

Contents—ABIOS

Section 1. Introduction to Advanced BIOS............... 1-1
Introduction 2.0... ee 1-3
Data Structures ©. ee 1-4
Initialization ©... 0.00. 1-5
Transfer Conventions 2.00000 eee eee 1-6
Interrupt Processing 0.0.0.0 eee ee 1-7

Extending ABIOS ... 1... 1-8

Section 2. Data Structures04. 2-1

Introduction 2.0... ee 2-3
Common Data Area 2.000000 ee 2-3
Function Transfer Table0.......2.0...0.0. 2-7
Device Block0. 0.000.000 ce ee ee 2-9

Section 3. Initialization2...0.0..200.. 3-1
Introduction0.00. 0... 00. ee 3-3
Build System Parameters Table—Operating System 3-4
Build System Parameters Table—BIOS 3-4
Build Initialization Table—Operating System 3-6
Build Initialization Table—BIOS0......0... 3-6

Build Common Data Area—Operating System 3-8
initialize Pointers—Operating System 3-9
initialize Data Structures—ABIOS 3-10

Logical ID 2 Initialization0.. 3-12

Build Protected-Mode Tables 3-13

Section 4. Transfer Conventions 4-1
Request Block 2.00.0... cee ee 4-3

Functional Parameters0.00..020008, 4-5
Service-Specific Parameters0.0.. 4-5

ABIOS Transfer Convention004. 4-13

Operating-System Transfer Convention 4-15

Section 5. Additional information 5-1
Interrupt Processing 0.0.00 cee eee ees 5-3

Interrupt Flow 2.0.0.0... 0.000. 2 5-3
Interrupt Sharing0..0.. 0.00.0 e eee ees 5-3
Default Interrupt Handler0.....0004 5-5

Adding, Patching, Extending, and Replacing 5-6
Adapter-ROM Structure0.0004 5-7
RAM-Extension Structure0.2..0004. 5-9
Adding 2... 0... 5-11

© Copyright IBM Corp. 1991 3

Patching 0.000000. ce ee a, 5-12
Extending 0000.0. cee eee, 5-13

Replacing 0.000000. ee 5-15
Considerations for RAM Extensions 5-16

Operating-System Implementation Considerations 5-18
ABIOS Rules0.000. 00.00.0000. 5-18
Considerations for Bimodal Implementations 5-20

Section 6. Interfaces0.. 6-1
Device ID 01H—Diskette 6-IDO1-1
Device ID O2H—Fixed Disk 6-ID02-1
Device ID 03H—Video 0. ee ee 6-I1D03-1
Device ID 04H—Keyboard 6-ID04-1
Device ID 0O5H—Parallel Port 6-IDO5-1
Device ID 06H—Asynchronous Communication 6-ID06-1
Device ID 07H—System Timer 6-IDO7-1
Device ID 08H—Real-Time Clock 6-i1D08-1
Device ID 0O9H—System Services 6-IDO9-1
Device [ID O0AH—Nonmaskable Interrupt (NMI) 6-IDOA-1
Device ID O0BH—Pointing Device 6-IDOB-1
Device iD OEH—Nonvolatile Random Access Memory

(NVRAM)0.00.0000.0 0.00... ee ee 6-IDOE-1
Device 1D OFH—Direct Memory Access (DMA) 6-IDOF-1
Device ID 10H—Programmable Option Select (POS) 6-ID10-1
Device ID 16H—Keyboard Security 6-ID16-1
Device ID 17H—SCSI Subsystem Interface 6-ID17-1
Device ID 18H—SCSI Peripheral Type 6-1D 18-1

Section 1. Introduction to Advanced BIOS

Introduction0...0..00.0..000000 002 pe eee ee 1-3

Data Structures20.2..0.. 2.0000 eee ee 1-4
Initialization00...0 0.000.000.0000 0000000 8. 4-5

Transfer Conventions0.... 0.2.0. -00 080084 1-6

Interrupt Processing0.0.. 2.000. ee eee eee 1-7
Extending ABIOS0. 2.0.0... 000. ee 1-8

© Copyright IBM Corp. 1991 1-1

Notes:

1-2 Introduction to Advanced BlIOS—September 1991

Introduction

Advanced BIOS (ABIOS) is firmware that isolates an operating
system from the low-level system hardware interface in IBM Personal
System/2 systems that use 80286 or 80386 microprocessors. The
operating system makes functional requests of ABIOS (read or write)
instead of directly manipulating the I/O ports and control words of the
system hardware. This enables details of the hardware attachments
and the timings of the hardware interfaces to be altered without
disturbing the operating-system components above the ABIOS
interface.

ROM BIOS operates as a single-tasking component in which

addressing capabilities are limited to less than 1 megabyte of
memory and only in the real-address mode (real mode) of the Intel
microprocessor. ABIOS supports addressing above 1 megabyte,

using the protected virtual address mode (protected mode) of the
Intel microprocessor. ABIOS is contained in ROM but does not
prevent a RAM implementation. ABIOS can be operated in the real
mode, in the protected mode, or in a bimodal environment using both
the real mode and the protected mode. ABIOS provides a data
structure for implementing a protected-mode or bimodal (real and
protected modes) operating system. In addition, ABIOS can runin
virtual 8086 mode.

Requests to ABIOS that are made by an operating system fall into

three categories: single-staged, discrete multistaged, and continuous
multistaged. Single-staged requests perform the requested function
before returning to the caller. Discrete muitistaged requests start an

action or operation that involves a delay before the operation is
completed. Continuous multistaged requests start an action or
operation that also invoives a delay but never ends. For multistaged

operations, control is returned to the caller during these delays so
that the processing time can be used. An interrupt from an I/O device
usually indicates completion of a stage of the operation.

Introduction to Advanced BIOS—September 1991 1-3

The following figure shows the three categories of ABIOS requests.

Single-Staged

| Start - Complete |

Discrete Multistaged

[san }-+[Se0e}-+[Sane} +[connie
Continuous Multistaged

en Hoe)
Figure 1-1. Types of Requests

Data Structures

Requests to ABIOS that are made by an operating system are made
through transfer conventions that are provided by the ABIOS
Structure. Transfer conventions require data structures that link the
operating system to the device-function routines of each supported
device. These data structures are the common data area, function
transfer tables, and device blocks. They reside in system memory
and are initialized during ABIOS initialization.

Transfer conventions that are provided by ABIOS are defined to
enable operations that use the real mode, the protected mode, or
both modes of an Intel microprocessor. To provide flexibility in
implementing a real-mode, protected-mode, or bimodal operating
system, the common data area links all ABIOS pointers into a single
structure (see “Common Data Area” on page 2-3). This structure
contains the function-transfer-table pointers, the device-block
pointers, and the ABIOS data pointers.

ABIOS entry points are stored in vector tables called function transfer
tables (see “Function Transfer Table” on page 2-7). Each supported
ABIOS device has an associated function transfer table. The first
three entries of the function transfer table are structured entry
routines: the Start routine, the Interrupt routine, and the Time-Out
routine.

1-4 Introduction to Advanced BlIOS—September 1991

ABIOS routines require a permanent work area, called a device

block, for each device (see “Device Block” on page 2-9). Hardware

port addresses, interrupt levels, and device-status information are
stored in a device block.

initialization

Initialization is a defined protocol between ABIOS and an operating

system. The operating system plays a major role in the initialization
process, including starting the process. Until the operating system
starts the initialization process, ABIOS cannot be used (see

Section 3, “Initialization”). The initialization process must occur in
the real mode of the microprocessor. It consists of three steps:

1. The operating system calls BIOS to build the system parameters
table. This table describes the number of devices that are
available in the system, common entry points, and system-stack
requirements.

2. The operating system calls BIOS to build the initialization table.
This table defines the initialization information for each device
that the system supports. This information is used to initialize
device blocks and function transfer tables.

3. The operating system allocates memory for the common data
area, using the initialization information that was returned in step
2. The memory for device biocks and function transfer tables is
allocated, and the device-block pointers and

function-transfer-table pointers are initialized in the common data
area. Then the operating system calls ABIOS to build a device
block and function transfer table for each device.

Introduction to Advanced BlIOS—September 1991 1-5

The flow of the initialization process is shown below.

Build System Parameters Table
Interrupt 15H, (AH) = 04H "

Build Initialization Table

Interrupt 15H, (AH) = 05H

Y
Build Common Data Area,

the Device Blocks and
the Function Transfer Tables

Figure 1-2. Flow of the Initialization Process

Transfer Conventions

After ABIOS is initialized, requests are presented through a
parameter block, called a request block. A request block has fields
that identify the target device, the requested operation, details of the
request, memory locations that are involved in a data transfer, and
the status of the staged or completed request. Request blocks are
described in detail in Section 4, “Transfer Conventions.”

ABIOS is implemented as a call-return programming model, using

either the ABIOS transfer convention or the operating-system transfer
convention. These two cailing conventions give an operating system
flexibility in calling ABIOS. Both calling conventions use stacks to
pass request information to the target ABIOS device routine.

The ABIOS transfer convention is the simplest calling sequence for
the operating system. The operating system passes the
common-data-area pointer and the request-block pointer to one of
three common entry points: the Common Start routine, the Common
Interrupt routine, and the Common Time-Out routine. The pointers to
these common routines are returned to the operating system during
initialization. The common routines use the request-block

information and the common-data-area pointer to get the
device-block pointer and the function-transfer-table pointer from the
common data area. The common routine then transfers control to the
requested ABIOS routine whose pointer is in the function transfer
table.

1-6 Introduction to Advanced BIOS—September 1991

The flow of the ABIOS transfer convention is shown below.

Operating System Operating System Calls|_ | Common Routine
Builds Request Block Common Routines Selects and Invokes

ABIOS Functions

Figure 1-3. Flow of ABIOS Transfer Convention

The operating-system transfer convention requires the operating

system to determine the address for the requested ABIOS routine.
This gives the operating system flexibility in maintaining

ABIOS-routine addresses that are frequently called. This method is
useful for handling interrupts from character and programmed-l/O

devices that repeatedly call a single routine. The common-data-area
pointer, the request-block pointer, the function-transfer-table pointer,
and the device-block pointer are required on entry to the ABIOS
routine.

The flow of the operating-system transfer convention is shown below.

Operating System |_| Operating System
Builds Request Block Selects and Invokes

ABIOS Routines

Figure 1-4. Flow of Operating-System Transfer Convention

The ABIOS transfer convention and the operating-system transfer
convention are described in detail in Section 4, “Transfer
Conventions.”

Interrupt Processing

For multistaged requests, interrupts from hardware devices cause the
microprocessor to branch to predefined addresses in the interrupt
vector table. When an interrupt occurs, ABIOS expects the operating
system to receive control. ABIOS provides interrupt routines for the
processing of ABIOS interrupts. Interrupt processing is described in
“Interrupt Processing” on page 5-3.

Introduction to Advanced BIOS—September 1991 1-7

Extending ABIOS

The ability to add, patch, extend, and replace ABIOS routines is

necessary for supporting new devices or device features on the
system. For more information, see Section 5, “Additional
Information.”

1-8 Introduction to Advanced BlIOS—September 1991

Section 2. Data Structures

Introduction000 000000000 eee eee ee ee 2-3
Common DataArea 2-3
Function Transfer Table 2-7
Device Block0....-2..---2.-20.2.2024 2-9

© Copyright IBM Corp. 1991 2-1

Notes:

2-2 Data Structures—September 1991

Introduction

ABIOS uses data structures to link the operating system to the
device-function routines for each ABIOS device. These data
structures are the common data area, the function transfer table, and
the device block. They reside in system memory and are initialized
during ABIOS initialization.

Transfer conventions that are provided by ABIOS are defined to
enable operations that use the real mode, the protected mode, or

both modes of an Intel microprocessor. ABIOS provides the common
data area for implementing a real-mode, protected-mode, or bimodal

operating system. This structure contains the function-transfer-table
pointers, the device-block pointers, and the ABIOS data pointers. The
common data area links all ABIOS pointers in a single structure to
enable an operating system to manage ABIOS requests in both
operating environments of the Intel microprocessors.

Common Data Area

The common data area contains data pointers that facilitate the
ABIOS operation in a bimodal environment. These data pointers are

established during ABIOS initialization and contain information for
each device that the system supports. The common data area is
required in all three operating modes.

Each ABIOS device has a physical-device identifier, called a device
ID. A device ID has one or more logical IDs that serve as device
handlers and are used by the operating system to make requests of
ABIOS. The common data area is made up of two arrays: an array of
logical-ID entries and an array of data-pointer entries. Each
logical-ID entry contains a pointer to a device block and a pointer to a
function transfer table. Each data-pointer entry contains memory
addresses that are used by ABIOS services.

On each request to ABIOS, a segment or selector that has an

assumed offset of 0 and points to the common data area is passed to
ABIOS. This pointer is referred to as the anchor pointer to the
common data area.

Data Structures—September 1991 2-3

The following diagram shows the common data area and its
relationship to the other ABIOS data structures.

Request Block |

Logical ID

| Anchor Pointer

 o Common Data Area

 Data Pointers Offset
Number of Logical IDs

 Device Block

e eo

> Device Block Pointer Device Data
Function Transfer Table Pointer e

> Data Pointer ——| Device Memory

> Function Transfer Table ABIOS Functions

9s es

Function 1 Pointer | Function 1
Function 2 Pointer *| Function 2
Function 3 Pointer Function 3

e e

Figure 2-1. Flow of Common Data Area

2-4 Data Structures—September 1991

The following figure shows the format of the common data area.

Size Offset Description

Word 00H Offset to data pointer 0

Word 02H Count of logical IDs

DWord 04H Reserved

DWord 08H Device-block pointer logical |D

DWord OCH Function-transfer-table pointer logical ID 1
DWord 10H Device-block pointer logical ID 2

DWord 14H Function-transfer-table pointer logical ID 2

DWord O08Hxn Device-block pointer logical ID n

DWord (08Hxn)+04H Function-transfer-table pointer logical ID n

Word (O8Hxn) + O8H Data pointer p length

Word (O8Hxn) + OAH Data pointer p offset

Word (O8Hxn) + 0CH Data pointer p segment

Word (O8Hxn) + OEH Data pointer p—1 length

Word (O8Hxn) + 10H Data pointer p~—1 offset

Word (OSHxn) + 12H Data pointer p—1 segment

Word (O8Hxn) + (O6Hxp) + 08H Data pointer 0 length

Word (O8HxM) + (O6GHxp) + OAH Data pointer 0 offset

Word (O8Hxn) + (O6GHxp) + OCH Data pointer 0 segment

Word (O8Hx1n) + (O6Hxp) + OEH Data pointer count

n=the number of logical IDs

p=the number of data pointers minus 1

Figure 2-2. Common Data Area

The common-data-area entries are:

Offset to Data Pointer 0: This field, combined with the anchor
pointer, produces a pointer to the Data Pointer 0 Length field.

Count of Logical IDs: This field contains the number of device-block
and function-transfer-pointer pairs.

Device-Block Pointers: These fields contain the pointers to the
device blocks for the specified logical IDs.

Function-Transfer-Table Pointers: These fields contain the pointers
to the function transfer tables for the specified logical IDs.

Data Structures—September 1991 2-5

Data-Pointer Lengths: These fields contain the lengths of the data

areas that are pointed to by the associated data pointer.

Data-Pointer Offsets: These fields contain the offsets of the data
areas. Each offset is combined with its associated data-pointer
segment to produce a pointer to the data area.

Data-Pointer Segments: These fields contain the segments of the

data areas. Each segment is combined with its associated
data-pointer offset to produce a pointer to the data area.

Data-Pointer Count: This field contains the number of data pointers.

If the Function-Transfer-Table Pointer field and the Device-Block

Pointer field are both set to hex 0:0 after ABIOS initialization, the
associated logical iD is disregarded by the operating system as a null
common-data-area entry. The entry is used as a temporary
placeholder during initialization for ABIOS extendibility. For more
information, refer to Section 5, “Additional Information.”

2-6 Data Structures—September 1991

Function Transfer Table

ABIOS entry points are stored in vector tables, called function
transfer tables. These tables contain the doubleword address pointer
for each ABIOS function. Reserved function pointers are initialized to
hex 0:0. Each logical ID (entry in the common data area) has a
function-transfer-tabie pointer. Multiple logical IDs can have
function-transfer-table pointers that point to the same function
transfer table.

The following figure shows a function transfer table and its
relationship to the common data area.

Request Block

6

Logical ID

 | Anchor Pointer

 > Common Data Area

 Data Pointers Offset

Number of Logical IDs
e

at Device Block Pointer Device Data
Function Transfer Table Pointer °

> Data Pointer ——— Device Memory

 Device Block

» Function Transfer Table ABIOS Functions

6 e

Function 1 Pointer » Function 1

Function 2 Pointer = Function 2

Function 3 Pointer Function 3

e eo

Figure 2-3. Flow of Function Transfer Table

Data Structures—September 1991 2-7

The operating system builds a request block, including the logical ID,
which defines the device, and the function. Based on the information

in the request block, the function-transfer-table pointer and
device-block pointer can be located in the common data area for the
requested device. The operating system uses the
function-transfer-table pointer to start requests, process interrupts,
and handle any time-outs that occur. Each pointer in the function
transfer table is a doubleword pointer to a Function routine.

The following figure shows the format of the function transfer table.

Size Offset Description

DWord OOH Start-routine pointer

DWord 04H Interrupt-routine pointer

DWerd 08H Time-Out routine pointer

Word OCH Function count

Word OEH Reserved

DWord 10H Function 1 routine pointer

DWord 14H Function 2 routine pointer

DWord (4xn)+0CH Function 7 routine pointer

n=the number of functions

Figure 2-4. Function Transfer Table

The function-transfer-table entries are:

Start-Routine Pointer: The Start-routine pointer is a doubleword
pointer. It is called (using Call Far Indirect) to start a request. This
routine validates the Function field, the Request-Block Length field,
and the Unit field. All registers are saved and restored across a call
to this routine.

interrupt-Routine Pointer: The Interrupt-routine pointer is a
doubleword pointer. It is called (using Call Far Indirect) to resume a
multistaged request upon indication from the hardware. All

multistaged requests are resumed through this routine if the
operation is not complete. All registers are saved and restored
across a call to this routine. If this function transfer table
corresponds to a device that does not interrupt, the Interrupt-Routine
Pointer field is initialized to hex 0:0.

2-8 Data Structures—September 1991

Time-Out Routine Pointer: The Time-Out routine pointer is a
doubieword pointer. It is called (using Call Far Indirect) to terminate
a request that fails to receive a hardware interrupt within a specified
length of time. This routine terminates the request and leaves the
hardware controller in a known, initial state. All registers are saved
and restored across a call to this routine. If this function transfer
table corresponds to a device that does not interrupt, or to a device
that interrupts but never times out, the Time-Out Routine Pointer field
iS initialized to hex 0:0.

Function Count: This is a word count of the number of functions that
are supported by a device.

Reserved: This is a reserved word (allocated regardless of whether
the value of the Function Count field is 0).

Function 1 Pointer: This is a doubleword pointer to the Function 1
routine.

Function 2 Pointer: This is a doubleword pointer to the Function 2
routine.

Function n Pointer: This is a doubleword pointer to the Function n
routine.

For more information, see “Functional Parameters” on page 4-5.

Device Block

ABIOS routines require a permanent work area, called a device
block, for each device. Hardware port addresses, interrupt levels,
and device-status information are stored in a device block.

The device block contains both public and private data. The public
data in the device block is a readable area whose format is common
across all device blocks. The operating system must not alter this
area. Private data in the device block is used internally by ABIOS.
Its format and content are not necessarily identical in all
implementations of ABIOS. The operating system must not examine
or alter private data, and IBM reserves the right to alter the contents
of the private portion of the device block.

Data Structures—September 1991 2-9

The foliowing figure shows a device biock and its relationship to the

common data area.

Request Block |

Logical ID

Anchor Pointer

 > Common Data Area

Data Pointers Offset a. : i
Number of Logical IDs Device Block

e ®

Device Block Pointer Device Data

Function Transfer Table Pointer e
e

 > Data Pointer nt Device Memory

Function Transfer Table ABIOS Functions

e e

Function 1 Pointer Function 1

Function 2 Pointer m Function 2
Function 3 Pointer » Function 3

. e

Figure 2-5. Flow of Device Block

2-10 Data Structures—September 1991

Every ABIOS device has an associated device block. The
device-block format is shown in the following figure.

Size Offset Description Access

Word 00H Device-block length Public read

Byte 02H Revision Public read

Byte 03H Secondary device ID Public read

Word 04H Logical ID Public read

Word 06H Device ID Public read

Word 08H Count of logical-ID exclusive-port pairs Public read

Word OAH Count of logical-ID common-port pairs Public read

DWord ? Logical-ID exciusive-port pairs 0 Public read

DWord ? Logical-ID exclusive-port pairs 1 Public read

DWord ? Logical-ID exclusive-port pairs n Public read

DWord ? Logical-ID common-port pairs 0 Public read

DWord ? Logical-ID common-port pairs 1 Public read

DWord ? Logical-ID common-port pairs n Public read

Word ? Device-unique data-area length Private

? ? Device-unique data area Private

Word ? Count of units Private

Word ? Unit-unique data-area length Private

? ? Unit-unique data area Private ? = placeholder for variable values

n=the number of port pairs

Figure 2-6. Device Block

The device-block entries are:

Device-Block Length: This field is one word long, and it contains the
number of bytes that are in the device block, including the

Device-Block Length field. The maximum specifiable length is 64KB
minus 1 byte. The required device-block size for a particular device
is returned during ABIOS initialization.

Data Structures—September 1991 2-11

Revision: This byte indicates the level of the supporting code for a

device. The initial value of the base level is 0. The value of the

Revision field is increased by 1 for each succeeding version of ABIOS
code for a particular device ID and secondary device ID (that is, when
a new level of ABIOS code is developed for existing hardware).

Secondary Device ID: This byte indicates the level of hardware that
an ABIOS implementation supports. The initial value of the base
level is 0. The value of the Secondary Device ID field is increased by
1 when a new level of code is developed for a previously-defined
device ID that Supports new hardware. When the value of the
Secondary Device ID field is increased, the Revision field is reset to
0.

Logical ID: This field indicates the logical name of the device that is
associated with a device block. It is analogous to the
software-interrupt number that BIOS uses to access different device
types. Logical ID values are determined dynamically during ABIOS
initialization; the logical ID for a given device is determined by the
index of its entry in the common data area.

To facilitate the patching of common internal ABIOS functions, the
operating system must reserve a number of logical IDs to enable
ABIOS to cal! these common internal ABIOS functions. They are
identified to the operating system during ABIOS initialization. The
logical-ID values are shown in the following figure.

Logical ID Usage

OOH Reserved

01H Reserved

02H to nH ABIOS internal calls

>n System and adapter devices

n=the last logical ID reserved for ABIOS internal calls

Figure 2-7. Logical ID Values

Device ID: This field indicates the type of device that is addressed by
a function request and the ABIOS function level that is supported.
The assigned values of this field are shown in the following figure.

2-12 Data Structures—September 1991

Device ID Device

COH ABIOS Internal Calls

01H Diskette

02H Disk

03H Video

04H Keyboard

05H Parallel Port

06H Asynchronous Communication

07H System Timer

08H Real-Time Clock Timer

OSH System Services

OAH Nonmaskabie Interrupt

OBH Pointing Device

OCH Reserved

ODH Reserved

OEH Nonvolatile Random Access Memory (NVRAM)

OFH Direct Memory Access (DMA)

10H Programmable Option Select (POS)

11H to 15H Reserved

16H Keyboard Security

17H SCSI Subsystem Interface
18H SCS! Peripheral

19H to FFFFH Reserved

Figure 2-8. Device ID Values

Device ID hex 00 is reserved for ABIOS internal calls (an ABIOS
function calling another ABIOS function). Each of the other device-ID
values denotes a type of device and a level of ABIOS support, as
described in the “Interfaces” section.

Count of Logical-ID Exclusive-Port Pairs: This is the number of

logical-ID exclusive-port pairs. A fogical-ID exclusive port is a port
that is used exclusively by a particular logical ID. Examples are the
diskette ports, disk ports, asynchronous communication ports,
parallel ports, and video ports. If the value of the Count of Logical-ID
Exclusive-Port Pairs field is 0, no space is allocated for the Logical-ID
Exclusive-Port Pairs fields.

Count of Logical-ID Common-Port Pairs: This is the number of
logical-ID common-port pairs. Logical-ID common ports are ports
that are shared across more than one logical-ID value. Examples are
the DMA-controller ports, keyboard-controller ports, and NVRAM

ports. Each logical ID that uses one of these ports contains an entry
in the Logical-ID Common-Port Pairs fields of the device block. If the
value of this field is 0, no space is allocated for the Logical-ID
Common-Port Pairs fields.

Data Structures—September 1991 2-143

Logical-ID Exclusive-Port Pairs: These are the logical-ID

exclusive-port pairs. The first word of the doubleword is the starting
|/O-port number of a range of I/O-port numbers. The second word is
the ending |/O-port number of the range.

Logical-ID Common-Port Pairs: These are the logical-ID

common-port pairs. The first word of the doubleword is the starting
|/O-port number of a range of I/O-port numbers. The second word is
the ending I/O-port number of the range.

Note: Every port that an ABIOS logical ID reads from or writes to is

contained in either the Logical-ID Exclusive-Port Pairs fields or
the Logical-ID Common-Port Pairs fields.

Device-Unique Data-Area Length: This field contains the length, in
bytes, of the device-unique data area for the specified device.

Device-Unique Data Area: This field contains data that is unique to a
device. Parameters that describe the device and working data that
span the device ID are kept in this area. This area contains private
data for ABIOS; its content and format might change. Examples of
the data that is kept in this area are interrupt level, arbitration level,
and device status.

Count of Units: This field contains the number of unit-unique data
areas in the device block. If the value of this field is 0, the Count of

Units field is the last field in the device block.

Unit-Unique Data-Area Length: This field contains the length, in
bytes, of a single entry in the repeatable unit-unique data area,

excluding the Unit-Unique Data-Area Length field. This field exists
only when the value of the Count of Units field is greater than 0.

Unit-Unique Data Area: This field is a private area that is repeatable
for each unit of the specified device iD. For example, if the device ID

value is hex 01 (diskette), a particular diskette drive is considered a
unit. Parameters that describe the unit and working data that span
individual requests are kept in this area. This area contains private

data for ABIOS; its content and format might change. This field exists
only when the value of the Count of Units field is greater than 0.

2-14 Data Structures—September 1991

Section 3. Initialization

Introduction .. 0.0... 0000000 0c 3-3
Build System Parameters Table—Operating System 3-4
Build System Parameters Table—BlIOS 3-4

Build Initialization Table—Operating System 3-6
Build Initialization Table—BIOS 3-6
Build Common Data Area—Operating System 3-8
Initialize Pointers—Operating System 3-9
Initialize Data Structures—ABIOS 3-10
Logical ID 2 Initialization00.2000.0000000.., 3-12

Build Protected-Mode Tables 3-13

© Copyright IBM Corp. 1991 3-1

Notes:

3-2 = Initialization—September 1991

Introduction

ABIOS is initialized on demand. The operating system makes
specific calls to BIOS and ABIOS to initialize ABIOS. The real-mode
common data area must be initialized before any requests can be
made to ABIOS. Initialization must be performed in the real mode of

the microprocessor. It includes building the system parameters
table, the initialization table, and the common data area. The
following diagram shows the flow of the real-mode

common-data-area initialization.

Start see

Operating System Calls BIOS to Build the System
Parameters Table

Operating System Calls BIOS to Build the Initialization Table

f
Operating System Builds the Rea! Mode Common Data
Area, and Allocates Memory for the Device Blocks,
and the Real Mode Function Transfer Tables

!
Operating System Calls Initialize Device Block and Function
Transfer Table Routine for Each Initialization Table
Entry to Build Function Transfer Tables and Device Blocks

f
Operating System Converts Each Data Pointer to Segments
and Offsets

End

Figure 3-1. Flow of Real-Mode Common-Data-Area Initialization

Initialization—September 1991 3-3

Build System Parameters Table—Operating
System

The operating system allocates an area of hex 20 bytes and calls
BIOS to build the system parameters table. This table describes the
number of devices that are available in the system, the ABIOS
common entry points, and system-stack requirements.

Interrupt 15H—System Services

(AH) = 04H—Build System Parameters Table

Invocation: Software interrupt, operating system calls BIOS

(ES:DI) - Pointer to caller’s memory where system

parameters table is to be built

(DS) - Segment with assumed offset of hex 0 to

RAM extension area (points to a RAM extension

with a length of 0 for no RAM extensions)

On Return:

(AH) = 0Q- Operation successfully completed

CF = 1- Exception error

All registers except (AX) and the flags are restored.

Figure 3-2. Build System Parameters Table BIOS Function

Build System Parameters Table—BIOS

When it is called by the operating system, BIOS builds the system
parameters table. The Number of Entries field is established from the
system-board ROM, adapter ROMs, and RAM extensions. To
accumulate the number of entries, configuration information is
obtained from system-equipment data areas, from NVRAM, and
possibly, by presence testing for devices whose operating code
resides in the system-board ROM.

For devices that have code in an adapter ROM, an extension of the
power-on self-test (POST) ROM scan determines the number of
entries that the adapter ROM requires (see “Adapter-ROM Structure”
on page 5-7).

For devices that have code in the RAM-extension area, the
RAM-extension scan determines the number of initialization-table
entries that the RAM extension requires (see “RAM-Extension
Structure” on page 5-9).

3-4 =Initialization—September 1991

When the system-parameters-table information has been obtained,

the memory that is allocated for this table can be deallocated and
reused by the operating system. The format of the system
parameters table is shown below.

Size Oftset Description

DWord OOH Common Start routine pointer

DWord 04H Common Interrupt routine pointer

DWord 08H Common Time-out routine pointer

Word OCH Stack required

DWord OQEH Reserved

DWord 12H Reserved

DWord 16H Reserved

DWord 1AH Reserved

Word 1EH Number of entries

Figure 3-3. System Parameters Table

The system-parameters-table entries are:

Common Start Routine Pointer: This is a doubleword address

pointer to the Common Start routine entry point.

Common Interrupt Routine Pointer: This is a doubleword address
pointer to the Common Interrupt routine entry point.

Common Time-Out Routine Pointer: This is a doubleword address

pointer to the Common Time-Out routine entry point.

Stack Required: This field is a word that contains the amount of
stack memory, in bytes, that is required for a particular ABIOS
implementation.

Number of Entries: This field is a word that contains the number of

entries that are required in the initialization table.

Initialization—September 1991 3-5

Build Initialization Table—Operating System

The initialization table defines the initialization information for each

device that the system supports. This information is used to initialize
the device blocks and the function transfer tables.

The operating system allocates memory and calls BIOS to build the
initialization table. The amount of memory, in bytes, that is required
for the initialization table is the number of entries in the initialization
table multiplied by hex 18. The Number of Entries field in the system
parameters table is used for this calculation. When the initialization
process is complete, the memory that was allocated for the
initialization table can be deallocated and reused by the operating

system.

interrupt 15H—System Services
(AH) = 0O5H—Bulld Initialization Table

invocation: Software interrupt, operating system calls BIOS

(ES:Dl) - Pointer to caller’s memory where

initialization table is to be built

(DS) - Segment with assumed offset of hex 0 to

RAM extension area (points to a RAM extension

with a length of 0 for no RAM extensions)

On Return:

(AH) = 0- Operation successfully completed

CF = 1- Exception error

All registers except (AX) and the flags are restored.

Figure 93-4. Build Initialization Table BIOS Function

Build Initialization Table—BIOS

BIOS builds the initialization table. This table is established from the
system-board ROM, adapter ROMs, and RAM extensions. For
devices that have code in an adapter ROM, an extension of the
power-on self-test (POST) ROM scan is used. For more information,
see “Adapter-ROM Structure” on page 5-7.

For devices that have code in the RAM-extension area, the
RAM-extension scan is used (see “RAM-Extension Structure” on

page 5-9). All system-board ABIOS-device initialization-table entries
precede any adapter-ROM or RAM-extension device entries. The

3-6 Initialization—September 1991

initialization-table structure, shown in the following figure, is
repeated for each entry.

Size Offset Description

Word 00H Device ID

Word 02H Number of logical IDs

Word 04H Device-block length

DWord 06H Initialize Device Block and

Function Transfer Table routine pointer
Word OAH Request-block length

Word OCH Function-transfer-table length
Word OEH Data-pointers length

Byte 10H Secondary device ID

Byte 11H Revision

Word 12H Reserved

Word 14H Reserved

Word 16H Reserved

Figure 3-5. Initialization Table

The initialization-table entries are:

Device ID: For a list of the values of the Device ID fieid, see

Figure 2-8 on page 2-13. There can be more than one entry in the
initialization table with the same device ID.

Number of Logical IDs: This is a word that contains the maximum
number of devices that require individual device blocks but are

operated by the same code. The Number of Logical IDs field tells the
operating system the maximum number of logical IDs that this
initialization-table entry allows.

Device-Block Length: This is a word that contains the length, in
bytes, of the storage allocation that is required for the device block
for this device. A device-block length of 0 indicates that this
initialization-table entry is for an ABIOS patch or extension, and no
device block needs to be built (see “Adding, Patching, Extending, and
Replacing” on page 5-6). When the device-block length is 0, the
operating system ensures that the device-block pointer in the
common data area is initialized to hex 0:0.

Initialize Device Block and Function Transfer Table Routine Pointer:
This is a doubleword address pointer (real mode segment:offset) to
the routine to initialize the device blocks and function transfer tables

for an entry in the initialization table. This routine is also provided by
adapter ROMs or RAM extensions to add, patch, extend, or replace

Initialization—September 1991 3-7

services (see “Adding, Patching, Extending, and Replacing” on
page 5-6).

Request-Block Length: This is a word that contains the length, in
bytes, of the storage allocation that is required for the request block
for this device. When a request is made to ABIOS, any request-block
size that is greater than the returned size is valid.

Function-Transfer-Table Length: This is a word that contains the
length, in bytes, of the function transfer table. A
function-transfer-table length of 0 indicates that this

initialization-table entry is for an ABIOS patch, and no
function-transfer-table data area is to be allocated. When the

function-transfer-table length is 0, the operating system ensures that

the Function-Transfer-Table Pointer field in the common data area is
initialized to 0:0.

Data-Pointers Length: This is a word that contains the length, in
bytes, of the storage allocation that is required for the Data Pointer
fields in the common data area.

Secondary Device ID: This is a byte that is used to determine the
level of hardware that an ABIOS implementation supports. See
“Device Block” on page 2-9 for more information.

Revision: This byte is used to indicate the level of the supporting
code for this device. See “Device Block” on page 2-9 for more
information.

Build Common Data Area—Operating System

After the system parameters table and the initialization table are
built, the operating system has all the necessary information that is
required to build the common data area and its associated data
structures (see “Data Structures” on page 1-4). The size of the
common data area, the size of each function transfer table, and the
size of each device block can be determined from the initialization
table.

The operating system builds the common data area at offset hex 00 in
a segment and allocates memory for each device block and function
transfer table. Memory is allocated in the common data area for the
data pointers. The offset to the Data Pointer 0 field is initialized to
point to the Data Pointer Length 0 field in the common data area. The
Data Pointer Count field is initialized to 0. The Count of Logical IDs

3-8 =Initialization—September 1991

field is filled in with the number of device-block and
function-transfer-table pointer pairs. Each device-block pointer and
each function-transfer-table pointer is initialized to point to the
memory that has been allocated.

Logical-ID values for physical devices are assigned by their order in
the initialization table. For example, if the value of the Number of
Logical IDs field is 1 for each entry in the initialization table, the first
entry corresponds to logical ID 2, the second entry corresponds to
logical ID 3, and so on. If the value of the Number of Logical IDs field
is greater than 1 for the first initialization-table entry, that entry

corresponds to logical ID 2 through logical ID 2 plus the value of the
Number of Logical IDs field minus 1. The second initialization-table
entry corresponds to the next succeeding logical ID.

Multiple function-transfer-table pointers can point to the same
function transfer table. This occurs when the value of the Number of
Logical IDs field in an initialization-table entry is greater than 1. The

operating system must ensure that the function-transfer-table
pointers for the succeeding logical IDs, which correspond to a single
initialization-table entry, point to the same function transfer table.

initialize Pointers—Operating System

The operating system calls the Initialize Device Block and Function
Transfer Table routine once for each entry in the initialization table.
The operating system passes the anchor pointer, the starting logical
ID, and the number of logical !Ds that are to be initialized.

The Initialize Device Block and Function Transfer Table routines are
called in the order in which their pointers appear in the initialization
table. This causes system-board ROM devices to be initialized before
any adapter ROM or RAM extension. The Initialize Device Block and
Function Transfer Table routines for adapter-ROM devices and RAM
extensions can then identify the system-board services that might be
needed. This is accomplished by scanning the common data area,
using the device ID in the public portion of the device block to identify
the system-board service that is needed. When the device ID has

been found, the logical-ID number that is in the public portion of the
device block is used for all subsequent requests to the system-board
ABIOS service.

The operating system needs to call the Initialize Device Block and
Function Transfer Table routine only for the devices that are to be
made operational. The operating system can determine whether to

Initialization—September 1991 3-9

initialize an ABIOS device on the basis of the values in the Device ID
field and the Secondary Device ID field in each initialization-table
entry. For devices that are initialized, the operating system must

ensure that each additional initialization-table entry that contains the
same device-ID and secondary-device-ID values must also be
initialized to allow for patching. Each initialization-table entry that
contains a device ID of 0 must be initialized to ensure that internal
ABIOS calls are supported. Also, there are device IDs that might
need to be initialized to support other device IDs. For example, DMA

ABIOS must be initialized if fixed-disk ABIOS is initialized. These
requirements are defined in the “Interfaces” section.

When the value of the Number of Logical IDs field is greater than 1,

the operating system can initialize any number of logical IDs up to
and including the value of the Number of Logical IDs field.

invocation: Call FAR; operating system calls ABIOS on

system-board ROM, on adapter ROM, or on

RAM extension, depending on the device.

(CX) - Number of logical IDs to be initialized (up to

the value of the Number of Logical IDs field
in the initialization table)

(DX) - Starting fogical ID

(DS) - Anchor pointer to the common data area

On Return:

(AL) - Exception condition

= QOH - Operation successfully completed

= 01H to FFH - Device-initialization failure

Ail registers except (AX) are restored.

Figure 3-6. Initialize Device Block and Function Transfer Table Routine

Initialize Data Structures—ABIOS

When the Initialize Device Block and Function Transfer Table routine

is called, ABIOS fills in the function transfer table at the location that
is defined by the function-transfer-table pointer of the Starting Logical
ID parameter (DX).

For adapter ROMs or RAM extensions, when the Initialize Device
Block and Function Transfer Table routine is called, each segment
value that is placed in the function transfer table must equal the

segment value of its corresponding ROM header or RAM-extension
header. This allows an operating system to read the Length field of
the ROM header or the RAM-extension header to determine the

3-10 {nitialization—September 1991

segment limit in a bimodal or protected-mode environment. When

the protected-mode common data area is being built, if offset hex 00
of the ROM-header segment or RAM-extension-header segment
contains the ROM or RAM signature, offset hex 02 contains the

length, in multiples of 512 bytes (the limit is hex 7F). This value is
used to calculate the segment limit.

After the function transfer table is filled in, the Initialize Device Block
and Function Transfer Table routine fills in the device block for the

Starting Logical ID parameter (DX) and each succeeding logical ID,
up to the value in the Number of Logical IDs to Be Initialized

parameter (CX).

On return from the Initialize Device Block and Function Transfer
Table routine, if the value in the Exception Condition parameter (AL)

is nonzero, indicating an error, deallocate the associated device
blocks and function-transfer-table areas and replace the associated
device-block pointers and function-transfer-table pointers with hex
0:0, making those entries null common-data-area entries.

Data Pointers

The Initialize Device Block and Function Transfer Table routine stores
all the necessary ABIOS data pointers in the data-pointer portion of
the common data area. As the data pointers are stored, the value of
the Data Pointer Count field is increased. The offset to the stored

data pointer in the common data area can be stored in the device
block as a handle to the data pointer.

ABIOS initializes data pointers as 32-bit physical addresses that are
stored in Intel data format (low word, high word) in the Data Pointer

Offset field. Preceding this 32-bit physical address is the Data-Pointer
Length field, which indicates the segment limit for a protected-mode
or bimodal implementation. !n bimodal implementations, a
data-pointer value of hex 0:0 in the real-mode version of the common
data area indicates an address above 1MB.

The operating system must translate the 32-bit physical address of

each data pointer to a 16-bit offset and a 16-bit segment before
making any requests to ABIOS.

Initialization—September 1991 3-11

Logical ID 2 Initialization

Reserved data pointers are initialized by a call to the Initialize Device
Block and Function Transfer Table routine for Logical ID 2. Logical ID
2 is reserved for ABIOS internal calls (device ID hex 00).

The following is a list of the reserved data pointers.

Data-Pointer Value

Number (Physical) Limit Description

0 400H 0100H BIOS data area
1 EQ000H FFFFH First 64KB of system-board ROM
2 FOO00H FFFFH Second 64KB of system-board ROM

Figure 3-7. Reserved Data Pointers

These data pointers allow a single common data pointer to be used
by multiple ABIOS devices instead of duplicating the same data
pointer multiple times.

In addition, a call to the Initialize Device Block and Function Transfer
Table routine for logical ID 2 places the Common Start routine
pointer, the Common Interrupt routine pointer, and the Common
Time-Out routine pointer at the Start, Interrupt, and Time-Out pointers
in the function transfer table for logical 1D 2. The initialization-table
entry for the first device of 0 must have a function-transfer-table
length of at least hex 10 (greater if ABIOS internal functions exist) to
allow for the three doubleword pointers, a word count of functions,
and a reserved field.

When the value of the Function Count field in the function transfer
table for logical ID 2 is 0, the function transfer table has the following
format:

Size Offset Description

DWord 00H Common Start routine pointer

DWord 04H Common Interrupt routine pointer

DWord O8H Common Time-Out routine pointer

Word OCH Function count (set to 0)
Word OEH Reserved

Figure 3-8. Function Transfer Table for Logical ID 2

3-12 = Initialization—~September 1991

Build Protected-Mode Tables

For protected-mode or bimodal implementations, it is necessary to
build the protected-mode common data area and function transfer
tables using the information that is built into the real-mode common
data area and function transfer tables. The operating system must

create selectors in the protected-mode common data area and
function transfer tables whose effective addresses are identical to
their corresponding segments in the reail-mode common data area
and function transfer tables. The following diagram iliustrates the
necessary steps to build the protected-mode common data area.

Start

Operating System Builds the Reali Mode Common Data Area

f
Operating System Allocates Memory for the Protected Mode
Common Data Area and the Protected Mode Function Transfer
Tables

Operating System Converts Each Real Mode Device Block Pointer
to a Protected Mode Device Block Pointer

'
Operating System Creates a Protected Mode Function Transfer
Table Pointer for Each Protected Mode Function Transfer Table

t
Operating System Converts Each Real Mode Function Pointer
within Each Real Mode Function Transfer Table to a Protected
Mode Function Pointer

Operating System Converts Each Real Mode Data Pointer to a
Protected Mode Data Pointer

at
End

Figure 3-9. Flow of Protected-Mode Common-Data-Area Initialization

To build the descriptors that are associated with each selector, in

addition to the physical address, the operating system needs to know
the access rights and the segment limit of each segment.

Initialization—September 1991 3-13

The function-transfer-table pointers and the device-block pointers are
writable data-segment descriptors whose expansion direction and
limit are maintained by the operating system. The length of each of
these tables is returned to the operating system through the
Function-Transfer-Table Length field and the Device-Block Length
field of the initialization tabie.

The selector of each data pointer must pertain to a writable
data-segment descriptor whose expansion direction is up. The

segment limit is determined by the Data Pointers Length field of each
data-pointer entry in the common data area.

The pointers to ABIOS functions in the function transfer table must be
readable code-segment descriptors whose conforming bit is

determined by the operating system. If offset hex 00 of the
ROM-header segment or the RAM-extension-header segment
contains the ROM or RAM signature, offset hex 02 contains the
length, in multiples of 512 bytes (the limit is hex 7F). This value is to
be used as the segment limit. If the ROM or RAM signature does not
exist, the segment limit is hex FFFF.

lf ABIOS is called as a conforming code segment by multiple privilege
leveis, the operating system is responsible for ensuring that ABIOS
has I/O privilege at all times.

Each common-data-area entry in the protected-mode version must be
a null common-data-area entry if its corresponding entry in the
real-mode version is a null common-data-area entry. When the
protected-mode version of each function transfer table is initialized,
each entry in the protected-mode version that has a corresponding

entry of hex 0:0 in the real-mode version must have a value of hex 0:0
to indicate that the function is not supported. The offset fields in the
function transfer table must be the same for the corresponding
entries in both tables. The device-block pointers for each logical-ID
entry in both the real-mode and the protected-mode common data
areas must point to the same device block.

3-14 = Initialization—September 1991

Section 4. Transfer Conventions

Request Block00..00 00000000. eee eee 4-3
Functional Parameters00.00. 4-5
Service-Specific Parameters 4-5

ABIOS Transfer Convention 4-13

Operating-System Transfer Convention 4-15

© Copyright IBM Corp. 1991 4-1

Notes:

4-2 Transfer Conventions

ABIOS can be implemented in three environments: protected mode
only, real mode only, and bimodal. ABIOS requires a method of
transferring control from the caller of ABIOS to ABIOS without

sacrificing performance. The two methods that are provided for this
transfer are the ABIOS transfer convention and the operating-system
transfer convention. Both of these conventions use the request block
as the method by which an operating system communicates with and
passes parameters to ABIOS.

Request Block

The request block is a parameter biock that is used to communicate

information bidirectionally between the caller and an ABIOS service.
Parameters are passed by the caller (IN) and returned by ABIOS
(OUT).

Transfer Conventions 4-3

The following diagram shows the request block and its relationship to
a common data area.

Request Block

Logical ID

 | Anchor Pointer

 > Common Data Area

 Data Pointers Offset
Number of Logical IDs

 Device Block

e 6

» Device Block Pointer Device Data

Function Transfer Table Pointer e

> Data Pointer ——} Device Memory

> Function Transfer Table ABIOS Functions

a ®

Function 1 Pointer Function 1
Function 2 Pointer m Function 2
Function 3 Pointer * Function 3

e ®

Figure 4-1. Flow of Request Block

input parameters (IN) are not altered by ABIOS during a request.
Output parameters (OUT) and work areas do not need to be set to any
predefined vaiues before ABIOS is called. This allows request blocks
to be reused after requests are completed, but it requires that any
Work Area fields that contain request-state information be initialized

by the ABIOS Start routine to the predefined values. Only input (IN)
or input/output (IN/OUT) parameters that change between requests
need to be initialized before the request block is reused.

All reserved input fields must be set to 0 by the caller of ABIOS.

The parameters are divided into two categories: functional
parameters and service-specific parameters.

4-4 Transfer Conventions

Functional Parameters

Functional parameters are common to all ABIOS-service requests.
They convey information to ABIOS about which service should be
invoked on which device. Each input parameter is initialized by the
caller, and when it is initialized, it must remain unaltered until the
requested operation is complete. The functional parameters are the
Request-Block Length field through the Time-Out field, as shown in
Figure 4-2.

Service-Specific Parameters

Service-specific parameters are specific to ABIOS requests. The

details of the parameters that are passed by the calier and

parameters that are returned by ABIOS depend on the service that
has been requested. The service-specific parameters are the Data
Pointer 1 field through the Work Area field, as shown in Figure 4-2.

Request-Block Structure

The structure of a request block that contains functional parameters
and service-specific parameters is shown below.

Functional Parameters:

Word 00H Request-block length (IN)

Word 02H Logical ID (IN)

Word 04H Unit (IN)

Word 0GH Function (IN)

Word 08H Reserved

Word OAH Reserved

Word OCH Return code (IN/OUT)

Word OEH Time-out (OUT)

Service Specific Parameters:

Word 10H Reserved

DWord 12H Data pointer 1 (iN)
Word 16H Reserved

Word 18H Reserved

DWord 1AH Data pointer 2 (IN)

? 1EH Parameters (IN/OUT)

? ? Work area

? = undefined initial value

Figure 4-2. Request Block

Transfer Conventions 4-5

Request-Block Length (IN): The Request-Block Length field contains
the length, in bytes, of the request block, including the Request-Block

Length field itself. The maximum specifiable length is 64KB minus 1
byte. The Request-Block Length field contains a fixed value that is
initialized by the caller for the specific togical ID. The size of the
request block for a logical ID is returned by the Return Logical ID
Parameters function (hex 01) when ABIOS is initialized. However, the
request block can be larger than the returned size.

Logical ID (IN): The Logical ID field indicates the particular device
that is addressed by a function request. It is analogous to a
software-interrupt number that is used by BIOS to access different
device types.

Unit (IN): The Unit field is a parameter that addresses a particular
unit of a device type within a logical ID. The range of valid values is
limited by the number of units that are attached to a single controller.
The maximum unit number is n—1, where n is the number of units
that are attached to the controller. The minimum number of units is
1, which causes the value of the Unit field to be 0.

Function (iN): The Function field is a parameter that is used to
request a particular category of operation. The assignment of
functions is as follows.

Function hex 00—Default Interrupt Handler:

This function is called, with no service-specific parameters,

for each logical ID by way of the Interrupt routine. The
request block for the default interrupt handler has a fixed

length of hex 10 bytes, and the Return Code field is updated
on return with hex 0000 (Operation Successfully Completed)
or hex 0005 (Not My Interrupt). For more information on the
default interrupt handler, see “Default Interrupt Handler” on
page 5-5.

Function hex 01—Return Logical ID Parameters:

This is a single-staged function that is common to all ABIOS

device IDs. {t returns information pertaining to the logical ID.
Its request block has a fixed length of hex 20 bytes.

This function returns the following parameters.

Service-Specific Input

Size Offset Description

Word 1AH Reserved

Word 1CH Reserved

Word 1EH Reserved

4-6 Transfer Conventions

Service-Specific Output

Size

Word

Byte

Byte

Word

Word

Word

Word

Byte

Byte

Word

Word

Offset

OCH

10H

11H

12H

14H

16H

18H

1AH

1BH

1CH

1EH

Description

Return code

Hardware interrupt level

FDH - Interrupt level not available

FEH - Special case for NMI

FFH - Noninterrupting logical ID
Arbitration level

= FDH - Arbitration level not available

= FEH - Two arbitration levels are available
(see offset hex 1C)

= FFH - Not applicable

Device ID

Count of units

Logical-ID flags

Bits 15 to 6 - Reserved (set to 0)

Bit 5 - Address-limited indicator for DMA devices

= 0- Address capability limited to 16MB

= 1- Address capability limited to 4GB

Bit 4 - Generic SCSI disk support availability

0 - Not available

1 - Available

Bit 3 - Overlapped I/O across units

0 - Not supported
1 - Supported

Bit 2 - 32-bit offset

0 - Not enabled

1 - Enabled

Bits 1, 0 - Function read/write/additional-data-transfer

data-pointer mode

= 00 - No read/write/additional-data-transfer

functions are supported

01 - Data pointer 1, fogical

Data pointer 2, reserved

10 - Data pointer 1, reserved

Data pointer 2, physical

11 - Data pointer 1, logical

Data pointer 2, physical
Request-block length

(for functions other than Default Interrupt Handler and

Return Logical ID parameters; variable by logical 1D)
Secondary device ID
Revision

First and second arbitration levels

(valid only when the Arbitration Level field
is set to hex FE)

Bits 7 to 4 - Second arbitration level

Bits 3 to 0 - First arbitration level

Reserved

fi
it

il

ll
tl

The logical ID flags contain 2 bits that indicate the mode
(physical or logical) of the data pointer for the Read function
(hex 08), the Write function (hex 09), and the Additional Data
Transfer function (hex OA). If this parameter indicates that
the pointer should be a logical pointer, data pointer 1isa

Transfer Conventions 4-7

logical pointer, and data pointer 2 is reserved. If this

parameter indicates that the pointer should be a physical
pointer, data pointer 2 is a physical pointer, and data pointer
1 is reserved. If this parameter indicates that both a logical

pointer and a physical pointer are to be passed, data pointer
1 is a logical pointer, and data pointer 2 is a physical pointer.
if this parameter indicates that neither a logical pointer nor a
physical pointer is to be passed, either this logical ID does
not support the Read, Write, and Additional Data Transfer
functions, or these functions do not require address pointers.
in this case, no space is reserved for data pointers in the
request block.

Function 02H—Reserved

Function 03H—Read Device Parameters:

Device-specific parameters are returned.

Function 04H—Set Device Parameters:

Device-specific parameters are set.

Function 05H—Reset/Initialize:

The device is put into a known state.

Function 06H—Enable:

The device is enabled for interrupts (not at an interrupt
controller).

Function 07H—Disable:

The device is disabled for interrupts (not at an interrupt
controller).

Function 08H—Read:

Data is transferred from the device to memory. The
data-pointer mode is determined by the Return Logical ID
Parameters function (hex 01).

Function 08H—Write:

Data is transferred from memory to the device. The
data-pointer mode is determined by the Return Logical ID
Parameters function (hex 01).

Function OAH—Additional Data Transfer:

The data-pointer mode is determined by the Return Logical ID
Parameters function (hex 01).

4-8 Transfer Conventions

Functions 0BH to FFH—Additional functions as necessary:

The device-specific functions are described in the
“Interfaces” section.

Return Code (IN/OUT): This field contains the results of the current
Stage of the requested operation. For operations that are single
staged or in the final stage of a discrete multistaged operation, the
Return Code field indicates the results of the entire operation. The
return-code values are shown in the following figure.

Return-Code Value Definition

0000H Operation Successfully Completed
0001H Stage on Interrupt

0002H Stage on Time

0005H Not My Interrupt, Stage on Interrupt

0009H Attention, Stage on Interrupt

0081H Unexpected Interrupt Reset, Stage on Interrupt

8000H Device in Use, Request Refused

8001H to 8FFFH Service-Specific Unsuccessful Operation

9000H to S0FFH Device Error

9100H to 91FFH Retryable Device Error

9200H to 9FFFH Device Error

AQQ0H to AOFFH Time-out Error

A100H to A1FFH Retryable Time-Out Error
A200H to AFFFH Time-Out Error

BOOOH to BOFFH

B100H to B1FFH

B200H to BFFFH

Device Error with Time-Out

Retryable Device Error with Time-Out

Device Error with Time-Out

CO00H Invalid Logical ID

COO01H Invalid Function
C002H Reserved

C003H Invalid Unit Number

C004H invalid Request-Block Length

COO5H to CO1FH invalid Service-Specific Parameter
C020H to FFFEH
FFFFH

Service-Specific Unsuccessful Operation
Return Code Field Not Valid

Figure 4-3. Return Codes

Transfer Conventions 4-9

The bits in the Return Code field are defined in the following figure.

Bit Definition

15 Unsuccessful operation

14 Parameter error

13 Time-out error

12 Device error

11to9 Reserved
8 Retryable error

7 Unexpected interrupt reset

6 to 4 Reserved

3 Attention

2 Not my interrupt

1 Stage on time

0 Stage on interrupt

Notes:

Bits 14 to 8 are defined as above only when bit 15 is set to 1.

Bits 7 to 0 are defined as above only when bit 15 is set to 0.

if aii bits are set to 1, the Return Code field is not valid.

Figure 4-4. Return Code Field Bit Definitions

The caller of ABIOS must initialize the Return Code field to hex FFFF
(Return Code Field Not Valid) before calling any ABIOS Start routine.
If the operating system has an outstanding request block at interrupt
time, it first checks the Return Code field. if the value of the Return

Code field is hex FFFF (Return Code Field Not Valid), the operating

system considers the Return Code field not set and does not attempt
to resume this request. The ABIOS routine sets the Return Code field

to its appropriate value when the interrupt is expected.

When ABIOS is processing a request that causes a hardware
interrupt, interrupts are disabled between the time when a value is
written to the Interrupt Enable port and the time when the value of the
Return Code field is changed from hex FFFF (Return Code Field Not
Valid) to a return-code value with the stage-on-interrupt bit (bit 0) set
to 1. After the value of the Return Code field is changed, the interrupt
flag is restored to the value that it contained before it was disabled.

When a hardware interrupt occurs, the caller responds only to
requests that have a return-code value with the stage-on-interrupt bit

(bit 0) set to 1. Outstanding requests with a return-code value of hex
FFFF (Return Code Field Not Valid) are not called.

The caller should also maintain a flag that indicates whether a
request has completed the Start routine to the point at which the
Return Code field is read. This allows for a situation in which an

4-10 Transfer Conventions

interrupt occurs after the Return Code field is set to a valid value (not

hex FFFF) but before the caller reads the Return Code field. At this
point, a Start routine and an Interrupt routine could be operating on

the same request block, within different stack frames, making this flag
necessary.

Return codes hex 0009 (Attention) and hex 0002 (Stage on Time) need
to be tested only by services that require them. Return code hex 0009
indicates that data is available in a service-specific output parameter,

although the function is not complete. Return code hex 0002 indicates
that the operation is not complete and must be resumed when a

specified length of time has elapsed. This length of time is contained
in a service-specific output parameter, depending on the service. In

addition, return-code values with bit 15 set to 1 are service specific.
These values are documented in the “Interfaces” section.

Return code hex 8000 (Device in Use, Request Refused) is used for
device serialization. If a logical ID/unit combination is a

serially-reusable device, ABIOS returns this return code when there
is an outstanding request on the device.

Time-Out (OUT): The Time-Out field contains the expected duration
of the requested stage. This is used to determine when an operation

has timed out and needs to be reset by the Time-Out routine. The
unit of time is 1 second, and the value occupies bits 15 to 3. Bits 2 to
0 of this field are reserved. A value of 0 in this field indicates that the
operation has no time-out value. The Time-Out field is valid for

return-code values with the stage-on-interrupt bit (bit 0) set to 1.

Data Pointer 1, Data Pointer 2 (IN): \f data pointers are required, they
are doubleword pointers to 1/O-buffer areas for this request. Ina
bimodal environment, the effective address must be addressable in
the current mode of the microprocessor. The address can be a 32-bit

physical address for DMA or a segmented address for programmed
I/O. The Return Logical ID Parameters function (hex 01) returns a
parameter that indicates the mode (physical or logical) of the data
pointer for the Read function (hex 08), the Write function (hex 09), and
the Additional Data Transfer function (hex OA). If this parameter

indicates that the pointer should be a logical pointer, data pointer 1 is
a logical pointer, and data pointer 2 is reserved. If this parameter
indicates that the pointer should be a physical pointer, data pointer 2
is a physical pointer, and data pointer 1 is reserved. If this parameter

indicates that both a logical pointer and a physical pointer are to be
passed, data pointer 1 is a logical pointer, and data pointer 2 is a
physical pointer. If this parameter indicates neither a logical pointer

nor a physical pointer is to be passed, either this logical ID does not

Transfer Conventions 4-11

support the Read, Write, and Additional Data Transfer functions, or
these functions do not require address pointers. In this case, no
space is reserved for data pointers in the request block.

Parameters (IN/OUT): Parameters communicate operands and, in
some cases, the results of ABIOS functions. Parameter requirements
vary by device and requested function. Detailed parameter
requirements are documented in the “Interfaces” section.

Work Area: Work Area fields are optional data areas that are
reserved for ABIOS. No user data can be stored here. The content of
these fields varies by the type of request and the particular device
routine that is involved. These fields are not required to be initialized

to any value. The caller must not alter their content across
multistaged requests. Work Area fields are fields that are not defined

as service-specific input or service-specific output parameters in the
“Interfaces” section.

4-12 Transfer Conventions

ABIOS Transfer Convention

The ABIOS transfer convention makes ABIOS responsible for

determining the effective address of a particular ABIOS function.
ABIOS indexes into the common data area on the basis of the Logical
ID field in the request block to access the necessary pointers,
including the effective routine (Start, Interrupt, or Time-Out) pointer.
The ABIOS transfer convention is the simplest calling sequence for
the operating system. The flow of an ABIOS transfer request is
shown below.

Operating System |_| Operating System Calls |_| Common Routine
Builds Request Block Common Routines Selects and invokes

ABIOS Functions

Figure 4-5. Flow of ABIOS Transfer Convention

For this transfer convention, only three routines are available to the

caller for transferring control to ABIOS. The pointers to these three
routines are returned in the system parameters table when ABIOS is
initialized. They are also contained in the function transfer table for
logical ID 2. These routines are:

Common Start Routine:

This routine is called (using a Call Far Indirect) to start a
request. The Logical ID field in the request block is validated.

If this logical-ID value is greater than the value of the Count
of Logical IDs field in the common data area, or if this
logical-ID value pertains to a null common-data-area entry,
the Return Code field is set to hex C000 (Invalid Logical ID).

Common interrupt Routine:

This routine is called (using a Call Far Indirect) to resume a
multistaged request.

Common Time-Out Routine:

This routine is called (using Call Far Indirect) to terminate a
request that fails to receive a hardware interrupt within a
specified length of time. The Time-Out routine terminates the
request and leaves the hardware controller in a known initial
state.

The parameter-passing convention for the ABIOS transfer convention

is a set of two parameters, two reserved doublewords, and a return
address on the stack. The first parameter is the common-data-area

Transfer Conventions 4-13

anchor-pointer segment or selector with an assumed offset of hex 00.

The second parameter is the doubleword pointer to the request block.
The third parameter is a reserved doubleword placeholder for the
function-transfer-table pointer. The fourth parameter is a reserved
doubleword placeholder for the device-block pointer.

The ABIOS common routines expect the order of the addresses to be
from high to low (the order of pushing), as shown in the following
figure.

Displacement

Contents from Stack Pointer

Return address of caller 00H

Placeholder for device-block pointer 04H

Placeholder for function-transfer-table pointer 08H

Request-block pointer OCH

Common-data-area anchor pointer 10H

(segment or selector only)

Figure 4-6. ABIOS Transfer Convention Stack Frame

The following pseudocode instructions are suggested:

PUSH Anchor-pointer segment or selector

PUSH Request-block segment or selector

PUSH Request-block offset

SUB Stack pointer, 8

CALL Common Start routine

Pseudocode--ABlOS Transfer Convention

The common routines use the logical ID from the request block and
the anchor pointer to determine which device-block pointer and
function-transfer-table pointer pair are to be used. These routines
take this pair of pointers and place them in the stack-placeholder

positions that have been allocated by the caller. Then the common
routines transfer control to the Start, Interrupt, or Time-Out routine
whose pointers are contained in the function transfer table for the

requested value of the Logical ID field. The common-data-area

segment or selector, the request-block pointer, the
function-transfer-table pointer, and the device-block pointer are

passed on the stack. For the ABIOS transfer convention, the caller is
responsible for removing the parameters from the stack on return.

The layout of the function transfer table is shown in Figure 2-4 on
page 2-8.

4-14 Transfer Conventions

Operating-System Transfer Convention

The operating-system transfer convention makes the operating

system responsible for determining the effective address of a
particular ABIOS function. This method is most useful for handling
interrupts from character and programmed-I/O devices that
repeatedly call a single routine.

Two methods are available to accomplish operating-system transfers.
In the first method, the operating system indexes into the common

data area, on the basis of the logical ID, to access the necessary
pointers, including the effective routine (Start, Interrupt, or Time-Out)
pointer. The advantage of this method over the ABIOS transfer
convention is performance.

In the second method, the operating system stores pointers as
necessary and accesses them without indexing into the common data
area. An operating system might use this method if itis a
real-mode-only or protected-mode-only operating system. The
common data area is provided to access the necessary pointers as

quickly as possible in a bimodal environment. !n a single-mode
environment, there is no advantage to accessing the pointers by
indexing into the common data area. There is a small! performance
loss with this method. The flow of an

operating-system-transfer-convention request is shown below.

Operating System | | Operating System
Builds Request Block Selects and Invokes

ABIOS Routines

Figure 4-7. Flow of Operating-System Transfer Convention

The parameter-passing convention for the operating-system transfer

convention is a set of four parameters and a return address on the
stack. The first parameter is the anchor-pointer segment or selector
of the common data area, with an assumed offset of hex 00. The

second parameter is a doubleword pointer to the request block. The
third parameter is a doubleword pointer to the function transfer table.
The fourth parameter is a doubleword pointer to the device block.

The Start, Interrupt, and Time-Out routines for each logical ID expect
the order of the addresses to be from high to low (the order of
pushing), as shown in the following figure.

Transfer Conventions 4-15

Displacement
Contents from Stack Pointer

Return address of caller 00H

Device-block pointer 04H

Function-transfer-table pointer 08H

Request-block pointer OCH

Common-data-area anchor pointer 10H
(segment or selector only)

Figure 4-8. Operating-System Transfer Convention Stack Frame

The following pseudocode instructions are suggested:

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

PUSH

CALL

Anchor segment or selector

Request-block segment or selector

Request-block offset

Function-transfer-table segment or selector

Function-transfer-table offset

Device-block segment or selector

Device-block offset

Logical-ID Start routine

Pseudocode—Operating-System Transfer Convention

For the operating-system transfer convention, the cailer is
responsible for removing the parameters from the stack on return.

4-16 Transfer Conventions

Section 5. Additional Information

Interrupt Processing0..00..0.000. 5-3

Interrupt Flow0....0..000. 0000000000004 5-3
Interrupt Sharing0..00.....00..-0.00000, 5-3
Default Interrupt Handler0.0.0..00.. 5-5

Adding, Patching, Extending, and Replacing 5-6
Adapter-ROM Structure0................ 5-7
RAM-Extension Structure0.0.., 5-9
Adding 0... 0.00 2 ee 5-11
Patching0.. 0.0000 cee ee 5-12

Extending 0.0000. eee 5-13
Replacing0. 0000000000. eee eee 5-15
Considerations for RAM Extensions 5-16

Operating-System Implementation Considerations 5-18
ABIOS Rules02. 0000.00.00 0000000004 5-18

© Copyright IBM Corp. 1991 5-1

Notes:

5-2 Additional Information

interrupt Processing

Interrupt Flow

The operating system that communicates with ABIOS provides
interrupt handlers that receive contro! through the hardware interrupt
vector. The operating-system interrupt handler must retain the
logica! IDs of the devices that operate on a specified interrupt level.
ABIOS provides routines that are called by the operating-system
interrupt handlers.

Each device has a logical ID that is known to the operating system. A
logical ID can have one or more active request blocks when an

interrupt is processed by the operating-system interrupt handler.
Each active request block of the logical ID is processed by calling

ABIOS at its interrupt entry point. ABIOS sets the Return Code field
to indicate whether the interrupt was associated with the request
block.

The operating system can call ABIOS for interrupt processing with
interrupts enabled or disabled. ABIOS restores the state of the
interrupt flag after any period in which interrupts must be disabled. If

no request blocks have the stage-on-interrupt bit (bit 0) of the Return
Code field set to 1, and an interrupt occurs, the default interrupt
handler is provided to remove the interrupt at the device.

interrupt Sharing

When more than one logical ID or logical ID/unit combination share
an interrupt level, the process is repeated for each logical !D until all
logical IDs are processed or the first logical ID with an interrupt is

completely processed.

ABIOS expects the operating system to manage End of Interrupt (EO!)
processing at the interrupt controller. The method that is used for

EOI processing is determined by the operating system. ABIOS does
not reset the interrupt controller. The operating system can select its

strategy for resetting the interrupt controller after all outstanding
request blocks for a particular logical iD are processed through the
Interrupt routine and at least one request indicates that the interrupt
was serviced. A serviced interrupt request returns from the Interrupt

routine with any return-code value other than hex 0005 (Not My
Interrupt, Stage on Interrupt).

Additional Information 5-3

Rules for Interrupt Processing

One Interrupt Level per Logical ID: Every unit in a particular logical
ID operates on the same interrupt level, and no logical ID operates on
more than one interrupt level.

One Microprocessor Mode per Call: After being interrupted, ABIOS
is returned to the microprocessor mode (real or protected) in which it
was running when it was interrupted. That is, after being preempted
in the middle of a request stage, it will be returned to the
microprocessor mode in which it was running when it was
preempted.

Microprocessor-Mode Changes Hidden from ABIOS: While ABIOS
function X is running in protected mode, it can be interrupted, and

function Y can be invoked in real mode, and vice versa. X can equal!
Y. After being preempted in the middle of a request stage in one
mode, ABIOS can be called through the Start routine in the other
mode.

ABIOS Preserves Microprocessor Interrupt Flag State: ABIOS does
not change the state of the interrupt flag. ABIOS might temporarily
disable the interrupt flag, but it will restore it to its origina! state.
ABIOS never enables the interrupt flag if it is disabled on entry to
ABIOS.

Operating System Maintains Request-Block Address Validity: The

pointer to a request block that is passed on a request is valid for the
duration of that stage of the request.

Data-Area Relocation: The effective memory address of a
logical-address pointer (a pointer in the request block in the format
“segment:off.et” or “selector:offset”) can be changed or moved
across stages of a request. In the real mode, the segment, the offset,
or both can be changed. In the protected mode, the selector, the
offset, or both can be changed, and the physical address in the
descriptor can be changed.

Operating System Performs EOI: ABIOS does not perform End of
Interrupt (EOI) processing on its own behalf. In a level-sensitive
interrupt environment, the device condition that causes the interrupt
is reset by ABIOS when it processes the request block at the Interrupt
routine.

5-4 Additional Information

Return Code Indicates Reset of Interrupt Condition: The caller of

ABIOS can perform End of Interrupt (EOI) processing when ABIOS
returns with a successful return code during processing of the
interrupt if all outstanding request blocks for that logical ID have been

processed. If the Return Code field contains any value other than hex
0005 (Not My Interrupt, Stage on Interrupt) and all request blocks
have been serviced on the logical iD, the caller can assume that the
interrupt was serviced (including resetting of the interrupt condition
at the device) and process the EOI.

Resetting of Interrupt Condition: Servicing an interrupt for an actual
request or for the default interrupt handler resets the interrupting

condition at the hardware if the Return Code field contains any value
other than hex 0005 (Not My Interrupt, Stage on Interrupt).

Exhaustive Calling: The caller must call ABIOS with each
outstanding request per logical !D at interrupt time until the first
logical ID with an interrupt is completely processed, which means
that each request that has a return-code value with the

Stage-on-interrupt bit (bit 0) set to 1 for a logical ID has been called.

lf multiple outstanding requests per logical ID are waiting for an
interrupt, regardiess of whether any single request indicates that the

interrupt was serviced, each of the requests must be called. This is
necessary because resetting the interrupting condition for the first
request can reset the interrupt of the second request, causing an
interrupt to be lost. Exceptions to this rule are specified in the

“Interfaces” section. One exception is the Real-Time Clock Set
Interrupt functions (hex 0B, hex 0C, and hex OF). This cannot happen

across logical IDs, because of the following rule concerning interrupts
across logical IDs.

Interrupts across Logical IDs: Servicing an interrupt of a given
logical ID does not reset the interrupt on another logical ID.

Default Interrupt Handler

in a level-sensitive-interrupt environment, an unexpected hardware
interrupt must be handled by resetting the interrupt at the device, as
well as at the interrupt controller. ABIOS provides this capability
through the use of the default interrupt handler.

Each interrupting ABIOS service provides a default interrupt handler
that resets the interrupt at the device and sets the Return Code field
to hex 0000 (Operation Successfully Completed) or hex 0005 (Not My
Interrupt, Stage on Interrupt). A request block is passed to the default

Additional Information 5-5

interrupt handler with no service-specific parameters, and control is
transferred to the default interrupt handier through the Interrupt

routine. The default interrupt handler is called only if a given logical
ID has no outstanding request blocks waiting on interrupt.

To determine whether a logical ID interrupts, call the Return Logical
ID Parameters function (hex 01). If the Interrupt Level field pertains to
a device that interrupts, it contains the hardware-interrupt level. If
the Interrupt Level field contains a value of hex FF, it indicates a
noninterrupting logical ID. The nonmaskable interrupt (NMI) device is
a special case; it returns a value of hex FE for the interrupt level. If
hex FE or hex FF is returned for the interrupt level, the logical ID does
not provide a default interrupt handler.

Adding, Patching, Extending, and Replacing

ABIOS provides a mechanism for adding, patching, extending, and
replacing the system-board ROM or adapter-ROM ABIOS, using an
adapter ROM as well as using RAM. Definitions for adding, patching,
extending, and replacing ABIOS are shown below, followed by the
mechanisms for accomplishing each.

Adding This adds a previously-unsupported ABIOS interface or
adds the support for a new device within the constraints

of the old interface, without replacing the old device. An

example is adding a new hardware device with ABIOS
support. Adding involves a new or old interface, new
ABIOS, and new hardware.

Patching This revectors an existing ABIOS function to a patched
routine. Patching involves an existing interface, new
ABIOS, and existing hardware.

Extending This adds a previously-unsupported function to a

particular ABIOS interface that operates on the same
device and uses the same device block. Extending
involves a new interface, new ABIOS, and existing
hardware.

Replacing This involves supporting the existing interface and

optionally extending the interface for new hardware of
the same device ID. Replacing requires the initialization
of a new device block. Replacing involves an existing or
new interface, new ABIOS, and new hardware.

5-6 Additional Information

The following figure shows these relationships.

New
New New Function

ABIOS New New Device Transfer

Interface ABiOS Hardware Biock Table

Adding Yes/No Yes Yes Yes Yes

Patching No Yes No No No

Extending Yes Yes No No Yes

Replacing Yes/No Yes Yes Yes Yes

Figure 5-1. Adding, Patching, Extending, and Replacing ABIOS

Adapter-ROM Structure

ABIOS provides a facility to integrate adapters with on-board ROM
code into the system. During ABIOS initialization, the absolute
addresses hex C0000 through hex DF800 are scanned in 2KB blocks
to search for a valid adapter ROM.

Adapters that support ROMs can participate in the following
convention.

Size Offset Description

Word OCH Signature = hex AA55 (word value)

Byte 02H Length, in 512-byte blocks

3bytes 03H BIOS initialization entry point

Word O6H Signature = hex BB66 (word value)

Byte 08H Number of initialization-table entries

- 09H Build-initialization-table entry point

Figure 5-2. ROM-Module Header

The ROM-module-header entries are:

Signature = Hex AA55 (Word Value): This value in the ROM-module
header indicates that this ROM address contains a BIOS ROM, an

ABIOS ROM, or both.

Length, in 512-Byte Blocks: This field indicates the length (limit hex
7F) of the ROM that is associated with the ROM-module header.

BIOS Initialization Entry Point: This field is the ROM location that is
called by the power-on self-test (POST).

Additional Information 5-7

Signature = Hex BB66 (Word Value): This value in the ROM-module
header indicates that this ROM address contains an ABIOS ROM.

Number of Initialization-Table Entries: This field contains the

number of initialization-table entries that this ABIOS ROM requires.
The value of this field for each ABIOS ROM-module header must be
at least 1. This field is used to determine the size of the initialization

table.

Build-initialization-Table Entry Point: This field is the location in the
ROM of the adapter that Interrupt 15H, Build Initialization Table
function ((AH) =05H, see Figure 3-4 on page 3-6) calls to build the
initialization-table entry for the adapter.

The ABIOS structure is similar to the BIOS structure and does not

preclude the support of existing adapters that use ROM operating
under the BIOS structure. If an adapter ROM is an ABIOS-only
adapter ROM, a dummy RETURN FAR instruction must be placed at
the BIOS Initialization Entry Point field in the ROM-module header to
allow for the BIOS ROM scan during POST.

When the operating system invokes Interrupt 15H, Build System
Parameters Table function ((AH) =04H, see Figure 3-3 on page 3-5),
a ROM scan is invoked to determine the number of entries in the
initialization table. This number is obtained by accumulating the
values in the Number of Initialization-Table Entries field of each
ROM-module header and adding that number to the number of entries
that are required for the system-board ROM.

When the operating system invokes Interrupt 15H, Build Initialization
Table function ((AH) =05H, see Figure 3-4 on page 3-6), a ROM scan
in invoked to search the ROM address space in 2KB increments until
a valid ABIOS ROM is detected. The Build Initialization Table Entry
function is called for each valid ROM to fill in the initialization table
for devices that are operated by the code on the adapter. For more
information, see Figure 5-4 on page 5-11.

After the initialization-table entry for the adapter ROM is added to the
initialization table, the operating system treats the entry as if it were
a system-board entry.

When the Initialize Device Block and Function Transfer Table routine
is called for an adapter ROM, each segment value in the function

transfer table must equal the segment value of the corresponding
ROM-module header.

5-8 Additional information

RAM-Extension Structure

ABIOS provides a facility to integrate adapters with RAM-loadable
code into the system. The operating system is responsible for
loading the RAM extensions from permanent media to RAM before
ABIOS initialization. After ABiOS initialization, RAM extensions can
be relocated, but they must always be in memory. During ABIOS
initialization, when Interrupt 15H, Build System Parameters Table
function ((AH) =04H, see Figure 3-3 on page 3-5) and Build

Initialization Table function ((AH)=05H, see Figure 3-4 on page 3-6)
are called, a pointer to the RAM-extension area is passed as a
parameter.

The layout of a RAM-extension header is shown below.

Size Offset Description

Word OOH Signature = hex AASS5 (word value)

Byte 02H Length, in 512-byte blocks

Byte 03H Model byte

Byte 04H Submodel byte

Byte 05H ROM revision level

Word 06H Device ID

Byte 08H Number of initialization-table entries

3bytes 09H Build-initialization-table entry point
Byte OCH Secondary device ID

Byte ODH Revision

Word OEH Reserved

Figure 5-3. RAM-Extension Header

The RAM-extension header entries are:

Signature = Hex AA55 (Word Value): This value in the
RAM-extension header indicates that this RAM address contains an

ABIOS RAM extension.

Length, in 512-Byte Blocks: This field indicates the length (limit hex
7F) of the RAM extension that is associated with the RAM-extension
header.

Model Byte, Submodel Byte, ROM Revision Level: These fields
describe the system-board ROM with which the RAM extension is
associated.

Device ID, Secondary Device ID, Revision: These fields describe the
ABIOS service with which the RAM extension is associated.

Additional! Information 5-9

Number of initialization-Table Entries: This field contains the
number of initialization-table entries that this RAM extension

requires. The vaiue of this field for each RAM-extension header must
be at least 1. This field is used to determine the size of the

initialization table.

Build-initialization-Table Entry Point: This field contains the location

in the RAM extension that Interrupt 15H, Build Initialization Table
function ((AH) =05H, see Figure 3-4 on page 3-6) calls to build the
initialization-table entry for this RAM extension.

The RAM-extension area starts on a paragraph boundary and

contains a chained list of individual RAM extensions that are linked

by way of the Length field. The Reserved fields in the RAM-extension
header must be set to 0.

The segment value of each RAM extension is calculated by

converting the length of the preceding RAM extension to paragraphs
and adding the result to the segment of the preceding RAM extension.
If the header for RAM extension 0 is loaded at XXXX:0000 and its
length is n, meaning that the extension is (n/2)KB in length, the
header for RAM extension 1 is at location [XXXX + (20Hx»n)]:0000.
The last RAM extension in the RAM-extension area points to a RAM
extension that has the Length field set to 0.

When the operating system invokes Interrupt 15H, Build System
Parameters Table function ((AH) =04H, see Figure 3-3 on page 3-5),
a RAM-extension scan occurs to determine the number of entries in
the initialization table. This number is obtained by accumulating the
values of the Number of Initialization-Table Entries field in the
RAM-extension headers and adding that number to the entries that

are required for the system-board and adapter ROMs.

When the operating system invokes Interrupt 15H, Build Initialization
Table function ((AH) =05H, see Figure 3-4 on page 3-6), another
RAM-extension scan occurs. The Build Initialization-Table Entry

routine (see Figure 5-4 on page 5-11) is called for each RAM
extension to fill the initialization-table entry for that RAM extension.

After the initialization-table entry for the RAM extension is added to
the initialization table, the operating system treats the entry as if it
were a system-board entry.

When the Initialize Device Block and Function Transfer Table routine

is called, each segment value in the function transfer table must

equal the segment of the corresponding RAM-extension header.

5-10 Additional Information

The following figure shows the interface to the Build Initialization

Table routine that is used by adapter ROMs and RAM extensions.

Invocation: Call FAR; ABIOS calls adapter ROM or

RAM extension strictly for initialization.

(ES:Dl) - Pointer to the next available entry in the

initialization table

On Return:

(AL) - Exception condition

= OOH - Operation successfully completed

OOH - No entries were added

= 80H - No units were found

(CX) - Number of entries that were added to the
initialization table

= 0 - (AL)#0

All registers except (AX), (CX), and the flags are restored.

Figure 5-4. Build Initialization-Table Entry Routine

Adding

To add a previously-unsupported ABIOS interface, an adapter ROM
or RAM extension provides the correct ROM-module or
RAM-extension header, and the Build Initialization Table routine is
used to build an entry in the initialization table. When the
initialization table has been built, it makes no difference to the

operating-system initialization process whether the initialization-table
entry is associated with a system-board ROM, an adapter ROM, or a
RAM extension. The following diagram shows the effect of adding an
ABIOS interface.

Device Block
(New)

Common Data Area
Function Transfer Table RAM or ROM

. (New) Addition
Device Block

Pointer ° °
Function Transfer Function 1 Pointer > Function 1
Table Pointer Function 2 Pointer i Function 2

e Function 3 Pointer > Function 3
e e

Figure 5-5. Adding ABIOS

Additional Information 5-11

Patching

During adapter-ROM scan or RAM-extension scan, an adapter ROM
or RAM extension is given control at the Build Initialization Table
routine where the adapter ROM or RAM extension builds the new
initialization-table entry. When an ABIOS service is patched, the new
initialization-table entry that is built is the same as the old
initialization-table entry, with the following exceptions:

¢ The Device-Block Length field is set to 0, indicating that the
existing device block suffices for the adapter ROM or RAM
extension. Therefore, the operating system should set the

Device-Block Pointer field in the common data area that is
associated with this initialization-table entry to hex 0:0.

e The Function-Transfer-Table Length field is set to 0, indicating
that the existing function transfer table suffices for the adapter
ROM or RAM extension. Therefore, the operating system should

set the Function Transfer Table Pointer field in the common data
area that is associated with this initialization-table entry to hex
0:0.

¢ The Number of Logical IDs field is set to 1, indicating that this
entry requires one logical ID to be initialized for this
initialization-table entry.

¢ The Revision field is set to the value of the Revision field in the

old initialization-table entry plus 1.

e The Initialize Device Block and Function Transfer Tabie Routine
Pointer field is initialized to point to the adapter ROM or RAM
extension.

When control is transferred to the Initialize Device Block and Function
Transfer Table routine, the common data area is scanned for the
values of the Device ID field, the Secondary Device ID field, and the
Revision field in the device biock of the service that is to be patched.
This is accomplished by reading the Device-Block Pointer field that is
associated with each logical ID and examining the public portion of
the device block that contains the Device ID field, the Secondary

Device ID field, and the Revision field, until the logical ID (entry in the
common data area) that is to be patched is found (see the ABIOS
device block in Figure 2-6 on page 2-11). As the common data area
is scanned, any null entries should be disregarded. The associated
Function-Transfer-Table Pointer field is accessed, and the

doubleword pointer of the patched routine is stored at the appropriate
offset in the function transfer table.

5-12 Additional Information

The Device-Block Pointer field and the Function-Transfer-Table
Pointer field that correspond to the Starting Logical ID parameter that
is passed to the Initialize Device Block and Function Transfer Table
routine are already set to hex 0:0, indicating that the operating

system should disregard this entry as a null common-data-area entry.

The following diagram shows the effect of patching an ABIOS
interface.

Common Data Area Function Transfer Table ABIOS ROM

e eo e

Function Transfer Function 1 Pointer - Function 1
Table Pointer Function 2 Pointer Function 2

e Function 3 Pointer 7 Function 3
6 e

RAM or ROM Patch

®

‘wi Function 3

Figure 5-6. Patching ABIOS

Extending

During adapter-ROM scan or RAM-extension scan, an adapter ROM

or RAM extension is given control at the Build Initialization Table
routine where the adapter ROM or RAM extension builds the new

initialization-table entry. When an ABIOS service is extended, the
new initialization-table entry that is built is the same as the old
initialization-table entry, with the following exceptions:

e The Device-Block Length field is set to 0, indicating that the
existing device block suffices for the adapter ROM or RAM
extension. Therefore, the operating system should set the
Device-Block Pointer field in the common data area that is
associated with this initialization-table entry to hex 0:0.

e The Function-Transfer-Table Length field is set to the value of the
old Function Transfer Table field pilus the length of the
extensions.

e The Number of Logical! IDs field is set to 1, indicating that this

entry requires one logical 1D to be initialized for this
initialization-table entry.

Additional information 5-13

¢ The Revision field is set to the value of the Revision field in the

old initialization-table entry plus 1.

¢ The Initialize Device Block and Function Transfer Table Routine

Pointer field is initialized to point to the adapter ROM or RAM
extension.

When control is transferred to the Initialize Device Block and Function
Transfer Table routine, the common data area is scanned for the
values of the Device ID field, the Secondary Device ID field, and the
Revision field in the device block of the service that is to be extended.
This is accomplished by reading the Device-Block Pointer field that is
associated with each logical ID and examining the public portion of
the device block that contains the Device ID field, the Secondary
Device ID field, and the Revision field, until the logical ID (entry in the
common data area) that is to be extended is found (see the ABIOS
device block in Figure 2-6 on page 2-11). As the common data area
is scanned, any null entries should be disregarded. The old function
pointers for the service that is to be extended are placed in the new
function transfer table, followed by the doubleword pointers to the
new functions in the adapter ROM or RAM extension. The Function
Count fieid of the new function transfer table is updated to reflect the
number of old functions plus the number of new functions. The
Function-Transfer-Table Pointer field in the common data area, which
previously pointed to the old function transfer table, is replaced with
the pointer to the new function transfer table.

The Device-Block Pointer field that corresponds to the Starting

Logical ID parameter that is passed to the Initialize Device Block and
Function Transfer Table routine is already set to hex 0:0. The
Initialize Device Block and Function Transfer Table routine must set
the associated Function-Transfer-Table Pointer field to hex 0:0,
indicating a null common-data-area entry.

5-14 Additional Information

The following diagram shows the effect of extending an ABIOS
interface.

Function Transfer Table

(Old) ABIOS ROM
Common Data Area ; ;

e Function 1 Pointer Function 1
Function Transfer Function 2 Pointer Function 2

Table Pointer Function 3 Pointer Function 3
e e 6

Function Transfer Table

(New)

° RAM or ROM
Function 1 Pointer — Extension

Function 2 Pointer —

Function 3 Pointer —— e
Function 4 Pointer Function 4

eo ®

Figure 5-7. Extending ABIOS

Replacing

To replace an ABIOS service, the adapter ROM or RAM extension is
given control at the Build Initialization Table routine where the

adapter ROM or RAM extension builds the new initialization-table
entry. The initialization-table entry is built with a new value in each
field except the Device ID field.

When the Initialize Device Block and Function Transfer Table routine
is called, the common data area is scanned for the values of the

Device ID field, the Secondary Device ID field, and the Revision field
in the device block of the service that is to be replaced. This is
accomplished by reading the Device-Block Pointer field that is
associated with each logical ID and examining the public portion of
the device block that contains the Device ID field, the Secondary

Device ID field, and the Revision field, until the logical ID (entry in the
common data area) that is to be replaced is found (see the ABIOS
device block in Figure 2-6 on page 2-11). As the common data area
is scanned, any null entries should be disregarded. The new function

pointers that point to the adapter ROM or RAM extension are placed
in the function transfer table that corresponds to the Starting Logical

ID parameter. The Function-Transfer-Table Pointer field in the
common data area, which previously pointed to the old function
transfer table, is replaced with the pointer to the new function transfer

Additional Information 5-15

table. Then the device block is built for the Starting Logical ID

parameter. When the device block has been built, the Device-Block
Pointer field in the common data area that previously pointed to the

old device block is replaced by the pointer to the new device block.

The Initialize Device Block and Function Transfer Table routine must
reinitialize the Function-Transfer-Table Pointer field and the

Device-Block Pointer field that correspond to the Starting Logical ID
parameter to hex 0:0, indicating a null common-data-area entry.

The following diagram shows the effect of replacing an ABIOS
interface.

Device Block

(Old)

Device Block

(New)

Common Data Area
Function Transfer Table

ea

(Old) ABIOS ROM
Device Block

Pointer e e

Function Transfer Function 1 Pointer Function 1
Table Pointer Function 2 Pointer > Function 2

e Function 3 Pointer > Function 3
6 e

Function Transfer Table RAM or ROM
(New) Replacement

eo e

Function 1 Pointer Function 1

Function 2 Pointer ™ Function 2
Function 3 Pointer = Function 3

r e

Figure 5-8. Replacing ABIOS

Considerations for RAM Extensions

The Model Byte field, the Submodel Byte field, and the ROM Revision
Level field in the RAM-extension header are called system-board
identifiers because they describe the system-board ROM that is
associated with the RAM extension. The Device ID field, the

Secondary Device ID field, and the Revision field are called service
identifiers because they describe the specific ABIOS service that is
associated with the RAM extension.

5-16 Additional Information

Two tests determine whether the RAM extension is required for a
particular system:

1. The first test determines whether the RAM extension should
remain resident in memory. It must be performed when the RAM
extension is loaded. This test determines whether the
system-board identifiers in the RAM extension match the
system-board identifiers that are returned by Interrupt 15H,
Return System Configuration Parameters function ((AH)=CORH). If
the system-board identifiers match, the RAM extension remains
resident in memory for ABIOS initialization. If the RAM-extension
header contains the system-board-identifier wild card (that is, the
Model Byte, Submodel Byte, and ROM Revision Level fields are

all set to 0), the RAM extension is loaded into memory for all
systems.

To simplify the system-board identifier test, each RAM-extension
file must contain RAM extensions with the same system-board
identifiers. This allows the system-board-identifier test to be
performed against only the first RAM-extension header while it
ensures that the test is accurate for all RAM-extension headers in
the file.

2. The second test determines whether the service identifiers in the
RAM-extension header match a service that exists in the

system-board ROM or in an adapter ROM. This test is performed
by the Initialize Device Block and Function Transfer Table
routine. If a matching service is not found during a scan of the
common data area, the Initialize Device Biock and Function
Transfer Table routine sets the Exception Condition parameter to

a nonzero value. When this parameter contains a nonzero value,
the operating system makes the associated logical ID a null
common-data-area entry.

If a single RAM extension contains patches for multiple service
identifiers, the RAM-extension header must contain the
service-identifier wild card (that is, the Device !D field is set to

hex OOFF, and the Secondary Device ID and Revision fields are
set to hex FF).

For each new version of an ABIOS service that patches, extends, or

replaces an existing version, at least one service identifier in the new
device block must be different from that in the old device block. The
old device block is modified, or a new device block is built by the
Initialize Device Block and Function Transfer Table routine,
depending on the type of RAM extension (patching, extending, or
replacing).

Additional Information 5-17

For patching and extending, a new device block is not built; therefore,
the Revision field in the existing device block is updated, and the
Device ID field and the Secondary Device ID field remain the same.
For replacing, a new device block is built because hardware is added;
therefore, the Device ID field in the new device block remains the
same, but the value of the Secondary Device ID field is increased by
1, and the Revision field is set to 0. For adding, the existing device

block is not tested; therefore, the new device block is built as
necessary.

The IBM Operating System/2° supports ABIOS updates (RAM
extensions) as follows:

e A file called ABIOS.SYS contains a list of file specifications that

are separated by blanks or new lines.

¢ ABIOS.SYS and the files that are associated with the file
specifications in ABIOS.SYS are assumed to reside in the root
directory of the IPL volume.

¢ if the RAM extension passes the system-identifier test, the files
that are associated with the file specifications in ABIOS.SYS are
loaded into memory and appended to one another in the order in
which they appear in ABIOS.SYS. These files make up the ABIOS
updates that are applied to ABIOS.

¢ The filename extension must be .BIO, and the sector size of the
update files must be a multiple of 512 bytes.

Operating-System Implementation Considerations

ABIOS Rules

The following rules are presented for programmers who are writing
operating systems and device drivers.

Rule 1 The operating system must not alter the Device-Block
Pointer field, the Function-Transfer-Table Pointer field, or

any Data Pointer field for a given logical [ID tn the common
data area during any stage of a request to that logical ID.

* Operating System/2 is a trademark of the International Business Machines

Corporation.

5-18 Additional Information

Rule 2

Rule 3

Rule 4

Rule 5

Rule 7

Rule 10

Rule 11

After ABIOS is interrupted during any stage of a request, it
returns to that stage in the mode in which it was running at
the time of the interrupt.

ABIOS device blocks are owned by ABIOS, and only the
public portions are accessible by the operating system.
There is no guarantee of compatibility of device-block
private-area contents across ABIOS implementations.

ABIOS and the operating system share ABIOS request
blocks.

ABIOS must traverse the common data area to retrieve the
necessary pointers. It does not store pointers in one request

or one stage of a request to be used for another request or
stage of a request.

ABIOS function X can be interrupted while it is running in

protected mode, and function Y can be invoked in real mode,
and vice versa. X can equal Y. After ABIOS is preempted in
the middle of a request stage in one mode, it can be called
through the START routine in the other mode.

ABIOS does not change the state of the interrupt flag.
ABIOS can temporarily disable the interrupt flag, but it
restores the flag to its original state.

A request-block pointer that is passed on a request is valid
for the duration of that stage of the request.

The effective memory address of a physical-address pointer
must not be moved for the duration of a single request.

When a function requires the data pointer to be passed as a
physical address in memory, an external process is
assumed to be performing the read or write to memory;
therefore, this address cannot change across stages.

The effective memory address of a logical-address pointer
(a pointer in the request block in the format “segment:offset”
or “selector:offset”) can be changed or moved across stages
of a request. In real mode, the segment or offset can be
changed. In protected mode, the selector or offset can be

changed, and the physical address in the descriptor can also
be changed.

ABIOS does not perform End of Interrupt processing. Ina

level-sensitive-interrupt environment, ABIOS resets the
device condition that caused the interrupt.

Additional Information 5-19

Rule 12 The caller of ABIOS can perform End of Interrupt processing

when the Return Code field is set to any value other than
hex 0005 (Not My Interrupt, Stage on Interrupt) and all
request blocks on the logical ID are serviced. The caller can
assume that the interrupt was serviced and process the End
of Interrupt.

Rule 13 The caller of ABIOS must call each outstanding request for
each logical ID at interrupt time until the first logical ID with
an interrupting condition is completely processed.
Exceptions are defined in the “Interfaces” section.

Rule 14 The operating system allocates operating-system device
numbers on the basis of increasing units within increasing

logical IDs. For example, if the first logical ID has a printer

device ID, unit 0 is LPT1:, and unit 1 is LPT2:. If unit 1 does
not exist and the second logical ID has a printer device ID,
unit 0 is LPT2:, and so on.

Rule 15 In a protected-mode or bimodal implementation, ABIOS
must have I/O privilege when it is operating in protected
mode.

Considerations for Bimodal Implementations

ABIOS is written to be independent of the mode of the
microprocessor. Segmented address pointers have different
meanings in the two modes, and memory above 1MB is generally not
addressable in real mode; therefore, an operating system with a

bimodal implementation must conform to the following requirements:

Addressability of Tables: The operating system must ensure that the
request blocks, device blocks, function transfer tables, and common
data area are always addressable by ABIOS, in the mode in which it
is called.

Addressability of Data for Programmed 1/0: Non-DMA devices
cannot readily use memory above 1MB in real mode. The operating

system should aliocate the I/O buffers for these devices below 1MB if
ABIOS is calied in real mode.

Mode Change and Reentrant Routines: When ABIOS is operating in
one mode, it can be interrupted and invoked in the other mode. The
Interrupt routine and the Time-Out routine are fully reentrant. The

Start routines are reentrant with respect to the device blocks. That is,
ABIOS can support multiple requests to common code that is
operating on different device blocks at the same time within different

5-20 Additional Information

stack frames. If the Start routine cannot begin a request, it sets the
Return Code field to hex 8000 (Device in Use, Request Refused).

Two Copies of Tables Recommended: Because segmented memory
pointers have ambiguous meaning in a bimodal environment, the
operating system should keep a real-mode version and a
protected-mode version of the common data area and function
transfer tables. This avoids the overhead of converting all of the
pointers in the tables after switching modes. The offset fields in the
function transfer table must be the same for corresponding entries in
both versions of the table. When there are two copies of the table, a
value of hex 0:0 in the Data Pointer field in the real-mode common
data area indicates that the address is above 1MB.

ABIOS is not affected by the existence of more than one table. The
protected-mode table does not need to be initialized before ABIOS is
called in real mode. However, the protected-mode table must be built
before ABIOS is called in protected mode.

Additional Information 5-21

The following figure illustrates the ABIOS common data area, function

transfer tables, and device blocks in a bimodal environment.

< 1MB ANYWHERE

Real Common Anchor Protected Common
Data Area Segment/ Data Area

Selector

-— Offset Data Pointers < 1MB Offset Data Pointers [—

Count of Logical IDs Count of Logical IDs

Reserved (4) Reserved (4)

Device Block 1 Device Block 1
Segment:Offset Selector:Offset

Function Transfer Table 1 Function Transfer Table 1
Segment: Offset Selector:Offset

e Device e
Block N

Device Block N Device Device Block N
Segment:Offset D Selector: Offset

ata

Function Transfer Table N __] Function Transfer Table N
Segment: Offset | Selector:Offset

Data Length, Offset, Data Length, Offset,
Segment N Selector N

e re Device f* e
Memory

lp Data Length, Offset, Data Length, Offset, aa!
Segment O Selector O

Data Pointer Count (2) Data Pointer Count (2)

Start Interrupt < - Start Interrupt

. Function . Function
Time-out Count Time-out Count

Function 1 Function 2 Function 1 Function 2

Logical ID N
Function M

e e

Function M-1! Function M Function M-1} Function M r

Figure 5-9. Bimodal Data Areas

5-22 Additional Information

The fields of the bimodal common data area (Figure 5-9) are:

Anchor Segment/Selector: This is called the anchor pointer. Itis a
word segment or selector with an assumed offset of hex 0, and it

points to the common data area. The segment value that is passed in
real mode does not need to equal the selector value that is passed in
protected mode.

Reali Common Data Area: This is the common data area that is used

by ABIOS in the real mode.

Protected Common Data Area: This is the common data area that is

used by ABIOS in the protected mode.

Offset Data Pointers: This is an offset that, in conjunction with the
anchor pointer, points to the ABIOS Data Pointer 0 Length field.

Count of Logical IDs: This is the number of device-block and
function-transfer-table pointer pairs.

Reserved (4): This is a reserved doubleword.

Device Block N Segment:Offset: This is the doubleword pointer to
the device block for logical ID n.

Function Transfer Table N Segment:Offset: This is the doubleword
pointer to the function transfer table for logical ID n.

Device Block N Selector:Offset: This is the doubleword pointer to the
device block for logical ID n.

Function Transfer Table N Selector:Offset: This is the doubleword
pointer to the function transfer table for logical ID n.

Data Pointer Count (2): This is the number of Data Pointer fields.

Data Length, Offset, Segment N: This is the length, offset, and
segment of data pointer n.

Data Length, Offset, Selector N: This is the length, offset, and
selector of data pointer n.

Device Block N: This is the ABIOS device block n.

Additional Information 5-23

Start: This is a doubleword pointer to the Start routine for this logical
ID. It is available to the caller through the operating-system transfer
convention.

Interrupt: This is a doubleword pointer to the Interrupt routine for
this logical ID. It is available to the caller through the
operating-system transfer convention.

Time-Out: This is a doubleword pointer to the Time-Out routine for
this logical ID. It is available to the caller through the
operating-system transfer convention.

Function Count: This is the number of functions that are supported
for this logical ID.

Function M: This is a doubleword pointer to the mth Function routine
for this logical ID.

5-24 Additional Information

Section 6. Interfaces

This section describes the interfaces that are supported by ABIOS.
Each interface description includes the interface functions and
return-code values. Programming considerations are also included
where appropriate.

Parameters are passed to ABIOS functions through request blocks.
Input parameters are set by the caller, and output parameters are
returned by the ABIOS functions.

This section describes only the service-specific parameters.
Functional parameters are described in “Request Block” in the
“Transfer Conventions” section.

The following notes apply to each ABIOS device interface in this
section:

¢ The Default Interrupt Handler function (hex 00) and the Logical ID
Parameters function (hex 01) are described in “Request Block” in
the “Transfer Conventions” section.

¢ For the Read (hex 08), Write (hex 09), and Additional Data

Transfer (hex 0A) functions, the data-pointer mode (physical or
logical) should be determined through the Return Logical ID
Parameters function (hex 01).

¢ All reserved input fields must be set to 0.

¢ All input fields are unaltered by ABIOS across the stages of a
request.

¢ All fields, other than input fields, do not need to be initialized to
any predefined values before a request is initiated through the
Start routine. The caller must not alter these fields across the
stages of a request.

¢ The following return-code values are returned for parameter

errors, although they are not indicated as possible return-code
values in each function description:

— Hex C000— Invalid Logical ID (ABIOS transfer convention
only)

— Hex C001 — Invalid Function Number

— Hex C003 —Invalid Unit Number

— Hex C004 — Invalid Request-Block Length.

© Copyright IBM Corp. 1991 6-1

e The return-code value hex 8000 (Device in Use, Request Refused)

is used for device serialization. If a logical ID/unit combination is
a serially-reusable device, ABIOS returns this value when there
is an outstanding request on the device.

e The caller should generically handle the error ranges of the

Return Code field as defined for the request block (see the
“Transfer Conventions” section). This permits the definition of
additional return codes in each of the ranges without affecting the
caliler’s error handling.

e The Time to Wait before Resuming Request field is returned when
the Return Code field is set to hex 0002 (Stage on Time).

6-2 Interfaces—September 1991

Device ID 01H—Diskette

Functions

The following are the diskette functions. The Default Interrupt
Handler function (hex 00) and the Return Logical ID Parameters
function (hex 01) are described in “Request Block” in the “Transfer
Conventions” section.

Note: Ail reserved input fields must be set to 0.

00H—Default Interrupt Handler

01H—Return Logical ID Parameters

02H—Reserved

03H—Read Device Parameters

¢ This function returns device-contro! information and the default

parameters that are used in diskette operations.

e¢ This function returns bit 6 of the Device Control Flags field to
indicate whether the Gap Length for Format field is a required
input for the Set Media Type for Format function (hex OD). If bit 6
is set to 1, the Gap Length for Format parameter is determined on

the basis of the Number of Tracks to Be Formatted field and the
Number of Sectors per Track field that are passed in the Set

Media Type for Format function (hex OD). If bit 6 is set to 0, the
user must provide the Gap Length for Format parameter for the
media that is being formatted.

e The value of the Return Code field is hex 0000.

Service-Specific Input

Size Offset Description

Word 18H Reserved

Service-Specific Output

Size Offset Description

Word 10H Number of sectors per track for the maximum

media density that is supported by the drive
Word 12H Size of sector, in bytes

= QOH - Reserved

= 01H - Reserved

= Q2H - 512 bytes per sector

= Q3H to FFFFH - Reserved

Diskette—September 1991 6-IDO1-1

we,
@)
a
O
4)

wo,
OC
a

i
=
” x

)
as
_s

4)

Size Offset Description

Word 14H Device control flags

Bits 15 to 7 - Reserved
Bit 6 - Support of Gap Length for Format parameter for

the Set Media Type for Format function (hex OD)

= 0- User must provide Gap Length for Format

parameter

= 1- ABIOS defines the Gap Length for Format paramete

on the basis of the Number of Tracks to Be Formatted
field and the Number of Sectors per Track field in

the Set Media Type for Format function (hex OD)

Bits 5, 4 - Reserved

Bit 3 - Recalibration status

0 - Recalibration is not required

1- Recalibration is required

Bit 2 - Concurrent operations support

0 - Not supported

1 - Supported

Bit 1 - Format-unit support

0 - Not supported

1 - Supported
Bit 0 - Change-signal availability

= Q- Not available
= 1 - Available

Word 16H Diskette drive type

= 00H - Drive not present/invalid NVRAM

= O1H - 5.25-inch, 40-track, 2-head, 360KB
= 02H - 5.25-inch, 80-track, 2-head, 1.2MB

= Q3H - 3.5-inch, 80-track, 2-head, 720KB

= 04H - 3.5 inch, 80-track, 2-head, 1.44MB

= 05H - Reserved

= O6H - 3.5-inch, 80-track, 2-head, 2.88MB

07H to FFFFH - Reserved

lt
i

fl
to

l

DWord 1CH Delay before turning off motor (in microseconds)

DWord 20H Motor-startup time (in microseconds)

Word 26H Number of cylinders in the maximum media

density that is supported by the drive
Byte 2AH Number of heads

Byte 2BH Recommended software retry count

Byte 2CH Fill byte for format

Byte 2DH Head settle time (in microseconds)

Byte 31H Gap !ength for read/write/verify

Byte 32H Gap length for format

Byte 33H Data length

04H—Set Device Parameters

e This function can be used to change the default parameters for
diskette operations.

¢ The possible values of the Return Code field are hex 0000, 8000,
and C005.

6-ID01-2 Diskette—September 1991

Service-Specific Input

Size Offset Description

Word 10H Reserved

Word 12H Sector size, in bytes

OOH - Reserved

= 01H - Reserved

= 02H - 512 bytes per sector

= 03H to FFFFH - Reserved
Byte 31H Gap length for read/write/verify
Byte 33H Data length

Service-Specific Output

Size Offset Description
None

05H—Reset/Initialize

¢ This function resets the diskette system to an initial state.

¢ This function should be issued when switching from BIOS to
ABIOS.

e lf an error occurs, ABIOS will indicate that a controller reset is
required upon entry to the next request.

e The caller is responsible for turning off the motor when the
request is completed.

e The possible values of the Return Code field are hex 0000, 0001,
0002, 8000, 9009, 9120, and 9180.

Service-Specific Input

Size Offset Description

Word 10H Reserved

Service-Specific Output

Size Offset Description
None

06H—Enable (Reserved)

Diskette—September 1991 6-ID01-3

07H—Disabie/Reset Interrupt

e This function resets the interrupt at the device.

¢ The possible values of the Return Code field are hex 0000, 9120,
and 9180.

Service-Specific Input

Size Ottset Description

Word 18H Reserved

Service-Specific Output

Size Offset Description

None

08H—Read

e This function transfers data from the specified cylinder, head, and
sector on the diskette to the specified memory location. The
Return Logical ID Parameters function (hex 01) returns the
data-pointer mode (whether it is physical or logical).

e If the ‘diskette change’ signal is inactive, ABIOS proceeds with
the operation.

e If the ‘diskette change’ signal is active and ABIOS is able to reset
the ‘diskette change’ signal to the inactive state, the Return Code

field is set to hex 8006 (Media Changed). However, if the
‘diskette change’ signal is active and ABIOS is not able to reset
the ‘diskette change’ signal to the inactive state, the Return Code
field is set to hex 800D (Media Not Present), and no data is

transferred.

e lf the Number of Sectors to Be Read field is set to 0, no action is
performed, and the Return Code field is set to hex 0000
(Operation Successfully Completed).

¢ ABIOS supports only a block size of 512 bytes per sector.

¢ The caller is responsible for turning off the motor when the
request is completed.

e The possible values of the Return Code field are hex 0000, 0001,

0002, 8000, 8006, 800D, 800E, 9009, 9102, 9103, 9104, 9110, 9120,
9140, 9180, and COOC.

6-ID01-4 Diskette—September 1991

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Data pointer 1

Word 16H Reserved

Word 18H Reserved

DWord 1AH Data pointer 2

Word 1EH Reserved

Word 24H Number of sectors to be read

Word 26H Cylinder number (0 based)

Byte 2AH Head number (0 based)

Word 31H Sector number

Service-Specific Output

Size Offset Description

DWord 20H Time to wait before resuming request, in microseconds

Word 24H Number of sectors that were read

09H—Write

e This function transfers data from the specified memory location to
the specified cylinder, head, and sector on the diskette.

e If the ‘diskette change’ signal is inactive, ABIOS proceeds with

the operation.

e If the ‘diskette change’ signal is active and ABIOS is able to reset

the ‘diskette change’ signal to the inactive state, the Return Code
field is set to hex 8006 (Media Changed). However, if the
‘diskette change’ signal is active and ABIQOS is not able to reset
the ‘diskette change’ signal to the inactive state, the Return Code

field is set to hex 800D (Media Not Present), and no data is
transferred.

e lf the Number of Sectors to Be Written field is set to 0, no action is

performed, and the Return Code field is set to hex 0000
(Operation Successfully Completed).

e¢ ABIOS supports only a block size of 512 bytes per sector.

¢ The caller is responsible for turning off the motor when the
request is completed.

e The possible values of the Return Code field are hex 0000, 0001,

0002, 8000, 8003, 8006, 800D, 800E, 9009, 9102, 9104, 9108, 9110,

9120, 9140, 9180, and COOC.

Diskette—September 1991 6-ID0O1-5

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Data pointer 1

Word 16H Reserved

Word 18H Reserved
DWord 1AH Data pointer 2

Word 1EH Reserved

Word 24H Number of sectors to be written

Word 26H Cylinder number (0 based)

Byte 2AH Head number (0 based)
Word 31H Sector number

Service-Specific Output

Size Offset Description
DWord 20H Time to wait before resuming request, in microseconds
Word 24H Number of sectors that were written

0AH—Additional Data Transfer (Subfunction 00H—Format)

¢ This function writes the field ID from the given buffer for each
sector to the specified track.

* Each field ID entry in the buffer is composed of 4 bytes in this
order: C, H, R, N, where C is the track number, H is the head
number, R is the sector number, and N is the sector size. There
must be one entry for every sector on the track.

¢ Before this function is issued, the Set Media Type for Format
function (hex OD) must be issued once to ensure the proper
format parameters.

e The Set Media Type for Format function (hex 0D) must also be
issued if the Return Code field is set to hex 8006 (Media Changed)
or hex 800D (Media Not Present).

e Ifthe ‘diskette change’ signal is inactive, ABIOS proceeds with
the operation.

¢ Ifthe ‘diskette change’ signal is active and ABIOS is able to reset
the ‘diskette change’ signal to the inactive state, the Return Code
field is set to hex 8006 (Media Changed). However, if the
‘diskette change’ signal is active and ABIOS is not able to reset
the ‘diskette change’ signal to the inactive state, the Return Code
field is set to hex 800D (Media Not Present), and the field ID is not
written.

¢ ABIOS supports only a block size of 512 bytes per sector.

e The caller is responsible for turning off the motor when the
request is completed.

6-ID01-6 Diskette—September 1991

The possible values of the Return Code field are hex 0000, 0001,

0002, 8000, 8003, 8006, 800D, 800E, 9009, 9102, 9104, 9108, 9110,
9120, 9140, 9180, and COOC.

Service-Specific Input

Size Offset Description

Word 10H Reserved
DWord 12H Data pointer 1

Word 16H Reserved

Word 18H Reserved

DWord 1AH Data pointer 2

Word 1EH Reserved

Word 24H Subfunction number

Word 26H Cylinder number (0 based)

Byte 2AH Head number (0 based)

Service-Specific Output

Ottset Description

DWord 20H Time to wait before resuming request, in microseconds

0BH—Verify Sectors

This function verifies the data on the diskette. The operation is
similar to the Read function (hex 08), except that data is not
transferred.

If the ‘diskette change’ signal is inactive, ABIOS proceeds with
the operation.

If the ‘diskette change’ signal is active and ABIOS is able to reset

the ‘diskette change’ signal to the inactive state, the Return Code
field is set to hex 8006 (Media Changed). However, if the

‘diskette change’ signal is active and ABIOS is not able to reset
the ‘diskette change’ signal to the inactive state, the Return Code
field is set to hex 800D (Media Not Present).

lf the Number of Sectors to Be Verified field is set to 0, no action
is performed, and the Return Code field is set to hex 0000
(Operation Successfully Completed).

ABIOS supports only a sector size of 512 bytes per sector.

The caller is responsible for turning off the motor when the
request is completed.

The possible values of the Return Code field are hex 0000, 0001,

0002, 8000, 8006, 800D, 800E, 9009, 9102, 9104, 9108, 9110, 9120,
9140, 9180, and COOC.

Diskette—September 1991 6-ID01-7

Service-Specific Input

Size Offset Description

Word 16H Reserved

Word 1EH Reserved

Word 24H Number of sectors to be verified

Word 26H Cylinder number (0 based)

Byte 2AH Head number (0 based)

Word 31H Sector number

Service-Specific Output

Size Offset Description

DWord 20H Time to wait before resuming request, in microseconds

Word 24H Number of sectors that were verified

OCH—Read Media Parameters

e This function returns the media parameters that were used for the
previous operation.

¢ Because multiple media types might be supported for a single
drive type, the Read function (hex 08), Write function (hex 09),
Verify Sectors function (hex 0B), or Format function (hex 0A)
should be issued to ensure that the proper media parameter
values are returned before the Read Media Parameters function
(hex OC) is issued.

e¢ The caller is responsible for turning off the motor when the
request is completed.

e The possibile values of the Return Code field are hex 0000, 0001,

0002, 8000, 8006, 800D, 9009, 9102, 9104, 9108, 9110, 9120, 9140,
9180, and COOC.

Service-Specific Input

Size Offset Description

Word 16H Reserved

6-ID01-8 Diskette—September 1991

Service-Specific Output

Size Offset Description

Word 10H Number of sectors per track

Word 12H Size of sector, in bytes

= QOH - Reserved

= 01H - Reserved
= 02H - 512 bytes per sector

= 03H to FFFFH - Reserved

Word 26H Number of cylinders

Byte 2AH Number of heads
Byte 31H Gap length for read/write/verify

Byte 32H Gap length for format

Byte 33H Data length

ODH—Set Media Type for Format

e This function sets the media information for the format operation
on the basis of the number of tracks to be formatted (in offset hex
26) and the number of sectors per track (in offset hex 10).

e The presence of media is checked.

— If the diskette has been removed or the drive door is left
open, ABIOS sets the Return Code field to hex 800D (Media
Not Present), and the media parameters are not set.

— If the diskette has been changed and a diskette is present in
the drive, ABIOS sets the requested media parameters and

resets the ‘diskette change’ signal to the inactive state.

e If the number of tracks to be formatted (offset hex 26) and the

number of sectors per track (offset hex 10) are valid for the
supported diskette drive types, ABIOS sets the correct

parameters as requested. Otherwise, the Return Code field is set
to hex CO0C (Unsupported Media Type/Unestablished Media).

e The Read Device Parameters function (hex 03) returns bit 6 of the
Device Control Flags field to indicate whether the Gap Length for
Format field is a required input for the Set Media Type for Format
function (hex OD). If bit 6 is set to 1, the Gap Length for Format

parameter is determined on the basis of the Number of Tracks to
Be Formatted field and the Number of Sectors per Track field that
are passed in the Set Media Type for Format function (hex OD). If

bit 6 is set to 0, the user must provide the Gap Length for Format
parameter for the media that is being formatted.

e This function must be issued once to ensure the proper diskette
format information before the Format function (hex OA) is issued.

e ABIOS uses these parameters until they are changed by the Set

Device Parameters function (hex 04) or until the drive door is
opened.

Diskette—September 1991 6-ID01-9

¢ The caller is responsible for turning off the motor when the
request is completed.

¢ The possible values of the Return Code field are hex 0000, 8000,
800D, 800F, C005, and COOC.

Service-Specific Input

Size Offset Description

Word 10H Number of sectors per track

Word 12H Size of sector, in bytes

= QOH - Reserved
= 01H - Reserved

= Q2H - 512 bytes per sector

= 03H to FFFFH - Reserved
Word 16H Reserved

Byte 26H Number of tracks to be formatted
Byte 2CH Fill byte for format

Byte 32H Gap length for format

Service-Specific Output

Size Offset Description

DWord 20H Time to wait before resuming request, in microseconds

0OEH—Read ‘Diskette Change’ Signal Status

¢ This function returns the state of the ‘diskette change’ signal. It

does not change the state of the ‘diskette change’ signal.

¢ The ‘Diskette Change’ Signal Status field is valid only when the

specified drive supports the ‘diskette change’ signal. The Read
Device Parameters function (hex 03) returns information about
‘diskette change’ signal availability.

e¢ An active ‘diskette change’ signal indicates that one or more of
the following conditions exist:

— The diskette has been changed.

— The diskette drive door is open.

— The diskette-type information is invalid.

Data is not transferred when the ‘diskette change’ signal is
active.

¢ The Read function (hex 08), Write function (hex 09), Verify Sectors
function (hex 0B), and Format Function (hex 0A) reset the

‘diskette change’ signal to the inactive state before they begin
execution.

e The caller is responsible for turning off the motor when the
request is completed.

6-ID01-10 Diskette—September 1991

¢ The possible values of the Return Code field are hex 0000, 8000,

and 800E.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

Byte 10H ‘Diskette change’ signal status

= OOH - ‘Diskette change’ signal is inactive

= 01H to 05H - Reserved

= O6H - ‘Diskette change’ signal is active

= 07H to FFH - Reserved

O0FH—Turn Off Motor

e This function turns the diskette-drive motor off for the requested
drive.

e The caller can turn the motor off when the Return Code field is

set to hex 0000 (Operation Successfully Completed).

¢ This function is required for the Reset/initialize function (hex 05),
Read function (hex 08), Write function (hex 09), Additional Data

Transfer function (hex OA), Verify Sectors function (hex 0B), Read
Media Parameters function (hex 0C), Set Media Type for Format
function (hex OD), and Read Change Signal Status function (hex

OE).

¢ The Read Device Parameters function (hex 03) returns the length

of the delay before the motor is turned off.

e The possible values of the Return Code field are hex 0000 and

8000.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

None

Diskette—September 1991 6-IDO1-11

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

10H—Interrupt Status

¢ This function returns the diskette interrupt-pending status. It does
not reset the interrupt condition.

e The possible values of the Return Code field are hex 0000 and
8000.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

Byte 10H Interrupt-pending status

= OOH - No interrupt is pending

= 01H - Interrupt pending

11H—Get Media Type

¢ This function determines the media type that is present in a
specified drive.

e If media sense is not supported, the Return Code field is set to
hex 8011 (Drive Does Not Support Media Sense). In this case, the
media type is considered to be undefined, and contro! is returned
to the caller.

¢ If no media is found in the selected drive, the Return Code field is

set to hex 800D (Media Not Present). In this case, the media type
is considered to be undefined, and control is returned to the

caller.

e If the drive type of the selected drive does not support the media
type that is found in that drive, the Return Code field is set to hex
8010 (Media Type Not Supported by Drive). In this case, the
media type that is returned corresponds to the media type that
was found.

e¢ {fno errors have occurred, the Return Code field is set to hex

0000 (Operation Successfully Completed). In this case, the media
type that is returned corresponds to the media type that was
found.

¢ The possible values of the Return Code field are hex 0000, 800D,
8010, and 8011.

6-ID01-12 Diskette—September 1991

| Service-Specific Input

| Size Offset Description
| Word 16H Reserved

| Service-Specific Output

Size Offset Description

Word 10H Media type found

= QOH - Reserved

= 03H - Diskette, 1MB (unformatted)

= 04H - Diskette, 2MB (unformatted)

= Q6H - Diskette, 4MB (unformatted)

All other values are reserved.
Return Codes

Return codes are returned at offset hex OC.

Value Description

0000H Operation Successfully Completed

0001H Stage on Interrupt

0002H Stage on Time

0005H Not My Interrupt, Stage on Interrupt

8000H Device Busy, Operation Refused

8003H Write Attempted on a Write-Protected Diskette
8006H Media Changed

800DH Media Not Present

800EH Change Signal Not Available

800FH Invalid Value in NVRAM

8010H Media Type Not Supported by Drive

8011H Drive Does Not Support Media Sense

9009H Controller Faiture in Reset Operation

9102H Address Mark Not Found

9104H Requested Sector Not Found

9108H DMA Overrun on Operation

9110H Bad CRC on Diskette Read

9120H Controller Failure

9140H Seek Operation Failure

9180H General Error

A120H Controlier Failure

BO20H Controller Failure

COo00H Invalid Logical ID (ABIOS transfer convention only)

COO1H Invalid Function

CO003H invalid Unit Number

CO04H invalid Request Block Length

CO05H Invalid Diskette Parameter

COOCH Unsupported Media Type/Unestablished Media

Figure 6-1. Diskette Return Codes

Diskette—September 1991 6-ID01-13

Programming Considerations

Diskette ABIOS indicates in the Return Code field whether an

unsuccessful operation needs to be retried. The Read Device
Parameters function (hex 03) returns the recommended retry
count.

When the Return Code field is set to hex 0000 (Operation

Successfully Completed) the caller can turn off the motor by using
the Turn Off Motor function (hex OF). This function is required for
the Reset/Initialize function (hex 05), Read function (hex 08),
Write function (hex 09), Additional Data Transfer function (hex

OA), Verify Sectors function (hex 0B), Read Media Parameters
function (hex 0C), Set Media Type for Format function (hex OD),

and Read Change Signal Status function (hex 0E). When the

request is completed, the caller is responsible for turning off the
motor by using the Turn Off Motor function (hex OF).

Diskette ABIOS supports crossing of track boundaries, but only

switching from head 0 to head 1 on the same cylinder. It does not
support switching from head 1 of one cylinder to head 0 of the
next cylinder.

When diskette ABIOS and diskette BIOS requests are issued, the
following rules must be followed:

— Do not attempt an ABIOS call while there is an outstanding
BIOS call.

— Do not attempt a BIOS call while there is an outstanding
ABIOS call.

— The Reset/Initialize function (hex 05) must be the first ABIOS
request that follows a BIOS request.

— The Reset Diskette System BIOS function (Interrupt 13H,
(AH) = 00H) must be the first BIOS request that follows an
ABIOS request. Also, before any diskette function is issued,
bit 4 must be set to 0 in BIOS data area hex 40:90 for drive A
and in BIOS data area hex 40:91 for drive B.

— The Reset/Initialize function (nex 05) must be issued after
ABIOS initialization has been completed.

If an error occurs, ABIOS resets the diskette system.

The Read function (hex 08), Write function (hex 09), Verify Sectors
function (hex 0B), Additional Data Transfer function (hex 0A), and

Set Media Type for Format function (hex OD) reset the ‘diskette
change’ signal to the inactive state before they begin execution.

6-ID01-14 Diskette—September 1991

| Diskette Drive Parameters

| The following tables list the recommended parameters for diskette
| drives that are supported on Personal System/2 products.

320K
Byte Definition Media

First specification byte DOH

Second specification byte 02H

Motor-off time 25H

Bytes per sector 02H

Sectors per track 08H

Gap length 2AH

Data length FFH

Gap length (format) 50H

Fill byte (format) F6H

Head settle time (in microseconds) OFH

Motor start (in %-seconds) 06H

Maximum track numbers 27H

Data-transfer rate 80H

Multi-rate capability OOH

360K

Media

DOH

02H

25H

02H

09H

2AH

FFH

50H

FG6H

OFH

O6H

27H

80H

OOH

| Figure 6-2. Media Parameter Table — 360KB Slimline Drive

720K
Byte Definition Media

First specification byte DOH

Second specification byte 02H

Motor-off time 25H

Bytes per sector 02H

Sectors per track OSH

Gap length 2AH

Data length FFH

Gap length (format) 50H

Fill byte (format) F6H
Head settle time (in microseconds) OFH

Motor start (in Y%s-seconds) 04H

Maximum track numbers 4FH

Data-transfer rate 80H

Multi-rate capability 00H

| Figure 6-3. Media Parameter Tabie— 720KB Slimline Drive

Diskette—September 1991 6-ID01-15

320K 360K 1.2M

Byte Definition Media Media Media

First specification byte EOH EOH DOH

Second specification byte 02H 02H 02H
Motor-off time 25H 25H 25H

Bytes per sector 02H 02H 02H

Sectors per track 08H OSH OFH

Gap length 2AH 2AH 1BH

Data length FFH FFH FFH

Gap length (format) 50H 50H 54H

Fill byte (format) F6H F6H F6H

Head settle time (in microseconds) OFH OFH OFH

Motor start {in “%-seconds) 04H 04H 04H

Maximum track numbers 27H 27H 4FH

Data-transfer rate 40H 40H 00H

Multi-rate capability 02H 02H 02H
| Figure 6-4. Media Parameter Table —1.2MB Slimline Drive

720K 1.44M

Byte Definition Media Media

First specification byte EOH DOH

Second specification byte 02H 02H
Motor-off time 25H 25H

Bytes per sector 02H 02H

Sectors per track 09H 12H

Gap length 2AH 1BH

Data length FFH FFH

Gap length (format) 50H 65H

Fill byte (format) F6H F6H

Head settle time (in microseconds) OFH OFH

Motor start (in %-seconds) 04H 04H

Maximum track numbers 4FH 4FH

Data-transfer rate 80H 00H

Multi-rate capability 02H 02H
| Figure 6-5. Media Parameter Table —1.44MB Slimline Drive

6-ID01-16 Diskette—September 1991

720K

Byte Definition Media

First specification byte EOH

Second specification byte 02H

Motor-off time 25H

Bytes per sector 02H

Sectors per track OSH

Gap length 2AH

Data length FFH

Gap length (format) 50H
Fill byte (format) F6H

Head settle time (in microseconds) OFH

Motor start (in Ye-seconds) 04H

Maximum track numbers 4FH

Data-transfer rate 80H

Multi-rate capability 02H

1.44M

Media

DOH

02H

25H

02H

12H

1BH

FFH

65H
FG6H

OFH

04H

4FH

00H

02H

2.88M

Media

AOH

02H

25H
02H

24H

38H

FFH

93H

F6H

OFH

04H

4FH

COH

02H

| Figure 6-6. Media Parameter Table —2.88MB Slimline Drive

720K

Byte Definition Media

First specification byte DOH

Second specification byte 02H
Motor-off time 25H

Bytes per sector 02H

Sectors per track OSH

Gap length 2AH

Data length FFH

Gap length (format) 50H

Fill byte (format) F6H

Head settle time (in microseconds) OFH

Motor start (in %-seconds) 04H

Maximum track numbers 4FH

Data-transfer rate 80H
Multi-rate capability 02H

1.44M

Media

AOH

02H

25H

02H

12H

1BH

FFH

65H

F6H

OFH

04H

4FH

00H

02H

| Figure 6-7. Media Parameter Table — 1.44MB Half-High Drive

Diskette—September 1991 6-ID01-17

Notes:

6-ID01-18 Diskette—September 1991

Device ID 02H—Fixed Disk

Functions

The following are the fixed disk functions. The Default Interrupt
Handier function (hex 00) and the Return Logical ID Parameters
function (hex 01) are described in “Request Block” tn the “Transfer

Conventions” section.

Note: All reserved input fields must be set to 0.

00H—Default Interrupt Handler

01H—Return Logical ID Parameters

02H—Reserved

03H—Read Device Parameters

e This function returns disk-drive information for devices that are

specified in the Unit field.

e The possible values of the Return Code field are hex 0000 and
8003.

Service-Specific Input

Size Offset Description

Word 28H Reserved

O
©
—_
Ss
©
O
fo)
NO

i
a
PS
©
Q
-
2 od

Service-Specific Output

Size Offset Description
Word 10H Sectors per track associated with unit in request biock

Word 12H Size of sectors in bytes
= QOH to O1H - Reserved

= 02H - 512-byte sectors

= 03H to FFFFH - Reserved

Fixed Disk—September 1991 6-ID02-1

Size Offset Description

Word 14H Device control flags (see “Device Control Flags” on page 6-ID02-18)

Bit 15 - SCB transfer support

= 1 - SCB transfer function is supported
Bit 14 - SCSI Device

= 1- Drive is a SCSI device
Bit 13 - Reserved

Bits 12, 11 - Format support (values in binary)

= 00 - Format is not supported

01 - Format Track is supported
10 - Format Unit is supported

11 - Format Track and Format Unit are supported
Bit 10 - ST506 drive

= 1- Drive is ST506 device

Bit 9 - Concurrent unit requests per logical ID

= Q- Not concurrent
= 1- Concurrent

Bit 8 - Ejecting capability

= 0- Not ejectable

= 1- Ejectable

Bit 7 - Media organization

= Q0- Random

= 1- Sequential

Bit 6 - Locking capability

= 1- Locking is supported

Bit 5 - Read capability

= 1- Readable

Bit 4 - Caching support

= 1- Caching is supported
Bit 3 - Write frequency

0 - Write once

1 - Write many

Bit 2 - Change-signal support

= 1- Signal is supported

Bit 1 - Power is on or off

= 1- Power off

Bit O - Parameters are valid or not valid
= 1- Parameters not valid

RO
R

Byte 16H Logical unit number (LUN); supported only if SCSI device

DWord 18H Physical number of cylinders that are associated with

the unit in the request block

Byte 1CH Physical number of heads that are associated with the

unit in the request block

Byte 1DH Suggested number of software retries for retryable operations

DWord 20H Physical number of relative block addresses that are

associated with the unit in the request block
DWord 24H Reserved

Word 28H Reserved

Word 2CH Maximum number of blocks to be transferred per one call

04H—Set Device Parameters (Reserved)

05H—Reset/initialize

e This function resets the disk system to an initial state.

¢ All return-code values are possible.

6-ID02-2 Fixed Disk—September 1991

Service-Specific Input

Size Offset Description

Word 10H Reserved

Service-Specific Output

Size Offset Description

DWord 28H Time to wait before resuming request, in microseconds

06H—Enable (Reserved)

07H—Disable (Reserved)

08H-—Read

¢ The Read function transfers data from the specified relative block
address to the specified memory location. The Number of Blocks
to Be Read field contains the amount of the data that is to be
transferred.

e ifthe Number of Blocks to Be Read field is set to 0, no action is

performed.

e if the value in the Number of Blocks to Be Read field is greater
than the maximum number of blocks, no action is performed, and
the Return Code field is set to hex C005 (Invalid Count Value).

¢ The Number of Blocks Read field contains the amount of the data

that was transferred.

¢ When a parameter error is returned, the Number of Blocks Read
field is not updated. Also, when a hex 8000, 8001, 8002, 8003, or
800F error is returned, the Number of Blocks Read field is not
updated.

e All return-code values are possible.

Fixed Disk—September 1991 6-ID02-3

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Data pointer 1

Word 16H Reserved

Word 18H Reserved

DWord 1EH Data pointer 2

Word 1EH Reserved

DWord 20H Relative block address
DWord 24H Reserved

Word 2CH Number of blocks to be read

Byte 2EH Flags

Bits 7 to 1 - Reserved (set to 0)

Bit 0 - Caching

0 - Caching is OK for this request

1- Do not cache on this request

od

Service-Specific Output

Size Offset Description

DWord 28H Time to wait before resuming request, in microseconds

Word 2CH Number of blocks read

Word 2FH Soft-error indicator

= OOH - Soft error did not occur

OOH - Soft error occurred

09H—Write

¢ The Write function transfers data from the specified memory
location to the specified relative block address. The Number of
Blocks to Be Written field contains the amount of the data that is
to be transferred.

e if the Number of Blocks to Be Written field is set to 0, no action is

performed.

e If the value in the Number of Blocks to Be Written field is greater
than the maximum number of blocks, no action is performed, and
the Return Code field is set to hex C005 (Invalid Count Value).

e The Number of Blocks Written field contains the amount of the

data that was transferred.

e When a parameter error is returned, the Number of Blocks
Written field is not updated. Also, when a hex 8000, 8001, 8002,
8003, or 800F error is returned, the Number of Blocks Written field
is not updated.

e All return-code values are possible.

6-ID02-4 Fixed Disk—September 1991

Service-Specific Input

Size Ottset Description
Word 10H Reserved

DWord 12H Data pointer 1

Word 16H Reserved

Word 18H Reserved

DWord 1AH Data pointer 2
Word 1EH Reserved

DWord 20H Relative block address

DWord 24H Reserved

Word 2CH Number of blocks to be written
Byte 2EH Flags

Bits 7 to 1 - Reserved (set to 0)

Bit 0 - Caching

= 0- Caching is OK for this request

= 1- Do not cache on this request

Service-Specific Output

Size Offset Description

DWord 28H Time to wait before resuming request, in microseconds
Word 2CH Number of blocks written

Word 2FH Soft-error indicator

= OOH - Soft error did not occur

¥ OOH - Soft error occurred

OAH—Write Verify

The Write Verify function operates similarly to the Write function
with the addition of a Read Verify function.

If the Number of Blocks to Be Written/Verified field is set to 0, no

action is performed.

If the value in the Number of Blocks to Be Written/Verified field is
greater than the maximum number of blocks, no action is
performed, and the return code field is set to hex C005 (Invalid
Count Value).

The Number of Biocks Written field contains the amount of the

data that was transferred.

When a parameter error is returned, the Number of Blocks
Written field is not updated. Also, when a hex 8000, 8001, 8002,

8003, or 800F error is returned, the Number of Blocks Written field
is not updated.

All return-code values are possible.

Fixed Disk—September 1991 6-ID02-5

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Data pointer 1

Word 16H Reserved

Word 18H Reserved

DWord 1AH Data pointer 2

Word 1EH Reserved

DWord 20H Relative biock address

DWord 24H Reserved

Word 2CH Number of blocks to be written/verified

Byte 2EH Flags

Bits 7 to 1 - Reserved (set to 0)

Bit 0 - Caching

= 0 - Caching is OK for this request

= 1-Do not cache on this request

Word 31H Reserved

Service-Specific Output

Size Offset Description

DWord 28H Time to wait before resuming request, in microseconds

Word 2CH Number of blocks written

Word 2FH Soft-error indicator

= QOH - Soft error did not occur

3% OOH - Soft error occurred

OBH—Verity

e The Verify function reads from the specified relative block

address without transferring any data to system memory. This
function verifies the readability of the data.

¢ If the Number of Blocks to Be Verified field is set to 0, no action is

performed.

e If the vaiue in the Number of Blocks to Be Verified field is greater

than the maximum number of blocks, no action is performed, and
the Return Code field is set to hex C005 (Invalid Count Value).

e All return-code values are possible.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Word 18H Reserved

Word 1EH Reserved

DWord 20H Relative block address

DWord 24H Reserved

Word 2CH Number of blocks to be verified

6-ID02-6 Fixed Disk—September 1991

Service-Specific Output

Size Offset Description

DWord 28H Time to wait before resuming request, in microseconds
Word 2FH Soft-error indicator

= QOH - Soft error did not occur

OOH - Soft error occurred

0CH—interrupt Status

¢ This function returns the disk-interrupt-pending status. It does
not reset the interrupt condition.

e After ABIOS checks the Unit field for validity, the Unit field is not

used in determining the interrupt status. The interrupt status
reports that an interrupt is pending on the logical ID, and it might
or might not be the Unit field of the request block.

¢ if there is a parameter error, the Interrupt Status field is
undefined.

e The possible values of the Return Code field are hex 0000 and
8003.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

Byte 10H Interrupt status

= 00H - Interrupt not pending

= O1H - Interrupt pending
= 02H to FFH - Reserved

Fixed Disk—September 1991 6-ID02-7

10H—Set DMA Pacing Factor

e This function sets the DMA pacing for the adapter of the specified
drive. All devices that are attached to this adapter are also
affected.

¢ The pacing value is expressed as a percentage; valid values are
from 25 to 100, inclusive.

¢ BIOS does not check the range of the pacing value. Using a
value outside the specified range might cause an adapter error.

¢ No commands can be pending when the request is made.

e All return-code values are possible.

Service-Specific Input

Size Offset Description
Byte 10H Pacing value; valid values are

from 25% to 100%

Word 16H Reserved

Service-Specific Output

Size Offset Description
DWord 28H Time to wait before resuming request, in microseconds

11H—Return DMA Pacing Factor

e This function returns the current pacing value of the adapter for

the specified drive.

e The pacing value is expressed as a percentage; valid values are
from 25% to 100%, inclusive.

e The possible values of the Return Code field are hex 0000 and

8003.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

Byte 10H Current pacing value

6-ID02-8 Fixed Disk—September 1991

12H—Transfer SCB

This function programs the adapter to process the subsystem
control block (SCB) that is pointed to by the Physical Pointer to
SCB field. (See the technical reference manual for the SCSI
Adapter.)

The SCB-transfer-support bit (bit 15 of the Device Control Flags
field) indicates whether this function is supported.

ABIOS does not check the validity of the SCB.

If the adapter reports an error, ABIOS determines whether a
termination status block (TSB) was returned. ABIOS evaluates
the TSB and returns the appropriate error code and the pointer to
the failing SCB header. Check bit 0 of the Status field to
determine whether the Logical Pointer to Chain Header field
(offset hex 1E on output) is valid.

The SCB chain header has the following format:

Size Offset Description

Word 00H Reserved
DWord 02H Logical pointer to next SCB header in chain,

or chain-ending indicator (0)
Word 06H Reserved

Word 08H Reserved
DWord OAH Logical pointer to TSB that is associated with this SCB
Word OEH Reserved

The TSB for each SCB in the chain is examined to determine
which SCB caused the error; bit 0 in word 0 of the TSB is used to
determine whether the error occurred for that SCB. Therefore,
the caller must ensure that one of the following occurs:

— ATSB is returned for each SCB (which can degrade system
performance).

— ATSB is returned only on an error. In this case, the
controlling program must ensure that bit 0 of word 0 in the
TSB is set to 1 before ABIOS is invoked.

A logical pointer of 0 ends the SCB chain.

The chain must have an ending.

Chains that are passed to BIOS are not dynamically updated.

lf the Logical Pointer to SCB Chain Header field (offset hex 16 on
input) is set to 0, ABIOS does not initiate the SCB transfer, and
the Return Code field is set to hex 0000 (Operation Successfully
Completed).

The chain header must immediately precede the SCB.

Fixed Disk—September 1991 6-ID02-9

e Ail return-code vaiues are possible.

See “Transfer SCB Request Block” on page 6-ID02-19 for block

diagrams.

Service-Specific Input

Size Offset Description
DWord 10H Physical pointer to SCB

Word 14H Reserved
DWord 16H | Logical pointer to SCB chain header

Word 1CH Reserved

Word 26H Reserved

Word 2CH Reserved

Byte 2EH Flags
Bits 7 to 1 - Reserved (set to 0)

Bit 0 - SCB length

= 0- Normal-iength SCB
= 1-Long SCB

Service-Specific Output

Size Offset Description
DWord 1EH Logical pointer to chain header of last SCB processed;

check the Status field (offset hex 32) for validity

DWord 28H Time to wait before resuming request, in microseconds

Word 2FH Soft-error indicator
= 00H - Soft error did not occur

¥ OOH - Soft error occurred

Byte 32H Status
Bits 7 to 1 - Reserved

Bit 0 = 1- Pointer at offset hex 1E is valid

13H—Reserved

14H-—Deallocate

¢ This function removes the association between the physical

devices and the logical ID.

e All devices that are assigned to the logical ID are released.

e After a logical ID is deallocated:

— The logical iD cannot be used.

— The defauit interrupt handter for that logical ID returns hex

0005 (Not My Interrupt, Stage on Interrupt).

¢ This function is intended to be used in conjunction with the
Allocate SCSI Peripheral Device function (hex 15 in “Device !D

18—SCSI Peripheral Type”). Access to the device is gained
through a logical ID by deallocating the disk logical ID. There is
an individual SCSI-peripheral-type logical ID for each unit.

6-ID02-10 Fixed Disk—September 1991

e On return, the SCSI Disk Number field contains a value that can
be combined with a unit number and used as input for the
Allocate function. This allows the controlling program to request
the same device (within its class) that it has just released.

For example, if the disk logical ID has two units, the Allocate
SCSI Peripheral Device function must be called twice. The first
call is for the first unit; use the value that is returned in the SCSI
Disk Number field. The second call is for the second unit; add 1
to the value that is returned in the SCS! Disk Number field.

¢ The Return Logical ID Parameters function (hex 01), bit 4 of the
Logical ID Flags field indicates whether SCSI ABIOS is supported.

The Read Device Parameters function (hex 03), bit 14 of the
Device Control Flags field indicates whether the device is a SCSI
device.

e If any of the devices that are assigned to this logical ID are busy,
the Return Code field is set to hex 8000 (Device Busy, Request
Refused).

¢ The possible values of the Return Code field are hex 0000, 8000,
and 8003.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

Word 12H SCSI disk number - Can be used in the Allocate SCSI

Peripheral Device function to identify which disk

within this class is to be requested (offset hex 12
on input)

| 18H—Set Physical Pointer to Device Block

e A physical pointer to the device block is stored in each SCSI fixed
disk device block. This function should be called if the operating
system moves the device block after ABIOS is initialized. This
function updates the stored physical pointer.

¢ The physical pointer is range checked to ensure that the device
block will fit in memory.

¢ The possible values of the Return Code field are hex 0000 and

|
|
|
|

| © Each device block must be in physically-contiguous memory.

|
|

|
| C006.

Fixed Disk—September 1991 6-IDO2-11

| Service-Specific Input

Size Oftset Description

Word 18H Reserved

| DWord 1AH Physical pointer to device block
| Word 1EH Reserved

| Service-Specific Output

| Size Offset Description
| None

| 194—Return Pointers to Device Biock

¢ A physical pointer to the device block is stored in each SCSI fixed
disk device block. This function returns the logical pointer to the

device block (as passed in the ABIOS stack frame on this call)
and the current physical pointer that is stored in the device block.

operating systems that relocate the device blocks after ABIOS is
initialized. The physical pointer might or might not be valid. If
the device block is moved after ABIOS is initialized, the operating
system must update the physical pointer to enable ABIOS to

|
|
|
|

| ©@ The information that is returned in this function is to be used by

|
|
|
|
| transfer command blocks to the hardware.

| ©* The value of the Return Code field is hex 0000.

| Service-Specific Input

| Size Offset Description
| Word 10H Reserved

| Service-Speclific Output

| Size Offset Description
| DWord 12H Logical pointer to device block
| DWord 1AH Physical pointer to device block
| Word 20H Device-block length

6-ID02-12 Fixed Disk—September 1991

| 1AH—Return SCSI-Specific Parameters

| ¢ This function returns information about the SCSI fixed disk.

| @ Using the returned information to program the hardware directly
| is not recommended.

| ® To protect the IML portion of the fixed disk, use the Read Device
| Parameters function (hex 03) to determine the maximum
| available relative block address.

| ©® The possible values of the Return Code field are hex 0000 and

| 8003.

| Service-Specific Input

| Size Offset Description
| Word 10H Reserved

| Service-Specific Output

Size Offset Description

Byte 12H Physical unit number

Byte 13H Logical unit number

Byte 14H Logical device number

Byte 15H Adapter index (0 based)

Word 16H Base port address

Word 18H Reserved

Word 1AH Reserved

Fixed Disk—September 1991 6-ID02-13

Return Codes

Return codes are returned at offset hex OC.

Value

0000H
0001H
0002H
0005H
8000H
8001H
8002H
8003H
800FH
8100H
900TH
9002H
$003H
9004H
9005H
9006H
9007H

Description

Operation Successfully Completed

Stage on Interrupt

Stage on Time

Not My Interrupt, Stage on Interrupt

Device Busy, Request Refused

Device Not Powered-On

Device Block Not Properly Initialized

Device Not Allocated

DMA Arbitration Level Out of Range

Retryable Device Busy, Request Refused

Bad Command

Address Mark Not Found

Write-Protect Error

Record Not Found

Reset Failed

Media Changed

Controller Parameter Activity Failed

DMA Failed

Defective Sector

Bad Track

Format Error

CAM Detected during Read or Verify

Uncorrectable ECC or CRC Error

Device Failed

Bus Fault

Bad Controller

Equipment Check

Bad Seek

Device Did Not Respond

Drive Not Ready
Undefined Error

Write Fault

Status Error
Incomplete Sense Operation

Bad Command
Address Mark Not Found

Write-Protect Error

Record Not Found

Reset Failed

Media Changed

Controller Parameter Activity Failed

DMA Failed

Device Failed

Bus Fault

Bad Controller

Equipment Check

Figure 6-8 (Part 1 of 3). Fixed Disk Return Codes

6-ID02-14 Fixed Disk—September 1991

Value

9140H

9180H
91AAH

91BBH

91CCH

91E0H

91FFH
AQOO0H

A001H

A002H

A004H

A005H

A007H

AQOAH

AOOBH

AOQODH

AQOEH

AQ10H

AQ11H

A020H

A021H

A040H

A080H

AQAAH

AOBBH

AOCCH

AOFFH

A100H

A105H

A107H

A120H

A121H

A140H

A180H

A1AAH

A1BBH

A1CCH

A1FFH

BOO1H

B020H

BO21H
BO80H

BOBBH

BOFFH

B101H

B120H

B121H

B180H

Description

Bad Seek

Device Did Not Respond

Drive Not Ready

Undefined Error

Write Fault

Status Error

Incomplete Sense Operation

Time-Out Occurred, No Other Error

Bad Command

Address Mark Not Found

Record Not Found

Reset Failed

Parameter Activity Failed

Defective Sector

Bad Track

Invalid Sector on Format

CAM Detected during Read or Verify

Uncorrectable ECC or CRC Error

ECC Corrected Data Error

Bad Controller

Equipment Check

Bad Seek

Device Did Not Respond

Drive Not Ready

Undefined Error
Write Fault

Incomplete Sense Operation

Time-Out Occurred, No Other Error

Reset Failed

Controller Parameter Activity Failed

Bad Controller

Equipment Check

Bad Seek

Device Did Not Respond
Drive Not Ready

Undefined Error

Write Fault

Incomplete Sense Operation

Bad Command

Bad Controller

Equipment Check

Device Did Not Respond

Undefined Error

Sense Failed

Bad Command

Bad Controller

Equipment Check

Device Did Not Respond

Figure 6-8 (Part 2 of 3). Fixed Disk Return Codes

Fixed Disk—September 1991 6-ID02-15

Value Description

B1BBH Undefined Error

B1FFH Sense Failed

CO00H Invalid Logical ID (ABIOS transfer convention only)

COO01H Invalid Function

C003H invalid Unit Number

C004H Invalid Request-Block Length

CO005H Invalid Count Value

CO06H Range Exceeded
C007H Invalid Disk Parameter

Figure 6-8 (Part 3 of 3). Fixed Disk Return Codes

Programming Considerations

¢ in ABIOS, the disk interface requires the use of the DMA ABIOS
interface; therefore, if the disk routines are initialized and used,

the DMA ABIOS routines must be initialized.

e The Read Device Parameters (hex 03) returns the number of

retries for any one operation when an error occurs.

e When an error occurs, ABIOS resets the disk system, if

necessary.

e For the Read, Write, and Write/Verify functions, the output
parameter at offset hex 2C represents the number of blocks that
were transferred, as determined by the hardware. This value is
supplied when the request ends in an error before the data

transfer is completed. If no error is reported, this value equals
the number of blocks that were requested to be transferred. This
value is valid only when the request is completed (successfully or

unsuccessfully).

e When error-recovery procedures are successful and reported,
fixed disk routines attempt to determine the nature of the
recovery procedures that were performed. Fixed disk routines

set the Soft Error field in the transfer SCB request block with the
recovered error code.

e Relative block addresses begin ordering with the first disk block
that is assigned a value of 0. For hardware devices that do not

support relative block addresses, the equivalent is cylinder 0,
head 0, and sector 1. In the following formulas, “sectors per

track,” “sector ID,” “heads,” and “cylinders” refer to physical (1
based) entities. “Cylinder” and “head” refer to ID values as they
are actually sent to the controller (0 based). Fixed disk ABIOS
returns physical values for the number of sectors per track, the
number of heads, and the number of cylinders in the Read Device

6-ID02-16 Fixed Disk—September 1991

Parameters function (hex 03). These values should be used for
relative-block-address calculations. ABIOS uses the following
formulas to break down the relative block address (RBA):

Sector ID = (RBA MOD Sectors per track) + 1

Head = (RBA/Sectors per track) =x MOD heads

Cylinder = (RBA/Sectors per track) /Heads

The RBA is calculated as follows:

RBA = (Sectors per track x Heads x Cylinder) +

(Sectors per track x Head) + (Sector ID - 1)

The number of RBAs is calculated as follows (this is the value
that is returned by the Read Device Parameters function):

RBAs = Cylinders x Heads x Sectors per track

The maximum allowable RBA is calculated as follows:

Maximum RBA = (Cylinders x Heads x Sectors per track) - 1

When fixed disk ABIOS and fixed disk BIOS requests are issued,
the following rules must be followed:

~ Do not attempt an ABIOS call while there is an outstanding
BIOS call.

— Do not attempt a BIOS call while there is an outstanding
ABIOS call.

— The Reset/Initialize function (hex 05) must be issued after
ABIOS initialization has been completed.

Fixed Disk—September 1991 6-ID02-17

Device Control Flags

The following flags are returned at offset hex 14 of the Read Device

Parameters function (hex 03).

SCB transfer support

SCSI device

Power off

Parameter validity

Device Block

This bit indicates whether ABIOS supports
the Transfer SCB function (hex 12).

This bit indicates whether the attached

device is a SCSI device. It can also be used
to test for the validity of the LUN field. This
interface supports SCSI peripheral type-0

devices with nonremovable media and
512-byte block states.

This bit reflects the power state of the device

at initialization. When this bit is set to 1, the
device is powered-off. When this bit is set to

0, the device is powered-on.

This bit indicates the validity of the returned

values in the Sector, Head, Block Size,
Cylinder, and Maximum RBA fields. When
this bit is set to 1, the parameters are not
valid. When this bit is set to 0, the
parameters are valid. In most cases, when

the parameters are not valid, it is because

the disk drive was powered-off during ABIOS

initialization.

Subsystem control blocks (SCB) and termination status blocks (TSB)
require a physical pointer for the adapter. Therefore, the physical
pointer to the device block (as calculated during ABIOS initialization)
is kept in the device block and used when the SCB or TSB is required.
This requirement places a restriction on relocating the disk device
block. It cannot be relocated after ABIOS is initialized.

6-ID02-18 Fixed Disk—September 1991

Transfer SCB Request Block

Size Offset

DWord 10H

Word 14H

DWord 16H

Word 1CH

DWord 1EH

Word 26H

DWord 28H

Word 2CH

Byte 2EH

Word 2FH

Byte 32H

Chain Header

Size Offset
Word 00H

DWord 02H

Word 06H

Word 08H

DWord OAH

Word OEH

10H

Description

Physical pointer to SCB

Reserved

Logical pointer to SCB chain header

Reserved

Logical pointer to last SCB that was processed

Reserved

Time to wait before resuming request

(stage on time)
Reserved

Flags

Soft error

Status (byte)

Description

Reserved

Logical pointer to next SCB chain header

Reserved

Reserved

Logica! pointer to TSB

Reserved

Start of SCB

Fixed Disk—September 1991 6-ID02-19

Chain Example

RB Header

0
~

Physical Ptr Logical Ptr

SCBO SCB1 Header | 1
>

Logical Ptr ——iLogical Ptr Logica) Ptr --->

SCBO Header TSBO SCB2 Header

—> SCBO Logical Ptr

-——————| TS81

> SCB1
>——-_

— |Physical Ptr

TSBO

Physical Ptr|— Physical Ptr

SCB1 TSB1

< <— Physical Ptr |--->
TSBO SCB2

co <

TSB1

N
=aeee= >

End of Chain

))

Logical Ptr

TSBN

------ > SCBN

<—< Physical Ptr

TSBN TSBN

End of Chain

(0)

6-ID02-20 Fixed Disk—September 1991

Device ID 03H—Video

Functions

The following are the video functions. The Default Interrupt Handler
function (hex 00) and the Return Logical ID Parameters function (hex

01) are described in “Request Block” in the “Transfer Conventions”
section.

Note: All reserved input fields must be set to 0.

00H—Default Interrupt Handler

01H—Return Logical ID Parameters

02H—Reserved

03H—Read Device Parameters

e This function returns parameters that indicate the current video
state.

e The Character Block Specifier field returns the active

character-generator blocks. The Character Block Select A field
specifies the block that is used to generate alphanumeric
characters when bit 3 of the character-attribute byte is set to 1.

The Character Block Select B field specifies the block that is used
to generate alphanumeric characters when bit 3 of the

character-attribute byte is set to 0. When the value in the
Character Block Select A fieid is equal to the value in the
Character Block Select B field, character selection is disabled,
and bit 3 of the character-attribute byte determines the
foreground-intensity state (1=On, 0= Off).

CO
a
—
O
O

OC
om)
OO

t
—
OQ.
a
©

¢ The Save/Restore Header Size field, Hardware State Size field,
Device Block State Size field, and DAC State Size field are used
in calculating the size of the save buffer for the Save Environment
function (hex 0C). Refer to the Save Environment function (hex
OC) on page 6-ID03-5 for more information.

e The value of the Return Code field is hex 0000.

Service-Specific Input

Size Offset Description

Word 28H Reserved

Device ID 03H—Video 6-ID03-1

Service-Specific Output

Size Offset Description

Byte 1CH Number of scan lines on the screen

OOH - 200 scan lines

OTH - 350 scan lines

= Q2H - 400 scan lines

= 03H - 480 scan lines

= 04H to OFFH - Reserved

Ho
lt

Word 1EH Video mode setting

(see Figure 6-10 on page 6-ID03-14)
Word 20H Type of display attached

Bits 15 to 1 - Reserved

Bit 0 - Color or monochrome

= 0- Color display

= 1- Monochrome display
Word 22H Character height (bytes per character)

Word 24H Character-block specifier

Bits 15 to 12 - Reserved

Bits 11 to 8 - Character block select A

Bits 7 to 4 - Reserved

Bits 3 to 0 - Character block select B
Word 2AH Size of data buffer that is required for the

Return ROM Fonts Information function (hex 0B)
Word 2EH Size of the save/restore buffer header, in bytes

Word 30H Size of the save/restore hardware state, in bytes

Word 32H Size of the save/restore device-block state, in bytes

Word 34H Size of the save/restore digital-to-analog converter

(DAC) state, in bytes

04H—Set Device Parameters (Reserved)

05H—Reset/Initialize

¢ This function initializes the video controller to the requested
mode (see Figure 6-10 on page 6-ID03-14).

e The Character Blocks to Be Loaded field indicates which
character blocks will be loaded with the default ROM character
font for the specified mode and number of scan lines. This
parameter is required only when an alphanumeric mode (hex 0,
1, 2, 3, 7, or 14) is being set.

¢ The Number of Scan Lines field and the Character Block Specifier

field are specified only when an alphanumeric mode (hex 0, 1, 2,
3, 7, or 14) is being set.

¢ Inthe Character Block Specifier field, the Character Block Select

A field specifies the block that is used to generate alphanumeric
characters when bit 3 of the character-attribute byte is set to 1.

The Character Block Select B field specifies the block that is used
to generate alphanumeric characters when bit 3 of the
character-attribute byte is set to 0. When the value in the

Character Block Select A field is equal to the value in the

6-ID03-2 Device ID 03H—Video

Character Block Select B field, character selection is disabled,

and bit 3 of the character-attribute byte determines the
foreground-intensity state (1=On, 0= Off).

The summing bit of the Device Control Flags field is required only
when a color display is attached. Summing is performed
automatically for monochrome displays.

When a monochrome display is used in a color mode, the colors
are displayed as shades of gray. Of 64 gray shades, 16 are
available in all modes except mode hex 13. In mode hex 13, all
64 gray shades are available.

Modes hex 0, 2, and 4 are identical to modes hex 1, 3, and 5,

respectively.

The value of the Return Code field is hex 0000.

Service-Specific Input

Ottset Description

Word 1AH Device control flags

Bits 15 to 3 - Reserved

Bit 2 - Summing

= 0- Summing disabled

= 1~- Summing enabied

Bit 1 - Initialize digital-to-analog

converter (DAC) to default

0 - Do not initialize DAC to default
1 ~ Initialize DAC to default

Bit 0 - Regenerative buffer flag

= 0- Do not clear buffer

= 1- Clear buffer

1CH Number of scan lines

= QOH - 200 scan lines (modes 0, 1, 2, 3, and 14)

01H - 350 scan lines (modes 0, 1, 2, 3, 7, and 14)

= 02H - 400 scan lines (modes 0, 1, 2, 3, 7, and 14)

= 03H to FFH - Reserved

K
I

i
u
d

Word 1EH Video mode to be set

(see Figure 6-10 on page 6-ID03-14)

Word 24H Character block specifier

Bits 15 to 12 - Reserved
Bits 11 to 8 - Character block select A

Bits 7 to 4- Reserved

Bits 3 to 0 - Character block select B

Word 26H Character blocks to be Joaded with default ROM font

Bit n - Block n flag

= 0 - Do not update font

= 4 - Update font

Word 28H Reserved

Device ID 03H—Video 6-ID03-3

Service-Specific Output

Size Offset Description
None

06H—Enable (Reserved)

07H—Disable (Reserved)

0S8H—Read (Reserved)

09H—Write (Reserved)

0OAH—Additional Data Transfer Function (Reserved)

0BH—Return ROM Fonts Information

¢ This function returns the following information about each of the
ROM fonts:

— The pointer to the ROM font

— The character size (row and column)

~ Whether it is a total font or a partial font

— ffitis a partial font, which font it relates to.

¢ There are 12 bytes of information for each ROM font. They are
stored sequentially in the specified data area.

e Each RON-font entry has the following format:

Word - Reserved

DWord - Pointer to ROM font

Word - Reserved

Byte - Character size (number of columns)

Byte - Character size (number of rows)

Byte - Total-/partial-font indicator

= QOH - Total font

= 01H - Partial font

= 02H to FFH - Reserved
Byte - Related font

If this is a partial font, this byte contains a

number to indicate which font this font goes with.

The font number is based on the place a particular

font occupies in the ROM-font entries.

¢ Before this function is used, the Read Device Parameters function

(hex 03) must be issued to determine the size of the buffer that is
required to save the ROM-fonts information.

¢ The value of the Return Code field is hex 0000.

6-ID03-4 Device ID 03H—Video

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Pointer to buffer to store ROM-fonts information
Word 16H Reserved

Service-Specific Output

Offset Description
None

O0CH—Save Environment

This function stores the caller’s requested video states in the
specified buffer.

The video environment consists of the following states:

— Hardware state

— Device block state

— Digital-to-analog converter (DAC) state.

To calculate the size of the save buffer that is required, the Read
Device Parameters function (hex 03) must be issued. It gives the
individual sizes of the possible states to be saved and the size of
the save/restore header. Then:

Save-buffer size = (A + B + CG + D)

where:

A = Size of the save/restore header

B = Environment (bit 0) x (size of hardware state)

C = Environment (bit 1) x (size of device block state)

D = Environment (bit 2) x (size of DAC state)

¢ The value of the Return Code field is hex 0000.

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Pointer to environment save area

Word 16H Reserved

Word 2CH Video-environment states to be saved

Bits 15 to 3 - Reserved (set to 0)

Bit 2 - DAC state

= 1 - Save state

Bit 1 - Device block state

= 1- Save state

Bit 0 - Hardware state

= 1- Save state

Device ID 03H—Video 6-ID03-5

Service-Specific Output

Size Offset Description
None

0ODH—Restore Environment

¢ This function restores the video environment from the specified

buffer location. Refer to the Save Environment function (hex 0C)
for more information about the contents and structure of the video
environment.

¢ Restoring a state that was not previously saved can cause
unpredictable results.

e The value of the Return Code fieid is hex 0000.

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Pointer to environment restore area
Word 16H Reserved

Word 1AH Device control flag

Bits 15 to 1 - Reserved

Bit 0 - Regenerative-buffer flag

= 0- Do not clear buffer

= 1- Clear buffer

Word 2CH Video-environment states to be restored

Bits 15 to 3 - Reserved (set to 0)

Bit 2 - DAC state

= 1- Restore state

Bit 1 - Device block state

= 1- Restore state

Bit 0 - Hardware state

= 1- Restore state

Service-Specific Output

Size Offset Description
None

0OEH—Select Character-Generator Block

¢ This function selects up to two character-generator blocks.

¢ inthe Character Block Specifier field, the Character Block Select
A field specifies the block that is used to generate alphanumeric
characters when bit 3 of the character-attribute byte is set to 1.
The Character Block Select B field specifies the block that is used
to generate alphanumeric characters when bit 3 of the
character-attribute byte is set to 0. When the value in the

Character Block Select A field is equal to the value in the

6-ID03-6 Device ID 0O3H—Video

Character Block Select B field, character selection is disabled,
and bit 3 of the character-attribute byte determines the
foreground-intensity state (1 =On, 0= Off).

The value of the Return Code field is hex 0000.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Word 24H Character-block specifier

Bits 15 to 12 - Reserved

Bits 11 to 8 - Character block select A

Bits 7to 4 - Reserved

Bits 3toQ - Character block select B

Service-Specific Output

Offset Description
None

OFH—Aliphanumeric Load

This function loads the requested character generator, or part of
it, to the specified character blocks.

This function does not update the hardware registers. Refer to
the Enhanced Alphanumeric Load function (hex 10) if hardware
updating is required.

When any of the ROM character generators is being loaded (the
Character Generator Type field is set to 1, 2, or 3), the full set of

characters (hex 100) is loaded. Therefore, the only parameters
that are required to invoke this function are the Character

Generator Type field and the Character Block Specifier field.

When a user font is being loaded (the Character Generator Type
field is set to 0), all parameters are required.

When a user font is being loaded, if the Count of Characters field

is set to 0, no character is loaded, and the Return Code field is
set to hex 0000 (Operation Successfully Completed).

When a user font is being loaded, the sum of the values in the
Count of Characters field and the Character Offset field must not
exceed the maximum valid number of characters in a set (hex
100). If the sum does exceed the maximum valid number of

characters, the Return Code field is set to hex C005 (Invalid Video
Parameter).

The possible values of the Return Code field are hex 0000 and
C005.

Device ID 03H—Video 6-ID03-7

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Pointer to user font

Word 16H Reserved

Word 18H Count of characters

= 001H to 100H - Valid count of characters
Byte 1DH Character-generator type:

= QOH - User’s alphanumeric font
= 01H - 8x8 alphanumeric ROM font

= 02H - 8x14 alphanumeric ROM font

= O3H - 8x16 alphanumeric ROM font

= 04H to FFH - Reserved
Word 22H Character height (bytes per character)

Word 24H Character block to be loaded

= Q000H to 0007H - Valid values of character blocks

to be loaded

= 0008H to FFFFH - Reserved
Word 28H Character offset into the table

Service-Specific Output

Size Offset Description

None

10H—Enhanced Alphanumeric Load

¢ This function loads the requested character generator, or part of

it, to the specified character block and updates the hardware
registers.

¢ When any of the ROM character generators is being loaded (the
Character Generator Type field is set to 1, 2, or 3), the full set of
characters (hex 100) is loaded. Therefore, the only parameters
that are required to invoke this function are the Character

Generator Type field and the Character Blocks to Be Loaded
field.

e When a user font is being loaded (the Character Generator Type
field is set to 0), all parameters are required.

e When a user font is being loaded, if the Count of Characters field
is set to 0, no character is loaded, and the Return Code field is

set to hex 0000 (Operation Successfully Completed).

e When a user font is being loaded, the sum of the values of the
Count of Characters field and the Character Offset field must not
exceed the maximum valid number of characters in a set (hex
100). If the sum does exceed the maximum valid number of

characters, the Return Code field is set to hex C005 (Invalid Video
Parameter).

6-ID03-8 Device ID O3H—Video

¢ The possible values of the Return Code field are hex 0000 and
C005.

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Pointer to user font

Word 16H Reserved

Word 18H Count of characters

= 001TH to 100H - Valid count of characters

Byte 1iDH Character-generator type

= QOH - User’s alphanumeric font

= 01H - 8x8 alphanumeric ROM font

= 02H - 8x14 alphanumeric ROM font

= Q3H - 8x16 alphanumeric ROM font

= 04H to FFH - Reserved

Word 22H Character height (bytes per character)

Word 24H Character block to be loaded

= 0000H to 0007H - Valid values of character blocks

to be loaded

= 0008H to FFFFH - Reserved
Word 28H Character offset into the table

Service-Specific Output

Size Offset Description

None

11H—Read Palette Register

e This function reads a palette register.

e The value of the Return Code field is hex 0000.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Word 32H Palette register to be read

= Q000H to OOOFH - Valid values of palette register

to be read

= 0010H to FFFFH - Reserved

Service-Specific Output

Size Offset Description

Word 34H Palette value that was read

Device ID O3H—Video 6-ID03-9

12H—Write Palette Register

¢ This function writes a value to a palette register.

¢ Execution of this function is not supported in mode hex 13. The
hardware requires that the values in these registers not be

changed after they are set by the Reset/Initialize function (hex
05). Changing the vaiues in these registers can cause
unpredictable results.

e The value of the Return Code field is hex 0000.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Word 32H Palette register to be written

= Q000H to OOOFH - Valid values of palette register

to be written

= 0010H to FFFFH - Reserved
Word 34H Palette value to be loaded

= QO00H to 003FH - Valid palette values

= 0040H to FFFFH - Reserved

Service-Specific Output

Size Offset Description
None

13H—Read Color Register

e This function reads the red, green, and blue values of a color
register from the video digital-to-analog converter.

¢ The value of the Return Code field is hex 0000.

Service-Specific input

Size Offset Description

Word 16H Reserved

Word 2AH Color register to be read

= 0000H to OOFFH - Valid values of color register

to be read

= 0100H to FFFFH - Reserved

Service-Specific Output

Size Oftset Description

Word 2CH Red value that was read

Word 2EH Green value that was read

Word 30H Blue value that was read

6-ID03-10 Device ID O3H—Video

14H—Write Color Register

¢ This function loads a digital-to-analog converter color register
with the specified red, green, and blue values.

in the Device Control Flags field, the summing bit is disregarded
when a monochrome display is attached. Summing always
occurs with a monochrome display that is operating in a color
mode.

e The value of the Return Code field is hex 0000.

Service-Specific Input

Size

Word

Word

Word

Word

Word

Word

Offset

16H

1AH

2AH

2CH

2EH

30H

Description

Reserved

Device control flags

Bits 15 to 3 - Reserved

Bit 2 - Summing

= Q- Summing disabled

= 1- Summing enabled

Bits 1,0- Reserved

Color register to be written

= 0000H to OOFFH - Valid values of color registers
to be written

= 0100H to FFFFH - Reserved

Red value to be written

= 0000H to OOSFH - Valid red values to be written

= 0040H to FFFFH - Reserved

Green value to be written

= O000H to OO3FH - Valid green values to be written

= 0040H to FFFFH - Reserved

Blue value to be written

= QO00H to OO3FH - Valid blue values to be written

= 0040H to FFFFH - Reserved

Service-Specific Output

Size

None

Offset Description

15H—Read Block of Color Registers

¢ This function reads a block of digital-to-analog converter color
registers into the specified save area, beginning at the specified
color register.

e The format of the data that is returned is “red value, green value,

blue value, red vaiue, green value, blue value, .. . , red value,
green value, blue value.”

¢ The range for the red, green, and blue values is from hex 00 to
hex 3F.

Device iD OSH—Video 6-ID03-11

e Ifthe Number of Color Registers to Be Read field is set to 0, no

action is performed, and the Return Code field is set to hex 0000
(Operation Successfully Completed).

° if the sum of the values of the First Color Register to Be Read
field and the Number of Color Registers to Be Read field is
greater than the maximum valid number of color registers, no

action is performed, and the Return Code field is set to hex C005
(Invalid Video Parameter).

¢ The possible values of the Return Code field are hex 0000 and
C005.

Service-Specific Input

Size Offset Description

Word 10H Reserved

DWord 12H Pointer to read save area
Word 16H Reserved

Word 18H Number of color registers to be read

Word 2AH First color register to be read

= 0000H to OOFFH - Valid values of first color register

to be read

= 0100H to FFFFH - Reserved

Service-Specific Output

Size Offset Description
None

16H—Write Block of Color Registers

¢ This function loads a block of digital-to-analog converter color
registers with the requested values, beginning with the requested
color register.

¢ The format of the data that is returned is “red value, green value,
blue value, red value, green value, blue value, ... , red value,
green value, blue vaiue.”

° If the Number of Color Registers to Be Written field is set to 0, no

action is performed, and the Return Code field is set to hex 0000
(Operation Successfully Completed).

¢ If the sum of the values of the First Color Register to Be Written
field and the Number of Color Registers field is greater than the

maximum valid number of color registers, no action is performed,
and the Return Code field is set to hex C005 (Invalid Video
Parameter).

¢ Inthe Device Control Flags field, the summing bit is disregarded
when a monochrome display is attached. Summing always

6-1D03-12 Device ID O3H~Video

occurs with a monochrome display that is operating in a color
mode.

e The possible values of the Return Code field are hex 0000 and
Co05.

Service-Specific Input

Size Offset Description
Word 10H Reserved

DWord 12H Pointer to write save area

Word 16H Reserved

Word 18H Number of color registers to be written

Word 1AH Device control flags

Bits 15 to 3 - Reserved

Bit 2 - Summing

= 0- Summing disabled

= 1- Summing enabled

Bits 1, 0 - Reserved

Word 2AH First color register to be written

= QOO0H to OOFFH - Valid value of first color register

to be written

= 0100H to FFFFH - Reserved

Service-Specific Output

Size Offset Description

None

Device 1D O3H—Video 6-ID03-13

Return Codes

Return codes are returned at offset hex OC.

Value

0000H
CO00H
CO001H
C003H
C004H
CO005H

Description

Operation Successfully Completed

Invalid Logical ID (ABIOS transfer convention only)

Invalid Function

Invalid Unit Number

Invalid Request-Block Length

Invalid Video Parameter

Figure 6-9. Video Return Codes

Video Modes

The following table shows the supported video modes.

Mode

(Hex)

 APA

Maximum

Colors

Monochrome

Monochrome

Monochrome

Monochrome

16

16

AIN

Format

40x25

40x25
40x25

40x25

40x25

40x25

40x25

40x25

80x25

80x25

80x25

80x25

80x25

80x25

80x25

80x25

80x25

80x25

40x25

40x25

80x25

80x25

80x25

80x25

80x25

20x25

40x25

Bufter

Start

B8000H
B8000H
B8000H
B8000H
B8000H
B8000H
B8000H

Box

Size

8x8

8x14

8x16

9x16

8x8

8x14

8x16

9x16

8x8

8x8

8x14

8x16

9x16

8x8

8x8

8x14

8x16

9x16

8x8

8x8

8x8

9x14

9x14

9x16

8x8

8x8

8x8

Maximum Display

Pages
sa
nt

A
P
O

DW
an

a
n
o

snr
O
O
w
M
o
a
n
h
o
a
r
w
w
m
d
m
a
n
d
r
s
o
w
o
w
n
n
d
a
®
d
m
n
a
 na

Size

320x200
320x350

320x400

360x400

320x200

320x350

320x400

360x400

640x200

640x200

640x350
640x400

720x400

640x200

640x200

640x350

640x400

720x400

320x200

320x200

640x200

720x350

720x350

720x400

640x200

160x200

320x200

Figure 6-10 (Part 1 of 2). Video Modes

6-ID03-14 Device ID O3H—Video

Mode Maximum

(Hex) Type Colors

0A APA 4

0B Reserved

oc Reserved

0D APA 16

OE APA 16

OF APA Monochrome

10 APA 16

11 APA 2

12 APA 16

13 APA 256

14 A/N 16

14 A/N 16

14 A/N 16

AIN

Format

80x25

40x25

80x25

80x25

80x25

80x30

80x30

40x25

132x25

132x25

132x25

APA= Alt points addressable (graphics)

A/N = Alphanumeric (text)

Bufter

Start

BOOOOH

A0000H
AO0O000H
AO0000H
AOO00H
AO0O00H

AO000H
B8000H
B8000H
B8000H

8x8

8x8

8x8

8x14

8x14

8x16

8x16

8x8

8x8

8x14

8x16

Maximum Display

Pages Size

1 640x200

320x200

640x200

640x350
640x350

640x480

640x480

320x200

1056x200

1056x350

1056x400 h
a

A
a

a

ot

N
N

b

OO

Figure 6-10 (Part 2 of 2). Video Modes

Device ID O3H—Video 6-1D03-15

Notes:

6-ID03-16 Device ID 0O3H—Video

Device ID 04H—Keyboard

Functions

The following are the keyboard functions. The Default Interrupt
Handler function (hex 00) and the Return Logical ID Parameters
function (hex 01) are described in “Request Block” in the “Transfer
Conventions” section.

Note: All reserved input fields must be set to 0.

00H—Default Interrupt Handler

01H—Return Logical iD Parameters

02H—Reserved

03H—Read Device Parameters
oO

e This function returns the keyboard identification values. <.

e The possible values of the Return Code field are hex 0000, 0001, [ii
0002, 0005, 8000, 8003, 9000, 9002, 9003, 9004, 9100, 9102, 9103, 3
9104, BO01, and B101. =

|

Service-Specific Input GQ

Size Offset Description sf

Word 16H Reserved A

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds
Byte 14H Keyboard ID byte 1

Byte 15H Keyboard 1D byte 2

04H—Set Device Parameters (Reserved)

05H—Reset/initialize Keyboard

e¢ This function resets the keyboard and turns off the Num Lock,

Caps Lock, and Scroll Lock indicator lights.

e The possible values of the Return Code field are hex 0000, 0001,
0002, 0005, 8000, 8003, 9000, 9001, 9002, 9100, 9101, 9102, B00,
and B101.

Keyboard—September 1991 6-ID04-1

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

06H—Enabie

¢ This function enables the keyboard so that keyboard data can be
passed to the system.

¢ The possible vaiues of the Return Code field are hex 0000, 0002,
8000, 8003, 9000, and 9100.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

07H—Disable

¢ This function disables the keyboard by inhibiting the flow of
keyboard data to the system.

¢ The possibie values of the Return Code field are equal to hex
0000, 0002, 8000, 8003, 9000, and 9100.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

6-ID04-2. Keyboard—September 1991

08H—Continuous Read

¢ This function returns keyboard scan codes. It must be called
soon after ABIOS initialization to allow for the processing of
keystroke interrupts.

e After this function has been started, it is a continuous multistaged
request.

e At interrupt time, if a scan code is available, the Keyboard
Interrupt routine returns hex 0009 (Attention, Stage on Interrupt)

in the Return Code field. This return code indicates that there is
a valid scan code in the Keyboard Raw Scan Code field.

¢ The possible values of the Return Code field are hex 0001, 0005,
0009, and 8000.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Service-Specific Output

Size Offset Description

Byte 14H Keyboard raw scan code

09H-—Write (Reserved)

0AH—Additional Data Transfer (Reserved)

OBH—Read Keyboard Indicators

¢ This function returns the current state of the keyboard Num Lock,
Caps Lock, and Scroll Lock indicator lights.

¢ The possible values of the Return Code field are hex 0000 and
8000.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Keyboard—September 1991 6-ID04-3

Service-Specific Output

Size Offset Description

Byte 14H Keyboard-indicator data
Bits 7 to 3 - Reserved

Bit 2 - Caps Lock

= Q- Off
= 7-On

Bit 1 - Num Lock

= 0 - Off

= 1-On

Bit 0 - Scroll Lock

= Q- Off
= 1-On

0CH—Write Keyboard indicators

¢ This function programs the state of the keyboard Num Lock, Caps

Lock, and Scroll Lock indicator lights.

e The possible values of the Return Code field are hex 0000, 0001,
0002, 0005, 8000, 8003, 9000, 9002, 9100, 9102, B001, and B101.

Service-Specific input

Size Offset Description

Byte 14H Keyboard indicator data

Bits 7 to 3 - Reserved (must be set to 0)

Bit 2 - Caps Lock

= 0- Off

= 1-On

Bit 1 - Num Lock

= 0- Off

= 1-On

Bit 0 - Scroll Lock

= 0- Off

= 1-0On

Word 16H Reserved

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

0DH—Set Typematic Rate and Delay

¢ This function changes the current setting of the typematic rate
and delay for the keyboard.

e The possible values of the Return Code field are hex 0000, 0001,
0002, 0005, 8000, 8003, 9000, 9002, 9100, 9102, B001, and B101.

6-ID04-4 Keyboard—September 1991

Service-Specific Input

Size Offset Description

Byte 14H Rate value

Bits 7 to 5 - Reserved (must be set to 0)

Bits 4 to 0 - Rate value, in characters per second
(values are in binary)

= 00000-30.0 = 10000-7.5

= 00001-26.7 = 10001-6.7

= 00010-24.0 = 10010-6.0

= 00011-2186 = 10011-5.5

= 00100-20.0 = 10100-5.0

= 00101-18.5 = 10101-46

= 00110-17.1 = 10110-43

= 00111-1160 = 10111-4.0

= 01000- 15.0 = 11000 - 3.7

= 01001-13.3 = 11001-3.3

= 01010-12.0 = 11010-3.0

= 01011-1099 = 11011-2.7

= 01100-100 = 11100-2.5

= 01101 - 9.2 = 11101 - 2.3

= 01110 - 8.6 = 11110 - 2.1
= 01111-8.0 = 11111-2.0

Byte 15H Delay value

Bits 7 to 2 - Reserved (must be set to 0)

Bits 1,0 ~ Delay value, in milliseconds
(values are in binary)

= 00 - 250

= 01 - 500

= 10- 750

= 11- 1000
Word 16H Reserved

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

OEH—Read Keyboard Mode

e This function returns the current keyboard scan-code mode.

¢ The possible values of the Return Code field are hex 0000, 0001,

0002, 0005, 8000, 8003, 9000, 9002, 9003, 9004, 9006, 9100, 9102,
9103, 9104, 9106, BO01, and B101.

Service-Specific Input

Size Offset Description

Word 16H Reserved

Keyboard—September 1991 6-ID04-5

Service-Specific Output

Size Offset Description
DWord 10H Time to wait before resuming request, in microseconds

Byte 14H Current keyboard scan-code mode

= OOH - Reserved

= 01H - Scan code set 1

= 02H - Scan code set 2

= 03H - Scan code set 3

= 04H to FFH - Reserved

OFH—Set Keyboard Mode

e This function changes the current keyboard scan-code mode.

¢ The possible values of the Return Code field are hex 0000, 0001,

0002, 0005, 8000, 8003, 9000, 9002, 9100, 9102, BO01, and B101.

Service-Specific Input

Size Offset Description
Byte 14H Keyboard scan-code mode to be set

= 00H - Reserved

= 01H - Scan code set 1
= 02H - Scan code set 2

= 03H - Scan code set 3

= 04H to FFH - Reserved

Word 16H Reserved

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

10H—Write Keyboard-Controller Data String

¢ This function sends the requested data string to the keyboard
controller.

e If the Data String Count field is set to 0, no action is performed,

and the Return Code field is set to hex 0000 (Operation

Successfully Completed).

¢ The possible values of the Return Code field are hex 0000, 0001,

0002, 0005, 8000, 8003, 9000, 9002, 9100, 9102, B001, and B101.

Service-Specific Input

Size Oftset Description

Word 14H Reserved

DWord 16H Pointer to data area

Byte 1CH Data string count

Word 28H Reserved

6-ID04-6 Keyboard—September 1991

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

11H—Write Keyboard Data String

¢ This function sends the requested data string to the keyboard.

e If the Data String Count field is set to 0, no action is performed,
and the Return Code field is set to hex 0000 (Operation
Successfully Completed).

e The possible values of the Return Code field are hex 0000, 0001,

0002, 0005, 8000, 8003, 9000, 9002, 9100, 9102, B001, and B101.

Service-Specific Input

Size Oftset Description

Word 14H Reserved

DWord 16H Logical pointer to data area

Byte 1CH Data string count

Word 28H Reserved

Service-Specific Output

Size Offset Description

DWord 10H Time to wait before resuming request, in microseconds

Keyboard—September 1991 6-ID04-7

Return Codes

Return codes are returned at offset hex OC.

Value Description

0000H Operation Successfully Completed

0001H Incomplete — Stage on Interrupt

0002H incomplete — Stage on Time (service specific)

0005H Incomplete — Not My Interrupt, Stage on Interrupt
0009H Attention, Stage on Interrupt

8000H Device Busy — Request Refused

8003H Security Enabled, Keyboard inhibited — Request Refused

9000H Keyboard Controlier Perpetually Busy

9001H Keyboard Failed Reset

9002H Resend Error

9003H Keyboard Parity Error

9004H General Hardware Time-Out

9006H Undefined Mode Returned by Keyboard

9100H Keyboard Controller Perpetually Busy

9101H Keyboard Failed Reset

9102H Resend Error

9103H Keyboard Parity Error

9104H Genera! Hardware Time-Out

Boo1H Keyboard Error

B101H Keyboard Error

CO00H Invalid Logical ID (ABIOS transfer convention only)
C001H Invalid Function

C003H Invalid Unit Number

C004H invalid Request-Block Length

FFFFH Return Code Is Not Valid

Figure 6-11. Keyboard Return Codes

Programming Considerations

Keyboard ABIOS does not attempt any retries. The calling
program is responsible for performing retries.

The Write Keyboard Data String function (hex 11) sends bytes to
the keyboard and expects an acknowledgment (ACK) after each
byte is sent.

The Write Keyboard Controller Data String function (hex 10)

sends bytes to the keyboard controller; it does not expect a
response.

The Read Keyboard Indicators function (hex 0B) reflects the state
of the indicators after either a successful Reset/Initialize
Keyboard function (hex 05) or a successful Write Indicators
function (hex OC). If the Write Keyboard Data String function (hex
11) is used to change the indicators, the value that is returned by

6-ID04-8 Keyboard—September 1991

the Read Indicators function (hex 0B) might not reflect the true
state of the keyboard.

e The Keyboard Time-Out routine does not attempt to reset the
keyboard; rather, it sets the Return Code field to hex B001 or hex
B101 (Keyboard Error). The calling program is responsible for
executing the Keyboard Reset/Initialize function (hex 05).

e lf keyboard ABIOS expects an acknowledgment from the
keyboard after a command is issued to the keyboard, it does not

pass the acknowledgment to the controlling program.

Keyboard—September 1991 6-ID04-9

Notes:

6-ID04-10 Keyboard—September 1991

