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An Implementation of Adaptive

Filters with the TMS320C25 or the

Abstract

TMS320C30

Adaptive filtering techniques are necessary considerations when a
specific signal output is desired but the coefficients of that filter
cannot be determined at the outset. Sometimes this is because of
changing line or transmission conditions. An adaptive filter is one
which contains coefficients that are updated by an adaptive
algorithm to optimize filter response to the desired performance
criterion.

Two devices, the TMS320C25 and TMS320C30, combine the
power, high speed, flexibility and architecture optimized for
adaptive signal processing.

This book discusses the topic of adaptive filter implementation as
they apply to these two processors.

The book begins with a description of the two parts of an adaptive
filter: the filter and the adaptive algorithm. The book goes on to
discuss:

Q The applications of adaptive filters (including adaptive
prediction, equalization, noise cancellation and echo
cancellation).

O The implementation of adaptive structures and algorithms
(including transversal structure with the LMS algorithm,
symmetric transversal structure, lattice structure, and modified
LMS algorithms)

O Implementation considerations (including dynamic range
constraint, finite precision errors, and design issues)



SPRA116

Q Software development (assembly function libraries, C function
libraries, development process and environment)

The book also contains:

O Tables showing transversal structure, symmetric transversal
structure and lattice structure for both the TMS320C25 and
TMS320C30 processors

Q Extensive references

Q Multiple appendices of sample code for both TMS320C25 and
TMS320C30 processors

An Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30
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Introduction

A filter selects or controls the characteristics of the signal it produces by condition-
ing the incoming signal. The coefficients of the filter determine its characteristics and output
a priori in many cases. Often, a specific output is desired, but the coefficients of the filter
cannot be determined at the outset. An example is an echo canceller; the desired output
cancels the echo signal (an output result of zero when there is no other input signal). In
this case, the coefficients cannot be determined initially since they depend on changing
line or transmission conditions. For applications such as this, it is necessary to rely on
adaptive filtering techniques.

An adaptive filter is a filter containing coefficients that are updated by an adaptive
algorithm to optimize the filter’s response to a desired performance criterion. In general,
adaptive filters consist of two distinct parts: a filter, whose structure is designed to per-
form a desired processing function; and an adaptive algorithm, for adjusting the coeffi-
cients of that filter to improve its performance, as illustrated in Figure 1. The incoming
signal, x(n), is weighted in a digital filter to produce an output, y(n). The adaptive algorithm
adjusts the weights in the filter to minimize the error, e(n), between the filter output, y(n),
and the desired response of the filter, d(n). Because of their robust performance in the
unknown and time-variant environment, adaptive filters have been widely used from
telecommunications to control.

d(n)
+
r—.- e(n)
FILTER
x(n) —o—o= STRUCTURE —. y(n)
ADAPTIVE
FILTER

Figure 1. General Form of an Adaptive Filter
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Adaptive filters can be used in various applications with different input and output
configurations. In many applications requiring real-time operation, such as adaptive predic-
tion, channel equalization, echo cancellation, and noise cancellation, an adaptive filter
implementation based on a programmable digital signal processor (DSP) has many ad-
vantages over other approaches such as a hard-wired adaptive filter. Not only are power,
space, and manufacturing requirements greatly reduced, but also programmability pro-
vides flexibility for system upgrade and software improvement.

The early research on adaptive filters was concerned with adaptive antennas [1] and
- adaptive equalization of digital transmission systems [2]. Much of the reported research
on the adaptive filter has been based on Widrow’s well-known Least Mean Square (LMS)
algorithm, because the LMS algorithm is relatively simple to design and implement, and
it is well-understood and well-suited for many applications. Al the filter structures and
update algorithms discussed in this application report are Finite Impulse Response (FIR)
filter structures and LMS-type algorithms. However, for a particular application, adap-
tive filters can be implemented in a variety of structures and adaptation algorithms [1,
3 through 9]. These structures and algorithms generally trade increased complexity for
improved performance. An interactive software package to evaluate the performance of
adaptive filters has also been developed [10].

The complexity of an adaptive filter implementation is usually measured in terms
of its multiplication rate and storage requirement. However, the data flow and data
manipulation capabilities of a DSP are also major factors in implementing adaptive filter
systems. Parallel hardware multiplier, pipeline architecture, and fast on-chip memory size
are major features of most DSPs [11, 12] and can make filter implementation more efficient.

Two such devices, the TMS320C25 and TMS320C30 from Texas Instruments [13,
14], have been chosen as the processors for fixed-point and floating-point arithmetic. They
combine the power, high speed, flexibility, and an architecture optimized for adaptive
signal processing. The instruction execution time is 80 ns for the TMS320C25 and only
60 ns for the TMS320C30. Most instructions execute in a single cycle, and the architec-
tures of both processors make it possible to execute more than one operation per instruc-
tion. For example, in one instruction, the TMS320C25 processor can generate an instruction
address and fetch that instruction, decode the instruction, perform one or two data moves
(if the second data is from program memory), update one address pointer, and perform
one or two computations (multiplication and accumulation). These processors are
designed for real-time tasks in telecommunications, speech processing, image process-
ing, and high-speed control, etc.



To direct the present research toward realistic real-time applications, three adaptive
structures were implemented:

1. Transversal
2. Symmetric transversal
3. Lattice

Each structure utilizes five different update algorithms:

1. LMS

2. Normalized LMS
3. Leaky LMS

4. Sign-error LMS
5. Sign-sign LMS

Each structure with its adaptation algorithms is implemented using the TMS320C25
with fixed-point arithmetic and the TMS320C30 with floating-point arithmetic. The pro-
cessor assembly code is included in the Appendix for each implementation. The assembly
code for each structure and adaptation strategy can be readily modified by the reader to
fit his/her applications and could be incorporated into a C function library as callable
routines.

In this application report, the applications of adaptive filters, such as adaptive predic-
tion, adaptive equalization, adaptive echo cancellation, and adaptive noise cancellation
are presented first. Next, the implementation of the three filter structures and five adap-
tive algorithms with the TMS320C25 and TMS320C30 is described. This is followed by
the practical considerations on the implementation of these adaptive filters. The remainder
of the application report covers coding options, such as the routine libraries that support
both assembly and C languages.

Applications of Adaptive Filters

The most important feature of an adaptive filter is the ability to operate effectively
in an unknown environment and track time-varying characteristics of the input signal. The
adaptive filter has been successfully applied to communications, radar, sonar, control,
and image processing. Figure 1 illustrates a general form of an adaptive filter with input
signals, x(n) and d(n), output signal, y(n), and error signal, e(n), which is the difference
between the desired signal, d(n), and output signal, y(n). The adaptive filter can be used
in different applications with different input/output configurations. In this section we briefly
discuss several potential applications for the adaptive filters [15].

Adaptive Prediction

Adaptive prediction [16 through 18] is illustrated in Figure 2. In the general ap-
plication of adaptive prediction, the signals are x(n) — delayed version of original signal,
d(n) — original input signal, y(n) — predicted signal, and e(n) — prediction error or
residual.
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d(n)
T +

DELAY \ r—. e(n)

ADAPTIVE
x(n) FILTER y(n)

\

Figure 2. Block Diagram of an Adaptive Predictor

A major application of the adaptive prediction is the waveform coding of a speech
signal. The adaptive filter is designed to exploit the correlation between adjacent samples
of the speech signal so that the prediction error is much smaller than the input signal on
the average. This prediction error signal is quantized and sent to the receiver in order
to reduce the number of bits required for the transmission. This type of waveform coding
is called Adaptive Differential Pulse-Code Modulation (ADPCM) [17] and provides data
rate compression of the speech at 32 kb/s with toll quality. More recently, in certain on-
line applications, time recursive modeling algorithms have been proposed to facilitate speech
modeling and analysis.

The coefficients of the adaptive predictor can be used as the autoregressive (AR)
parameters of the nonstationary model. The equation of the AR process is

u(n) = a;* u(n—1) + a* u(n—-2) + ...... + ap* u(n—m) + v(n)

where aj, ay, ...., a, are the AR parameters. Thus, the present value of the process u(n)
equals a finite linear combination of past values of the process plus an error term v(n).
This adaptive AR model provides a practical means to measure the instantaneous frequen-
cy of input signal. The adaptive predictor can also be used to detect and enhance a narrow
band signal embedded in broad band noise. This Adaptive Line Enhancer (ALE) provides
at its output y(n) a sinusoid with an enhanced signal-to-noise ratio, while the sinusoidal
components are reduced at the error output e(n).

Adaptive Equalization

Figure 3 shows another model known as adaptive equalization [2, 9, 15]. The signals
in the adaptive equalization model are defined as x(n) — received signal (filtered version
of transmitted signal) plus channel noise, d(n) — detected data signal (data mode) or pseudo
random number (training mode), y(n) — equalized signal used to detect received data,
and e(n) — residual intersymbol interference plus noise.
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Figure 3. Block Diagram of an Adaptive Equalizer

The use of adaptive equalization to eliminate the amplitude and phase distortion in-
troduced by the communication channel was one of the first applications of adaptive filtering
in telecommunications [19]. The effect of each symbol transmitted over a time-dispersive
channel extends beyond the time interval used to represent that symbol, resulting in an
overlay of received symbols. Since most channels are time-varying and unknown in ad-
vance, the adaptive channel equalizer is designed to deal with this intersymbol interference
and is widely used for bandwidth-efficient transmission over telephone and radio channels.

Adaptive Echo Cancellation

Another application, known as adaptive echo cancellation [20, 21] is shown in Figure
4. In this application, the signals are identified as x(n) — far-end signal, d(n) — echo
of far-end signal plus near-end signal, y(n) — estimated echo of far-end signal, and e(n)
— near-end signal plus residual echo.

FAR-END
SIGNAL ———— VBRID |
x(n) @ ]
|
|
|
l I
ADAPTIVE | ECHO |
FILTER PATH :
|
y(n) {
— + |
o) + + | NEAR-END
dind : SIGNAL
|
e e e e e e |

Figure 4. Block Diagram of an Echo Canceller



The adaptive echo cancellers are used in practical applications of cancelling echoes
for long-distance telephone voice communication, full-duplex voiceband data modems,
and high-performance audio-conferencing systems. To overcome the echo problem, echo
cancellers are installed at both ends of the network. The cancellation is achieved by
estimating the echo and subtracting it from the return signal.

Adaptive Noise Cancellation

One of the simplest and most effective adaptive signal processing techniques is adap-
tive noise cancelling [1, 22]. As shown in Figure 5, the primary input d(n) contains both
signal and noise, where x(n) is the noise reference input. An adaptive filter is used to
estimate the noise in d(n) and the noise estimate y(n) is then subtracted from the primary
channel. The noise cancellation output is then the error signal e(n).

The applications of noise cancellation include the cancellation of various forms of
interference in electrocardiography, noise in speech signals, noise in fighter cockpit en-
vironments, antennas sidelobe interference, and the elimination of 60-Hz hum. In the ma-
jority of these noise cancellation applications, the LMS algorithm has been utilized.

SIGNAL :@\ d(n)
+

SOURCE
+
p—= e(n)
x(n) ApApTIVE | Y™™
NOISE SOURCE ' FILTER
\

Figure 5. General Form of a Noise Canceller

Application Summary

The above list of applications is not exhaustive and is limited primarily to applica-
tions within the field of telecommunications. Adaptive filtering has been used extensively
in the context of many other fields including, but not limited to, instantaneous frequency
tracking, intrusion detection, acoustic Doppler extraction, on-line system identification,
geophysical signal processing, biomedical signal processing, the elimination of radar clutter,
beamforming, sonar processing, active sound cancellation, and adaptive control.




Implementation of Adaptive Structures and Algorithms

Several types of filter structures can be implemented in the design of the adaptive
filters such as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). An adap-
tive IIR filter [1, 5], with poles as well as zeros, makes it possible to offer the same filter
characteristics as the FIR filter with lower filter complexity. However, the major pro-
blem with adaptive IIR filter is the possible instability of the filter if the poles move out-
side the unit circle during the adaptive process. In this application report, only FIR structure
is implemented to guarantee filter stability.

An adaptive FIR filter can be realized using transversal, symmetric transversal, and
lattice structures. In this section, the adaptive transversal filter with the LMS algorithm
is introduced and implemented first to provide a working knowledge of adaptive filters.

Transversal Structure with LMS Algorithm
Transversal Structure Filter

The most common implementation of the adaptive filter is the transversal structure
(tapped delay line) illustrated in Figure 6. The filter output signal y(n) is

N-1
ym) = wTmx@ = X win) x(n—i) 1)
i=0

where x(n)=[x(n) x(n—1) ... x(n—N+1)]T is the input vector, w(n)=[wg(n) wi(n) ...
wn—1(n)]T is the weight vector, T denotes transpose, n is the time index, and N is the
order of filter. This example is in the form of a finite impulse response filter as well as
the convolution (inner product) of two vectors x(n) and w(n). The implementation of Equa-
tion (1) is illustrated using the following C program:

yln] = 0.
for G =0;i < N;i++){
y[n] += wn[i]*xn[i];

{

where wn [i] denotes wi(n) and xn[i] represents x(n—1).
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x(n) x(n-1) x(n-2) x(n—=N+1)

Wy -1(n)

Figure 6. Transversal Filter Structure

TMS320C25 Implementation

The architecture of TMS320C25 [13] is optimized to implement the FIR filter. After
execution of the CNFP (Configure Block B0 as Program Memory) instruction, the filter
coefficients wj(n) from RAM block BO (via program bus) and data x(n—i) from RAM
block B1 (via data bus) are available simultaneously for the parallel multiplier (see Figure 7).

Weights Data Buffer

BO B1 j——— ARn

PFC——»

‘ Data Bus
Program
Bus T(16)

]

MULTIPLER

P(32)

ACC(32)

Figure 7. TMS320C25 Arithmetic Unit (after execute CNFP instruction)



The MACD instruction enables complete multiply/accumulate, data move, and pointer
update operations to be completed in a single instruction cycle (80 ns) if filter coefficients
are stored in on-chip RAM or ROM or in off-chip program memory with zero wait states.
Since the adaptive weights wj(n) need to be updated in every iteration, the filter coeffi-
cients must be stored in RAM. The implementation of the inner product in Equation (1)
can be made even more efficient with a repeat instruction, RPTK. An N-weight transver-
sal filter can be implemented as follows [23]:

LARP ARn

LRLK ARn,LASTAP

RPTK N-1

MACD COEFFP,*— (A)

Where ARn is an auxiliary address register that points to x(n—N+1), and the Prefetch
Counter (PFC) points to the last weight wy_(n) indicated by COEFFP. When the MACD
instruction is repeated, the coefficient address is transferred to the PFC and is incremented
by one during its operation. Therefore, the components of weight vector w(n) are stored
in BO as :

Low Address

PFC —o wy-1(n)

Wy.2(n)

eooe

w;(n)

wo(n)
High Address

The MACD in repeat mode will also copy data pointed to by ARn, to the next higher
on-chip RAM location. The buffer memories of transversal filter are therefore stored as

Low Address

x(n)

x(n-1)

x(n-N+2)

ARn —o» x(n-N+1)

High Address



In general, roundoff noise occurs after each multiplication. However, the
TMS320C25 has a 16 X 16-bit multiplier and a 32-bit accumulator, so there is no roundoff
during the summing of a set of product terms in Program (A). All multiplication products
are represented in full precision, and rounding is performed after they are summed. Thus
y(n) is obtained from the accumulator with only one roundoff, which minimizes the round-
off noise in the output y(n). Since both the tapped delay line and the adaptive weights
are stored in data RAM to achieve the fastest throughput, the highest transversal filter
order for efficient implementation on the TMS320C25 is 256. However, if necessary,
higher order filters can be implemented by using external data RAM.

TMS320C30 Implementation

The architecture of TMS320C30 [14] is quite different from TI’s second generation
processors. Instead of using program/data memory, it provides two data address buses
to do the data memory manipulations. This feature allows two data memory addresses
to be generated at the same time. Hence, parallel data store, load, or one data store with
one data load can be done simultaneously. Such capabilities make the programming much
easier and more flexible. Since the hardware multiplier and arithmetic logic unit (ALU)
of TMS320C30 are separated, with proper operand arrangement, the processor can do
one multiplication and one addition or subtraction at the same time. With these two com-
bined features, the TMS320C30 can execute several other parallel instructions. These
parallel instructions can be found in Section 11 of the Third-Generation TMS320 User’s
Guide [14]. Associating with single repeat instruction RPTS, an inner product in Equa-
tion (1) can be implemented as follows:

MPYF3 *ARO+ +(1)%,*AR1+ +(1)%,R1 ; wW[0].x[0]
RPTS N-2 ; Repeat N—1 times
MPYF3 *ARO+ +(1)%,*AR1+ +(1)%,R1 ; Y[ = wll.x[]
| | ADDF3 R1,R2,R2
ADDF3 R1,R2,R2 ; Include last product

where auxiliary registers ARO and AR1 point to x and w arrays. The addition in the parallel
instruction sums the previous values of R1 and R2. Therefore, R1 is initialized with the
first product prior to the repeat instruction RPTS.

Note that the implementation above does not move the data in the x array like MACD
does in TMS320C25. For filter delay taps, the TMS320C30 uses a circular buffer method
to implement the delay line. This method reserves a certain size of memory for the buffer
and uses a pointer to indicate the beginning of the buffer. Instead of moving data to next
memory location, the pointer is updated to point to the previous memory location.
Therefore, from the new beginning of the buffer, it has the effect of the tapped delay line.
When the value of the pointer exceeds the end of the buffer, it will be circled around
to the other end of the buffer. It works just like joining two ends of the buffer together
as a necklace. Thus, new data is within the circular queue, pointed to by ARO, replacing

Y. .



the oldest value. However, from an adaptive filter point of view, data doesn’t have to
be moved at this point yet.

TMS320C30 has a 32-bit floating point multiplier and the result from the multiplier is
put and accumulated into a 40-bit extended precision register. If the input from A/D con-
verter is equal to or less than 16 bits, there is no roundoff noise after multiplication.
Theoretically, the TMS320C30 can implement a very high order of adaptive filter.
However, for the most efficient implementation, the limitation of filter order is 2K because
the TMS320C30 external data write requires at least two cycles. If the filter coefficients
are put in somewhere other than internal data RAM, the instruction cycles will be increased.

LMS Adaptation Algorithm
The adaptation algorithm uses the error signal

e(n) = d(n)—y(n), @

where d(n) is the desired signal and y(n) is the filter output. The input vector x(n) and
e(n) are used to update the adaptive filter coefficients according to a criterion that is to
be minimized. The criterion employed in this section is the mean-square error (MSE)e:

e = E[e2(n)] | 3

where E [.] denotes the expectation operator. If y(n) from Equation (1) is substituted into
Equation (2), then Equation (3) can be expressed as

€ = E[d2(n)] + wT(@Rw(n) — 2 wT(n)p ()]

where R = E[x(n)xT(n)] is the N x N autocorrelation matrix, which indicates the sample-
to-sample correlation within a signal, and p = E [d(n) x(n)] is the N x 1 cross-correlation
vector, which indicates the correlation between the desired signal d(n) and the input signal
vector x(n).

The optimum solution w* = [wo* wi* ... wN—1*]T, which minimizes MSE, is de-
rived by solving the equation

13

@ ° ©

This leads to the normal equation

Rw* =p 6



If the R matrix has full rank (i.e., R—! exists), the optimum weights are obtained by

w*=R-lp ™

In Linear Predictive Coding (LPC) of a speech signal, the input speech is divided
into short segments, the quantities of R and p are estimated, and the optimal weights cor-
responding to each segment are computed. This procedure is called a block-by-block data-
adaptive algorithm [24].

A widely used LMS algorithm is an alternative algorithm that adapts the weights
on a sample-by-sample basis. Since this method can avoid the complicated computation
of R=1 and p, this algorithm is a practical method for finding close approximate solutions
to Equation (7) in real time. The LMS algorithm is the steepest descent method in which
the next weight vector w(n+1) is increased by a change proportional to the negative gra-
dient of mean-square-error performance surface in Equation (7)

w(n+1) = w(n) — uV (n) ®

where u is the adaptation step size that controls the stability and the convergence rate.
For the LMS algorithm, the gradient at the nth iteration, V (n), is estimated by assuming
squared error e€2(n) as an estimate of the MSE in Equation (3). Thus, the expression for
the gradient estimate can be simplified to

6[e2(n)]
Vm)= —————— = — 2e() x(n) 9)
- 6w(n)

Substitution of this instantaneous gradient estimate into Equation (8) yields the
Widrow-Hoff LMS algorithm

w(n+1) = w(n) + 2 u e(n) x(n) (10)

where 2 u in Equation (10) is usually replaced by u in practical implementation.

Starting with an arbitrary initial weight vector w(0), the weight vector w(n) will
converge to its optimal solution w*, provided u is selected such that [1]

1
O<u<——— (11

)‘max



where A\pay is the largest eigenvalue of the matrix R. Apax can be bounded by

N-1
Max < TT[RI= X 1(0) =Nr10) (12)
i=0

where Tr [.] denotes the trace of a matrix and r(0) = E [x2(n)] is average input power.

For adaptive signal processing applications, the most important practical considera-
tion is the speed of convergence, which determines the ability of the filter to track nonsta-
tionary signals. Generally speaking, weight vector convergence is attained only when the
slowest weight has converged. The time constant of the slowest mode is [1]

1

t = _l;)\_mm— (13)

This indicates that the time constant for weight convergence is inversely propor-
tional to u and also depends on the eigenvalues of the autocorrelation matrix of the input.
With the disparate eigenvalues, i.e., Amax> > Amin, the setting time is limited by the
slowest mode, Ap;n. Figure 8 shows the relaxation of the mean square error from its in-
itial value €y toward the optimal value €m;p.

Adaptation based on a gradient estimate results in noise in the weight vector, therefore
a loss in performance. This noise in the adaptive process causes the steady state weight
vector to vary randomly about the optimum weight vector. The accuracy of weight vector
in steady state is measured by excess mean square error (excess MSE = E [e — €minl)-
The excess MSE in the LMS algorithm [1] is

excess MSE = u Tr[R] €min (14)

where €pin is minimum MSE in the steady state.

Equations (13) and (14) yield the basic trade-off of the LMS algorithm: to obtain
high accuracy (low excess MSE) in the steady state, a small value of u is required, but
this will slow down the convergence rate. Further discussions of the characteristics and
properties of the LMS algorithm are presented in [1, 3 through 9]. The implementations
of LMS algorithm with the TMS320C25 and TMS320C30 are presented next.
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Since u*e(n) is constant for N weights update, the error signal e(n) is first multiplied
by u to get ue(n). This constant can be computed first and then multiplied by x(n) to up-
date w(n). An implementation method of the LMS algorithm in Equation (10) is illustrated
as

ue(n) = u*e[n];

for (i=0; i<N; i++) {
wn[i] += uen * xn[i];

}

TMS320C25 Implementation

The TMS320C25 provides two powerful instructions (ZALR and MPYA) to per-
form the update example in Equation (10).

. ZALR loads a data memory value into the high-order half of the ac-
cumulator while rounding the value by setting bit 15 of the accumulator
to one and setting bits 0-14 of the accumulator to zero. The rounding is
necessary because it can reduce the roundoff noise from multiplication.

. MPYA accumulates the previous product in the P register and multiplies
the operand with the data in T register.

Assuming that ue(n) is stored in T and the address pointer is pointing to AR3, the
adaptation of each weight is shown in the following instruction sequence:

LRLK ARI,N-1 ; Initialize loop counter

LRLK AR2,COEFFD ; Point to wn_—1(n)

LRLK AR3,LASTAP+1 ; Point to x(n—N+1), since MACD in (A)
; Already moved elements of current
; x(n) to the next higher location

MPY *-—,AR2 ; P=ue(n) * x(n—N+1)
ADAP ZALR *,AR3 ; Load wj(n) and round |
MPYA *-— AR2 ; ACC=P+wj(n) and P=ue(n) * x(n—i)
SACH *+,0,ARl1 ; Store wi(n+1)
BANZ ADAP,*—,AR2 ; Test loop counter, if counter not

; Equal to 0, decrement counter,
: Branch to ADAP and select AR2 as
; Next pointer.

For each iteration, N instruction cycles are needed to perform Equation (1), 6N in-
struction cycles are needed to perform weight updates in Equation (10), and the total number
of instruction cycles needed is 7N +28. An example of a TMS320C25 program implement-
ing a LMS transversal filter is presented in Appendix Al. Note that BANZ needs three
instruction cycles to execute. This can be avoided by using straight line code, which re-
quires 4N +33 instruction cycles [25].



TMS320C30 Implementation

Although the TMS320C30 doesn’t provide any specific instruction for adaptive filter
coefficients update, it still can achieve the weight updating in two instructions because
of its powerful architecture. The TMS320C30 has a repeat block instruction RPTB, which
allows a block of instructions to be repeated a number of times without any penalty for
looping. A single repeat mode, RM, in the status register, ST, and three registers - repeat
start address (RS), repeat end address (RE), and repeat counter (RC) - control the block
repeat. When RM is set, the PC repeats the instructions between RS and RE a number
of times, which is determined by the value of RC. The repeat modes repeat a block of
code at least once in a typical operation. The repeat counter should be loaded with one
less than the desired number of repetitions. Assuming the error signal e(n) in Equation
(10) is stored in R7, the adaptation of filter coefficients is shown as follows:

MPYF3 *ARO++(1)%,R7,R1 ; Rl = u*e(n)*x(n)
LDI order—3,RC ; Initialize repeat counter

RPTB LMS ;Doi =0, N-3
MPYF3 *ARO++(1)%,R7,R1 ; Compute u*e(n)*x(n—i—1)
| ]ADDF3 *AR1,R1,R2 ; Compute wi(n) + u*e(n)*x(n—i)
LMS STF R2,*AR1++(1)% ; Store wi(n+1)
MPYF3 *ARO,R7,R1 ; Fori = N-2
| IADDF3 *ARI,R1,R2
STF R2,*AR1++(1)% ; Store wWN—2(n+1)
ADDF3 *AR1,R1,R2 ; Include last w

STF R2,*AR1++(1)% ; Store wWN—1(n+1)

where auxiliary register ARO and AR1 point to x and w arrays. R1 is updated before loop
since the accumulation in the parallel instruction uses the previous value in R1. In order
to update x array pointer to the new beginning of the data buffer for next iteration G.e.,
perform the data move), one of the loop instruction set has been taken out of loop and
modified by eliminating the incrementation of ARO.

To perform an N —weight adaptive LMS transversal filter on TMS320C30 requires
3N+15 instruction cycles. There are N and 2N instruction cycles to perform Equations
(1) and (10), respectively. The TMS320C30 example program is given in Appendix A2.

The LMS algorithm considerably reduces the computational requirements by using
a simplified mean square error estimator (an estimate of the gradient). This algorithm has
proved useful and effective in many applications. However, it has several limitations in
performance such as the slow initial convergence, the undesirable dependence of its con-
vergence rate on input signal statistics, and an excess mean square error still in existence
after convergence.



Symmetric Transversal Structure (5]

A transversal filter with symmetric impulse response (weight values) about the center
weight has a linear phase response. In applications such as speech processing, linear phase
filters are preferred since they avoid phase distortion by causing all the components in
the filter input to be delayed by the same amount. The adaptive symmetric transversal
structure is shown in Figure 9.

Figure 9. Symmetric Transversal Structure (even order)

This filter is actually an FIR filter with an impulse response that is symmetric about
the center tap. The output of the filter is obtained as

N/2-1

ym = X wi@) [x(n-i) + x(a=N+i+1)] (15a)
l=

where N is an even number. Note that, for fixed-point processors, the addition in the
brackets may introduce overflow because the input signals x(n—i) and x(n—N+i+1) are
in the range of —1 and 1 —2-15. This problem can be solved by shifting x(n) to the right
one bit. The update of the weight vector is

win+1) = win) + uem)[x(n—1) + x(n—N+i+1)] (15b)



for i=0,1,...,(N/2-1), which requires N/2 multiplications and N additions. Theoretical-
ly, this symmetric structure can also reduce computational complexity since such filters
require only half the multiplications of the general transversal filter. However, it is true
only for the TMS320C30 processor. When a filter is implemented on the TMS320C25,
the transversal structure is more efficient than the symmetric transversal structure due
to the pipeline multiplication and accumulation instruction MACD, which is optimized
to implement convolution in Equation (1).

TMS320C25 Implementation

For TMS320C25, in order to implement the instructions MAC, ZALR, and MPYA,
we can trade memory requirements for computation saving by defining

z(n—i) = x(n—i) + x(n—N+i+1), i=0,1,...,N/2-1 (16a)
Now, Equation (15) can be expressed as

Ni2-1
y(n) = wi(n) z(n—i) (16b)
0

l=
wij(n+1) = wij(n) + u e(n) z(n—i) , i=0,1,...,N/2-1 (16¢)

Equation (16a) can be implemented using the TMS320C25 as

LARK ARIl, N/2-1 ; Counter = N/2 -1
LRLK AR2,LAST_X ; Point to x(n—N+1)
LRLK AR3,FIRST__X ; Point to x(n)
LRLK AR4,FIRST__Z ; Point to z(n)
LARP AR3

SYM LAC *+.,0,AR2
ADD *— 0,AR4
SACL *+.0,ARI1
BANZ SYM,*— AR3

The instruction sequence to implement the LMS algorithm in Equations (1) and (10)
can be used to implement Equations (16b) and (16c), except using MAC instead of MACD
in Program (A). Therefore, N instruction cycles are needed to shift data in x(n), 3N in-
struction cycles are needed to implement Equation (16a), N/2 for Equation (16b), and
3N for Equation (16¢c). The total number of instruction cycles required to implement the
symmetric transversal filter with the LMS algorithm is 7.5N+38. Where 7.5N is an in-
teger because N is chosen as an even number. The 0.5N instruction cycles come from
Equation (15a) since symmetric transversal structure folds the filter taps into half of the
order N (see Figure 9). The maximum filter length for most efficient code, 256, is the



same as for the FIR filter. The use of the additional data memory can be obtained from
the reduced data memory requirement for weights of the symmetric transversal filter. The
complete TMS320C25 program is given in Appendix B1.

Note that instead of storing buffer locations x(n) contiguously, then using DMOV
to shift data in the buffer memory (requiring N cycles) at the end of each iteration, we
can use a circular buffer with pointers pointing to x(n) and x(n—N+1). Since pointer up-
dating requires several instruction cycles, compared with N cycles using DMOV to up-
date the buffer memory contents, the circular buffer technique is more efficient if N is large.

TMS320C30 Implementation

As mentioned above, the TMS320C30 uses a circular buffer instead of data move
technique. Therefore, it does not have to implement tapped delay line separately as
TMS320C25. Equations (1) and (16a) can be combined and implemented in the same loop.
The advantage of this is that a parallel instruction reduces the number of the instruction
cycles. The implementation is shown as follows:

LDF 0.0,R2 ; Clear R2
LDI order/2—2,RC ; Set up loop counter
RPTB INNER ;Doi=0,N/2 -2
ADDF3 *AR4+ +(1)%,*AR5——(1)%,R1; z(i) = x(n—i) + x(n+N-—i)
MPYF3 RI1,*AR1++(1),R3 ; R3 = w[] * z[]
| | STF R1,*AR2++(1) . ; Store z(i)
INNER ADDF3 R3,R2,R2 ; Accumulate the result for y

ADDF3 *AR4++(1)%,*AR5——(1)%,R1; Fori = N/2 —1
MPYF3 RI1,*AR1-—(IR0O),R3

| | STF R1,*AR2— —(IR0)
ADDF3 R3,R2,R2 ; Include last product

where AR4 and ARS point to x[0] and x[N—1]. AR1 and AR2 point to w and z array,
respectively. IR0 contains value of N/2 —1. The same instruction codes of weight update
of transversal filter can be used in symmetric transversal structure by changing the x ar-
ray pointer to the z array pointer. Appendix B2 presents an example program. The total
number of instructions needed is 2.5N+15, which is less than that of the transversal
structure.

Lattice Structure [6]

An alternative FIR filter realization is the lattice structure [26]. A discussion of the
transversal filter with the LMS algorithm shows that the convergence rate of the transver-
sal structure is restricted by the correlation of signal components; i.e., the eigenvalue spread,
Mmax/ Mmin- The lattice structure is a decorrelating transform based on a family of predic-
tion error filters as illustrated in Figure 10. The recursive equations that describe the lat-
tice predictor are



fo(n) = bo(n) = x(n) (17a)
fm(M) = fn-1(n) — kp(Mbp—1(n—1), 0 <m <=M (17b)
bm() = by-1(a—1) — kpmfp-1(n), 0 < m <=M (17¢)

where f,(n) represents the forward prediction error, by,(n) represents the backward predic-
tion error, kp,(n) is the reflection coefficients, m is the stage index, and M is the number
of cascaded stages. The lattice structure has the advantage of being order-recursive. This
property allows adding or deleting of stages from the lattice without affecting the existing
stages.

foln) f1(n) fm(n)
T—_— — e —_— ——o
Stage Stage Stage
x(n)—¢ 1 2 m
- 0 }—_—... | -
bg(n) b1(n) bm(n)

fm-1 (n) fm(n)

bm(n)

Figure 10. Lattice Structure

To implement the lattice filter for processing actual data, the reflection coefficients
km(n) are required. These coefficients can be computed according to estimates of the
autocorrelation coefficients using Durbin’s algorithm. However, it would be more effi-
cient if these reflection coefficients could be estimated directly from the data and updated
on a sample-by-sample basis, such as LMS algorithm [6]. The reflection coefficient
km(n+1) can be recursively computed [7]:



kp(n+1) = k() + ulfp()bm—1(n—1) + by@m)fn_i()], 0 < m <= M(18)

For applications such as noise cancellation, channel equalization, line enhancement,
etc., the joint-process estimation [3] illustrated in Figure 11 is required. This device per-
forms two optimum estimations: the lattice predictor and the multiple regression filter.
The following equations define the implementation of the regression filter

eo(n) = d(n) — bo(n)go(n) (19a)
em(n) = em—1(n) —by_[(N)gm-1(n), 0 < m <=M (19b)
gm(n+1) = gn(n) + Uem(n)by(n), 0 <=m <=M (20)

where the LMS algorithm is used to update the coefficients of the regression filter. For
noise cancellation application, e,(n) corresponds to the output e(n) in Figure 5. For ap-
plications such as adaptive line enhancer and channel equalizer, filter output y(n) is ob-
tained as

M
ym = X gun) by®) @1
m=0
foln) fq(n) fm(n)
Stage Stage | ™1 Stage y
x‘n) 1 1 2 m bm(n)

Figure 11. Lattice Structure with Joint Process Estimation



TMS320C25/TMS320C30 Implementation

There are five memory locations—fiy(n), bp(n), by(n—1), ky(n), and gy (n)—
required for each stage. The limitation of on-chip data RAM is 544 words for the
TMS320C25 and 2K words for the TMS320C30. A maximum of 102 stages can therefore
be implemented on a single TMS320C25 for the highest throughput. Here, another ad-
vantage of TMS320C30 architecture design is shown. Since the operands of the mathematic
operations can be either memory or register on the TMS320C30, and there is no need
to preserve the values of f;, array for the next iteration (refer to Equations (17) and (18)),
the fy, array can be replaced by an extended precision register. Thus, for the most effi-
cient codes, the stage limitation of lattice structure for TMS320C30 is 512, or one-fourth
of the 2K on-chip RAM.

Lattice structures have superior convergence properties relative to transversal struc-
tures and good stability properties; e.g., low sensitivity to coefficient quantization, low
roundoff noise, and the ability to check stability by inspection. The disadvantages of lat-
tice filter algorithms are that they are numerically complex and require mathematical
sophistication to thoroughly understand their derivations. Furthermore, as shown in Ap-
pendixes C1 and C2, lattice structures cannot take advantage of the TMS320C25 and
TMS320C30’s pipeline architecture to achieve high throughput. The total number of in-
struction cycles needed is 33M +32 for TMS320C25 and 14M+4 for TMS320C30.

Modified LMS Algorithms [5]

The LMS algorithm described in previous sections is the most widely used algorithm
in practical applications today. In this section, a set of LMS-type algorithms (all direct
variants of the LMS algorithm) are presented and implemented. The motivation for each
is some practical consideration, such as faster convergence, simplicity in implementation,
or robustness in operation. The description of these algorithms is based on the transversal
structure. However, these algorithms can be applied to the symmetric transversal struc-
ture and the lattice structure as well.

Normalized LMS Algorithm

The stability, convergence time, and fluctuation of the adaptation process is governed
by the step size u and the input power to the adaptive filter. In some practical applica-
tions, you may need an automatic gain control (AGC) on the input to the adaptive filter.
The normalized LMS algorithm is one important technique used to improve the speed of
convergence. This is accomplished while maintaining the steady-state performance indepen-
dent of the input signal power. This algorithm uses a variable convergence factor u(n),
which represents a u that is a function of the time index,

u(n) = a / var(n) (22)



and
w(n+1) = w(n) + u(n)e(n)x(n) (23)

where a is a convergence parameter, and var(n) is an estimate of the input average power
at time n using the recursive equation

var(n) =(1 — b) var(n—1) + b x2 (n) 24)

where 0 < b << 1 is a smoothing parameter. In practice, a is chosen equal to b.

For fixed-point processors, there is a way to reduce the computation of power estima-
tion. Since b in Equation (24) doesn’t have to be an exact number, it is computationally
convenient to make b a power of 2. If b = 2-m, the multiplication of b can be implemented
by shifting right m bits. Therefore, the var(n) in Equation (24) is computed by

var(n—1) — b var(n—1) + b x2(n)
var(n—1) — var(n—1) ¥ 2-m + x2(n) * 2—-m

var(n)

Then, assuming the variance var(n) of input signal is stored in the data memory
VAR and its initial value is 0.99997 (= 1— 2-15), The implementation of this equation
using TMS320C25 assembly code is

LARP AR3

LRLK  AR3,FRSTAP ; Point to input signal x
SQRA  * ; Square input signal
SPH ERRF

ZALH VAR ; ACC = var(n—1)

SUB VAR,SHIFT ; ACC = (1-b) var(n—1)
ADD ERRF,SHIFT ; ACC = (1-b) var(n—1) + b x2(n)
SACH VAR ; Store var(n)

The normalized LMS algorithm can be implemented as

var = by * var + b * xn[0] * xn[0];
unen = ¢[n] * a / var;

for i = 0; i< N;i++)

wn[i] += unen * xnl[i];

where b; = (1-b), xn[0] = x(n), and unen = u(n)*e(n). This normalized technique
reduces the dependency of convergence speed on input signal power at the cost of in-
creased computational complexity, especially the division in Equation (22). The algorithms
of implementing the fixed-point and floating-point division on the TMS320C25 and



TMS320C30 can be found in the user’s guide for each device [13, 14]. Since the power
of input signal is always positive, those codes can be simplified to save computation time.

Since the power estimation in Equation (24) and step size normalization in Equation (22)
are performed once for each sample x(n), the computation increase can be ignored when
N is large. As shown in Appendixes D1 and D2, the total number of instruction cycles
needed for the normalized LMS algorithm (7N +57 for the TMS320C25 and 3N +47 for
the TMS320C30) is slightly higher than for the LMS algorithm (7N +34 and 3N +15)
when N is large. '

Sign LMS Algorithms

The LMS algorithm requires 2N multiplications and -additions for each iteration;
this amount is much lower than the requirements for many other complicated adaptive
algorithms, such as Kalman and Recursive Least Square (RLS) [3]. However, there are
three simplified versions of the LMS algorithm (sign-error LMS, sign-data LMS, and sign-
sign LMS) that save the number of multiplications required and extend the real-time band-
width for some applications [5, 27].

First, the sign-error LMS algorithm can be expressed as
w(n+1) = w(n) + u sign[e(n)] x(n) (25)

where signfe(n)] = 1, ife(n) >0
-1, ife(n) <0

The C program implementation of sign-error LMS algorithm is

tu = u;
if (e[n] < 0.) {
tu= —u; ]}

for (i=0; i<N; i++) {
wnli] += tu * xn[i];
]

As shown in Appendixes E1 and E2, the instruction sequence to implement weight
update with the sign-error LMS algorithm is identical to that with the LMS algorithm.
The difference is that the sign-error LMS algorithm uses the sign [e(n)]*u instead of e(n)*u
before the update loop. Note that, for fixed-point processors, if u is chosen to be a power
of two, the u x(n) can be accomplished by shifting right the elements in x(n). This algorithm
keeps the same convergence direction as the LMS algorithm. Thus, the sign-error LMS
algorithm should remain efficient, provided the variable gain u(n) is matched to this change.
However, the use of constant step size u to reduce computation comes at the expense of
a slow convergence rate since smaller u is normally used for stability reasons.



The programs in Appendixes E1 and E2 implement a transversal filter with sign-
error LMS algorithm in looped code. The total number of instruction cycles needed for
this algorithm using the TMS320C25 is 7N +26, which is slightly less than for the LMS
algorithm’s 7N +28. Computing u*e(n) takes 5 instruction cycles. The sign-error LMS
algorithm determines the sign of the u by checking the sign of e(n), which takes only 3
instruction cycles. The total number of instruction cycles needed for the sign-error LMS
algorithm using the TMS320C30 is 3N + 16, which is slightly higher than for the LMS
algorithm. This occurs because the TMS320C30 takes only one instruction cycle to com-
pute u*e(n) and two instruction cycles to determine the sign of the u.

Secondly, the sign-data LMS algorithm is
w(n+1) = w(n) + u e(n) sign[x (n)] (26)
This equation can be implemented as

wi(n+1) = wij(n) + ue(n) , if x(n—i) >=0
= wj(n) — ue(n) , if x(n—i) <0

for i=0,1,...,N—1. Since the sign determination is required inside the adaptation loop
to determine the sign of x(n—1i), slower throughput is expected. The total number of in-
struction cycles needed is 11N +26 for the TMS320C25 and SN + 16 for the TMS320C30.

Finally, the sign-sign LMS algorithm is
w(n+1) = w(n) + u sign[e(n)] sign{x(n)] . 27

which requires no multiplications at all and is used in the CCITT standard for ADPCM
transmission. As we can see from the above equations, the number of multiplications is
reduced. This simplified LMS algorithm looks promising and is designed for VLSI or
discrete IC implementation to save multiplications.

The sign-sign LMS algorithm can be implemented as

for (i=0; i<N; i++) {
if (e[n] >=0.) {
if (xn[i] >=0.)
wn[i] += u;

else
wn[i] —= u; }
else {
if (xn[i]> = 0.)
wnli]—= u;



else
wnli] +=u; ] ]

When this algorithm is implemented on TMS320C25 and TMS320C30 with pipeline
architecture and a parallel multiplier, the performance of sign-sign LMS algorithm is poor
compared to standard LMS algorithm due to the determination of sign of data, which can
break the instruction pipeline and can severely reduce the execution speed of the processors.

In order to avoid double branches inside the loop, the XOR instruction is utilized
to check the sign bit of e(n) and x(n—1i). The sign-sign LMS algorithm can be implemented
as

wi(n+1)

wi(n) + u , if sign[e(n)] = sign[x(n—1i)]
wij(n) — u , otherwise

The following TMS320C25 instruction sequence implements this algorithm without
branching ‘(assuming that the current address register used is AR3):

LRLK AR1,N-1 ; Set up counter
LRLK  AR2,COEFFD ; Point to w;(n)
LRLK AR3,LASTAP+1 ; Point to x(n—i)
ADAP LAC *— 0,AR2 ; Load x(n—i)
XOR ERR ; XOR with e(n)
SACL  ERRF ; Save sign bit, sign = 0 if same signs
; Sign = 1 if different signs
LAC ERRF ; Sign extension to ACCH,

; ACCH = OIf ERRF > =0
; ACCH = OFFFFh if ERRF < 0

XORK MU,15 ; Take one’s complement of m
; If sign = 1

ADD * 15 ; Weight update

SACH *+.1,AR1 ; Save new weight

BANZ ADAP,*—,AR3

The one’s complement of u is used instead of —u, because they are only slightly
different and the step size does not require the exact number. The weight update with
this technique requires 10N instruction cycles and FIR filtering requires N instruction cycles
so that the total number of instruction cycles needed is 11N +21. The complete TMS320C25
assembly program is given in Appendix F1.

To determine whether a positive or negative u should be used without branching
is trickier in the TMS320C30. Fortunately, the extended precision registers of TMS320C30
interpret the 32 most-significant bits of the 40-bit data as the floating-point number and
the 32 least-significant bits of the 40-bit data as an integer. When a floating-point number



changes its sign, its exponent remains the same. Therefore, the sign of step size u can
be determined by using XOR logic on its mantissa. The following code shows how the
sign-sign LMS algorithm is implemented on the TMS320C30.

ASH -31,R7 ; R7 = Sign[e(n)]

XOR3 RO,R7,R5 ; RS = Sign[e(n)] * u

LDF *AR0O++(1)%,R6 ; R6 = x(n)

ASH -31,R6 ; R6 = Sign[x(n—i)]

XOR3 R5,R6,R4 ; R4 = Sign[x(n—i)]*Sign[e(n)] * u
ADDF3 *AR1,R4,R3 ; R3 = wj(n) + R4

LDI order—3,RC ; Initialize repeat counter

RPTB SSLMS ;Doi =0, N-3

LDF *ARO+ +(1)%,R6 ; Get next data
|| STF  R3,*AR1++(1)% ; Update w;(n+1)

ASH —31,R6 ; Get the sign of data
XOR3 R5,R6,R4 ; Decide the sign of u
SSLMS ADDF3 *AR1,R4,R3 ; R3 = wj(n) + R4

LDF *ARO,R6 ; Get last data

|| STF R3,*AR1++(1)% ; Update wy—2(n+1)
ASH -31,R6 ; Get the sign of data
XOR3 R5,R6,R4 ; Decide the sign of u
ADDF3 *AR1,R4,R3 ; Compute wy_—1(n+1)

STF R3,*AR1++(1)% ; Store last w(n+1)

Here, RO, R4, and RS contain the value of u before updating. ARO and AR1 point
to x array and w array, respectively. R7 contains the value of error signal e(n). The com-
plete program is given in Appendix F2. The total number of instruction cycles is SN + 16,
which is much higher than LMS algorithm.

The sign-sign LMS algorithm is developed to reduce the multiplication requirement
of the LMS algorithm. Since DSPs provide the hardware multiplier as a standard feature,
this modification does not provide any advantage when implementing this algorithm on
the DSPs. On the contrary, it causes some disadvantages since decision instructions will
destroy the instruction pipeline. If you use the XOR logic operation in order to avoid us-
ing the decision instructions, the complexity of the program will be increased and the total
number of instruction cycles will be greater than the regular LMS algorithm.

Leaky LMS Algorithm

When adaptive filters are implemented on signal processors with fixed word lengths,
roundoff noise is fed back to adaptive weights and accumulates in time without bound.
This leads to an overflow that is unacceptable for real-time applications. One solution is



based upon adding a small forcing function, which tends to bias each filter weight toward
zero. The leaky LMS algorithm has the form

w(n+1) = r w(n) + u e(n) x(n) (28a)

where r is slightly less than 1.

Since r can be expressed as 1 — c and ¢ < < 1, the TMS320C25 can take advantage
of the built-in shifters to implement this algorithm. Therefore, Equation (28a) can be
changed to

w(n+1) = w(n) — ¢ w(n) + u e(n) x(n) (28b)

In order to achieve the highest throughput by using ZALR and MPYA, cw(n) can
be implemented by shifting w;(n) right by m bits where 2—m is close to c. Since the length
of the accumulator is 32 bits and the high word (bits 16 to 31) is used for updating w(n),
shifting right m bits of wj(n) can be implemented by loading wi(n) and shifting left
16 — m bits. The sequence of TMS320C25 instructions to implement Equation (28b) is
shown as

LRLK AR1,N-1 ; Set up counter
LRLK AR2,COEFFD ; Point to w;(n)
LRLK  AR3,LASTAP+1 ; Point to x(n — i)
LT ERRF ; T = ERRF =u%*e(n)

MPY *—,AR2
ADAPT ZALR  * AR3
MPYA *—,AR2
SUB * LEAKY ; LEAKY=16—m
SACH *+,0,AR1
BANZ  ADAPT,*— ,AR2

For each iteration, 7N instruction cycles are needed to perform the adaptation pro-
cess (6N for the LMS algorithm). The total number of instruction cycles needed is 8N +28
(see Appendix G1 for the complete program). The leaky factor r has the same effect as
adding a white noise to the input. This technique not only can solve adaptive weights
overflow problem, but also can be beneficial in an insufficient spectral excitation and stalling
situation [5].

The method used above is especially for the TMS320C25, which has a free shift
feature. Since TMS320C30 is a floating-point processor, r can simply multiply to filter
coefficient. However, in order to reduce the instruction cycles, this multiplication can
combine with another instruction to be a parallel instruction inside the loop. The follow-
ing code shows how to rearrange the instructions from the LMS algorithm to include this
multiplication without an extra instruction cycle.



MPYF @u__r,R7 ; R7 = e(n)*u/r
MPYF3 *ARO0++(1)%,R7,R1 ; R1 = e(n)*u*x(n)/r
MPYF3 *ARO++(1)%,R7,R1 ; R1 = e(n)*u*x(n—1)/r
| | ADDF3 *ARI1,R1,R2 ; R2 = wp(n) + e(n)*u*x(n)/r
LDI order—4,RC ; Initialize repeat counter
RPTB LLMS ;doi =0, N—-4
MPYF3 *AR2,R2,R0 ; RO = r*w;(n) + e(n)*u*x(n—i)
| | ADDF3 *+ARI1(1),R1,R2 ; R2 = wijy1(n) + e(n)*u*x(nz—i—1)/r
LLMS MPYF3 *ARO++(1)%,R7,R1 ; R1 = e(n)*u*x(n—i—2)/r
| | STF RO,*AR1++(1)% ; Store wi(n+1)
MPYF3 *AR2,R2,R0O ; RO = r*wy_3(n) + e(m)*u*x(n—N+3)
| | ADDF3 *+ARI(1),R1,R2 ; R2 = wy_2(n) + e(n)*u*x(n—N+2)/r
MPYF3 *ARO,R7,R1 ; R1 = e(m)*u*x(n—N+1)/r
| | STF RO,*AR1++(1)%  ; Store wy—3(n+1)
MPYF3 *AR2,R2,R0 ; RO = r*w;(n) + e(n)*u*x(n—N+2)
| | ADDF3 *+ARI1(1),R1,R2 ; R2 = wy-1(n) +
* ; e(n)*u*x(n—N+1)/r
MPYF3 *AR2,R2,R0 ; RO = r*w;(n) + e(n)*u*x(n—N+1)
| | STF RO,*AR1++(1)% ; Store wy_2(n+1)
STF RO,*AR1++(1)% ; Update last w

Aucxiliary registers ARO and AR1 point to x and w arrays. AR2 points to the memory

location that contains value r. R7 contains the value of error signal e(n). R1 and R2 are
updated before the loop because the parallel instructions inside the loop use the previous
values in R1 and R2. Note that R1 is updated twice before the loop because the updating
of R2 requires the previous value of R1. In order to update x array pointer to the new
beginning of the data buffer for next iteration, two of the loop instruction sets have been
taken out of loop and modified by eliminating the incrementation of ARO. The TMS320C30
assembly program of an adaptive transversal filter with the leakage LMS algorithm is listed
in Appendix G2 as an example. The total number of instruction cycles for this algorithm
is 3N+15, which is the same as the LMS algorithm. This example shows the power and
flexibility of the TMS320C30.



Implementation Considerations

The adaptive filter structures and algorithms discussed previously were derived on
the basis of infinite precision arithmetic. When implementing these structures and algorithms
on a fixed integer machine, there is a limitation on the accuracy of these filters due to
the fact that the DSP operates with a finite number of bits. Thus, designers must pay at-
tention to the effects of finite word length. In general, these effects are input quantization,
roundoff in the arithmetic operation, dynamic range constraints, and quantization of filter
coefficients. These effects can either cause deviations from the original design criteria
or create an effective noise at the filter output. These problems have been investigated
extensively, and techniques to solve these problems have been developed [28, 29].

The effects of finite precision in adaptive filters is an active research area, and some
significant results have been reported [30 through 32]. There are three categories of finite
word length effects in adaptive filters:

. Dynamic Range Constraint (scaling to avoid overflow). Since this is not
applicable for a floating-point processor, the TMS320C30 is not mentioned
in this portion.

L Finite Precision Errors (errors introduced by roundoff in the arithmetic).
. Design Issues (design of the optimum step size u that minimizes system
noise).

Dynamic Range Constraint

As shown in Figure 1, the most wxdcly used LMS transversal filter is specified by
the difference equations

N-1
y(n) = E wi(n) x(n—i) 9)

i=
and
wij(n+1) = wj(n) + u*e(n)*x(n—i), fori =0, 1, ..., N—1 (30)

where x(n—i) is the input sequence and w;(n) are the filter coefficients.

If the input sequence and filter coefficients are properly normalized so that their
values lie between —1 and 1 using Q15 format, no error is introduced into the addition.
However, the sum of two numbers may become larger than one. This is known as overflow.
The TMS320C25 provides four features that can be applied to handle overflow manage-
ment [13]:



A. Branch on overflow conditions.

B. Overflow mode (saturation arithmetic).
C. Product register right shift.

D. Accumulator right shift.

One technique to inhibit the probability of overflow is scaling, i.e., constraining
each node within an adaptive filter to maintain a magnitude less than unity. In Equation
(29), the condition for |y(n)| <1 is

N-1
Xmax < 1/ XL |win)| @31

1=

where X,y denotes the maximum of the absolute value of the input. The right shifter
of the TMS320C25, which operates with no cycle overhead, can be applied to implement
scaling to prevent overflow of multiply-accumulate operations in Equation (29). By set-
ting the PM bits of status register ST1 to 11 using the SPM or LST1 instructions, the
P register output is right-shifted 6 places. This allows up to 128 accumulations without
the possibility of an overflow. SFR instruction can also be used to right shift one bit of
the accumulator when it is near overflow.

Another effective technique to prevent overflow in the computation of Equation (29)
is using saturation arithmetic. As illustrated in Figure 12, if the result of an addition
overflows, the output is clamped at the maximum value. If saturation arithmetic is used,
it is common practice [28] to permit the amplitude of x(n—i) to be larger than the upper
bound given in Equation (31). Saturation of the filter represents a distortion, and the choice
of scaling on the input depends on how often such distortion is permissible. The satura-
tion arithmetic on the TMS320C25 is controlled by the OVM bit of status register STO
and can be changed by the SOVM (set overflow mode), ROVM (reset overflow mode),
or LST (load status register).

-1 P 1-2-18

# Input

Figure 12. Saturation Arithmetic



Filter coefficients are updated using Equation (30). As illustrated in Figure 13, a
new technique presented in reference 31 uses the scaling factor a to prevent filter’s coeffi-
cients overflow during the weight updating operation. Suppose you use a = 2—m, A right
shift by m bits implements multiplication by a, while a left shift by m bits implements
the scaling factor 1/a. Usually, the required value of a is not expected to be very small
and depends on the application. Since a scales the desired signal, it does not affect the
rate of convergence.

d(n) o 8

\ oo

FILTER
STRUCTURE Va

\

ADAPTIVE
ALGORITHM

x(n) & y(n)

Figure 13. Fixed-Point Arithmetic Model of the Adaptive Filter
Finite Precision Errors
The TMS320C25 is a 16/32-bit fixed point processor. Each data sample is represented
by a fractional number that uses 15 magnitude bits and one sign bit. The quantization interval
6 =2-b, (32)

(b = 15), is called the width of quantization since the numbers are quantized in steps of 5.

The products of the multiplications of data by coefficients within the filter must be
rounded or truncated to store in memory or a CPU register. As shown in Figure 14, the
roundoff error can be modeled as the white noise injected into the filter by each rounding
operation. This white noise has a uniform distribution over a quantization interval and
for rounding

- 126<e<126 (33a)



and
82 = (1/12) &2 (33b)
where 82 is the variance of the white noise.

In general, roundoff noise occurs after each multiplication. However, the
TMS320C25 has a full precision accumulator, i.e., a 16 X 16-bit multiplier with a 32-bit
accumulator, so there is no roundoff when you implement a set of summations and
multiplications as in Equation (29). Rounding is performed when the result is stored back
to memory location y(n), so that only one noise source is presented in a given summation
node.

Yy = Rounding [x e 8] = X e 8 + @

Figure 14. Fixed-Point Roundoff Noise Model

For floating-point arithmetic, the variance of the roundoff noise [31] is slightly dif-
ferent from Equation (33b),

0.2 = 0.18 & (33¢c)

Since TMS320C30 has a 40/32-bit floating-point multiplier and ALU, the result from
arithmetic operation has the mantissa of [31] bits plus one sign bit. Therefore, the é in
Equation (33c¢) is equal to 2—31. Another roundoff noise is introduced when you restore
the result back to memory. This noise has the power of 2—23 because the mantissa of
TMS320C30 floating-point data is 23 bits plus one sign bit. Therefore, unless the filter
order is high, the roundoff noise from arithmetic operation is relatively small.

The steady-state output error of the LMS algorithm due to the finite precision
arithmetic of a digital processor was analyzed in reference [31]. It was found that the power
of arithmetic errors is inversely proportional to the adaptation step size u. The significance
of this result in the adaptive filter design is discussed next. Furthermore, roundoff noise
is found to accumulate in time without bound, leading to an eventual overflow [32]. The
leaky LMS algorithm presented in the previous section can be used to prevent the algorithm
overflow.



Design Issues

The performance of digital adaptive algorithms differs from infinite precision adap-
tive algorithms. The finite precision LMS algorithm is given as

w(n+1) = w(n) + Q[u*e(n)*x(n)] (34)

where Q [.] denotes the operation of fixed point quantization. Whenever any correction
term u*e(n)*x(n—i) in the update of the weight vector in Equation (34) is too small, the
quantized value of that term is zero, and the corresponding weight w;(n) remains unchang-
ed. The condition for the ith component of the vector w(n) not to be updated when the
algorithm is implemented with the TMS320C25 is

| uem) x(n—i) | <6/2 (35a)
where §= 2-15. The condition for TMS320C30 is
| ue(n) x(n—i) | < 2exp * /2 (35b)

where exp is the exponent of w;(n) and 6= 223,

Since the adaptive algorithms are designed to minimize the mean squared value of
the error signal, e(n) decreases with time. If u is small enough, most of the time the weights
are not updated. This early termination of the adaptation may not allow the weight values
to converge to the optimum set, resulting in a mean square error larger than its minimum
value. The conditions for the adaptation to converge completely [30] is u > Upnin Where

-— 2 (36a)

2 .
u
™0 40, %€min

for the TMS320C25 and the TMS320C30

52%2exp
u2 | O —— 36b
'min 40x2€ in ( )

where oxzis the power of input signal x(n) and €pjy, is the minimum mean squared error
at steady state.

In the Leaky LMS Algorithm section, it was mentioned that the excess MSE given
in Equation (14) is minimized by using small u. However, this may result in a large quan-
tization error since the most significant term in the total output quantization error is [3 1]
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The optimum step size ug reflects a compromise between these conflicting goals.

The value of ug is shown to be too small to allow the adaptive algorithm to converge com-

pletely and also to give a slow convergence. In practice, u > ug is used for faster con-

vergence. Hence, the excess MSE becomes larger, and the roundoff noise can typically
be neglected when compared with the excess mean square error.

Finally, recall Equations (11) and (12). The step size u has an upper limit to guarantee
the stability and convergence. Therefore, the adaptive algorithm requires

1
O<u<———— 38
No,? 9

On the other hand, the step size u also has a lower limit. The optimum ug, which
minimizes the sum of the excess MSE and roundoff noise, is smaller than uy;,, i.e., too
small to allow the adaptive weight to converge. For an algorithm implemented on the
TMS320C25, the word-length of 16 bits is fixed, and the minimum step-size that can be
used is given in Equation (36). The most important design issue is to find the best u to satisfy

1

Upin < U <
Noy

; (39)

Therefore, in order to make the condition in Equation (39) valid, the initial values
of filter coefficients are better close to zero for the floating-point processor if the situation
in unknown.

Software Development

The TMS320C25 and TMS320C30 combine the high performance and the special
features needed in adaptive signal processing applications. The processors are supported
by a full set of software and hardware development tools. The software development tools
include an assembler, a linker, a simulator, and a C compiler. The most universal soft-
ware development tool available is a macro assembler. However, the assembly language
programming for DSP can be tedious and costly. For adaptive filter applications, an
assembly language programmer must have knowledge of adaptive signal processing. The
challenge lies in compressing a great deal of complex code into the fairly small space and
most efficient code dictated by the real-time applications typical of adaptive signal pro-
cessing.



Recently, C compilers for the processors were developed to make DSP program-
ming easier, quicker, and less costly compared with the work associated with program-
ming in assembly language. Due to the general characteristics of a compiler, the code
it generates is not the most efficient. Since the program efficiency consideration is impor-
tant for adaptive filter implementation, the code generated from the C compiler has to
be modified before implementing. Thus, two alternative ways, besides writing an assembly
program, to implement adaptive signal processing on DSP are presented. First is the
automatic adaptive filter code generator [12], which can be found on Texas Instruments
TMS320 Bulletin Board Service (BBS), and second are the adaptive filter function libraries
that support assembly and C programming languages.

In this report, two adaptive filter libraries have been developed: one can be called
from an assembly main program; the other can be called from the C main program. Note
that, for the TMS320C25 only, certain data memory locations have been reserved for storing
the necessary filter coefficients, previous delayed signal, etc. In other words, these data
memories are used as global variables.

Assembly Function Libraries

The basic concept of creating an assembly subroutine for an adaptive filter is to modify
in module the assembly programs discussed above. Then, the user can implement the adap-
tive filter by writing his own assembly main program that calls the subroutine.

TMS320C25 Assembly Subroutine

The TMS320C25 has an eight-level deep hardware stack. The CALL and CALA
subroutine calls store the current contents of the program counter (PC) on the top of the
stack. The RET (return from subroutine) instruction pops the top of the stack back to the
PC. For computational convenience, the processor needs to be set as follows before call-
ing the assembly callable subroutine.

1. PM status bits equal to 01.
2. SXM status bit set to 1.
3. The current DP (data memory page pointer) is 0.

The following example is the TMS320C25 assembly main routine, which performs
an adaptive line enhancement by calling the LMS algorithm subroutine. The filter order
is 64, delay is equal to one, and the convergence factor u is 0.01.

* DEFINE AND REFER SYMBOLS
*

.global ORDER,U,ONE,D,Y,ERR,XN,WN,LMS



DEFINE SAMPLING RATE, ORDER, AND MU
E3
ORDER: .equ 20
MU: .equ 327 ; mu = 0.01 in Q15 format
PAGEQ: .equ 0

*
DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

*

XO0: .usect  “‘buffer’’,ORDER—1
XN: .usect “‘buffer’’,1

WN: .usect  “‘coeffs’’,ORDER

*

* RESERVE ADDRESSES FOR PARAMETERS
*

ONE: .usect ‘‘parameters’’,1

U: .usect ‘‘parameters’’,1

ERR: .usect ‘‘parameters’’,1

Y: .usect ‘‘parameters’’,1

D: .usect ‘‘parameters’’,1
ERRF: .usect ‘‘parameters’’,1

*
* INITIALIZATION

*

START LDPK PAGEO ; Set DP =0
SPM 1 ; Set PM equal to 1
SSXM ; Set sign extension mode
LRLK AR7,X0 ; AR7 point to >300
LACK 1 ; Initialize ONE = 1
SACL ONE
LALK MU ; Initialize U = MU = 0.01

SACL U
sk ok e sk s ok ok 2k ok ke ok sk ok sk 3 ok e sk sk 3k Sk sk 3k e Sk sk 3k 3k sk ok Sk 3k 3k b ok 3k 3k 3k 3k 3k ik ok 3k 3k 3k Sk ok 3k 3k Sk k Sk 3k ok 3k ok 3k b ok dk k ok 3k 3k ok k 3k 3k ok 3k k

* PERFORM THE PREDICTOR

3 sk 3k ok 3k 3k k¢ ok ok ok s ok sk 3 ok e sk sk ke sk ke ok s ok sk ok sk sk sk sk ke sk 3k sk ke ok 3k b ok ok 3k 3 3k k 3k 3k 3k 3k sk ok 3k 3k 3k 3k ok 3k 3k 3k k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k Xk

INPUT: IN D,PA2 ; Get the input
*
CALL LMS ; Call subroutine
*
OUTPUT: OUT Y,PA2 ; Output the signal
*
LAC D ; Insert the newest sample
LARP AR7
SACL *
B INPUT
.end

L e - 2 TR AOIINIOIN PRy



The symbols, such as ORDER, U, ONE, D, LMS, Y, and€RR, are defined and
referred to for the purpose of modular programming. The uninitialized sections specified
by the directive .usect can be placed in any location of memory according to the linker
command file. Note that MACD instruction requires the sources of the operands on pro-
gram memory and data memory separately, and CNFP instruction configures RAM block
0 as program memory. Therefore, the coeffs section has to be in data RAM block 0, and
the buffer has to be in RAM block 1. Appendix H1 contains the adaptive transversal filter
with LMS algorithm subroutine using the TMS320C25, and Appendix H2 contains an
example of a linker command file.

TMS320C30 Assembly Subroutine

Instead of a hardware stack, TMS320C30 uses a software stack, which is more flex-
ible and convenient for a high-level language compiler. The stack memory location is
pointed to by the stack pointer SP. In order to maintain the proper program sequence,
the programmer must make certain that no data is lost and that the stack pointer always
points to proper location. The PUSH, PUSHF, POP, POPF, CALL, CALLcond, RETI-
cond, and RETScond instructions will change the value of the stack pointer; in addition,
writing data into it and using the interrupt will also change that value. It is the program-
mer’s responsibility to initialize the stack pointer in the beginning of the program. The
same adaptive line enhancer example above using TMS320C30 is listed below. The
adapfltr.int program that initializes the stack pointer and the data RAM is given in Appen-
dix H3.

DEFINE GLOBAL VARIABLES AND CONSTANTS

.copy ‘‘adapfltr.int”’

.global LMS30,o0rder,u,d,y,e
N .set 20
mu .set 0.01

INITIALIZE POINTERS AND ARRAYS

.text

begin .set $
LDI N,BK ; Set up circular buffer
LDP @xn__addr ; Set data page

LDI @xn__addr,ARO ; Set pointer for x[]
LDI @wn__addr,AR1 ; Set pointer for w(]
LDF 0.0,R0 ; RO = 0.0

RPTS N-1

STF RO,*ARO++(1)% ; x[] = 0.



| |STF RO,*AR1++(1)% ; w[] = 0.
LDI @in__addr,AR6 ; Set pointer for input ports
LDI @out__addr,AR7 ; Set pointer for output ports

* PERFORM ADAPTIVE LINE ENHANCER

nput:
LDF *AR6,R7 ; Input d(n)
| ILDF  *+AR6(1),R6 ; Input x(n)
STF R7,@d ; Insert d(n)
STF R6,*AR0O ; Insert x(n) to buffer
*
* CALL ASSEMBLY SUBROUTINE
*
* CALL LMS30
* OUTPUT y(n) AND e(n) SIGNALS
%
LDF @y,R6 ; Get y(n)
BD input ; Delay branch
LDF @e,R7 ; Get e(n)
STF R6,*AR7 ; Send out y(n)
STF R7,*+AR7(1) ; Send out e(n)
%
*  DEFINE CONSTANTS
*
n .usect  ‘‘buffer’’,N

wn .usect  “‘coeffs’’,N
in__addr  .usect ‘‘vars’’,1
out__addr .usect ‘‘vars’’,1
xn__addr  .usect ‘‘vars’’,1
wn__addr .usect ‘‘vars’’,1

u .usect  ‘‘vars’’,1
order .usect ‘‘vars’’,1
d .usect ‘‘vars’’,1
y .usect ‘‘vars’’,1
e .usect ‘‘vars’’,1
cinit .sect ‘¢ cinit”’

.word 6,in__addr
.word 0804000h
.word 0804002h
.word xn

.word wn



float mu
.word N-2
.end

In the above example, data memory order is initialized to N—2 for computation conve-
nience. The linker command files and the subroutine that implements the LMS transver-
sal filter can be found in Appendixes H4 and HS5.

C Function Libraries

The TMS320C25 and TMS320C30 C language compilers provide high-level language
support for these processors. The compilers allow application developers without an ex-
tensive knowledge of the device’s architecture and instruction set to generate assembly
code for the device. Also, since C programs are not device-specific, it is a relatively
straightforward task to port existing C programs from other systems.

To allow fast development of efficient programs for adaptive signal processing ap-
plications, C function libraries have been developed. These libraries include functions for
adaptive transversal, symmetric transversal, and lattice structures.

TMS320C25 C-Callable Subroutines

In a C program, the memory assignments are chosen by the compiler. There are
two ways to use the most efficient instruction MACD:

A. Use inline assembly code to assign memory locations for filter coefficients and
buffers.

B. Reserve the desired memory locations for them and do the assignment in the
linker command file.

The latter method is used in this report.

For a C main program, the parameters passed to and returned from the subroutines
are all within the parentheses following the subroutine name, as shown below:

Ims(n,mu,d,x,&y,&e) n - Filter order
mu - Convergence factor
d - Desired signal
X - Input signal
y - Address of output signal
€ - Address of error signal

Since the TMS320C25 C compiler pushes the parameters from right to left into soft-
ware stack pointed by AR1 , the subroutine gets the parameters in reverse order, as shown
below:

MAR *— ; Set pointer for getting parameters
LAC *— ; ACC = N



SUBK 1

SACL ORDER ; ORDER = N — 1

LAC *— ; Getting and storing the mu
SACL U

LAC *— ; Getting and storing the D
SACL D

LAC *— 0,A—R3 ; Insert the newest sample
LRLK AR3,FRSTAP
SACL *

The assembly subroutine returns the parameters y and e as follows:

LARP ARl

LAR AR2,*— AR2 ; Get the address of y in main
LAC Y

SACL *,0,AR1 ; Store y

LAR AR2,*¥ AR2 : Get the address of e in main
LAC ERR

SACL *,0,ARl ; Store e

Therefore, the parameters shduld be entered in the order given above. If there are
other parameters, they should be inserted right after the convergence factor mu. The leaky
LMS algorithm subroutine is given as an example.

llms(n,mu,r,d,x,&y,&e)

the r is defined in Equation (28a). Note that the values of the AR registers, which will
be used in subroutine, and the status registers must be saved at the beginning of the
subroutine and restored right before returning to calling routine. An example of a C-callable
program is given in Appendix I1. Memory locations 0200h to 0200h+N—1 and 0300h
to 0300h+N—1 are reserved for filter coefficients and buffers, respectively. N denotes
the filter order.

TMS320C30 C Subroutine

As previously mentioned, the TMS320C30 architecture has features designed for
a high-level language compiler. Note that the callable word is dropped in this section title
because the TMS320C30 is so flexible that the restrictions for the TMS320C25 no longer
exist. Since the memory locations of filter buffers and coefficients are determined by the
parameters that pass from the calling routine, the same subroutine can be used in different
places. However, the only restriction is that the memory locations of filter buffers must
align to the circular addressing boundary [14]. The features of TMS320C30 architecture
that make a major contribution toward these improvements are dual data address buses,
software stack, and flexible addressing mode. The parameters passed to subroutine are
pushed into the stack. Therefore, after returning from the subroutine, the stack pointer,
SP, must be updated to point to the location where SP pointed before pushing the parameters



into the stack. However, this will be done by the C compiler. The usage example of the
C function subroutine is given as follows:

tlms(n,u,d,&w,&x,&y,&e) where n - Filter order
u - Step size
d - Desired signal
&w - Filter coefficients
&x - Input signal buffers
&y - Addr of output signal
&e - Addr of error signal

The example below shows how the C subroutine receives and manipulates the
parameters passed from the caller program and how the result is returned to the caller
routine.

SET FRAME POINTER FP
FP .set AR3
PUSH FP
LDI SP,FP
GET FILTER PARAMETERS
LDI *—FP(2),R4 ; Get filter order
LDI *—FP(6),AR0 ; Get pointer for x[]
LDI *— —FP(5),AR1 ; Get pointer for w[]
COMPUTE ERROR SIGNAL e(n) AND STORE y(n) AND e(n)

LDI *~FP(2),AR2 ; Get y(n) address
SUBF3 R2,*+FP(1),R7 ; e(n) = d(n) — y(n)

| |STF R2,*AR2 ; Send out y(n)
LDI *—~FP(3),AR2 ; Get e(n) address
STF R7,*AR2 ; Send out e(n)
MPYF *+FP(2),R7 ; RT = e(n) *u
POP FP

Note that AR3 is used as the frame pointer in TMS320C30 C compiler. Appendix
I2 contains the complete LMS transversal filter example subroutine program.

Development Process and Environment

Following a four stage procedure [33] to minimize the amount of finite word length
effect analysis and real-time debugging, adaptive structures and algorithms are implemented



on the TMS320C25. Figure 15 illustrates the flowchart of this procedure. Since the im-
plementation on TMS320C30 is done only by the simulator, the last stage, real-time testing,
is not implemented.

Algorithm Analysis
and C Program
Implementation

Re-write C Program

to Emulate
DSP Sequence

Implement in DSP
Program and Testing
by DSP Simulator

h— )—i
Real-Time
Testing

1‘

Figure 15. Adaptive Filter Implementation Procedure

In the first stage, algorithm design and study is performed on a personal computer.
Once the algorithm is understood, the filter is implemented using a high-level C program
with double precision coefficients and arithmetic. This filter is considered an ideal filter.

In the second stage, the C program is rewritten in a way that emulates the same
sequence of operations with the same parameters and state variables that will be implemented
in the processors. This program then serves as a detailed outline for the DSP assembly
language program or can be compiled using TMS320C25 or TMS320C30 C compiler.
The effects of numerical errors can be measured directly by means of the technique shown
in Figure 16, where H(z) is the ideal filter implemented in the first stage and H’(z) is
a real filter. Optimization is performed to minimize the quantization error and produce
stable implementation.
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Figure 16. A Commutational Technique for Evaluating Quantization Effects

In the third stage, the TMS320C25 and TMS320C30 assembly programs are
developed; then they are tested using the simulators with test data from a disk file. Note
that the simulation of TMS320C25 can also be implemented on the SWDS with the data
logging option. This test data is a short version of the data used in stage 2 that can be
internally generated from a program or data digitized from a real application environ-
ment. Output from the simulation is compared against the equivalent output of the C pro-
gram in the second stage. Since the simulation requires data files to be in Q15 format,
certain precision is lost during data conversion. When a one-to-one agreement within
tolerable range is obtained between these two outputs, the processor software is assured
to be essentially correct.

The final stage is applied only to the TMS320C25. First, you download this assembled
program into the target TMS320C25 system (SWDS) to initiate real-time operation. Thus,
the real-time debugging process is constrained primarily to debugging the I/O timing struc-
ture of the algorithm and testing the long-term stability of the algorithm. Figure 17 shows
an experimental setup for verification, in which the adaptive filter is configured for a one-
step adaptive predictor illustrated in Figure 18. The data used for real-time testing is a
sinusoid generated by a Tektronix FG504 Function Generator embedded in white noise
generated by an HP Precision Noise Generator. The DSP gets a quantized signal from
the Analog Interface Board (AIB), performs adaptive prediction routines, and outputs an
enhanced sinusoid to the analog interface board. The corrupted input and predicted (en-
hanced) output waveforms are compared on the oscilloscope or on the HP 4361 Dynamic
Signal Analyzer. The corresponding spectra of input and output can be compared on the
signal analyzer. The signal-to-noise ratio (SNR) improvement can be measured from the
analyzer, which is connected to an HP plotter.
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Figure 17. Real-Time Experiment Setup
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Figure 18. Block Diagram of a One-Step Adaptive Predictor

To illustrate the operation in a nonstationary environment, the adaptive predictor
is implemented using a TMS320C25, and the following experiment is performed. The
input signal is swept from 1287 Hz to 4025 Hz, then jumps back to 1287 Hz. The time
for each sweep is one second. The input spectra at every second are shown in Figure 19a;
the corresponding output spectra are shown in Figure 19b. From the observations on the



oscilloscope and signal analyzer, the significant SNR improvement, convergence speed,
ability to track nonstationary signals, and long-term stability of the adaptive predictor are
observed.
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Figure 19(a). Spectrum of Input Signal
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Figure 19(b). Spectrum of Enhanced Output Signal
Summary

Three adaptive structures and six update algorithms are implemented with the
TMS320C25 and TMS320C30. Applications of adaptive filters and implementation con-
siderations have been discussed. Two subroutine libraries that support both C language
and assembly language for two processors were developed. These routines can be readily
incorporated into TMS320C25 or TMS320C30 users’ application programs.

The advancements in the TMS320C25 and TMS320C30 devices have made the im-
plementation of sophisticated adaptive algorithms oriented toward performing real-time
processing tasks feasible. Many adaptive signal processing algorithms are readily available
and capable of solving real-time problems when implemented on the DSP. These pro-
grams provide an efficient way to implement the widely used structures and algorithms
on the TMS320C25 and TMS320C30, based on assembly-language programming. They
are also extremely useful for choosing an algorithm for a given application. The perfor-
mances of adaptive structures and algorithms that have been implemented using the
TMS320C25 and TMS320C30 have been summarized in Tables 1 and 2.




Table 1. The Performance of Adaptive Structures and Algorithms of TMS320C25

TMS320C25
LMS Instruction Cycles 7N+ 28
Program Memory (Word) 33
Leaky Instruction Cycles 8N + 28
LMS Program Memory (Word) 34
Sign-Data Instruction Cycles 1IN+ 26
Transversal LMS Program Memory (Word) 41
Structure Sign-Error Instruction Cycles 7N + 26
LMS Program Memory (Word) 30
Sign-Sign Instruction Cycles TIN+21
LMS Program Memory (Word) 30
Normalized Instruction Cycles 7N +57
LMS Program Memory (Word) 47
LMS Instruction Cycles 7.5N + 38
Program Memory (Word) 50
Leaky Instruction Cycles 8N + 38
LMS Program Memory (Word) 51
i Sign-Data Instruction Cycles 9.5N + 36
Symmetric
Transversal : LMS Program Mfamory (Word) 58
Structure Sign-Error Instruction Cycles 7.5N + 36
LMS Program Memory (Word) 47
Sign-Sign Instruction Cycles 9.5N + 31
LMS Program Memory (Word) 47
Normalized Instruction Cycles 7.5N +69
LMS Program Memory (Word) 66
LMS Instruction Cycles 33N +32
Program Memory (Word) 63
Leaky Instruction Cycles 35N +32
Lattice LMS Program Memory (Word) 65
Structure Sign-Error Instruction Cycles 36N +32
LMS Program Memory (Word) 65
Normalized Instruction Cycles 90N + 34
LMS Program Memory (Word) 92

Note: N represents filter order.



Table 2. The Performance of Adaptive Structures and Algorithms of TMS320C30

TMS320C30 .
LMS Instruction Cycles 3N+15
Program Memory (Word) 17
Leaky Instruction Cycles 3N+15
\ LMS Program Memory (Word) 19
Sign-Data Instruction Cycles 5N+ 16
Transversal LMS Program Memory (Word) 24
Structure Sign-Error Instruction Cycles 3N+16
LMS Program Memory (Word) 18
Sign-Sign Instruction Cycles 5N+ 16
LMS Program Memory (Word) 24
Normalized Instruction Cycles 3N+47
LMS Program Memory (Word) 49
LMS Instruction Cycles 2.5N+15
Program Memory (Word) 23
Leaky Instruction Cycles 2.5N+19
LMS Program Memory (Word) 26
i Sign-Data Instruction Cycles 3.5N+18
Symmetric
Transversal LMS Program Memory (Word) 30
Structure Sign-Error Instruction Cycles 2.5N+18
LMS Program Memory (Word) 24
Sign-Sign Instruction Cycles 3.5N+17
LMS Program Memory (Word) 30
Normalized Instruction Cycles 2.5N +50
LMS Program Memory (Word) 56
LMS Instruction Cycles 14N+9
Program Memory (Word) 20
Leaky Instruction Cycles 16N+9
Lattice LMS Program Memory (Word) 22
Structure Sign-Error Instruction Cycles 16N +9
LMS Program Memory (Word) 22
Normalized Instruction Cycles 67N +9
LMS Program Memory (Word) 73

Note: N represents filter order.
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Appendix B1. Symmetric Transversal Structure with LMS

Algorithm Using the TMS320C25
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Appendix B2. Symmetric Transversal Structure with LMS

Algorithm Using the TMS320C30
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Appendix C1. Lattice Structure with LMS Algorithm

Using the TMS320C25

19 ¢ 18 - (V@ = (0)3 d2T(eTyte] ¢

19 # 16 - (00 = XW

(19 10)- =2 *

19 # 18 = (0)A d21(P13tv]
19+ 18 = 2
19elg=d

=1

'
§

s
t
¢

3 HWS
q HOY
Gz ]
A HOVS
N
on'e A
oN'e n
*
WIVIIWILING  »
1]
ow'o's TS
M0 s
X n
*
1900 18 3 RIVILIND  »
*
LR w
19'08 N
109 v bl
18'cW bl
1408 byl
1-43080 I R
> SN
*
SHAINIOd ML ZIWILINT  »
*
e

WS AILMY HL ROREd  #

1 .SJ930wrund, sn 131

1 S4ayoweand, sne Hil
1'.5J9)0wesnd, s :3
1 SJ9)0unand, 3dsn° A
1 Seajourind, esne B

1 .SJ330we00d, 0’ :q

*

SHALIMNG W0J SISSRION WIS  +
*

THOM0 . 39330e,  JO¥sn° +108
14300 ‘994309,  JI0sn° a8
1443040 . 544900, Pasne el
W0M0* 593900, oasme e ]
WIH0 £ $33903, Pasne 9
*

SIGIII44300 QW B4 40 SISSRIONV N30 +
*

L4 nba* Y300

*

SOUINMY NI+

*

6861 ‘Asenaqay Bunyd-utay) ‘vay) +

18 (— v
108 (— € :UOTIRINT LAY Jog
108 <— "
18 (— € :90TIRIT ppo Jog
‘aduexd Jog ‘uoryesayt
A4ana paburgdxd aq pinoys (yiy B EY) Jojuted 108 % 1g L (S
*LZ€ %9 PLroys ) Asomsm vyeg (y
0 ¥vd 3q pInoys (Jajuted 3b6ed Asomam R1ep) 4 JUASND WY (£
*1 2tbey 03 335 3q pinoys 31Q SAIMS WS (2
“10 03 [enbd 3q p(noys 319 sAIRYS g (1

1UOTITPUOD [RTRIN]

*wetjedt|dde
S1413ds Joj TIN0J UTRW 3y} AJTpom 03 sey Jasn “dn Jas udq Jou

SPY VOTIRINGTHU0D O/ ‘UOTSIIA ITJUE 3y} ST weuboud Dunos sTy) :ajeN

*10°0 = M PUR §9 = JIPIO JAI|TH I
19Tt (N)IQ & (V)12 3 04 (V)19 = (T4U)19

[ (OT-143(U)TQ & (T-U)]-TQR(UITS ] & MO+ (U)TY = (T4U)T)

0=t o=t
(U)T9R(U)1 WIS = (U)TA WS = (U)K
" »
0=t
§9'0 T Rl (U)T-108(U)T-1Q - [-13 = (U)K NS - (WP = (V)12
1-1

90T =T (U)I-1 8 (0T - (1-0)1-19 = (U)1q

YT (U110 8 (D - (11 = (Y

w4306y

-1 (1-19

+
(U)19(—-(WNS)<—

o (S ) —
+ (1-14 (L)1 -+ (W04

903 padoo] ‘ey3tsobly S pue

npnag 911 buts 193114 MMy : S71

LR R R R R R R R I I T I R Y

S, 1w



N0 231ty Wy da0gs
e ase e ¢
Kivwom wyep s¢ 0g 20n614u0) ¢

19 = 1 1-1ge1-13e0M

1-19 »

1-13 ¢ 04 - 14

1-t40t0 = d "1-108e0X - 1
1-108

205 ¢
=
R
m=d:
em=lc
1-13 0 W 22035 ¢
3em=gt

RN

1g 205 ¢

A

+4900050+19

-
90" en

.

n
8L
a1

LY
"w'e
3
e
3
on'e

e a3

yw?
Add
n
HWS
W
A
4
KNS
SAdd
¥wl
A
.

D3V OW 3 3000 ¢

e
e
e
81
3L

3

n

.

WS [t
v
WL
A
n
W
A
1n

.

(119 NIW) JNM0Y @

n
¥l un
.

(VGO (13 3 UMD



Appendix C2. Lattice Structure with LMS Algorithm

Using the TMS320C30
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Appendix D2. Transversal Structure with Normalized LMS

Algorithm Using the TMS320C30
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Appendix E1. Transversal Structure with Sign-Error LMS

Algorithm Using the TMS320C25
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Appendix E2. Transversal Structure with Sign-Error LMS
Algorithm Using the TMS320C30
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Appendix F1. Transversal Structure with Sign-Sign LMS

Algorithm Using the TMS320C25
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Appendix F2. Transversal Structure with Sign-Sign LMS
Algorithm Using the TMS320C30

(140)R 3s¥( 0035 ¢
(144) 1-4# 3)ndwo) *

" Jo ubts g3 aproag ¢
Yuryg Aepag ¢

wep jo ubts ayy 39

(140)Z-48 33epdn ¢
nuep sey 39 !

We (=Yt

n jo ubts ay) pidag ¢
©ep jo ubts a3 399 ¢
(1+0)1m 33epdn ¢

0w Jxu 339 ¢

€N ‘o=t0g!

J2Junod Jeaday aztjenywg ¢

I LREUILES> ]

n# [(U)UBISH{(T-u)x]ubIS = pY ¢
L(1-u)x)ubts = oy ¢

(x =9y ¢

n s [(u)d)ubIg = Gy ¢

[(u)aubes = ¢y ¢

(¥)? 3n0 pudg *
(9)A 3n0 puag ¢
(WA - (up = (u)d ¢

‘o SIRA,
JapJo’ ,$43900,
Japa0’, 333404,

oy
paon:
paon*
paon*
paon*
paon*
st
Pasn*
Pasne
Pasne
Pesne
Psn:
Psne
Joen°

1T ++Te0e ‘EY 1S
D RURE R
'y £30X
Jndut [}
e oY

LT+ T ‘EY FTCI
4" Ot an
o'W T 00
[RCR £30X
'1e- Hsy

TN T Y 48
LTI +H0M an
WSS 1]
'€-I9ps0 m
N T EJ00V
[CRCR] £H0X
' 1e- HoY
2T +O0U E
[~ e £40X
' 1e- Hey

(V)R SIHOIN IUYIdN

(0w 14 as ¢
JEo ] A4S
' S

STNOIS (V)3 O (V)4 1NdIN0 W ()9 INOIS HOMMD 3LNdHOD

pua*

i

"
Jppr-um
Jppeux
JPPEINO
Jppe-ut
un

ux

*

SINWISNDD NI ¢

(R TR S TR EAM

0=}

a'0'0 amn

(04 INING WIS NSO #

FILLISRE IR TR ' 00v
[$L38 LENTITA W e

TH U+ T T(1) 0N €A

T-43pJo SIdY

493309 03 (U)x Juasy] ¢ [ o] dis
(u)x Jndyp ¢ LONAL m
(V)P andy ¢ 0 e am
13ndut
s390d Indine uoj Jajured a5 L L upprIneg m
s3J0d Indut Joj Jajutod a5 ¢ LR ] m
LEX-"R] ' an
LEX 'R "w'n an
LEX ] ) an
0=05  T(H+Tww‘oy 48
0= [IX ¢ X100y 4ls
1-43pJ0 SLY
0°0 =04 * 04'0°0 an
[In Jo) sajuted g T sppruny n
()% oy Jajuted 335 ¢ oW Ipprug m
abed myep 335 ¢ g an
J3430q JRinOIID dn 33 ¢ ' Japio mn
s uibaq
pLOCN
*
SARRY (W SUIINIOD ITIWILINT  #
*
10°0 s L]
” s 0
RUSCIPL LR
*
6841 ‘4w Bunyd-utag) ‘g L]
*
*10°0 = ME PUR 9 = JIPJO JIY|TH ISN I MM *
*
0°0 D (WMMOHUIX JT ‘D - A = (A *
0°0 =C (4)30OHUX ST ‘A 4 (A= ()N N
€911 2" 1 0 Joy *
*
(WA - (u)p = (U *
*
0=) *
€94 T 10=n (FUXA(NN WIS = (VA *
9 ’
*
wrebly 4
*
0EJ0ZESHL 3 Butsn wyztaobie *
S UBTS-UBTS YIIA JAI|TH |RSIIASURSY IATIdRPY - 0ESSL 4
P *




Appendix G1. Transversal Structure with Leaky LMS Algorithm

Using the TMS320C25
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Appendix G2. Transversal Structure with Leaky LMS Algorithm

Using the TMS320C30
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Appendix H1. Assembly Subroutine of Transversal Structure with
LMS Algorithm Using the TMS320C25
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Appendix H2. Linker Command File for Assembly Main Program
Calling a TMS320C25 Adaptive LMS Transversal Filter Subroutine
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Appendix H3. TMS320C30 Adaptive Filter Initialization Program
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Appendix H4. Assembly Subroutine of Transversal Structure with
LMS Algorithm Using the TMS320C30
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Appendix HS. Linker Command/file for Assembly Main Program
Calling the TMS320C30 Adaptive LMS
Transversal Filter Subroutine

s

- COMWND FILE FOR LINKING TMS320030 ADAPTIVE FILTER

PROGRAS

Descriptio
te:

..............

/% SPECIFY THE SCCTIONS ALLOCATION INTO MEMCRY ¢/

/% SPECIFY THE SYSTEW MEMORY MAP ¢/

SECTIONS

(



Appendix I1. C Subroutine of Transversal Structure with LMS

Algorithm Using the TMS320C25
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Appendix I2. C Subroutine of Transversal Structure with LMS

Algorithm Using the TMS320C30
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