

First Edition (May, 1988)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law:INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.

THE PUBLICATION OF THE INFORMATION CONTAINED HEREIN IS NOT INTENDED TO AND DOES NOT CONVEY ANY RIGHTS OR LICENSES, EXPRESS OR IMPLIED, UNDER ANY IBM PATENTS, COPYRIGHTS, TRADEMARKS, MASK WORKS OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS.

Requests for copies of this publication and for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM Marketing Representative.

Personal System/2 is a registered trademark of the International Business Machines Corporation.

© Copyright International Business Machines Corporation 1988. All rights reserved. No part of this work may be reproduced or distributed in any form or by any means without prior permission in writing from the IBM Corporation.

Preface

The Technical Reference library is intended for those who develop hardware and software products for IBM Personal Computers and IBM Personal System/2. Users should understand computer architecture and programming concepts.

This technical reference provides hardware and software interface information for the IBM Personal System/2 Model 80 and should be used with the following publications:

IBM Personnal System/2 Hardware Interface Technical Reference

IBM Personal System/2 and Personal Computer BIOS Interface Technical Reference

This manual consists of the following sections:

Section 1, "System Overview," describes the system, features, and specifications.

Section 2, "Programmable Option Select," describes registers used for configuration.

Section 3, "System Board," describes the system-specific hardware implementations.

Warning: The term "Reserved" describes certain signals, bits, and registers that should not be changed. Use of reserved areas can cause compatibility problems, loss of data, or permanent damage to the hardware. When the contents of a register are changed, the state of the reserved bits must be preserved. When possible, read the register first and change only the bits that must be changed.

For information about components or devices not described in this manual, refer to the *Hardware Interface Technical Reference*. Information about diskette drives, fixed disk drives, adapters, and external options are in separate option technical references.

Notes:

Contents

Section 1. System Overview	. 1-1
Description	. 1-3
System Board Features	. 1-3
System Board Block Diagram	. 1-5
System Board I/O Address Map	. 1-6
Specifications	. 1-7
Section 2. Programmable Option Select	. 2-1
Description	. 2-3
POS Address Map	. 2-5
Card Selected Feedback	. 2-6
System Board Setup	. 2-6
System Board Enable/Setup Register (Hex 0094)	. 2-7
System Board POS Register 2 (Hex 0102)	. 2-8
System Board POS Register 3 (Hex 0103) – Type 1	. 2-9
System Board POS Register 3 (Hex 0103) – Type 2	2-10
Adapter Enable/Setup Register (Hex 0096)	2-12
Section 3. System Board	. 3-1
Description	. 3-3
80387 Math Coprocessor	. 3-3
Micro Channel	. 3-3
Matched Memory, Type 1 Implementation	. 3-3
Matched Memory, Type 2 Implementation	3-12
Central Arbiter	3-12
Memory	3-16
Read-Only Memory Subsystem (Type 1)	3-16
Read-Only Memory Subsystem (Type 2)	3-16
Random Access Memory Subsystem	3-17
Error Recovery	3-18
Memory Subsystem Control	3-19
Memory Registers – Type 1	3-20
Memory Registers – Type 2	3-23
System Memory Maps	3-26
System Board Memory Connectors	3-33
Real-Time Clock/Complementary Metal-Oxide Semiconductor	
RAM	3-36
Miscellaneous System Functions	3-48
Nonmaskable Interrupt	3-48

System Control Port B (Hex 006	61)	48
System Control Port A (Hex 009	92)	50
Power-On Password		52
Hardware Compatibility		53
Index	· · · · · · · · · · · · · · · · · · ·	(-1

Figures

1-1.	Model and Submodel Bytes	1-3
1-2.	System Board Devices and Features	1-4
1-3.	System Board	1-5
1-4.	System Board I/O Address Map	1-6
1-5.	Performance Specifications – Type 1	1-7
1-6 .	Performance Specifications – Type 2	1-8
1-7.	Physical Specifications	1-9
2-1.	POS I/O Address Map	2-5
2-2 .	Card Selected Feedback Register (Hex 0091)	2-6
2-3.	System Board Enable/Setup Register (Hex 0094)	2-7
2-4.	System Board POS Register 2 (Hex 0102)	2-8
2-5.	Parallel Port Select Bits	2-8
2-6.	System Board POS Register 3, Type 1 (Hex 0103)	2-9
2-7.	POS Register 3 (Bits 3, 2) Type 1	. 2-10
2-8.	POS Register 3 (Bits 1, 0) Type 1	. 2-10
2-9 .	POS Register 3, Type 2	. 2-11
2-10.	POS Register 3 (Bits 3, 2), Type 2	. 2-11
2-11.	R1 and T1 Bit Values, Type 2	. 2-11
2-12.	Adapter Enable/Setup Register (Hex 0096)	. 2-12
3-1.	Matched-Memory Extension Voltage and Signal	
	Assignments	3-4
3-2.	Matched-Memory Cycle (No Waits)	3-9
3-3.	Matched-Memory Cycle with One Wait	. 3-11
3-4.	Arbitration Bus Priority Assignments	. 3-13
3-5.	Arbitration Register, Write to Hex 0090	. 3-14
3-6.	Arbitration Register, Read Hex 0090	. 3-14
3-7.	Memory Error Address Reassignment	. 3-18
3-8.	Memory Encoding Register (Type 1)	. 3-20
3-9.	Memory Encoding Register, Bits 7 and 6 (Type 1)	. 3-20
3-10.	Memory Encoding Register, Bits 5 and 4 (Type 1)	. 3-21
3-11.	Memory Encoding Register, Bits 3, 2, and 1 (Type 1)	. 3-22
3-12.	Split Address Register (Type 1)	. 3-22
3-13.	Memory Encoding Register 1 (Type 2)	. 3-23
3-14.	Memory Encoding Register 1, Bits 5 and 4 (Type 2) .	. 3-23
3-15.	Memory Encoding Register 1, Bits 3-1 (Type 2)	. 3-25
3-16.	Memory Encoding Register 2 (Type 2)	. 3-25
3-17.	Memory Encoding Register 2, Bits 5 and 4 (Type 2) .	. 3-26
3-18.	System Memory Map 1, (Type 1 and Type 2)	. 3-27
3-19.	System Memory Map 2, (Type 1 and Type 2)	. 3-27

3-20.	System Memory Map 3, (Type 1)	3-28
3-21.	System Memory Map 3, (Type 2)	3-28
3-22.	System Memory Map 4, (Type 1)	3-29
3-23.	System Memory Map 4, (Type 2)	3-29
3-24.	System Memory Map 5, (Type 1)	3-30
3-25.	System Memory Map 5, (Type 2)	3-30
3-26.	System Memory Map 6, (Type 1)	3-31
3-27.	System Memory Map 6, (Type 2)	3-31
3-28.	System Memory Map 7, (Type 2)	3-32
3-29.	System Memory Map 8, (Type 2)	3-33
3-30.	System Board Memory Connector Pin Locations	3-33
3-31.	System Board Memory Connector	3-35
3-32.	RT/CMOS RAM Address Map	3-36
3-33.	RT/CMOS Address Register and NMI Mask (Hex 0070)	3-37
3-34.	RT/CMOS Data Register (Hex 0071)	3-37
3-35.	Real-Time Clock Bytes	3-39
3-36.	Status Register A	3-40
3-37.	Status Register B	3-40
3-38.	Status Register C	3-42
3-39.	Status Register D	3-42
3-40.	Diagnostic Status Byte	3-43
3-41.	Diskette Drive Type Byte	3-44
3-42.	Diskette Drive Type Byte (Bits 7 - 4)	3-44
3-43.	Diskette Drive Type Byte (Bits 3 - 0)	3-44
3-44.	Equipment Byte	3-46
3-45.	Equipment Byte (Bits 7, 6)	3-46
3-46.	Equipment Byte (Bits 5, 4)	3-46
3-47.	System Control Port B (Write)	3-49
3-48.	System Control Port B (Read)	3-49
3-49.	System Control Port A	3-50

Section 1. System Overview

Description											•	1-3
System Board Features											•	1-3
System Board Block Diagram												1-5
System Board I/O Address Ma	ар											1-6
Specifications	•••	 •	•	 •	 •	•	 •	•	•		•	1-7

Notes:

Description

The IBM Personal System/2 Model 80 is a self-contained, floor-standing computer system with a keyboard. It can support two diskette drives and two internal fixed disk drives.

A system can have either a Type 1 or Type 2 system board. The major differences between the system boards are system clock speed, component layout, and memory. Programs identify the type by reading the model and submodel bytes. Interrupt hex 15, function code (AH) = hex C0, returns the model and submodel bytes. The following figure shows these bytes, system board types, and system clock speeds.

Modei Byte	Submodel Byte	Revision Code	System Board	System Clock
F8	00	00	Туре 1	16 MHz
F8	01	00	Туре 2	20 MHz

Figure 1-1. Model and Submodel Bytes

Refer to the *IBM Personal System/2 and Personal Computer BIOS Interface Technical Reference* for a listing of other systems, and check the supplements section for updates to that listing.

System Board Features

The following figure lists the system board devices and features. The *Hardware Interface Technical Reference* describes devices common to PS/2 products by type number.

Device	Туре	Features
Microprocessor		80386
		32-bit address and 32-bit data interface
System Timers	1	Channel 0 – System timer
		Channel 2 – Tone generation for speaker
		Channel 3 – Watchdog timer
ROM Subsystem		128KB (KB = 1024 bytes)
RAM Subsystem		Type 1 system board, 1 or 2MB
		(MB = 1,048,576 bytes)
		Type 2 system board, 2 or 4MB
		Expandable on the channel
CMOS RAM Subsystem		64-byte CMOS RAM with
		real-time clock/calendar
		2KB CMUS RAM extension
Video Cubauatam		Battery backup
video Subsystem	I	Auxiliary connector on the channel
		Analog oulput
Audio Subavatara		256KB video memory
Audio Subsystem	•	Driven by:
· ·		- System-timer channel 2 The 'audie aum node' signal
DMA Controllor		- The audio sum node signal.
DMA Controller	•	Single or burst transfers and read verification
Interrupt Controller	4	16 levels of system interrupts
interrupt Controller	•	Interrunte are level-consitive
Keyboard/Auvillary	1	Keyboard connector
Device Controller	•	Auxiliary device connector
		Password security
Diskette Drive	1	Supports:
Controller	•	- 720KB formatted diskette density
		- 1.44MB formatted diskette density.
Serial Controller	1. 2	RS-232C interface
	•	Programmable as serial port 1 or 2
		FIFO mode* and character mode
Parallel Controller	1	Programmable as parallel port 1, 2, or 3
		Supports bidirectional input and output
Micro Channel		Eight channel connectors:
		- Three 32-bit connectors with a matched-
		memory extension
		- Five 16-bit connectors:
		- One with a video extension
		- One occupied by the fixed disk drive adapter
Math Coprocessor		Supports 80387 math coprocessor
Socket		Same clock speed as the system microprocessor
Power Supply	2	110 and 220 Vac support

* The FIFO mode is only supported by the Type 2 serial controller.

Figure 1-2. System Board Devices and Features

System Board Block Diagram

Oscillator

Figure 1-3. System Board

Note: Additional memory can be added in any of the 32-bit Micro Channel connectors. However, the total amount of memory installed should not exceed the 16MB addressing limit of the DMA controller.

System Board I/O Address Map

Hex Addresses

Device

0000 - 001F	DMA Controller (0-3)
0020, 0021	Interrupt Controller (Master)
0040, 0042 - 0044, 0047	System Timers
0060	Keyboard, Auxiliary Device
0061	System Control Port B
0064	Keyboard, Auxiliary Device
0070, 0071	RT/CMOS and NMI Mask
0081 - 0083, 0087	DMA Page Registers (0-3)
0089 - 008B, 008F	DMA Page Registers (4-7)
0090	Central Arbitration Control Point
0091	Card Selected Feedback Register
0092	System Control Port A
0094	System Board Enable/Setup Register
0096	Adapter Enable/Setup Register
00A0 - 00A1	Interrupt Controller (Slave)
00C0 - 00DF	DMA Controller (4-7)
00E0, 00E1	Memory Encoding Registers
00F0 - 00FF	Math Coprocessor
0100 - 0107	Programmable Option Select
01F0 - 01F8	Fixed Disk Drive Controller
0278 - 027B	Parallel Port 3
02F8 - 02FF	Serial Port 2 (RS-232C)
0378 - 037B	Parallel Port 2
03B4, 03B5, 03BA	Video Subsystem
03BC - 03BF	Parallel Port 1
03C0 - 03C5	Video Subsystem
03C6 - 03C9	Video DAC
03CA, 03CC, 03CE, 03CF	Video Subsystem
03D4, 03D5, 03DA	Video Subsystem
03F0 - 03F7	Diskette Drive Controller
03F8 - 03FF	Serial Port 1 (RS-232C)

Figure 1-4. System Board I/O Address Map

Specifications

Device	Number of Waits	Cycle Time (ns)
Microprocessor (16 MHz — 62.5 ns Clock):		
Access to System Board RAM	1	187.5
Access to System Board ROM	1	187.5
Access to Channel:		
Default Transfer Cvcle	2	250
Synchronous Extended Transfer Cycle	4	375
Refresh Rate		625 (min)
(Typically performed every 15.1 μ s)		
Bus Master Access to System Board RAM		300 (min)
DMA Controller (8 MHz – 125 ns Clock):		
Single Transfer: 375 + I/O Access + Memory Access		
Burst Transfers: 375 + (I/O Access + Memory Access	s)N *	
System Board Memory Access		375
Default Transfer Cycle		250
Synchronous Extended Transfer Cycle		375
* N is the number of transfers in the burst.		

Figure 1-5. Performance Specifications-Type 1

	Number	
	of	Cycle
Device	Waits	Time (ns)
Microprocessor (20 MHz – 50 ns Clock):		
Access to System Board RAM: *		
Memory Read (Page Hit)	0	100
Memory Read (Page Miss)	2	200
Memory Write (Page Hit)	1	150
Memory Write (Page Miss)	2	200
Access to Channel:		
Default Transfer Cycle	2	200 (min)
Synchronous Extended Transfer Cycle	4	300 (min)
Refresh Rate		500 (min)
(Typically performed every 15.1 μ s)		
Bus Master Access to System Board RAM		300 (min)
DMA Controller (10 MHz – 100 ns Clock):		
Single Transfer: 300 + I/O Access + Memory Acc	ess	
Burst Transfers: 300 + (I/O Access + Memory Acc	cess)N **	
System Board Memory Access		300
Default Transfer Cycle		200
Synchronous Extended Transfer Cycle		300
 * Adapters installed in the channel should not rely on memory accesses because channel memory contro present during these accesses. ** N is the number of transfers in the burst 	monitoring sy ol signals may	vstem board v not be

Figure 1-6. Performance Specifications – Type 2

Size:	
Width	165 mm (6.5 in)
Width (feet extended)	318 mm (12.5 in)
Depth	483 mm (19.0 in)
Height	597 mm (23.5 in)
Weight	
(with one fixed disk drive)	20.6 kg (45.3 lb)
Cables:	
Power Cable	1.8 m (6 ft)
Keyboard Cable	3.05 m (10 ft)
Air Temperature:	
System On	15.6 to 32.2° C (60 to 90° F)
System Off	10.0 to 43.0° C (50 to 110° F)
Humidity:	
System On	8% to 80%
System Off	20% to 80%
Maximum Altitude	2133.6 m (7000 ft)
Heat Output	365 W
Acoustical Readings	
from 1 meter (3.28 ft):	
Operating	46 dB average
ldle	40 dB average
Electrical:	
Power Supply Input:	
Low Range	90 (min) - 137 (max) Vac
High Range	180 (min) - 265 (max) Vac
Maximum Current Draw :	
Low Range	5.3 A
High Range	2.7 A
Frequency	50 \pm 3Hz/60 \pm 3Hz
Maximum Current Allowable:	
Keyboard Port	275 mA
Auxiliary Device Port	300 mA
Electromagnetic Compatibility	FCC Class B

Figure 1-7. Physical Specifications

Notes:

Section 2. Programmable Option Select

Description				 	2-3
POS Address Map				 	2-5
Card Selected Feedback				 	2-6
System Board Setup				 	2-6
System Board Enable/Setup Register (Hex 0094)			•	 	2-7
System Board POS Register 2 (Hex 0102)				 	2-8
System Board POS Register 3 (Hex 0103) – Type	1			 	2-9
System Board POS Register 3 (Hex 0103) - Type 2	2		•	 	2-10
Adapter Enable/Setup Register (Hex 0096)				 	2-12

Notes:

Description

Programmable Option Select (POS) eliminates the need for switches by replacing their function with programmable registers. This section describes the POS information used on the Model 80 system boards. For additional POS information, refer to the *Hardware Interface Technical Reference*.

Warning:

- IBM recommends that programmable options be set only through the System Configuration utilities. Directly setting the POS registers or CMOS RAM POS parameters can result in multiple assignment of the same system resource, improper operation of the feature, loss of data, or possible damage to the hardware.
- Application programs should not use the adapter identification (ID) unless absolutely necessary. Compatibility problems can result.
- If an adapter and the system board are in setup mode at the same time, bus contention will occur, no useful programming can take place, and damage to the hardware can occur.
- After setup operations are complete, the Adapter Enable/Setup register (hex 0096) should be set to hex 00, and the System Board Enable/Setup register (hex 0094) should be set to hex FF.
- The channel reset bit (bit 7) in the Adapter Enable/Setup register must be 0 to program the adapters.
- The system board does not support 16-bit I/O operations to 8-bit POS registers. Using 16-bit I/O instructions on 8-bit POS registers will cause erroneous data to be written to or read from the registers. Only 8-bit transfers are supported for setup operations.

Setup functions respond to I/O addresses hex 0100 through 0107 only when their unique setup signal is active. The following precautions must be taken before setting individual bits in the POS registers.

System Board Video Subsystem Setup:

- Bit 5 in the System Board Enable/Setup register (hex 0094) must be set to 0 to place the system board video into the setup mode.
- Bit 3 in the Adapter Enable/Setup register (hex 0096) must be set to 0 to avoid driving a 'setup' signal to an adapter.
- Bit 7 in the System Board Enable/Setup register must be set to 1 to avoid driving a 'setup' signal to other system board functions.

Adapter Setup:

- Bit 3 in the Adapter Enable/Setup register must be set to 1 to allow adapter setup.
- Bit 5 in the System Board Enable/Setup register must be set to 1 to avoid driving a 'setup' signal to the Video Subsystem.
- Bit 7 in the System Board Enable/Setup register must be set to 1 to avoid driving a 'setup' signal to a system board function.

Other System Board Setup:

- Bit 7 in the System Board Enable/Setup register must be set to 0 to allow setup of other system board functions.
- Bit 3 in the Adapter Enable/Setup register must be set to 0 to avoid driving a 'setup' signal to an adapter.
- Bit 5 in the System Board Enable/Setup register must be set to 1 to avoid driving a 'setup' signal to the Video Subsystem.

POS Address Map

The following figure shows the organization of the I/O address space used by POS. Bit 0 of POS Register 2 and bits 6 and 7 of POS Register 5 are fixed. All other bits in POS Registers 2 through are free-form.

Address (Hex)	Function
0094	System Board Enable/Setup Register
0096	Adapter Enable/Setup Register
0100	POS Register 0-Adapter Identification Byte (Low Byte)
0101	POS Register 1—Adapter Identification Byte (High Byte)
0102	POS Register 2-Option Select Data Byte 1
	Bit 0 is Card Enable.
0103	POS Register 3—Option Select Data Byte 2
0104	POS Register 4-Option Select Data Byte 3
0105	POS Register 5-Option Select Data Byte 4
	Bit 7 is the channel check active indicator
	Bit 6 is the channel check status-available indicator
0106	POS Register 6–Subaddress Extension (Low Byte)
0107	POS Register 7—Subaddress Extension (High Byte)

Figure 2-1. POS I/O Address Map

Card Selected Feedback

When an adapter is addressed, it responds by setting the '-card selected feedback' signal (-CD SFDBK) to active. -CD SFDBK is derived from the address decode and driven by a totem pole driver. It is latched by the system board and can be read through the Card Selected Feedback register at address hex 0091. Diagnostic and automatic configuration programs use this signal to verify the operation of an adapter at a given address or DMA port. This signal must not be active during a setup cycle.

The Card Selected Feedback register is a read-only register at address hex 0091. It allows programs to monitor -CD SFDBK and thereby determine if the video subsystem, system board I/O, or an adapter is addressed and functioning.

Bit	Function	
7 - 1 0	Reserved -Card Selected Feedback	

- Figure 2-2. Card Selected Feedback Register (Hex 0091)
- Bits 7 1 Reserved.
- Bit 0 This bit is set to 1 whenever -CD SFDBK was active on a previous cycle or whenever the system board I/O functions (diskette drive, serial, or parallel interfaces) are accessed by an I/O cycle. Reading this register resets the bit to 0.

System Board Setup

The integrated I/O functions on the system board use POS information during setup. The diskette drive controller, serial port, and parallel port are treated as a single device. The video subsystem is also an integrated part of the system board, however, POS treats it as a separate device. The System Board Enable/Setup register is used to place the system board or the video subsystem into the setup mode.

System Board Enable/Setup Register (Hex 0094)

This is a read/write register; all bits in this register default to 1 (enabled).

Bit	Function
7	Enable/-Setup System Board Functions
6	Reserved
5	Enable/-Setup Video Subsystem
4 - 0	Reserved

- Figure 2-3. System Board Enable/Setup Register (Hex 0094)
- **Bit 7** When this bit is set to 0, various system board I/O functions are placed in the setup mode. The diskette drive controller, serial port, and parallel port are controlled through System Board POS Register 2 (hex 0102). The POS information for memory is in System Board POS Register 3 (hex 0103).

When this bit is set to 1, the system board functions are enabled.

- Bit 6 Reserved.
- Bit 5 When this bit is set to 0, the video subsystem is placed in the setup mode and controlled through POS Register 2 (hex 0102). When set to 1, and bit 0 in hex 0102 is set to 1, video is enabled.

Bit 0 of POS Register 2 is the video enable bit. When this bit is set to 0, the video subsystem does not respond to commands, addresses, or data. If video is being generated when the video enable bit is set to 0, the output is still generated. For information on BIOS calls to enable or disable the video, see the *IBM Personal System/2 and Personal Computer BIOS Interface Technical Reference*.

Note: When video is disabled, access to the video DAC registers is disabled.

Bits 4 - 0 Reserved.

System Board POS Register 2 (Hex 0102)

When the system board is in the setup mode, the diskette drive controller, serial port, and parallel port are controlled by this read/write register. Reading this register returns the current state of these system board functions.

Bit	Function
7	Disable Parallel Port Extended Mode
6, 5	Parallel Port Select
4	Enable Parallel Port
3	Serial Port Select
2	Enable Serial Port
1	Enable Diskette Drive Interface
0	Enable System Board

Figure 2-4. System Board POS Register 2 (Hex 0102)

- Bit 7When set to 0, this bit allows the parallel port to be
configured as an 8-bit, parallel, bidirectional interface.
When set to 1, this bit disables the bidirectional mode.
This bit is set to 0 at power-on and POST sets it to 1.
- **Bits 6, 5** These bits select the configuration of the system board parallel port.

Bits			
65	Assignment	Hex Address	Interrupt Level
00	Parallel 1	03BC - 03BF	7
01	Parallel 2	0378 - 037B	7
10	Parailel 3	0278 - 027B	7
11	Reserved		-

Figure 2-5. Parallel Port Select Bits

- **Bit 4** When this bit and bit 0 are set to 1, the system board parallel port is enabled.
- **Bit 3** When set to 1, this bit sets the system board serial port as Serial 1 (addresses hex 03F8 through 03FF), which uses interrupt level 4. When set to 0, this bit sets the serial port as Serial 2 (addresses hex 02F8 through 02FF), which uses interrupt level 3.

Bit 2	When this bit and bit 0 are set to 1, the system board serial port is enabled.
Bit 1	When this bit and bit 0 are set to 1, the diskette drive interface is enabled.
Bit 0	When set to 1, this bit allows bits 4, 2, and 1 to enable and disable their respective devices. When set to 0, this bit disables the diskette drive interface, system board serial port, and system board parallel port, regardless of the state of bits 4, 2, and 1.

System Board POS Register 3 (Hex 0103) - Type 1

This read-only register is accessed while the system board is in the setup mode. It contains information about the presence and type of memory card installed in each system board connector. Connector 1 is located closest to the power supply; connector 2 is located furthest from the power supply.

Note:	The Type 1 system board supports one or two 1MB me	mory
	cards.1	

Bit	Function
7 - 4	Reserved
3	-1MB Card, Connector 2
2	-Card Present, Connector 2
1	-1MB Card, Connector 1
0	-Card Present, Connector 1

Figure 2-6. System Board POS Register 3, Type 1 (Hex 0103)

Bits 7 - 4 Reserved.

Bits 3, 2 These bits indicate if memory is installed in memory connector 2 as shown in the following figure.

^{1 80386} System Board Memory Expansion Kit.

Bits	Available	
3 2	RAM	
00	1MB Memory Card in Connector 2	
01	Reserved	
10	Reserved	
11	No Memory Card Present in Connector 2	

Figure 2-7. POS Register 3 (Bits 3, 2) Type 1

Bits 1, 0 These bits indicate if memory is installed in memory connector 1 as shown in the following figure.

Bits 1 0	Available RAM	
0 0	1MB Card in Connector 1	
01	Reserved	
10	Reserved	
11	No Card Present in Connector 1	

Figure 2-8. POS Register 3 (Bits 1, 0) Type 1

Additional registers at address hex 00E0 and 00E1 are used during setup to define how memory is used. See "Random Access Memory Subsystem" on page 3-17 for more information.

System Board POS Register 3 (Hex 0103) - Type 2

This read-only register is accessed while the system board is in the setup mode. It contains information about the presence and type of memory card installed in each system board connector. Connector 1 is located closest to the power supply; connector 2 is located furthest from the power supply.

Note: The Type 2 system board supports one or two 2MB memory cards.²

² 80386 System Board 2MB Memory Expansion Kit

Bit	Function
7 - 4	Reserved
3	2MB Card, Connector 2 (T Signal)
2	-Card Present, Connector 2 (R Signal)
1	2MB Card, Connector 1 (T Signal)
0	-Card Present, Connector 1 (R Signal)

Figure 2-9. POS Register 3, Type 2

- Bits 7, 4 These bits are reserved.
- Bits 3, 2 These bits indicate if memory is installed in memory connector 2 as shown in the following figure.

Bits	Available
32	RAM
00	Reserved
01	Reserved
10	2MB Card in Connector 2
11	No Card in Connector 2

Figure 2-10. POS Register 3 (Bits 3, 2), Type 2

Bits 1, 0 These bits indicate if memory is installed in memory connector 1 as shown in the following figure.

Bits 1 0	Available RAM	
00	Reserved	
01	Reserved	
10	2MB Card in Connector 1	
11	Invalid (At Least 1MB Must Be Available in Connector 1)	

Figure 2-11. R1 and T1 Bit Values, Type 2

Additional registers at address hex 00E0 and 00E1 are used during setup to define how memory is used. See "Random Access Memory Subsystem" on page 3-17 for more information.

Adapter Enable/Setup Register (Hex 0096)

The Adapter Enable/Setup register selects the connector to be setup.

Bit	Symbol	
7	Channel Reset	
6 - 4	Reserved	
3	Card Setup Enable	
2 - 0	Channel Select 2 - 0	

Figure 2-12. Adapter Enable/Setup Register (Hex 0096)

- **Bit 7** When set to 1, this bit activates the 'channel reset' signal to all connectors.
- Bits 6 4 These bits are reserved.
- **Bit 3** When set to 1, this bit enables the '-card setup' signal selected by bits 2 through 0.
- Bits 2 0 These bits are the address bits for the '-card setup' signal. Connectors 1 through 8 are addressed as 0 through 7, respectively. When bit 3 is set to 1, these bits select the connector that is put into setup.

Each channel connector has a unique '-card setup' signal (-CD SETUP) associated with it. This signal is used to put the adapters in the setup mode, which allows access to the POS registers. The individual connectors are selected through the Adapter Enable/Setup register. Setup information is then read from or written to the selected adapter through I/O addresses hex 0100 through 0107.

Notes:

- 1. -CD SETUP only goes active when an operation is performed in the I/O address range hex 0100 through 0107.
- 2. The status of port hex 0096 can be read by software. However, when the port is read, bits 6, 5, and 4 are set to 1.

Section 3. System Board

Description	3-3
80387 Math Coprocessor	3-3
Micro Channel	3-3
Matched Memory, Type 1 Implementation	3-3
Matched-Memory Extension	3-4
Signal Descriptions	3-4
Matched-Memory Cycle	3-6
Matched-Memory Cycle Timing (No Waits)	3-8
Matched-Memory Cycle Timing (One Wait)	3-10
Matched Memory, Type 2 Implementation	3-12
Central Arbiter	3-12
Arbitration Bus Priority Assignments	3-12
Central Arbiter Programming	3-14
Memory	3-16
Read-Only Memory Subsystem (Type 1)	3-16
Read-Only Memory Subsystem (Type 2)	3-16
Random Access Memory Subsystem	3-17
Error Recovery	3-18
Memory Subsystem Control	3-19
Memory Registers – Type 1	3-20
Memory Encoding Register – Type 1 (Hex 00E1)	3-20
Split Address Register - Type 1 (Hex 00E0)	3-22
Memory Registers – Type 2	3-23
Memory Encoding Register 1 – Type 2 (Hex 00E1)	3-23
Memory Encoding Register 2 – Type 2 (Hex 00E0)	3-25
System Memory Maps	3-26
System Board Memory Connectors	3-33
Real-Time Clock/Complementary Metal-Oxide Semiconductor	
RAM	3-36
RT/CMOS Address Register and NMI Mask (Hex 0070)	3-37
RT/CMOS Data Register (Hex 0071)	3-37
RT/CMOS RAM I/O Operations	3-38
Real-Time Clock Bytes (Hex 000-00D)	3-39
CMOS RAM Configuration	3-43
Miscellaneous System Functions	3-48
Nonmaskable Interrupt	3-48
System Control Port B (Hex 0061)	3-48
System Control Port A (Hex 0092)	3-50
Power-On Password	3-52

Hardware	Compatibility
----------	---------------

.

Description

This section describes the Model 80 implementation of the 80387 math coprocessor, Micro Channel architecture, memory subsystem, and miscellaneous system ports. For additional information about these and other areas not discussed, refer to the *Hardware Interface Technical Reference*.

80387 Math Coprocessor

The 80387 math coprocessors are matched to the speed of the system microprocessor and operate in the synchronous mode. The 16 MHz and 20 MHz math coprocessors are not interchangeable; their logical operation is the same.

Micro Channel

The Type 1 and Type 2 system boards implement the Micro Channel architecture the same way, with the exception of matched memory.

Matched Memory, Type 1 Implementation

The 32-bit channel connector with matched-memory extension is a dual 93-pin, 50-mil card edge design. The matched-memory extension provides three signal lines, two ground lines, and three reserved lines.

Matched-Memory Extension

This extension to the 32-bit Micro Channel connector provides the signals necessary to accommodate matched-memory cycles.

Signal Descriptions

The following are descriptions of the matched memory signals.

-MMC: -Matched Memory Cycle: This signal is driven by the system board logic to indicate to the channel slaves that the system microprocessor is the controlling master and is able to run a matched-memory cycle. -MMC is driven by a tri-state driver that can sink 24 milliamps.

-MMCR: -Matched Memory Cycle Request: This is a bus cycle control input signal. A 16- or 32-bit channel slave drives -MMCR to request the faster cycle available on the system bus. This signal is driven active from an address decode and M/-IO.

If -MMCR is driven active by an 8-bit channel slave, or if it is driven active by a 16- or 32-bit channel slave during a cycle other than a microprocessor bus cycle, a default transfer cycle is run and -MMCR is not honored. CD CHRDY is used to extend the matched-memory cycle, as needed. -ADL and -CMD remain inactive for the entire matched-memory cycle.

Only the system microprocessor can drive matched-memory cycles. This signal is wired separately to each of the 32-bit channel connectors on the system board and ORed by the system logic. This signal is driven by a totem-pole driver that can sink 6 milliamps.

-MMC CMD: -Matched Memory Cycle Command: This output signal to the bus and is generated for system microprocessor bus cycles only. It is used during a matched-memory cycle to define when the data on the bus is valid. The trailing edge of this signal indicates the end of the matched-memory cycle. As with -CMD,, this signal indicates the time that the data is valid on the bus, and indicates when to either latch the data from the bus or stop driving the data onto the bus. -MMC CMD is driven by a tri-state driver that can sink 24 milliamps.

Matched-Memory Cycle

This section describes the Type 1 matched-memory bus operation supported by the Micro Channel. The Type 1 implementation is such that a channel slave can be either a memory or I/O slave with a data bus width of 16 or 32 bits. No 8-bit devices are allowed to run matched-memory cycles.

In addition to the three basic types of cycles defined by the Micro Channel (default, synchronous extended, and asynchronous extended), the Type 1 system board also supports the matched-memory cycle. The matched-memory cycle is a system-unique function supported by the Micro Channel, and is provided for memory subsystem expansion. This function allows the most efficient data transfer capability between the 16 MHz 80386 system microprocessor and channel memory. The system board ROM and RAM (held on the local bus) and the IBM 80386 Memory Expansion Adapter (held on the channel) adhere to the matched-memory cycle protocol described in this section.

Matched-memory cycles are a minimum of 3 (16 MHz) clocks or a cycle time of 187.5 nanosecond. (Default transfer cycles are a minimum of 4 clocks or a cycle time of 250 nanoseconds.) The target channel slave must request the matched-memory cycle on a cycle-by-cycle basis through -MMCR, or it will get the default transfer cycle.
A system microprocessor bus cycle begins by the 'address', 'byte enables', and bus definition signals becoming valid in the first clock cycle of the bus cycle. Either of the status bits driven active signals the start of the channel bus cycle. The status state (Ts) is the first clock cycle. After Ts, the command state (Tc) is entered. Channel slaves respond to the bus operation during Tc, either transferring read data to or accepting write data from the system bus. Tc states can be repeated as often as necessary to assure sufficient time for the channel slave to respond. CD CHRDY is used to determine whether Tc is repeated. A repeated Tc state is called a 62.5-nanosecond wait state.

If -MMCR is driven active by the channel slave, then -MMC CMD is driven by the system microprocessor.

If -MMCR is not returned from the channel slave, a default cycle is run. Default transfer and matched-memory bus cycles can be mixed in any manner because the mechanism is completely dynamic on a bus cycle basis. Bus cycles can be extended until CD CHRDY is sampled as active.

CD CHRDY is driven inactive by a slave to allow additional time to complete a default or matched-memory cycle when the normal cycle length is not sufficient to service that device. The timings for the matched-memory cycles are shown on the following pages.

Matched-Memory Cycle Timing (No Waits)

Symbol	Description	Min/Max
t1 FC	ADDR valid to Status active	10 / - ns
t2 FC	Status valid to -MMC CMD active	82 / - ns
t3 FC	ADDR hold from -MMC CMD active	20 / - ns
t4 FC	Status hold from -MMC CMD active	25 / - ns
t5 FC	CD DS 16/32 active from ADDR valid	- / 55 ns
t6 FC	-MMCR active from ADDR valid	- / 55 ns
t7 FC	-CD SFDBK active from ADDR valid	- / 60 ns
t8 FC	ADDR valid to -MMC CMD active	100 / - ns
t9 FC	-MMC CMD pulse width	85 / - ns
t10 FC	Write data valid to -MMC CMD active	0 / - ns
t11 FC	Write data hold from -MMC CMD inactive	30 / - ns
t12 FC	Read data valid from Status active	- /145 ns
t13 FC	Read data valid from -MMC CMD active	- / 60 ns
t14 FC	Read data hold from -MMC CMD inactive	0/-ns
t15 FC	Read data off delay from -MMC CMD inactive	- /40 ns
t16 FC	-MMC CMD active to next -MMC CMD active	180 / - ns
t17 FC	CD CHRDY valid from ADDR valid	- / 70 ns
t18 FC	CD CHRDY valid from Status active	- / 30 ns
t23 FC	Status inactive pulse width	30 / - ns
t24 FC	Next Status active to -MMC CMD inactive	- / 5 ns
t25 FC	-MMC CMD inactive pulse width	85 / - ns
t26 FC	-MMC CMD active to Status active	90 / - ns

Figure 3-2. Matched-Memory Cycle (No Waits)

Matched-memory cycles are supported for 32-bit and 16-bit channel devices only. Eight-bit channel devices cannot run matched-memory cycles.

Note: Adapters using this protocol can only be installed in the three 32-bit channel connectors and therefore sacrifice some compatibility. These adapters may not fit or operate in some other systems.

When -MMC is active, 32-bit and 16-bit devices should not use -MADE 24, A0, A1, or -SBHE in logic that generates -MMCR, -CD DS 16/32, -CD SFDBK, and CD CHRDY.

Matched-Memory Cycle Timing (One Wait)

Symbol	Description	Min/Max
t3 FC	ADDR hold from -MMC CMD active	20 / - ns
t4 FC	Status hold from -MMC CMD active	25 / - ns
t9 FC	-MMC CMD pulse width	85 / - ns
t9 FCE	-MMC CMD pulse width (Extended Cycle)	145 / - ns
t10 FC	Write data valid to -MMC CMD active	0/-ns
t11 FC	Write data hold from -MMC CMD inactive	30 / - ns
t13 FC	Read data valid from -MMC CMD active	- / 60 ns
t14 FC	Read data hold from -MMC CMD inactive	0 / - ns
t15 FC	Read data off delay from -MMC CMD inactive	- / 40 ns
t16 FC	-MMC CMD active to next -MMC CMD active	240 / - ns
t17 FC	CD CHRDY valid from ADDR valid	- / 70 ns
t18 FC	CD CHRDY valid from Status active	- / 30 ns
t19 FC	CD CHRDY active from Status inactive	- / 9 ns
t20 FC	Read data valid from -MMC CMD active	- /125 ns
t21 FC	Read data valid from CD CHRDY active	- / 45 ns
t22 FC	-MMC CMD inactive from CD CHRDY active	65 / - ns
t23 FC	Status inactive pulse width	30 / -
t24 FC	Next Status active to -MMC CMD inactive	- / 5 ns
t25 FC	-MMC CMD inactive pulse width	85 / - ns

Figure 3-3. Matched-Memory Cycle with One Wait

Matched-memory cycles are supported for 32-bit and 16-bit channel devices only. Eight-bit channel devices cannot run matched-memory cycles.

Note: Adapters using this protocol can only be installed in the three 32-bit channel connectors and therefore sacrifice some *portability*. These adapters may not fit or operate in some other systems.

When -MMC is active, 32-bit and 16-bit devices should not use -MADE 24, A0, A1, or -SBHE in logic that generates -MMCR, -CD DS 16/32, -CD SFDBK, and CD CHRDY.

Matched Memory, Type 2 Implementation

The channel connectors are physically identical to those on the Type 1 system board including the presence of the matched-memory extensions on the 32-bit connectors. The system microprocessor drives -MMC active when it does a memory access. This allows the Type 2 system board to support the same memory adapter design as the Type 1 system board.

Although a memory adapter can respond to -MMC active by driving -MMCR active, the Type 2 system board ignores -MMCR and performs a default cycle if the 'channel ready' signal (CD CHRDY) is driven active, or a synchronous-extended cycle if CD CHRDY is inactive. The Type 2 system board also drives -MMC CMD active at the same time as -CMD.

Central Arbiter

The central arbitration control point gives intelligent subsystems on the channel the ability to share and control the system. It allows burst data transfers and prioritization of control between devices. This arbiter supports up to 16 arbitrating devices.

Arbitration Bus Priority Assignments

The following figure shows the assignment of arbitration levels. The functions with the lowest arbitration level have the highest priority.

ARB	
Level	Primary Assignment
-2	Memory Refresh
-1	NMI
0	DMA Channel 0 (Programmable to any arbitration level)
1	DMA Channel 1
2	DMA Channel 2
3	DMA Channel 3
4	DMA Channel 4 (Programmable to any arbitration level)
5	DMA Channel 5
6	DMA Channel 6
7	DMA Channel 7
8 - E	Available
F	System Microprocessor

Figure 3-4. Arbitration Bus Priority Assignments

Note: Devices designed for arbitration level 0 or 1 should have limited bandwidth or short bursts so diskette overruns can be prevented or recovered by retry operations. The diskette drive controller, on arbitration level 2, can be held inactive by devices on levels 0 and 1, by a refresh operation, and by the previous controlling master. The diskette drive controller should not be held inactive for more than 12 microseconds to prevent overrun.

NMI service is executed at a priority level higher than 0, called -1. Memory refresh is prioritized at -2, two levels higher than 0. Levels -1 and -2 are reached on the system board only, while the 'arbitrate/-grant' signal is in the arbitrate state.

When the central arbitration control point receives a level -1 request (NMI, a system-board internal signal), it activates -PREEMPT, waits for the end of transfer, and then places ARB/-GNT in the arbitrate state, which denies channel activity to arbitrating devices. The central arbitration control point gives the grant to the level -1 request, and holds ARB/-GNT in the arbitrate state until the operation is complete and the NMI is reset.

Central Arbiter Programming

The central arbitration control point provides access to programmable options through the Arbitration register, which is accessed at I/O address hex 0090. The bits are defined differently for read and write operations, as shown in the following figures.

Bit	Definition
7	Enable System Microprocessor Cycle
6	Arbitration Mask
5	Enable Extended Arbitration
4 - 0	Reserved

Figure 3-5. Arbitration Register, Write to Hex 0090

Bit	Definition
7	Enable System Microprocessor Cycle
6	Arbitration Masked by NMI
5	Bus Time-out
4	Reserved
3 - 0	Value of Arbitration Bus During Previous Grant State

Figure 3-6. Arbitration Register, Read Hex 0090

Bit 7 Setting this bit to 1 enables system microprocessor cycles during arbitration cycles. This bit can be set to 0 if an arbitrating device requires total control of the channel bandwidth. This bit is set to 0 by a system reset.

Reading this bit as a 1 indicates system microprocessor cycles are enabled during arbitration.

Bit 6 Setting this bit to 1 causes the central arbitration control point to enter the arbitration state. The system microprocessor controls the channel until this bit is reset to 0. This bit is set to 0 by a system reset.

Reading this bit as a 1 indicates that an NMI has occurred and has masked arbitration.

Warning: This bit should be set to 1 only by diagnostic routines and system error-recovery routines.

Bit 5 Setting this bit to 1 enables extended arbitration. The minimum arbitration cycle is 300 nanoseconds; this bit extends that minimum cycle to 600 nanoseconds. This bit is set to 0 during a system reset.

Reading this bit as a 1 indicates that a bus time-out has occurred, and resets bit 6 in this register to 0.

- Bit 4 This bit is reserved and should be 0.
- **Bits 3 0** These bits are undefined for a write operation and should be set to 0.

Reading these bits returns the arbitration level of the arbiter controlling the channel during the most recent grant state. This information allows the system microprocessor to determine the arbitration level of the device that caused a bus time-out.

Memory

The Model 80 systems use the following types of memory:

- Read-only memory (ROM)
- Random access memory (RAM)
- Real-time Clock and CMOS RAM.

Read-Only Memory Subsystem (Type 1)

The ROM subsystem on the Type 1 system board consists of four 32Kb by 8-bit modules in a 32Kb by 32-bit arrangement (Kb equals 1024 bits). ROM is assigned at the top of the first and last 1MB address space (000E0000 and FFFE0000). ROM is not parity-checked. It operates with one 62.5-nanosecond wait state.

Read-Only Memory Subsystem (Type 2)

The ROM subsystem on the Type 2 system board consists of two 64Kb by 8-bit modules in a 64Kb by 16-bit arrangement. ROM is active at power-on at the top of the first and last 1MB of address space (000E0000 and FFFE0000). After POST ensures the proper operation of system memory, the ROM code is copied to RAM at the same address space, and ROM is disabled.

ROM or RAM access at address space hex 000E0000 to 000FFFFF is controlled by the ROMEN bit in Memory Encoding Register 1 (hex 00E1). When enabled, ROM is not parity-checked and operates with four 50-nanosecond wait states.

Random Access Memory Subsystem

The RAM subsystem on the system board consists of memory modules mounted on a printed-circuit board, which attaches to the system board through a 3- by 32-pin connector. Two connectors are provided on the system board. The Type 1 system board supports the 1MB memory cards; the Type 2 system board supports the 2MB memory cards. Type 2 system board POST routines require a minimum of 1MB of functional memory installed in connector 1. The Type 1 system board also requires a minimum of 1MB of functional memory, however it can be installed in either connector 1 or connector 2. The RAM subsystem is 36 bits wide: 32 data bits and 4 parity bits. One parity bit is generated for each byte of data written. During a read operation, one parity bit is checked for each each byte of data read by the device controlling the bus.

Note: Additional memory can be added in any of the 32-bit Micro Channel connectors. The total amount of memory installed should not exceed the 16MB addressing limit of the DMA controller.

Error Recovery

If POST detects a memory error in the first 512KB of memory, the first physical 1MB block of memory is deactivated. The addresses assigned to the deactivated block are reassigned to the second physical block of system board memory, if installed. In the event an error is also detected in the first 512KB of the second 1MB block of system board memory, the system cannot recover. The first 512KB of memory address space cannot be assigned to reside on an adapter installed in the channel.

POST does not deactivate a memory block if an error is detected in the second 512KB of that block. If an error is detected in that area of memory, the 1MB block containing the error can be deactivated and have its addresses reassigned by running the customer-level memory diagnostics program on the Reference Diskette supplied with the system. Once a block of memory is deactivated, it is ignored by POST on subsequent power-ons.

Properly Functioning Memory - 8MB Active Error in 5th Block of Memory -7MB Active after Address Reassigned

Memory Subsystem Control

The Type 1 and Type 2 system boards enable memory in 1MB blocks. Each block must start on a 1MB boundary. Because 128KB of system board ROM, 128KB of I/O ROM, and 128KB of video RAM are mapped within the first 1MB address space, the first physical 1MB of memory cannot be mapped to contiguous addresses and is therefore split at either the 512KB or 640KB boundary. The first 512KB or 640KB is addressed beginning at hex 00000000; the remaining unmapped memory, called the *split-memory block*, can be mapped in several ways:

- Type 1 system board The entire split-memory block is mapped to the first available address following the last full 1MB block of activated memory. Alternately, the split-memory block can be handled in either of the following ways:
 - It can be totally disabled.
 - 128KB of the split-memory block can be mapped to the system board ROM address space, replacing the system board ROM. The remainder of the split-memory block is disabled.
- Type 2 system board In addition to mapping the first 512KB or 640KB of physical RAM, the Type 2 system board automatically maps 128KB of the first 1MB of RAM to the system board ROM address space. The ROM code is then copied into RAM at this location. The remaining unmapped memory, the *split-memory block*, can be either disabled or mapped to the first available address following the last full 1MB block of activated memory.

The size of the split-memory block, memory mapping, and disabling of memory blocks are controlled by registers residing at addresses hex 00E0 and 00E1. The Type 1 and Type 2 system boards define these registers differently.

Memory Registers – Type 1

Two registers define how the system board memory is addressed and used:

- Memory Encoding Register (hex 00E1)
- Split Address Register (hex 00E0).

Memory Encoding Register - Type 1 (Hex 00E1)

This read/write register determines the amount of enabled system board memory and how it is used.

Bit	Function	
7	EN4	
6	EN3	
5	EN2	
4	EN1	
3	-ENSPLIT	
2	-640	
1	ROMEN	
0	-ENPLRPCH	

Figure 3-8. Memory Encoding Register (Type 1)

Bits 7, 6 These bits define the amount of enabled memory in system board memory connector 2.

	Bits 7 6	Amount of RAM	Function
	00	Reserved	
	01	Reserved	
ŀ	10	1MB	1MB Card enabled in Connector 2
	11	OMB	Card Disabled or No Card Present in Connector 2

Figure 3-9. Memory Encoding Register, Bits 7 and 6 (Type 1)

Bits 5, 4 These bits define the amount of enabled memory in system board memory connector 1.

	Bits	Amount	
	54	of RAM	Function
	00	Reserved	
	01	Reserved	
1	10	1MB	1MB Card enabled in Connector 1
	11	0MB	Card Disabled or No Card Present in Connector 1

Figure 3-10. Memory Encoding Register, Bits 5 and 4 (Type 1)

Bit 3 This bit determines whether the split-memory block is assigned addresses or disabled.

When this bit is set to 0, the split-memory block is enabled. The split-memory block size is 384KB or 512KB, depending on the 640 bit, and its address is determined in the Split Address register. When this bit is set to 1, the split-memory block is disabled; however, 128KB of the split-memory block can be used in the ROM address space by setting bit 1 (ROMEN) to 0.

Bit 2 This bit determines where the first active 1MB block of RAM is split.

When this bit is set to 0, 640KB of the first 1MB of memory is mapped into the first 640KB of address space (hex 00000000 to 0009FFFF). When set to 1, 512KB of the first 1MB of memory is mapped into the first 512KB of address space (hex 00000000 to 0007FFFF) and addresses 00080000 through 0009FFFF are unused.

Bit 1 This bit can deactivate the system board ROM and use its address space for system board RAM.

When set to 0, this bit places the ROM address space (hex 000E0000 to 000FFFFF) into RAM. The split-memory block must be disabled. 256KB or 384KB of memory is unused (depending on the 640 bit) and the ROM modules are deactivated. When this bit is set to 1, the ROM modules are left active.

The following figure shows how bits 3, 2, and 1 are used together to define the various configurations.

Bits	
321	Function
000	Invalid
001	ROM Enabled, Split at 640KB, High 384KB at Split Address
010	Invalid
011	ROM Enabled, Split at 512KB, High 512KB at Split Address
100	ROM Disabled, Split at 640KB, 128KB of High 384KB at ROM Address
101	ROM Enabled, Split at 640KB, High 384KB Not used
110	ROM Disabled, Split at 512KB, 128KB of High 512KB at ROM Address
111	ROM Enabled, Split at 512KB, High 512KB Not Used

Figure 3-11. Memory Encoding Register, Bits 3, 2, and 1 (Type 1)

Bit 0 When set to 0, this bit enables parity checking of system board memory. To clear a parity error, this bit must be set to 1 and then to 0.

Split Address Register - Type 1 (Hex 00E0)

This read/write register defines the starting address of the split-memory block.

Bit	Function	
7 - 4	Reserved	
3	SPA23	
2	SPA22	
1	SPA21	
0	SPA20	

Figure 3-12. Split Address Register (Type 1)

- Bits 7 4 These bits are reserved and must be set to 0.
- Bits 3 0 These bits define the starting address of the split-memory block.

These bits must not be set to a value of 0 unless -ENSPLIT is set to 1. When -ENSPLIT is set to 0, these bits determine the starting address of the split-memory block. The starting address can be at any 1MB boundary from 1MB to 15MB. **Note:** If the total system memory is equal to or greater than 16MB, the split-memory block cannot be used.

Memory Registers – Type 2

Two registers define how the system board memory is addressed and used:

- Memory Encoding Register 1 (hex 00E1)
- Memory Encoding Register 2 (hex 00E0).

Memory Encoding Register 1 - Type 2 (Hex 00E1)

This read/write register determines the amount of enabled system board memory in connector 1 and how it is used.

Bit	Function	
7,6	Reserved	
5	-Card 1 EN2	
4	-Card 1 EN1	
3	-ENSPLIT	
2	-640	
1	ROMEN	
0	-ENPLRPCH	

Figure 3-13. Memory Encoding Register 1 (Type 2)

- Bits 7, 6 These bits are reserved and must be set to 1.
- **Bits 5 4** These bits define the amount of enabled memory in system board memory connector 1.

Bits 5 4	Amount of RAM	Function
00	2MB	2MB Card Enabled in Connector 1
01	1MB	First 1MB Disabled on 2MB Card in Connector 1
10	1MB	Second 1MB Disabled on 2MB Card in Connector 1
11	0MB	Invalid (1MB Minimum Must Be Present)

Figure 3-14. Memory Encoding Register 1, Bits 5 and 4 (Type 2)

Bit 3 This bit determines whether the split-memory block is assigned addresses or is disabled. The top 128KB of the first 1MB is always mapped into the ROM address space and the code in ROM is copied into this space.

When this bit is set to 0, the split-memory block is enabled. The split-memory block size is dependent on the value of the 640 bit. Its address is determined in Memory Encoding Register 2. When this bit is set to 1, the split-memory block is disabled.

- **Note:** If the total system memory is equal to or greater than 16MB, the split-memory block cannot be used.
- Bit 2 This bit determines where the first active 1MB of memory is split.

When this bit is set to 0, the system maps 640KB of the first 1MB to address hex 00000000 to 0009FFFF. The split-memory block, 256KB, is mapped to the address specified in Memory Encoding register 2.

When this bit is set to 1, the system maps 512KB of the first 1MB to address hex 00000000 to 0007FFFF. The split-memory block, 384KB, is mapped to the address specified in the Memory Encoding register 2. The addresses hex 00080000 to 0009FFFF are unassigned.

Bit 1 This bit determines how addresses hex 000E0000 to 000FFFFF are assigned.

When this bit is set to 1, ROM is enabled and the read-access addresses are assigned to ROM; the write-access addresses are assigned to RAM. When this bit is set to 0, ROM is disabled and read addresses are assigned to RAM; the write addresses are disabled while ROM is disabled.

Note: When this bit is set to 1, system performance will be substantially slower because of 16-bit accesses to ROM and a longer cycle.

The following figure shows how bits 3, 2, and 1 are used together to define the various configurations.

Bits	
321	Function
000	ROM Disabled, Split at 640KB, 256KB at Split Address
001	ROM Enabled (ROM Mapped to RAM Disabled), Split at 640KB,
	256KB at Split Address
010	ROM Disabled, Split at 512KB, 384KB at Split Address
011	ROM Enabled (ROM Mapped to RAM Disabled), Split at 512KB,
	384KB at Split Address
100	ROM Disabled, Split at 640KB, 256KB at Split Address Disabled
101	ROM Enabled (ROM Mapped to RAM Disabled), Split at 640KB,
	256KB at Split Address Disabled
110	ROM Disabled, Split at 512KB, 384KB at Split Address Disabled
111	ROM Enabled (ROM Mapped to RAM Disabled), Split at 512KB,
	384KB at Split Address Disabled

Figure 3-15. Memory Encoding Register 1, Bits 3-1 (Type 2)

Bit 0 When set to 0, this bit enables parity checking of system board memory. To clear a parity error, this bit must be set to 1 and then to 0.

Memory Encoding Register 2 – Type 2 (Hex 00E0)

This read/write register determines the amount of enabled system board memory in connector 2 and the starting address of the split-memory block.

Bit	Function	
7,6	Reserved	
5	-Card 2 EN2	
4	-Card 2 EN1	
3	SPA23	
2	SPA22	
1	SPA21	
0	SPA20	

Figure 3-16. Memory Encoding Register 2 (Type 2)

- Bits 7, 6 These bits are reserved and must be set to 1.
- **Bits 5 4** These bits define the amount of enabled memory in system board memory connector 2.

Bits		Function
54	Amount	of RAM
00	2MB	2MB Card Enabled in Connector 2
01	1MB	First 1MB Disabled on 2MB Card in Connector 2
10	1MB	Second 1MB Disabled on 2MB Card in Connector 2
11	0MB	All Disabled Or No Card Present.

Figure 3-17. Memory Encoding Register 2, Bits 5 and 4 (Type 2)

Bits 3 - 0 This register defines the starting address of the split-memory block.

These bits must not be set to a value of 0 unless split memory is disabled. When split memory is enabled, these bits determine its starting address. The starting address can be at any 1MB boundary from 1MB to 15MB.

Note: If the total system memory is equal to or greater than 16MB, the split-memory block cannot be used.

System Memory Maps

Memory is mapped by registers at hex 00E0 and 00E1. The mapping results in either 512KB or 640KB of system board RAM starting at address hex 00000000. A 256-byte and 1KB portion and of this RAM is reserved as BIOS data areas. See the *IBM Personal System/2 and Personal Computer BIOS Interface Technical Reference* for details.

In the following figures, the variable X represents the number of 1MB blocks of system board memory starting at or above the hex 00100000 boundary. The variable Y represents the number of 1MB blocks of memory installed in the channel starting at or above the hex 00100000 boundary (Y = 0 to 15).

Enable Split bit = 1 640 bit = 1 ROM enable bit = 1

Function
512KB System Board RAM
Not Used
128KB Video RAM
Channel ROM
128KB System Board ROM
XMB System Board RAM
YMB Channel RAM
Not Used
128KB System Board ROM
(Same as 000E0000 to 000FFFFF)

Figure 3-18. System Memory Map 1, (Type 1 and Type 2)

The following figure shows the memory mapping when:

Enable Split bit = 1 640 bit = 0 ROM enable bit = 1

Hex Range	Function
00000000 to 0009FFFF	640KB System Board RAM
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM
	(Same as 000E0000 to 000FFFFF)

Figure 3-19. System Memory Map 2, (Type 1 and Type 2)

Enable Split bit = 0 640 bit = 1 ROM enable bit = 1 Split address byte = 1 + X + Y (Total Range = 1 to 15).

Hex Range	Function
00000000 to 0007FFFF	512KB System Board RAM
00080000 to 0009FFFF	Not Used
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB +	YMB Channel RAM
YMB)	
(00100000 + XMB + YMB) to (00100000 + XMB + YMB + 512KB - 1)	512KB System Board RAM
(00100000 + XMB + YMB + 512KB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM
	(Same as 000E0000 to 000FFFFF)

Figure 3-20. System Memory Map 3, (Type 1)

Hex Range	Function
00000000 to 0007FFFF	512KB System Board RAM
00080000 to 0009FFFF	Not Used
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to	384KB System Board RAM
(00100000 + XMB + YMB +384KB - 1)	
(00100000 + XMB + YMB + 384KB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM
	(Same as 000E0000 to
	000FFFFF)

Figure 3-21. System Memory Map 3, (Type 2)

Enable Split bit = 0 640 bit = 0 ROM enable bit = 1 Split address byte = 1 + X + Y (Total Range = 1 to 15).

Hex Range	Function
00000000 to 0009FFFF	640KB System Board RAM
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to (00100000 + XMB + YMB + 384KB - 1)	384KB System Board RAM
(00100000 + XMB + YMB + 384KB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM (Same as 000E0000 to 000FFFFF)

Figure 3-22. System Memory Map 4, (Type 1)

Hex Range	Function
00000000 to 0009FFFF	640KB System Board RAM
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to (00100000 + XMB + YMB + 256KB - 1)	256KB System Board RAM
(00100000 + XMB + YMB + 256KB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM (Same as 000E0000 to 000FFFFF)

Figure 3-23. System Memory Map 4, (Type 2)

Enable Split bit = 1 640 bit = 1 ROM enable bit = 0

Hex Range	Function
00000000 to 0007FFFF	512KB System Board RAM
00008000 to 0009FFFF	Not Used
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM mapped to RAM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM

Figure 3-24. System Memory Map 5, (Type 1)

Hex Range	Function
00000000 to 0007FFFF	512KB System Board RAM
00008000 to 0009FFFF	Not Used
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM mapped to RAM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM

Figure 3-25. System Memory Map 5, (Type 2)

Enable Split bit = 1 640 bit = 0 ROM enable bit = 0

Hex Range	Function	
00000000 to 0009FFFF	640KB System Board RAM	
000A0000 to 000BFFFF	128KB Video RAM	
000C0000 to 000DFFFF	Channel ROM	
000E0000 to 000FFFFF	128KB System Board ROM mapped to RAM	
00100000 to (00100000 + XMB)	XMB System Board RAM	
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM	
(00100000 + XMB + YMB) to FFFDFFFF	Not Used	
FFFE0000 to FFFFFFF	128KB System Board ROM	

Figure 3-26. System Memory Map 6, (Type 1)

Hex Range	Function
00000000 to 0009FFFF	640KB System Board RAM
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM mapped to RAM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM

Figure 3-27. System Memory Map 6, (Type 2)

Enable Split bit = 0 640 bit = 1 ROM enable bit = 0 Split address bits = 1 + X + Y (Total Range = 1 to 15).

Hex Range	Function
00000000 to 0007FFFF	512KB System Board RAM
00080000 to 0009FFFF	Not Used
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFFF	128KB System Board ROM mapped to RAM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to (00100000 + XMB + YMB + 384KB - 1)	384KB of First 1MB at Split Address
(00100000 + XMB + YMB + 384KB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM

Figure 3-28. System Memory Map 7, (Type 2)

Enable Split bit = 0 640 bit = 0 ROM enable bit = 0 Split address bits = 1 + X + Y (Total Range = 1 to 15).

Hex Range	Function
00000000 to 0009FFFF	640KB System Board RAM
000A0000 to 000BFFFF	128KB Video RAM
000C0000 to 000DFFFF	Channel ROM
000E0000 to 000FFFF	128KB System Board ROM mapped to RAM
00100000 to (00100000 + XMB)	XMB System Board RAM
(00100000 + XMB) to (00100000 + XMB + YMB)	YMB Channel RAM
(00100000 + XMB + YMB) to (00100000 + XMB + YMB + 256KB-1)	256KB of First 1MB at Split Address
(00100000 + XMB + YMB + 256KB) to FFFDFFFF	Not Used
FFFE0000 to FFFFFFF	128KB System Board ROM

Figure 3-29. System Memory Map 8, (Type 2)

System Board Memory Connectors

The Type 1 and 2 system boards are equipped with two 3- by 32-pin system board memory connectors. A memory card must be installed in connector 1 before additional memory can be used in the Micro Channel.

The following figure shows the pin locations of the 3- by 32-pin system board memory connectors. The pin locations are the same for connectors 1 and 2. Connector 1 is located closest to the power supply. Pin 32 is closest to the rear of the system board.

																																_		1
A32	L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥L	J A1
B32		٥	٥	0	o	0	۰	٥	0	٥	٥	۰	0	٥	٥	0	٥	٥	0	٥	٥	o	٥	o	0	0	٥	0	o	0	o	o	0	B1
C32		0	0	0	0	0	0	0	0	0	0	0	o	0	ο	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	° [1 C1
002	_																											_						1

Figure	3-30.	System	Board	Memory	Connector	Pin	Locations
--------	-------	--------	-------	--------	-----------	-----	-----------

The following is a list of signals used by the system board memory connectors.

-MW	-Memory Write
-MA(0 - 8)	-Memory Address (0 through 8)
-RAS(0 - 3)	-Row Address Strobe (0 through 3)
-CAS(0 - 3)	-Column Address Strobe (0 through 3)
-CASP	-Column Address Strobe Parity
MDP(0-3)	Memory Data Parity (0 through 3)
MD(0-31)	Memory Data (0 through 31)
-BE(0 – 3)	-Byte Enable (0 through 3)
R	This signal is used by POS Register 3 during system board setup to determine the presence of a memory card in each of the two system board memory connectors.

- **Note:** Type 2 system board POST routines require a minimum of 1MB of functional memory installed in connector 1. The Type 1 system board also requires a minimum of 1MB of functional memory, however it may be installed in either connector.
- T This signal is used by POS Register 3 during system board setup to determine the type of memory card installed in each of the two system board memory connectors. See Section 2, "Programmable Option Select" for additional information.

The following figure shows the pin assignments for the system board memory connector. Inputs (I) to and Outputs (O) from the system board are also shown.

Row	A		Row	в		Row	с	
Pin	1/0	Signal	Pin	1/0	Signal	Pin	1/0	Signal
A1	N/A	Reserved	B1	N/A	Ground	C1	1/0	MD0
A2	0	-MW	B2	0	+5 Vdc	C2	1/0	MD1
A3	õ	MAO	B3	N/A	Ground	C3	ΪΟ	MD2
A4	õ	MA1	B4	0	+5 Vdc	C4	1/0	MD3
A5	õ	MA2	B5	N/A	Ground	C5	1/0	MD4
A6	õ	MA3	B6	0	+5 Vdc	C6	1/0	MD5
A7	õ	MA4	B7	N/A	Ground	C7	1/0	MD6
A8	õ	MA5	B8	0	+5 Vdc	C8	1/0	MD7
A9	Ō	MA6	B9	N/A	Ground	C9	1/0	MD8
A10	õ	MA7	B10	0	+5 Vdc	C10	1/0	MD9
A11	õ	MA8	B11	Ň/A	Ground	C11	1/0	MD10
A12	0	-RAS0	B12	0	+5 Vdc	C12	1/0	MD11
A13	Ō	-RAS1	B13	N/A	Ground	C13	1/0	MD12
A14	Ö	-RAS2	B14	0	+5 Vdc	C14	I/O	MD13
A15	ο	-RAS3	B15	N/A	Ground	C15	I/O	MD14
A16	N/A	Reserved	B16	0	+ 5 Vdc	C16	I/O	MD15
Å17	I.	R	B17	N/A	Ground	C17	I/O	MD16
A18	N/A	Reserved	B18	0	+ 5 Vdc	C18	I/O	MD17
A19	ο	-CASO	B19	N/A	Ground	C19	I/O	MD18
A20	0	-CAS1	B20	0	+ 5 Vdc	C20	I/O	MD19
A21	Ö	-CAS2	B21	N/A	Ground	C21	I/O	MD20
A22	ο	-CAS3	B22	0	+ 5 Vdc	C22	I/O	MD21
A23	I/O	MDP0	B23	N/A	Ground	C23	I/O	MD22
A24	I/O	MDP1	B24	0	+ 5 Vdc	C24	I/O	MD23
A25	I/O	MDP2	B25	N/A	Ground	C25	I/O	MD24
A26	1/0	MDP3	B26	0	+ 5 Vdc	C26	I/O	MD25
A27	1	-BE0	B27	N/A	Ground	C27	I/O	MD26
A28	1	-BE1	B28	0	+ 5 Vdc	C28	I/O	MD27
A29	1	-BE2	B29	N/A	Ground	C29	I/O	MD28
A30	1	-BE3	B30	0	+5 Vdc	C30	I/O	MD29
A31	1	-CASP	B31	N/A	Ground	C31	1/0	MD30
A32	1	т	B32	0	+ 5 Vdc	C32	I/O	MD31

Figure 3	3-31.	System	Board	Memory	Connector
----------	-------	--------	-------	--------	-----------

Real-Time Clock/Complementary Metal-Oxide Semiconductor RAM

The real-time clock/complementary metal-oxide semiconductor RAM (RT/CMOS) chip contains the real-time clock and 64 bytes of CMOS RAM. The internal clock circuitry uses 14 bytes of this memory, and the rest is allocated to configuration and system status information.

In addition to the 64 bytes of CMOS RAM, a 2KB CMOS RAM extension is provided for configuration and other system information.

A 6-Vdc lithium battery maintains voltage to the RT/CMOS RAM and 2KB CMOS RAM extension when the power supply is not in operation.

The system cover can be locked to prevent battery removal and loss of password and configuration information.

Address (Hex)	RT/CMOS RAM Bytes
000 - 00D	Real-Time Clock Bytes
00E	Diagnostic Status Byte
00F	Shutdown Status Byte
010	Diskette Drive Type Byte
011	First Fixed Disk Drive Type Byte
012	Second Fixed Disk Drive Type Byte
013	Reserved
014	Equipment Byte
015 - 016	Low and High Base Memory Bytes
017 - 018	Low and High Expansion Memory Bytes
019 - 031	Reserved
032 - 033	Configuration CRC Bytes
034 - 036	Reserved
037	Date Century Byte
038 - 03F	Reserved

The following figure shows the RT/CMOS RAM bytes and their addresses.

Figure 3-32. RT/CMOS RAM Address Map

RT/CMOS Address Register and NMI Mask (Hex 0070)

This register is used in conjunction with the port at hex 0071 to read and write the RT/CMOS RAM bytes.

Bit	Function
7	NMI Mask
6	Reserved
5 - 0	RT/CMOS RAM Address

Figure 3-33. RT/CMOS Address Register and NMI Mask (Hex 0070)

Warning: The operation following a write to hex 0070 should access port hex 0071; otherwise intermittent malfunctions and unreliable operation of the RT/CMOS RAM can occur.

Bit 7 When this bit is set to 1, the NMI is masked off (the NMI is disabled). This bit is set to 1 by a power-on reset. This is a write-only bit.

Bit 6 Reserved.

Bits 5 - 0 These bits are used to select RT/CMOS RAM addresses.

RT/CMOS Data Register (Hex 0071)

This port is used in conjunction with the address register at hex 0070 to read and write the RT/CMOS RAM bytes.

Bit	Function
7 - 0	RT/CMOS Data

Figure 3-34. RT/CMOS Data Register (Hex 0071)

RT/CMOS RAM I/O Operations

During I/O operations to the RT/CMOS RAM addresses, interrupts should be masked to prevent other interrupt routines from changing the CMOS Address register before data is read or written. After I/O operations, the RT/CMOS and NMI Mask register (hex 0070) should be left pointing to Status Register D (hex 00D).

Warning: The operation following a write to hex 0070 should access hex 0071; otherwise intermittent malfunctions and unreliable operation of the RT/CMOS RAM can occur.

The following steps are required to perform I/O operations to the RT/CMOS RAM addresses:

- 1. Write the RT/CMOS RAM address to the RT/CMOS and NMI Mask register (hex 0070).
- 2. Write the data to address hex 0071.

Reading RT/CMOS RAM requires the following steps:

- 1. Write the RT/CMOS RAM address to the RT/CMOS and NMI Mask register (hex 0070).
- 2. Read the data from address hex 0071.

Real-Time Clock Bytes (Hex 000-00D)

Bit definitions and addresses for the real-time clock bytes are shown in the following figure.

Address (Hex)	Function	Byte Number	
	. .		
000	Seconds	0	
001	Second Alarm	1	
002	Minutes	2	
003	Minute Alarm	3	
004	Hours	4	
005	Hour Alarm	5	
006	Day of Week	6	
007	Date of Month	7	
008	Month	8	
009	Year	9	
00A	Status Register A	10	
00B	Status Register B	11	
00C	Status Register C	12	
00D	Status Register D	13	

Figure 3-35. Real-Time Clock Bytes

Note: The Setup program initializes status registers A, B, C, and D when the time and date are set. Interrupt hex 1A is the BIOS interface to read and set the time and date and it initializes the register the same way as the Setup program.

Status Register A (Hex 00A)

Bit	Function	
7	Update in Progress	
6 - 4	22-Stage Divider	
3 - 0	Rate Selection Bits	

Figure 3-36. Status Register A

- **Bit 7** When set to 1, this bit indicates the time-update cycle is in progress. When set to 0, it indicates the current date and time can be read.
- Bits 6 4 These three divider-selection bits identify which time-base frequency is being used. The system initializes these bits to binary 010, which selects a 32.768 kHz time base. This is the only value supported by the system for proper time-keeping.
- **Bits 3 0** These bits allow the selection of a divider output frequency. The system initializes the rate selection bits to a binary 0110, which selects a 1.024 kHz square-wave output frequency and a 976.562-microsecond periodic interrupt rate.

Bit	Function
7	Set
6	Periodic Interrupt Enable
5	Alarm Interrupt Enable
4	Update-Ended Interrupt Enabled
3	Square Wave Enabled
2	Date Mode
1	24-Hour Mode
0	Daylight Savings Enabled

Status Register B (Hex 00B)

Figure 3-37. Status Register B

Bit 7 When set to 0, this bit updates the cycle, normally by advancing the counts at a rate of one per second. When set to 1, this bit immediately ends any update cycle in progress, and the program can initialize the 14 time bytes without any further updates occurring until this bit is set to 0.

- Bit 6 This bit is a read/write bit that allows an interrupt to occur at a rate specified by the rate and divider bits in Status Register A. When set to 1, this bit enables the interrupt. The system initializes this bit to 0.
- **Bit 5** When set to 1, this bit enables the alarm interrupt. The system initializes this bit to 0.
- **Bit 4** When set to 1, this bit enables the update-ended interrupt. The system initializes this bit to 0.
- **Bit 3** When set to 1, this bit enables the square-wave frequency as set by the rate-selection bits in Status Register A. The system initializes this bit to 0.
- Bit 2 This bit indicates if the time-and-date calendar updates use binary or binary-coded-decimal (BCD) formats. When set to 1, this bit indicates a binary format. The system initializes this bit to 0.
- **Bit 1** This bit establishes if the hours byte is in the 24-hour or 12-hour mode. When set to 1, this bit indicates the 24-hour mode. The system initializes this bit to 1.
- Bit 0 When set to 1, this bit enables the daylight savings time mode. When set to 0, it disables the mode, and the clock reverts to standard time. The system initializes this bit to 0.

Status Register C (Hex 00C)

Bit	Function	
7	Interrupt Request Flag	
6	Periodic Interrupt Flag	
5	Alarm Interrupt Flag	
4	Update-Ended Interrupt Flag	
3 - 0	Reserved	

Figure 3-38. Status Register C

Note: Interrupts are enabled by bits 6, 5, and 4 in Status Register B.

- **Bit 7** This bit is used in conjunction with bits 6, 5, and 4. When set to 1, this bit indicates that an interrupt has occurred; bits 6, 5, and 4 indicate the type of interrupt.
- Bit 6 When set to 1, this bit indicates that a periodic interrupt occurred.
- Bit 5 When set to 1, this bit indicates that an alarm interrupt occurred.
- **Bit 4** When set to 1, this bit indicates that an update-ended interrupt occurred.
- Bits 3 0 Reserved.

Status Register D (Hex 00D)

Bit	Function	
7	Valid RAM	
6 - 0	Reserved	

Figure 3-39. Status Register D

Bit 7 This read-only bit monitors the power-sense pin. A low state of this pin indicates a loss of power to the real-time clock (dead battery). When set to 1, this bit indicates that the real-time clock has power. When set to 0, it indicates that the real-time clock has lost power.

Bits 6 - 0 Reserved.
CMOS RAM Configuration

The following shows the bit definitions for the CMOS RAM configuration bytes.

Diagnostic Status Byte (Hex 00E)

BI	Function
7	Real-Time Clock Chip Power
6	Configuration Record and Checksum Status
5	Incorrect Configuration
4	Memory Size Miscompare
3	Fixed Disk Controller/Drive C Initialization Status
2	Time Status Indicator
1	Adapter Configuration Miscompare
0	Adapter ID Time-Out

Figure 3-40. Diagnostic Status Byte

Bit 7	When set to 1, this bit indicates the real-time clock chip
	lost power.

- Bit 6 When this bit is set to 1, the checksum is incorrect.
- Bit 5 This is a check, at power-on time, of the Equipment byte. When set to 1, the configuration information is incorrect. Power-on checks require that at least one diskette drive be installed (bit 0 of the Equipment byte, hex 014, is set to 1).
- **Bit 4** When set to 1, this bit indicates the power-on check determined that the memory size is not the same as in the configuration record.
- **Bit 3** When set to 1, this bit indicates that the controller or drive C failed initialization, which prevents the system from attempting a power-on reset.
- Bit 2 When set to 0, this bit indicates the time is valid. When set to 1, this bit indicates the time is invalid.
- **Bit 1** This bit indicates if the installed adapters match the configuration information. When this bit is set to 1, the adapters do not match the configuration information.
- Bit 0 When set to 1, this bit indicates a time-out occurred while an adapter ID was being read.

Shutdown Status Byte (Hex 00F): This byte is defined by the power-on diagnostic programs.

Diskette Drive Type Byte (Hex 010): This byte indicates the type of diskette drive installed.

Bit	Function
7 - 4	First Diskette Drive Type
3 - 0	Second Diskette Drive Type

Figure 3-41. Diskette Drive Type Byte

Bits 7 - 4 These bits indicate the first diskette drive type, as shown in the following figure.

Bits	
7654	Function
0000	No drive present
0001	Double-sided diskette drive (48 tracks per inch, 360KB)
0011	High-capacity diskette drive (720KB)
0100	High-density diskette drive (1.44MB)

Figure 3-42. Diskette Drive Type Byte (Bits 7 - 4)

Bits 3 - 0 These bits indicate the second diskette drive type, as shown in the following figure.

B	its	
3	210	Function
0	000	No drive present
0	001	Double-sided diskette drive (48 tracks per inch, 360KB)
0	011	High-capacity diskette drive (720KB)
0	100	High-density diskette drive (1.44MB)
Note: /	All combin	ations that are not shown are reserved.

Figure 3-43. Diskette Drive Type Byte (Bits 3 - 0)

First Fixed Disk Drive Type Byte (Hex 011): This byte defines the type of the first fixed disk drive (drive C). Hex 00 indicates that a fixed disk drive is *not* installed.

Second Fixed Disk Drive Type Byte (Hex 012): This byte defines the type of the second fixed disk drive (drive D). Hex 00 indicates that a fixed disk drive is *not* installed.

Note: For more information about fixed disk drive types, refer to the *IBM Personal System/2 and Personal Computer BIOS Interface Technical Reference*.

Reserved Byte (Hex 013): This byte is reserved.

Equipment Byte (Hex 014): The equipment byte defines the basic equipment in the system for the power-on diagnostic tests.

Bit	Function
7, 6	Number of Diskette Drives
5, 4	Display Operating Mode
3, 2	Reserved
1	Math Coprocessor Presence
0	Diskette Drive Presence

Figure 3-44. Equipment Byte

Bits 7, 6 These bits indicate the number of diskette drives installed, as shown in the following figure.

Bits	Number of	,
76	Diskette Drives	
0 0	One Drive	
01	Two Drives	
10	Reserved	
11	Reserved	

Figure 3-45. Equipment Byte (Bits 7, 6)

Bits 5, 4 These bits indicate the operating mode of the display attached to the video port, as shown in the following figure.

Bits	Display	
54	Operating Mode	
00	Reserved	
01	40-Column Mode	
10	80-Column Mode	
11	Monochrome Mode	

Figure 3-46. Equipment Byte (Bits 5, 4)

Bits 3, 2 Reserved.

- Bit 1 When set to 1, this bit indicates that a math coprocessor is installed.
- Bit 0 When set to 1, this bit indicates that a diskette drive is installed.

Low and High Base Memory Bytes (Hex 015 and 016): These bytes define the amount of memory below the 640KB address space.

The value from these bytes represents the number of 1KB blocks of base memory. For example, hex 0280 is equal to 640KB. The low byte is hex 15; the high byte is hex 16.

Low and High Expansion Memory Bytes (Hex 017 and 018): These bytes define the amount of memory above the 1MB address space.

The hexadecimal values in these bytes represent the number of 1KB blocks of expansion memory. For example, hex 0800 is equal to 2048KB. The low byte is hex 17; the high byte is hex 18.

Reserved Bytes (Hex 019 through 031): These bytes are reserved.

Configuration CRC Bytes (Hex 032 and 033): These bytes contain the cyclic-redundancy-check data for bytes hex 010 through hex 031 of the 64-byte CMOS RAM. The low byte is hex 33; the high byte is hex 32.

Reserved Bytes (Hex 034 through 036): These bytes are reserved.

Date Century Byte (Hex 037): Bits 7 through 0 of this byte contain the BCD value for the century. Refer to the *IBM Personal System/2 and Personal Computer BIOS Interface Technical Reference* for information about reading and setting this byte.

Reserved Bytes (Hex 038 through 03F): These bytes are reserved.

Miscellaneous System Functions

Nonmaskable Interrupt

The nonmaskable interrupt (NMI) signals the system microprocessor that a parity error, a channel check, a system channel time-out, or a system Watchdog time-out has occurred. The NMI stops all arbitration on the bus until bit 6 of the Arbitration register (I/O address hex 0090) is set to 0. This can result in lost data or an overrun error on some I/O devices. The NMI masks all other interrupts and the IRET instruction restores the interrupt flag to the state it was in prior to the interrupt. A system reset causes a reset of the NMI.

Nonmaskable interrupt requests from system board parity and channel check are subject to mask control with the NMI mask bit in the RT/CMOS Address register. The Watchdog Timer and system channel time-out are not masked by this bit. (See "RT/CMOS Address Register and NMI Mask (Hex 0070)" on page 3-37). The power-on default of the NMI mask is 1 (NMI disabled). Prior to enabling the NMI after a power-on reset, the parity check and channel check state are initialized by the POST.

Warning: The operation following a write to hex 0070 should access port hex 0071; otherwise intermittent malfunctions and unreliable operation of the RT/CMOS RAM can occur.

System Control Port B (Hex 0061)

Bit definitions for the read and write functions of this port are shown in the following figures.

Bit	Function
7	Reset Timer 0 Output Latch (IRQ0)
6 - 4	Reserved
3	Enable Channel Check
2	Enable Parity Check
1	Speaker Data Enable
0	Timer 2 Gate to Speaker

Figure 3-47. System Control Port B (Write)

Bit	Function
7	Parity Check
6	Channel Check
5	Timer 2 Output
4	Toggles with Each Refresh Request
3	Enable Channel Check
2	Enable Parity Check
• 1	Speaker Data Enable
0	Timer 2 Gate to Speaker

Figure 3-48. System Control Port B (Read)

Bit 7	Setting this bit to 1 resets IRQ0. Reading this bit as a 1 indicates a parity check has occurred.
Bit 6	Reading this bit as a 1 indicates a channel check has occurred.
Bit 5	This bit indicates the condition of the timer/counter 2 'output' signal.
Bit 4	This bit toggles for each refresh request.
Bit 3	Setting this bit to 0 enables channel check. This bit is set to 1 during a power-on reset.
Bit 2	Setting this bit to 0 enables parity check. This bit is set to 1 during a power-on reset.
Bit 1	Setting this bit to 1 enables speaker data.
Bit 0	Setting this bit to 1 enables the timer 2 gate.

System Control Port A (Hex 0092)

Bit	Function
7, 6	Fixed-Disk Activity Light
5	Reserved
4	Watchdog Timer Status
3	Security Lock Latch
2	Reserved = 0
1	Alternate Gate A20
0	Alternate Hot Reset

Figure 3-49. System Control Port A

- **Bits 7, 6** These bits control the fixed-disk activity light. Setting either bit to 1 turns the fixed-disk activity light on. Setting both bits to 0 turns the light off. The power-on reset condition of each bit is 0.
- Bit 5 Reserved.
- **Bit 4** This read-only bit indicates the Watchdog Timer status. When this bit is set to 1, a Watchdog time-out has occurred. For more information about the Watchdog Timer, refer to the *Hardware Interface Technical Reference*.
- **Bit 3** This bit provides the security lock for the secured area of RT/CMOS. Setting this bit to 1 electrically locks the 8-byte, power-on password. Once this bit is set by POST, it can only be cleared by turning the system off.
- Bit 2 Reserved.
- Bit 1 This bit is used to enable the 'address 20' signal (A20) when the microprocessor is in the real address mode. When this bit is set to 0, A20 cannot be used in real mode addressing. This bit is set to 0 during a system reset.

Bit 0 This bit provides an alternate method of resetting the system microprocessor. This alternate method supports operating systems requiring faster operation than was provided on the IBM Personal Computer AT[®]. Resetting the system microprocessor is used to switch the microprocessor from the protected mode to the real address mode. The alternate reset takes 13.4 microseconds.

This bit is set to 0 either by a system reset or a Write operation. When a Write operation changes this bit from 0 to 1, the alternate reset pin is pulsed high for 100 to 125 nanoseconds. The reset occurs after a minimum delay of 6.72 microseconds. While the reset is occurring, the latch remains set so that POST can read this bit. If the bit is 0, POST assumes the system was just powered on. If the bit is 1, POST assumes a switch from the protected mode to the real mode has taken place.

IBM Personal Computer AT is a registered trademark of the International Business Machines Corporation.

Power-On Password

RT/CMOS RAM has 8 bytes reserved for the power-on password and its check character. The 8 bytes are initialized to hex 00. The microprocessor can only access these bytes during power-on self-test (POST). After POST is completed, if a power-on password is installed, the password bytes are locked and cannot be accessed by a program. A power-on password can be from 1 to 7 characters.

During power-on password installation, the password (1 to 7 keyboard scan codes), is stored in the security space.

Power-on password installation is a function of a program contained on the Reference diskette. Once the power-on password utility has been installed, the password can be changed only during the POST. When the new power-on password is installed, changed, or removed, the password is not visible on the display.

The system unit cover can be physically locked to prevent unauthorized access to the battery. This helps prevent unauthorized battery removal and loss of power-on password and configuration information.

For information about the keyboard password, see the "Keyboard and Auxiliary Device Controller" section in the *Hardware Interface Technical Reference*.

Hardware Compatibility

The Model 80 maintains many of the interfaces used by the IBM Personal Computer AT. In most cases command and status organization of these interfaces is maintained.

The functional interfaces for the Model 80 are compatible with the following interfaces:

- The Intel¹ 8259 interrupt controllers (without edge triggering).
- The Intel 8253 timers driven from 1.193 MHz (timer 0 and 2 only).
- The Intel 8237 DMA controller-address/transfer counters, page registers and status fields only. The Command and Request registers are not supported. The rotate and mask functions are not supported. The Mode register is partially supported.
- The NS16450 serial port.
- The Intel 8088, 8086, and 80286 microprocessors.
- The Intel 8272 diskette drive controller.
- The Motorola² MC146818 Time of Day Clock command and status (CMOS reorganized).
- The Intel 8042 keyboard port at address hex 0060.
- Display modes supported by the IBM Monochrome Display and Printer Adapter, the IBM Color/Graphics Monitor Adapter, and the IBM Enhanced Graphics Adapter.
- The parallel printer ports (Parallel 1, Parallel 2, and Parallel 3) in compatibility mode.
- Generally compatible with the Intel 80287 and 8087 math coprocessors.

¹ Intel is a trademark of the Intel Corporation.

² Motorola is a trademark of Motorola, Inc.

Notes:

Index

A

activity light 3-50 adapter setup register 2-12 address maps memory 3-26 POS 2-5 system 1-6 address space, POS 2-5 address 20 gate 3-50 alternate reset 3-51 arbiter programming 3-14 arbitration control point 3-12 arbitration level 3-12 arbitration register 3-14 arbitration, central control point 3-14

В

base memory bytes 3-47 battery 3-36 bit values 2-11 block diagram, system board 1-5 board, system 1-3 bus contention 2-3 bus priority assignments 3-12

С

card selected feedback 2-6 -CD SFDBK 2-6 central arbitration control point 3-12 channel 1-4, 3-3 channel check enable 3-49 channel check latch 3-49 channel connectors 3-4 clock speed 1-3 CMOS RAM 3-36 configuration CRC bytes 3-47 configuration, RT/CMOS 3-43 connector, matched memory 3-4 connectors, memory 3-33 coprocessor, math 3-3 cycles asynchronous extended 3-6 matched memory 3-6 synchronous extended 3-6

D

date century byte 3-47 default 3-6 description memory 3-16 NMI 3-48 password 3-52 real-time clock 3-36 system board 1-3 diagnostic status byte (RT/CMOS) 3-43 diagram, system board 1-5 diagrams diskette drive type byte 3-44diskette overruns 3-13 DMA channels 3-13

Ε

enable error checking 3-25 enable NMI 3-37 encoding register, type 1 3-20 encoding registers, type 2 3-23 equipment byte 3-46 error recovery 3-18 extended arbitration 3-15 extension, matched memory 3-4

F

features 1-3 features, system board 1-3 feedback, card selected 2-6 fixed disk activity light 3-50 fixed disk drive initialization 3-43 fixed disk type byte 3-45

G

gate A20 3-50

I/O address map 1-6 interrupts IRQ0 reset 3-49 NMI reset 3-48

Μ

matched memory 3-4 matched memory cycle 3-6 matched memory extension 3-4 math coprocessor 3-3 maximum current 1-9 measurements 1-9 memory addressing 3-19 available memory 2-9 channel RAM 3-27 channel ROM 3-27 connectors 3-33 description 3-16 encoding register, type 2 3-23 encoding registers, Type 1 3-20 error recovery 3-18 maps 3-26, 3-27 matched memory cycle 3-6 matched memory timing (no waits) 3-8 matched memory timing (one wait) 3-10 POS register 3, type 2 2-10

memory (continued) POST routines 3-17, 3-34 random access memory subsystem 3-17 read-only Type 1 3-16 reassigning 3-18 refresh 3-13 registers, Type 2 3-23 ROM enable 3-21 signals 3-33, 3-35 split 3-19, 3-21 split address, Type 1 3-22 split block 3-23 split-memory block 3-19 support 3-17 system board 3-27 system memory maps 3-26 video 3-27 memory connector location 2-9, 2-10 memory size miscompare 3-43 micro channel 1-4 microprocessor alternate reset 3-51 mode switch compatibility 3-51 real address mode 3-50 microprocessor speed 1-3 -MMC 3-4 -MMC CMD 3-5 -MMCR 3-4 mode switching 3-51 model byte 1-3

Ν

NMI mask 3-37 NMI service 3-13 NMI signal 3-13 nonmaskable interrupt (NMI) 3-48

P

parallel port select 2-8 parity check 3-25 parity check enable 3-49 password, power-on 3-52 performance 3-3 performance, system 1-7 ports, system control 3 - 48POS register 2 2-8 POS register 3, type 1 2-9 POS register 3, type 2 2-10 power specifications 1-9 power supply 1-4 programmable option select 2-3 programmable option select (POS) address decode 2-6 address map 2-5 enable/-setup register 2-7 registers 2-5 setup procedures 2-4 system board 2-6 system board I/O 2-8 system configuration utilities 2-3 system memory maps 3-26 video 2-7 warning 2-3 programming, arbiter 3-14 protected mode switch 3-51

R

RAM 3-17 random access memory 3-17 read-only memory, (Type 2) 3-16 read-only memory, Type 1 3-16 real mode switch 3-51 real-time clock bytes 3-39 refresh 3-13 refresh request 3-49 registers adapter setup 2-12 card feedback 2-6 enable/-setup register 2-7 registers (continued) memory encoding, type 1 3-20 memory encoding, type 2 3-23 miscellaneous system 3-48 RT/CMOS and NMI mask 3-37 RT/CMOS status registers 3-40 split address, Type 1 3-22 system control 3-48 ROM enable 3-24 ROM Type 2 3-16 RT/CMOS address register 3-37 RT/CMOS RAM 3-36 password 3-52 secured area 3-50 R1.R2 bit values 2-11

S

second fixed disk type byte 3-45 setup bus contention 2-3 enable/-setup register 2-7 memory encoding register, type 2 3-23 memory split 3-21 POS register 3, type 1 2-9 POS register 3, type 2 2-10 ROM enable 3-21 split memory address, Type 1 3-22 system board 2-6 system board I/O 2-8 system memory maps 3-26 video 2-7 shutdown status byte 3-44 signals -MMC 3-4 -MMC CMD 3-5 -MMCR 3-4 matched memory 3-4 memory 3-33, 3-35 size 1-9 speaker data enable 3-49

specifications, system 1-7 specifications, system unit 1-9 split address register, Type 1 3-22 split memory block 3-19, 3-23 status registers (RT/CMOS) 3-40 subsystems, memory 3-16 switch to real 3-51 system address map 1-6 system board 1-3 block diagram 1-5 features 1-3 I/O register 2-8 memory connectors 3-33 memory map 3-27 setup 2-6 system board features 1-3 system configuration utilities 2-3 system control port A 3-50 system control ports 3-48 system overview 1-3 system ports, miscellaneous 3-48 system reset 3-48 system unit specifications 1-7, 1-9

Т

time status indicator 3-43 timing matched memory (no waits) 3-8 matched memory (one wait) 3-10 total system memory 1-3 T1,T2 bit values 2-11

V

valid RAM bit 3-42 video setup 2-7 voltage 1-3

W

warnings arbitration 3-13 central arbiter 3-15 NMI mask 3-48 POS 2-3 real-time clock 3-37 watchdog status 3-50

Numerics

80387 math coprocessor 3-3