
����������
����������� �������
���� ��� ������
������� ������ 	�������� ������

Application
 Report

1994 Digital Signal Processing Products

Printed in U.S.A., August 1994 SPRA035

����	�
�
�	�� ��

����	�
�
�	�� ��

�	�
�

ye
ar

Report
Application

Book Type

Two Lines
Book Type

�� �	���
�	�
�

Book Type

Volume #

Volume #

�	�
�

����	�
�

�� �	���
�	�
�

����	�
�

�	�
�

�� �	���
�	�	�	�	��

year

Minimizing Quantization
Effects Using the

TMS320 Digital Signal Processor Family

Evert Cooper, Ph.D.
Member of the Technical Staff, Texas Instruments

ii

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products
or to discontinue any semiconductor product or service without notice, and advises its
customers to obtain the latest version of relevant information to verify, before placing
orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Please be aware that TI products are not intended for use in life-support appliances,
devices, or systems. Use of TI product in such applications requires the written approval
of the appropriate TI officer. Certain applications using semiconductor devices may
involve potential risks of personal injury, property damage, or loss of life. In order to
minimize these risks, adequate design and operating safeguards should be provided by
the customer to minimize inherent or procedural hazards. Inclusion of TI products in such
applications is understood to be fully at the risk of the customer using TI devices or
systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI
warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates,
uses, and can radiate radio frequency energy and has not been tested for compliance
with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which
are designed to provide reasonable protection against radio frequency interference.
Operation of this equipment in other environments may cause interference with radio
communications, in which case the user at his own expense will be required to take
whatever measures may be required to correct this interference.

Copyright 1994, Texas Instruments Incorporated

iii

Contents
Title Page

.

Appendices
Title Page

.

iv

List of Illustrations
Figure Title Page

.

(Optional if there are < 5 figures; require if there are 5 or more.)

List of Tables
Table Title Page

.

(Optional if there are < 5 tables; require if there are 5 or more.)

List of Examples
Figure Title Page

.

(Optional if there are < 5 examples; require if there are 5 or more.)

Program Listings
Figure Title Page

.

(Optional if there are < 5 listings; require if there are 5 or more.)

1

1 Introduction

When a digital filter or discrete system is realized with a digital arithmetic element, as in the case with a
Digital Signal Processor (DSP), additional considerations beyond time or frequency response
characteristics are required to describe the performance of the filter or system. Because of its discrete
nature, the DSP represents variables and performs arithmetic functions with a finite word length which
produces three effects: 1) the selection of filter transfer functions is quantized in which filter poles and
zeros exist only at specific locations in the z plane, 2) the input is quantized, and 3) noise is introduced from
the DSP operations of multiplication and division. This paper gives the machinery to calculate finite word
length effects and then shows how to minimize their significance through improved topology, differing
word length, and improved DSP numerical properties.

The paper is organized as follows. Section II analyzes the effects of quantization of the multiplicand upon
the discrete system transfer function using sensitivity and root locus methods. Section III considers the
effects of input quantization and of noise introduced by DSP arithmetic operations. Section IV shows how
to use features of the Texas Instruments TMS320 DSP family to minimize their effects. Section V examines
the capabilities of two microcontrollers and compares their numerical properties to that of the TMS320
family.

The problem is considered in a state space format because any filter or discrete system may be formulated
within it’s general framework. Scalars are denoted by upper or lower case letters in italic type. Vectors are
denoted by lower case letters in boldface type, as the vector x made up of components xi . Matrices are
denoted by upper case letters in boldface type, as the matrix A made up of elements aij , (ith row, jth column).

Consider, therefore, the linear, time-invariant, Single Input, Single Output (SISO) system in discrete time

(1)
y(k)� cx(k)� du(k),

x(k� 1)� Ax(k)� bu(k)

where A, b, c, d are n × n, n × 1, 1 × n, and 1 × 1 respectively with strictly real elements aij , bi , ci . It is assumed
that A is asymptotically stable with eigenvalues inside or on the unit disk, |z| = 1. Elements aij , bi , ci , d are
the Arithmetic Logic Unit (ALU) multiplicands within a DSP that multiply either a state or input variable,
and are quantized because they are represented within the DSP by digital words of finite length.

2 Quantization of Discrete System Transfer Functions

The transfer function of (1) is

(2)
G(z)�

y(z)
u(z)

� c(zI–A)–1 b� d,

and has the form

2

(3)G(z)�
�mzm� �m–1zm–1���� �1z� �0

�nzn� �n–1zn–1� ��� �1z� �o
,

where m = n (proper transfer function) if d ≠ 0 and with m < n (strictly proper transfer function) if d = 0.
The denominator is identically the characteristic polynomial given by

(4)det [zI–A] � 0,

where I is the n × n identity matrix. The numerator roots or zeros are given by,

(5)N(z)� �mzm
� �m–1z

m–1
� ���� �1z� �0� 0.

and the denominator roots or poles are given by the characteristic equation,

(6)D(z)� �nzn
� �n–1z

n–1
���� �1z� �0� 0

Since quantized elements aij , bi , ci , d of {A, b, c, d} prescribe the transfer function polynomial coefficients,
the transfer function is quantized also, with poles and zeros existing only at discrete locations in the z-plane.
Quantization of the transfer function changes numerator and denominator polynomial coefficients to
slightly different values than those desired, resulting in a new, usually slightly different transfer function.

Now it remains to find the effects of finite word length upon the two polynomials. For discrete systems
embodying very high Q filters these effects on polynomial coefficients may be important, and may even
result in instability. There are several methods to study the effects of quantized coefficients and two are
presented here.

The first method [1, 2, 3] expands the polynomial of interest, either the numerator or denominator, in a
Taylor series for a coefficient sensitivity analysis. The second method uses root locus procedures to plot
polynomial roots as a function of coefficient value. The first determines root movement in a precise way,
but the second has a more intuitive appeal since roots are displayed graphically and since stability
constraints are available for each polynomial coefficient once the root locus is calibrated. The sensitivity
analysis is given first.

2.1 Sensitivity Analysis
This section gives the effect of multiplier coefficient quantization upon the transfer function with a
sensitivity analysis. The discussion uses the denominator polynomial of (3) because it is significant to
system stability, but the methods are equally applicable to the numerator polynomial.

If a particular coefficient, such as ζk, is subject to perturbation, then the polynomial (6) is a function of that
coefficient as well.

3

(7)D(z, �k) � �nzn� �n–1z
n–1����� �kz

k����� �1z� �0 � 0.

The denominator polynomial roots satisfy (7) with roots λ1, λ2,, λn, but if ζk is perturbed by an amount
δζk from an initial value �k0

(8)�k � �k0
� ��k ,

there is a change in all of the roots λj , j = 1, . . . n of (7). To find the change δλj due to ��k in the jth root,
from an initial root value �j0

, the polynomial is expanded in a Taylor series about nominal values �j0
and

�k0
,

(9)D(z, �k) � D��k0
, �k0
� � �D(z,�k)

�z ��k�
�D(z, �k)
��k

��k

+ higher order terms

.z� �k

�k��k0

z� �k

�k��k0

At root locations λj and �j0
 the two polynomials D(λj , �k0

) and D(�j0
, �k0

)are respectively zero. Since higher
order terms of (9) are negligibly small because perturbation δλj << 1, equation (9) becomes

(10)0 � 0�
�D(z, �k)

�z ��k�
�D(z, �k)
��k

��k .
z� �j0

�k��k0

z� �k

�k��k0

Equation (10) is solved to give the change in root location δλj due to coefficient change ��k

(11)

�D�z,�k
�

��k

�D�z,�k
�

�z z� �j0

�k��k0

��j � – .��k

Since matrix elements �ij, bi, ci , d are given within the DSP by a finite word length, each is subject to
perturbation. To use result (11) the polynomial coefficient ζk must be related to these perturbed elements.
For some dynamic systems this is an easy task, i.e., those of small order, or those expressed in a particularly
simple topology. The latter category includes special canonical forms where matrix elements are identical
to those of numerator and denominator polynomial coefficients.

For other systems the task is more arduous so it is useful to derive general comments that do not require
the mapping from element space to coefficient space. To derive these comments the numerator and
denominator of (11) are evaluated.

4

From (7) the numerator of (11) for the kth coefficient and jth root is

(12)
�D(z, �k)
��k

� zk � �
k
j0
.

z� �j0

�k��k0

z� �j0

�k��k0

If the characteristic equation (7) is expressed equivalently in factored form, assuming non-repeated roots,

(13)D(z, �k) � (z–�1) . . .(z–�k–1) (z–�k) (z–�k�1) . . .(z–�n),

then the denominator of (11) is

�D(z, �k)
�z � (z–�1) . . . (z–�k–1) (z–�k�1) . . . (z–�n)

(14)

�

n

i�1, i�k

��j0
– �i	 .

z� �j0

�k��k0

Combining these two results for the numerator and denominator of (12) gives,

(15)��j �
�

k
j0

n

i�1, i�k

��j0
–�1	

��k .

A first comment comes from examining the numerator of (15), noting that since ��j0
�< 1 then

(16)��j0
�n � ��j0

�n–1

� ��� � ��j0
�2 � ��j0

� ,

which means that the most sensitive coefficient will always be ζ0, with progressively less sensitivity for
coefficient ζn.

A second comment comes from examining the denominator of (15), which shows that sensitivity increases
as roots become more clustered, and furthermore that sensitivity increases dramatically as system order
n becomes large. High Q or sharp cutoff filters are example systems that may have sensitivity problems
because their roots are close together. The sensitivity problem diminishes for a given system order if the
filter is a composite of smaller order filters in either cascade or parallel form.

Similarly, a continuous system with low frequency poles discretized with a high sample rate is subject to
sensitivity problems. The motivation for a high sampling rate stems from the increase in phase margin and
consequent improved performance that it gives to feedback control systems. The high sample rate,

5

however, detrimentally clusters system eigenvalues in the z-plane about z = 1 as seen from the power series
expansion of the matrix exponential.

(17)
A � eFTs� I � FTs�

FT
2
S

2!
�

FT
3
S

3!
� ��� ,

where TS is the sampling interval and {F, g} defines the continuous system to be discretized,

(18)x
.
(t) � Fx(t)� gu(t) .

For small sampling interval, i.e., as Ts → 0,

(19)lim
Ts�0

A� I ,

so the eigenvalues of A in the s-plane cluster increasingly about z = +1 in the z-plane to make the discretized
system increasingly sensitive to coefficient uncertainty.

Example 1.

Consider the discrete system of Figure 1 with parameter a11. Suppose normally that a11 = 2.5, but
quantization effects give a change δa11 from this nominal value, and it is desired to know the resultant
change in system eigenvalues.

Z–1Z–1
x2(k)

a11 –1

x1(k)

u(k)

–3

Figure 1. Discrete system of Example 1 with perturbed parameter a11

From Figure 1 the state matrix equation is

(20)

�x1(k� 1)
x2(k� 1)� � �a11

1
–3
–1� �x1(k)

x2(k)�� �01� �(k)

y(k) � [0 1] �x1(k)
x2(k)�

,

and its corresponding transfer function is

6

(21)

G(z) �
y(z)
u(z)

� c(zI–A)–1b

�
(z–a11)

z2 � (1–a11) z� 3–�11
.

� [0 1] ��10 0
1� z–�a11

1
–3
–1��

–1

�01�

Note that matrix element a11 contributes to the numerator as well as to the two denominator coefficients.
Comparing corresponding coefficients between (7) and the last line of (21) gives �0 = 3 – a11, �1 = 1 – a11,
and β0 = – a11. Inspection shows that the numerator zero has sensitivity + 1, while the sensitivity of the
denominator is less obvious and is diagnosed next.

For a11 = 2.5 the denominator roots λi , i = 1, 2 are at z = 0.5 and z = 1.0. The sensitivity of the eigenvalue
at λ = 1.0, for example, due to changes in ζ11 is found from (10). Using the chain rule for partial derivatives,

(22)

�� � –
����

	

�D�z, ��
�z z� �j0

�k��k0

� ��0

�a11
� �a11�

�D�z, ��
�z1

z� �j0

�k��k0

� ��0

�a11
� �a11

�D�z, �k�
�z z� �j0

�k��k0

����

�

�

� –�1(–1)�a11� z(–1)�a11

2z� (1–a11)
� z� �j0

�k��k0

� 4�a11 ,

which means that an arbitrary change in a11 from a11 = 2.5 to a11 = 2.51 moves the eigenvalue from λ = 1
to λ = 1.04. While the change appears modest, the system is now unstable, because an eigenvalue is outside
the unit disk, |z| = 1.

2.2 Root Locus Methods

The sensitivity approach in Section 2.1 gives the change in polynomial root location for small perturbations
in coefficient value. A second approach prescribed here extends the root locus methods that are used in the
design and analysis of linear servomechanisms. The approach gives a portrait in the z-plane of root
locations for values of a particular polynomial coefficient. When calibrated, the root locus gives limits for
stability, displays filter instability modes, and indicates sensitivity of root locations to coefficient values.

From control literature, the closed loop transfer function Gcl(z) for a SISO control system with forward
open loop transfer function Gol(z), forward gain K, and unity feedback is

7

(23)Gcl(z) � K
1� KGol(z)

.

The closed loop denominator roots satisfy

(24)1� KGol(z) � 0 .

Equivalently,

(25)KGol(z) � –1 ,

and root locus methods show all root locations that satisfy (25) for values of gain K.

Since Gol(z) is a ratio of two polynomials, any polynomial, i.e., the denominator or numerator polynomials
of (3), may be manipulated to that of (25) by partitioning the polynomial into two other polynomials R(z)
and S(z) such that

(26)�R(z)� S(z) � 0 .

where � is the element aij , bi , or ci of interest. Then,

(27)�R(z) � –S(z) ,

and

(28)��R(z)
S(z)
� � –1 .

Since (28) is of the same form as (25) all root locus manipulations may be applied.

Example 2.

Consider the transfer function (21) of Example 1, and suppose a desire is to plot denominator roots as a
function of matrix element a11. The first step is to isolate all polynomial coefficients with terms containing
a11.

8

(29)z2 � (1–a11)z� 3–a11 � �z2 � z� 3�–a11(z� 1) � 0 ,

then

(30)a11(z� 1) � z2 � z� 3 ,

and

(31)a11� –(z� 1)
z2 � z� 3

� � 1 .

The root locus of (31) is given in Figure 2 for increments in a11, δa11 = 0.1. Because the denominator factors
to (z + 0.5 + j1.658) (z + 0.5 – j1.658) for a11 = 0, roots originate from outside the unit circle at z = – 0.5
± j1.658. The system is therefore unstable for small values of a11, but becomes stable for mid-range values
of a11, and becomes unstable again for large values of a11.

9

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2
–2 –1 0 1 2

|Z| = 1

Z–Plane

Z=0.732�j0

a11=0

3.0 2.5 2.5 3.0

Real

Im
ag

in
ar

y

Figure 2. Root Locus of z2
2
� (1–an) z� 3–a11 for incremental values of a11 ∈ [0,3].

Roots are outside the unit disk at z = – 0.5 ± j1.658 for a11 = 0 and move to the real
axis. Infinite sensitivity occurs when roots coincide at z = 0.732 ± j0.

The stability limits for a11 are 2.0 < a11 < 2.5. For a11 < 2.0 the instability mode is an exponentially increasing
sinusoid, while for a11 > 2.5 the instability mode is an exponentially increasing ramp. Note that root
sensitivity varies dramatically as a11 is ranged, and interestingly, this second order example has a locus point
of infinite sensitivity at the real axis where roots coincide at z = 0.732 ± j0. This locus point of infinite
sensitivity verifies the result given by the denominator of (15) which says that sensitivity increases
dramatically with root clustering, approaching infinity in the limit as roots coincide.

3 Quantization Errors Induced by A/D Conversion, Rounding, or Truncation of
Computation and Output D/A Conversion

While the previous section considers the effects of coefficient quantization upon the transfer function, this
section calculates the effects of quantization upon the input, the state variables within the DSP, and the
output signal. The state space approach [1, 3, 4] is used for the calculation, but other methods using
z-transform transfer functions [1, 3, 5, 6, 7] are available. Techniques [8, 9, 10, 11, 12] similarly exist for
obtaining an upper bound on the magnitude effect of the quantization error upon the digital system.

10

The three sources of quantization at DSP input, within the DSP, and DSP output occur because:
• The input signal to a discrete system is inherently continuous, and analog-to-digital conversion

is necessary before any DSP computations may occur.
• The digital processor discards portions of computed results, i.e., those of multiplication and

division. Discarding is required because the number of bits required for exact representation of
the result increases by about as many bits as in the representation of matrix coefficients aij , bi,
ci , d. Without truncation or rounding the multiplication or division result increases without
bound.

• The output of the discrete processor usually operates on a continuous analog system and
typically the required digital to analog converter lacks the resolution of the digital processor.
Discarding of these least significant bits gives quantization error.

All of these errors fit under the description of a noise-like quantization error. Rounded quantization error
ε is the difference between the exact value of a quantity and the value of the nearest set of levels which differ
by q. Alternatively, truncated quantization error ε is the difference between the exact value of a quantity
and the value of the nearest lower set of levels. The rounded error is shown in Figure 3 in which the exact
value is superimposed upon a grid of quantized levels and sample times.

�(k)

q

Q
ua

nt
iz

at
io

n
Le

ve
ls

...k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10..
Sample Times

Figure 3. The continuous signal is superimposed upon a grid of sample times and
quantization levels spaced by q. Rounded quantization error ε at sample time
k = 1, 2, . . . is the darkened interval between the continuous signal and the nearest
quantization level.

Since the difference in quantization levels is q, the rounded error ε between the continuous signal and each
quantized level is at most ±q/2. Under the assumption that signal fluctuation is larger than q from one
sample to the next, the error ε at one sample will be statistically independent of the error ε at any other
sample and will have uniform probability of being anywhere between the limits ±q/2.

11

Parenthetically, a contrary example is a constant or slowly varying signal. For feedback control systems
the statistical dependence between samples due to quantization gives rise to limit cycles. If there is
predominantly only one such nonlinearity in the feedback loop, it is possible to use the method of
describing functions [2] to approximately determine the limit cycle’s behavior. It may be shown [1, 13, 14,
15] however, that the addition of a suitable high frequency dithering signal to the input of the system will
make both the quantization error and the roundoff error uniformly distributed, white, and mutually
uncorrelated.

The three sources of quantization error are equivalent to adding a noise-like term to the input, the computed
results, and the output, respectively. The resultant probability density function (pdf) of the error noise may
be as shown in either Figure 4a or Figure 4b, depending upon whether truncation or rounding occurs during
the quantization. Truncation is a simple discarding of the least significant bits, while rounding uses the least
significant bits in the quantization to minimize the absolute value of the error.

f(�)

�

1
q

q –q
2

q
2

1
q

f(�)

�

(4a) Truncation (4b) Rounding

Figure 4. Quantization error probability density functions for truncation (4a) and rounding (4b).

The average or mean µ and variance σ2 of the noise is given by the first and second moments �{ �} , ���2�

of the respective probability density functions.

Quantization due to Truncation:

(32)

� � �{ �} ��
q

0

�f (�)d� ��
q

0

� �1q� d� �
q
2

,

�2 � ��(�–�)2� � ���2�–�{ �} 2

(33)
��

q

0

�2 �1q� d�–�q
2
�2

�
q2

12

12

Quantization due to Rounding:

(34)

� � �{ �} � �
q�2

–q�2

�f (�)de� �
q�2

–q�2

� �1q	 d� � 0

�
2 � ��(�–�)2� � ���2�–�{ �} 2

(35)
� �

q�2

–q�2

�
2 �1q	 d�–02

�
q2

12
,

Results (32)–(35) show that the variance for truncation is the same as that for rounding and only the means
are different. The model for the noise sources at each sample instant k is then

(36)�(k,�) � w(k,�) � �� ,

where the notation ε(k, ⋅) and w(, ⋅) describe real valued stochastic processes such that ε(k, ⋅) and w(k, ⋅)
are random variables for any fixed k, k = 1

Random variable w(k, ⋅) has zero mean and variance q2/12, while uε is either uε = 0 or uε = q/2 depending
respectively upon whether rounding or truncation is used. Formulating the noise sources into their random
and constant portions allows the effects of each to be considered separately with w(k, ·) exclusively
producing variance and uε exclusively producing a DC offset.

The error sources are shown in the state diagram of Figure 5 with input A/D conversion noise, εi (k, w),
computation noise, εc(k, w) and D/A output noise, εo(k, w). The corresponding state equation is

(37)
x(k� 1) � Ax(k) � b[u(k) � � i(k)] � �c(k) .

y(k) � cx(k) � �o(k)

���k�⋅)

u(k) Z–1b

A

c

���k�⋅)

y(k)

�c�k�⋅)

Figure 5. State diagram showing scalar input quantization error εi (k, ⋅), vector computation
noise εc(k, ⋅), and scalar εo(k, ⋅).

13

To compute output variance �

2
y requires the expected value of the second moment of y(k).

(38)

�{ y(k)yT(k)} � ���cx(k) � �o�k,�	��cx(k) � �o�k,�	�
T�

� ���cx(k) � �o�k,�	��xT(k)cT � �
T
o
�k,�	��

� ��cx(k)xT(k)cT � �o�k,�	xT (k)cT � cx(k) �
T
o
�k,�	 � �o�k,�	�T

o
�k,�	� .

Since εo (k, ⋅) is zero mean and uncorrelated with x(k)

(39)
�{ y(k)yT(k)} � c�{ x(k)xT(k)cT} � ���o�k,�	�T

o
�k,�	�

� cPxx(k)cT � Ro(0) .

where Ro (τ) , τ = 0, is the lagged autocorrelation of the output noise.

Equation (39) shows that the output variance is the sum of the output noise covariance and the state
covariance Pxx(k) weighted by output vector c. To compute state covariance Pxx(k) requires a recursion
formula, which is found from the expected value of the second moment of x(k + 1). From (37),

(40)

Pxx(k� 1) � �{ x(k� 1)xT(k� 1)}

� ���Ax(k) � bwi
�k,�	 � wc �k,�	� �Ax(k) � bwi

�k,�	 � wc �k,�	�
T�

� ���Ax(k) � bwi
�k,�	 � wc �k,�	� �xTAT(k) � wT

i
�k,�	bT � wc

T �k,�	��

� �{ �Ax(k)xT(k)AT � Ax(k)wT
i
�k,�	bT � Ax(k)wc

T �k,�	�

� bwi
�k,�	xT(k)AT � bwi

�k,�	wT
i
�k,�	bT � bwi

�k,�	wc
T �k,�	

� wc �k,�	ATxT(k) � wc �k,�	wc �k,�	bT � wc �k,�	wc
T �k,�	} .

Since noise sources wi (k, ⋅), wc(k, ⋅) are statistically independent of each other and with x(k), the expected
value of their cross products is zero. Equation (40) becomes

(41)Pxx(k� 1) � Ax(k)xT(k)AT � bwi (k,�)wT
i (k,�)bT � wc (k,�)wc (k,�)T

,

or

14

(42)Pxx(k� 1)� APxx(k)AT
� bRi(0)bT

� Rc (0) ,

where Ri(τ) andRc(τ), τ = 0 are the lagged autocorrelation of the input and computation noise, respectively.
Equation (42) says that the state covariance at sample k + 1 derives from the previous sample covariance
plus input and computational noise terms. If state x(k) were perfectly known from an initial condition,
implying Pxx(0) = 0, then each succeeding sample k = 1, 2, … introduces uncertainty in x(k) as given by
(42). Since A is stable with eigenvalues within the unit disk,

(43)lim
k��

Pxx(k)� Pxx(k� 1) ,

and computing (42) recursively is an easy task with available matrix tools[16]. Note that the resultant noise
is not uniformily distributed, but rather is Gaussian as prescribed by the Central Limit Theorem [17, 18,
19].

Example 3.

Consider the dynamic system of Example 1, but with a11 = 2.4 to give a low pass filter. Suppose the input
signal u(k) derives from a 10 bit A/D converter with range – 1 to + 1 volts and a Least Significant Bit (LSB)
of approximately 20 millivolts. Suppose also that the DSP represents the variables x1(k) and x2(k) with a
16-bit, 2’s complement word with a dynamic range of –1 (8000h) to +(1–1/215) (7FFFh), where suffix “h”
denotes a hexidecimal value. In making its computations the DSP truncates results, i.e., those of
multiplication, to fit the 16 bit word length. If the results are sent to a – 1 to +1 volt 9 bit D/A converter
with LSB of approximately 40 millivolts for output, what is the output noise?

The resultant state diagram of the problem is shown in Figure 6 with noise sources εi, εcl, εc2, εo. Note that
there is no noise associated with the a22 coefficient of –1 since it is actually a subtraction operation.

���k��)

���k��)

Z–1Z–1

x1(k) x2(k)

y(k)

�c2�k��)

�c1�k��)

u(k)

2.4

– 3

– 1

Figure 6. Example 3 state diagram showing noise sources due to quantization effects.

15

The means and variances of the various sources are

Input noise:

�i � 0 (44a)

�
2
i �
� 1
29
�2

12
� 3.18� 10–7 volts2 � Ri � 3.18� 10–7 volts2 .

(44b)

Computation noise:

�c1, c2 �
1

215

2
� 1.53� 10–5 (44c)

�
2
c1, c2 �

� 1
215
�2

12
� 7.76� 10–11 , � Rc � �7.76� 10–11

0
0

7.76� 10–11� .
(44d)

Output noise:

�o �
1
28

2
� 1.95� 10–3 (44e)

�
2
o �
� 1
28
�2

12
� 1.27� 10–7 , � Ro � 1.27� 10–7 .

(44f)

Using (44a–f) the state covariance relationship (42) is

Pxx(k� 1) � �2.4
1

–3
–1� Pxx(k) �2.4

1
–3
–1�

T

��01� 3.18� 10–7 �01�
T

(45)

��7.76� 10–11

0
0

7.76� 10–11� .

16

Figure 7 shows the recursive solution for k = 0, 1, … with the assumption that state initial conditions are
perfectly known, i.e.

Pxx(0) � �00 0
0� (46).

19.6x10–6

a11

20

18

16

14

12

10

8

6

4

2

0

9.7x10–6

a12

a21

a22

5.43x10–6

0 5 10 15 20

Sample Number

S
ta

te
 C

ov
ar

ia
nc

e

Figure 7. Time solution of covariance matrix equation. Of interest is the asymptotic
solution as k → ∞

It is seen that the state covariance (uncertainty) trajectory increases from zero until a terminating value is
asymptotically approached. State dynamics determine the trajectory’s rate of increase. The terminating
value of the state covariance matrix is

17

lim
k��

Pxx(k) � �19.6� 10–6

9.70� 10–6
9.70� 10–6

5.43� 10–6� . (47)

The state variances are on the main diagonal of the covariance matrix (47) and are
�

2
x1 � 19.6� 10–6 and�

2
x2 � 5.43� 10–6. Note that the initial assumption made as to state initial

uncertainty Pxx (0) does not affect result (47). If, for example Pxx (0) is initially large, implying little
knowledge of state value, state covariance Pxx (k) would exhibit a diminishing transient until result (47)
is again obtained.

Once state covariance Pxx(k) is known, then output variance is found from (39)

�{ y(k)yT(k)} � cPxx(k)cT� Ro(0)

(48)
� [0 1] �19.6� 10–6

9.70� 10–6
9.70� 10–6

5.43� 10–6� [0 1]T� 1.27� 10–6

� 5.43� 10–6� 1.27� 10–6

� 6.70� 10–6 .

One of the values of calculating covariance is the ability to discern prominent sources of uncertainty for
overall system optimization. In this case there is negligible contribution from DSP computation, and only
marginal contribution from the output D/A converter. If the overall system optimization is from the
perspective of cost, then the marginal contribution of the D/A converter permits a less expensive 8-bit
version.

To calculate the effects of truncation and roundoff it is seen from Figure 3 and (32) that the variances for
either are the same, but that truncation gives a nonzero mean µc1 = µc2 = q/2 = 1.53 × 10–5 that introduces
an offset to the state update from x(k) to x(k + 1). The effect is modeled from (44), but with µ(k) = 0 and

�i � 0, uc � �1.53� 10–5

1.53� 10–5�, �o � 1.95� 10–4 . (49)

Using these means as inputs, the state equation (37) becomes

�x1(k� 1)
x2(k� 1)� � �2.4

1
–3
–1� �x1 (k)

x2 (k)� � �01� 0��01� 0��1.53� 10–5

1.53� 10–5�
(50)

y(k) � [0 1] �x1(k)
x2(k)�� 1.95� 10–3

,

which is solved recursively until

18

lim
k��

� �x1(k)
x2(k)� � �– 7.65� 10–5

–3.06� 10–5 � , (51)

and the output is

(52)� [0 1] �– 7.65� 10–5

– 3.06� 10–5�� 1.95� 10–3

lim
k��

y(k) � cx(k)� Ro

� 1.92� 10–3volts .

4 Minimizing Quantization Effects with the TMS320 Family of Digital Signal
Processors

To see how the TMS320 DSP family reduces quantization effects a brief understanding is given of how
decimal numbers scale and how arithmetic performs in the DSP. The operation of the Central Arithmetic
Logic Unit (CALU) [20] is described first.

The Central Arithmetic Logic Unit (CALU) of the TMS320C50 is shown in Figure 8. It incorporates an
input 16-bit scaling shifter, a 16 × 16-bit parallel multiplier, a 32-bit Arithmetic Logic Unit (ALU), a 32-bit
accumulator, and additional shifters at the outputs of both the accumulator and the multiplier. A typical
multiplication of two numbers, A × B, requires a “LT ” instruction to load the “T” register with A, a “MPY”
instruction whose address operand is the data memory address of the number B, a “PAC” instruction to load
the accumulator with the contents of the “P” register, and a “SACH” instruction to store into data memory
the 16 most significant bits of the 32-bit result that is in the accumulator. Thus, a single multiplication of
two numbers requires four instructions, and if on-chip memory is used so there is no waiting for slower
off-chip memory, then compute time for the TMS320C50 with an instruction time of 35 nanoseconds is
the time for four instructions or 140 nanoseconds. If a multiplication combines with an addition then ALU
operations of data fetching, multiplication, and accumulation may overlap in one instruction cycle with the
“MACD” instruction for better performance.

19

Program Bus

Data Bus

16 16

16
16 16 16

MUX

16TR (16)

Multiplier

PR (32)

0

0SX

Scaling
Shifter

SFL(0–16)

SX or 0

32 32

SFR(6) SFL(1,4)

MUX

3232

32

32

32
32

32

C

SX
or 0

A B
ALU32

32

16

MUX

ACCH(16) ACCL(16) ACCB(32)

032

16 16

0

16

1616

SFL(0–7) SFL(0–7)

Figure 8. Central Arithmetic Logic Unit (CALU) of the Texas Instruments TMS320C50
Fixed-PointDSP. The CALU contains a 16-bit scaling shifter, a 16 × 16 bit parallel multiplier, a 32-bit
arithmetic logic unit (ALU), a 32-bit accumulator and the multiplier. The following steps occur for a typical
ALU instruction: 1) data fetches from the RAM on the data bus, 2) data passes through the scaling shifter
and the ALU where the arithmetic is performed, and 3) the result moves to the accumulator.

, (53)

20

Scaling of decimal numbers is accomplished by representing decimal numbers with 16-bit (single
precision) scaled fractions. The digital words are of the form

msb lsb

Bit number 15 14 13 12 11 . . . 0

Magnitude – S S
2

S
4

S
8

S
16

 . . . S
215

where bit 15 is the sign bit. An implied radix point exists between bits 15 and 14 with bits 0 through 14
giving 15 bits of magnitude. S is a positive number S : 0 < S < ∞ that is the digital word’s scaling factor.
Scaling factor S allows the digital word to represent any number with interval [– S, +S(1 – 1/215)] by the
digital word range 8000h to 7FFFh, where suffix “h” indicates a hexidecimal value.

Common special cases are for S = 215 = 32768, which right justifies the decimal point to make the number
an integer with interval [– 32768, 32767], and for S = 1, which left justifies the decimal point so the decimal
number represented by the digital word has interval [–1, 0.9999695]. The unique attribute of this second
scaling is the avoidance of ALU overflow, since multiplication with any number of similar interval will
always give another number contained within its interval, [–1, 0.9999695].

Because each digital word has an assigned scale factor, two rules are observed when performing scaled
arithmetic operations:

Rule 1. Addition

If two variables x and y with respective scale factors Sx and Sy add, x + y, then the two scale factors must
be the same, Sx = Sy.

Rule 2. Multiplication

If constant C multiplies a variable x with scale factor Sx to give variable y : y = Cx with scale factor Sy, then
C scales according to the rule

(54)CDSP� C �Sx

Sy
� .

Applying this rule rescales the decimal constant C as a decimal fraction CDSP with interval [–1, (1 – 1/215)].
CDSP is represented within the DSP as a digital word with interval [8000h, 7FFFh].

Rule 1 pertains to the mechanics of scaled addition and will produce quantization error if the LSBs of a
shifted variable are discarded after adding to a second variable. The example additions in the next section
illustrate the problem.

Rule 2 pertains to multiplication and therefore affects quantization as previously described in Section 3.
Because of its significance to the quantization issue an example is now considered that makes the
application of Rule 2 more clear.

Suppose the formula y = 5x is to be implemented, where x has interval [1.8, + 1.6], and it is desired to scale
the problem for DSP usage. Since the maximum of the absolute value of x is 1.8, scale factor Sx must be
some number ≥ 1.8, but to minimize quantization effects, Sx is chosen as Sx = 1.8 exactly. With this choice
of Sx the nearly symmetric interval [–1.8, 1.8(1 – 1/215)] with digital word interval [8000h, 7FFFh] matches
the interval of x as closely as possible. Since Sx = 1.8, the product y = 5x gives an interval of [–5 × 1.8, +5

21

× 1.8(1 – 1/215)], or [–9, ≈ 8.999725]. To accommodate this interval Sy must be ≥ 9. Because the maximum
positive value of CDS is (1 – 1/215) ≈ 0.9999695 and not 1, however, Sy is made slightly larger than 9, and
is arbitrarily chosen as Sy = 10.

With Sx and Sy chosen, CDSP is

(55)CDSP� 5�1.8
10
� � 0.90000� 7333 hex

To apply these two rules for scaled arithmetic and to reduce quantization effects the TMS320 family of
digital signal processors includes the following features for fixed point arithmetic:

1. The most obvious and valuable feature for reducing quantization effects is the width of the ALU,
the accumulator, and the 16 × 16 bit multiplier. The 32-bit width permits accumulation of either
extended precision 32-bit words or of 16 bit words with no prospect of overflow. For
multiplication, the 32-bit product width matches the 32-bit width of the accumulator and either
the entire signed multiplied result applies to the ALU, or extended precision 32 × 32 bit
multiplications are possible with unsigned multiplications.

2. A second feature is an ALU input scaler shifter whose 16-bit input connects to the data bus and
whose 32-bit output connects to the ALU. The scaling shifter produces a left shift of 0 to 16 bits
on the input data, where the LSBs of the output fill with zeros, and the MSBs either fill with zeros
or are sign-extended, depending upon the “SXM” (sign-extension mode) bit. If an addition x
with scale factor Sx is made to the accumulator with contents y and scale factor Sy, and if Sx and
Sy differ by powers of 2, then the scaling shifter may rescale x to Sy before adding. This second
feature allows easy implementation of Rule 1, but does not relate to quantization issues because
it is only applicable to addition.

3. A third feature that does relate to quantization is an ability to disable the accumulator overflow
saturation mode for modulo addition and subtraction arithmetic. Modulo arithmetic is
advantageous where several numbers, usually of alternating sign, add together with a result
always less than the sum of their absolute values. A common example of this behavior is the
accumulation of FIR filter output taps to form a FIR filter output.

For modulo arithmetic the accumulator is scaled for the maximum numerical range of the final
result instead of the maximum numerical range of the intermediate accumulations. Since scaling
for the final result gives apriori knowledge that the number of positive and negative overflows
will be the same, overflows are ignored in the intermediate accumulations as numbers add or
subtract. In this way the bits that would otherwise prevent overflow give additional significant
bits to represent the final sum in the accumulator. Modulo addition reduces quantization noise
by allowing a smaller accumulator scale factor to permit accumulation of full 31-bit
multiplication results with no truncation.

4. A fourth feature reduces transfer function quantization by allowing “P” register contents to be
shifted before they are added to the accumulator. In the multiplication y = Cx it is common for
the output scale Sy to be appreciably larger than the constant C times the input scale Sx. From
Rule 2, however, Sy →large, makes CDSP → small, and the number of significant figures
defining multiplicand CDSP decreases to give an increasingly quantized transfer function.

An attractive solution to coefficient quantization is to reduce the accumulator scale factor by
powers of two when calculating CDSP, and to apply a countering right shift to the product in the

22

“P” register before it is added to the accumulator. In this way coefficient quantization is reduced
by giving additional significant bits for CDSP to represent C.

Available “P” register shifts are 0, +1, +4 and –6 as specified by a two bit “PM” field of status
register “ST1”. Left shifts zero-fill the LSBs while right shifts sign-extend the MSBs. Usually
a left shift of +1 is required for proper signed multiplication because the multiplied output in the
“P” register has double sign bits. If no “P” shift is made before accumulation, the effect is
mathematically equivalent to a right shift for a lower scale factor. The lower scale factor Saccum/2
of the “P” register contents operate through Rule 2 and gives a left shift of CDSP for an additional
significant bit of resolution. Similarly, the right shift of –6 places reduces the “P” register scale
factor to Saccum/7 and makes Rule 2 give a multiplier right shift of +7 places for 7 additional
significant bits.

Using this feature reduces the scale factor of the accumulator either by 1/2 or 1/27 when using
Rule 2 to calculate CDSP and gives either 1 or 7 additional significant bits to represent CDSP. If
the multiplied result is right shifted –6, then 5 bits of the multiplied result are lost and
quantization noise is incurred. Thus, shifting of the “P” register gives a tradeoff between transfer
function quantization and quantization noise. The quantization noise is very small and does not
increase with the number of shifts. It is always Saccm/231, where Saccm is the accumulator scale
factor.

5. A fifth feature is the accumulator output scaler shifter. A “SAC” instruction copies the entire
accumulator into a shifter, where it shifts the entire 32-bit number anywhere from 0 to 7 bits,
and then copies the upper (lower for a “SACL” instruction) 16 bits of the shifted value into data
memory. The accumulator itself remains unaffected. The output scalar thus allows a large
accumulator scale factor with several MSBs to prevent overflow from repeated accumulates, but
gives a full extraction of 15 significant bits (single precision) from the 31 bits of the accumulator.
Without this scaling feature any difference between accumulator and output scale factors would
give a result that has fewer significant bits and correspondingly greater quantization.

6. A sixth feature is the easy implementation of an Automatic Gain Control (AGC) [21] function.
The AGC function permits dynamic rescaling of input data whose input signal amplitude varies
considerably over time. For some applications, such as those of telecommunications, the data
is organized in blocks, while for other applications a moving frame of fixed length scans the
incoming data. Figure 9 shows the arrangement of data and data blocks for the
telecommunications case.

23

Data Word

2520151050
–3

–2

–1

0

1

2

3

Input Signal

Max Block 2

Max Block 1

Block 5

Block 4

Block 3

Block 2

Block 1

D
at

a
W

or
d

V
al

ue

Max Block 3

Max Block 4

AGC Output

Max Block 5

Figure 9. The input signal is organized as digital words within data blocks, but varies considerably over
time with each data block having an identifiable digital word of greatest value. The greatest value within
each block is respectively used to rescale each block’s input signal as shown by the AGC output.

For these applications the usual DSP computational scaling to accommodate the largest
amplitudes invariably subjects the smaller amplitudes to truncation and rounding error. The
AGC function, on the other hand, automatically adjusts the input signal as shown in Figure 9 to
an amplitude prescribed for proper scaling and minimum error.

To apply the AGC function to a block of data samples, the first word of the data block is loaded
into the accumulator buffer. A “CRGT” command then tests each remaining word in the data
block to find a data word of higher magnitude as each remaining word is passed through the
accumulator. If a higher magnitude is found, then a “EXAR” command swaps the higher value
to the accumulator buffer. After testing is complete, the data word of greatest magnitude for a
particular data block resides in the accumulator buffer.

With this greatest magnitude known, its reciprocal is found either by division or by table
look-up. The reciprocal is then loaded into “TREG0” and all of the words of the data block are
then multiplied, i.e., rescaled, by the reciprocal. Alternatively, a table look-up may specify
progressively greater left shifts (multiplication by powers of 2) for smaller block maximum
values. The left shifts are mechanized by loading “TREG1” with the shift value and then using
the “LACT” command to load the accumulator with a left shift specified by “TREG1”.

24

7. Finally, a number of additional features are enumerated. While discussed last, they constitute
a minimum subset of numerical capabilities that any DSP should have, but which may be absent
in microcontrollers. One is the ability to store accumulator contents with a right shift, while
leaving the accumulator contents unshifted and intact for no truncation error. Another is the
presence of carry and borrow flags for extended precision 64-bit additions and subtractions. A
third is the ability for signed and unsigned multiplications, which permits extended precision
multiplications.

5 Quantization Effects with Microcontrollers

In contrast to the DSP, the microcontroller does not emphasize a powerful computational architecture. To
illustrate the differences between the DSP and the microcontroller, two microcontrollers that are frequently
used for disk drive control are considered in this section. They are the Intel 80196 with a clock time of 83
nanoseconds and the Motorola MC68HC16 with a clock time of 59.6 nanoseconds.

5.1 The Intel 80196

The Intel 80196 architecture [22] is shown in Figure 10 and features quick register-to-register transfers.
The quick transfers are made possible by the absence of an intervening accumulator that would otherwise
constrict data flow. The architecture has at least 230 bytes of on-chip RAM that may be operated upon as
bytes, words, or double words. The RAM registers are interconnected through a 16-bit bus with themselves
and a 16-bit ALU with the idea that each of the 232 registers is an “accumulator”.

The ALU of the 80196 has two 17-bit input ports (16 bits + sign) denoted as “A” and “B” respectively.
Temporary “Upper T1” and “Lower T1” word registers give input to the A port while Temporary “T2” and
“Constant” registers give input to the B port. The “Upper” and “Lower” registers have independent shift
capability, but may be coupled and shifted together as a 32-bit unit. These registers are used for the repeated
shift and add (shift and subtract) operations of multiplication (division). In between the “Temporary” and
“Constant” registers and the ALU B port is a multiplexed inverter. The inverter gives a 1’s complement
of the contents of the “Temporary” register. A further addition of 1 from the “Constant” register gives a
2’s complement.

As compared to the TMS320 architecture the 80196 numerical hardware is simple, but has functions
requisite for good numerical properties. The disadvantage of this simplicity is that arithmetic operations
consume an inordinate amount of execution time. To compare the effectiveness of this architecture with
that of the TMS320 family a simple scaled addition example is provided next.

25

Signals
and Status

Control
CPU

CPU Busses

ALU
BA

Registers
Function
Special

and
File

Register
256 Byte

Registers
Control

RAM & SFR
Control
PSW

Register
Bit Select

Constants

Temporary
Register

6–Bit
Loop Counter

w/Decrementer

Word
Status

Processor

Lower Word
Register
w/Shifter

Upper Word
Register
w/Shifter

w/Incrementer
Program Counter

Master

Multiplexer

17 17

16

8

16

3

Figure 10. The Intel 80196 architecture has 232 bytes of configurable RAM registers that are connected
through a 16-bit bus to an ALU. The architecture features quick register-to-register transfers.

Suppose the addition z = x + y is desired, where x and y have scale factors Sx and Sy, respectively, and that
these scale factors are different by powers of two, with Sx >Sy. Rule 1 says that the two scales are to be made
equal, which is easily obtained by shifting if Sx and Sy differ by powers of 2. The instructions for the
TMS320 DSP are:

Instruction Execution
Clock Cycles

“ZALH” Zeros the low accumulator and loads high accumulator with y. 1

“ADD” Adds contents x of specified RAM location to accumulator with specified
shift.

1

“SACH” Stores high accumulator result with shift (if desired) to RAM zhigh
location.

1

“SACL” Stores low accumulator result with shift (if desired) to RAM zlow location. 1

26

The equivalent Intel 80196 instruction are:

Instruction Execution
Clock Cycles

“SHRA” Loads the x register (1 of 232) contents into the upper word of register T1
and shifts concatenated upper and lower words of T1 as specified. The
result is retained in the upper and lower words of T1.

�6� 1
shift
�

“ADD” Adds T1 upper word containing shifted x to y and stores result in zhigh
location.

5

“ST” Stores T1 lower word containing shifted x to zlow location. 4

where the notation “ 1
shift

” indicates the need for an additional clock cycle for every shift of “T1” that is
required to align the x scale factor to that of y’s.

Both implementations have the same numerical properties with no quantization error since the full shifted
result is saved in zhigh and zlow. The execution cycles are considerably different, however, and tabulate as

(56)

NTMS320� 1� 1� 1� 1� 4 clock cycles

NIntel80196� 6� 1
shift

� 4� 5� �15� 1
shift
� clock cycles ,

where it is seen that greater than 4 times as many clock cycles are required for the 80196 architecture. If,
for example, 8 shifts are needed to align scale factors, then 15 + 8 = 23 clock cycles are required, which
is almost 6 times as many clock cycles as that required for the TMS320 DSPs. For a 12 Mhz oscillator, the
clock cycle time for the Intel 80196 is 83 ns and the resultant compute time for the scaled addition example
is 1.909 microseconds. Its comparison to members of the TMS320 family and that of the Motorola
MC68HC16 is tabulated at the end of the next section.

Note that the difference in clock cycles between the TMS320 family and the Intel 80196 becomes more
acute if a second number adds to zhigh and zlow, since the 16-bit number now adds to a 32-bit number and
there is no formal accumulator to ease the task. Similarly, a large number of execution cycles is required
if there is multiplication involved since the 80196 has no hardware multiplier.

A disadvantage of this architecture is the absence of a formal accumulator. Without a formal accumulator
it is easy for the designer to inadvertently discard seemingly insignificant results and to create quantization
error, as would occur in the previous example if the designer fails to save the example’s shifted x result to
zlow. The designer thus wrestles with tradeoffs between total execution time and quantization error. For the
design of a disk drive servo control, for example, this tradeoff study is time consuming, and requires
balancing the benefits of less quantization error in signal processing against the effects of a slower sample
rate that are incurred by a longer execution time.

5.2 The Motorola MC68HC16
The second microcontroller examined is the Motorola MC68HC16 which is also used in disk drive control.
Figure 11 shows the CPU16 register model [23].

The CPU has two 8-bit accumulators (A and B) and one 16-bit accumulator (E). The accumulators A and
B may be concatenated into a second 16-bit accumulator (D). The CPU16 has a 16 ×16-bit hardware
multiplier with four registers. Register H contains the 16-bit signed fractional multiplier. Register I

27

contains the 16-bit signed fractional multiplicand. Accumulator M is a specialized 32-bit product
accumulation register. The XY mask register contains 8-bit mask values that are used in modulo
addressing. There are 16 bits in a word and negative numbers are represented in 2’s complement form.

Bit Position

MAC XY Mask Register

MAC Accumulator LSB (15:0)

MAC Accumulator MSB (35:16)

MAC Multiplicand Register

MAC Multiplier Register

Stack Extension Register

Address Extension Register

PC Extension Register
Condition Code Register/

Program Counter

Stack Pointer

Index Register Z

Index Register Y

Index Register X

Accumulators E

Accumulators D (A:B)

Accumulators A and B

PK

SK

ZK

YK

XK

YMSKXMSK

AM

AM

IR

HR

SK

ZKYKXKEK

PKCCR

PC

SP

IZ

IY

IX

E

D

BA

078151620

Figure 11. The Motorola MC68HC16 features three accumulators, the “A” and “B” registers, which are
configurable as a 16-bit “D” register, the “E” register, and the “AM” register, which is the primary
accumulator. Registers “HR” and “IR” are inputs to the 16 × 16-bit multiplier, and “E” is the output, which
is added to the “AM” accumulator register.

A typical multiplication of two 16-bit signed numbers, say A × B requires “LDD” and “LDE” instructions
to place A × B respectively in the “D” and “E” registers, an “EMUL” instruction to place the A × B result

28

into a now concatenated “E:D” register, an “ACED” instruction to add the concatenated “E:D” result to
the “AM” accumulator register, a “TMER” instruction to transfer the rounded “AM” accumulator contents
to register “E”, and a “STE” instruction to store into data memory the contents of register “E”. A single
multiplication of two numbers therefore requires five instructions. If a multiplication combines with an
addition then ALU operations of data fetching, multiplication, and accumulation may be overlapped for
better performance with a “MAC” instruction.

Comparison of this multiplication procedure with that of the TMS320 family shows the two architectures
to give similar performance, with the TMS320 having the slight advantage of requiring only four
instructions versus five for the MC68HC16, while the MC68HC16 has the advantages of a larger
accumulator. To illustrate some of the MC68HC16’s numerical properties the previous simple example of
signed addition z = x + y is now reworked.

With the M68HC16 there are two methods to perform signed addition, but the preferable approach is to
use the 36-bit “AM” accumulator as follows:

Instruction Execution
Clock Cycles

“LDE” Load register “E” with contents of data memory address containing x. 4

“TEM” Transfer “E” to “AM” [31:16]; sign extend “AM”; clear “AM” [15:0] 4

“ASRM” Arithmetic shift right the “AM” accumulator an appropriate number of
shifts to adjust scale factors.

4

“LDE” Load register “E” with contents of data memory address containing y. 4

“ACE” Add “E” to “AM” [31:15] to form z. 2

“TMXED” Transfer “AM” to “IX”:“E”:“D” registers. 6

“STE” Store contents of “E” to data memory address for zlow. 6

“STD” Store contents of “D” to data memory address for zlow. 6

As in the evaluation of the TMS320 family and the Intel 80196 there is no quantization error, since the full
shifted result is saved in zhigh and zlow. The total number of clock cycles for the MC68HC16 is:

(57)NMC68HC16� 4� 4� 4� 4� 2� 6� 6� 6� 36 clock cycles

which for a clock cycle time of 59.6 ns gives the addition execution time of 2.15 ms.

The non-preferred second approach that may be taken with the MC68HC16 is to implement signed addition
with accumulators “D” and “E”. This method is inadvisable, however, because both registers are only 16
bits wide and shifting of the contents of either register to align scale factors results in loss of least significant
bits.

5.3 A Comparison of Execution Times and Frequencies
A simple benchmark example of scaled addition has been shown with the TMS320 family and with Intel
and Motorola microcontrollers. All three examples have the same numerical property of no quantization
error; the result retains the 16-bit LSB portion of the 32-bit scaled addition result. The instruction times
for the TMS320C10, TMS320C2XLP, and TMS320C50 are respectively 200, 35, and 25 nanoseconds. The

29

corresponding execution times and execution frequencies, which are the reciprocal of the execution times,
for the benchmark scaled addition example are:

TMS320C10 TMS320C2XLP TMS320C50

800 nanosec → 1.25 Mhz 140 nanosec → 7.1 Mhz 100 nanosec → 10.0 Mhz

The clock cycle times for the Intel and Motorola devices are 83 and 59.6 nanosecond, respectively. The
corresponding execution times and execution frequencies for the Intel 90196 and Motorola MC68HC16
are:

Intel 80196 Motorola MC68HC16

�1245� 83
shift
� nanosec� .524 Mhz (for 8 shifts) 2145.6 nanosec → .466 Mhz

If these execution times are compared to the popular TMS320C2XLP, for example, it is seen that the ratio
of execution time for the 80196 and MC68HC16 compared to the TMS320C25 is 1429/140 = 10.2X
(assuming 8 shifts) and 2145/140 = 15.3X, respectively. If comparison is made with the TMS320C50,
which is 1.4 times faster than the TMS320C2XLP, the equivalent ratios are 14.3X and 21.5X, respectively.

5.4 Summary
This paper has discussed the effects of finite word length in digital signal processors. Calculation of the
effects of finite word length upon system transfer functions is given in Section 2, while Section 3 shows
that the effect of a finite word length upon the signal is to introduce noise at various points in the signal
path. Section 3 gives the tools for making trade-offs between system component quantization levels by
being able to calculate the injected noise. Calculating quantization effects has limited usefulness, however,
if a digital signal processor has scant ability to alleviate their causes. This paper describes, therefore, the
abundant features of the TMS320 DSP family that promote a minimum quantization design. Finally, to
demonstrate the performance usefulness of these features a comparison is made with two popular
microcontrollers.

30

Acknowledgements

I wish to acknowledge the encouragements of Jaye Saha in the writing of this paper and the discussion with
helpful suggestions from Russell Price and Peter Ehlig concerning the TMS320 DSP family.

References
1. Gene F. Franklin and J. David Powell, Digital Control of Dynamic Systems, Addison–Wesley, 1981,

pp. 185–205.
2. Karl J. Astrom and Bjorn Wittenmark, Computer Controlled Systems, Theory and Design,

Prentice–Hall, 1984, pp. 378–380.
3. Raymond G. Jacquot, Modern Digital Control Systems, Marcel Dekker, 1981, pp. 161–186.
4. Peter S. Maybeck, Stochastic Models, Estimation, and Control Vol. 1, Academic Press, New York,

1979, pp. 170–174.
5. Charles M. Rader and Bernard Gold, “Digital filter design techniques in the frequency domain,”

Proceedings of the IEEE, February 1967.
6. B.C. Kuo, Discrete Data Control Systems, Prentice–Hall, Inc., 1970, pp. 352–363.
7. B.C. Kuo, Digital Control Systems, Holt, Rinehart and Winston, Inc., 1980, pp. 694–718.
8. B. Widrow, “A study of rough amplitude quantization by means of Nyquist sampling theory,” IRE

Transactions on Circuit Theory, Dec. 1964, Vol. CT–3, pp. 266–276.
9. J.B. Slaughter, “Quantization errors in digital control systems,” IEEE Transactions on Automatic

Control, January 1964, Vol. AC–9, pp. 70–74.
10. R.B. Blackman, Linear Data-Smoothing and Prediction in Theory and Practice, Addison–Wesley,

Reading, Mass., 1965.
11. George W. Johnson, “Upper bound on dynamic quantization error in digital control systems via the

direct method of Liapunov,” IEEE Transactions on Automatic Control, October 1965, Vol. AC–10,
No. 4, pp. 439–448.

12. J.E. Bertram, “The effects of quantization in sampled-feedback systems,” Transactions AIEE
(Applications and Industry), September 1958, Vol. 77, pp. 177–181.

13. Pin Wah Wong, “Quantizations noise, fixed-point multiplicative roundoff noise, and dithering,”
IEEE Transactions on Acoustics, Speed, and Signal Processing, Vol. 38, No. 2, February 1990.

14. N.S. Jayant and L.R. Rabiner, “The application of dither to the quantization of speech signals,” Bell
System Technical Journal, July–Aug. 1972, Vol. 51, No. 6, pp. 1293–1304.

15. L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Transactions
Communication Technology, Dec. 1964, Vol. COM–12, pp. 162–165.

16. PC-MatLab User’s Guide, The Math Works, Inc. Natick, Massachusetts, 1991.
17. Paul L. Meyer, Introductory Probability and Statistical Applications, 2nd Ed., Addison-Wesley,

1970.
18. Micheal O’Flynn, Probabilities, Random Variables, and Random Processes, Harper & Row, 1982.
19. Athanasios Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,

1984.
20. TMS320C5x User’s Guide, Texas Instruments, 1993.
21. G. Troullinos, P. Ehlig, R. Chirayil, J. Bradley, D. Garcia, “Theory and implementation of a splitband

modem using the TMS32010,” Digital Signal Processing Applications with the TMS320 Family,
Vol. 2, Texas Instruments, 1993.

22. TMS320C5x User’s Guide, Texas Instruments, 1993.
23. 16-/32-Bit Embedded Processors, Intel Corporation, 1990.
24. CPU16 Central Processor Unit Reference Manual, Motorola, May 1991.

