss igr,1 ;g-axis reference current
.bss id,1 ;d-axis current
.bss ig,1 ;q-axis current
.bss vdr,1 ;d-axis reference voltage
.bss Var,1 ;g-axis reference voltage
.bss epiq,1 ;g-axis current regulator error
.bss epid,1 ;d-axis current regulator error
.bss xig,1 ;g-axis current regulator integral component
.bss xid,1 ;d-axis current regulator integral component
.bss n,1 ;speed
.bss n_ref,1 ;speed reference
.bss epispeed,1 ;speed error (used in speed regulator)
.bss xispeed,1 ;speed regulator integral component
.bss X1 ;SVPWM variable
.bss VY,1 ;SVPWM variable
.bss Zz,1 ;SVPWM variable
.bss sectordisp,1 ;SVPWM sector for display
.bss initphase,1 ;flag for initialization phase
.bss encoder,1
.bss Vr,1 ;Phase max voltage
.bss igrmin,1 ;igr min limitation
.bss igrmax,1 ;igr max limitation

*** END DAC displaying table

.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss

.bss

.bss

.bss

.bss

.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss

sector,1 ;SVPWM sector
serialtmp,1 ;serial communication temporary variable

dal,1 ;DAC displaying table offset for DAC1

da2,1 ;DAC displaying table offset for DAC2

da3,1 ;DAC displaying table offset for DAC3

da4,1 ;DAC displaying table offset for DAC4
vDCinvTc,1 ;VDCinv*(Tc/2) (used in SVPWM)

epvr,1 ;P error for field weakening

xvr,1 ;Pl integral term for field weakening
indicel,1 ;pointer used to access sine look-up table
upi,1 ;Pl regulators (current and speed) output
elpi,1 ;Pl regulators (current and speed) limitation error
faultreset,1 ;Used to re-enable the hardware protection
tmpl,1 ;tmp word

acch,2 ;2 words buffer

acc_tmp,2 ;2 words to allow swapping of ACC

encoderold,1 ;encoder pulses value stored in the previous sampling
;period

encincr,1 ;encoder pulses increment between two consecutive
;sampling periods

speedtmp,1 ;used to accumulate encoder pulses increments (to
;calculate the speed each speed sampling period)

speedstep,1 ;sampling periods down counter used to define speed
;sampling period

Kcurrent,1 ;Cf explanation given above

SQRT3inv,1 ;Cf explanation given above

SQRT32,1 ;,Cf explanation given above

Ki,1 ;Cf explanation given above
Kpi,1 ;Cf explanation given above
Kcor,1 ;Cf explanation given above
Kispeed,1 ;Cf explanation given above

Kpispeed,1 ;Cf explanation given above
Kcorspeed,1 ;Cf explanation given above
Kiweak,1 ;Cf explanation given above
Kpiweak,1 ;Cf explanation given above
Kcorweak,1 ;Cf explanation given above

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

40

Application Report
SPRA494

.bss ismax,1 ;Cf explanation given above
.bss Kencoder,1 ;Cfexplanation given above

*** END Variables and constants initializations

text link in “text section

* Macro

* Inputs: argument in *AR5 IMUST BE POSITIVE!

* Outputs:result in ACClow

* Notes: this function uses the Newton-Raphson method:
* X(n) =0.5* (X(n-1) + N/X(n-1))

* this function uses *(AR5+1) & *(AR5+2) locations!

isqrt .macro

clrc sxm

lacc *+ ;lacc Vr, X(0)

sfr ;Initial approximate root = N/2

sacl *+ ;(AR5+1) = X(0)/2

splk #10,* ;(AR5+2) = 10 (iterations for square root)
isqrt?: X(n) = 0.5 * (X(n-1) + N/X(n-1)):

sbrk #2

lacc *+ ;

rpt #15

subc *

and #OFFFFh

add *

sfr

sacl *+

lacc * ;Repeat until iterations completed:

sub #1

sacl *

bend isgrt?,NEQ

mar *- ;Restore AR5 & put result in acclow:
lacc *

mar *-

setc sxm

.endm

* _c_int2 Interrupt Service Routine
* synchronization of the control algorithm with the PWM
* underflow interrupt

_c_int2:

* Context Saving

larp ar4 ;context save

mar *-

Ssst #1,*- ;status register 1

sst #0,*- ;status register 0

sach *- ;Accu. low saved for context save
sacl *- ;Accu. high saved

* END Context Saving *

mar *ar5 ;used later for DACs output
ldp #DP_EV

lacc IVRA

Idp #tmp

sacl tmp

sub #20H

bcnd PDPRoutine, EQ

sub #9

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

41

Application Report
SPRA494

bend ControlRoutine,EQ
b ContextRestoreReturn
* END Int2 Interrupt Service Routine *

ContextRestoreReturn

* Context restore and Return

larp ar4
mar *+
lacl *+ ;Accu. restored for context restore
add *+,16
Ist #0,*+
Ist #1,*+
clrc INTM
ret
* END Context Restore and Return *

PDPRoutine
ldp #IFRA>>7
splk #001h,IFRA ;Clear all flags, may be change
;with only T1 underflow int.
ldp #DP_EV
splk #0fffh,ACTR
splk #0207h,COMCON ;FIRST enable PWM operation
splk #8207h,COMCON ;THEN enable Compare operation
Idp #DP_PF2
splk #0FFOOh,PBDATDIR;IOPB 1 conf. as output, set to logic 0
;to re-enable protection circuitry
;after a fault on ACPM750E
rpt #200 ;wait minimum 2us (needed by circuitry)
nop ;here 10us
splk #0FF02h,PBDATDIR;IOPB 1 conf. as output, set to logic 1
b ContextRestoreReturn
* END PDPRoutine

ControlRoutine

* Current sampling - AD conversions
* N.B. we will have to take only 10 bit (LSB)

Idp #DP_PF2
splk #0FF08h,PCDATDIR;bit IOPC7 set to O for test purposes

ldp #DP_PF1
splk #186Dh,ADC_CNTLZ1;i2 and i3 conversion start
;ADCING selected for i2 A/D1 110
;/ADCIN14 selected for i3 A/D2 110
;01101101
*** current sampling
conversion
bit ADC_CNTL1,8
bend conversion,tc ;wait approximatly 6.6us
lacc ADC_FIFO1,10
ldp #i2
sach i2
ldp #DP_PF1
lacc ADC_FIFO2,10
ldp #i3
sach i3

*** fault enable and test EVM LED On/Off
lacc faultreset
bend initcontrol, EQ
ldp #DP_EV
splk #0999h,ACTR
Idp #faultreset
splk #0,faultreset

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

Application Report
SPRA494

*** |nitialization phase

initcontrol
lacl initphase ;are we in initialization phase ?
bend noinitl, NEQ

setc xf

lacc #0fcO0h ;if yes, set theta = 0fcO0h 4.12 format = -90 degrees
;(align rotor with phase 1 flux)

sacl theta ;

lacc #lgrinit ;g-axis reference current = initialization g-axis
;reference current

sacl iqr ;

lacc #0 ;zero some variables and flags

sacl idr ;

sacl encoder ;

sacl encoderold

sacl n ;

sacl speedtmp ;

lacc #SPEEDSTEP ;restore speedstep to the value SPEEDSTEP for next speed
;control loop

sacl speedstep ;

ldp #DP_EV

splk #1,T3CNT ;zero Incremental Encoder value if initialization step

Idp #initphase

b go ;there is no need to do position and speed calculation
;ininitialization phase (the rotor is locked)

*** End Initialization phase

noinitl
*** Encoder pulses reading
clrc xf
Idp #DP_EV
lacc T3CNT ;we read the encoder pulses and ...
neg ;encoder plug in the opposite direction for ACPM
ldp #il
sacl tmp
sub encoderold ;subtract the previous sampling period value to have
;the increment that we'll accumulate in encoder
sacl encincr ;
add encoder ;
bend encmagzero,GT,EQ;here we start to normalize encoder value to the
;range [0;Encpulses-1]
add #Encpulses ;the value of encoder could be negative, it depends on
;the rotating direction (depends on motor windings to
;PWM Channels connections)
encmagzero
sacl encoder ;now encoder value is positive but could be
;greater than Encpulses-1
sub #Encpulses ;we subtract Encpulses and we check whether the
;difference is negative. If it is we already have the
;right value in encoder
bend encminmax, LT

sacl encoder ;otherwise the value of encoder is greater than
;Encpulses and so we have to store the right value
encminmax ;0k, now encoder contains the right value in the range
lacc tmp ;[0,Encpulses-1]

;the actual value will be the old one during the next
sacl encoderold ;sampling period
** END Encoder pulses reading

dkkkkkkkkkkkkkkkkkk

* Theta calculation

*kkkkkkkkkkkkkkkkkk

It encoder ;multiply encoder pulses by Kencoder (4.12 format
;constant) to have the rotor electrical position

mpyu Kencoder ;encoder pulses =0 -> theta = Offth = 0 degrees

pac ;encoder pulses = 1600 -> theta = 1fffh = 1*360 degrees

;encoder pulses = 3200 -> theta = 2fffh = 2*360 degrees
sach theta,2

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

43

Application Report
SPRA494

lacl theta
and #Offfh
sacl theta
** END theta calculation

* Calculate speed and update reference speed variables

lacc speedstep ;are we in speed control loop ? (SPEEDSTEP times current
;control loop)

sub #1 ;
sacl speedstep ;
bcnd nocalc,GT ;if we aren't, skip speed calculation

*** Speed calculation from encoder pulses
It speedtmp ;multiply encoder pulses by Kspeed (8.8 format constant)
;to have the value of speed
mpy #Kspeed

pac ;
pt - #7 ;

sfr ;

sacl n

lacc #0 ;zero speedtmp for next calculation

sacl speedtmp ;
lacc #SPEEDSTEP ;restore speedstep to the value SPEEDSTEP
sacl speedstep ;for next speed control loop

*** END Speed calculation from encoder pulses

* Speed regulator with integral component correction

lacc n_ref

sub n

sacl epispeed
lacc xispeed,12

It epispeed
mpy Kpispeed
apac
sach upi,4
;here start to saturate
bit upi,0
bend upimagzeros,NTC ;If value +ve branch
lacc igrmin
sub upi
bend neg_sat,GT ;if upi<igrmin then branch to saturate
lacc upi ;value of upi is valid
b limiters
neg_sat
lacc igrmin ;set acc to -ve saturated value
b limiters
upimagzeros ;Value is positive
lacc igrmax
sub upi ;
bend pos_satLT ;if upi>igrmax then branch to saturate
lacc upi ;value of upi valid
b limiters
pos_sat
lacc igrmax ;set acc to +ve saturated value
limiters
sacl igr ;Store the acc as reference value
sub upi
sacl elpi
It elpi
mpy Kcorspeed
pac
It epispeed
mpy Kispeed

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

44

Application Report
SPRA494

apac
add xispeed,12
sach xispeed,4
** END Speed regulator with integral component correction

* Field-weakening algorithm with Pl regulator
* Calculation of sqrt(vdr*2 + Vgr2)
* only if n>Nbase/2

lacc #Nbase

sfr

sub n

bend nocalc,GEQ ;calculate field-weakening if n>Nbase/2

lar ar5,#60h

zac

mpy #0

mar *ar5

spm 2 ;4.12 multiplication format
sqra Vdr

sqra Var

apac

sach *

isgrt ;calculate the square root
spm O

sacl Vr,6

* Voltage regulator with integral component correction
* (Vbase,Vr)->(idr)

lacc #Vbase
sub Vr
sacl epvr
lacc xvr,12
It epvr
mpy Kpi
apac
sach upi,4
bit upi,0
bend upimagzerov,NTC
lacc #ldrmin
sub upi ;
bend neg_satv,G ;if upi<Vmin branch to saturate
lacc upi ;value of upi is valid
b limiterv
neg_satv
lacc #ldrmin ;set ACC to neg saturation
b limiterv
upimagzerov ;Value was positive
lacc #ldrmax
sub upi ;
bend pos_satv,L ;if upi>Vmax branch to saturate
lacc upi ;value of upi is valid
b limiterv
pos_satv
lacc #ldrmax ;set ACC to pos saturation
limiterv
sacl idr ;Always negative
sub upi
sacl elpi
It elpi
mpy Kcor
pac

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

45

Application Report
SPRA494

It epvr
mpy Ki
apac
add xvr,12
sach xvr,4
*** END voltage regulator with integral component correction

* Field-weakening algorithm igr limitation
* for P| regulator

* Calculation of sgrt(ismax”2 - idr*2)

* Output igrmax

lar ar5,#60h

zac

mpy #0

mar *ar5

spm 2 ;4.12 multiplication format
sqra idr

sqgrs ismax ;substract

apac

sach *

isqrt ;calculate the square root
spm O

sacl igrmax,6

neg

sacl igrmin,6
** END field weakening routines

* Encoder update

nocalc ;branch here if we don't have to calculate the speed
lacc speedtmp ;use the actual encoder increment to update the
;increments accumulator used to calculate the speed
add encincr
sacl speedtmp ;
*** END Measured speed and reference speed variables updating

go

* Sampled current scaling
* to nominal current 1000h <-> |_nominal

ldp #il

lacc 2

add #045h ;then we compensate the DC offset (that should be zero, but
itisn't

and #3ffh

sub #512 ;then we have to subtract the offset (2.5V) to have

;positive and negative values of the sampled current

sacl tmp

spm 3

It tmp

mpy Kcurrent

pac ;

sfr

sfr

neg ;needed for ACPM

sacl i2 ;sampled current i2, f 4.12

lacc i3

add #03ch ;then we compensate the DC offset (that should be

zero, but it isn't)

and #3ffh

sub #5122

sacl tmp

It tmp

mpy Kcurrent

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

46

Application Report

SPRA494

pac

sfr

sfr

neg ;needed for ACPM
sacl i3

add i2

neg

sacl il il =-(i3+i2)
spm O

*** END current sampling - AD conversions

* Sampled current scaling and
* (a,b,c) -> (alfa,beta) axis transformation

*jalfa =

i1

*ibeta = (2 *i2 +i1) / sqrt(3)

lacc
sacl

lacc
add
sacl
It

i1

ialfa

i2,1 sibeta = (2 *i2 +i1) / sqrt(3)
i1 ;

tmp

tmp ;

mpy SQRTS3inv ;SQRT3inv = (1 / sqrt(3)) = 093dh

pac

sach

;4.12 format = 0.577350269

ibeta,4

*** END Sampled current scaling and (a,b,c) -> (alfa,beta) axis transformation

* Sine and cosine wave calculation from
* theta values using sine look-up table

lacc

rpt

sfr

and
sacl
add
sacl
lar

nop
nop
mar
lacl
nop
sacl

lacl
add
and
sacl
add
sacl
lar
lacc
sacl

theta ;theta range is [0;1000h] 4.12 format = [0;360] degrees
;S0 we have a pointer (in the range [0;0ffh]) to the
;sine look-up table in the second and third nibble

#3

#0ffh ;now ACC contains the pointer to access the table
indicel ;

#sintab

tmp ;
arb,tmp ;

*arS

senol ;now we have sine value

indicel ;the same thing for cosine ... cos(theta) = sin(theta+90°)
#040h ;90 degrees = 40h elements of the table

#0ffh ;

indicel ;we use the same pointer (we don't care)

#sintab ;

tmp ;
arb,tmp ;

* ;

coseno ;now we have cosine value

*** END Sine and cosine wave calculation from theta values using sine look-up table

* d-axis and g-axis current calculation

* (alfa,beta) -> (d,q) axis transformation

* id = ialfa * cos(theta) + ibeta * sin(theta)
* iq =-ialfa * sin(theta) + ibeta * cos(theta)

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

47

Application Report

SPRA494
lacc #0
It ibeta ;TREGO=ibeta
mpy senol ;PREG=ibeta*sin(theta)
lta ialfa ;ACC+=PREG ; TREGO=ialfa
mpy coseno ;PREG=ialfa*cos(theta)
mpya senol ;/ACC+=PREG ; PREG=ialfa*sin(theta)
sach id,4
lacc #0 ;ACC=0
It ibeta ;,TREGO=ibeta
mpys coseno ;ACC-=(PREG-=ialfa*sin(theta))
apac ;ACC+=PREG
sach iq,4

** END d-axis and g-axis current calculation

* g-axis current regulator with integral component correction
* (ig,ign)->(Var)

lacc igr
sub iq
sacl epiq
lacc xig,12
It epiq
mpy Kpi
apac
sach upi4
bit upi,0
bend upimagzerogq,NTC
lacc #Vmin
sub upi ;
bend neg_satq,GT ;if upi<Vmin branch to saturate
lacc upi ;value of upi is valid
b limiterq
neg_satq
lacc #Vmin ;set ACC to neg saturation
b limiterq
upimagzeroq ;Value was positive
lacc #Vmax
sub upi ;
bend pos_satq,LT ;if upi>Vmax branch to saturate
lacc upi ;value of upi is valid
b limiterq
pos_satq
lacc #Vmax ;set ACC to pos saturation
limiterq
sacl Var ;Save ACC as reference value
sub upi
sacl elpi
It elpi
mpy Kcor
pac
It epiq
mpy Ki
apac
add xig,12
sach xig,4

*** END g-axis current regulator with integral component correction

* d-axis current regulator with integral component correction
* (id,idr)->(Vvdr)

lacc idr
sub id
sacl epid
lacc xid,12

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

48

Application Report
SPRA494

It epid
mpy Kpi
apac

sach upi4

bit upi,0
bend upimagzerod,NTC
lacc #Vmin
sub upi ;
bend neg_satd,G ;if upi<Vmin branch to saturate
lacc upi ;value of upi is valid
b limiterd
neg_satd
lacc #Vmin ;set ACC to neg saturation
b limiterd

upimagzerod ;Value was positive
lacc #Vmax
sub upi ;
bcnd pos_satd,LT ;if upi>Vmax branch to saturate
lacc upi ;value of upi is valid
b limiterd
pos_satd
lacc #Vmax ;set ACC to pos saturation
limiterd
sacl vdr ;Save ACC as reference value
sub upi
sacl elpi
It elpi
mpy Kcor
pac
It epid
mpy Ki ;
apac
add xid,12
sach xid,4
*** END d-axis current regulator with integral component correction

* alfa-axis and beta-axis voltages calculation
* (d,q) -> (alfa,beta) axis transformation

* Vbetar = Vgr * cos(theta) + Vdr * sin(theta)
* Valfar =-Vqgr * sin(theta) + Vdr * cos(theta)

lacc #0

It vdr ;TREGO=Vdr

mpy senol ;PREG=Vdr*sin(theta)

Ita Var ;/ACC+=PREG ; TREGO=Vqr

mpy coseno ;PREG=Vqr*cos(theta)

mpya senol ;/ACC+=PREG ; PREG=Vqr*sin(theta)
sach Vbetar,4

lacc #0 ;ACC=0

It Vvdr ;TREGO=Vdr

mpys coseno ;ACC-=(PREG=Vqr*sin(theta))
apac ;ACC+=PREG

sach Valfar,4
** END alfa-axis and beta-axis voltages calculation

* Phase 1(=a) 2(=b) 3(=c) Voltage calculation
* (alfa,beta) -> (a,b,c) axis transformation

* Ua = Valfar

* Ub = (-Valfar + sqrt(3) * Vbetar) / 2

* Uc = (-Valfar - sgrt(3) * Vbetar) / 2

It Vbetar ;TREGO=Vbetar
mpy SQRT32 ;PREG=Vbetar*(SQRT(3)/2)
pac ;/ACC=PREG

sub Valfar,11 ;/ACC-=Valfar*2"11

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

49

Application Report

SPRA494
sach Ub,4 ;
pac ;/ACC=PREG
neg ;ACC=-ACC
sub Valfar,11 ;ACC-=Valfar*2"11
sach Uc4 ;
lacl Valfar ;ACC=Valfar
sacl Ua ;Ua=ACCL

*** END Phase 1(=a) 2(=b) 3(=c) Voltage calculation

* Phase 1(=a) 2(=b) 3(=c) Voltage calculation
* (alfa,beta) -> (a,b,c) axis transformation

* modified exchanging alfa axis with beta axis
* for a correct sector calculation in SVPWM
*Va = Vbetar

* Vb = (-Vbetar + sqrt(3) * Valfar) / 2

*Vc = (-Vbetar - sqrt(3) * Valfar) / 2

It Valfar ;. TREGO=Valfar

mpy SQRT32 ;PREG=Valfar*(SQRT(3)/2)
pac ;ACC=PREG

sub Vbetar,11 ;ACC-=Vbetar*2"11
sach Vb4

pac ;/ACC=PREG

neg J/ACC=-ACC

sub Vbetar,11 ;ACC-=Vbetar*2"11
sach Vc,4

lacl Vbetar ;/ACC=Vbetar

sacl Va ;Va=ACCL

*** END Phase 1(=a) 2(=b) 3(=c) Voltage calculation

* SPACE VECTOR Pulse Width Modulation
* (see SVPWM references)

It vDCinvTc

mpy SQRT32

pac

sach tmp,4

It tmp

mpy Vbetar

pac

sach X4

lacc X ;ACC = Vbetar*K1

sach acch

sacl accbh+1 ;ACCB = Vbetar*K1

sacl X,1 X=2*Vbetar*K1

It vDCinvTc

splk #1800h,tmp

mpy tmp ;implement mpy #01800h
pac

sach tmp,4

It tmp

mpy Valfar

pac

sach tmp,4

lacc tmp ;reload ACC with Valfar*k2
add accb+l

add acch,16

sacl Y ;Y = K1 * Vbetar + K2 * Valfar
sub tmp,1

sacl Z ;Z =K1 * Vbetar - K2 * Valfar

*** 60 degrees sector determination
lacl #0
sacl sector
lacc Va
bend Va_neg,LEQ ;If Va<O do not set bit 1 of sector
lacc sector

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

50

Application Report
SPRA494

or #1
sacl sector ;implement opl #1,sector
Va_neg lacc Vb
bend Vb _neg,LEQ ;If Vb<O do not set bit 2 of sector

lacc sector
or #2
sacl sector ;implement opl #2,sector

Vb_neg lacc Vc
bend Vc_neg,LEQ ;If Vc<0 do not set bit 3 of sector

lacc sector

or #4

sacl sector ;implement opl #4,sector
Vc_neg

*** END 60 degrees sector determination

** T1 and T2 (= t1 and t2) calculation depending on the sector number

lacl sector ;(see SPACE VECTOR Modulation references for details)

sub #1

bcnd nol,NEQ

lacc Z

sacl tl

lacc Y

sacl t2

b t1t2out
nol

lacl sector

sub #2

bcnd no2,NEQ

lacc Y

sacl tl

lacc X

neg

sacl t2

b t1lt2out
no2

lacl sector

sub #3

bend no3,NEQ

lacc Z

neg

sacl tl

lacc X

sacl t2

b tlt2out
no3

lacl sector

sub #4

bcnd no4,NEQ

lacc X

neg

sacl tl

lacc Z

sacl t2

b tlt2out
no4

lacl sector

sub #5

bend no5,NEQ

lacc X

sacl tl

lacc Y

neg

sacl t2

b t1t2out
no5

lacc Y

neg

sacl tl

lacc Z

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

51

Application Report
SPRA494

neg
sacl t2
tlt2out
lacc tl ;t1 and t2 minumum values must be Tonmax
sub #Tonmax
bend t1_ok,GEQ ;if t1>Tonmax then t1_ok
lacl #Tonmax

sacl tl
t1_ok
lacc t2

sub #Tonmax
bend t2_ok,GEQ ;if t2>Tonmax then t2_ok
lacl #Tonmax
sacl t2
t2_ok
** END t1 and t2 calculation

lacc t1 ;if t1+t2>2*Tonmax we have to saturate t1 and t2
add t2 ;

sacl tmp ;

sub #MAXDUTY ;

bend nosaturation,LT,EQ

*** 11 and t2 saturation
lacc #MAXDUTY,15 ;divide MAXDUTY by (t1+t2)

rpt #15 ;
subc tmp
sacl tmp ;
It tmp ;calculate saturate values of t1 and t2
mpy tl1 ;11 (saturated)=t1*(MAXDUTY/(t1+t2))
pac ;
sach t1,1 ;
mpy t2 ;12 (saturated)=t2*(MAXDUTY/(t1+t2))
pac ;
sach 2,1 ;
*** END t1 and t2 saturation
nosaturation
*** taon,tbon and tcon calculation
lacc #PWMPRD ;calculate the commutation instants taon, tbon and tcon
sub 1 ;of the 3 PWM channels
sub 2 ;staon=(PWMPRD-t1-t2)/2
sfr ;
sacl taon ;
add t1 ;tbon=taon+tl
sacl thon ;
add t2 ;tcon=tbon+t2
sacl tcon ;

*** END taon,tbon and tcon calculation

*** sactor switching
lacl sector ;depending on the sector number we have
sub #1 ;to switch the calculated taon, tbon and tcon
bend nosectl, NEQ ;to the correct PWM channel
:(see SPACE VECTOR Modulation references for details)
bldd tbon#CMPR1 ;sector 1
bldd taon#CMPR2
bldd tcon#CMPR3
b dacout
nosectl
lacl sector
sub #2
bend nosect2, NEQ
bldd taon#CMPR1 ;sector 2
bldd tcon#CMPR2 ;
bldd tbon#CMPR3 ;

b dacout
nosect2
lacl sector

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

52

Application Report
SPRA494

sub #3
bcnd nosect3,NEQ
bldd taon#CMPR1 ;sector 3
bldd tbon#CMPR2 ;
bldd tcon#CMPR3 ;
b dacout
nosect3
lacl sector
sub #4
bcnd nosect4,NEQ
bldd tcon#CMPR1 ;sector 4
bldd tbon#CMPR2 ;
bldd taon#CMPR3 ;
b dacout
nosect4
lacl sector
sub #5
bcnd nosect5,NEQ
bldd tcon#CMPR1 ;sector 5
bldd taon#CMPR2 ;
bldd tbon#CMPR3 ;
b dacout
nosect5
bldd tbon#CMPR1 ;sector 6
bldd tcon#CMPR2 ;
bldd taon#CMPR3 ;
*** END sector switching
*** END * SPACE VECTOR Pulse Width Modulation

dacout

* DAC output of channels 'dal’, 'da2’, 'da3' and 'da4' *

* Qutput on 12 bit Digital analog Converter *
* 5V equivalent to FFFh *
Idp #sector
lacc sector,7 ;scale sector by 27 to have good displaying

sacl sectordisp ;only for display purposes

*** DAC out channel 'dal’

lacc #il ;get the address of the first elements

add dal ;add the selected output variable offset 'dal’ sent by the
terminal

sacl daout ;now daout contains the address of the variable to send to
DAC1

lar ar5,daout ;store it in AR5

lacc * ;indirect addressing, load the value to send out
;the following 3 instructions are required to adapt the
numeric format to the DAC resolution

sfr ;on a 12 bit DAC, +/- 2000h = [0,5] Volt
sfr ;-2000h is 0 Volt
add #800h ;0is 2.5 Volt.

sacl daouttmp ;to prepare the triggering of DAC1 buffer
out daouttmp,DACO_VAL
*** END DAC out channel 'dal’

*** DAC out channel 'da2'

lacc #il ;get the address of the first elements

add da2 ;add the selected output variable offset 'dal’ sent by the
terminal

sacl daout ;now daout contains the address of the variable to send to
DAC1

lar ar5,daout ;store it in AR5
lacc * ;indirect addressing, load the value to send out

;the following 3 instructions are required to adapt the
numeric format to the DAC resolution

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

53

Application Report

SPRA494
sfr ;we have 10 bit DAC, we want to have the number 2000h = 5
Volt
sfr
add #800h ;

sacl daouttmp ;to prepare the triggering of DAC1 buffer
out daouttmp,DAC1_VAL
*** END DAC out channel 'da2'

*** DAC out channel 'da3'

lacc #il ;get the address of the first elements

add da3 ;add the selected output variable offset 'dal' sent by the
terminal

sacl daout ;now daout contains the address of the variable to send to
DAC1

lar ar5,daout ;store it in AR5

lacc * ;indirect addressing, load the value to send out
;the following 3 instructions are required to adapt the

numeric format to the DAC resolution

sfr ;we have 10 bit DAC, we want to have the number 2000h =5
Volt

sfr

add #800h

sacl daouttmp ;to prepare the triggering of DAC1 buffer

out daouttmp,DAC2_VAL
*** END DAC out channel 'da3'

*** DAC out channel 'da4'

lacc #il ;get the address of the first elements

add da4 ;add the selected output variable offset 'dal’ sent by the
terminal

sacl daout :now daout contains the address of the variable to send to
DAC1

lar ar5,daout ;store it in AR5

lacc * ;indirect addressing, load the value to send out
;the following 3 instructions are required to adapt the

numeric format to the DAC resolution

sfr ;we have 10 bit DAC, we want to have the number 2000h = 5
Volt

sfr

add #800h

sacl daouttmp ;to prepare the triggering of DAC1 buffer

out daouttmp,DAC3_VAL
*** END DAC out channel 'da4'

OUT tmp,DAC_VAL ;start conversion

ldp #IFRA>>7
splk #0200h,IFRA ;Clear all flags, may be change with only T1 underflow int.

ldp #DP_PF2
splk #OFF88h,PCDATDIR;bit IOPC7 set to 1

*** END: PWM enable

b ContextRestoreReturn
*END ControlRoutine

_c_int0:

* Board general settings

clrc CNF
clrc xf

* Function to disable the watchdog timer *

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

54

Application Report
SPRA494

ldp #DP_PF1

splk #006Fh, WD_CNTL
splk #05555h, WD_KEY
splk #OAAAAh, WD_KEY
splk #006Fh, WD_CNTL

* Function to initialise the Event Manager *

* GPTimer 1 => Full PWM *

* Enable Timer 1==0 interrupt on INT2 and CAP1 on INT4 *
* Capture 1 reads tacho input *

* All other pins are 10 *

; Set up SYSCLK and PLL for C24 EVM with 10MHz External Clk

ldp #DP_PF1

splk #00000010b,CKCRO;PLL disabled
;LPMO
;ACLK enabled

;SYSCLK 5MHz
; splk #10110001b,CKCR1;10MHz clk in for ACLK
splk #01100000b,CKCR1;20MHz clk-in for ACLK
;Do not divide PLL
;PLL ratio x1
splk #10000011b,CKCRO;PLL enabled
;LPMO
;ACLK enabled
;SYSCLK 10MHz

; Set up CLKOUT to be SYSCLK
splk #40COh,SYSCR

; Clear all reset variables
lacc SYSSR
and #69FFh
sacl SYSSR

; Set up zero wait states for external memory
lacc #0004h

Idp #tmp

sacl tmp

out tmp,WSGR

; Clear All EV Registers

zac

Idp #DP_EV
sacl GPTCON
sacl TI1CNT
sacl T1CMP
sacl T1PER
sacl T1CON
sacl T2CNT
sacl T2CMP
sacl T2PER
sacl T2CON
sacl T3CNT
sacl T3CMP
sacl T3PER
sacl T3CON
sacl COMCON
sacl ACTR
sacl SACTR
sacl DBTCON
sacl CMPR1
sacl CMPR2
sacl CMPR3
sacl SCMPR1

sacl SCMPR2
sacl SCMPR3

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

55

Application Report

SPRA494
sacl CAPCON
sacl CAPFIFO
sacl FIFO1
sacl FIFO2
sacl FIFO3
sacl FIFO4
; Initialise PWM ;1us software dead-band
;Nicol activation
splk #0999h,ACTR ;Bits 15-12 not used, no space vector

splk
splk
splk
splk
splk

splk

splk
splk
splk

;PWM compare actions
;PWM5/PWME6 - Active Low/Active High
;PWM3/PWM4 - Active Low/Active High
;PWM1/PWM?2 - Active Low/Active High
#100,CMPR1
#200,CMPR2
#300,CMPR3
#0000h,DBTCON ;no dead band from Nicol
#0207h,COMCON ;FIRST enable PWM operation
;Reload Full Compare when TICNT=0
;Disable Space Vector
;Reload Full Compare Action when TICNT=0
;Enable Full Compare Outputs
;Disable Simple Compare Outputs
;Full Compare Units in PWM Mode
#8207h,COMCON ;THEN enable Compare operation

#PWMPRD,T1PER ;Set T1 period
#0,TICNT
#0A800h,TICON ;lgnore Emulation suspend
;Cont Up/Down Mode
;X/1 prescalar
;Use own TENABLE
;Disable Timer,enable later
;Internal Clock Source
;Reload Compare Register when TLCNT=0
;:Disable Timer Compare operation

; Enable Timer 1

lacc
or
sacl

T1CON
#40h
T1CON

* MICHEL 23/10/96 add for Nicol Board
* PWM Channel enable
* 74HC541 chip enable connected to IOPC3 of Digital input/output

; Configure 10\function MUXing of pins

Idp
splk

splk
splk

splk

#DP_PF2 :Enable Power Security Function
#000Fh,OPCRA ;ADCIN 0-1-8-9 enabled

;IOPB 1 enabled
#0079h,0PCRB ;IOPC 0-3-7 enabled
#0FF02h,PBDATDIR;IOPB 1 conf. as output, set to logic 1

;used to re-enable protection circuitry

;after a fault on ACPM750E
#0FF08h,PCDATDIR;IOPC 0-3-7 conf. as output,

;IOPC 3 set to logic 1

*** END: PWM enable

* Incremental encoder initialization
* Capture for Incremental encoder correction with Xint2

ldp

splk
splk
splk
splk

#DP_EV
#0000h,T3CNT ;configure counter register
#00FFh,T3PER ;configure period register

#9870, T3CON ;configure for QEP and enable Timer T3
#0OE2FO0h,CAPCON ;T3 is selected as Time base for QEP

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

56

Application Report
SPRA494

*** END encoder/capture initialization

* A/D initialization

ldp #DP_PF1

splk #0003h,ADC_CNTL2;prescaler set for a 10MHz SYSCLK
lacc ADC_FIFO1 ;empty FIFO

lacc ADC_FIFO1

lacc ADC_FIFO2

lacc ADC_FIFO2

** END A/D initialization

* Variables initialization

ldp #il

lacc ismax
sacl igrmax
neg

sacl igrmin
zac

sacl igr

sacl idr

sacl n_ref
sacl idr

sacl indicel
sacl xid

sacl xiq

sacl xispeed
sacl upi

sacl elpi

sacl Va

sacl Vb

sacl Vc

sacl faultreset
splk #24,dal
splk #25,da2
splk #42,da3
splk #0,da4

splk #VKcurrent,Kcurrent
splk #VSQRT3inv,SQRT3inv
splk #VSQRT32, SQRT32
splk #VKi, Ki

splk #VKpi, Kpi

splk #VKcor, Kcor

splk #VKispeed, Kispeed
splk #VKpispeed,Kpispeed
splk #VKcorspeed,Kcorspeed
splk #VKiweak, Kiweak
splk #VKpiweak, Kpiweak
splk #VKcorweak,Kcorweak
splk #Vismax, ismax

splk #VKencoder,Kencoder

* Table initialization

mar * AR5

lar AR5 #sintab

rpt #255

blpd #sintab_flash,*+

setc OVM
spm O ;no shift after multiplication
setc sxm ;N0 sign extension

*** END initializations

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

Application Report
SPRA494

* Code added to make program run without UART interface

splk #122h,vDCinvTc ;Tc/vDC/2 or PWMPRD/VDC
;The DC voltage is 310V
;The BEMF at 3000rpm is Vbase
;vDC is VDCpu
;vDC = VDC/Vbase = 2.07 with Vbase=150V

splk #000h,initphase ;initialization phase at startup

* |nitialize ar4 as the stack for context save
* space reserved: DARAM B2 60h-80h (page 0)

lar ar4,#79h
lar ar5,#60h

* Enable Interrupts

; Clear EV IFR and IMR regs
ldp #DP_EV

splk #07FFh,IFRA

splk #00FFh,IFRB

splk #000Fh,IFRC

; Enable T1 Underflow Int

splk #0201h,IMRA ;PDPINT is enabled
splk #0000h,IMRB

splk #0000h,IMRC

; Enable XINT2 interruption for encoder synchronization
ldp #DP_PF1
splk #0006 ,XINT2_CNTL ;set Pin as an input
splk #0007 ,XINT2_CNTL ;set Pin as an input
;clear flag, detect rising edge
;low priority, enable interrupt (p6.41)

;Set IMR for INT2 and INT4 and clear any Flags

;INT2 (PWM interrupt) is used for motor control synchronization
;INT4 () is used for encoder synchronization

Idp #0h

lacc #OFFh

sacl IFR

lacc #0000010b

sacl IMR

ldp #il ;set the right control variable page
clrc INTM ;enable all interrupts, now we may serve
;interrupts
*** END Enable Interrupts

* Serial communication initialization

ldp #DP_PF1

splk #00010111b,SCICCR ;one stop bit, no parity, 8bits

splk #0013h,SCICTL1 ;enable RX, TX, clk

splk #0000h,SCICTL2 ;disable SCI interrupts

splk #0000h,SCIHBAUD ;MSB |

splk #0082h,SCILBAUD ;LSB |9600 Baud for sysclk 10MHz
splk #0022h,SCIPC2 ;1/O setting

splk #0033h,SCICTL1 ;end initialization

*kkkkkkkkkkkkkk

* Virtual Menu

Fokkkkkkkkkkkkkk

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

58

Application Report

SPRA494
menu
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available ?
bend menu,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0ffh ;only 8 bits !!!
Idp #option ;if yes, get it and store it in option
sacl option ;now in option we have the option number
;of the virtual menu
sub #031h ;is it option 1 ?

bend notone,neq ;if not branch to notone

* Option 1): Speed reference

navailll
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navailll,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #OFFh ;take the 8 LSB
Idp #serialtmp
sacl serialtmp ;if yes, get it and store it in serialtmp
navaill2
ldp #DP_PF1
bit SCIRXST,BIT6 ;8 MSB available ?
bend navaill2,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp
add serialtmp ;add ACC with lower byte
sacl n_ref ;store it
b menu ;return to the main polling cycle

** END Option 1): speed reference

notone
lacc option
sub #032h ;isiit option 2 ?
bend nottwo,neq ;if not branch to nottwo

* Option 2): DAC update

navail21
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navail21,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
Idp #dal
sacl dal ;if yes, get it and store it in dal
navail22
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navail22,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
Idp #dal
sacl da2 ;if yes, get it and store it in da2
navail23
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navail23,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
Idp #dal
sacl da3 ;if yes, get it and store it in da3
navail24
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

59

Application Report

SPRA494
bend navail24,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF
and #0FFh ;take the 8 LSB
ldp #dal
sacl da4 ;if yes, get it and store it in da4
b menu ;return to the main polling cycle

*** END Option 2): DAC update

nottwo
lacc option
sub #033h ;is it option 3 ?
bcnd notthree,neq ;if not branch to notthree

* Option 3): initphase

navail31
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail3l,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF

and #O0FFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail32

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?

bend navail32,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte

Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl initphase ;store it
b menu ;return to the main polling cycle

** END Option 3): initphase

notthree
lacc option
sub #034h jis it option 4 ?
bend notfour,neq ;if not branch to notfour

* Option 4): vDCinvTc

navail41
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navaildl,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF

and #OFFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail42

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?
bend navaild2,ntc ;if not repeat the cycle (polling)

lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl vDCinvTc ;store it

b menu ;return to the main polling cycle

*** END Option 4): vDCinvTc

notfour
lacc option
sub #035h jis it option 5 ?
bend notfive,neq ;if not branch to notfive

* Option 5): Kpi, Ki, Kcor

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

60

Application Report
SPRA494

navail51
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail51,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF

and #0FFh ;take the 8 LSB

ldp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail52

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?
bend navail52,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp
add serialtmp ;add ACC with lower byte
sacl Kpi ;store it
navail53
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bcnd navail53,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF

and #0FFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail54

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?

bend navail54,ntc if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl Ki ;store it

navails5
Idp #DP_PF1

bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navail55,ntc if not repeat the cycle (polling)
lacc SCIRXBUF

and #0FFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail56

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?

bend navail56,ntc if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl Kcor ;store it
b menu ;return to the main polling cycle

*** END Option

notfive
lacc option
sub #036h ;is it option 6 ?
bend notsix,neq ;if not branch to notsix

* Option 6): Kpispeed , Kispeed , Kcorspeed

navail61
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navailél,ntc if not repeat the cycle (polling)
lacc SCIRXBUF

and #OFFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail62

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

61

Application Report
SPRA494

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?

bend navail62,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
ldp #serialtmp

add serialtmp ;add ACC with lower byte
sacl Kpispeed ;store it

navail63
ldp #DP_PF1

bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navailé3,ntc if not repeat the cycle (polling)
lacc SCIRXBUF

and #OFFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail64

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?

bend navailé4,ntc if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte

ldp #serialtmp

add serialtmp ;add ACC with lower byte
sacl Kispeed ;store it

navail65
ldp #DP_PF1

bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navailé5,ntc if not repeat the cycle (polling)
lacc SCIRXBUF

and #OFFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail66

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?
bend navailé6,ntc ;if not repeat the cycle (polling)

lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl Kcorspeed ;store it

b menu ;return to the main polling cycle

*** END Option

notsix
lacc option
sub #037h jisitoption 7 ?

bend notseven,neq ;if not branch to notseven

* Option 7): Kpiweak , Kiweak , Kcorweak

navail71
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navail7l,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF

and #0FFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail72

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?

bend navail72,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl Kpiweak ;store it

navail73
ldp #DP_PF1

bit SCIRXST,BIT6 ;is there any character available (8 LSB)?

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

62

Application Report
SPRA494

bcnd navail73,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF

and #0FFh ;take the 8 LSB

ldp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail74

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?
bcnd navail74,ntc ;if not repeat the cycle (polling)

lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp
add serialtmp ;add ACC with lower byte
sacl Kiweak ;store it

navail75
Idp #DP_PF1

bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navail75,ntc if not repeat the cycle (polling)
lacc SCIRXBUF

and #0FFh ;take the 8 LSB

ldp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail76

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?

bcnd navail76,ntc ;if not repeat the cycle (polling)
lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl Kcorweak ;store it
b menu ;return to the main polling cycle

*** END Option

notseven
lacc option
sub #038h ;is it option 8 ?
bend noteight,neq ;if not branch to noteight

* Option 8): faultreset

navailgl
ldp #DP_PF1
bit SCIRXST,BIT6 ;is there any character available (8 LSB)?
bend navail81,ntc if not repeat the cycle (polling)
lacc SCIRXBUF

and #OFFh ;take the 8 LSB

Idp #serialtmp

sacl serialtmp ;if yes, get it and store it in serialtmp
navail82

ldp #DP_PF1

bit SCIRXST,BIT6 ;8 MSB available ?
bend navail82,ntc if not repeat the cycle (polling)

lacc SCIRXBUF,8 ;load ACC the upper byte
Idp #serialtmp

add serialtmp ;add ACC with lower byte
sacl faultreset ;store it

b menu ;return to the main polling cycle

** END Option 8): faultreset

noteight
b menu

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

63

Application Report
SPRA494

Appendix B. Linker File

I* TEXAS INSTRUMENTS */
/ /
/* File Name: link.cmd */
/* Originator: Michel Platnic */
/* *
/* Description:Link command file */
/* MEMORY SPECIFICATION FOR THE MCK240 or EVMF240 *
I* *
/* Target: TMS320F240, MCK240 or EVMF240 */
/* status: Working */
I* *
/* History: Completed on 26 April 98 */
/ /
MEMORY
PAGE 0:

FLASH_VEC :origin= 0h, length = 40h
FLASH : origin = 040h, length = OFCOh
FLASH_TAB : origin = 1000h, length = 0200h

PAGE 1:

REGS ;origin = Oh, length = 60h
BLK_B22 :origin= 60h, length= 20h
BLK_BO :origin = 200h, length = 100h
BLK_B1 :origin = 300h, length = 100h
EXT_DATA : origin = 8000h, length = 1000h

}

* */

/* SECTIONS ALLOCATION */

I* */

SECTIONS

{
vectors :{}>FLASH_VEC PAGE 0 /* INTERRUPT VECTOR TABLE */
text :{}>FLASH PAGEO0 /* CODE */

table_f :{}>FLASH_TAB PAGE 0 /* Table in flash program mem */

blockb2 :{}>BLK _B22 PAGE 1 /* Data storage on DP 0 */
data :{}>BLK BO PAGE1
.bss :{}>BLK_BO PAGE 1 /*GLOBAL VARS, STACK, HEAP */
table :{}>BLK_B1 PAGE1

}

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

64

Application Report
SPRA494

Appendix C. Sinewave Table

.word 0 .word 3166 .word 61833
.word 101 .word 3102 .word 61791
.word 201 .word 3035 .word 61752
.word 301 .word 2967 .word 61714
.word 401 .word 2896 .word 61679
.word 501 .word 2824 .word 61647
.word 601 .word 2751 .word 61616
.word 700 .word 2675 .word 61588
.word 799 .word 2598 .word 61563
.word 897 .word 2520 .word 61540
.word 995 .word 2440 .word 61519

.word 1092 .word 2359 .word 61500
.word 1189 .word 2276 .word 61484

.word 1285 .word 2191 .word 61471
.word 1380 .word 2106 .word 61460
.word 1474 .word 2019 .word 61451
.word 1567 .word 1931 .word 61445
.word 1660 .word 1842 .word 61441
.word 1751 .word 1751 .word 61440
.word 1842 .word 1660 .word 61441
.word 1931 .word 1567 .word 61445
.word 2019 .word 1474 .word 61451
.word 2106 .word 1380 .word 61460
.word 2191 .word 1285 .word 61471
.word 2276 .word 1189 .word 61484
.word 2359 .word 1092 .word 61500
.word 2440 .word 995 .word 61519
.word 2520 .word 897 .word 61540
.word 2598 .word 799 .word 61563
.word 2675 .word 700 .word 61588
.word 2751 .word 601 .word 61616
.word 2824 .word 501 .word 61647
.word 2896 .word 401 .word 61679
.word 2967 .word 301 .word 61714
.word 3035 .word 201 .word 61752
.word 3102 .word 101 .word 61791
.word 3166 .word 0 .word 61833

.word 3229 .word 65435 .word 61877
.word 3290 .word 65335 .word 61924
.word 3349 .word 65235 .word 61972
.word 3406 .word 65135 .word 62023
.word 3461 .word 65035 .word 62075
.word 3513 .word 64935 .word 62130
.word 3564 .word 64836 .word 62187
.word 3612 .word 64737 .word 62246
.word 3659 .word 64639 .word 62307
.word 3703 .word 64541 .word 62370
.word 3745 .word 64444 .word 62434
.word 3784 .word 64347 .word 62501
.word 3822 .word 64251 .word 62569
.word 3857 .word 64156 .word 62640
.word 3889 .word 64062 .word 62712
.word 3920 .word 63969 .word 62785
.word 3948 .word 63876 .word 62861
.word 3973 .word 63785 .word 62938
.word 3996 .word 63694 .word 63016
.word 4017 .word 63605 .word 63096
.word 4036 .word 63517 .word 63177
.word 4052 .word 63430 .word 63260

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

Application Report

SPRA494
.word 4065 .word 63345 .word 63345
.word 4076 .word 63260 .word 63430
.word 4085 .word 63177 .word 63517
.word 4091 .word 63096 .word 63605
.word 4095 .word 63016 .word 63694
.word 4096 .word 62938 .word 63785
.word 4095 .word 62861 .word 63876
.word 4091 .word 62785 .word 63969
.word 4085 .word 62712 .word 64062
.word 4076 .word 62640 .word 64156
.word 4065 .word 62569 .word 64251
.word 4052 .word 62501 .word 64347
.word 4036 .word 62434 .word 64444
.word 4017 .word 62370 .word 64541
.word 3996 .word 62307 .word 64639
.word 3973 .word 62246 .word 64737
.word 3948 .word 62187 .word 64836
.word 3920 .word 62130 .word 64935
.word 3889 .word 62075 .word 65035
.word 3857 .word 62023 .word 65135
.word 3822 .word 61972 .word 65235
.word 3784 .word 61924 .word 65335
.word 3745 .word 61877 .word 65435
.word 3703
.word 3659
.word 3612
.word 3564
.word 3513
.word 3461
.word 3406
.word 3349
.word 3290
.word 3229

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

66

Application Report ”
SPRA494

Appendix D. Qbasic User Interface

OPEN "COML1: 9600,N,8,1,CD0,CS0,DS0,0P0,RS,TB1,RB1" FOR OUTPUT AS #1
PRINT #1, "1"; CHR$(0); CHR$(0); : REM speed reference initialization to 0

PRINT #1, "2"; CHR$(23); CHR$(25); CHR$(41); CHR$(3); : REM dac initialization
PRINT #1, "3"; CHR$(0); CHR$(0); : REM initialization phase to 0

speedref =0
init=0

VDC = 310
dal=24:da2=25
da3=42:da4=3

Ki=.03

Kpi = .6

Kcor = .05
Kispeed = .03
Kpispeed = 6.5
Kcorspeed = .0046
Kiweak = .03
Kpiweak = .6

Kcorweak = .05

initphase$(0) = "Init"
initphase$(1) = "Run”

Tc =600: REM PWM period in us
speedpu = 3000: REM base speed
ibase = 4.1: REM base current
Vbase = 152: REM base voltage

DIM daout$(200)
daout$(0) = "ia"
daout$(1) = "ib"
daout$(2) = "ic"
daout$(3) = "Ua"
daout$(4) = "Ub"
daout$(5) = "Uc"
daout$(6) = "senol"
daout$(7) = "t1"
daout$(8) = "t2"
daout$(9) = "coseno”
daout$(10) = "va"
daout$(11) = "Vb"
daout$(12) = "Vc"
daout$(13) = "vDC"
daout$(14) = "taon"
daout$(15) = "tbon"
daout$(16) = "tcon"
daout$(17) = "theta"
daout$(18) = "ialfa"
daout$(19) = "ibeta"
daout$(20) = "Valfar"
daout$(21) = "Vbetar"
daout$(22) = "idr"
daout$(23) = "igr"
daout$(24) = "idS"
daout$(25) = "iqS"
daout$(26) = "vdr"
daout$(27) = "Var"
daout$(28) = "epiq"
daout$(29) = "epid"
daout$(30) = "xiq"
daout$(31) = "xid"
daout$(32) = "n"
daout$(33) = "n_ref"
daout$(34) = "epispeed"”
daout$(35) = "xispeed"
daout$(36) = "X"
daout$(37) = "Y"
daout$(38) = "Z"
daout$(39) = "sector"”
daout$(40) = "initphase"

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 67

Application Report
SPRA494

daout$(41) = "encoder"”
daout$(42) = "vr"
daout$(43) = "igrmin"
daout$(44) = "igrmax"

nDA =11

1CLS

FORi=0TO nDA

COLOR 11

LOCATE (12 +i), 2: PRINT "("; : PRINT USING "##"; i; : PRINT ") "; daout$(i)

LOCATE (12 +i), 22: PRINT "("; : PRINT USING "##"; i + nDA + 1; : PRINT ") "; daout$(i +
nDA + 1)

LOCATE (12 +1i), 42: PRINT "("; : PRINT USING "##"; i+ 2* nDA + 2; : PRINT ") ";
daout$(i + 2 * nDA + 2)

LOCATE (12 +i), 62: PRINT "("; : PRINT USING "##"; i + 3* nDA + 3; : PRINT ") ";
daout$(i + 3 * nDA + 3)

NEXT i

LOCATE 1, 15

COLOR 12: PRINT " Digital Control of a Permanent Magnet Motor"

PRINT

COLOR 10: PRINT "<1>"; : COLOR 2: PRINT " Speed_reference ("; speedref; "rpm)"
COLOR 10: PRINT "<2>"; : COLOR 2: PRINT " DAC_Outputs DACI: ("; daout$(dal); ")"
LOCATE 4, 35: PRINT "DAC2: ("; daout$(da2); ")"

PRINT " DAC3: ("; daout$(da3);)"

LOCATE 5, 35: PRINT "DAC4: ("; daout$(dad); ")"

COLOR 10: PRINT "<3>"; : COLOR 2: PRINT " Init_phase (0=Init) ("; initphase$(init);)"
COLOR 10: PRINT "<4>"; : COLOR 2: PRINT " Vbase ("; Vbase; "Volts)"
COLOR 10: PRINT "<8>"; : COLOR 2: PRINT " Re-enable after fault"

COLOR 10: LOCATE 3, 50: PRINT " <5>"; : COLOR 2: PRINT " Kpi ("; Kpi; "pu)"

COLOR 10: LOCATE 4,50: PRINT" ", : COLOR 2: PRINT " Ki (; Ki; "pu)"

COLOR 10: LOCATE 5,50: PRINT" ", : COLOR 2: PRINT " Kcor ("; Kcor; "pu)"

COLOR 10: LOCATE 6, 50: PRINT " <6>"; : COLOR 2: PRINT " Kpispeed ("; Kpispeed; "pu)"
COLOR 10: LOCATE 7,50: PRINT" ";: COLOR 2: PRINT " Kispeed ("; Kispeed; "pu)"
COLOR 10: LOCATE 8, 50: PRINT " "; : COLOR 2: PRINT " Kcorspeed ("; Kcorspeed; "pu)"
COLOR 10: LOCATE 9, 50: PRINT " <7>"; : COLOR 2: PRINT " Kpiweak ("; Kpiweak; "pu)"
COLOR 10: LOCATE 10, 50: PRINT " ";: COLOR 2: PRINT " Kiweak (*; Kiweak; "pu)"
COLOR 10: LOCATE 11, 50: PRINT " ";: COLOR 2: PRINT " Kcorweak ("; Kcorweak; "pu)"

COLOR 10: LOCATE 10, 14: PRINT "Choice : *;

init88 = CLNG(init * 256)

VDCpu = VDC / Vbase

VDCinvTc = Tc/ VDCpu

Kpipu = 4096 * Kpi

Kipu = 4096 * Ki

Kcor = (Ki / Kpi)

Kcorpu = 4096 * Kcor
Kpispeedpu = 4096 * Kpispeed
Kispeedpu = 4096 * Kispeed
Kcorspeed = (Kispeed / Kpispeed)
Kcorspeedpu = 4096 * Kcorspeed
Kpiweakpu = 4096 * Kpiweak
Kiweakpu = 4096 * Kiweak
Kcorweak = (Kiweak / Kpiweak)
Kcorweakpu = 4096 * Kcorweak

DO
a$ = INKEY$
LOOP UNTIL ((a$ <= "8") AND (a$ >= "1")) OR (a$ = "") OR (a$ = "R")

SELECT CASE a$

CASE "1"
REM 4.12 format
PRINT a$; ") ";
PRINT "Speed_Reference ("; speedref; "rpom) : *;
INPUT speedref$
IF speedref$ =" THEN 1
speedrpu = VAL(speedref$) / speedpu
IF (speedrpu >= 7.999755859#) THEN speedrpu = 7.999755859#
IF (speedrpu <= -8) THEN speedrpu = -8
speedrefpu = CLNG(speedrpu * 4096)

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

Application Report
SPRA494

IF (speedref < 0) THEN speedrefpu = 65536 + speedrefpu
PRINT #1, "1"; CHR$(speedrefpu AND 255); CHR$((speedrefpu AND 65280) / 256)
speedref = speedrpu * speedpu
GOTO 1
CASE "2"
REM standard decimal format
PRINT a$; ") ";
PRINT "DAC1, DAC2, DAC3 or DAC4 ? ",
2 dach$ = INKEY$
IF dach$ =" THEN 2
IF dach$ = CHR$(13) THEN 1
IF dach$ ="1" THEN
PRINT "DACL1 Output ("; dal1; ") :";
INPUT da$
IFda$=""THEN 1
dal = VAL(da$)
END IF
IF dach$ = "2" THEN
PRINT "DAC2 Output ("; da2; ") : ";
INPUT da$
IFda$=""THEN 1
da2 = VAL(da$)
END IF
IF dach$ ="3" THEN
PRINT "DAC3 Output ("; da3; ") : ";
INPUT da$
IFda$=""THEN 1
da3 = VAL(da$)
END IF
IF dach$ = "4" THEN
PRINT "DAC4 Output ("; da4; ") : ";
INPUT da$
IFda$=""THEN 1
da4 = VAL(da$)
END IF

PRINT #1, "2"; CHR$(dal AND 255); CHR$(da2 AND 255); CHR$(da3 AND 255); CHR$(da4 AND

255)
GOTO 1
CASE "3"
IF init = 1 THEN init = 0 ELSE init = 1
IF (init >= 255.9960938#) THEN init = 255.9960938#
IF (init < 0) THEN init = 0
init88 = CLNG(init * 256)
PRINT #1, "3"; CHR$(init88 AND 255); CHR$((init88 AND 65280) / 256)
GOTO 1

CASE "4"
REM 4.12 format
PRINT a$; ") ";
PRINT "Vbase ("; Vbase; "Volts) : ;
INPUT Vbase$
IF Vbase$ =" THEN 1
IF (Vbase <= 0) THEN 1
VDCpu = VDC / VAL(Vbase$)
IF (VDCpu >= 7.999755859#) THEN VDCpu = 7.999755859#
IF (VDCpu <= -8) THEN VDCpu = -8
VDCinvTc = Tc/VDCpu
PRINT #1, "4"; CHR$(VDCinvTc AND 255); CHR$((VDCinvTc AND 65280) / 256)
Vbase = VDC / VDCpu
GOTO 1

CASE "5"
REM 4.12 format
PRINT a$; ") ";
PRINT "Kpi ("; Kpi; ") "
INPUT Kpi$
IF Kpi$ =" THEN 51
Kpi = VAL(Kpi$)
IF (Kpi >=7.9) THEN Kpi = 7.9
IF (Kpi <= 0) THEN Kpi =0
51
PRINT " Ki (" Ki; ") : "
INPUT Ki$
IF Ki$ =" THEN 52

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

69

Application Report ”
SPRA494

Ki = VAL(Ki$)

IF (Ki>=1) THEN Ki=1

IF (Ki<=0) THEN Ki=0
52

Kpipu = 4096 * Kpi

Kipu = 4096 * Ki

Kcor = (Ki / Kpi)

Kcorpu = 4096 * Kcor

PRINT #1, "5"; CHR$(Kpipu AND 255); CHR$((Kpipu AND 65280) / 256); CHR$(Kipu AND 255);
CHR$((Kipu AND 65280) / 256); CHR$(Kcorpu AND 255); CHR$((Kcorpu AND 65280) / 256)

GOTO 1

CASE "6"

REM 4.12 format

PRINT a$; ") *;

PRINT "Kpispeed ("; Kpispeed; ") : ";

INPUT Kpispeed$

IF Kpispeed$ =" THEN 61

Kpispeed = VAL(Kpispeed$)

IF (Kpispeed >= 7.9) THEN Kpispeed = 7.9

IF (Kpispeed <= 0) THEN Kpispeed = 0
61

PRINT " Kispeed ("; Kispeed; ") : *;

INPUT Kispeed$

IF Kispeed$ ="' THEN 62

Kispeed = VAL(Kispeed$)

IF (Kispeed >= 1) THEN Kispeed = 1

IF (Kispeed <= 0) THEN Kispeed = 0
62

Kpispeedpu = 4096 * Kpispeed

Kispeedpu = 4096 * Kispeed

Kcorspeed = (Kispeed / Kpispeed)

Kcorspeedpu = 4096 * Kcorspeed

REM Send "Option" - "LSB" - "MSB"

PRINT #1, "6"; CHR$(Kpispeedpu AND 255); CHR$((Kpispeedpu AND 65280) / 256);
CHR$(Kispeedpu AND 255); CHR$((Kispeedpu AND 65280) / 256); CHR$(Kcorspeedpu AND 255);
CHR$((Kcorspeedpu AND 65280) / 256)

GOTO 1

CASE "7"

REM 4.12 format

PRINT a$; ") *;

PRINT "Kpiweak ("'; Kpiweak; ") : ";

INPUT Kpiweak$

IF Kpiweak$ =" THEN 71

Kpiweak = VAL(Kpiweak$)

IF (Kpiweak >= 7.9) THEN Kpiweak = 7.9

IF (Kpiweak <= 0) THEN Kpiweak = 0
71

PRINT " Kiweak ("; Kiweak; ") : ";

INPUT Kiweak$

IF Kiweak$ =" THEN 72

Kiweak = VAL(Kiweak$)

IF (Kiweak >= 1) THEN Kiweak = 1

IF (Kiweak <= 0) THEN Kiweak =0
72

Kpiweakpu = 4096 * Kpiweak

Kiweakpu = 4096 * Kiweak

Kcorweak = (Kiweak / Kpiweak)

Kcorweakpu = 4096 * Kcorweak

REM Send "Option" - "LSB" - "MSB"

PRINT #1, "7"; CHR$(Kpiweakpu AND 255); CHR$((Kpiweakpu AND 65280) / 256);
CHR$(Kiweakpu AND 255); CHR$((Kiweakpu AND 65280) / 256); CHR$(Kcorweakpu AND 255);
CHR$((Kcorweakpu AND 65280) / 256)

GOTO 1

CASE "8"
faultreset = 1
init88 = CLNG(faultreset * 256)
PRINT #1, "8"; CHR$(init88 AND 255); CHR$((init88 AND 65280) / 256)
GOTO 1

CASE ELSE
PRINT #1, "1"; CHR$(speedrefpu AND 255); CHR$((speedrefpu AND 65280) / 256)

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 70

Application Report
SPRA494

PRINT #1, "2"; CHR$(dal AND 255); CHR$(da2 AND 255); CHR$(da3 AND 255); CHR$(da4 AND
255)

PRINT #1, "3"; CHR$(init88 AND 255); CHR$((init88 AND 65280) / 256)

PRINT #1, "4"; CHR$(VDCinvTc AND 255); CHR$((VDCinvTc AND 65280) / 256)

PRINT #1, "5"; CHR$(Kpipu AND 255); CHR$((Kpipu AND 65280) / 256); CHR$(Kipu AND 255);
CHRS$((Kipu AND 65280) / 256); CHR$(Kcorpu AND 255); CHR$((Kcorpu AND 65280) / 256)

PRINT #1, "6"; CHR$(Kpispeedpu AND 255); CHR$((Kpispeedpu AND 65280) / 256);
CHR$(Kispeedpu AND 255); CHR$((Kispeedpu AND 65280) / 256); CHR$(Kcorspeedpu AND 255);
CHR$((Kcorspeedpu AND 65280) / 256)

PRINT #1, "7"; CHR$(Kpiweakpu AND 255); CHR$((Kpiweakpu AND 65280) / 256);
CHR$(Kiweakpu AND 255); CHR$((Kiweakpu AND 65280) / 256); CHR$(Kcorweakpu AND 255);
CHR$((Kcorweakpu AND 65280) / 256)

GOTO 1

END SELECT
CLOSE #1
INTERNET Europe, Middle East, and Africa Asia (continued)
www.ti.com Phone TI Number -800-800-1450
Register with TI&ME to build custom information Dem.SCh +49-(0) 8161 80 3311 China 10811
pages and receive new product updates Engllsh +44-(0) 1604 66 3399 TI Number -800-800-1450
automatically via email Francais +33-(0) 1-30 70 11 64 Hong Kong 800-96-1111

X ’ Italiano +33-(0) 1-30 70 11 67 TI Number -800-800-1450
TI Semiconductor Home Page Fax +33-(0) 1-30-70 10 32 India 000-117
http://www.ti.com/sc Email epic@ti.com Tl Number -800-800-1450

iatri Indonesia 001-801-10
T1 Distributors - Japan TI Number -800-800-1450
http://www.ti.com/sc/docs/distmenu.htm Phone K umbe 080-551.2804
! orea -551-
PRODUCT INFORMATION CENTERS International +81-3-3457-0972 Malaysia 1-800-800-011
Domestic +0120-81-0026
US TMS320 Fax TI'Number ~ -800-800-1450
Hotline (281) 274-2320 International +81-3-3457-1259 Neyl_\lI %\leale;)nd +§§)0000§)101 5o
gfgs ggB gjgggg Domestic +0120-81-0036 Philippi‘:;‘s v
email dsph@ti.com Email picjapan@.com TI Number -800-800-1450
Americas Asia Singapore 800-0111-111
Phone TI Number -800-800-1450

Phone +1(972) 644-5580 International +886-2-3786800 Taiwan 080-006800
Fax +1(972) 480-7800 Domestic Thailand 0019-991-1111
Email sc-infomaster@ti.com Australia 1-800-881-011 TI Number -800-800-1450

Implementation of Vector Control for PMSM Using the TMS320F240 DSP

71

Application Report Q’
SPRA494

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

T1 warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of Tl covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated
Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Implementation of Vector Control for PMSM Using the TMS320F240 DSP 72

