An Implementation of
Adaptive Filters with the
TMS320C25 or the
TMS320C30

APPLICATION REPORT: SPRA116

Sen Kuo

Northwestern lllinois University
Chein Chen

Digital Signal Processor Products
Semiconductor Group

Texas Instruments

Digital Signal Processing Solutions

%‘ TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

An Implementation of Adaptive

Filters with the TMS320C25 or the

Abstract

TMS320C30

Adaptive filtering techniques are necessary considerations when a
specific signal output is desired but the coefficients of that filter
cannot be determined at the outset. Sometimes this is because of
changing line or transmission conditions. An adaptive filter is one
which contains coefficients that are updated by an adaptive
algorithm to optimize filter response to the desired performance
criterion.

Two devices, the TMS320C25 and TMS320C30, combine the
power, high speed, flexibility and architecture optimized for
adaptive signal processing.

This book discusses the topic of adaptive filter implementation as
they apply to these two processors.

The book begins with a description of the two parts of an adaptive
filter: the filter and the adaptive algorithm. The book goes on to
discuss:

Q The applications of adaptive filters (including adaptive
prediction, equalization, noise cancellation and echo
cancellation).

O The implementation of adaptive structures and algorithms
(including transversal structure with the LMS algorithm,
symmetric transversal structure, lattice structure, and modified
LMS algorithms)

O Implementation considerations (including dynamic range
constraint, finite precision errors, and design issues)

SPRA116

Q Software development (assembly function libraries, C function
libraries, development process and environment)

The book also contains:

O Tables showing transversal structure, symmetric transversal
structure and lattice structure for both the TMS320C25 and
TMS320C30 processors

Q Extensive references

Q Multiple appendices of sample code for both TMS320C25 and
TMS320C30 processors

An Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

*i’
SPRA116

Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. New users
must register with TI&ME before they can access the data sheet
archive. TI&ME allows users to build custom information pages
and receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please
send a detailed email to dsph@ti.com. Questions receive prompt
attention and are usually answered within one business day.

An Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30 7

Introduction

A filter selects or controls the characteristics of the signal it produces by condition-
ing the incoming signal. The coefficients of the filter determine its characteristics and output
a priori in many cases. Often, a specific output is desired, but the coefficients of the filter
cannot be determined at the outset. An example is an echo canceller; the desired output
cancels the echo signal (an output result of zero when there is no other input signal). In
this case, the coefficients cannot be determined initially since they depend on changing
line or transmission conditions. For applications such as this, it is necessary to rely on
adaptive filtering techniques.

An adaptive filter is a filter containing coefficients that are updated by an adaptive
algorithm to optimize the filter’s response to a desired performance criterion. In general,
adaptive filters consist of two distinct parts: a filter, whose structure is designed to per-
form a desired processing function; and an adaptive algorithm, for adjusting the coeffi-
cients of that filter to improve its performance, as illustrated in Figure 1. The incoming
signal, x(n), is weighted in a digital filter to produce an output, y(n). The adaptive algorithm
adjusts the weights in the filter to minimize the error, e(n), between the filter output, y(n),
and the desired response of the filter, d(n). Because of their robust performance in the
unknown and time-variant environment, adaptive filters have been widely used from
telecommunications to control.

d(n)
+
r—.- e(n)
FILTER
x(n) —o—o= STRUCTURE —. y(n)
ADAPTIVE
FILTER

Figure 1. General Form of an Adaptive Filter

‘-~ sy N ey s % TR &, . - - e &~ .. o o~~~ PR

Adaptive filters can be used in various applications with different input and output
configurations. In many applications requiring real-time operation, such as adaptive predic-
tion, channel equalization, echo cancellation, and noise cancellation, an adaptive filter
implementation based on a programmable digital signal processor (DSP) has many ad-
vantages over other approaches such as a hard-wired adaptive filter. Not only are power,
space, and manufacturing requirements greatly reduced, but also programmability pro-
vides flexibility for system upgrade and software improvement.

The early research on adaptive filters was concerned with adaptive antennas [1] and
- adaptive equalization of digital transmission systems [2]. Much of the reported research
on the adaptive filter has been based on Widrow’s well-known Least Mean Square (LMS)
algorithm, because the LMS algorithm is relatively simple to design and implement, and
it is well-understood and well-suited for many applications. Al the filter structures and
update algorithms discussed in this application report are Finite Impulse Response (FIR)
filter structures and LMS-type algorithms. However, for a particular application, adap-
tive filters can be implemented in a variety of structures and adaptation algorithms [1,
3 through 9]. These structures and algorithms generally trade increased complexity for
improved performance. An interactive software package to evaluate the performance of
adaptive filters has also been developed [10].

The complexity of an adaptive filter implementation is usually measured in terms
of its multiplication rate and storage requirement. However, the data flow and data
manipulation capabilities of a DSP are also major factors in implementing adaptive filter
systems. Parallel hardware multiplier, pipeline architecture, and fast on-chip memory size
are major features of most DSPs [11, 12] and can make filter implementation more efficient.

Two such devices, the TMS320C25 and TMS320C30 from Texas Instruments [13,
14], have been chosen as the processors for fixed-point and floating-point arithmetic. They
combine the power, high speed, flexibility, and an architecture optimized for adaptive
signal processing. The instruction execution time is 80 ns for the TMS320C25 and only
60 ns for the TMS320C30. Most instructions execute in a single cycle, and the architec-
tures of both processors make it possible to execute more than one operation per instruc-
tion. For example, in one instruction, the TMS320C25 processor can generate an instruction
address and fetch that instruction, decode the instruction, perform one or two data moves
(if the second data is from program memory), update one address pointer, and perform
one or two computations (multiplication and accumulation). These processors are
designed for real-time tasks in telecommunications, speech processing, image process-
ing, and high-speed control, etc.

To direct the present research toward realistic real-time applications, three adaptive
structures were implemented:

1. Transversal
2. Symmetric transversal
3. Lattice

Each structure utilizes five different update algorithms:

1. LMS

2. Normalized LMS
3. Leaky LMS

4. Sign-error LMS
5. Sign-sign LMS

Each structure with its adaptation algorithms is implemented using the TMS320C25
with fixed-point arithmetic and the TMS320C30 with floating-point arithmetic. The pro-
cessor assembly code is included in the Appendix for each implementation. The assembly
code for each structure and adaptation strategy can be readily modified by the reader to
fit his/her applications and could be incorporated into a C function library as callable
routines.

In this application report, the applications of adaptive filters, such as adaptive predic-
tion, adaptive equalization, adaptive echo cancellation, and adaptive noise cancellation
are presented first. Next, the implementation of the three filter structures and five adap-
tive algorithms with the TMS320C25 and TMS320C30 is described. This is followed by
the practical considerations on the implementation of these adaptive filters. The remainder
of the application report covers coding options, such as the routine libraries that support
both assembly and C languages.

Applications of Adaptive Filters

The most important feature of an adaptive filter is the ability to operate effectively
in an unknown environment and track time-varying characteristics of the input signal. The
adaptive filter has been successfully applied to communications, radar, sonar, control,
and image processing. Figure 1 illustrates a general form of an adaptive filter with input
signals, x(n) and d(n), output signal, y(n), and error signal, e(n), which is the difference
between the desired signal, d(n), and output signal, y(n). The adaptive filter can be used
in different applications with different input/output configurations. In this section we briefly
discuss several potential applications for the adaptive filters [15].

Adaptive Prediction

Adaptive prediction [16 through 18] is illustrated in Figure 2. In the general ap-
plication of adaptive prediction, the signals are x(n) — delayed version of original signal,
d(n) — original input signal, y(n) — predicted signal, and e(n) — prediction error or
residual.

Tl e Al e an iitsl o TAAC2DCE A tho TAMCINCAN 108

d(n)
T +

DELAY \ r—. e(n)

ADAPTIVE
x(n) FILTER y(n)

\

Figure 2. Block Diagram of an Adaptive Predictor

A major application of the adaptive prediction is the waveform coding of a speech
signal. The adaptive filter is designed to exploit the correlation between adjacent samples
of the speech signal so that the prediction error is much smaller than the input signal on
the average. This prediction error signal is quantized and sent to the receiver in order
to reduce the number of bits required for the transmission. This type of waveform coding
is called Adaptive Differential Pulse-Code Modulation (ADPCM) [17] and provides data
rate compression of the speech at 32 kb/s with toll quality. More recently, in certain on-
line applications, time recursive modeling algorithms have been proposed to facilitate speech
modeling and analysis.

The coefficients of the adaptive predictor can be used as the autoregressive (AR)
parameters of the nonstationary model. The equation of the AR process is

u(n) = a;* u(n—1) + a* u(n—-2) + + ap* u(n—m) + v(n)

where aj, ay,, a, are the AR parameters. Thus, the present value of the process u(n)
equals a finite linear combination of past values of the process plus an error term v(n).
This adaptive AR model provides a practical means to measure the instantaneous frequen-
cy of input signal. The adaptive predictor can also be used to detect and enhance a narrow
band signal embedded in broad band noise. This Adaptive Line Enhancer (ALE) provides
at its output y(n) a sinusoid with an enhanced signal-to-noise ratio, while the sinusoidal
components are reduced at the error output e(n).

Adaptive Equalization

Figure 3 shows another model known as adaptive equalization [2, 9, 15]. The signals
in the adaptive equalization model are defined as x(n) — received signal (filtered version
of transmitted signal) plus channel noise, d(n) — detected data signal (data mode) or pseudo
random number (training mode), y(n) — equalized signal used to detect received data,
and e(n) — residual intersymbol interference plus noise.

\ DATA TRAINING
MODE MODE

yinl PSEUDO
ADAPTIVE 4 <—| RANDOM
xim—e O SLICER [—* NUMBER
GENERATOR

e(n) +

d(n)

Figure 3. Block Diagram of an Adaptive Equalizer

The use of adaptive equalization to eliminate the amplitude and phase distortion in-
troduced by the communication channel was one of the first applications of adaptive filtering
in telecommunications [19]. The effect of each symbol transmitted over a time-dispersive
channel extends beyond the time interval used to represent that symbol, resulting in an
overlay of received symbols. Since most channels are time-varying and unknown in ad-
vance, the adaptive channel equalizer is designed to deal with this intersymbol interference
and is widely used for bandwidth-efficient transmission over telephone and radio channels.

Adaptive Echo Cancellation

Another application, known as adaptive echo cancellation [20, 21] is shown in Figure
4. In this application, the signals are identified as x(n) — far-end signal, d(n) — echo
of far-end signal plus near-end signal, y(n) — estimated echo of far-end signal, and e(n)
— near-end signal plus residual echo.

FAR-END
SIGNAL ———— VBRID |
x(n) @]
|
|
|
l I
ADAPTIVE | ECHO |
FILTER PATH :
|
y(n) {
— + |
o) + + | NEAR-END
dind : SIGNAL
|
e e e e e e |

Figure 4. Block Diagram of an Echo Canceller

The adaptive echo cancellers are used in practical applications of cancelling echoes
for long-distance telephone voice communication, full-duplex voiceband data modems,
and high-performance audio-conferencing systems. To overcome the echo problem, echo
cancellers are installed at both ends of the network. The cancellation is achieved by
estimating the echo and subtracting it from the return signal.

Adaptive Noise Cancellation

One of the simplest and most effective adaptive signal processing techniques is adap-
tive noise cancelling [1, 22]. As shown in Figure 5, the primary input d(n) contains both
signal and noise, where x(n) is the noise reference input. An adaptive filter is used to
estimate the noise in d(n) and the noise estimate y(n) is then subtracted from the primary
channel. The noise cancellation output is then the error signal e(n).

The applications of noise cancellation include the cancellation of various forms of
interference in electrocardiography, noise in speech signals, noise in fighter cockpit en-
vironments, antennas sidelobe interference, and the elimination of 60-Hz hum. In the ma-
jority of these noise cancellation applications, the LMS algorithm has been utilized.

SIGNAL :@\ d(n)
+

SOURCE
+
p—= e(n)
x(n) ApApTIVE | Y™™
NOISE SOURCE ' FILTER
\

Figure 5. General Form of a Noise Canceller

Application Summary

The above list of applications is not exhaustive and is limited primarily to applica-
tions within the field of telecommunications. Adaptive filtering has been used extensively
in the context of many other fields including, but not limited to, instantaneous frequency
tracking, intrusion detection, acoustic Doppler extraction, on-line system identification,
geophysical signal processing, biomedical signal processing, the elimination of radar clutter,
beamforming, sonar processing, active sound cancellation, and adaptive control.

Implementation of Adaptive Structures and Algorithms

Several types of filter structures can be implemented in the design of the adaptive
filters such as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). An adap-
tive IIR filter [1, 5], with poles as well as zeros, makes it possible to offer the same filter
characteristics as the FIR filter with lower filter complexity. However, the major pro-
blem with adaptive IIR filter is the possible instability of the filter if the poles move out-
side the unit circle during the adaptive process. In this application report, only FIR structure
is implemented to guarantee filter stability.

An adaptive FIR filter can be realized using transversal, symmetric transversal, and
lattice structures. In this section, the adaptive transversal filter with the LMS algorithm
is introduced and implemented first to provide a working knowledge of adaptive filters.

Transversal Structure with LMS Algorithm
Transversal Structure Filter

The most common implementation of the adaptive filter is the transversal structure
(tapped delay line) illustrated in Figure 6. The filter output signal y(n) is

N-1
ym) = wTmx@ = X win) x(n—i) 1)
i=0

where x(n)=[x(n) x(n—1) ... x(n—N+1)]T is the input vector, w(n)=[wg(n) wi(n) ...
wn—1(n)]T is the weight vector, T denotes transpose, n is the time index, and N is the
order of filter. This example is in the form of a finite impulse response filter as well as
the convolution (inner product) of two vectors x(n) and w(n). The implementation of Equa-
tion (1) is illustrated using the following C program:

yln] = 0.
for G =0;i < N;i++){
y[n] += wn[i]*xn[i];

{

where wn [i] denotes wi(n) and xn[i] represents x(n—1).

Tasrrmd o ontratirnm ~Ff AAArntive Eiltove snth tho TAAC2INIC mw ¢k TALCIANS,IN 100

x(n) x(n-1) x(n-2) x(n—=N+1)

Wy -1(n)

Figure 6. Transversal Filter Structure

TMS320C25 Implementation

The architecture of TMS320C25 [13] is optimized to implement the FIR filter. After
execution of the CNFP (Configure Block B0 as Program Memory) instruction, the filter
coefficients wj(n) from RAM block BO (via program bus) and data x(n—i) from RAM
block B1 (via data bus) are available simultaneously for the parallel multiplier (see Figure 7).

Weights Data Buffer

BO B1 j——— ARn

PFC——»

‘ Data Bus
Program
Bus T(16)

]

MULTIPLER

P(32)

ACC(32)

Figure 7. TMS320C25 Arithmetic Unit (after execute CNFP instruction)

The MACD instruction enables complete multiply/accumulate, data move, and pointer
update operations to be completed in a single instruction cycle (80 ns) if filter coefficients
are stored in on-chip RAM or ROM or in off-chip program memory with zero wait states.
Since the adaptive weights wj(n) need to be updated in every iteration, the filter coeffi-
cients must be stored in RAM. The implementation of the inner product in Equation (1)
can be made even more efficient with a repeat instruction, RPTK. An N-weight transver-
sal filter can be implemented as follows [23]:

LARP ARn

LRLK ARn,LASTAP

RPTK N-1

MACD COEFFP,*— (A)

Where ARn is an auxiliary address register that points to x(n—N+1), and the Prefetch
Counter (PFC) points to the last weight wy_(n) indicated by COEFFP. When the MACD
instruction is repeated, the coefficient address is transferred to the PFC and is incremented
by one during its operation. Therefore, the components of weight vector w(n) are stored
in BO as :

Low Address

PFC —o wy-1(n)

Wy.2(n)

eooe

w;(n)

wo(n)
High Address

The MACD in repeat mode will also copy data pointed to by ARn, to the next higher
on-chip RAM location. The buffer memories of transversal filter are therefore stored as

Low Address

x(n)

x(n-1)

x(n-N+2)

ARn —o» x(n-N+1)

High Address

In general, roundoff noise occurs after each multiplication. However, the
TMS320C25 has a 16 X 16-bit multiplier and a 32-bit accumulator, so there is no roundoff
during the summing of a set of product terms in Program (A). All multiplication products
are represented in full precision, and rounding is performed after they are summed. Thus
y(n) is obtained from the accumulator with only one roundoff, which minimizes the round-
off noise in the output y(n). Since both the tapped delay line and the adaptive weights
are stored in data RAM to achieve the fastest throughput, the highest transversal filter
order for efficient implementation on the TMS320C25 is 256. However, if necessary,
higher order filters can be implemented by using external data RAM.

TMS320C30 Implementation

The architecture of TMS320C30 [14] is quite different from TI’s second generation
processors. Instead of using program/data memory, it provides two data address buses
to do the data memory manipulations. This feature allows two data memory addresses
to be generated at the same time. Hence, parallel data store, load, or one data store with
one data load can be done simultaneously. Such capabilities make the programming much
easier and more flexible. Since the hardware multiplier and arithmetic logic unit (ALU)
of TMS320C30 are separated, with proper operand arrangement, the processor can do
one multiplication and one addition or subtraction at the same time. With these two com-
bined features, the TMS320C30 can execute several other parallel instructions. These
parallel instructions can be found in Section 11 of the Third-Generation TMS320 User’s
Guide [14]. Associating with single repeat instruction RPTS, an inner product in Equa-
tion (1) can be implemented as follows:

MPYF3 *ARO+ +(1)%,*AR1+ +(1)%,R1 ; wW[0].x[0]
RPTS N-2 ; Repeat N—1 times
MPYF3 *ARO+ +(1)%,*AR1+ +(1)%,R1 ; Y[= wll.x[]
| | ADDF3 R1,R2,R2
ADDF3 R1,R2,R2 ; Include last product

where auxiliary registers ARO and AR1 point to x and w arrays. The addition in the parallel
instruction sums the previous values of R1 and R2. Therefore, R1 is initialized with the
first product prior to the repeat instruction RPTS.

Note that the implementation above does not move the data in the x array like MACD
does in TMS320C25. For filter delay taps, the TMS320C30 uses a circular buffer method
to implement the delay line. This method reserves a certain size of memory for the buffer
and uses a pointer to indicate the beginning of the buffer. Instead of moving data to next
memory location, the pointer is updated to point to the previous memory location.
Therefore, from the new beginning of the buffer, it has the effect of the tapped delay line.
When the value of the pointer exceeds the end of the buffer, it will be circled around
to the other end of the buffer. It works just like joining two ends of the buffer together
as a necklace. Thus, new data is within the circular queue, pointed to by ARO, replacing

Y. .

the oldest value. However, from an adaptive filter point of view, data doesn’t have to
be moved at this point yet.

TMS320C30 has a 32-bit floating point multiplier and the result from the multiplier is
put and accumulated into a 40-bit extended precision register. If the input from A/D con-
verter is equal to or less than 16 bits, there is no roundoff noise after multiplication.
Theoretically, the TMS320C30 can implement a very high order of adaptive filter.
However, for the most efficient implementation, the limitation of filter order is 2K because
the TMS320C30 external data write requires at least two cycles. If the filter coefficients
are put in somewhere other than internal data RAM, the instruction cycles will be increased.

LMS Adaptation Algorithm
The adaptation algorithm uses the error signal

e(n) = d(n)—y(n), @

where d(n) is the desired signal and y(n) is the filter output. The input vector x(n) and
e(n) are used to update the adaptive filter coefficients according to a criterion that is to
be minimized. The criterion employed in this section is the mean-square error (MSE)e:

e = E[e2(n)] | 3

where E [.] denotes the expectation operator. If y(n) from Equation (1) is substituted into
Equation (2), then Equation (3) can be expressed as

€ = E[d2(n)] + wT(@Rw(n) — 2 wT(n)p ()]

where R = E[x(n)xT(n)] is the N x N autocorrelation matrix, which indicates the sample-
to-sample correlation within a signal, and p = E [d(n) x(n)] is the N x 1 cross-correlation
vector, which indicates the correlation between the desired signal d(n) and the input signal
vector x(n).

The optimum solution w* = [wo* wi* ... wN—1*]T, which minimizes MSE, is de-
rived by solving the equation

13

@ ° ©

This leads to the normal equation

Rw* =p 6

If the R matrix has full rank (i.e., R—! exists), the optimum weights are obtained by

w*=R-lp ™

In Linear Predictive Coding (LPC) of a speech signal, the input speech is divided
into short segments, the quantities of R and p are estimated, and the optimal weights cor-
responding to each segment are computed. This procedure is called a block-by-block data-
adaptive algorithm [24].

A widely used LMS algorithm is an alternative algorithm that adapts the weights
on a sample-by-sample basis. Since this method can avoid the complicated computation
of R=1 and p, this algorithm is a practical method for finding close approximate solutions
to Equation (7) in real time. The LMS algorithm is the steepest descent method in which
the next weight vector w(n+1) is increased by a change proportional to the negative gra-
dient of mean-square-error performance surface in Equation (7)

w(n+1) = w(n) — uV (n) ®

where u is the adaptation step size that controls the stability and the convergence rate.
For the LMS algorithm, the gradient at the nth iteration, V (n), is estimated by assuming
squared error e€2(n) as an estimate of the MSE in Equation (3). Thus, the expression for
the gradient estimate can be simplified to

6[e2(n)]
Vm)= —————— = — 2e() x(n) 9)
- 6w(n)

Substitution of this instantaneous gradient estimate into Equation (8) yields the
Widrow-Hoff LMS algorithm

w(n+1) = w(n) + 2 u e(n) x(n) (10)

where 2 u in Equation (10) is usually replaced by u in practical implementation.

Starting with an arbitrary initial weight vector w(0), the weight vector w(n) will
converge to its optimal solution w*, provided u is selected such that [1]

1
O<u<——— (11

)‘max

where A\pay is the largest eigenvalue of the matrix R. Apax can be bounded by

N-1
Max < TT[RI= X 1(0) =Nr10) (12)
i=0

where Tr [.] denotes the trace of a matrix and r(0) = E [x2(n)] is average input power.

For adaptive signal processing applications, the most important practical considera-
tion is the speed of convergence, which determines the ability of the filter to track nonsta-
tionary signals. Generally speaking, weight vector convergence is attained only when the
slowest weight has converged. The time constant of the slowest mode is [1]

1

t = _l;)_mm— (13)

This indicates that the time constant for weight convergence is inversely propor-
tional to u and also depends on the eigenvalues of the autocorrelation matrix of the input.
With the disparate eigenvalues, i.e., Amax> > Amin, the setting time is limited by the
slowest mode, Ap;n. Figure 8 shows the relaxation of the mean square error from its in-
itial value €y toward the optimal value €m;p.

Adaptation based on a gradient estimate results in noise in the weight vector, therefore
a loss in performance. This noise in the adaptive process causes the steady state weight
vector to vary randomly about the optimum weight vector. The accuracy of weight vector
in steady state is measured by excess mean square error (excess MSE = E [e — €minl)-
The excess MSE in the LMS algorithm [1] is

excess MSE = u Tr[R] €min (14)

where €pin is minimum MSE in the steady state.

Equations (13) and (14) yield the basic trade-off of the LMS algorithm: to obtain
high accuracy (low excess MSE) in the steady state, a small value of u is required, but
this will slow down the convergence rate. Further discussions of the characteristics and
properties of the LMS algorithm are presented in [1, 3 through 9]. The implementations
of LMS algorithm with the TMS320C25 and TMS320C30 are presented next.

x 10-3

30.00

22.50

MSE¢

15.00

7.50

Initial Wo = 0.2, wy = -1.0

64.75 128.50 192.25

Iteration

256.00

Figure 8. Learning Curve of an Adaptive Transversal Filter and an LMS

Algorithm with Different Step Sizes

x 10-3 Initial wg = 0.2, w, = -1.0

30.00
22.50 :\"1
A
w
7]
=
15.00 p
7.50 p
00 1 l I l 1 l Il
64.75 128.50 192.25 256.00
Iteration

Figure 8. Learning Curve of an Adaptive Transversal Filter and an LMS
Algorithm with Different Step Sizes

Since u*e(n) is constant for N weights update, the error signal e(n) is first multiplied
by u to get ue(n). This constant can be computed first and then multiplied by x(n) to up-
date w(n). An implementation method of the LMS algorithm in Equation (10) is illustrated
as

ue(n) = u*e[n];

for (i=0; i<N; i++) {
wn[i] += uen * xn[i];

}

TMS320C25 Implementation

The TMS320C25 provides two powerful instructions (ZALR and MPYA) to per-
form the update example in Equation (10).

. ZALR loads a data memory value into the high-order half of the ac-
cumulator while rounding the value by setting bit 15 of the accumulator
to one and setting bits 0-14 of the accumulator to zero. The rounding is
necessary because it can reduce the roundoff noise from multiplication.

. MPYA accumulates the previous product in the P register and multiplies
the operand with the data in T register.

Assuming that ue(n) is stored in T and the address pointer is pointing to AR3, the
adaptation of each weight is shown in the following instruction sequence:

LRLK ARI,N-1 ; Initialize loop counter

LRLK AR2,COEFFD ; Point to wn_—1(n)

LRLK AR3,LASTAP+1 ; Point to x(n—N+1), since MACD in (A)
; Already moved elements of current
; x(n) to the next higher location

MPY *-—,AR2 ; P=ue(n) * x(n—N+1)
ADAP ZALR *,AR3 ; Load wj(n) and round |
MPYA *-— AR2 ; ACC=P+wj(n) and P=ue(n) * x(n—i)
SACH *+,0,ARl1 ; Store wi(n+1)
BANZ ADAP,*—,AR2 ; Test loop counter, if counter not

; Equal to 0, decrement counter,
: Branch to ADAP and select AR2 as
; Next pointer.

For each iteration, N instruction cycles are needed to perform Equation (1), 6N in-
struction cycles are needed to perform weight updates in Equation (10), and the total number
of instruction cycles needed is 7N +28. An example of a TMS320C25 program implement-
ing a LMS transversal filter is presented in Appendix Al. Note that BANZ needs three
instruction cycles to execute. This can be avoided by using straight line code, which re-
quires 4N +33 instruction cycles [25].

TMS320C30 Implementation

Although the TMS320C30 doesn’t provide any specific instruction for adaptive filter
coefficients update, it still can achieve the weight updating in two instructions because
of its powerful architecture. The TMS320C30 has a repeat block instruction RPTB, which
allows a block of instructions to be repeated a number of times without any penalty for
looping. A single repeat mode, RM, in the status register, ST, and three registers - repeat
start address (RS), repeat end address (RE), and repeat counter (RC) - control the block
repeat. When RM is set, the PC repeats the instructions between RS and RE a number
of times, which is determined by the value of RC. The repeat modes repeat a block of
code at least once in a typical operation. The repeat counter should be loaded with one
less than the desired number of repetitions. Assuming the error signal e(n) in Equation
(10) is stored in R7, the adaptation of filter coefficients is shown as follows:

MPYF3 *ARO++(1)%,R7,R1 ; Rl = u*e(n)*x(n)
LDI order—3,RC ; Initialize repeat counter

RPTB LMS ;Doi =0, N-3
MPYF3 *ARO++(1)%,R7,R1 ; Compute u*e(n)*x(n—i—1)
|]ADDF3 *AR1,R1,R2 ; Compute wi(n) + u*e(n)*x(n—i)
LMS STF R2,*AR1++(1)% ; Store wi(n+1)
MPYF3 *ARO,R7,R1 ; Fori = N-2
| IADDF3 *ARI,R1,R2
STF R2,*AR1++(1)% ; Store wWN—2(n+1)
ADDF3 *AR1,R1,R2 ; Include last w

STF R2,*AR1++(1)% ; Store wWN—1(n+1)

where auxiliary register ARO and AR1 point to x and w arrays. R1 is updated before loop
since the accumulation in the parallel instruction uses the previous value in R1. In order
to update x array pointer to the new beginning of the data buffer for next iteration G.e.,
perform the data move), one of the loop instruction set has been taken out of loop and
modified by eliminating the incrementation of ARO.

To perform an N —weight adaptive LMS transversal filter on TMS320C30 requires
3N+15 instruction cycles. There are N and 2N instruction cycles to perform Equations
(1) and (10), respectively. The TMS320C30 example program is given in Appendix A2.

The LMS algorithm considerably reduces the computational requirements by using
a simplified mean square error estimator (an estimate of the gradient). This algorithm has
proved useful and effective in many applications. However, it has several limitations in
performance such as the slow initial convergence, the undesirable dependence of its con-
vergence rate on input signal statistics, and an excess mean square error still in existence
after convergence.

Symmetric Transversal Structure (5]

A transversal filter with symmetric impulse response (weight values) about the center
weight has a linear phase response. In applications such as speech processing, linear phase
filters are preferred since they avoid phase distortion by causing all the components in
the filter input to be delayed by the same amount. The adaptive symmetric transversal
structure is shown in Figure 9.

Figure 9. Symmetric Transversal Structure (even order)

This filter is actually an FIR filter with an impulse response that is symmetric about
the center tap. The output of the filter is obtained as

N/2-1

ym = X wi@) [x(n-i) + x(a=N+i+1)] (15a)
l=

where N is an even number. Note that, for fixed-point processors, the addition in the
brackets may introduce overflow because the input signals x(n—i) and x(n—N+i+1) are
in the range of —1 and 1 —2-15. This problem can be solved by shifting x(n) to the right
one bit. The update of the weight vector is

win+1) = win) + uem)[x(n—1) + x(n—N+i+1)] (15b)

for i=0,1,...,(N/2-1), which requires N/2 multiplications and N additions. Theoretical-
ly, this symmetric structure can also reduce computational complexity since such filters
require only half the multiplications of the general transversal filter. However, it is true
only for the TMS320C30 processor. When a filter is implemented on the TMS320C25,
the transversal structure is more efficient than the symmetric transversal structure due
to the pipeline multiplication and accumulation instruction MACD, which is optimized
to implement convolution in Equation (1).

TMS320C25 Implementation

For TMS320C25, in order to implement the instructions MAC, ZALR, and MPYA,
we can trade memory requirements for computation saving by defining

z(n—i) = x(n—i) + x(n—N+i+1), i=0,1,...,N/2-1 (16a)
Now, Equation (15) can be expressed as

Ni2-1
y(n) = wi(n) z(n—i) (16b)
0

l=
wij(n+1) = wij(n) + u e(n) z(n—i) , i=0,1,...,N/2-1 (16¢)

Equation (16a) can be implemented using the TMS320C25 as

LARK ARIl, N/2-1 ; Counter = N/2 -1
LRLK AR2,LAST_X ; Point to x(n—N+1)
LRLK AR3,FIRST__X ; Point to x(n)
LRLK AR4,FIRST__Z ; Point to z(n)
LARP AR3

SYM LAC *+.,0,AR2
ADD *— 0,AR4
SACL *+.0,ARI1
BANZ SYM,*— AR3

The instruction sequence to implement the LMS algorithm in Equations (1) and (10)
can be used to implement Equations (16b) and (16c), except using MAC instead of MACD
in Program (A). Therefore, N instruction cycles are needed to shift data in x(n), 3N in-
struction cycles are needed to implement Equation (16a), N/2 for Equation (16b), and
3N for Equation (16¢c). The total number of instruction cycles required to implement the
symmetric transversal filter with the LMS algorithm is 7.5N+38. Where 7.5N is an in-
teger because N is chosen as an even number. The 0.5N instruction cycles come from
Equation (15a) since symmetric transversal structure folds the filter taps into half of the
order N (see Figure 9). The maximum filter length for most efficient code, 256, is the

same as for the FIR filter. The use of the additional data memory can be obtained from
the reduced data memory requirement for weights of the symmetric transversal filter. The
complete TMS320C25 program is given in Appendix B1.

Note that instead of storing buffer locations x(n) contiguously, then using DMOV
to shift data in the buffer memory (requiring N cycles) at the end of each iteration, we
can use a circular buffer with pointers pointing to x(n) and x(n—N+1). Since pointer up-
dating requires several instruction cycles, compared with N cycles using DMOV to up-
date the buffer memory contents, the circular buffer technique is more efficient if N is large.

TMS320C30 Implementation

As mentioned above, the TMS320C30 uses a circular buffer instead of data move
technique. Therefore, it does not have to implement tapped delay line separately as
TMS320C25. Equations (1) and (16a) can be combined and implemented in the same loop.
The advantage of this is that a parallel instruction reduces the number of the instruction
cycles. The implementation is shown as follows:

LDF 0.0,R2 ; Clear R2
LDI order/2—2,RC ; Set up loop counter
RPTB INNER ;Doi=0,N/2 -2
ADDF3 *AR4+ +(1)%,*AR5——(1)%,R1; z(i) = x(n—i) + x(n+N-—i)
MPYF3 RI1,*AR1++(1),R3 ; R3 = w[] * z[]
| | STF R1,*AR2++(1) . ; Store z(i)
INNER ADDF3 R3,R2,R2 ; Accumulate the result for y

ADDF3 *AR4++(1)%,*AR5——(1)%,R1; Fori = N/2 —1
MPYF3 RI1,*AR1-—(IR0O),R3

| | STF R1,*AR2— —(IR0)
ADDF3 R3,R2,R2 ; Include last product

where AR4 and ARS point to x[0] and x[N—1]. AR1 and AR2 point to w and z array,
respectively. IR0 contains value of N/2 —1. The same instruction codes of weight update
of transversal filter can be used in symmetric transversal structure by changing the x ar-
ray pointer to the z array pointer. Appendix B2 presents an example program. The total
number of instructions needed is 2.5N+15, which is less than that of the transversal
structure.

Lattice Structure [6]

An alternative FIR filter realization is the lattice structure [26]. A discussion of the
transversal filter with the LMS algorithm shows that the convergence rate of the transver-
sal structure is restricted by the correlation of signal components; i.e., the eigenvalue spread,
Mmax/ Mmin- The lattice structure is a decorrelating transform based on a family of predic-
tion error filters as illustrated in Figure 10. The recursive equations that describe the lat-
tice predictor are

fo(n) = bo(n) = x(n) (17a)
fm(M) = fn-1(n) — kp(Mbp—1(n—1), 0 <m <=M (17b)
bm() = by-1(a—1) — kpmfp-1(n), 0 < m <=M (17¢)

where f,(n) represents the forward prediction error, by,(n) represents the backward predic-
tion error, kp,(n) is the reflection coefficients, m is the stage index, and M is the number
of cascaded stages. The lattice structure has the advantage of being order-recursive. This
property allows adding or deleting of stages from the lattice without affecting the existing
stages.

foln) f1(n) fm(n)
T—_— — e —_— ——o
Stage Stage Stage
x(n)—¢ 1 2 m
- 0 }—_—... | -
bg(n) b1(n) bm(n)

fm-1 (n) fm(n)

bm(n)

Figure 10. Lattice Structure

To implement the lattice filter for processing actual data, the reflection coefficients
km(n) are required. These coefficients can be computed according to estimates of the
autocorrelation coefficients using Durbin’s algorithm. However, it would be more effi-
cient if these reflection coefficients could be estimated directly from the data and updated
on a sample-by-sample basis, such as LMS algorithm [6]. The reflection coefficient
km(n+1) can be recursively computed [7]:

kp(n+1) = k() + ulfp()bm—1(n—1) + by@m)fn_i()], 0 < m <= M(18)

For applications such as noise cancellation, channel equalization, line enhancement,
etc., the joint-process estimation [3] illustrated in Figure 11 is required. This device per-
forms two optimum estimations: the lattice predictor and the multiple regression filter.
The following equations define the implementation of the regression filter

eo(n) = d(n) — bo(n)go(n) (19a)
em(n) = em—1(n) —by_[(N)gm-1(n), 0 < m <=M (19b)
gm(n+1) = gn(n) + Uem(n)by(n), 0 <=m <=M (20)

where the LMS algorithm is used to update the coefficients of the regression filter. For
noise cancellation application, e,(n) corresponds to the output e(n) in Figure 5. For ap-
plications such as adaptive line enhancer and channel equalizer, filter output y(n) is ob-
tained as

M
ym = X gun) by®) @1
m=0
foln) fq(n) fm(n)
Stage Stage | ™1 Stage y
x‘n) 1 1 2 m bm(n)

Figure 11. Lattice Structure with Joint Process Estimation

TMS320C25/TMS320C30 Implementation

There are five memory locations—fiy(n), bp(n), by(n—1), ky(n), and gy (n)—
required for each stage. The limitation of on-chip data RAM is 544 words for the
TMS320C25 and 2K words for the TMS320C30. A maximum of 102 stages can therefore
be implemented on a single TMS320C25 for the highest throughput. Here, another ad-
vantage of TMS320C30 architecture design is shown. Since the operands of the mathematic
operations can be either memory or register on the TMS320C30, and there is no need
to preserve the values of f;, array for the next iteration (refer to Equations (17) and (18)),
the fy, array can be replaced by an extended precision register. Thus, for the most effi-
cient codes, the stage limitation of lattice structure for TMS320C30 is 512, or one-fourth
of the 2K on-chip RAM.

Lattice structures have superior convergence properties relative to transversal struc-
tures and good stability properties; e.g., low sensitivity to coefficient quantization, low
roundoff noise, and the ability to check stability by inspection. The disadvantages of lat-
tice filter algorithms are that they are numerically complex and require mathematical
sophistication to thoroughly understand their derivations. Furthermore, as shown in Ap-
pendixes C1 and C2, lattice structures cannot take advantage of the TMS320C25 and
TMS320C30’s pipeline architecture to achieve high throughput. The total number of in-
struction cycles needed is 33M +32 for TMS320C25 and 14M+4 for TMS320C30.

Modified LMS Algorithms [5]

The LMS algorithm described in previous sections is the most widely used algorithm
in practical applications today. In this section, a set of LMS-type algorithms (all direct
variants of the LMS algorithm) are presented and implemented. The motivation for each
is some practical consideration, such as faster convergence, simplicity in implementation,
or robustness in operation. The description of these algorithms is based on the transversal
structure. However, these algorithms can be applied to the symmetric transversal struc-
ture and the lattice structure as well.

Normalized LMS Algorithm

The stability, convergence time, and fluctuation of the adaptation process is governed
by the step size u and the input power to the adaptive filter. In some practical applica-
tions, you may need an automatic gain control (AGC) on the input to the adaptive filter.
The normalized LMS algorithm is one important technique used to improve the speed of
convergence. This is accomplished while maintaining the steady-state performance indepen-
dent of the input signal power. This algorithm uses a variable convergence factor u(n),
which represents a u that is a function of the time index,

u(n) = a / var(n) (22)

and
w(n+1) = w(n) + u(n)e(n)x(n) (23)

where a is a convergence parameter, and var(n) is an estimate of the input average power
at time n using the recursive equation

var(n) =(1 — b) var(n—1) + b x2 (n) 24)

where 0 < b << 1 is a smoothing parameter. In practice, a is chosen equal to b.

For fixed-point processors, there is a way to reduce the computation of power estima-
tion. Since b in Equation (24) doesn’t have to be an exact number, it is computationally
convenient to make b a power of 2. If b = 2-m, the multiplication of b can be implemented
by shifting right m bits. Therefore, the var(n) in Equation (24) is computed by

var(n—1) — b var(n—1) + b x2(n)
var(n—1) — var(n—1) ¥ 2-m + x2(n) * 2—-m

var(n)

Then, assuming the variance var(n) of input signal is stored in the data memory
VAR and its initial value is 0.99997 (= 1— 2-15), The implementation of this equation
using TMS320C25 assembly code is

LARP AR3

LRLK AR3,FRSTAP ; Point to input signal x
SQRA * ; Square input signal
SPH ERRF

ZALH VAR ; ACC = var(n—1)

SUB VAR,SHIFT ; ACC = (1-b) var(n—1)
ADD ERRF,SHIFT ; ACC = (1-b) var(n—1) + b x2(n)
SACH VAR ; Store var(n)

The normalized LMS algorithm can be implemented as

var = by * var + b * xn[0] * xn[0];
unen = ¢[n] * a / var;

for i = 0; i< N;i++)

wn[i] += unen * xnl[i];

where b; = (1-b), xn[0] = x(n), and unen = u(n)*e(n). This normalized technique
reduces the dependency of convergence speed on input signal power at the cost of in-
creased computational complexity, especially the division in Equation (22). The algorithms
of implementing the fixed-point and floating-point division on the TMS320C25 and

TMS320C30 can be found in the user’s guide for each device [13, 14]. Since the power
of input signal is always positive, those codes can be simplified to save computation time.

Since the power estimation in Equation (24) and step size normalization in Equation (22)
are performed once for each sample x(n), the computation increase can be ignored when
N is large. As shown in Appendixes D1 and D2, the total number of instruction cycles
needed for the normalized LMS algorithm (7N +57 for the TMS320C25 and 3N +47 for
the TMS320C30) is slightly higher than for the LMS algorithm (7N +34 and 3N +15)
when N is large. '

Sign LMS Algorithms

The LMS algorithm requires 2N multiplications and -additions for each iteration;
this amount is much lower than the requirements for many other complicated adaptive
algorithms, such as Kalman and Recursive Least Square (RLS) [3]. However, there are
three simplified versions of the LMS algorithm (sign-error LMS, sign-data LMS, and sign-
sign LMS) that save the number of multiplications required and extend the real-time band-
width for some applications [5, 27].

First, the sign-error LMS algorithm can be expressed as
w(n+1) = w(n) + u sign[e(n)] x(n) (25)

where signfe(n)] = 1, ife(n) >0
-1, ife(n) <0

The C program implementation of sign-error LMS algorithm is

tu = u;
if (e[n] < 0.) {
tu= —u;]}

for (i=0; i<N; i++) {
wnli] += tu * xn[i];
]

As shown in Appendixes E1 and E2, the instruction sequence to implement weight
update with the sign-error LMS algorithm is identical to that with the LMS algorithm.
The difference is that the sign-error LMS algorithm uses the sign [e(n)]*u instead of e(n)*u
before the update loop. Note that, for fixed-point processors, if u is chosen to be a power
of two, the u x(n) can be accomplished by shifting right the elements in x(n). This algorithm
keeps the same convergence direction as the LMS algorithm. Thus, the sign-error LMS
algorithm should remain efficient, provided the variable gain u(n) is matched to this change.
However, the use of constant step size u to reduce computation comes at the expense of
a slow convergence rate since smaller u is normally used for stability reasons.

The programs in Appendixes E1 and E2 implement a transversal filter with sign-
error LMS algorithm in looped code. The total number of instruction cycles needed for
this algorithm using the TMS320C25 is 7N +26, which is slightly less than for the LMS
algorithm’s 7N +28. Computing u*e(n) takes 5 instruction cycles. The sign-error LMS
algorithm determines the sign of the u by checking the sign of e(n), which takes only 3
instruction cycles. The total number of instruction cycles needed for the sign-error LMS
algorithm using the TMS320C30 is 3N + 16, which is slightly higher than for the LMS
algorithm. This occurs because the TMS320C30 takes only one instruction cycle to com-
pute u*e(n) and two instruction cycles to determine the sign of the u.

Secondly, the sign-data LMS algorithm is
w(n+1) = w(n) + u e(n) sign[x (n)] (26)
This equation can be implemented as

wi(n+1) = wij(n) + ue(n) , if x(n—i) >=0
= wj(n) — ue(n) , if x(n—i) <0

for i=0,1,...,N—1. Since the sign determination is required inside the adaptation loop
to determine the sign of x(n—1i), slower throughput is expected. The total number of in-
struction cycles needed is 11N +26 for the TMS320C25 and SN + 16 for the TMS320C30.

Finally, the sign-sign LMS algorithm is
w(n+1) = w(n) + u sign[e(n)] sign{x(n)] . 27

which requires no multiplications at all and is used in the CCITT standard for ADPCM
transmission. As we can see from the above equations, the number of multiplications is
reduced. This simplified LMS algorithm looks promising and is designed for VLSI or
discrete IC implementation to save multiplications.

The sign-sign LMS algorithm can be implemented as

for (i=0; i<N; i++) {
if (e[n] >=0.) {
if (xn[i] >=0.)
wn[i] += u;

else
wn[i] —= u; }
else {
if (xn[i]> = 0.)
wnli]—= u;

else
wnli] +=u;]]

When this algorithm is implemented on TMS320C25 and TMS320C30 with pipeline
architecture and a parallel multiplier, the performance of sign-sign LMS algorithm is poor
compared to standard LMS algorithm due to the determination of sign of data, which can
break the instruction pipeline and can severely reduce the execution speed of the processors.

In order to avoid double branches inside the loop, the XOR instruction is utilized
to check the sign bit of e(n) and x(n—1i). The sign-sign LMS algorithm can be implemented
as

wi(n+1)

wi(n) + u , if sign[e(n)] = sign[x(n—1i)]
wij(n) — u , otherwise

The following TMS320C25 instruction sequence implements this algorithm without
branching ‘(assuming that the current address register used is AR3):

LRLK AR1,N-1 ; Set up counter
LRLK AR2,COEFFD ; Point to w;(n)
LRLK AR3,LASTAP+1 ; Point to x(n—i)
ADAP LAC *— 0,AR2 ; Load x(n—i)
XOR ERR ; XOR with e(n)
SACL ERRF ; Save sign bit, sign = 0 if same signs
; Sign = 1 if different signs
LAC ERRF ; Sign extension to ACCH,

; ACCH = OIf ERRF > =0
; ACCH = OFFFFh if ERRF < 0

XORK MU,15 ; Take one’s complement of m
; If sign = 1

ADD * 15 ; Weight update

SACH *+.1,AR1 ; Save new weight

BANZ ADAP,*—,AR3

The one’s complement of u is used instead of —u, because they are only slightly
different and the step size does not require the exact number. The weight update with
this technique requires 10N instruction cycles and FIR filtering requires N instruction cycles
so that the total number of instruction cycles needed is 11N +21. The complete TMS320C25
assembly program is given in Appendix F1.

To determine whether a positive or negative u should be used without branching
is trickier in the TMS320C30. Fortunately, the extended precision registers of TMS320C30
interpret the 32 most-significant bits of the 40-bit data as the floating-point number and
the 32 least-significant bits of the 40-bit data as an integer. When a floating-point number

changes its sign, its exponent remains the same. Therefore, the sign of step size u can
be determined by using XOR logic on its mantissa. The following code shows how the
sign-sign LMS algorithm is implemented on the TMS320C30.

ASH -31,R7 ; R7 = Sign[e(n)]

XOR3 RO,R7,R5 ; RS = Sign[e(n)] * u

LDF *AR0O++(1)%,R6 ; R6 = x(n)

ASH -31,R6 ; R6 = Sign[x(n—i)]

XOR3 R5,R6,R4 ; R4 = Sign[x(n—i)]*Sign[e(n)] * u
ADDF3 *AR1,R4,R3 ; R3 = wj(n) + R4

LDI order—3,RC ; Initialize repeat counter

RPTB SSLMS ;Doi =0, N-3

LDF *ARO+ +(1)%,R6 ; Get next data
|| STF R3,*AR1++(1)% ; Update w;(n+1)

ASH —31,R6 ; Get the sign of data
XOR3 R5,R6,R4 ; Decide the sign of u
SSLMS ADDF3 *AR1,R4,R3 ; R3 = wj(n) + R4

LDF *ARO,R6 ; Get last data

|| STF R3,*AR1++(1)% ; Update wy—2(n+1)
ASH -31,R6 ; Get the sign of data
XOR3 R5,R6,R4 ; Decide the sign of u
ADDF3 *AR1,R4,R3 ; Compute wy_—1(n+1)

STF R3,*AR1++(1)% ; Store last w(n+1)

Here, RO, R4, and RS contain the value of u before updating. ARO and AR1 point
to x array and w array, respectively. R7 contains the value of error signal e(n). The com-
plete program is given in Appendix F2. The total number of instruction cycles is SN + 16,
which is much higher than LMS algorithm.

The sign-sign LMS algorithm is developed to reduce the multiplication requirement
of the LMS algorithm. Since DSPs provide the hardware multiplier as a standard feature,
this modification does not provide any advantage when implementing this algorithm on
the DSPs. On the contrary, it causes some disadvantages since decision instructions will
destroy the instruction pipeline. If you use the XOR logic operation in order to avoid us-
ing the decision instructions, the complexity of the program will be increased and the total
number of instruction cycles will be greater than the regular LMS algorithm.

Leaky LMS Algorithm

When adaptive filters are implemented on signal processors with fixed word lengths,
roundoff noise is fed back to adaptive weights and accumulates in time without bound.
This leads to an overflow that is unacceptable for real-time applications. One solution is

based upon adding a small forcing function, which tends to bias each filter weight toward
zero. The leaky LMS algorithm has the form

w(n+1) = r w(n) + u e(n) x(n) (28a)

where r is slightly less than 1.

Since r can be expressed as 1 — c and ¢ < < 1, the TMS320C25 can take advantage
of the built-in shifters to implement this algorithm. Therefore, Equation (28a) can be
changed to

w(n+1) = w(n) — ¢ w(n) + u e(n) x(n) (28b)

In order to achieve the highest throughput by using ZALR and MPYA, cw(n) can
be implemented by shifting w;(n) right by m bits where 2—m is close to c. Since the length
of the accumulator is 32 bits and the high word (bits 16 to 31) is used for updating w(n),
shifting right m bits of wj(n) can be implemented by loading wi(n) and shifting left
16 — m bits. The sequence of TMS320C25 instructions to implement Equation (28b) is
shown as

LRLK AR1,N-1 ; Set up counter
LRLK AR2,COEFFD ; Point to w;(n)
LRLK AR3,LASTAP+1 ; Point to x(n — i)
LT ERRF ; T = ERRF =u%*e(n)

MPY *—,AR2
ADAPT ZALR * AR3
MPYA *—,AR2
SUB * LEAKY ; LEAKY=16—m
SACH *+,0,AR1
BANZ ADAPT,*— ,AR2

For each iteration, 7N instruction cycles are needed to perform the adaptation pro-
cess (6N for the LMS algorithm). The total number of instruction cycles needed is 8N +28
(see Appendix G1 for the complete program). The leaky factor r has the same effect as
adding a white noise to the input. This technique not only can solve adaptive weights
overflow problem, but also can be beneficial in an insufficient spectral excitation and stalling
situation [5].

The method used above is especially for the TMS320C25, which has a free shift
feature. Since TMS320C30 is a floating-point processor, r can simply multiply to filter
coefficient. However, in order to reduce the instruction cycles, this multiplication can
combine with another instruction to be a parallel instruction inside the loop. The follow-
ing code shows how to rearrange the instructions from the LMS algorithm to include this
multiplication without an extra instruction cycle.

MPYF @u__r,R7 ; R7 = e(n)*u/r
MPYF3 *ARO0++(1)%,R7,R1 ; R1 = e(n)*u*x(n)/r
MPYF3 *ARO++(1)%,R7,R1 ; R1 = e(n)*u*x(n—1)/r
| | ADDF3 *ARI1,R1,R2 ; R2 = wp(n) + e(n)*u*x(n)/r
LDI order—4,RC ; Initialize repeat counter
RPTB LLMS ;doi =0, N—-4
MPYF3 *AR2,R2,R0 ; RO = r*w;(n) + e(n)*u*x(n—i)
| | ADDF3 *+ARI1(1),R1,R2 ; R2 = wijy1(n) + e(n)*u*x(nz—i—1)/r
LLMS MPYF3 *ARO++(1)%,R7,R1 ; R1 = e(n)*u*x(n—i—2)/r
| | STF RO,*AR1++(1)% ; Store wi(n+1)
MPYF3 *AR2,R2,R0O ; RO = r*wy_3(n) + e(m)*u*x(n—N+3)
| | ADDF3 *+ARI(1),R1,R2 ; R2 = wy_2(n) + e(n)*u*x(n—N+2)/r
MPYF3 *ARO,R7,R1 ; R1 = e(m)*u*x(n—N+1)/r
| | STF RO,*AR1++(1)% ; Store wy—3(n+1)
MPYF3 *AR2,R2,R0 ; RO = r*w;(n) + e(n)*u*x(n—N+2)
| | ADDF3 *+ARI1(1),R1,R2 ; R2 = wy-1(n) +
* ; e(n)*u*x(n—N+1)/r
MPYF3 *AR2,R2,R0 ; RO = r*w;(n) + e(n)*u*x(n—N+1)
| | STF RO,*AR1++(1)% ; Store wy_2(n+1)
STF RO,*AR1++(1)% ; Update last w

Aucxiliary registers ARO and AR1 point to x and w arrays. AR2 points to the memory

location that contains value r. R7 contains the value of error signal e(n). R1 and R2 are
updated before the loop because the parallel instructions inside the loop use the previous
values in R1 and R2. Note that R1 is updated twice before the loop because the updating
of R2 requires the previous value of R1. In order to update x array pointer to the new
beginning of the data buffer for next iteration, two of the loop instruction sets have been
taken out of loop and modified by eliminating the incrementation of ARO. The TMS320C30
assembly program of an adaptive transversal filter with the leakage LMS algorithm is listed
in Appendix G2 as an example. The total number of instruction cycles for this algorithm
is 3N+15, which is the same as the LMS algorithm. This example shows the power and
flexibility of the TMS320C30.

Implementation Considerations

The adaptive filter structures and algorithms discussed previously were derived on
the basis of infinite precision arithmetic. When implementing these structures and algorithms
on a fixed integer machine, there is a limitation on the accuracy of these filters due to
the fact that the DSP operates with a finite number of bits. Thus, designers must pay at-
tention to the effects of finite word length. In general, these effects are input quantization,
roundoff in the arithmetic operation, dynamic range constraints, and quantization of filter
coefficients. These effects can either cause deviations from the original design criteria
or create an effective noise at the filter output. These problems have been investigated
extensively, and techniques to solve these problems have been developed [28, 29].

The effects of finite precision in adaptive filters is an active research area, and some
significant results have been reported [30 through 32]. There are three categories of finite
word length effects in adaptive filters:

. Dynamic Range Constraint (scaling to avoid overflow). Since this is not
applicable for a floating-point processor, the TMS320C30 is not mentioned
in this portion.

L Finite Precision Errors (errors introduced by roundoff in the arithmetic).
. Design Issues (design of the optimum step size u that minimizes system
noise).

Dynamic Range Constraint

As shown in Figure 1, the most wxdcly used LMS transversal filter is specified by
the difference equations

N-1
y(n) = E wi(n) x(n—i) 9)

i=
and
wij(n+1) = wj(n) + u*e(n)*x(n—i), fori =0, 1, ..., N—1 (30)

where x(n—i) is the input sequence and w;(n) are the filter coefficients.

If the input sequence and filter coefficients are properly normalized so that their
values lie between —1 and 1 using Q15 format, no error is introduced into the addition.
However, the sum of two numbers may become larger than one. This is known as overflow.
The TMS320C25 provides four features that can be applied to handle overflow manage-
ment [13]:

A. Branch on overflow conditions.

B. Overflow mode (saturation arithmetic).
C. Product register right shift.

D. Accumulator right shift.

One technique to inhibit the probability of overflow is scaling, i.e., constraining
each node within an adaptive filter to maintain a magnitude less than unity. In Equation
(29), the condition for |y(n)| <1 is

N-1
Xmax < 1/ XL |win)| @31

1=

where X,y denotes the maximum of the absolute value of the input. The right shifter
of the TMS320C25, which operates with no cycle overhead, can be applied to implement
scaling to prevent overflow of multiply-accumulate operations in Equation (29). By set-
ting the PM bits of status register ST1 to 11 using the SPM or LST1 instructions, the
P register output is right-shifted 6 places. This allows up to 128 accumulations without
the possibility of an overflow. SFR instruction can also be used to right shift one bit of
the accumulator when it is near overflow.

Another effective technique to prevent overflow in the computation of Equation (29)
is using saturation arithmetic. As illustrated in Figure 12, if the result of an addition
overflows, the output is clamped at the maximum value. If saturation arithmetic is used,
it is common practice [28] to permit the amplitude of x(n—i) to be larger than the upper
bound given in Equation (31). Saturation of the filter represents a distortion, and the choice
of scaling on the input depends on how often such distortion is permissible. The satura-
tion arithmetic on the TMS320C25 is controlled by the OVM bit of status register STO
and can be changed by the SOVM (set overflow mode), ROVM (reset overflow mode),
or LST (load status register).

-1 P 1-2-18

Input

Figure 12. Saturation Arithmetic

Filter coefficients are updated using Equation (30). As illustrated in Figure 13, a
new technique presented in reference 31 uses the scaling factor a to prevent filter’s coeffi-
cients overflow during the weight updating operation. Suppose you use a = 2—m, A right
shift by m bits implements multiplication by a, while a left shift by m bits implements
the scaling factor 1/a. Usually, the required value of a is not expected to be very small
and depends on the application. Since a scales the desired signal, it does not affect the
rate of convergence.

d(n) o 8

\ oo

FILTER
STRUCTURE Va

\

ADAPTIVE
ALGORITHM

x(n) & y(n)

Figure 13. Fixed-Point Arithmetic Model of the Adaptive Filter
Finite Precision Errors
The TMS320C25 is a 16/32-bit fixed point processor. Each data sample is represented
by a fractional number that uses 15 magnitude bits and one sign bit. The quantization interval
6 =2-b, (32)

(b = 15), is called the width of quantization since the numbers are quantized in steps of 5.

The products of the multiplications of data by coefficients within the filter must be
rounded or truncated to store in memory or a CPU register. As shown in Figure 14, the
roundoff error can be modeled as the white noise injected into the filter by each rounding
operation. This white noise has a uniform distribution over a quantization interval and
for rounding

- 126<e<126 (33a)

and
82 = (1/12) &2 (33b)
where 82 is the variance of the white noise.

In general, roundoff noise occurs after each multiplication. However, the
TMS320C25 has a full precision accumulator, i.e., a 16 X 16-bit multiplier with a 32-bit
accumulator, so there is no roundoff when you implement a set of summations and
multiplications as in Equation (29). Rounding is performed when the result is stored back
to memory location y(n), so that only one noise source is presented in a given summation
node.

Yy = Rounding [x e 8] = X e 8 + @

Figure 14. Fixed-Point Roundoff Noise Model

For floating-point arithmetic, the variance of the roundoff noise [31] is slightly dif-
ferent from Equation (33b),

0.2 = 0.18 & (33¢c)

Since TMS320C30 has a 40/32-bit floating-point multiplier and ALU, the result from
arithmetic operation has the mantissa of [31] bits plus one sign bit. Therefore, the é in
Equation (33c¢) is equal to 2—31. Another roundoff noise is introduced when you restore
the result back to memory. This noise has the power of 2—23 because the mantissa of
TMS320C30 floating-point data is 23 bits plus one sign bit. Therefore, unless the filter
order is high, the roundoff noise from arithmetic operation is relatively small.

The steady-state output error of the LMS algorithm due to the finite precision
arithmetic of a digital processor was analyzed in reference [31]. It was found that the power
of arithmetic errors is inversely proportional to the adaptation step size u. The significance
of this result in the adaptive filter design is discussed next. Furthermore, roundoff noise
is found to accumulate in time without bound, leading to an eventual overflow [32]. The
leaky LMS algorithm presented in the previous section can be used to prevent the algorithm
overflow.

Design Issues

The performance of digital adaptive algorithms differs from infinite precision adap-
tive algorithms. The finite precision LMS algorithm is given as

w(n+1) = w(n) + Q[u*e(n)*x(n)] (34)

where Q [.] denotes the operation of fixed point quantization. Whenever any correction
term u*e(n)*x(n—i) in the update of the weight vector in Equation (34) is too small, the
quantized value of that term is zero, and the corresponding weight w;(n) remains unchang-
ed. The condition for the ith component of the vector w(n) not to be updated when the
algorithm is implemented with the TMS320C25 is

| uem) x(n—i) | <6/2 (35a)
where §= 2-15. The condition for TMS320C30 is
| ue(n) x(n—i) | < 2exp * /2 (35b)

where exp is the exponent of w;(n) and 6= 223,

Since the adaptive algorithms are designed to minimize the mean squared value of
the error signal, e(n) decreases with time. If u is small enough, most of the time the weights
are not updated. This early termination of the adaptation may not allow the weight values
to converge to the optimum set, resulting in a mean square error larger than its minimum
value. The conditions for the adaptation to converge completely [30] is u > Upnin Where

-— 2 (36a)

2 .
u
™0 40, %€min

for the TMS320C25 and the TMS320C30

52%2exp
u2 | O —— 36b
'min 40x2€ in ()

where oxzis the power of input signal x(n) and €pjy, is the minimum mean squared error
at steady state.

In the Leaky LMS Algorithm section, it was mentioned that the excess MSE given
in Equation (14) is minimized by using small u. However, this may result in a large quan-
tization error since the most significant term in the total output quantization error is [3 1]

. Noe2

2a2u &N

The optimum step size ug reflects a compromise between these conflicting goals.

The value of ug is shown to be too small to allow the adaptive algorithm to converge com-

pletely and also to give a slow convergence. In practice, u > ug is used for faster con-

vergence. Hence, the excess MSE becomes larger, and the roundoff noise can typically
be neglected when compared with the excess mean square error.

Finally, recall Equations (11) and (12). The step size u has an upper limit to guarantee
the stability and convergence. Therefore, the adaptive algorithm requires

1
O<u<———— 38
No,? 9

On the other hand, the step size u also has a lower limit. The optimum ug, which
minimizes the sum of the excess MSE and roundoff noise, is smaller than uy;,, i.e., too
small to allow the adaptive weight to converge. For an algorithm implemented on the
TMS320C25, the word-length of 16 bits is fixed, and the minimum step-size that can be
used is given in Equation (36). The most important design issue is to find the best u to satisfy

1

Upin < U <
Noy

; (39)

Therefore, in order to make the condition in Equation (39) valid, the initial values
of filter coefficients are better close to zero for the floating-point processor if the situation
in unknown.

Software Development

The TMS320C25 and TMS320C30 combine the high performance and the special
features needed in adaptive signal processing applications. The processors are supported
by a full set of software and hardware development tools. The software development tools
include an assembler, a linker, a simulator, and a C compiler. The most universal soft-
ware development tool available is a macro assembler. However, the assembly language
programming for DSP can be tedious and costly. For adaptive filter applications, an
assembly language programmer must have knowledge of adaptive signal processing. The
challenge lies in compressing a great deal of complex code into the fairly small space and
most efficient code dictated by the real-time applications typical of adaptive signal pro-
cessing.

Recently, C compilers for the processors were developed to make DSP program-
ming easier, quicker, and less costly compared with the work associated with program-
ming in assembly language. Due to the general characteristics of a compiler, the code
it generates is not the most efficient. Since the program efficiency consideration is impor-
tant for adaptive filter implementation, the code generated from the C compiler has to
be modified before implementing. Thus, two alternative ways, besides writing an assembly
program, to implement adaptive signal processing on DSP are presented. First is the
automatic adaptive filter code generator [12], which can be found on Texas Instruments
TMS320 Bulletin Board Service (BBS), and second are the adaptive filter function libraries
that support assembly and C programming languages.

In this report, two adaptive filter libraries have been developed: one can be called
from an assembly main program; the other can be called from the C main program. Note
that, for the TMS320C25 only, certain data memory locations have been reserved for storing
the necessary filter coefficients, previous delayed signal, etc. In other words, these data
memories are used as global variables.

Assembly Function Libraries

The basic concept of creating an assembly subroutine for an adaptive filter is to modify
in module the assembly programs discussed above. Then, the user can implement the adap-
tive filter by writing his own assembly main program that calls the subroutine.

TMS320C25 Assembly Subroutine

The TMS320C25 has an eight-level deep hardware stack. The CALL and CALA
subroutine calls store the current contents of the program counter (PC) on the top of the
stack. The RET (return from subroutine) instruction pops the top of the stack back to the
PC. For computational convenience, the processor needs to be set as follows before call-
ing the assembly callable subroutine.

1. PM status bits equal to 01.
2. SXM status bit set to 1.
3. The current DP (data memory page pointer) is 0.

The following example is the TMS320C25 assembly main routine, which performs
an adaptive line enhancement by calling the LMS algorithm subroutine. The filter order
is 64, delay is equal to one, and the convergence factor u is 0.01.

* DEFINE AND REFER SYMBOLS
*

.global ORDER,U,ONE,D,Y,ERR,XN,WN,LMS

DEFINE SAMPLING RATE, ORDER, AND MU
E3
ORDER: .equ 20
MU: .equ 327 ; mu = 0.01 in Q15 format
PAGEQ: .equ 0

*
DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

*

XO0: .usect “‘buffer’’,ORDER—1
XN: .usect “‘buffer’’,1

WN: .usect “‘coeffs’’,ORDER

*

* RESERVE ADDRESSES FOR PARAMETERS
*

ONE: .usect ‘‘parameters’’,1

U: .usect ‘‘parameters’’,1

ERR: .usect ‘‘parameters’’,1

Y: .usect ‘‘parameters’’,1

D: .usect ‘‘parameters’’,1
ERRF: .usect ‘‘parameters’’,1

*
* INITIALIZATION

*

START LDPK PAGEO ; Set DP =0
SPM 1 ; Set PM equal to 1
SSXM ; Set sign extension mode
LRLK AR7,X0 ; AR7 point to >300
LACK 1 ; Initialize ONE = 1
SACL ONE
LALK MU ; Initialize U = MU = 0.01

SACL U
sk ok e sk s ok ok 2k ok ke ok sk ok sk 3 ok e sk sk 3k Sk sk 3k e Sk sk 3k 3k sk ok Sk 3k 3k b ok 3k 3k 3k 3k 3k ik ok 3k 3k 3k Sk ok 3k 3k Sk k Sk 3k ok 3k ok 3k b ok dk k ok 3k 3k ok k 3k 3k ok 3k k

* PERFORM THE PREDICTOR

3 sk 3k ok 3k 3k k¢ ok ok ok s ok sk 3 ok e sk sk ke sk ke ok s ok sk ok sk sk sk sk ke sk 3k sk ke ok 3k b ok ok 3k 3 3k k 3k 3k 3k 3k sk ok 3k 3k 3k 3k ok 3k 3k 3k k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k Xk

INPUT: IN D,PA2 ; Get the input
*
CALL LMS ; Call subroutine
*
OUTPUT: OUT Y,PA2 ; Output the signal
*
LAC D ; Insert the newest sample
LARP AR7
SACL *
B INPUT
.end

L e - 2 TR AOIINIOIN PRy

The symbols, such as ORDER, U, ONE, D, LMS, Y, and€RR, are defined and
referred to for the purpose of modular programming. The uninitialized sections specified
by the directive .usect can be placed in any location of memory according to the linker
command file. Note that MACD instruction requires the sources of the operands on pro-
gram memory and data memory separately, and CNFP instruction configures RAM block
0 as program memory. Therefore, the coeffs section has to be in data RAM block 0, and
the buffer has to be in RAM block 1. Appendix H1 contains the adaptive transversal filter
with LMS algorithm subroutine using the TMS320C25, and Appendix H2 contains an
example of a linker command file.

TMS320C30 Assembly Subroutine

Instead of a hardware stack, TMS320C30 uses a software stack, which is more flex-
ible and convenient for a high-level language compiler. The stack memory location is
pointed to by the stack pointer SP. In order to maintain the proper program sequence,
the programmer must make certain that no data is lost and that the stack pointer always
points to proper location. The PUSH, PUSHF, POP, POPF, CALL, CALLcond, RETI-
cond, and RETScond instructions will change the value of the stack pointer; in addition,
writing data into it and using the interrupt will also change that value. It is the program-
mer’s responsibility to initialize the stack pointer in the beginning of the program. The
same adaptive line enhancer example above using TMS320C30 is listed below. The
adapfltr.int program that initializes the stack pointer and the data RAM is given in Appen-
dix H3.

DEFINE GLOBAL VARIABLES AND CONSTANTS

.copy ‘‘adapfltr.int”’

.global LMS30,o0rder,u,d,y,e
N .set 20
mu .set 0.01

INITIALIZE POINTERS AND ARRAYS

.text

begin .set $
LDI N,BK ; Set up circular buffer
LDP @xn__addr ; Set data page

LDI @xn__addr,ARO ; Set pointer for x[]
LDI @wn__addr,AR1 ; Set pointer for w(]
LDF 0.0,R0 ; RO = 0.0

RPTS N-1

STF RO,*ARO++(1)% ; x[] = 0.

| |STF RO,*AR1++(1)% ; w[] = 0.
LDI @in__addr,AR6 ; Set pointer for input ports
LDI @out__addr,AR7 ; Set pointer for output ports

* PERFORM ADAPTIVE LINE ENHANCER

nput:
LDF *AR6,R7 ; Input d(n)
| ILDF *+AR6(1),R6 ; Input x(n)
STF R7,@d ; Insert d(n)
STF R6,*AR0O ; Insert x(n) to buffer
*
* CALL ASSEMBLY SUBROUTINE
*
* CALL LMS30
* OUTPUT y(n) AND e(n) SIGNALS
%
LDF @y,R6 ; Get y(n)
BD input ; Delay branch
LDF @e,R7 ; Get e(n)
STF R6,*AR7 ; Send out y(n)
STF R7,*+AR7(1) ; Send out e(n)
%
* DEFINE CONSTANTS
*
n .usect ‘‘buffer’’,N

wn .usect “‘coeffs’’,N
in__addr .usect ‘‘vars’’,1
out__addr .usect ‘‘vars’’,1
xn__addr .usect ‘‘vars’’,1
wn__addr .usect ‘‘vars’’,1

u .usect ‘‘vars’’,1
order .usect ‘‘vars’’,1
d .usect ‘‘vars’’,1
y .usect ‘‘vars’’,1
e .usect ‘‘vars’’,1
cinit .sect ‘¢ cinit”’

.word 6,in__addr
.word 0804000h
.word 0804002h
.word xn

.word wn

float mu
.word N-2
.end

In the above example, data memory order is initialized to N—2 for computation conve-
nience. The linker command files and the subroutine that implements the LMS transver-
sal filter can be found in Appendixes H4 and HS5.

C Function Libraries

The TMS320C25 and TMS320C30 C language compilers provide high-level language
support for these processors. The compilers allow application developers without an ex-
tensive knowledge of the device’s architecture and instruction set to generate assembly
code for the device. Also, since C programs are not device-specific, it is a relatively
straightforward task to port existing C programs from other systems.

To allow fast development of efficient programs for adaptive signal processing ap-
plications, C function libraries have been developed. These libraries include functions for
adaptive transversal, symmetric transversal, and lattice structures.

TMS320C25 C-Callable Subroutines

In a C program, the memory assignments are chosen by the compiler. There are
two ways to use the most efficient instruction MACD:

A. Use inline assembly code to assign memory locations for filter coefficients and
buffers.

B. Reserve the desired memory locations for them and do the assignment in the
linker command file.

The latter method is used in this report.

For a C main program, the parameters passed to and returned from the subroutines
are all within the parentheses following the subroutine name, as shown below:

Ims(n,mu,d,x,&y,&e) n - Filter order
mu - Convergence factor
d - Desired signal
X - Input signal
y - Address of output signal
€ - Address of error signal

Since the TMS320C25 C compiler pushes the parameters from right to left into soft-
ware stack pointed by AR1 , the subroutine gets the parameters in reverse order, as shown
below:

MAR *— ; Set pointer for getting parameters
LAC *— ; ACC = N

SUBK 1

SACL ORDER ; ORDER = N — 1

LAC *— ; Getting and storing the mu
SACL U

LAC *— ; Getting and storing the D
SACL D

LAC *— 0,A—R3 ; Insert the newest sample
LRLK AR3,FRSTAP
SACL *

The assembly subroutine returns the parameters y and e as follows:

LARP ARl

LAR AR2,*— AR2 ; Get the address of y in main
LAC Y

SACL *,0,AR1 ; Store y

LAR AR2,*¥ AR2 : Get the address of e in main
LAC ERR

SACL *,0,ARl ; Store e

Therefore, the parameters shduld be entered in the order given above. If there are
other parameters, they should be inserted right after the convergence factor mu. The leaky
LMS algorithm subroutine is given as an example.

llms(n,mu,r,d,x,&y,&e)

the r is defined in Equation (28a). Note that the values of the AR registers, which will
be used in subroutine, and the status registers must be saved at the beginning of the
subroutine and restored right before returning to calling routine. An example of a C-callable
program is given in Appendix I1. Memory locations 0200h to 0200h+N—1 and 0300h
to 0300h+N—1 are reserved for filter coefficients and buffers, respectively. N denotes
the filter order.

TMS320C30 C Subroutine

As previously mentioned, the TMS320C30 architecture has features designed for
a high-level language compiler. Note that the callable word is dropped in this section title
because the TMS320C30 is so flexible that the restrictions for the TMS320C25 no longer
exist. Since the memory locations of filter buffers and coefficients are determined by the
parameters that pass from the calling routine, the same subroutine can be used in different
places. However, the only restriction is that the memory locations of filter buffers must
align to the circular addressing boundary [14]. The features of TMS320C30 architecture
that make a major contribution toward these improvements are dual data address buses,
software stack, and flexible addressing mode. The parameters passed to subroutine are
pushed into the stack. Therefore, after returning from the subroutine, the stack pointer,
SP, must be updated to point to the location where SP pointed before pushing the parameters

into the stack. However, this will be done by the C compiler. The usage example of the
C function subroutine is given as follows:

tlms(n,u,d,&w,&x,&y,&e) where n - Filter order
u - Step size
d - Desired signal
&w - Filter coefficients
&x - Input signal buffers
&y - Addr of output signal
&e - Addr of error signal

The example below shows how the C subroutine receives and manipulates the
parameters passed from the caller program and how the result is returned to the caller
routine.

SET FRAME POINTER FP
FP .set AR3
PUSH FP
LDI SP,FP
GET FILTER PARAMETERS
LDI *—FP(2),R4 ; Get filter order
LDI *—FP(6),AR0 ; Get pointer for x[]
LDI *— —FP(5),AR1 ; Get pointer for w[]
COMPUTE ERROR SIGNAL e(n) AND STORE y(n) AND e(n)

LDI *~FP(2),AR2 ; Get y(n) address
SUBF3 R2,*+FP(1),R7 ; e(n) = d(n) — y(n)

| |STF R2,*AR2 ; Send out y(n)
LDI *—~FP(3),AR2 ; Get e(n) address
STF R7,*AR2 ; Send out e(n)
MPYF *+FP(2),R7 ; RT = e(n) *u
POP FP

Note that AR3 is used as the frame pointer in TMS320C30 C compiler. Appendix
I2 contains the complete LMS transversal filter example subroutine program.

Development Process and Environment

Following a four stage procedure [33] to minimize the amount of finite word length
effect analysis and real-time debugging, adaptive structures and algorithms are implemented

on the TMS320C25. Figure 15 illustrates the flowchart of this procedure. Since the im-
plementation on TMS320C30 is done only by the simulator, the last stage, real-time testing,
is not implemented.

Algorithm Analysis
and C Program
Implementation

Re-write C Program

to Emulate
DSP Sequence

Implement in DSP
Program and Testing
by DSP Simulator

h—)—i
Real-Time
Testing

1‘

Figure 15. Adaptive Filter Implementation Procedure

In the first stage, algorithm design and study is performed on a personal computer.
Once the algorithm is understood, the filter is implemented using a high-level C program
with double precision coefficients and arithmetic. This filter is considered an ideal filter.

In the second stage, the C program is rewritten in a way that emulates the same
sequence of operations with the same parameters and state variables that will be implemented
in the processors. This program then serves as a detailed outline for the DSP assembly
language program or can be compiled using TMS320C25 or TMS320C30 C compiler.
The effects of numerical errors can be measured directly by means of the technique shown
in Figure 16, where H(z) is the ideal filter implemented in the first stage and H’(z) is
a real filter. Optimization is performed to minimize the quantization error and produce
stable implementation.

H(2)

e(n)

x(n)— | fe(n)|2 Lo e2(n) —e

2=
iz

H(z)

Figure 16. A Commutational Technique for Evaluating Quantization Effects

In the third stage, the TMS320C25 and TMS320C30 assembly programs are
developed; then they are tested using the simulators with test data from a disk file. Note
that the simulation of TMS320C25 can also be implemented on the SWDS with the data
logging option. This test data is a short version of the data used in stage 2 that can be
internally generated from a program or data digitized from a real application environ-
ment. Output from the simulation is compared against the equivalent output of the C pro-
gram in the second stage. Since the simulation requires data files to be in Q15 format,
certain precision is lost during data conversion. When a one-to-one agreement within
tolerable range is obtained between these two outputs, the processor software is assured
to be essentially correct.

The final stage is applied only to the TMS320C25. First, you download this assembled
program into the target TMS320C25 system (SWDS) to initiate real-time operation. Thus,
the real-time debugging process is constrained primarily to debugging the I/O timing struc-
ture of the algorithm and testing the long-term stability of the algorithm. Figure 17 shows
an experimental setup for verification, in which the adaptive filter is configured for a one-
step adaptive predictor illustrated in Figure 18. The data used for real-time testing is a
sinusoid generated by a Tektronix FG504 Function Generator embedded in white noise
generated by an HP Precision Noise Generator. The DSP gets a quantized signal from
the Analog Interface Board (AIB), performs adaptive prediction routines, and outputs an
enhanced sinusoid to the analog interface board. The corrupted input and predicted (en-
hanced) output waveforms are compared on the oscilloscope or on the HP 4361 Dynamic
Signal Analyzer. The corresponding spectra of input and output can be compared on the
signal analyzer. The signal-to-noise ratio (SNR) improvement can be measured from the
analyzer, which is connected to an HP plotter.

PERSONAL
COMPUTER

FG504
FUNCTION
GENERATOR

PRECISION
NOISE
GENERATOR

DSP DEVELOPMENT SYSTEM
(SWDS and AIB)

TEK 2235 -—

SCOPE

HP3561A
DYNAMIC
SIGNAL
ANALYZER

l

HP PLOTTER

Figure 17. Real-Time Experiment Setup

x(n)

d(n)

e(n)

x(n-1)

Adaptive
Filter

__ Enhanced
" Output

y(n)

Figure 18. Block Diagram of a One-Step Adaptive Predictor

To illustrate the operation in a nonstationary environment, the adaptive predictor
is implemented using a TMS320C25, and the following experiment is performed. The
input signal is swept from 1287 Hz to 4025 Hz, then jumps back to 1287 Hz. The time
for each sweep is one second. The input spectra at every second are shown in Figure 19a;
the corresponding output spectra are shown in Figure 19b. From the observations on the

oscilloscope and signal analyzer, the significant SNR improvement, convergence speed,
ability to track nonstationary signals, and long-term stability of the adaptive predictor are
observed.

RANGE: 17 dBV STATUS: PAUSED
116 A:MAG

16 dBV

e | R
sowon | [Py .,1
“‘WW" S

I AR i S

START: OHz BW: 47.742 Hz STOP: 5,000 Hz

Figure 19(a). Spectrum of Input Signal

RANGE: 13 dBV STATUS: PAUSED

115 A:MAG
16 dBV Time
Amplitude
6 dB/DIV
-33 [ol Aad N a o
START: OHz BW: 47.742 Hz STOP: 5,000 Hz Frequency

Figure 19(b). Spectrum of Enhanced Output Signal
Summary

Three adaptive structures and six update algorithms are implemented with the
TMS320C25 and TMS320C30. Applications of adaptive filters and implementation con-
siderations have been discussed. Two subroutine libraries that support both C language
and assembly language for two processors were developed. These routines can be readily
incorporated into TMS320C25 or TMS320C30 users’ application programs.

The advancements in the TMS320C25 and TMS320C30 devices have made the im-
plementation of sophisticated adaptive algorithms oriented toward performing real-time
processing tasks feasible. Many adaptive signal processing algorithms are readily available
and capable of solving real-time problems when implemented on the DSP. These pro-
grams provide an efficient way to implement the widely used structures and algorithms
on the TMS320C25 and TMS320C30, based on assembly-language programming. They
are also extremely useful for choosing an algorithm for a given application. The perfor-
mances of adaptive structures and algorithms that have been implemented using the
TMS320C25 and TMS320C30 have been summarized in Tables 1 and 2.

Table 1. The Performance of Adaptive Structures and Algorithms of TMS320C25

TMS320C25
LMS Instruction Cycles 7N+ 28
Program Memory (Word) 33
Leaky Instruction Cycles 8N + 28
LMS Program Memory (Word) 34
Sign-Data Instruction Cycles 1IN+ 26
Transversal LMS Program Memory (Word) 41
Structure Sign-Error Instruction Cycles 7N + 26
LMS Program Memory (Word) 30
Sign-Sign Instruction Cycles TIN+21
LMS Program Memory (Word) 30
Normalized Instruction Cycles 7N +57
LMS Program Memory (Word) 47
LMS Instruction Cycles 7.5N + 38
Program Memory (Word) 50
Leaky Instruction Cycles 8N + 38
LMS Program Memory (Word) 51
i Sign-Data Instruction Cycles 9.5N + 36
Symmetric
Transversal : LMS Program Mfamory (Word) 58
Structure Sign-Error Instruction Cycles 7.5N + 36
LMS Program Memory (Word) 47
Sign-Sign Instruction Cycles 9.5N + 31
LMS Program Memory (Word) 47
Normalized Instruction Cycles 7.5N +69
LMS Program Memory (Word) 66
LMS Instruction Cycles 33N +32
Program Memory (Word) 63
Leaky Instruction Cycles 35N +32
Lattice LMS Program Memory (Word) 65
Structure Sign-Error Instruction Cycles 36N +32
LMS Program Memory (Word) 65
Normalized Instruction Cycles 90N + 34
LMS Program Memory (Word) 92

Note: N represents filter order.

Table 2. The Performance of Adaptive Structures and Algorithms of TMS320C30

TMS320C30 .
LMS Instruction Cycles 3N+15
Program Memory (Word) 17
Leaky Instruction Cycles 3N+15
\ LMS Program Memory (Word) 19
Sign-Data Instruction Cycles 5N+ 16
Transversal LMS Program Memory (Word) 24
Structure Sign-Error Instruction Cycles 3N+16
LMS Program Memory (Word) 18
Sign-Sign Instruction Cycles 5N+ 16
LMS Program Memory (Word) 24
Normalized Instruction Cycles 3N+47
LMS Program Memory (Word) 49
LMS Instruction Cycles 2.5N+15
Program Memory (Word) 23
Leaky Instruction Cycles 2.5N+19
LMS Program Memory (Word) 26
i Sign-Data Instruction Cycles 3.5N+18
Symmetric
Transversal LMS Program Memory (Word) 30
Structure Sign-Error Instruction Cycles 2.5N+18
LMS Program Memory (Word) 24
Sign-Sign Instruction Cycles 3.5N+17
LMS Program Memory (Word) 30
Normalized Instruction Cycles 2.5N +50
LMS Program Memory (Word) 56
LMS Instruction Cycles 14N+9
Program Memory (Word) 20
Leaky Instruction Cycles 16N+9
Lattice LMS Program Memory (Word) 22
Structure Sign-Error Instruction Cycles 16N +9
LMS Program Memory (Word) 22
Normalized Instruction Cycles 67N +9
LMS Program Memory (Word) 73

Note: N represents filter order.

References

[1] B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.

[2] R. Lucky, J. Salz, and E. Weldon, Principles of Data Communications, McGraw-
Hill, 1968.

[3]1 S. Haykin, Adaptive Filter Theory, Prentice-Hall, 1986.

[4] M. Honig and D. Messerschmit, Adaptive Filters: Structures, Algorithms, and Ap-
Pplications, Kluwer Academic, 1984.

[5] J.R. Treichler, C.R. Johnson, and M.G. Larimore, Theory and Design of Adaptive
Filters, Wiley, 1987.

[6] T. Alexander, Adaptive Signal Processing, Springer-Verlag, 1986.

[7] G. Goodwin and K. Sin, Adaptive Filtering Prediction and Control, Prentice-Hall,
1984,

[8] M. Bellanger, Adaptive Digital Filters and Signal Analysis, Marcel Dekker, 1987.

[9] J. Proakis, Digital Communications, McGraw-Hill, 1983.

[10] C. Chen and S. Kuo, ‘‘An Interactive Software Package for Adaptive Signal Pro-
cessing on an IBM Person Computer,”’ 19th Pittsburgh Conference on Modeling and
Simulation, May 1988.

[11] S. Kuo, G. Ranganathan, P. Gupta, and C. Chen, ‘‘Design and Implementation of
Adaptive Filters,”’ IEEE 1988 International Conference on Circuits and Systems, June
1988.

[12] S. Kuo, G. Ma, and C. Chen, ‘‘An Advanced DSP Code Generator for Adaptive
Filters,”’” 1988 ASSP DSP workshop, Sept. 1988.

[13] Texas Instruments, Second-Generation TMS320 User’s Guide, 1987.

[14] Texas Instruments, Third-Generation TMS320 User’s Guide, 1988.

[15] S. Qureshi, ‘‘Adaptive Equalization,’” Invited Paper, Proceedings of the IEEE, Sept.
1985.

[16] L. Rabiner and R. Schafer, Digital Processing of Speech Signals, Prentice-Hall, 1978.

[17] N. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Applications
to Speech and Video, Prentice-Hall, 1984.

(18] J. Makhoul, *‘Linear Prediction: A Tutorial Review,”” Proceedings of the IEEE, April
1975.

[19] C. Cowan and P. Grant, Adaptive Filters, Prentice-Hall, 1985.

[20] C. Gritton and D. Lin, ‘‘Echo Cancellation Algorithms,’’ IEEE ASSP Magazine,
April 1984.

[21] D. Messerschmitt, et al, “‘Digital Voice Echo Canceller with a TMS32020,”’ in Digital
Signal Processing Applications with the TMS320 Family, Prentice-Hall, 1986.

[22] B. Widrow, et al, ‘‘Adaptive Noise Cancelling: Principles and Applications,’’ Pro-
ceedings of the IEEE, December 1975.

[23] A. Lovrich and R. Simar, ‘Implementation of FIR/IIR Filter with the
TMS32010/TMS32020,"’ in Digital Signal Processing Applications with the TMS320
Family, Texas Instruments, 1986.

[24] S. Orfanidis, Optimum Signal Processing, MacMillan, 1985.

[25] G. Frantz, K. Lin, J. Reimer, and J. Bradley, ‘‘The Texas Instruments TMS320C25
Digital Signal Microcomputer,”’ IEEE Micro, December 1986.

[26] B. Friedlander, ‘Lattice Filters for Adaptive Processing,’’ Proceedings of the IEEE,
August 1982.

[27] A. Gersho, ‘‘Adaptive Filtering with Binary Reinforcement,’’ IEEE Transactions
on Information Theory, March 1984.

[28] A. Oppenheim and R. Schafer, Digital Signal Processing, Chap. 9, Prentice-Hall,
1975.

[29] L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Chap.
5, Prentice-Hall, 1975.

[30] J. R. Gitlin et al, ‘‘On the Design of Gradient Algorithms for Digitally Implemented
Adaptive Filters,”’ IEEE Transactions on Circuit Theory, March 1973.

[31] C. Caraiscos and B. Liu, ‘‘A Roundoff Error Analysis of the LMS Adaptive
Algorithm,’’ IEEE Transactions on ASSP, February, 1984.

[32] J. Cioffi, ‘‘Limited-Precision Effects in Adaptive Filtering,”’ IEEE Transactions on
Circuits and Systems, July 1987.

[33] R. Crochier, R. Cox, and J. Johnson, ‘‘Real-Time Speech Coding,’’ IEEE Transac-
tions on Communications, April 1982.

List of Appendices for Implementation of Adaptive Filters with the

Appendix
Al
A2
Bl
B2
Cl
C2
D1
D2
El
E2
Fl1
F2
Gl
G2
H1
H2

H3
H4

H5
Il

12

TMS320C25 and TMS320C30

Title

Transversal Structure with LMS Algorithm Using the TMS320C25
Transversal Structure with LMS Algorithm Using the TMS320C30
Symmetric Transversal Structure with LMS Algorithm Using the
TMS320C25

Symmetric Transversal Structure with LMS Algorithm Using the
TMS320C30

Lattice Structure with LMS Algorithm Using the TMS320C25

Lattice Structure with LMS Algorithm Using the TMS320C30
Transversal Structure with Normalized LMS Algorithm Using the
TMS320C25 '

Transversal Structure with Normalized LMS Algorithm Using the
TMS320C30

Transversal Structure with Sign-Error LMS Algorithm Using the
TMS320C25

Transversal Structure with Sign-Error LMS Algorithm Using the
TMS320C30

Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C25
Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C30
Transversal Structure with Leaky LMS Algorithm Using the TMS320C25
Transversal Structure with Leaky LMS Algorithm Using the TMS320C30
Assembly Subroutine of Transversal Structure with LMS Algorithm Using
the TMS320C25

Linker Command File for Assembly Main Program Calling a TMS320C25
Adaptive LMS Transversal Filter Subroutine

TMS320C30 Adaptive Filter Initialization Program

Assembly Subroutine of Transversal Structure with LMS Algorithm Using
the TMS320C30

Linker Command/file for Assembly Main Program Calling the TMS320C30
Adaptive LMS Transversal Filter Subroutine

C Subroutine of Transversal Structure with LMS Algorithm Using the
TMS320C25

C Subroutine of Transversal Structure with LMS Algorithm Using the
TMS320C30

Appendix Al. Transversal Structure with LMS Algorithm

Using the TMS320C2S§

(1su'n)n 23035 ¢

OFOX s (R eN=d

d+ (UM = (Teutm ¢

PUROJ B (U'H)Y 431N HIOY PO ¢
O & (R sN=d "¢
(U3 # N = Jystbag) ¢
2|0wes v3ep 243 03 Jutog
SJUITITH4300 3y} 03 Jutog !
Jajunod dn g ¢

(RO # 0= 243 ¢
3INS3J Yy punoy ¢

e sn=4d*
(nga =1 ¢

(WA - (U)g = (V3 ¢

(WA -=20 ¢

ndyno Ja3(1y Wy d0yg ¢

Adowam wiwp se og aunbrjuo) ¢
(U)A wenysy ¢

Sty N Jeaday ¢

d|dwes 3sap(o ay3 0} jutod ¢
Butpunoy bursp ¢

9351634 g ayy Jwa) ¢

AJowsm wesboud se og aunbryuog ¢

SUILIAARG ¥ SISSIONY INESH

pud® HSINLY
*

*
N+ YA
W' '] Ly
N Add
200 n
T4NX ‘e bl
o bl
1-30%0 1 R
]
] HWS
35 1] 1]
wd
n A
¥3 n
*
SIHOIIM ML UWIN #
*
] HWS
[HIQY
9N

YOG ML AUNGMED #

A HWS
W
[E 4]
~+'400P 0+ (1n 0]
1-430%0 ALy L€}
NX ‘e b1l
S8] el
0 MAdM
a0
o 1
*
A WNOIS HL WIS+

-

pyr

W11 ALY HL WORBd *

1°.S49j9ueand, Pasnt
1,549 9ueand, asne
1549 0u000d, 3osne
1. 54939uweund, s
1‘.sudjourand, Pasne
1 Se0jourand, asne

.

YIR0*.$14303, Jdesn"
1'299340q, 3oasn°
1-43080 ' 49330q, 3d9sn”

SINGIJ144300 W Y3408 0 SISSTION NI4N

«eeS%F

o nba 103d
BT

SHILIRND NI 430

13
*
*

6861 ‘Asenugay buny)-utay) ‘uayy

*12€ 39 PInoys Aioesm 0yeq (G
*1 99 pinoys 3 Auowam eieg (4
0 36vd 3q pinoys (Jajutod Ibed AJowdw vI®p) 41 JuIIND Y (€
‘1 03 35 3q PLNOYS 31q SAIMYS WXS (2
*10 03 [®nba 3q.p{NOYS 31q SNIRYS W (1
JUOTTPUOD (PTTU]

*uotjedt|dde
J4109ds Joj TIN0J uTew Yy Ajtpow 03 sey Jasn *dn 3as uaIq jou
S®Y UOTIRINBTHU0D (/] ‘UOTSJIIA DTIIUIS 3y} ST weuboud adnos STyl :djoN
*10%0 = M PUR §Q = JIPJO JI}|TJ ISN I JIIYN
€9°° 71050 (1-V)Xa(U)38n + ()M = ()
(WA - (0p = (u)?
0=1
€90 T 0= O1-u)XRONA WS = (U)K
€9

104319061y

(k¢ H N (uyx

¥)3 ¢

3p0) padoo ‘wyytiobiy Sy pue
INPNIIS [esIdASURY] Butsy a3 (14 ATydepy : QWL

L R R I I R T I A

ASHU, WIN

Appendix A2. Transversal Structure with LMS Algorithm

Using the TMS320C30

» jseq aepdn

(1-U)X # N & (V)3 + (U)IA = ([40)IA
youedq Aejag

Z-N=14oj

(1-U)X # N & (U)3 4+ (V)IA = (T4U)IA ¢

(T-0)X # N & (V)3 4 (VIR =Y

(T-1-0)X # N g (U)d = 1Y ¢

EN‘O=10g

Jaunod Jeaday azt|eIjTUf
(X aens (=Y

na (U= Ly

(U)? 300 pudg *

()4 30 puag
(WA - (up = ()2

FYLEIYIT: TR LT
X pm = (V)4

0°0=2

19440Q 0} (U)X JIISU]
(u)x 3ndu]

pud*

LIERUITY
w paon*
ux paom*
WZ000080 puom®

0001060 piom
PpPEUL'G paoe:

$3J0d yndino Joy Jajutod a5 ¢ " Jppe3inog mn
s)J0d 3ndut Jos Jajutoed Jag ¢ W Ippruty mn
[EN LI XTI+ Tose ‘0N 48 i
0= (1% X(1)+oum 0y 4S
1-49pJ0 SidY
070 =04 ¢ 00 an
()% Joj Jsajutod 335 ¢ T Jppe-umy mn
(1% J04 Jajured 335 ¢ Ol Jppruxy mn
abed mwp 335 ppeig dan
J9440Q JR(NOITD dn a5 ¢ ' epio (al
[s utaq
9’
. . *
SARRN OW SHIUNIOd IZIWILINI &
*
10 ys° n
2] Jos* Japyo
WIS LMY RORBd #

U193 Jdepe, Ado>+

6861 ‘Paw Bunyd-utay) ‘v
“10°0 = MR PUR §9 = JIPJO JIF|T4 ISH I IuyN
€9°° T 10X (H-U)Xa(V)340 4+ (M)A = (N)A
(WK - (u)p = (u)?
0=x
€97 T 0= (FUXEONA WS = (VA
£

10y3 19061y

(WA ¢

HEE (uyx

(WS
+

R el (1

(93 ¢

suoryeunbryued o/

A, st Jn
1¢.80e, Pasne n
1'a590A, }oasne Jpprum
14,540, s Jppeux
1'aSumA, s Jppeino
1 aSuRA, 3esne Jpprut
JpJUo’ 644900, 32980 u
Japao’ 9440, 3asn ux
*
SIWISNGD W14+
*
L TR '] T
e Y
U= 415
‘ Jndut (]
T e0Y i
¢ TN 0Me AN
L (WS] 18 El
¢ [RURT TR F | A
POTNL(De0Me AN
¢ SN [.Te]
$ 'g-Japso (]
PO 00 EUD
¢ ' A
*
()R SIHOTM LW +
*
s (w18 FICERH
¢] 418
¢ o'y E: 1
*
SNOIS (V)2 W (1A INALN0 G (V) TNOIS HOM3 UMD ¢
]
¢ ' 200V
¢ 'Y e
TH R4+ T XTI 00 EUM
T-99p30 SLd¥
TH L+ TI (T -0 EAM
' ‘00 an
*
(WA INdING MUTLS NS #
]
' Ous 'Y 418
¢ P (1) 1
¢ 4 e an

(V)P Indy]

13ndut

0620ZESHL 343 Butsn
WYITI06(® G YIIM JIJ[T4 [PSIIASURYY IATydepy - OEL

L R R R R T T

Appendix B1. Symmetric Transversal Structure with LMS

Algorithm Using the TMS320C25

Mo 131 Wy dsegg ¢

Asonsm v3ep sv og amnbrjuo) ¢
(VA Nreysy ¢

1) Z/N Jedy

434409 153910 343 0} Jutog
Gutpunoy Butsn ¢

Jsthas g) ww) ¢

AJowsw weboud se 0g aunbrjuo) !

CHN-U)LVE + (1) 190 = (1) 9043ng ¢

J44nQ 35414 03 Jutog !
I IS 0) Juley ¢
P 35[0 03 Juloeg ¢

JJune> ayy ¢n Jag ¢

SHILINARC ¥0J SISSTONY ISR

*
A HOWS
N
0
54000 S0+ (o]
1-00040 pIT] 14
s 'ew b1l
SI'M n
0 Ml
40
*
A NOIS ML UWILSI
*
o' -+'Ms ™
w0+ s
0 oV
80" +s N WAS
ABSU4 v b1l
1va544 ‘e byl
1905Y‘ 2 b1l
1-243040 T R
on AN
*

NOILIONY 3444 JIULBMAS #

-

e

WU ALY HL ROABd #

1 Sud)ourind, asnt
1°.S93)0wvand, s
1 S4ayaueand, Pasn®
1'.S30ue00d, PRIt N
1 S40jowraed, s
1°.5J9)0ueand, Pesn®

ee.asBEsE

14544903, asn* 119

1-43080 1 $4490, 3d¥sn° 190544
UI0°.53490, Jasn’)

1'a00430q, ¥sn° 1 BSY)

1-203040° 4 433400, Jo3sn° NSy

'
SUBIIN44300 W 34408 0 SISSION N1 ¢+

+*
T e ;oo
W b 300

SHILIRARG N0

6861 ‘Aseniqay Beny)-utag) ‘vap

*LZE %9 PInoys N Asosse wieg (S
*1 9q pineys 0 Asosse w3eg (y
*0 36vd 3q pInoys Jajuted abed AJowdw ®3ep) 4] JUIIIND) (€
*1 21601 03 395 3q PLNONS J1Q SMIMS WIS (2
*10 93 [®Aba 3q plhoys 3Tq SNIMIS g (1
1U0T31PUOd (RT3 TV]

‘vl dde
J14133ds Joj IINOJ UTRE Y} AjTpowm 0) sy Jasn “dn IS UIQ Jeu
seY UOTIRINBTHU0D (/] ‘UOTSIIA DTJudb) st weaboud adunos sty N
*10°0 = M PUR 9 = JIPJO JBJ{T5 ISN M)N
TE° "' 10N () 1Z(V)380 4 (A 2 (A

(WA - (u)p = (13

0=)
1652 10t (Fupa (A WS = (WA
1€
1840100 (EUIX 4 (R-U)X = (F-U)12
1eytae6 |y
-— —t —t
et RE TS REEE ST
(R R N e
It ! ! !
12ns) (ns) (ns) (WS)
=t n a n

(-uiz 1 1z

(W) (—-(HNS) (——-
4o+ (nk

wyp

0] padooT ‘wyituebiy s pue
AINIONYYS [RsIdAsURY) AJjowmks Butsny Ja3 |14 MLydepy : GZA

L R R I R A R A I A I R B R B R R A B N B B R B N B B A A R A

=/ VR (R

pua*
*
UOTIRIIIT IXU JO4 BIBP JHING ¢ - A0
somn) [N jeaday ! 7-4300 AR AWV
Jajutod 33 ¢ T-1905Y1 29 bral HSINIJ
*
NOILWAELT 1XN ¥03 NOILSOd YIWT 31vadd
*
-+ LUy e

(Tsu'n)N 22033 * W0 +s HWS

-0 s (PP eN=d* *
d+ (VM= (Tsunm ¢ - VAN

PUNOS 3 (U'N)Y YITA Iy proT * o' ¥wl Ldvay
QU)X s (PIan=4°* b A
(U)N43 &) = JastBay | ¢ a3 n

19340Q JS®|) 03 Jurog ¢
SJUITITH490 Y3 0} Julogd
Jajunod dn g

AT e M
oo i
1-2430%0 " 1 WA

(O KR e 203 HWS
1Insas ayy punoy * SI'0 oy
4

MR+ n=4d* n A
(w3 =1 ¢ w3 n

SIHOIM L UWIN ¢

(VA - (UE = (VW3 ¢ ¥ HWS
si'a v
(WA -=2m ¢ IN

Appendix B2. Symmetric Transversal Structure with LMS

Algorithm Using the TMS320C30

pprut'y pioa:

BICIEEN s e
1 540, N n
1500, 380 Jppruz
1.8a0A, o0 Jppr-wa
ThaSoRA, o3sR JPpprux
T'aSJRA, Joasnt uppreino
1 a890A, asn Jpprut

90’ 555900, PRI N

uz

/49930 544300, 32980]
J9pae’ ua4ng, Pasn: ux
*
SINJISNOO NIT +
*
LRILIN (1) —Tue ‘T4 418
LRI TR T e
(1-U)Z 8 N g (U)3 4 (U)TA = ([4U)IM & (1++ 1004 ETH
ueyq Aejag ¢ Indut [i-]
2T cJ0
T-N=T1903 0 [y 0ND—-DM CAM
(-0)Z & 0 8 (U)3 4 (U)IA = (T4u)IM ¢ (DI ' 418 £l
(l-)Zans (U s M=y - RTINS "I
(I-1-0)Z e n e (WI=T4 ¢ A (DD CAd
€N ‘O=tog ! SN LTE]
J33un0d jeaday azreryyp ¢ -2/ 39pd0 mn
(NZans(03=1y9° WA S
Py U=yt w'n ETY]
- *
(V)M SIHOIIM YO +
*
()3 3no puag ¢ (1)L 14 FICINH
(U)K 3no puag ¢] 418
(WA - (np = ()2 ¢ o'y 1
*
SIS (1)2 p¥® (U)X INdIND W (V)2 KNOIS HOWRG JUNMOD #
*
3Unsad 3svy Ay ¢ ' E
(U)Z 34035 & (O¥1) e TY FICIH
[2°00 = (4 F ey (DT ‘T CaAdM
#
{T-NSUIX ¢ [T-U]X = (2 : »
TH'UT QR LD e 0N
*
NS a3 e nendy D' €N e

()2 3035 ¢ (100 1y 48 4
00N = 040 ' (eI’ ly Al

[T-NUX ¢ [T-U]X = (U)Z ¢
T8'X(1) S LT) ++ bt £

YNNI LT
'Z-2/49pd0 n
()X Joj Jajuted psemydeq 3o ¢ GO mn

0'0=24¢ w'o°o an

*
(A 10dIN0 1T ANMD #
*

44 03 (U)X JAISUL t 2(1)—Oue 'Ry 418
[1% 403 Jajuted prwmsey 335 ¢ "o m
(U)X ady] ¢ N (1R mn
()p Inde] ¢ 0 e an
3:‘-
$3904 30300 Jey Squted 335 1 L' appTIne m
53404 Indut J0j J3juted g ¢ o ppeury (4]
0=112% (N)—Die'0M FTCI
0=[1"% (OM—THe'oM 418
0=02" ()00 FTI
0=[m? (T)e+T00e ‘08 41
12720 20 SidY
0=01x* T(1+0me‘0d 418
1-49ps0 SLdy
0°0=08* o4'0°0 an
Jajuted xaput 335 ¢ QNI ‘1-Z/49pd0 (4]
)2 Joy sauted 335 ¢ N g n
[In 05 Jajuted 335 ¢ 1 sppeug 1N
[)x Joj sajuted 335 * oW “Jppeug (4]
abed mep 335 ¢ »reVg dn
Ja340q JRINDITD dn Jag ¢ ' Jepio mn
[s utbaq
e

SAVMY OW SMIUINIOd JZIWILINT +

*

azts diyg ¢ 10°0 s e

S0 99|y ¢ 4] Jos° Japso
RUSDIEL, LN Ado>*

MUY LMY W0REd *

10°0 = B PUR §Q = JIPJO JI|TJ SN M IINN
1€ T 10X (H-4)Za(V)38n + (NI = (NN
(WK - (u)p = (u)?

0=
1€ ZT0=0 O ZBONA WS = (U)K

1€
1ghee 1°0=1 (M4E9-9)X 4 (I-3-U)X = (1-4)Z

swy3ta06 1y

0E00ZESHL 343 Butsn wyytobie gn
YITA JIJ |15 |RSIIASURIY DTJJIWWAS IATIdepy - OEA

LR L R R R R R R

uz

ux
YZ00¥080

pua®
BT
paon*
puoas
paon*
paoa
paea:

Appendix C1. Lattice Structure with LMS Algorithm

Using the TMS320C25

19 ¢ 18 - (V@ = (0)3 d2T(eTyte] ¢

19 # 16 - (00 = XW

(19 10)- =2 *

19 # 18 = (0)A d21(P13tv]
19+ 18 = 2
19elg=d

=1

'
§

s
t
¢

3 HWS
q HOY
Gz]
A HOVS
N
on'e A
oN'e n
*
WIVIIWILING »
1]
ow'o's TS
M0 s
X n
*
1900 18 3 RIVILIND »
*
LR w
19'08 N
109 v bl
18'cW bl
1408 byl
1-43080 I R
> SN
*
SHAINIOd ML ZIWILINT »
*
e

WS AILMY HL ROREd #

1 .SJ930wrund, sn 131

1 S4ayoweand, sne Hil
1'.5J9)0wesnd, s :3
1 SJ9)0unand, 3dsn° A
1 Seajourind, esne B

1 .SJ330we00d, 0’ :q

*

SHALIMNG W0J SISSRION WIS +
*

THOM0 . 39330e, JO¥sn° +108
14300 ‘994309, JI0sn° a8
1443040 . 544900, Pasne el
W0M0* 593900, oasme e]
WIH0 £ $33903, Pasne 9
*

SIGIII44300 QW B4 40 SISSRIONV N30 +
*

L4 nba* Y300

*

SOUINMY NI+

*

6861 ‘Asenaqay Bunyd-utay) ‘vay) +

18 (— v
108 (— € :UOTIRINT LAY Jog
108 <— "
18 (— € :90TIRIT ppo Jog
‘aduexd Jog ‘uoryesayt
A4ana paburgdxd aq pinoys (yiy B EY) Jojuted 108 % 1g L (S
*LZ€ %9 PLroys) Asomsm vyeg (y
0 ¥vd 3q pInoys (Jajuted 3b6ed Asomam R1ep) 4 JUASND WY (£
*1 2tbey 03 335 3q pinoys 31Q SAIMS WS (2
“10 03 [enbd 3q p(noys 319 sAIRYS g (1

1UOTITPUOD [RTRIN]

*wetjedt|dde
S1413ds Joj TIN0J UTRW 3y} AJTpom 03 sey Jasn “dn Jas udq Jou

SPY VOTIRINGTHU0D O/ ‘UOTSIIA ITJUE 3y} ST weuboud Dunos sTy) :ajeN

*10°0 = M PUR §9 = JIPIO JAI|TH I
19Tt (N)IQ & (V)12 3 04 (V)19 = (T4U)19

[(OT-143(U)TQ & (T-U)]-TQR(UITS] & MO+ (U)TY = (T4U)T)

0=t o=t
(U)T9R(U)1 WIS = (U)TA WS = (U)K
" »
0=t
§9'0 T Rl (U)T-108(U)T-1Q - [-13 = (U)K NS - (WP = (V)12
1-1

90T =T (U)I-1 8 (0T - (1-0)1-19 = (U)1q

YT (U110 8 (D - (11 = (Y

w4306y

-1 (1-19

+
(U)19(—-(WNS)<—

o (S) —
+ (1-14 (L)1 -+ (W04

903 padoo] ‘ey3tsobly S pue

npnag 911 buts 193114 MMy : S71

LR R R R R R R R I I T I R Y

S, 1w

N0 231ty Wy da0gs
e ase e ¢
Kivwom wyep s¢ 0g 20n614u0) ¢

19 = 1 1-1ge1-13e0M

1-19 »

1-13 ¢ 04 - 14

1-t40t0 = d "1-108e0X - 1
1-108

205 ¢
=
R
m=d:
em=lc
1-13 0 W 22035 ¢
3em=gt

RN

1g 205 ¢

A

+4900050+19

-
90" en

.

n
8L
a1

LY
"w'e
3
e
3
on'e

e a3

yw?
Add
n
HWS
W
A
4
KNS
SAdd
¥wl
A
.

D3V OW 3 3000 ¢

e
e
e
81
3L

3

n

.

WS [t
v
WL
A
n
W
A
1n

.

(119 NIW) JNM0Y @

n
¥l un
.

(VGO (13 3 UMD

Appendix C2. Lattice Structure with LMS Algorithm

Using the TMS320C30

Jajutod (16 ayepdn ¢
4ajuted 14 jepdn ¢
(u)@ 300 pudg ¢
(U)A 3no puag ¢
33} 3se| Jno ey ¢
youryq Aejag ¢

(u)? ndwo) ¢

(U)K 3ndwo)

14 203 ¢

DX

o+ l-t =1yt

(1ge1-14 4 1-108814) # 0 = 04 ¢
1ge1-14 4 1-108+74 = 04 }
1-1od s ty= 1Y ¢

Y=gyt

1-1081 = 0¥ ¢

19 3035 ¢

Wel-t4= 1yt

1g 34035 ¢

11§+ 1-13 40+ [-19=04 ¢
1-1g s -1380 =048

-1 - 1-108 = g =€y ¢

1-1g e 1-13=08 ¢
1-19 = €y ¢
19s1g-0=3"

14 sy ¢
[CRR

L]

ub

L]

uy

Z00¥080
4000080
pprut’y
[RiLIE
1hs0e,
1hasam,
1'asam,
1'as9m,
1'.540,
1'asim,
49pI0az’ L 40440,
3P0’ 549900,
Japaot 534300,

04" (N1 -0
4" (041 —OWe

pua*
oyt

paon*

pioa

pion’

paoa*

paon*

pion*

s i
Pasn+ n
0 Jppe-ub
Pasne Jppreuq
Pasn Jppruy
Pasnc ppeynoe

s Jpprut
Pasn’ 1]
Joasne ub
s uy

[}
SINULSMOD WNIB0 #
.)

(8 I}
mn
s o
418
s
o

STNOIS ()3 OW (WA 1NdIN0

o'

[CRY

(1) ++0Ws ‘0¥

[k N
04Ot ‘0N
o'

(]

08 '2T)++h ‘Y
Sy'oy

0 yile ‘Ot
(1)++2e ‘0¥
(RN

Te ey
[k,
oy'n

£ i ‘€Y

04 T(T)++ 1" 14
£4'CH " oe
N

' 1-49pd0

o'
T oy
92 'Y

*
s Hwme

EUd

(U)X Indug ¢ U (1)9es n o
(u)p 3ndey ¢ 14 e an
13ndut
s3J0d yndyno Joy Jauted jag ¢ L' I Iney 1
$3J0d Andut Joy Jajuted 335 ¢ W Ippruny j(q]
0 0N1 T 100
00 = (P4 P¥® 0°0 = [1Q ¢ T(T)e+Tthm’oM s
0%0 = (16 pue 00 = ()2 ¢ LT ++0u0 0 s
1-Zadopue Si
0°0 =08 ¢ 04'0°0 am
OMI ‘430 n
(16 Jog Jajuted 335 ¢ o' preuly m
119 Joj nutod 335 ¢ 1o 9ppe-ugy (g
(11 Jog Jjutod 335 ¢ oW IppruRy 1mn
abed wep 335 ¢ VR dn
J9440q JRINOITD dn Jag ¢ W 'zaspi0 mn
'] Jos° utbaq
xn
*
SAVRY O/ SHIINIOD 3ZIWILINI #
»
s dayg ¢ ¥0°0 jos° ~
Japdo w14 ¢ 2] Js* JapJo
WIS NN RORBd *

RUMEIPL] Ado>*

6861 ‘YOI Sunyd-utay) ‘udy)
“§0°0 = NS PUR 49 = JIPJO 43| T4 duaun
Y9 U=t ()1Q 8 (V)19 8 hE 4 (U)T9 = (TeU)19

CAOT-T30(U)1Q ¢ (T-U)1-10(U)T3] # MO+ (U)TX = ([+U)1N

1=t 1=t
(V)198(U)1q WG = (VTA NS = (U)K
(4] »
0=3
Y900t T R (U)T-TOR(U)T-1Q - 1-18 = (UK WS - (VP = (VTR
1-1
¥Rl (-1 s (DD - (1-0)1-19 = (U)1q
YT R (1) 1-19 & (U)IN - (U-TY = ()T
soy31a06 1y

06002ESHL 43 Butsn

w3106y ST WAIA 43314 AINPIRNS DT ATdepy : 0ET

P I R R B B R A I R B R R R B N

()3 J0 ubTS WY ¢ (X" <] 116
WA/ URE! ¥ N 840judg ¢ WA s
w ssey G Jwaday ¢ " U
M L1504 PUIPTATP ey ¢ o
*
L LN 3NEANDD JITAMN +
*
w 110530 a3 punoy ¢ S1' o
Nd
N npaen=4* n Ad
ﬂ.a g = 1 ¢ w3 n
#
m “ SINOIM 3U U »
*
Kl (WA - (U)g = (g3 ¢] RS
Z w (WA - =30} o
-= . Q’
= .
3=
oy 0RO ML AN+
72}
*
W M Mo 433113 Wy doys ¢ A HWS
NN
|] T Asouam 2yep se og duanbrjuo) ¢ =0
m Phy (1A Nwnysy ¢ 54003 0+N1 e]
sty N Jeeday ¢
Q9 =] 1-03040 pIT] LIE]
= = d|dues 353p|0 3y} 03 Juloeg ¢ N N
| butpunoy Butsp ¢ S1‘:M0 an
& Me sty gy s ¢ 0 M
o AJomse wesboud sv og 2unbijue) ¢ 40
-— N
*
w] A WNOIS ML IWISY ¢
r *
o £ (07 3035 WA KOS
> = [UIEE '
m = (X # 4+ (-0 & (3-1) =30 ¢ JEICF] []
&= (T-4)4 ¢ (3-1) = 00 * L4THS "W s
) (1-0)9 = 3V ¢ wA Ly
) a0 3
T IAI [eubts Jadut asendg ¢ * WS
L X teubts yndet 03 jutog ¢ ox‘ew bl
D o N
+*
e TWNOIS 0 W3N0d L UWIIST #
] '
E
m. WL ALY HL WORBI ¢
(=9 1. 50030me0d, aset ey
A 1 ss0)0uwennd, a0 B Y]
1'assnjameand, asne 0
1 Se0yoweued, Pasae N0
[lasinjimeund, P 3 'c]
1S90, PN A

14 S4030mand, PN a

.

SUELIRNG ¥0J SISSRON 3N3ISH ¢
.

W0 .$43303, e ",
144994304, P £
103000 9340q, PO0sR° 20X
»

SLNGII44300 OW W34408 JO SISSON NI+
*

0 nba* 1039

L nba* t14IHS

1] nba* 3040

*

SHIINRM NIDD ¢+

*

6861 ‘Auenaqay Bunyd-utay) ‘v

434340 03 PITT(PIIIVT 3q PNOYS MyA AJ0838 Bieg (9
*(Z 3 PInoys 1 AJowdw wyeq (G
°1 3Q pinoys N0 Asosew wyeg (y
-0 abed 3q p(noys (Jajutod abed AJowdw 23p) 4] JUIIND L (€
*1. 03 335 3q PLNOYS 31q SMI®S WIS (2
*10 03 (®hbd 3q PINOYS 314 SNIRIS Wd (T
VOTITPUOD (RI3TV]

*wot3edt dde
1310048 Jo4 WTIR0J UTRE YY) AJTpom 03 SRy JASN *dn 35 UG Jou
ST UOTIRINSTIU0D O/] UOTSJIA DTJudb) §T wesboud 3DJnos STYL sIN
*10°0 = M PUR ¥9 = J3PJ0 JBI{T) SN I s
£9°° 7' 10s1 (N)JRA/(H-U)XR(V)38R + ()R = (N)A
(U)X # (U)X & J 4 (TXRA & (4-°) = (N)JA
k- (up = (02
0=2
g9t V0= ORUXR0NDA WS = (VK
2]
103101y

0] pades’ wyItseby S PIZT|NEJeN put
ANPINGS (ESIsURY] BuTs 3313 MTIdmY & Sl

PR R N I R R N B A O S

SO, N

(1su')N 29035

-OX # (VB # N =4d

punoy g

d+ (UK = (TN
(U9NY WITR Ky proY

-0X s (W3 #N=d
(V)R # N = Jastbay |
sa|dwes viep ay) 0} jutoyd
SJUITITH400 33 0} Julog

Ja3unod dn 335

3 3035
V)3 # N - = N3

.

-+ LMY
0 4

-
‘e

pe' R S

E' e]

TeNX ‘€W
NN
143040 T

33

1XN

pua*
v

YA

HSINI4

Loy

LN

Appendix D2. Transversal Structure with Normalized LMS

Algorithm Using the TMS320C30

(€1x#A=08 " o¥'ey' A

(X e A-00 s X=[EX =4} o' N
RIxeA-07=08} 0407 NS

4 RN oy'eN‘ UM

(X 4A-07) # (1= (2= * 'y A
(XsA-07=08" 0407 ans
(Mxea=z=oyt [CR>'R/] ETY

([0JX # A -07) # (01X =(1X=04* X ETY]
101X #A-07=08"* ‘0T Mans

(01X #A=0y ou'ey‘nd M

N--Z #0°1 = [0)X = 7 moN } o 3d0d

o Hsd

' HoY

1-3-7 vy n oy o't 108

-’} 19N

o' HY

ae= (Upw o d0d

(u)Jdea/y uusgun & N

(V)R SLHOTIM 31900

()2 3n0 puag ¢ Q37] FTCRNH
()4 3no puag ¢ L' 418

SIS ()2 OW (VA 1410
(WA - (np = (0)a # o'n E: 13
(4)3 INOIS HOM3 UNMOO
FILLINRE R LTE D) o ‘N 200
[1X°0A = (04 ¢ - R MU | A
T L+ TN LT 0 EA
-0 Sl
()9 0sy ! ey 418
'R] E
T LT 10 114400 EIAM
00=24¢ ‘0’0 an

(WA 1IN0 W13 IUNAM0O

(J-U)JeA & 4 = 6§ ¢ 'y gre)
o' an

X - =W Wi E
x=t ' A

OIS INANT HL 40 A0 L IUWILS3

$33409 0} (U)X JHsy] ¢ Owve ‘%Y s
(U)X Indyg ¢ N (1R amn
(9)p nde ¢ 18" Jn
anduy
s390d 3nd3no Joy Jajured 335 ¢ L 9ppeinoy mn
s390d Jndet Joy sajuted a5 ¢ W ppeuty m
0=[10% TN+Te'0y 48
0=[1X% L(1)+O0Ws 0N dIs
1-3%pJ0 SidY
0°0=04¢ 04'0°0 an
(1A J04 Jajutod 3ag ¢ T dppr-uny (ig]
11 903 J9juted 33 ¢ o' pprrug]
abed viep 335 ¢ wreeg 4
393304 JRINOID dn 33 ¢ ' plo mmn
[} st utbaq
FEOY
*
SARN (W SHIINIO TZIWILINI ¢
*
wdje - 0] ¢ #00°0 s Teyde
966°0 s die
Jamed |eubts adu] ¢ 01 s Jamod
az1s dagg ¢ 10°0 Jose Lo
Jpae Wy ¢] 3se Japdo

WS NINN R0REd

*

Jdetaydee, Adode

6861 ‘0w Sed-utag) ‘vag)

“10°0 = 1 PUR 9 = 3P0 JI}[TH 38N N I
€977 T 101 (W)JRA/(1-4)XR(N) 340 + ()M = ()N
(WA - (P = ()2
(0 XB(V)X8(-1) + (1-0)T0ARd = (9)J0A

0=1
€900 T 0= (VAN WS = (WA

€

10431061y

- 0630289 343 Butsn
-.:ss.gt:_!....:....t::_Ez.::;:..x.g

R A I BN R R RN N N

st
s
s
Pasn:
Pasn:
s
Pasn
Pasa
Pasn
Pasn
Pasn-
STWYIWA B® SINLSNOD
LRIV LI UL s
TN E300
(1a0) 1R 30035 £ q(D)eslire 'y s
wursg Aejag ¢ |
£y
£IAd
418
£0m
(UIRA 7 (1-T-0)X 0 Mg ()9 = Y F 1420 101D 4400 £
EN'O=t0g ! Eal s
40un0> Jwedas azteyty] ¢ W'E-19p40 n
(UIRA 7 (U)X @ 0 a (13 = T4 T4 UTIe0MR TR
(V)R / ha ()= gyt oo UM
LERULENE w'n Er]
A ¢ AQ
pamoy[04 ST S14) 92U1S punoy : o'y o~
[GRIIGLIES : oy E]
: o'y FY]
+ oy'o’t /S
TG "100°0" = ()X e Az 08! oN'e Ty EI]
S5 W) UT J04Id s sy ¢) o~
UEX 8 A-07) & [E)X= ()X =0y 4'08 I
(€} o A-07 =04 o'0°Z E 1

peom
pprux
ppe-ine
sppr-ut

Appendix E1. Transversal Structure with Sign-Error LMS

Algorithm Using the TMS320C25

(140N du03g ¢

X #n=4*

d+ (VNN = (TN ¢

PUNOJ B (U'X)N YITR HIY proT ¢
OFOX #n=4¢

dldwes wyep 3 03 Jutog !
SJUITITH4200 3y} 03 Jutog ¢
Ja3unod dn jag ¢

f- = J3)s1bay | ¢

(WA - (ug =39 *
(DA - =00 ¢
n=Jdastbay | ¢

IR0 S ITy W3 d0yg ¢

AJoudw viep se og aunbrjuog ¢
(U)A yearysy ¢

ST) N Jeaday ¢

d|dues 1saplo ay3 03 Jutog ¢
Butpunoy butsp ¢

491630 g Wy ww) ¢

Ki08m wesbosd se og aunbryuo) ¢

pua* HSINLS
*

20 -+ LY L]
W0+ KNS

*
M- YA
an's ¥wI 1dvay
20+ AW
THNX ‘€ bl
oy byl
1-330%0 ‘ 1 bl Jie)
*
SIHOINM ML AUYIN
+
MWON n
N 108
[HIQY
9N
n n

*
YOH3 0 NOIS HL DM #
]
A HWS
WM
(£]
-4 400P S0+ oW
1-3080 U LIE]
NX ‘e bp
SIM0 ol
0 M
LE J
on £l
]
A WNOIS ML 3UIMNILSI ¢+

e

WS AN HL RORBI +

1 .S39)3eund, sne
1. s5930avund, oasne
1 S0l s
1'.5J939weund, osne
1 .SI939weaed, Pasnt

TR

1°.SJ939000ed, sn
1.539)ueand, }sn

SUILIMAN H04 S3SSTONY NS
W3O .534900, Jdasne
1'ad944nq, JOSA*

1-30M0° 4 99430q, 3dasn*

SING1I144300 W ¥3448 40 SISSRION NI

S5 -

0 nba* 1039%d
(%) nba* 30N

SBUIMNd N30

*
*
*

6861 ‘Adenaqay Bunyd-utay) ‘way)

*LZE- 39 PINOYS WO AJowde w3eg (9
*LZ€ 39 PInoys) Auowse w3eg (g
*1 39 pLoys N0 Asowde wyeg (y
0 36vd 3q pinoys (Jajutod abed AJowde vep) g1 JUAIIND Y (£
*T 03 395 39 PLNoYS 31q SN3MS WIS (7
10 03 (wnba 3q pynoys 31q SAIRIS W (1
$U0T3TPUOD |R13Tu]

*yorjedrdde
J1133ds Joj WTIN0J UTEIE Yy AjTpow 0} sey Jasn *dn 3as UIq Jou
SBY voTJRanBTJU0d (/] ‘UOTSJIA DTJIUID) ST weuboud 3I4nos sty| :d3eN
*10°0 = M PUR §9 = JIPJO JI}| T4 ISH A sy
0 D (W3 31 (F-u)xan - (N)A = (YA
0 =C (V)3 31 (F-U)xah 4 ()R = (Y)N
A AN EE RU]
< (WA - (u)p = (u)e
0=4
€901 2100 ORUPBONA WS = (U)K
€9
194312061y

390) padooT’ w31uebly SN J04I3-ubTS pUr
WNPNNG [esIIAsVRIY Butsy (14 Anydepy ; CZISL

L I I R R I

AT/, W

Appendix E2. Transversal Structure with Sign-Error LMS
Algorithm Using the TMS320C30

m o gegye
- pion*
ux pion*
2000080 Pdom*
0000080 paom”
pprutg paon:
S, s FY{15)
1,500, Pasn’ n
1'e89m, asne Jppr-um
14,540, esne Jppeux
1'a89m, s IppY-In0
1'aS9m, Pasne Jppeut
Japdo’ $34900, 3980]
JPI0° 04904, o0’ ux
*
SIWISNGO MNIB0 +
*
agse amdn f DD s
W £0M
(1-0)xena((V)35 + (V)TA = (T40)TA ¢ ()++1N‘DY A8
yoweq Aepag ¢ Jndet]
e c0v !
T-N=tueg! o' EdAd
(1-U)Xana((U)31S + (V)TA = (L40)IA ¢ (D) ++100 ‘DY s B
(U)X 808 (WS + (NI =2y} T E0N
(1-1-U)X & 0 8 [(V)3S = T} TN'QU'X(IH0ME EUM
EN‘O=tog! WS [1T]
J3uned uit._ N eLv] B &.ﬁl._oogo N
(WX 808 [0S = T8 U UDHOME CIAd
LEN{OD R [RT] £30X
[(v)aubls 339 ¢ e HeY
*
(V)R SIHOIM 3LW0N +
*
()3 300 puag (o' 18 as
(V)4 3n0 puag * LD ETY
*
SIS (V)2 O (VA INdIND #
*
(WA - (0p = (13 ¢ w'o s
*
(V)% WNOIS YOMI UNMOD #
*
NS4 asw| apn (v ¢ ' 00V
0xpm = (k¢ HIA'N'W 0N
*

T LT+ TI LT 0Me EAd
Z-4%pd0 SLd¥
WL+ LT H0WE EAAd
o= ¢ 11 ‘00 an

(WK ININO WIS IUNMOI

3389 03 (u)x Joesu] ¢ O 'Ry ETY)
(U)X 3ndug ¢ N1 m i
(U)p Induy ¢ 04 e an
13ndut
L]
gyt ‘N E
LR w9 n
53400 Indyno Jey Jajutod 35 ¢ L9 V30 (iq]
s340d Indut o) sajured a5 ¢ 9w ppruy m
o= ? U+ T 04 d1s
0= (X (I+0Me‘M s
-5 s
00 =0yt 04'0°0 an
(1% J04 Jajuted 395 ¢ T Jppruny 1
()% 93 Jjuted 3ag ¢ o Jpprug mn
abed vyep 3ag ¢ Jpprug an
403409 JR(AI1D dn 335 ¢ | sps0 mn
$ Jos utbaq
e

SAVSN OW SMIUNIOD 321WILINI

10°0 s

*
*
*

n s Jpdo

WIS NN RORB

RUILOTE N kdo>*

6881 ‘420w Bunyd-utay) ‘v

*10°0 = MU PUR §9 = JIPJO JBJ|T4 ISN M IINN
0°0 D (V)3 31 (A-U)xan - (NI = (A
0°0 3¢ (V)3 31 (X-U)XEn 4 (NN = (M)A
£9°°'Z'1"0=1 Yoy
(WA - (u)p = ()2

(]
€9°° T 1 0mn (-upxa(NA WS = (VA

3]

13061y

0E20ZESHL M3 Butsn wyytaobie
S J043-UBTG YIIA J3 [T |PSIIASHRIY IATIEWY - 0ESL

*
*
*
]
*
+
*
+
*
*
*
*
*
+
*
+
]
*

*
*

Appendix F1. Transversal Structure with Sign-Sign LMS

Algorithm Using the TMS320C25

NN epdn ¢

M- J0 (i J03Ivy Juabuaaved ayy 339 ¢
voTSUdIX? UBTS ST Y3t ubts ayy a9 ¢
ubts a3 ad03g ¢

(10X # (03803 40 ubts 343 399 ¢
X = 300 ¢

(VA - (g =2 ¢

Jdues By) 03 Juteg !
SJUITITHH0D gy 03 Jutog ¢
J93un0d dn jag ¢

IMGIR0 Sy 113 3 du03g ¢

Asousm v3ep s 0g aunbryuey ¢
(U)A deeysy ¢

sy N Jeaday ¢

ddurs 35310 gy o) Jutog !
Sutpunoy Burspy ¢

39351630 g) veag ¢

Asousm wiboud se og dunbrjuey ¢

pua* HSINI4
1]
-+ LY ™
e RS
Si's o
3817 R0X
E) m
E:) ws
e 30X
n'0'-+ w 1dvay

SIHOIN L AW+

| c] HO¥S
a HOY
N

*

RE 0 NOIS ML NI +

*
1) %> m
noy bl
1-43040 * TR A

SHUNIOd HL AN 1S ¢

A HWS

NN

20

-+400P 30+ (]
1-130%0 AN L1E]

%> W

S8] m

0 M

4N

ow N

)
A RNOIS L AWILST ¢
]

2N

WU NUMN HL WOREd *

1 S90joweind, 3098
1S40, Pasn
1 s40j0weand, 3esn°

£k

1'.54030weand, Pasn i c]
1'SJ9)0weund, PRLIT N HY
1.540)0ue0ed, Pasne i
*

SUILIMNI W04 SISSRION 3N3SH #
*

DR 534900, Pasn° L]
1'090330q, oasn* INX
T-U3040° W 394404, 3asn° 10X
*

SINGIJN4300 W 3448 0 SISSRIONY M1+
*

0 nbar 1030
(L2 Y 300
*

SEUIMANG NIBT +
*

6861 ‘Auenugay Bunyd-utay) ‘vay)

*LZE % PLnoys N Asowsm wyeg (G
*1 3q pLnoys M0 Asowsm vyeq (y
0 9bed 3q pnoys (Jajutod Ibed Asowam wyep) g7 JuaLINd Y (€
"1 0} 395 3q pinoys 31q snIwys NS (7
*10 03 (vnba 3q pinoys 31q sMIRYS g (1
1UOT3TPUOD |RTJTU]

*yerjedt|dde
J14133ds J0j TIN0J UTew 3y} A3Tpow 0} sey Jas *dn Jas udq Jou
S®Y UOTIRINGTIUOD /] ‘UOTSJIIA DTUub 3y} ST weuboud 2dunos STyp sdyjoN
*10°0 = M PUR 49 = JIPJIO J33[14 SN M duam
0 > (A-U)XR(U)I 3T 0 - (A = (})A
0 =C (FU)XR(U) ST N 4 (A = (A
9% 0T 10 = 1 v0g
S A - uyp = (u)d
]
€917 N0 (UM WS = ()X
€9
1ey3taeby

03 padoo' wyytsebiy G ubtg-ubts pue
ANPNIIS |esIIAsURY] Butsn a3 14 dATydepy SS1

L R I R R T]

/STSSL, W

Appendix F2. Transversal Structure with Sign-Sign LMS
Algorithm Using the TMS320C30

(140)R 3s¥(0035 ¢
(144) 1-4# 3)ndwo) *

" Jo ubts g3 aproag ¢
Yuryg Aepag ¢

wep jo ubts ayy 39

(140)Z-48 33epdn ¢
nuep sey 39 !

We (=Yt

n jo ubts ay) pidag ¢
©ep jo ubts a3 399 ¢
(1+0)1m 33epdn ¢

0w Jxu 339 ¢

€N ‘o=t0g!

J2Junod Jeaday aztjenywg ¢

I LREUILES>]

n# [(U)UBISH{(T-u)x]ubIS = pY ¢
L(1-u)x)ubts = oy ¢

(x =9y ¢

n s [(u)d)ubIg = Gy ¢

[(u)aubes = ¢y ¢

(¥)? 3n0 pudg *
(9)A 3n0 puag ¢
(WA - (up = (u)d ¢

‘o SIRA,
JapJo’ ,$43900,
Japa0’, 333404,

oy
paon:
paon*
paon*
paon*
paon*
st
Pasn*
Pasne
Pasne
Pesne
Psn:
Psne
Joen°

1T ++Te0e ‘EY 1S
D RURE R
'y £30X
Jndut [}
e oY

LT+ T ‘EY FTCI
4" Ot an
o'W T 00
[RCR £30X
'1e- Hsy

TN T Y 48
LTI +H0M an
WSS 1]
'€-I9ps0 m
N T EJ00V
[CRCR] £H0X
' 1e- HoY
2T +O0U E
[~ e £40X
' 1e- Hey

(V)R SIHOIN IUYIdN

(0w 14 as ¢
JEo] A4S
' S

STNOIS (V)3 O (V)4 1NdIN0 W ()9 INOIS HOMMD 3LNdHOD

pua*

i

"
Jppr-um
Jppeux
JPPEINO
Jppe-ut
un

ux

*

SINWISNDD NI ¢

(R TR S TR EAM

0=}

a'0'0 amn

(04 INING WIS NSO #

FILLISRE IR TR ' 00v
[$L38 LENTITA W e

TH U+ T T(1) 0N €A

T-43pJo SIdY

493309 03 (U)x Juasy] ¢ [o] dis
(u)x Jndyp ¢ LONAL m
(V)P andy ¢ 0 e am
13ndut
s390d Indine uoj Jajured a5 L L upprIneg m
s3J0d Indut Joj Jajutod a5 ¢ LR] m
LEX-"R] ' an
LEX 'R "w'n an
LEX]) an
0=05 T(H+Tww‘oy 48
0= [IX ¢ X100y 4ls
1-43pJ0 SLY
0°0 =04 * 04'0°0 an
[In Jo) sajuted g T sppruny n
()% oy Jajuted 335 ¢ oW Ipprug m
abed myep 335 ¢ g an
J3430q JRinOIID dn 33 ¢ ' Japio mn
s uibaq
pLOCN
*
SARRY (W SUIINIOD ITIWILINT #
*
10°0 s L]
” s 0
RUSCIPL LR
*
6841 ‘4w Bunyd-utag) ‘g L]
*
*10°0 = ME PUR 9 = JIPJO JIY|TH ISN I MM *
*
0°0 D (WMMOHUIX JT ‘D - A = (A *
0°0 =C (4)30OHUX ST ‘A 4 (A= ()N N
€911 2" 1 0 Joy *
*
(WA - (u)p = (U *
*
0=) *
€94 T 10=n (FUXA(NN WIS = (VA *
9 ’
*
wrebly 4
*
0EJ0ZESHL 3 Butsn wyztaobie *
S UBTS-UBTS YIIA JAI|TH |RSIIASURSY IATIdRPY - 0ESSL 4
P *

Appendix G1. Transversal Structure with Leaky LMS Algorithm

Using the TMS320C25

(14U)N 29035 ¢
EERCRILERER

OO s (NP eN=d*¢

d+ (VNN = (TN ¢

punos 3 (ux)y Y3IA HOQY pron ¢
X s (R *N=d*
(UM & N = J9ystbay | ¢
a|dwes viep ay3 0} jutog !
SJUITITHH90 343 03 Jutog ¢
Jaunod dn jag ¢

(VRE + 0= A3 ¢
3LNSas) punoy ¢

R #N=d:*
(w3 =y ¢

(A - () = ()3 ¢

(VA - =0 ¢

ndno 333 (13 Wy du0ys ¢

Atousm viep s® og aunbrjuo) ¢
(U)A Nvenysy ¢

SIeT) N Jeaday ¢

a1dwes 3s9pjo ay3 0} Jutog
butpunoy butsn ¢

395163y g a3 ywe) ¢

Ayomse weboud se og aunbrjuo) ¢

pud* HSINI4
*

N+ Ly)
0"+ HVS

AV ans
*
' VA
W'e ywl Ldvay
N, Adi
E-c) 1n
THNXEW b1l
N b1l
1-330M0 ‘ 1 R
*
8 HWS
SI':M v
d
n Add
»3 n
*
SIHOIM Ml UWN #
*
L c] HWS
[} Haay
ON
*
YO ML UNMD *
*
A HWS
N
0
~+400P 10+ o
1-4300 AU L1€]
Nx e bagl
S0 N
0 M
40
ew Ll
*
A TNOIS ML WIS ¢
*
wa
WS ALY HL W0ABd +
1 S9jomeand, Pasn’ [ETY]
1 SI0j0ueand, 3980 n

1 SJ930uwrund, Pasn
1 SI0joweand, asne
1 S400ueund, asne
1! S40)0weand, Pasn

SYILIRRNG ¥ SISSTIONY 3NISHY
W0 .54390), asn’
199440, asne

1300 . 994400, Pasn*

SLGIDNAI300 OW Y3448 40 SISSTION 130

eenaxB¥

0 b 1030%d
L b NI
4 nba- Y00

SULIRRG N1

*
2
*

6861 ‘AJenuqay Sunyd-utay) ‘vay)

*LZE 3 pInoys () Asowse wieg (S
"1 3q pInoys) Asossw wieq (y
*0 3bed 3q pnoys (Jajutod abed Asowde v3ep) 41 JUIIIND W (€
1 03 335 3q pINOYS 31Q SMIMS WIS (T
*10 03 (®nb3 3q pinoys 31q sMIwys g (1
1U0TITPUOD RTjTN]

‘verjedrt|dde
J13103ds 405 WTIN0J UTew 3y} Ajtpom 03 sey Jasn dn Jas uIq Jou
SR UOTIRINBTIU0D O/ ‘UOTSJIA JTJIIE 24} ST weuboud 334n0s STY) :djoN
*10°0 = M PUR 49 = JIPJIO JI}|T4 SN MM Iy
£9°° 7' 170X (-U)XR(U)380 4 (N)MaA = (M)A
(WA - (u)p = (u)?
0=2
€9 2 0= (UM WS = (WA
£9
10g3taeby

o) padeo) ‘wi3tuobly Sr-Ares pue
NPAIS [PSIASHRIL Butsy Ja3(14 ATydepy : G711

LR R R R R R R R B I B R R R R R R

AU, e

Appendix G2. Transversal Structure with Leaky LMS Algorithm

Using the TMS320C30

" se| aepdn ¢

(140)Z-48 34035 ¢

(TH-U)XaRB(U)D + (V)TRRJ = OY *
/TN XN (U)D 4 (V)]0 = Y ¢
(Z4N-0)Xa08 (V) & (V) 1R8J = OF *
yuryq Aejag ¢

(T4U)E-WR 34035 ¢
S/(TH-U)XENR(U)0 = Ty ¢

9/ (ZNUERR(U)D & (UIZNR = Y 4
(EHN-U)XBNa(U)3 + (V)E-NPY = OY *
(144) 1M 22038 ¢

9/(-1-u)xana(u)e = 1y ¢

I (I-1-U)Xa0E(U)D ¢+ (V)T4IM = 2y ¢
(1-0)Xana(U)d + (U)TARJ = 0N *
N o=tog!

Jajuned ai«g aewg H
9/(U)XERR(U)D 4 (U)OA = Y
I/1-0na(u)e = Ty ¢

I/ (OxanR(U)d = Ty

MR =yt

(u)® 3no puss ¢
()4 3n0 puag ¢
(WA - (up = (U)o !

pua

Il pion’

breay Jvoyye
Areoione Jeogye
™) pion’

ux piea’
2000000 Puea’
Y000K080 puea®
wULL P

RICIELA FU S (2]
1508, 30000 ppry
14 890, 80 3
14,590, 0 n
1890, 3o Jpprun
1500, 3980 Jpprux
19,590, 30a8R° Jpprine
1 500, Joasn Jppre-ut
JapJo’ 644900, sn” (]
JapJ0* L 4d44nq, 30" ux

*
SIWISNDD WIS +
+
A1)+ Tie ‘04 FT
UL+ T 08 ds ¢
[k LR TY)
DI EON !
oN''aM EMd
Jndvt o
U+ Te 08 as
oM U
24 (NI £ !
DD A
T 41008 0 FTH
UM EIA £yl
DT (DI E0Y U
o''DNe EIAd
Sm LT
'p-Jops0 m
24T T e ¢
W) +0Me EdAd
W N0 EAM
wm Ere)

(V)M SIHOIN AUvad ¢+

(" 14 s !
&] 418
w'a E 13

SMOIS (V)2 QW (V)X INALAD W (V)3 WNOIS HORD ANM0D +

3INS3S Jse| WAOUT ¢
(XA = (0K ¢

o' F]
W'Y e i

T U 11 +00e EAd
T-4%pd0 Siqy

T 'L ++ 10 LT 400 EdADN
00=2 ¢ '0"0 an

(WA 1Nd1N0 WAL 3LNM00

49340Q 03 (U)X JJAsY] ¢ (] 41
(u)x Jndug ¢ (19 an o
(V)p Indug ¢ 19'9e an
13ndut
$3J0d 3ndane Jey Jajuted a5 ¢ L' IppeTInog (s}
$3J0d Jndut Joj Jajutod 335 ¢ QR IppruTy mn
=10} UDTRe'0Y 48 ¢
0=} TUT) 00 ‘04 41
1-49pa0 Sl
0°0=04 ¢ 04°0°0 m
4 o) sajured 3ag ¢ 0 PP m
(I8 Joj Jajuted 335 ¢ T Jppeuny 1n
(1% Joy Jajured 335 ¢ ow ' pprug mn
¥ed v g ¢ pprg an
J9440Q JRIAOITD dn 336 ¢ ' sapio N
[s utbaq
xn
»
SAVRN W SUIINIOD JZIWILINI
*
$66°0 WS hreay
Ayeay s nu t $0010°0 st et
n s Japao

WS ALY R0RBd .

2JUT 93 ydepe, Ado>*

6861 ‘Y Bunyd-utay) ‘vayy
*10°0 = M8 pU® CL4°0 = .3 = JIPJIO JAJ[T4 ISN M JINN
€9°°0 2 1I0=N (X-V)Xa (V)30 4 (N)Mad = ()R
(WA - (up = (1)
]
€902 100 (HUXECNA NS = (WA
€9

104319061y

PRI R R R R R

0£202E5ML 43 Butsn
WTI0B(® S ARIT YITA 23 (T5 [RSIIASURSY IATIERPY - OEL

Appendix H1. Assembly Subroutine of Transversal Structure with
LMS Algorithm Using the TMS320C25

£ J9)s16aJ d0ysay ¢
20 49351630 asoysay ¢
W Ja3stbas asoysay

(Tsun)n 33035 ¢

OO s (R #N=4d ¢

d+ (UM = (Tl ¢

Pun0Y B (u'X)y Y3t HIY PrOT ¢
O-OX s (ORFan=d"*
(HRE # 0 = Js1bay | ¢
Jdurs 1w) 03 Jureg ¢
SIUITDITH00 3y 0] Jutogd 1
Jajuned dn g ¢

()03 # = 390 *
(NS4 W3 punoy ¢

WmeRsNn=4'*
(wg = ¢

(VA = (U)G = (T *

(WA - =200 ¢

wdane 31y Wy veyg ¢

Asouam viep sv og aunbrjue) ¢
(u)A sy ¢

S0y N Jeaday ¢

I|dwes 3s3p(0 3y 03 Julog ¢
Butpunos Butsn ¢

39351600 4 Wy W) ¢
Aosdw wesboud se og aunbryuoy ¢
£ 49351637 aavg ¢

28 49351634 aavg ¢

1 J2351630 davg ¢

J93S1631 JuduNd 335 ¢

puar
*
134 HSINIS
#
£3WS ‘e w
s o w1
13AYS TR wn
1]
' -+ Ly ™
0 +e HVS
*
- YA
on's ' 4 1y
N Add
E) 1
TR bl
»'oy bl
1-430%0 ‘1 RA
*
20 HWS
S o
Nd
n AdW
w3 1n
*
SIHOIIM L UVGN #
*
] HOvS
(i HORY
9N
£]
R L IO+
*
A HWS
Wk
120
-+400P 30+ oW
1-43080 WM 1]
NI'eN mw
(5] N
0 pT¥ Y
40
£IWS ‘e ws
Z3ws' o ws
TS 1 ws
> AN L4l
pEOY

A WNOIS HL AUWILST ¢
»
WIS NNV HL RORBd +
1’ SJ9jowrind, 3aasn 3
14549 wvand, N’ Hx""3
1°.599)0ueund, Pasn TS
1¢.50930urand, 3osn° 135
*
WLIRAR H0J SSRION 3ABSH +
*

N NXREA N0 N 300 I w06
*
STOBAS W3 OW NI+
*

6861 ‘Auenyqay Bunyy-utay) ‘vayy

IUTINOJGNS STYY UT PISN UIIQ ARy i T (2
‘O A L1IA J)ST6a0 AURT{IXN® JUdSund wIned YL (T *

“
a

0 3bed 3q pinoys (Jajutod abed AJowaw ®Iep) 41 JUILIND) (9
*1 03 395 3q P(NOYS }1q SNIRYS WAD (S
*1 2t6o| 03 335 3q PINOYS 31 SNIMS WXS (¥
*10 03 [®nba 3q P(NOYS 31q SPITIS W (€
*(3405 GIB) MM 03 (PNDI 3q pinoys n AJosse wyeg (7
*] 03 [enba 3q pinoys u) Asowae vyeq ([
ISUOTITPUOD [RIFTU]

*31 BUT|) 24043Q }93W 03 SUOTITPUOD |RIJTUT 28OS duv Audy|

*By31I061Y SW 243 BuTsn 33|14 IATydepy sesejuad ATIN0IQNS STYL 1dJoN

N = J3pJ0 J3J|T4 ISN I diayn
TN U200 O-U)X(U)30 4 (DA = ()R
~Wk - (u)p = (u)?
0=1
TN 20000 ORUXE DA WS = (1)K
N
1431061y

3907 padoo ‘wy3ta0by il pur
ANPINIIS | RSIIASURYL BUTSH JTINOIQRS S |14 dATydepy : SN

L R I T T

2 L R

Appendix H2. Linker Command File for Assembly Main Program
Calling a TMS320C25 Adaptive LMS Transversal Filter Subroutine

SESITIIISSIIEEES 3 s ss s $ISIESE
>]
3 2
& a &3

2 mesory locations

(CNFD) and

Block B0 15
6h--Fh and

ALINK.CHD - COMWND FILE FOR LINKING A TMS320C25 ASSEMELY PROGRAN
Copyraght 1988, 198Y Texas lnstruments Incorporated
P/

/% SECTIONS ALLOCATION

7
’

Appendix H3. TMS320C30 Adaptive Filter Initialization Program

1 - junog ¢

PJOR 35315 Jxau 3ag ¢
SSIIPPR S X 339 ¢
1R0day ‘auom ST gy 4] ¢
TY OJUT Jun0D Ixau oy ¢

'

04" ++0bke
W' +0ue
er-op
UK]

IR0y

e
uibaq
1ans

m

mn

1

s

L
13u0p

Aded yoyg ¢ ¢] Si
3trop
*
I - juno ¢ ' 10
PJom 35414 339 04 -0 n
ssauppe 3sap 330 ¢ T HOWe N
o 03 Sutyjou ‘9 41 ¢ duop a8
Jun0d 3541y 339 ¢ [E R {g]
duop £]
tur durs C|apem a1 ¢ o 1- 180
SIQRY JTUT JO SSAUPPR 330 | (Qu'IpPYyIuUTY mn
SsdJppe paJoys jo abed Jag ¢ Jppeytut an

*
NOLLVZIWILINIOLW OQ #
*

003 dJ 03Ut puy ¢ di'es mn
dS 0JUT ssauppe ayy proT ¢ g5 upprdeysy m
SS3Jppe PaJoys jo abed jag ¢ IPPYPYYS an

*
Y3UNIOD XWIS WILINI 3L dn 135 #

+*
tur-depe

NOILON INIOJ AMING NOTLYZIWILINI M3LT14 SAILANY #

SALqY) 3101 o ssauppy WD puont spprjun
AIYS Jo ssauppy ¢ e pioas sppeyIeys
*
e
JUSHOWIS s, s nYs
*

*STIYL NOILYZI'WILINI O XOU1S 3HL 0L INIOd 01 3x93° #
NI SOMOM 1SNIJ ML ITWILINI XIS MRLSAS L ¥0J 304dS AUYOTW +
*
Jr-depe pioa® 1383
£590300, s
*
Jjuted g ¢ (>] Jose dd
DY wshs jo azrg ¢ wr WS JISXWIS

‘weaboud Ajquasse s, 3950 343 Jum)s 0 duedayg (€
I VIVD 03 WOY ®oJj wEp L 3suodc,
VOLIOIS S3T60D YITWA ‘WOTIRZT|RIJTUI-OINE SWIN3udg (T
IS G35AS W) SAZTRTIIUT puv SB[y (1
1SU0TIO® BuIRO| (05 343 SBI04ud I(Npow STy

sweabodd 49|13
SATI€RPY (EIOZESHL 403 FUTINGJ J00q [RIITUL Iy} ST STYY

- e e

T e

Appendix H4. Assembly Subroutine of Transversal Structure with
LMS Algorithm Using the TMS320C30

n Jse| aepdn ¢
(T-U)X & 0 g (U)D + (U)IM = ([eu)1m ¢

Z-N=taoy!

(T-U)X 3 0 & (U)3 4 (U)IA = (J4U)IA ¢
(T-U)X 3D & ()3 4 (U)IM = 2N ¢
(-l-x e ns (=Y
EN‘O=100"

Jajuned jeaday azterytup ¢
Wxens (=Yt
ng(ud=¢y*

{U)d d0yg ¢
(WA - (uyp = (u)d ¢
)k oys ¢

pud

SI

P 0d

1] 3d0d

o 3d0d

& &0d

& 3d0d

PR] A8

LRI T RE

PRIt] ETY
R Y | U

THeuioMe AN

LD+ T 418

' T EJ0WY

WS U1 H0ME UM

sn U

N1 18ns

' 4pi n

TH'EH X1 400 EUM

oM Nl

£3% 13IHS ONY (1A SIHOIIM IIWGdN

L 0] 418
4'P 28NS
Q'ey 418

*
+
*

(U)3 O (V)4 LS N (V)3 NDIS YOI AN

FILL YR U LTEL) 'y E]
18 = (VA ¢ 'eN'y ey i
TH LD ++ 108 L(1) 4400 EdAd

J9pug Si
THXCT)++THR “1UT)40 €A

00=¢€4 £4°0°0 an
(WA INdIN0 BTSN

o M

] HoNd

s

1t} S
Lt HNd

$ st 0gSH1

»

LeTRIERENIT ol e]

Japao‘a‘h'piniocsit (eqo(f

6861 “aw Bunyy-utay) ‘uay)

*JUTIN0J JI[(®D UT PIUTHIP 3 PLNOYS 3 pur ‘A ‘p saTJowdw wieq (y
*JPIO JIJ|T4 ST N JJIA ‘TN UTRIUOD PINOYS JaPJo AJowdw Bieq (€

azts days uteju0d plnoys n KJowdw vyeg (7
*[O)N pue [0]X-0} JuTod pInoys T PU® O (1

1UOT3TPUOD [RIJTU]
“10T0 = MU PUR N = JIPJO JIJ(14 ISN I IUYN
TN U0 (-U)XE(U)30 4 (A = (N
(WA - (u)p = (1)2
0=
T-NS* 12U 0= (U)X ONA WS = (1)K
-N
seyytobly

*auTynoJqns Ajquasse wyytdobie oy
YA U3 (14 [RSJIASURY} IATIARPR OEOZESHL - 0E18

P I R A R R BN B B R

Appendix HS. Linker Command/file for Assembly Main Program
Calling the TMS320C30 Adaptive LMS
Transversal Filter Subroutine

s

- COMWND FILE FOR LINKING TMS320030 ADAPTIVE FILTER

PROGRAS

Descriptio
te:

..............

/% SPECIFY THE SCCTIONS ALLOCATION INTO MEMCRY ¢/

/% SPECIFY THE SYSTEW MEMORY MAP ¢/

SECTIONS

(

Appendix I1. C Subroutine of Transversal Structure with LMS

Algorithm Using the TMS320C25

a HOOY
(DA - =W ¢ oM
*
YOG ML ANMO ¢
*
W0 423114 33 d03s ¢ A NS
WX
Ksowsm wiep sv og ambijue) ¢ 0
(VA Ny ¢ -+'d4300 oo
sou1y N Jnday ¢ B0 Jr | ¥l
aldwes 3sap(0 Wy 0} jutog } 15TV e w
Sutpunoy Butsn ¢ e1't 2l
FOTIUINIFR TP TR 0 dd
Kioese weuboud s og aanb1juo) ¢ 420
*
A WNOIS ML 3UWILST @
*
adwes Jsamay JJasu] ¢ * TS
FICTR>] i
> ol
@ 43 2038 pue 330 ¢ [T
-+ ol
W 33 29038 pur 339 ¢ n ™
-+ k.l
dv) jsv| jo ssauppe 0S¢ 1SRN R)
1SHd nay
B ER":] W30 TS
1 s
N=OW ¢ -+ k.2l
sajeweded 6ut33a6 Joy sajured 335 ¢ - W
0 = ¥bed vyep 335 ¢ 0 M
OW RO[JJ0 335 ¢ WAGS
pow UoTSUIIXP ubLs 335 ¢ WXSS
pow 33Tys JaS16Y 4 338 ¢ 1 WS
*
SHIUBMANG YA 3A1LdU0Y L 19 #
*
1isg 118
0180 188
Y30 v WS
£IWS ‘e WS
s on ws
1S 1 ws s
e’
*
SHIUSION ML 40 SIMA L WS+
+

WIS AL HL W03+

$O0E0 nba® 11SHd
40020 nba* 1044300
400330 nba* :d44300

SSIGIDI44300 B H344nd 0 SISSTONY N1
¢ S, 3o

¢ SJ3)owrsnd, o0
RYE ¥ N Pasne
¢ SI3j0mvind, s
‘ SId)IwRIN, Pasn
¢ SJdjaweind, s
¢ SdjEeand, sn
¢ SUdjImrInd, 3osn

¢ SJdjowraed, Jsn
‘ SJd)eeand, 39n°
¢ SJRjemeund, PRI
¢ SIajaweand, Joasn

SUILIRAM ¥03 SISSION INISH

ot a0”

1SV

¢ Sudjweand, 0’ iE e
¢

A

N

(]

X

43080

93IWS

¢ Sdd)eerand, 3on° EINS
T3NS

1385

6861 ‘AJendqay Bunyd-utay) ‘uw)
PIAIISII TR [-NHUOOED YOOED B 1-M+U00Z0 40020 Asowsm ving 3N

|eubts Jo4dd jo Jppe -

|eubts jndano jo Jppe - A3

{eubts yndut - X

|eubts padtsap - P

403084 ubIIAVOD - ™e

4|14 30 JpIO - U
(ag'Ay'x‘p'na‘uyse) abesn

N = J9pJ0 JI}[T4 SN M Judyn
TN U0 ORUXB(U)3N + (A = (NN
LN TER UL
0=1
TN XA WS = (VA
N
swyta0biy

3p0) padoo ‘wyytuobly S pue
2an3onJ3S [esudAsury] Butsn autynouqns J 43T4 Andepy : W

PRI R R B B A i

K- p IR

13 HSINLY

3 J0ys ¢ w'0's s

ol n

(NI UT) B3 40 ssauppe ayy 330 © NN w
A d0ys ¢ w'o's 5

A »n

(NIWM UT) A 40 Ssauppe ay) 339 ¢ -0 o
w R

N0 Ly]
¢ R HWS.
.
on'-e VA
on'e ¥w L
CFOX s (B e n=4 ! p* Ad
(MG 8 0 = anst6ag) »a n
- -
10w 1 M) 03 Juteg ! 1MV Cw o
N Q443002 w
00 v wn
.
80 o0 = a3 ¢ »3 oS
1UNS3s wy punoy * st N
]
a8 en=4: n A
(Hag = !] n

WA - (g = (aa ¢ ws L3

Appendix I2. C Subroutine of Transversal Structure with LMS

Algorithm Using the TMS320C30

n 3se| aepdn ¢
WX eha (rs (M=

(1-0)X 8 N & (U)9 4 (U)IM = (ToU)TM ¢
(TaN-141))X 399 &

(1-U)x ¢ N & (V)d 4 (=23 4
(1= a0 s (V)= Ty}

1N ‘T=togt

Jajunod jeaday aztjerytup ¢

(X 8 N g ()3 = Ty ¢
Na(uda gyt

()@ 3no puds ¢
ssauppe (V)9 339 ¢
(U)K 3no pusg }
(WA - (up = (1ot
ssauppe (U)K 399 ¢

c2zonz=35%e

§855EBurnBy Ebobebesesel

e
418 (1) T
(10
T2y

'O

24 T8 (D T
0 (10—
an

'

LY (10—
18 (2)ddee

(1% LIIHS QW

2]

o' (E)dd-+
'

' (Ndde'
o' (2)die

(1% SIHOIM 3UvadD

41s

m

48 0
€480

mn

(V)3 QW (VA JOLS (WY () TNDIS HOWI UNM0D

JInsay 3swy apnpovp ¢
[X°1IM = (U)K ¢

w'w]
W'y e
T DT (100 AN

2] SL
TH (DI (14400 EIAMN
00=2} w00 an

Jajunod doo| jag ¢
[I® Joj Jajuted 339 ¢
[)x 403 Jdjuted 339 ¢

49pI0 9|1 390 ¢

(1A INdING M3LT1S 3LNAMOD

"'z 1808

' (S)dd—+ (g}
o (9)d-+ (a}
(2 m

*

1070 = MW PUR N = JIPJO JAI|TJ ISN M N

YITA J2}(14 |RSJIASURY) FAT3ARPR UTINOJQNS I OEDOZESHL - 0ELD

8
i

o SN
L] Hsnd
(] HSnd
o SN
-] Hshd
1t} Msnd
1] HSd
o HSd
w HSNd
oW HSd
di'ds mn
dd HShd
$ s Lt
9

WU LAY ROREd *

on s]
suy” |wqorbe

6861 ‘Wuw bunyy-utay) ‘ueg)

[eubts J04ud jo Jppe - R
|eubts 3ndino jo Jppe - A
Ja43nq [eubts Jndut - x3
SJUITITHI0D 4} (1) -~ M
{eubts pastsap - p
303085 UIBIAU0 - ne
914 40 JapJ0 - U
(1'Ayxy‘mppoetu)seyy rabespy

TNTUUTUN0S (OFU)XR(U)0 4 (DA = ()8
(WA - (P = ()
0=1
T-NS* U210 ORUXEONA WS = (U)K
N
1wyytaobiy

‘wytobie i

P R R RN B R R A B B B B

