
US005.966728A

United States Patent (19) 11 Patent Number: 5,966,728
Amini et al. (45) Date of Patent: Oct. 12, 1999

54) COMPUTER SYSTEM AND METHOD FOR 5,325,504 6/1994 Tipley et al. 711/128
SNOOPNG DATE WRITES TO CACHEABLE 5,341,487 8/1994 Derwin et al. 711/146
MEMORY LOCATIONS IN AN EXPANSION Primary Examiner-Glenn Gossage
MEMORY DEVICE Attorney, Agent, or Firm William N. Hogg

75 Inventors: Nader Amini; Bechara Fouad Boury, 57 ABSTRACT
both of Raleigh, N.C.; Sherwood
Brannon. Fremont. Calif.; Richard A computer System and method allow memory locations
Louis Horne Boynton Beach Fla both System memory and expansion memory devices

s s - usu- coupled to an input/output (I/O) bus to be cacheable in a
73 Assignee: International Business Machines central processing unit (CPU) cache. The computer System

Corp., Armonk, N.Y. contains an I/O bus connected to I/O devices and an expan
Sion bus connected to expansion memory devices, a System
memory not accessible via the I/O bus or expansion bus, and

21 Appl. No.: 08/490,648 the System bus used for conducting data transferS between
22 Filed: Jun. 15, 1995 the I/O bus and both the CPU cache and system memory.

The I/O bus supports data transfers between pairs of I/O
Related U.S. Application Data devices, and I/O devices and expansion memory devices on

the expansion bus, as well as data transferS between indi
63 Continuation-in-part of application No. 08/327,136, Oct. 21, vidual I/O devices and the system, which presents a problem

1994, Pat. No. 5,673,414, which is a continuation of appli- of maintaining coherency in the CPU cache when data is
cation No. 07/816,204, Jan. 2, 1992, abandoned. written by one I/O device or expansion memory device to a

(51) Int. Cl." .. G06F 13/00 cacheable memory location in another I/O device or expan
52 U.S. Cl. .. 711/146; 711/2 sion memory device. The computer system employs a
58 Field of Search 395/473, 468, Snoop/data invalidation function at the System interface to

395/494, 495, 483, 471, 840, 842, 845, the I/O bus to determine when a memory location in an
848, 287, 290, 306, 308, 445; 711/118, expansion memory device coupled to the expansion bus is

141, 146. 144, 156, 167, 168. 2 being written to by another expansion memory device
s s s s s s coupled to the expansion bus or an I/O device coupled to the

56) References Cited I/O bus. If Such a write is taking place, it is then determined
if the address of the location being written is in and address

U.S. PATENT DOCUMENTS range predesignated as cacheable; if So, then the CPU cache
5,072,369 12/1991. Theus et al. 711/146 controller or other device controlling the CPU cache is
5,119,485 6/1992 Ledbetter, Jr. et al. ... 711/146 notified that memory at a cacheable location in an expansion
5,193,170 3/1993 Lam 711/146 memory device has been overwritten.
5,226,144 7/1993 Moriwaki et al. ... 711/121
5,317,720 5/1994 Stamm et al. 711/143 15 Claims, 9 Drawing Sheets

42 58 54 40 38 s

E? SRAM CPU
54

CONTROL

It is
CONTROL 4

FREQUENCY

52

of AL ESS DATA;
BUFFER

NEMORY
CONTROLLER

DRIVER ADDR co
7 MEM 2

24 /
26

MEM

OBUS

-4 28
BUS

NTERFACE -
UNT

fo
WCS

U.S. Patent Oct. 12, 1999 Sheet 1 of 9 5,966,728

FIG.

CACHE
CONTROL

22

5,966,728

• • • • - - - - - - - - - -* = * - • • • • • • • • • • • •- - - - - - - - - -

U.S. Patent

29
EdOV5

U.S. Patent Oct. 12, 1999 Sheet 3 of 9 5,966,728

INTERNAL 28a
MEMORY

CO- FIG. 2
PROCESSOR

INTERNAL 28b.
MEMORY

SLAVE I/O
DEVICE

32

28C 28d

CD ROM

28C
SCSI BACK-UP

ADAPTER TAPE

28f

SCANNER
28g 28

MEMORY MEMORY
DEVICE DEVICE

INTERNAL

BUS-TO-BUS MEMORY
EXPANSION

BRIDGE BUS CO
PROCESSOR

28k
e INTERNAL

28h MEMORY

SLAVE I/O
28 DEVICE

28m

U.S. Patent Oct. 12, 1999 Sheet 6 of 9 5,966,728

124

TO 125C 125A TO

SYSTEM BUS I/O BUS SLAVE
CONTROLLER BUFFER BUFFER INTERFACE

C
16 BYTES

A
16 BYTES

BUFFER
D

16 BYTES

BUFFER
B

16 BYTES

TO TO
SYSTEM BUS I/O BUS
ADDRESS EXPECTED ADDRESS

GENERATION GENERATION
CIRCUIT FIFO CIRCUIT

CONTROL
CIRCUIT

TO
BUS TO BUS PACING
CONTROL LOGIC

U.S. Patent Oct. 12, 1999 Sheet 7 of 9 5,966,728

FIG. 5
76 142 32

CACHE
SYSTEM BUS ADDRESS NVALIDATION

ADDRESS
STORAGE

SYSTEM BUS MICRO
NVALIDATION CHANNEL

LOGIC SNOOPLOGIC

S
Y
S
T
E
M

B
U
S SYSTEM BUS

CONTROLS SYSTEM BUS
INTERFACE
LOGIC

LOGIC STATE
1 MACHINE

STATE
SYMBOLS

FIG. 6

U.S. Patent Oct. 12, 1999 Sheet 8 of 9 5,966,728

FIG. 7

CSTATE (2

-- CACHEADDR SEL

CISTATE(5)
CISTATE(6)

OA 1 N24
(0-7) 154 156
O A 1N R
(8-29) E

G

s
O CACHE WR

+ CCLK R -
-- TYPE-C

--BCLK
-- TYPE I-B ADDR

164
CNXTSTATE 1 162

CNXTSTATE 2 D
+ LOAD CACHE ADD.

CSTATE O FIFO PIPELINE
ADDRESS

U.S. Patent Oct. 12, 1999 Sheet 9 of 9 5,966,728

FIG. 8

-- LOAD CACHE ADD.

-- CACHEADDR SEL --- -

5,966,728
1

COMPUTER SYSTEMAND METHOD FOR
SNOOPNG DATE WRITES TO CACHEABLE
MEMORY LOCATIONS IN AN EXPANSION

MEMORY DEVICE

This is a continuation-in-part of U.S. patent application
Ser. No. 08/327,136, filed Oct. 12, 1994, now U.S. Pat. No.
5,673,414, which is a continuation of application Ser. No.
07/816,204, filed Jan. 2, 1992, now abandoned.

CROSS-REFERENCE TO RELATED
APPLICATIONS

The following United States patent applications are incor
porated herein by reference as if they had been fully set out:

application Ser. No. 07/816,116 filed Jan. 2, 1992, titled
“ARBITRATION CONTROL LOGIC FOR COMPUTER
SYSTEM HAVING DUAL BUS ARCHITECTURE,” now
U.S. Pat. No. 5,265,211.

application Ser. No. 07/816,184 filed Jan. 2, 1992, titled
“PARITY ERROR DETECTION AND RECOVERY,” now
U.S. Pat. No. 5,313,627.

application Ser. No. 07/816,203 filed Jan. 2, 1992, titled
“BUS INTERFACE LOGIC FOR COMPUTER SYSTEM
HAVING DUAL BUS ARCHITECTURE, now U.S. Pat.
No. 5.255,374.

application Ser. No. 07/816,691 filed Jan. 2, 1992, titled
“BIDIRECTIONAL STORAGE FACILITY FOR BUS
INTERFACE UNIT,” now abandoned, continued as Ser. No.
08/282,159 filed Jul. 28, 1994, now U.S. Pat. No. 5,644,729
titled “BIDIRECTIONAL DATA BUFFER FOR A BUS
TO-BUS INTERFACE UNIT IN A COMPUTER SYS
TEM.

application Ser. No. 07/816,693 filed Jan. 2, 1992, titled
“BUS INTERFACE LOGIC FOR CONTROLLING SPEED
OF BUS OPERATION', now abandoned.

application Ser. No. 07/816,698 filed Jan. 2, 1992, titled
“METHOD AND APPARATUS FOR DETERMINING
ADDRESS LOCATION AT BUS TO BUS INTERFACE, ”
now abandoned.

application Ser. No. 07/816,992 filed Jan. 2, 1992, titled
“BUS CONTROL LOGIC FOR COMPUTER SYSTEM
HAVING DUAL ARCHITECTURE, now U.S. Pat. No.
5,544,346.

FIELD OF THE INVENTION

The present invention relates generally to a method and
apparatus to allow cachable memory locations to exist in
devices coupled to I/O buses which are written to by other
devices coupled to the I/O bus when the I/O bus memory
locations are cachable by a CPU coupled to a system bus.

BACKGROUND OF THE INVENTION

Generally in computer Systems and especially in personal
computer Systems, data is transferred between various SyS
tem devices Such as a central processing unit (CPU),
memory devices, and direct memory access (DMA) control
lers. In addition, data is transferred between expansion
elements Such as input/output (I/O) devices, and between
these I/O devices and the various system devices. The I/O
devices and the System devices communicate with and
amongst each other over computer buses, which comprise a
Series of conductorS along which information is transmitted
from any of Several Sources to any of Several destinations.
Many of the system devices and the I/O devices are capable

15

25

35

40

45

50

55

60

65

2
of Serving as bus controllers (i.e., devices which can control
the computer System) and bus slaves (i.e., elements which
are controlled by bus controllers).

Personal computer Systems having more than one bus are
known. Typically, a local bus is provided over which the
CPU communicates with cache memory or a memory
controller, and a system I/O bus is provided over which
system bus devices such as the DMA controller, or the I/O
devices, communicate with the System memory via the
memory controller. The System I/O bus comprises a System
bus and an I/O bus connected by a bus interface unit. The I/O
devices communicate with one another over the I/O bus. The
I/O devices are also typically required to communicate with
System bus devices Such as System memory. Such commu
nications must travel over both the I/O bus and the system
buS through the bus interface unit.

Typically, one function that a CPU complex contains is
that of a cache Storage, that Stores frequently used data
which it reads from various locations in System memory.
These cached data are readily available to the CPU without
the necessity of frequently going into System memory to
fetch the required data, which can be time consuming. Of
course, in the case of System memory that can be rewritten
with updated or changed data, it is necessary that the CPU
complex be “informed” of this rewriting so that any cached
data in the CPU complex which corresponds to data which
has been rewritten in the memory, and is thus “corrupted, ”
can be discarded and the new or rewritten data cached, or at
least the corrupted data be identified.

This is accomplished by the provision of a Snoop/data
invalidation function. This function is performed by moni
toring the data address and command instructions on the
System bus. If at any time this monitoring function detects
a write operation to a memory location in System memory
which is a location from which the data therein can be
cached in the CPU complex, a signal is sent to the CPU
complex indicating the address of new data being written
into the System memory. This is often referred to as a
"positive Snoop invalidation'. When receiving the Signal,
the CPU complex can take appropriate action Such as
discarding the corrupted data and caching the rewritten data.

This technique works well when the write operations to
cachable memory are performed on the System bus.
However, if the write operation to a memory location is not
on the System bus, i.e. it is to a device coupled to the I/O bus,
then the Snooping function on the System bus can not detect
rewritten data to the memory locations, and thus, if data
from those locations has been previously cached in the CPU
complex, the CPU complex would not “know’ that the
cached data were corrupted. Such is the case when the
memory locations are on devices coupled to the I/O bus, and
the rewriting is being performed from a device coupled to
the I/O bus and thus never gets put on the system bus. In the
absence of a Snooping/data invalidate function detecting any
rewriting of data into memory, no memory locations coupled
to the I/O bus can be cached by the CPU complex, since the
CPU complex would never “know' when new data has been
written to I/O memory.

Accordingly, it is an object of this invention to provide a
technique for providing and indicating cachable memory
locations in devices coupled to the I/O bus, allowing
memory to be cached in the CPU complex from these
identified cachable locations and notifying the CPU complex
when data has been written into any cachable memory
location from devices coupled to the I/O bus.

SUMMARY OF THE INVENTION

According to the present invention, a computer System is
provided having a CPU complex including a cache function,

5,966,728
3

a System bus coupled to the CPU complex, System memory
coupled to the CPU complex through the system bus, an I/O
bus, and at least one memory device coupled to the I/O bus.
AbuS control unit is coupled between the System bus and the
I/O bus. Means are provided to identify memory locations in
devices coupled to the I/O bus which are cachable memory
locations. The bus control unit includes means to monitor
transmissions on the I/O bus and determine when a write
function is being performed by a device coupled to the I/O
bus and the write function is being performed to a cachable
memory address in a device coupled to the I/O bus. Means
are provided to write onto the System bus the address of a
write to a cachable memory address made by a device
coupled to the I/O bus to a device coupled to the I/O bus.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a Schematic block diagram of a computer System
incorporating a buS interface unit constructed according to
the principles of the present invention.

FIG. 2 is a Schematic block diagram of memory expansion
devices connected to the processor complex connector of the
computer system of FIG. 1.

FIG. 3 is a schematic block diagram of the bus interface
unit of the computer system of FIG. 1.

FIG. 4 is a schematic block diagram of the FIFO buffer of
the bus interface unit of FIG. 3;

FIG. 5 is a high level schematic block diagram of the data
invalidation/Snoop function according to the present inven
tion;

FIG. 6 is a logic diagram of the State machine for
performing the data invalidate/Snoop function of this inven
tion;

FIG. 7 is a circuit diagram of the controlling devices of the
address invalidate Snoop function; and

FIG. 8 is a timing diagram Showing the occurrence of a
positive data invalidation/Snoop.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring first to FIG. 1, a computer system shown
generally at 10 comprises System board 12 and processor
complex 14. Processor complex includes processor portion
16 and base portion 18 connected at processor local bus 20
via local bus connector 22. Processor portion 16 operates at
50 MHz and base portion 18 operates at 40 MHz.

System board 12 may include conventional video
circuitry, timing circuitry, keyboard control circuitry and
interrupt circuitry (none of which are shown) which may be
used by computer System 10 during normal operation.
System board 12 also includes interleaved System memories
24 and 26 and input/output (I/O) devices 28. Communica
tions between memories 24 and 26 and processor complex
14 are handled by memory bus 30, and communications
between I/O devices 28 and processor complex 14 are
carried by I/O bus 32. I/O bus 32 may conform to MICRO
CHANNEL(R), Industry Standard Architecture (ISA), or
peripheral computer interface (PCI) computer architecture.
Communications between I/O devices and memories 24 and
26 are handled by I/O bus 32, system bus 76 and memory
bus 30. Memory bus 30 and I/O bus 32 are connected to
processor complex base portion 18 via processor complex
connector 34.

The I/O devices 28 connected to I/O bus 32 are contem
plated to include a variety of devices, each of which either
includes on-board memory or Serves as an interface between

15

25

35

40

45

50

55

60

65

4
the I/O bus 32 and memory expansion devices. The I/O
devices 28 thereby either include or are connected to expan
Sion memory. AS used herein, the term "expansion memory”
is meant to include memory directly or indirectly attached to
the I/O bus 32 having address locations which are cachable
in the processor complex 14.

FIG. 2 shows examples of I/O devices 28 which either
include or are connected to expansion memory. The
examples shown are not intended to be all-inclusive. With
respect to I/O devices 28 which are directly attached to the
I/O bus 32, Such devices may include coprocessing elements
(28a) or slave I/O devices (28b) having internal memory
contained therein. Directly-attached I/O devices may also
include memory devices (28g), such as RAM or ROM cards.
The I/O devices 28 may also include devices which serve

to connect expansion memory to the I/O bus 32, Such as a
Small computer system interface (SCSI) adapter (28c), or a
bus-to-bus bridge (28h). In the case of the SCSI adapter,
expansion memory such as a CD ROM (28d), a back-up tape
(28e), or a scanner device (28f) may be attached thereto. The
bus-to-bus bridge 28h may be used to connect the I/O bus 32
to an expansion bus (28i), for example, a PCI bus. Expan
sion memory devices (28i, 28k, 28m), similar to memory
devices 28g, 28a and 28b, respectively, are attached to the
expansion bus 28i.

Processor portion 16 of processor complex 14 includes
central processing unit (CPU) 38 which, in the preferred
embodiment, is a 32-bit microprocessor available from Intel,
Inc. under the trade designation i486. Processor portion 16
also includes static random access memory (SRAM) 40,
cache control module 42, frequency control module 44,
address buffer 46 and data buffer 48. Local bus 20 comprises
data information path 50, address information path 52 and
control information path 54. Data information paths 50 are
provided between CPU 38, SRAM 40 and data buffer 48.
Address information paths 52 are provided between CPU
38, cache control module 42 and address buffer 46. Control
information paths 54 are provided between CPU 38, cache
control module 42 and frequency control module 44.
Additionally, address and control information paths are
provided between cache control module 42 and SRAM 40.
SRAM 40 provides a cache function by storing in short

term memory information from either System memories 24
or 26 or from expansion memory which is located on an I/O
device 28. Cache control module 42 incorporates random
access memory (RAM) 56 which stores address locations of
memories 24 and 26. CPU 38 may access information
cached in SRAM 40 directly over the local bus 20. Fre
quency control module 44 Synchronizes operation of the 50
Mhz processor portion 16 with the 40 Mhz. base portion 18
and also controls the operation of buffers 46 and 48.
Accordingly, frequency control module 44 determines the
times at which information is captured by buffers 46 and 48
or the times at which information that is stored in these
buffers is overwritten. Buffers 46 and 48 are configured to
allow two writes from memories 24 and 26 to be stored
simultaneously therein. Buffers 46 and 48 are bi-directional,
i.e., they are capable of latching information which is
provided by the CPU 38 and information which is provided
to the CPU. Because buffers 46 and 48 are bi-directional,
processor portion 16 of the processor complex 14 may be
replaced or upgraded while maintaining a Standard base
portion 18.

Base portion 18 includes memory controller 58, direct
memory access (DMA) controller 60, central arbitration
control point (CACP) circuit 62, bus interface unit 64 and

5,966,728
S

buffer/error correction code (ECC) circuit 66. Base portion
18 also includes driver circuit 68, read only memory (ROM)
70, self test circuit 72 and buffer 74. System bus 76
comprises a data information path 78, and address informa
tion path 80 and a control information path 82. The data
information path connects buffer 74 with bus interface unit
64; bus interface unit 64 with DMA controller 60 and
buffer/ECC circuit 66; and buffer/ECC circuit 66 with sys
tem memories 24 and 26. The address information path and
the control information path each connect memory control
ler 58 with DMA controller 60 and bus interface unit 64; and
bus interface unit 64 with buffer 74.
Memory controller 58 resides on both CPU local bus 20

and system bus 76, and provides the CPU 38, the DMA
controller 60 or bus interface unit 64 (on behalf of an I/O
device 28) with access to system memories 24 and 26 via
memory bus 30. The memory controller 58 initiates system
memory cycles to System memories 24 and 26 over the
memory bus 30. During a System memory cycle, either the
CPU 38, the DMA controller 60 or bus interface unit 64 (on
behalf of an I/O device 28) has access to system memories
24 and 26 via memory controller 58. The CPU 38 commu
nicates to System memory via local buS 20, memory con
troller 58 and memory bus 30, while the DMA controller 60
or bus interface unit 64 (on behalf of an I/O device 28)
access System memory via System buS 76, memory control
ler 58 and memory bus 30.

For CPU 38 to I/O bus 32 read or write cycles, address
information is checked against System memory address
boundaries. If the address information corresponds to an I/O
expansion memory address or I/O port address, then
memory controller 58 initiates an I/O memory cycle or I/O
port cycle with an I/O device 28 (via bus interface unit 64
) over the I/O bus 32. During a CPU to I/O memory cycle
or I/O port cycle, the address which is provided to memory
controller 58 is transmitted from system bus 76 to I/O bus 32
via bus interface unit 64 which resides intermediate these
two buses. The I/O device 28 which includes the expansion
memory to which the address corresponds receives the
memory address from I/O bus 32. DMA controller 60 and
the bus interface unit 64 control the interchange of infor
mation between System memories 24 and 26 and expansion
memory which is incorporated into an I/O device 28. DMA
controller 60 also provides three functions on behalf of
processor complex 14. First, the DMA controller 60 utilizes
a small computer subsystem control block (SCB) architec
ture to configure DMA channels, thus avoiding the necessity
of using programmed I/O to configure the DMA channels.
Second, DMA controller provides a buffering function to
optimize transferS between Slow memory expansion devices
and the typically faster system memory. Third, DMA con
troller 60 provides an eight channel, 32-bit, direct system
memory access function. When providing the direct System
memory access function, DMA controller 60 may function
in either of two modes. In a first mode, DMA controller 60
functions in a programmed I/O mode in which the DMA
controller is functionally a slave to the CPU 38. In a second
mode, DMA controller 60 itself functions as a system bus
master, in which DMA controller 60 arbitrates for and
controls I/O bus 32. During this second mode, DMA con
troller 60 uses a first in, first out (FIFO) register circuit.
CACP circuit 62 functions as the arbiter for the DMA

controller, I/O device bus controllers and the CPU (if
accessing I/O devices). CACP circuit 62 receives arbitration
control signals from DMA controller 60, memory controller
58 as well as from I/O devices, and determines which
devices may control the I/O bus 32 and the length of time
during which the particular device will retain control of the
I/O bus.

15

25

35

40

45

50

55

60

65

6
Driver circuit 68 provides control information and address

information from memory controller 58 to system memories
24 and 26. Driver circuit 68 drives this information based
upon the number of Single in-line memory modules
(SIMMs) which are used to construct system memories 24
and 26. Thus, driver circuit 68 varies the signal intensity of
the control and address information which is provided to
System memories 24 and 26 based upon the size of these
memories.

Buffer circuit 74 provides amplification and isolation
between processor complex base portion 18 and System
board 12. Buffer circuit 74 utilizes buffers which permit the
capture of boundary information between I/O bus 32 and bus
interface unit 64 in real time. Accordingly, if computer
system 10 experiences a failure condition, buffer circuit 74
may be accessed by a computer repair perSon to determine
the information which was present at connector 34 upon
failure of the system.
ROM 70 configures the system 10 upon power-up by

initially placing in System memory data from expansion
memory. Self test circuit 72, which is connected to a
plurality of locations within base portion 18, provides a
plurality of self test features. Self test circuit 72 accesses
buffer circuit 74 to determine if failure conditions exist, and
also tests the other major components of base portion 18
upon power-up of the system 10 to determine whether the
System is ready for operation.

Referring to FIG. 3, a schematic block diagram of the bus
interface unit 64 of the system of FIG. 1 is shown. Bus
interface unit 64 provides the basis for implementation of
the present invention by providing a bi-directional high
speed interface between system bus 76 and I/O bus 32.
Bus interface unit 64 includes system bus driver/receiver

circuit 102, I/O bus driver/receiver circuit 104 and control
logic circuits electrically connected therebetween. Driver/
receiver circuit 102 includes Steering logic which directs
Signals received from the System buS 76 to the appropriate
buS interface unit control logic circuit and receives signals
from the bus interface unit control logic circuits and directs
the signals to the system bus 76. I/O bus driver/receiver
circuit 104 includes Steering logic which directs signals
received from the I/O bus 32 to the appropriate bus interface
unit control logic circuit and receives Signals from the bus
interface unit control logic circuits and directs the Signals to
the I/O bus 32.
The buS interface unit control logic circuits include Sys

tem bus to I/O bus translation logic 106, I/O bus to system
buS translation logic 108, memory address compare logic
110, error recovery Support logic 112, and cache Snooping
logic 114. Programmed I/O circuit 116 is also electrically
coupled to system driver/receiver circuit 102.
The system bus to I/O bus translation logic 106 provides

the means required for the DMA controller 60 or the
memory controller 58 (on behalf of CPU 38) to act as a
system bus controller to access the I/O bus 32 and thereby
communicate with I/O devices 28 acting as Slave devices on
the I/O bus. Translation logic 106 translates the control,
address and data lines of the system bus 76 into similar lines
on the I/O bus 32. Most control signals and all address
signals flow from the system bus 76 to the I/O bus 32 while
data information flow is bi-directional. The logic which acts
as system bus slave monitors the system bus 76 and detects
cycles which are intended for the I/O bus 32. Upon detection
of Such a cycle, the System bus Slave translates the timing of
Signals on the System bus to I/O bus timing, initiates the
cycle on the I/O bus 32, waits for the cycle to be completed,
and terminates the cycle on the system bus 76.

5,966,728
7

The I/O bus to system bus translation logic 108 comprises
System bus address generation circuit 118, I/O bus expected
address generation circuit 120, System bus controller inter
face 122, FIFO buffer 124, I/O bus slave interface 126 and
bus to bus pacing control logic 128. System bus controller
interface 122 supports a high performance 32 bit (4 byte)
i486 burst protocol operating at 40 MHZ. Data transfers of
four, eight and Sixteen bytes in burst mode and one to four
bytes in no-burst mode are provided. I/O bus slave interface
126 monitors the I/O bus 32 for operations destined for slave
devices on the System buS 76 and ignores those operations
destined for the I/O bus 32. All cycles picked up by the I/O
bus slave interface 126 are passed on to the FIFO buffer 124
and the system bus controller interface 122.
The I/O bus to system bus translation logic 108 provides

the means required for an I/O device 28 to act as an I/O bus
controller to access system bus 76 and thereby read or write
to System memories 24 and 26. In either of these operations,
an I/O device controls the I/O bus. The asynchronous I/O
buS interface 126, operating at the Speed of the I/O device,
permits the bus interface unit 64 to act as a slave to the I/O
device controller on the I/O bus 32 to decode the memory
address and determine that the read or write cycle is destined
for System memories 24 or 26. Simultaneously, the System
bus controller interface 122 permits the bus interface unit 64
to act as a controller on the system bus 74. The memory
controller 58 (FIG. 3) acts as a slave to the bus interface unit
64, and either provides the interface 64 with data read from
System memory or writes data to System memory. The reads
and writes to System memory are accomplished through the
FIFO buffer 124, a block diagram of which is illustrated in
FIG. 4.

As shown in FIG. 4, FIFO buffer 124 is a dual ported,
asynchronous, bi-directional Storage unit which provides
temporary Storage of data information between the System
and I/O buses 76, 32. FIFO buffer 124 comprises four
sixteen-byte buffers 125A-125D and FIFO control circuit
123. The four buffers 125A-125D buffer data to and from
I/O bus controllers and system bus slaves, thereby allowing
simultaneous operation of the I/O bus 32 and the system bus
76. The FIFO buffer 124 is physically organized as two
thirty-two byte buffers (125A/125B and 125C/125D). The
system bus controller interface 122 and the I/O bus slave
interface 126 each control one thirty-two byte buffer while
the other thirty-two byte buffer operates transparent to them.
Both of the thirty-two byte buffers are utilized for read and
write operations.

Each FIFO 124A, 125B, 125C, 125D has an address
register Section either physically associated with the respec
tive FIFO, or logically associated therewith. As data is
transferred from the I/O bus 32 to FIFO 125A, the data will
be accumulated until the 16 byte buffer is filled with 16 bytes
of data, provided that the addresses are contiguous. If a
non-contiguous address is detected by the address action, the
FIFO 125A will transfer the stored data to FIFO 125C, and
at the same time FIFO 125B will start to receive this data
from the new non-contiguous address. FIFO 125B will
continue just as FIFO 125A did until it is filled with 16 bytes
of data, or another non-contiguous address is detected. FIFO
125B will then transfer the stored data to FIFO 125D, and
FIFO 125A again starts to store data; thus, it is possible to
Store up to four 16 byte blocks of non-contiguous address
data.

Further, by having two 32 byte buffers in parallel the
reading and writing of data can be toggled between them
thus giving an essentially continuous read or write function.

Moreover, by splitting the 32 byte buffers into two 16
bytes buffer sections which are coupled to other I/O bus 32

15

25

35

40

45

50

55

60

65

8
or system bus 26, the number of storage buffers can be
increased with minimal impact on the performance of the
FIFO as related to the capacitive loading on Signals clocking
data in or out of the Storage registers. This is accomplished
because for every two buffers added (in parallel) only half
the capacitive loading is added to the loading of clock
Signals on each bus.

Additionally, by having two 16 byte buffers in series in
each leg, once one of the 16 byte buffers is filled with data,
Such as in a read operation, the data can be transferred to the
other 16 byte buffers in series therewith, while the other
parallel leg is accumulating data. Hence, there is no time lost
in either accumulating data, or transferring the data from one
bus to the other.

The logic for controlling the operation of the FIFO 124 is
supplied by FIFO Control Circuit 123.
A particular I/O device 28 may write to system memories

24 or 26 via I/O bus in bandwidths of either 1, 2 or 4 bytes
(i.e., 8, 16 or 32 bits). During writes to system memory by
an I/O device 28, the first transfer of write data is initially
Stored in the FIFO buffer 125A or 125B. The I/O bus
expected address generation circuit 120 calculates the next
expected, or contiguous, address. The next contiguous
address is checked against the Subsequent I/O address to
Verify if the Subsequent transferS are contiguous or not. If
contiguous, the Second byte or bytes of write data is Sent to
the same FIFO buffer 125A or 125B. The FIFO receives data
at asynchronous Speeds of up to 40 megabytes per Second
from the I/O bus 32.

This process continues until either buffer 125A or 125B is
full with a 16-byte packet of information or a non
contiguous address is detected. On the next clock cycle,
assuming that buffer 125A is full, the data in buffer 125A is
transferred to buffer 125C. Similarly, when buffer 125B is
full, all of its contents are transferred to buffer 125D in a
single clock cycle. The data stored in the buffers 125C and
125D is then written to system memory via an i486 burst
transfer at the System bus operational Speed. The operation
of FIFO buffer 124 during a write to system memory by an
I/O device is thus continuous, alternating between buffers
125A and 125B, with each emptying into adjacent buffer
125C or 125D, respectively, while the other is receiving data
to be written to system memory. The FIFO buffer 124, then,
optimizes the speed of data writes to System memory by (i)
anticipating the address of the next likely byte of data to be
written into memory and (ii) accommodating the maximum
speed of write data from the FIFO buffer to system memory
via the system bus 76.

During reads of data from System memory to an I/O
device 28, FIFO buffer 124 operates differently. The system
buS address generation circuit 118 uses the initial read
address to generate Subsequent read addresses of read data
and accumulate data in buffer 125C or 125D. Because the
system bus supports transfers in bandwidths of 16 bytes
wide, the System bus controller interface 122 may prefetch
16-byte packets of contiguous data and Store it in buffers
125C or 125D without the I/O bus 32 actually providing
Subsequent addresses, thus reducing latency between trans
fers. When buffer 125C is full of prefetched data, it transfers
its contents to buffer 125A in one clock cycle. Buffer 125D
similarly empties into buffer 125B when full. The data in
buffers 125A and 125B may then be read by a particular I/O
device controller in bandwidths of 1, 2 or 4 bytes. In this
way, System bus address generation circuit 118 functions as
an increment counter until instructed to by the I/O controller
device to Stop prefetching data.

5,966,728
9

Bus to buS pacing control logic 128 creates a faster acceSS
to system memory for high speed I/O devices. The bus to bus
pacing control logic 128 overrides the normal memory
controller arbitration scheme of system 10 by allowing an
I/O device in control of the I/O bus 32 uninterrupted access
to System memory during transferS of data by faster devices
which require multiple cycles, rather than alternating acceSS
to the memory controller 58 between the I/O device and the
CPU. Thus, even if a local device Such as the CPU has a
pending request for control of the memory bus during a
multiple cycle transmission by an I/O device, the bus to bus
pacing control logic 128 will grant the I/O device continued
control of the memory bus.

The programmed I/O circuit 116 is the portion of the bus
interface unit 64 which contains all of the registers which are
programmable within the bus interface unit 64. The registers
have bits associated there with to determine whether a par
ticular register is active or inactive. These registers define,
inter alia, the System memory and expansion memory
address ranges to which the bus interface unit 64 will
respond, the expansion memory addresses which are either
cachable or noncachable, the System memory or cache
address ranges, and whether or not parity or error checking
is Supported by the bus interface unit. Accordingly, pro
grammed I/O circuit 116 identifies for the bus interface unit
64 the environment in which it resides, and the options to
which it is configured. The registers in programmed I/O
circuit 116 cannot be programmed directly over the I/O bus
32. Hence, in order to program the System 10, the user must
have access to an I/O device which may communicate over
the system bus to the programmed I/O circuit 116 at the CPU
level.
Memory address compare logic 110 determines if a

memory address corresponds to System memory or corre
sponds to expansion memory which is located on I/O device
28 coupled to the I/O bus 32. Because the system memory
as well as the expansion memory may be in non-contiguous
blocks of addresses, memory address compare logic 110
includes a plurality of comparators which are loaded with
boundary information from registers in the programmed I/O
circuit 116 to indicate which boundaries correspond to
which memory. After a particular memory address is com
pared with the boundary information by the memory address
compare logic, the bus interface unit is prepared to react
accordingly. For example, if an I/O device controlling the
I/O bus 32 is reading or writing to expansion memory, the
buS interface circuit need not pass that address to the
memory controller 58, thereby saving time and memory
bandwidth.

Error recovery support logic 112 permits the system 10 to
continue operations even if a data parity error is detected. On
any read or write access by an I/O device 28 to system
memories 24 or 26, parity of the data is checked. Support
logic 112 interacts with a register in the programmed I/O
circuit 116 for capturing the address and the time of the
detected parity error. The contents of this register may then
be acted upon by appropriate System Software. For example,
the CPU 38 may be programmed for a high level interrupt
to pull the address out of the register at any time a parity
error is detected. The CPU may then decide, based on the
System Software instructions, whether to continue System
operations or merely terminate operation of the identified
Source of the parity error.

Cache Snooping logic 114 permits the bus interface unit
64 to monitor the I/O bus 32 for any writes to expansion
memory by an I/O device taking place over the I/O bus 32.
The Snooping logic first determines if the write to expansion

15

25

35

40

45

50

55

60

65

10
memory occurred in expansion memory which is cachable in
SRAM 40. If it is not cachable expansion memory, there is
no danger of corrupt data being cached. If, however, a
positive compare indicates that the write occurred in cach
able expansion memory, a cache invalidation cycle is initi
ated over the system bus 76. The CPU is thus instructed to
invalidate the corresponding address in SRAM 40. Cache
Snooping logic 114 provides means to Store the address of a
positive compare So that Snooping of the I/O bus may
continue immediately after detection of the first positive
compare, thereby permitting continuous monitoring of the
I/O bus 32.
The cache Snooping logic 114, Sometimes referred to

herein as Snoop/data invalidation or data invalidation/Snoop
logic, is provided to allow certain ranges of addresses of
devices 28 coupled to the I/O bus 32 to be cached in the
cache of the CPU complex 14, and the address of the
cachable memory location in the device coupled to the I/O
bus to be written on the system bus when any such cachable
memory location is rewritten from a device coupled to the
I/O bus. A range or ranges of addresses of memory contained
in any device coupled to the I/O bus and identified as being
“cachable' memory locations is stored in the bus interface
unit 64. Thereafter, at anytime a device coupled to the I/O
bus writes to any of the identified cachable addresses in
devices coupled to the I/O bus, a cache invalidation Signal
is generated, and that address is written on the System bus
and transmitted to the CPU complex 14 indicating that any
previously cached data from that address is invalid. The
CPU complex 14 can get rid of the previously cached data
and at an appropriate time replace it with the rewritten data
from that address or take whatever other action is pro
grammed into the CPU complex 14.

FIG. 5 depicts, at a high level, the logic involved in
performing this function. I/O bus “Snoop' logic 140 moni
tors all of the transmissions on the I/O bus. The logic
determines first if an I/O device is an I/O bus master, next
if it is performing a write operation, and finally if it is writing
to a cachable memory location of a device coupled to the I/O
bus. If all of these conditions are met, a cache invalidation
Signal, known as a positive Snoop, is generated and the
address being written to in the memory device coupled to the
I/O bus is Stored in a cache invalid address Storage register
142. The invalid address is then written on the system bus 76
by System bus invalidation logic 144 and System bus inter
face logic 145 and transmitted to the CPU complex 14 by
memory controller 58.
The logic function is performed by a cache Snoop/

invalidation state machine shown in FIG. 6. In this logic
diagram, State 0 represents the normal at rest “power on
state of the machine. When the system is initially powered,
a "reset' Signal maintains the State machine in this "at rest'
or 0 state. It will remain in this “at rest” state until a signal
is received indicating that a device coupled to the I/O bus is
performing a write function to a cachable memory address
in a device coupled to the I/O bus. The state machine then
goes to either State 2 or State 1 depending upon whether the
system bus 76 is “free” (i.e. no device has control of the
system bus 76) or is “occupied” (i.e. some device has control
of the system bus 76). In either case, the memory address of
the data being written is stored in an address register (which
will be described presently). If the system bus 76 is free, the
State machine goes to State 2 which generates a Signal on the
system bus 76 to the memory controller 58 to store the
address and then goes to State 3 which allows the address in
the register to be valid for another timing pulse. States 2 and
3 constitute an “address invalidation' condition. The state

5,966,728
11

machine then goes to State 7 wherein the address is held in
the register 142 until all of the data has been written from the
device controlling the I/O bus to the indicated address on the
I/O bus during the write cycle.

However, if at the time that a cached address Signal is
received the system bus 76 is “occupied', the state machine
goes to State 1. It remains in this State until the System bus
76 is free. If the system bus becomes free before the data
transfer cycle which is writing to the cachable address is
completed, the machine goes from State 1 to State 2, and then
to state 3 and then to state 7 as previously described. If the
System bus becomes free at the same time the data transfer
is completed, the State machine goes from State 1 to State 5,
which is similar to state 2 which will actuate memory
controller 58 to store the invalidation address; and then the
State machine goes the address is valid for an additional
pulse. States 2 and 3 and also State 5 and 6 are address
invalidation States. From State 6 the State machine goes to
state 8. This delays the return to the 0 state for one timing
pulse. This is necessary for timing. The State is then returned
to State O.

If, on the other hand, the State machine is in State 1 and
the first Snooped I/O data transfer cycle is completed before
the System bus 76 is available, the State machine goes to State
4. The machine stays in State 4 until the System bus is free
at which time it goes to State 5, and then to States 6 and 8 as
previously described.

In order to insure that additional Snoop addresses are not
lost while the State machine is either waiting for the System
buS 76 or in the process of executing an invalidation cycle,
if a Second positive Snoop is encountered, the address of this
Second positive Snoop will be queued in register 152, while
the first stored address will be held in register 156. This
second address will only be transferred after the first
Snooped address has been put onto the System bus 76.

The output of the State machine controls the logic function
shown in FIG. 7 which stores the invalidation address. The
logic function performing Structure includes a first multi
plexer 150, the output of which is connected to a first address
register 152. The output of the first address register 152 is
connected to a second multiplexer 154, the output of which
is connected to a Second address register 156. The output of
the second address register 156 is connected to a third
multiplexer 158, the output of which is communicated to the
system bus 76.

The state machine controls a first OR gate 160 to drive the
select input of multiplexer 158. The first OR gate 160 has
four input lines which can provide an output to the Select
input of the multiplexer 158 to transfer the data invalidation
address to the system bus 76. OR gate 162 is provided with
input from the next State of the State machine. The output of
the OR gate 162 is an input to AND gate 164. The output of
the AND gate 164 is connected to select input of the
multiplexer 154.

Briefly, the logic performs as follows: When a positive
Snoop occurs, the address of the data is written into register
152. If the state machine is in state 0 and the next state is
either 1 or 2, the address is immediately transferred to
register 156 where it remains until the system bus 76 is free
at which time it is written through multiplexer 158 to the
System bus. If when the data address is received in register
152, the State machine is in State 4, i.e. awaiting access to the
System bus, which signifies that the address of a first routine
Snoop is in the register 156 awaiting transfer to the System
buS 76, the Second Snooped address is retained in register
152 and not moved to register 156 until the state machine
has gone to State 0.

15

25

35

40

45

50

55

60

65

12
The Signal description for the cache data invalidation

function of state (CISTATE) 0 through 6 on the lines are as
follows:

CACHE INVALIDATE

STATE(0–6) = state is currently active
(CISTATE) O = state is not active
I/O CACHE - WR = current I/O bus address is in the

cachable memory range
O = non-cachable address is on I/O bus

TYPE IC
TYPE IB 1 = clock pulses to the bus interface unit

64 based on I/O internal command signal
CINXT STATE 1 = next active state of state machine is
(CINXTSTATE) 1.

O = next active state of state machine is
not 1

I/O A. IN = I/O address coming to bus interface
unit 64

SYSTEM BUS
ADDR (SB ADDR) = system has address being written by bus

interface unit 64 to system bus
positive snoop signal written onto
system bus

X CACHE :

With this logic function, a write to cached data address is
detected and Stored and the appropriate Signal is placed onto
the system bus 76.

Although several embodiments of this invention have
been shown and described, various adaptations and modi
fications can be made without departing from the Scope of
the invention as defined in the appended claims.

Having thus described the preferred embodiment, the
invention is now claimed to be:

1. A computer System comprising a central processing
unit (CPU) complex, a system memory coupled to said CPU
complex; an expansion bus in circuit communication with
the CPU complex and having at least one expansion memory
device coupled thereon, Said central processing unit (CPU)
complex comprising:

(a) a cache;
(b) a System bus;
(c) an input/output (I/O) bus; and
(d) a bus interface unit coupled between said System bus

and said I/O bus; wherein said bus interface unit
comprising:
(1) means for identifying memory locations in Said

expansion memory device which are cacheable in the
CPU complex;

(2) data invalid/Snoop logic for monitoring transmis
Sion on Said I/O bus and Said expansion bus and for
determining when a data write operation to a cache
able memory location in Said expansion memory
device has occurred and the address of the cacheable
memory location being written into; and

(3) means for writing the address of said cacheable
memory location on the System bus when Said loca
tion is identified and the system bus is available.

2. The computer System as defined in claim 1 wherein Said
buS interface unit includes an address register to Store the
address of Said cacheable memory location being written
into.

3. The computer System as defined in claim 2 wherein Said
data invalid/Snoop logic includes means for monitoring the
System bus, and retaining the address of Said cacheable
memory location being written into in Said address register
until the system bus is free.

4. The computer system as defined in claim 3 wherein said
data invalid/Snoop logic further includes logic for Storing

5,966,728
13

Said address in Said address register and preventing entry of
any Subsequent address of a data write operation to a
cacheable memory location in Said address register until Said
address of Said cacheable memory location being written
into has been written on the System bus.

5. The computer system as defined in claim 4 wherein said
address of the cacheable memory location being written into
is a first address and the bus interface unit further including
a Second address register for Storing a Subsequently deter
mined address of a cacheable memory location prior to Said
first address being written on the System buS.

6. A method of providing cacheable memory in a device
coupled to an I/O bus in a computer System having central
processing unit (CPU) complex and an expansion bus in
circuit communication with the CPU complex and having at
least one expansion memory device coupled thereon, the
CPU complex comprising:

a cache;
a System bus,
an input/output (I/O) bus; and
a bus interface unit coupled between Said System bus and

Said I/O bus) the method comprising the Steps of:
(a) identifying memory locations in Said expansion
memory devices which are cacheable;

(b) monitoring transmissions on said I/O bus and said
expansion bus to determine when a data write opera
tion to a cacheable memory location in Said expan
Sion memory device has occurred and the address of
the cacheable memory location being written into;
and

(c) writing the address of Said cacheable memory
location being written into on the System bus when
Said location is identified and the System bus is
available.

7. The method as defined in claim 6 further including the
Step of Storing the address of Said cacheable memory loca
tion being written into in an address register in Said bus
interface unit.

8. The method as defined in claim 7 further including the
Steps of monitoring the System bus, and Storing Said address
of the cacheable memory location being written into in Said
register until the System bus is free.

9. The method as defined in claim 8 wherein said address
of the cacheable memory location being written into is a first
address, and Said method further includes the Step of pre
venting entry of any Subsequent address of a data write
operation to a cacheable memory location in Said register
until the first address has been written on the system bus.

10. The method as defined in claim 9 further including the
Step of Storing an address of a Second cacheable memory
location in a Second address register if the first address has
not been written to the system bus.

11. A computer System containing: a central processing
unit (CPU), a cache coupled to said CPU, and system
memory coupled to said CPU, said computer system further
comprising:

(a) an input/output (I/O) bus for connecting said computer
System to I/O devices and to expansion memory
devices on an expansion bus, Said I/O bus Supporting
memory data transfers between said I/O devices and
Said cache, I/O and memory data transferS between
pairs of said I/O devices, and I/O and memory data
transferS between pairs of Said expansion memory
devices, and Said memory data transferS between Said
I/O devices and Said cache including data transfers
between cacheable memory locations contained in Said

15

25

35

40

45

50

55

60

65

14
I/O devices and memory locations contained in Said
cache, and Said memory data transferS between Said
pairs of I/O devices including data transferS between
one I/O device controlling said I/O bus and cacheable
memory locations contained in another I/O device, and
Said memory data transferS between pairs of expansion
memory devices including data transferS between one
expansion memory device controlling Said expansion
bus and cacheable memory locations contained in
another expansion memory device;

(b) a bus interface unit coupled between said I/O bus and
Said cache; Said bus interface unit comprising:
(1) means for identifying said cacheable memory loca

tions contained in Said I/O devices and Said expan
Sion memory devices,

(2) bus Snooping logic, in circuit communication with
Said I/O bus, Said expansion bus, and Said means for
identifying Said cacheable memory locations, for
monitoring Said memory data transferS on Said I/O
bus between pairs of said I/O devices and for moni
toring Said memory data transferS on Said expansion
bus between pairs of Said expansion memory
devices, and detecting when data is being written by
said one I/O device controlling said I/O bus to a
cacheable memory location contained in Said another
I/O device, and detecting when data is being written
by Said one expansion memory device controlling
Said expansion bus to a cacheable memory location
contained in Said another expansion memory device;
and

(3) invalidation signaling logic means responsive to
detection by Said bus Snooping logic that data is
being written by said one expansion memory device
to a cacheable memory location contained in another
Said expansion memory device for directing an
invalidation Signal to Said cache, Said invalidation
Signal including the address of the cache able
memory location in Said another expansion memory
device to which data is being written and Serving to
cause invalidation of a location in Said cache corre
sponding to Said address if Said cache currently
contains a location corresponding to Said address.

12. The computer system as defined in claim 11 wherein
Said bus interface unit further comprises an address register
coupled to Said bus Snooping logic for Storing Said addresses
detected by Said bus Snooping logic representing Said cache
able memory locations in Said another expansion memory
device to which data is being written to permit transfer of
Said invalidation signals to Said cache in asynchronous
relation to execution of corresponding memory data trans
fers between pairs of Said expansion memory devices.

13. The computer system as defined in claim 12 further
comprising a System bus located between Said bus interface
unit and Said cache, and wherein Said invalidation Signaling
logic means includes means operative upon detection by
Said bus Snooping logic that data is being written by Said one
expansion memory device controlling Said I/O bus to Said
cacheable memory location in Said another expansion
memory device, to determine when said System bus is free
to receive Said invalidation signal, and effective, while Said
System bus is not free to receive said invalidation Signal, to
cause Said address register to retain an address currently
Stored in Said address register until the System buS becomes
free to receive Said invalidation signal.

14. The computer system as defined in claim 13 wherein
Said I/O bus permits said one expansion memory device
controlling said I/O bus to retain control of said I/O bus

5,966,728
15

continuously, while writing data conservatively to different
first and Second cacheable memory locations in Said another
expansion memory device; and wherein Said invalidation
Signaling logic is effective when Said System bus is not free
as data is written to Said first cacheable memory location and
while data is being written to Said Second cacheable memory
location to cause Said register to retain the address of Said
first cacheable memory location and prevent entry into Said
register of the address of Said Second cacheable memory
location until Said System buS becomes free to receive an
invalidation signal containing Said address of Said first
cacheable memory location.

15. The computer system as defined in claim 14 wherein
Said invalidation logic includes an additional address regis

16
ter Serving as a back-up buffer relative to Said address
register, Said additional address register being used to Store
the address of Said Second cacheable memory location, when
data is written Successfully to Said first and Second cacheable
memory locations, and the writing of data to Said Second
cacheable memory location is detected before an invalida
tion Signal can be sent on Said System bus relative to Said first
cacheable location, Said additional register Serving to Store
Said address of Said Second cacheable memory location until
Said invalidation Signal can be Sent relative to Said first
cacheable memory location.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 5,966,728 Page 1 of 1
DATED : October 12, 1999
INVENTOR(S) : Nader Amini et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Item (54), Title, after “SNOOPING” change “DATE” to -- DATA --.
Item 57, ABSTRACT,
Line 1, after “method’ insert -- are provided to --.
Line 3, after “an” delete “input/output (I/O)' and insert -- I/O --.

Column 12
Line 56, after "available' insert -- and wherein said means for writing is in circuit
communication with Said means for identifying and Said data invalid/Snoop logic --.

Column 13
Line 22, after “bus' delete the parenthesis") and insert a semicolon -- ; --.
Line 42, before “register” insert -- address --.
Line 47, after “Said' insert -- address --.

Signed and Sealed this

Eighth Day of March, 2005

WDJ
JON W. DUDAS

Director of the United States Patent and Trademark Office

