
United States Patent (19) 
Bealkowski et al. 

USOO5826075A 

11 Patent Number: 5,826,075 
(45) Date of Patent: Oct. 20, 1998 

54 

(75) 

AUTOMATED PROGRAMMABLE 
FIREWARE STORE FOR A PERSONAL 
COMPUTER SYSTEM 

Inventors: Richard Bealkowski, Delray Beach; 
Ralph Murray Begun, Boca Raton, 
both of Fla. 

Assignee: International Business Machines 
Corporation, Armonk, N.Y. 

Appl. No.: 799,486 
Filed: Nov. 27, 1991 

Related U.S. Application Data 

Continuation-in-part of Ser. No. 777,844, Oct. 16, 1991. 
Int. Cl. .................................................... G06F 17/30 
U.S. Cl. ........................ 395/600; 380/4; 364/DIG. 1; 

364/283.1 
Field of Search ..................................... 395/800, 700, 

395/425, 600; 364/927.82; 371/19; 380/4 

References Cited 

U.S. PATENT DOCUMENTS 

4,430,727 2/1984 Moore et al. ........................... 395/442 
4,456.993 6/1984 Taniguchi et al. ... 395/182.04 
4,607,332 8/1986 Goldberg ...... ... 395/463 
4,758,988 7/1988 Kuo ............... ... 365/189 
4,802.117 1/1989 Chrosny et al. 395/182.03 
4,811,303 3/1989 Hirai ....................................... 365/189 
4,823,252 4/1989 Horst et al. ........................ 395/182.05 
4,893,279 1/1990 Rahman et al. ... 365/230.03 
4,937,861 6/1990 Cummins .................................... 380/2 
4,965,828 10/1990 Ergott, Jr. et al. ... 380/50 
5,007,082 4/1991 Cummins .................................... 380/4 
5,021,963 6/1991 Brown et al. ...................... 364/464.02 
5,022,077 6/1991 Bealkowski et al. ....................... 380/4 

5,032,981 7/1991 Bril et al. ............................. 395/421.1 
5,097,445 3/1992 Yamauchi ............................... 365/195 
5,128,995 7/1992 Arnold et al. .............................. 380/4 
5,133,081 7/1992 Mayo ........................................ 455/18 
5,181,206 1/1993 Hashiguchi ............................ 371/21.5 
5,210,954 5/1993 Beaverton et al. ..................... 395/500 
5,237,379 8/1993 Cwiakala et al. ....................... 355/311 
5,237,690 8/1993 Bealkowski et al. ................... 395/700 
5,239,637 8/1993 Davis et al. ............................ 395/492 
5,271,012 12/1993 Blaum et al. 395/182.04 
5,388,267 2/1995 Chan et al. ............................. 395/700 

OTHER PUBLICATIONS 

Intel, “Flash Memories', Memory Products 1991, pp. 
6-1-6-420. 

Primary Examiner Wayne Amsbury 
57 ABSTRACT 

An automated programmable firmware Store for a personal 
computer System includes a plurality of nonvolatile alterable 
electronic memories connected in a mutually paralleled 
circuit arrangement. The memories are connected to a means 
for automatically controlling the memories to read firmware 
from and write firmware into the electronic memories, and 
to write-protect at least one of the memories. Any memory 
can be write-protected as initially Selected by the automatic 
control means. The initial Selection can be changed easily to 
write-protect another of the memories. The firmware in one 
memory includes code for checking the validity of firmware 
Stored in another memory, and for Selecting one or the other 
of the memories dependent upon a version code of the 
firmware. The control means also includes an update code 
for updating the firmware in a Selected memory. The auto 
mated Store further includes means for allowing the com 
puter System to recover automatically from invalid firmware 
Stored in one of the memories. 

23 Claims, 35 Drawing Sheets 

UPDATE 

SETUPDATE-PHASE 
NOCATOR TOZERO 

STPAE-PHASE 
NDICATOR TO ON 

88 

FOGAM 
ALTERNATE-BANK 

St JoAT-PHASE 
INDICAOROZRO 

822 

MESSAGE: 
power SYSTM OFF THENON 

M 
PROGRAM 

ALERNATE-BANK 

836 
/ 

t 

82 86 

DOS UPDATE-PHASE No OSUPDATE-PHASE NO 
NDCATORECUAlzRo? NDICAOREQUAWO? 

YS 3O4 YES 88 
i 

Ext 

  

  



U.S. Patent Oct. 20, 1998 Sheet 1 of 35 5,826,075 

FIG, A 

  



5,826,075 U.S. Patent 





5,826,075 Sheet 4 of 35 Oct. 20, 1998 U.S. Patent 

************-*=--~~~~-------_______••••• 



Sheet S of 35 Oct. 20, 1998 U.S. Patent 

| ||ELLI EXSIC] 

  



l 

5,826,075 Sheet 6 of 35 

as as an as as an as a 

Oct. 20, 1998 

GCoo=G'svo 'svu) E?=TOHINOO A HOWEw 

N 

lNºn TOHINOO, HOWEW 

| | 

  





Sheet 8 of 35 Oct. 20, 1998 U.S. Patent 

BELLdWCY TY/IHEST 

  





5,826,075 Sheet 10 of 35 Oct. 20, 1998 U.S. Patent 

SnG WIYO /NHOWEWN 

SSE HOOV Twoon 

  



5,826,075 Sheet 11 of 35 Oct. 20, 1998 U.S. Patent 

•088 I i AllHwd / OOB 

992 

  

  

  

  

  

  

  

  



U.S. Patent Oct. 20, 1998 Sheet 12 of 35 5,826,075 

FIG. 5A 

ADDRESSBUS DATABUS 

CONTROL 
CONTROL BUS 

FIG. 5C 
534 

WAE SIGNAL WAE 
GENERATOR 

51O 

  

  







5,826,075 Sheet 15 of 35 Oct. 20, 1998 U.S. Patent 

#09 

1BSEHTOBINOOO?9 BOSSEIOOHdJESEH / 1BSJESEH NO HEINWOd ©|1\/WOLTY/ 
909 cHS8 XHOOT 

b?O LVHEINES) T\/N?IS CHS8 

  

  





5,826,075 Sheet 17 of 35 Oct. 20, 1998 U.S. Patent 

TOHLNO O X?OOT dS8 

LESEH T\/NHELNI 
CEDHOOT = 0 CEDHOOTINT) = | 

| ESEH NO HEAWOd 

  

  

  

  

  



U.S. Patent Oct. 20, 1998 Sheet 18 of 35 

FIG. 6DFG 

TIME (COUNTER) 
LOGIC 

----89 ------------------------------ r 
INTERNAL RESET 

624 

POWER ON 
RESET 6O8 630 
61O 

NOR so 
605 S1 

END RESET EIGHT-BIT TIMEOUT 
RESETABLE 626 

SYNCHRONOUS 
CLOCK UP COUNTER 

612 

CANCEL TIMEOUT 

632 

EIGHT-BIT 
RESETTABLE 

SYNCHRONOUS 
CLOCK UP COUNTER 

612 

ENT 

o amme 

ENP ENT 

608 

- 

  

  



U.S. Patent Oct. 20, 1998 Sheet 19 of 35 5,826,075 

FIG. 6D2 

634 

EEGHT-BIT 
RESETTABLE OE 

SYNCHRONOUS GRD 
UP COUNTER 

ENT 

EIGHT-BIT 
RESETTABLE OE 

SYNCHRONOUS CD 
UP COUNTER 

ENT 

636 

TIME (COUNTER) 
LOGIC 

  

    

  

  

  

  

    

  

  



U.S. Patent Oct. 20, 1998 Sheet 20 of 35 

TOGGLE LATCH FIG. 6E 
M ----------------------------------- 

VCC 

: WCC 

GROUND 

: RESTART 
622 

POWER ON 
RESET 

----------------------------------- 

RESET PULSE 
GENERATOR FIG. 6F 

62O \ - - - - - - - A- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

RESTART 

GROUND 

S 

CLK 

EIGHT-BIT 
RESETTABLE OE 
YNCHRONOUS CD 
UP COUNTER 

ENP ENT 

PROCESSOR 
RESET 

  

  

  

  

  

    

  

  

  

  

  

  

  



U.S. Patent Oct. 20, 1998 Sheet 21 of 35 5,826,075 

BANK CHECK FI G 7 7OO 
P.O.S.T EARLY INITIALIZATION AND SELECT 

y 

718 

NO HALT 
SCURRENT BANKVA (AND WAIT FOR RESTART) 

YES 7O6 

72O 

CONFIGURATIONERROR 
722 

DOES UPDATE-PHASE 
INDICATOR EOUALZERO 7 

YES 724 

SE UPDATE-PHASE 
INDICATOR TO TWO 

726 

S THE ALTERNATE-BANK 
VALID 2 

  

  

  

  

  

  

  



U.S. Patent Oct. 20, 1998 Sheet 22 of 35 5,826,075 

12 8 
8OO 

NO MESSAGE: 
IS NVRAM VALID FIX NVRAM 

YES 
8 14 

SET UPDATE-PHASE 
INDICATOR TOZERO 

8O2 86 

DOES UPDATE-PHASE NO DOES UPDATE-PHASE 
INDICATOR EOUALZERO 2 INDICATOREOUALTWO? 

YES 804. YES 818 
/ 

PROGRAM PROGRAM 
ALTERNATE-BANK ALTERNATE-BANK 

806 82O 

SET UPDATE-PHASE 
INDICATOR TOZERO 

822 

MESSAGE: 
POWER SYSTEM OFF THEN ON 

  

  

  



U.S. Patent Oct. 20, 1998 Sheet 23 of 35 5,826,075 

FIG. 9 

- - - - - - - - - - - 
BANK CHECKAND 
SELECT CODE 

HARDFILE 

MODULE - - - - - - - - - - - 
- - - - - - - - - - - 

DISKETTE 

MODULE 
- - - - - - - - - - - 
- - - - - - - - - - - 

KEYBOARD 
MODULE 

MODULE - - - - - - - - - - - 

PRINTER 
MODULE 

VERSION 

  



U.S. Patent Oct. 20, 1998 Sheet 24 of 35 5,826,075 

STARTERASURE 

YES FIG. 1 OA1 
i.6 

PROGRAMAX BYTES TO OOH 

APPLY VppH 

ADDR = OOHPLSCNT =O 

WRITE ERASE SET-UP CMD 

WRITE ERASE CMD 

TIME OUT 101S 

WRITE ERASE VERIFY CMD 

TIME OUT 6 LS 

READ DATA FROMDEVICE 
NO 

O INCPLSCNT 
= 3OOOP 

YES 
YES 

INCREMENT NO LAST 
ADDRESS ADDRESS 2 

YES 

WRITE READ CMD 

-2 APPLY VopL APPLY Vop 

ERASURE COMPLETED ERASE ERROR 

    

  



U.S. Patent Oct. 20, 1998 Sheet 25 of 35 5,826,075 

FIG. 10A2 

BUS 
OPERATION COMMAND COMMENTS 

ENTRE MEMORY MUST = OOH 
BEFORE ERASURE 

USE CRUICK-PULSE 
PROGRAMMINGTMALGORITHM 
(FIGURE 5) 

WAIT FORVp RAMPTO Veph STANDBY 

INITIALIZE ADDRESSES 
AND PULSE-COUNT 

WRITE DATA = 20H 

WRITE DATA = 20H 

DURATION OF ERASE 
OPERATION (tWHWH2) 

STANDBY 

ADDR = BYTE TOVERIFY. 
DATA = AOH; STOPS ERASE 
OPERATION 
tWHGL 

WRITE 

STANDBY 

READ BYTE TOVERIFYERASURE READ 

COMPARE OUTPUT TO FFH 
INCREMENT PULSE-COUNT 

STANDBY 

DATA = OOH, RESETS THE 
REGISTER FOR READ OPERATIONS 

  

  

  

  

    

  

      

  

    

    

  

  

  

  

    

  

    

  

  

  

  

  

  

  

  

      

    

  

  

  

  

  

    

  

  



U.S. Patent Oct. 20, 1998 Sheet 26 of 35 5,826,075 

START PROGRAMMING 

APPLY Voph 

PLSCNT = O 

WRITE SET-UP PROGRAM CMD 

WRITE PROGRAM CMD (AVD) 

TIME OUT 1 OS 

WRITE PROGRAMVERIFY CMD 

TIME OUT 6S 

READ DATA FROMDEVICE 

VERIFYDATA) NO 
YES 

NCREMENT NO LAST 
ADDRESS ADDRESS 2 

YES 

WRITE READ CMD 

APPLY Vop 

PROGRAMMING COMPLETED 

FIG. 1 OB1 

PROGRAM ERROR 

        

  

    

    

  



U.S. Patent Oct. 20, 1998 Sheet 27 of 35 5,826,075 

FIG. 1 OB2 

BUS 
OPERATION COMMAND COMMENTS 

STANDBY WAIT FORVp RAMPTO Veph 

INTIALIZE PULSE-COUNT 

WRITE SET-UP DATA = 4OH 
PROGRAM 

WRITE PROGRAM VALID ADDRESS/DATA 

STANDBY DURATION OF PROGRAM 
OPERATION (tWHWH1) 

WRITE PROGRAM DATA COH; STOPS PROGRAM 
VERIFY OPERATION 

STANDBY tWHGL 

READ READ BYTE TOVERIFY 
PROGRAMMING 

STANDBY COMPAREDATA OUTPUT TO 
DATA EXPECTED 

DATA = OOH, RESETS THE 
REGISTER FOR READ OPERATIONS 

STANDBY WAIT FOR Vpp RAMP TO VopL 

  





U.S. Patent Oct. 20, 1998 Sheet 29 of 35 5,826,075 

FIG. i. FIG. A 
A 

FIG, Al 

DEMCE AND 
V POWER-UP STANDBY ADDRESS SELECTION OUTPUISENABLED 

XXXXXX) ESSES ADDRESS STABLE ADDRESSESAXXWXX 
AVAV (RC) 

CEE 

CEO) 

WEW GLQV (OE) 

DATA (DQ) HIGHZ K 
N to N Avov (Acc) 

5.OM 

VCC 
OM 

  



U.S. Patent Oct. 20, 1998 Sheet 30 of 35 5,826,075 

FIG. A2 

DAAVALID STANDBY Voc POWER-DOWN 
- T ---------. VVVVVV 

Dessar (XXXXXX 
EHQz 

--------- 1C 

'GHQz 
--------- (tDF) 

OH 
/ 

--------. V 
VALID OUTPUT X HIGHZ 

-------- M 



U.S. Patent Oct. 20, 1998 Sheet 31 of 35 5,826,075 

fif FIG. B 
FIG. Bl 

V POWER-UP & SET-UPERASE 
CC STANDBY COMMAND ERASE COMMAND ERASING 

AVAV (wc) 
t 

-a - t 

CE(E) (fcH) tCS ) 

ELWL 
(tOS) 

HIGHZ 
DATA (DQ) 

DAAN 
= 20H 

5,OM 

VCC 
OV VPEL 

2.OM 

  



U.S. Patent Oct. 20, 1998 Sheet 32 of 35 5,826,075 

FG, B2 

ERASE 
VERIFY ERASE STANDBY/ 

COMMAND VERIFICATION Vcc POWER-DOWN 

t o f b. DATA WWH GLQX t OUT 
(tO7) Z -XN DMH OLZ W -K) ( ELQX K. 2) 

DATAIN (LZ) E ELQV 
= AOH (tcE) 

  



U.S. Patent Oct. 20, 1998 Sheet 33 of 35 5,826,075 

FIG, TIC 
Cl C2 

FIG. Cl 
SE-UP PROGRAM COMMAND 

Vcc POWER-UP 8. PROGRAM ACHADDRESS PROGRAMM 
SANDBY COMMAND 8 DATA VX/ % . 

"XXXX XXX AVAV (wc) Awl t (fAH) - - - 

CE(E) (tcH) (tcS) 
--"WHEH 

HIGHZ 
DATA (DQ) 

VCC 
OV vPEL 

DAAN DATAIN 

12.OM 

PPL 

  



U.S. Patent Oct. 20, 1998 Sheet 34 of 35 5,826,075 

FIG. C2 

PROGRAM 
VERIFY PROGRAM STANDBY/ 

COMMAND VERIFICATION VCCPOWER-DOWN 

oH VALID 
DAA 
OUT 

7% ) N A. 
AIN * Es: 

  



U.S. Patent Oct. 20, 1998 Sheet 35 of 35 5,826,075 

- 

CD 
CD 
O 
H 

  



5,826,075 
1 

AUTOMATED PROGRAMMABLE 
FIREWARE STORE FOR A PERSONAL 

COMPUTER SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application is a continuation-in-part of commonly 
owned application Ser. No. 07/777,844, filed Oct. 16, 1991, 
entitled PROGRAMMABLE FIRMWARE STORE FOR A 
PERSONAL COMPUTER SYSTEM, now pending. 

FIELD OF THE INVENTION 

This invention relates to personal computer Systems and, 
more particularly, to an arrangement for Storing System 
firmware. 

BACKGROUND OF THE INVENTION 

Personal computer Systems in general, and IBM personal 
computers in particular, have attained widespread use for 
providing computer power to many Segments of today's 
Society. A personal computer System can usually be defined 
as a desk top, floor Standing, or portable computer that 
includes a System unit having a System processor, a display 
monitor, a keyboard, one or more diskette drives, a fixed 
disk Storage, an optional pointing device Such as a “mouse,” 
and an optional printer. These Systems are designed prima 
rily to give independent computing power to a Single user or 
Small group of users and are inexpensively priced for 
purchase by individuals or businesses. Examples of Such 
personal computer Systems are Sold under the trademarkS: 
IBM's PERSONAL COMPUTER, PERSONAL COM 
PUTER XT, PERSONAL COMPUTER AT and IBM's 
PERSONAL SYSTEM/2 (hereinafter referred to as the IBM 
PC, XT, AT, and PS/2, respectively) Models 25, 30, 50,55, 
57, 60, 65, 70, 80, 90 and 95. 

These Systems can be classified into two general families. 
The first family, usually referred to as Family 1 Models, uses 
a bus architecture exemplified by the IBM AT computer and 
other “IBM compatible' machines. The second family, 
referred to as Family 2 Models, uses IBM's MICRO CHAN 
NEL bus architecture exemplified by IBM's PS/2 Models 50 
through 95. The bus architectures used in Family 1 and 
Family 2 are well known in the art. 

Beginning with the earliest personal computer System of 
the Family 1 models, the IBM PC, and through the Family 
2 models the system processor was chosen from the Intel“86 
Family” of processors (i.e., microprocessors). The Intel 86 
Family of processors includes the 8088, 8086, 80286, 
80386, and 80486 processors commercially available from 
Intel Corporation. The architecture of the Intel 86 Family of 
processors provides an upwardly compatible instruction Set 
which assists in preserving Software investments from pre 
vious processors in the 86 Family of processors. This 
upward compatibility preserves the Software application 
base and is one of the major factors which contributed to the 
enormous success of the IBM PC and subsequent models. 
The IBM PC and XT were the first models of the IBM 

personal computer line and used the Intel 8088 processor. 
The next significant change to IBM personal computer 
systems was the IBM AT which used the Intel 80286 
processor. The PS/2 line spanned several of the Intel pro 
cessors. A system similar to the PC and XT was a version of 
the PS/2 Model 30 which used an Intel 8086. The PS/2 
Models 50 and 60 both used the Intel 80286 processor. The 
Intel 80386 processor is used in the IBM PS/2 Model 80 and 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
certain versions of the IBM PS/2 Model 70. Other versions 
of the IBM PS/2 Model 70, as well as the PS/2 Models 90 
XP 486 and 95 XP 486, use the Intel 80486 processor. One 
of the common points in all these Systems is the use of an 
Intel 86 Family processor. A variety of commonly available 
and well known Software operating Systems, Such as a DOS 
or an OS/2 operating System, can operate on various mem 
bers of the Intel 86 Family of processors. 

The processors in the Intel 86 Family support a variety of 
“modes.” The basic mode in the Intel 86 Family of proces 
SorS is a “Real” mode. Real mode is the only operating mode 
of the 8088 and 8086 processors. Real mode supports a one 
megabyte address Space. 

There are no protection mechanisms available in the 8088 
and 8086 processors. The 80286 supports both a Real and a 
“Protected” mode of operation. As the name “Protected” 
implies, Protected mode provides a protected mode of 
operation. This protection prevents an application from 
interfering with the operation of other applications or the 
operating System. The 80286 provides extended addressing 
capabilities over the 8088 and 8086 by allowing up to 
Sixteen megabytes of memory to be addressed directly. To 
maintain downward compatibility, the 80286 can be oper 
ated in Real mode to emulate the Real mode of the 8088 or 
8086. The 80386 and 80486 extend the Intel 86 Family 
architecture even further by providing the ability to address 
up to four gigabytes of physical memory. The 80386 and 
80486 also support a “Virtual 86' mode of operation. The 
Virtual 86 mode Supports the operational characteristics of 
the Real mode within the overall confines of the Protected 
mode environment. This Virtual 86 mode is useful for 
providing a very high level of compatibility with applica 
tions which run under the DOS operating system but must 
now operate within an overall Protected mode operating 
System. 

Beginning also with the earliest personal computer System 
of the Family 1 models, such as the IBM PC, it was 
recognized that a goal of achieving Software-hardware com 
patibility would be of great importance. In order to achieve 
this goal, an insulation layer of System resident code, also 
referred to as “microcode,” was established between the 
hardware and the Software. This code provided an opera 
tional interface between a user's application program/ 
operating System and the hardware device to relieve the user 
of the concern about the characteristics of hardware devices. 
Eventually, the code developed into a basic input/output 
system (BIOS), for allowing new hardware devices to be 
added to the System, while insulating the application pro 
gram from the peculiarities of the hardware devices. The 
importance of BIOS was immediately evident because it 
freed a device driver from depending on Specific hardware 
device characteristics while providing the device driver with 
an intermediate interface to the device. Because BIOS was 
an integral part of the computer System and controlled the 
movement of data in and out of the System processor, it was 
resident on a System planar board of the System unit and was 
shipped to the user in a read-only memory (ROM). For 
example, BIOS in the original IBM PC occupied 8K bytes 
(a kilobyte or “K byte” refers to a quantity of 1024 bytes) of 
ROM resident on the planar board. In addition to the ROM, 
the planar board included the System processor, a main 
random access memory (RAM), and other components 
which were fixed in a Substantially coplanar relationship on 
the board. The ROM also contained a power-on self test 
(POST) program which was used to test and initialize the 
computer System. The accumulation of code resident in the 
computer system ROM became known as the “system 



5,826,075 
3 

firmware,” or simply “firmware.” Thus, the firmware 
included a POST portion and a BIOS portion. Sometimes, 
BIOS was defined to include the POST program. 
AS new models of the personal computer family were 

introduced, the firmware had to be updated and expanded to 
Support new hardware devices Such as input/output (I/O) 
devices. AS could be expected, the firmware Started to 
increase in memory size. For example, with the introduction 
of the IBM PERSONAL COMPUTER AT, the firmware 
grew to require 32K bytes of ROM. With the introduction of 
the IBM PERSONAL SYSTEM/2 computer system with 
MICRO CHANNEL architecture, a significantly new BIOS, 
known as Advanced BIOS, or ABIOS, was developed. 
However, to maintain software compatibility, BIOS from the 
Family 1 models had to be included in the Family 2 models. 
The Family 1 BIOS became known as Compatibility BIOS 
or CBIOS. Thus, BIOS evolved to include more than one 
type of BIOS Such as the Compatibility Basic Input Output 
System (CBIOS) and the Advanced Basic Input Output 
System (ABIOS). Present architectural definitions for per 
sonal computer systems allow for up to 128K bytes of 
System firmware address Space. 

Today, with the continuing development of new 
technology, personal computer Systems are becoming even 
more Sophisticated and are being enhanced more frequently. 
Because the technology is changing rapidly and new I/O 
devices are being added to the personal computer Systems, 
implementing modifications and effecting extensions to the 
firmware have become significant problems in the develop 
ment cycle of personal computer Systems. In addition, 
maintenance of the firmware in computer Systems which are 
installed at user locations is also a problem. 

Sometimes, personal computer Systems are linked to form 
a network (e.g., a Local Area Network or LAN) So that users 
can exchange information, share I/O devices, and utilize a 
particular direct access storage device (DASD) Such as a 
particular fixed disk Storage. Typically, the LAN includes 
“Clients” and a “Server.” A Client includes a computer 
system having usually no DASD other than possibly a 
diskette drive. A Server is a computer System which includes 
a DASD for Supplying the storage for the Clients of the local 
area network. Clients may require modifications, updates, 
extensions or maintenance of the firmware. 
AS a result of these problems and requirements, and of a 

desire to modify the firmware as late as possible in the 
development cycle, it has become necessary to provide the 
ability to modify the firmware with a minimal disruption to 
the operation of the personal computer System. Because 
marketability and consumer acceptance of personal com 
puter Systems appear to require the ability to add new I/O 
devices and to minimize cost, it should be appreciated that 
an easy modification of the firmware is a Substantial factor 
in achieving Success in marketing personal computer Sys 
tems. Personal computer Systems have traditionally Stored at 
least a part of the system firmware in ROM. See, for 
example, commonly owned U.S. patent application Ser No. 
07/398,865, entitled “Initial BIOS Load for a Personal 
Computer System,” which is hereby incorporated by refer 
ence. The major drawback of ROM is that once the ROM is 
manufactured its contents cannot be altered. For example, if 
the POST program code must be changed, the ROM must be 
physically changed. The ROM has traditionally been sock 
eted to allow for the ROM to be replaced. However, chang 
ing the ROM in the field (i.e., at a customer location) is time 
consuming and, thus, costly. 

It is known to replace the ROM with an electrically 
erasable and reprogrammable (i.e., alterable) nonvolatile 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
random access memory (e.g., Flash memory), and to store 
POST and/or BIOS therein. See, for example, the publica 
tion from Intel Corporation, entitled Memory Products 1991, 
Intel Order No. 210830, ISBN 1-55512-117-9, and particu 
larly Chapter 6 (Flash Memories, pgs. 6-1 through 6-420), 
which chapter is hereby incorporated by reference. This 
replacement permits the firmware to be modified easily. 

However, the present inventors believe that there exists a 
need to ensure the integrity of System firmware efficiently 
while permitting the System firmware to be modified easily. 

SUMMARY OF THE INVENTION 

A principal object of the present invention is ensuring the 
integrity of System firmware efficiently while allowing the 
firmware to be modified easily. 
A further object of the present invention is modifying the 

firmware in a personal computer System while ensuring that 
Such System retains Sufficient firmware to remain operable. 

Yet another object of the present invention is to permit 
automatic Selection among a plurality of firmware banks 
within a personal computer System. 

The present invention has been developed for overcoming 
the above-mentioned needs, requirements and problems. In 
accordance with the invention, an apparatus for Storing 
firmware includes: a plurality of nonvolatile alterable elec 
tronic memory devices being connected in an electrically 
mutually parallel circuit arrangement, and means for con 
trolling the memory devices Such that firmware can be read 
from or written to an automatically Selected one of the 
memory devices, the controlling means being electrically 
connected to the memory devices. Each memory device can 
include the same or a different version of the firmware. The 
redundant memories of this invention permit ensuring firm 
ware integrity by write protecting at least one of the memo 
ries. The present invention is an improvement of the inven 
tion disclosed in previously referenced and commonly 
owned application ser. No. 777,844, filed Oct. 16, 1991, 
which is hereby incorporated by referenced. 

BRIEF DESCRIPTION OF THE DRAWING 

Further and still other objects of the present invention will 
become more readily apparent in light of the following 
description taken in conjunction with the accompanying 
drawing, in which: 

FIG. 1A is a drawing of a typical personal computer 
System; 

FIG. 1B is a diagram of a typical local area network; 
FIG. 2, comprising FIGS. 2A-D, is a block schematic 

diagram of a unified planar board for the computer System 
of FIG. 1A; 

FIG. 3, comprising FIGS. 3A-C, is a block schematic 
diagram of an alternative planar board for the computer 
system of FIG. 1A; 

FIG. 4, comprising FIGS. 4A-B, is a block schematic 
diagram of a processor card for use with the alternative 
planar board of FIG. 3; 

FIG. 5A is a block schematic diagram of the firmware 
Subsystem according to the present invention; 

FIG. 5B is a block schematic diagram of a preferred 
embodiment of the invention shown in FIG. 5A; 

FIG. 5C is a block diagram of a generator for generating 
a Write Authority Enable (WAE) signal; 
FIG.5D is a table which shows the read and write modes 

of the apparatus of FIG. 5B as such modes relate to primary 
control input signals (BSP, ALTBANK, WAE); 



5,826,075 
S 

FIG. 6A is a block Schematic diagram of an apparatus for 
generating a signal at the BSP input of an enable logic device 
of the control means and for generating a signal at the 
Processor Reset input of the System processor, 

FIG. 6B is a more detailed block schematic diagram of the 
Signal generator of FIG. 6A, 

FIG. 6C is a more detailed block schematic diagram of the 
BSP Lock Control of FIG. 6B; 

FIG. 6D, comprising FIGS. 6D1-2, is a more detailed 
block Schematic diagram of the Timer (Counter) Logic of 
FIG. 6B; 

FIG. 6E is a more detailed block schematic diagram of the 
Toggle Latch of FIG. 6B; 

FIG.6F is a more detailed block schematic diagram of the 
Reset Pulse Generator of FIG. 6B; 

FIG. 7 is a flow diagram of a power-on procedure as it 
applies to the firmware Subsystem; 

FIG. 8 is a flow diagram of a system firmware modifica 
tion procedure; 

FIG. 9 is a memory map for typical firmware which is 
stored in a memory device of FIG. 5B; 

FIG. 10A1-2, and FIGS. 10B1–2, are flow diagrams for 
erasing and programming Intel 28F010 Flash memories, 
FIG. 10C is a block diagram of one Intel 28F010 Flash 
memory; 

FIG. 11A, comprising FIGS 11A1-2 FIG. 11B, compris 
ing FIGS. 11B1, and FIG. 11C, comprising FIGS. 11C1-2, 
are diagrams of Signal waveforms, respectively, for reading, 
erasing and programming operations of one Intel 28F010 
Flash memory, and 

FIG. 12 is a truth table for a J-K flip-flop device, specifi 
cally the Texas Instruments SN74ALS109A. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

The following detailed description is of the best presently 
contemplated mode for carrying out the present invention. 
This description is not to be taken in a limiting Sense, but is 
made for the purpose of illustrating the general principles of 
the invention. 

Referring now to the figures, and in particular to FIG. 1A, 
there is shown a personal computer system 100 which 
employs the present invention. The personal computer Sys 
tem 100 comprises a system unit 102 having a suitable 
enclosure or casing 103, output device or monitor 104 (such 
as a conventional video display), input devices Such as a 
keyboard 110, an optional mouse 112, and an optional output 
device such as a printer 114. Finally, the system unit 102 
may include one or more mass Storage devices Such as a 
diskette drive 108 and a hard disk drive (hardfile) 106. 

The system unit 102 responds to the input devices. 
Optionally, the unit 102 and selected input and output 
devices 106, 108, 110, 104 may be connected in a well 
known manner with other system units 102B to form a local 
area network (LAN) as shown in FIG. 1B. Typically, such 
units (Clients) 102B include no drives 106, 108. Of course, 
those skilled in the art are aware that other conventional I/O 
devices can also be connected to the system units 102,102B 
for interaction therewith. 

In normal use, the personal computer system 100 is 
designed to give independent computing power to a Small 
group of users as a Server in a LAN or to a single user, and 
is inexpensively priced for purchase by individuals or Small 
businesses. In operation, a processor 202 (FIGS. 2 and 4) 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
functions under an operating system such as IBM's OS/2 
operating System or a DOS operating System. The operating 
system is loaded into and stored within the system unit 102 
in any conventional manner. The operating System typically 
utilizes a BIOS interface between the I/O devices and the 
operating System. BIOS, which is a part of the firmware, is 
divided into optional modules by function (see FIG. 9). 
BIOS provides an interface between the hardware devices 
and the operating System Software to enable a programmer 
or user to program his machine without an in-depth oper 
ating knowledge of a particular hardware device. For 
example, a BIOS diskette module permits a programmer to 
program the diskette drive without an in-depth knowledge of 
the diskette drive hardware. Thus, a number of diskette 
drives designed and manufactured by different companies 
can be used within the system 100. This not only lowers the 
cost of the System, but also permits a user to choose from a 
number of diskette drives. BIOS is more clearly defined in 
the IBM Personal System/2 and Personal Computer BIOS 
Interface Technical Reference 1988, which is hereby incor 
porated by reference herein. 

Unified Planar 

Referring to FIG. 2, there is shown a block diagram of a 
unified planar 200 of the system unit 102. The planar 200 
includes a printed circuit board (PCB) 201 upon which are 
mounted or connected a number of input/output bus con 
nectors 232 having I/O slots, a processor 202 which is 
connected by a high speed CPU local bus 210 under control 
of a bus control unit 214 to a memory control unit 256. The 
unit 256 is further connected to a main memory Such as 
volatile random access memory (RAM) 264. Any appropri 
ate processor 202 can be used such as an Intel 80386, Intel 
80486 or the like. A system power connector 205 is mounted 
on the PCB 201 for connection to a power unit (not shown) 
that supplies the necessary power for the system 100. 
The CPU local bus 210 (comprising address, data and 

control components) provides for the interconnection of the 
processor 202, an optional math coprocessor 204, an 
optional cache controller 206, and an optional cache 
memory 208. Also coupled onto the CPU local bus 210 is a 
system buffer 212. The system buffer 212 is itself connected 
to a slower speed (compared to the CPU local bus 210) 
System buS 216 which comprises address, data and control 
components. The system bus 216 extends between the 
system buffer 212 and an I/O buffer 228. The system bus 216 
is further connected to the bus control unit 214 and to a 
direct memory access (DMA) control unit 220. The DMA 
control unit 220 includes a central arbiter 224 and a DMA 
controller 222. The I/O buffer 228 provides an interface 
between the system bus 216 and an I/O bus 230. An 
oscillator 207 is connected as shown for providing suitable 
clock signals to the firmware subsystem 242. Those skilled 
in the art will recognize that while the preferred embodiment 
is implemented on the MICRO CHANNEL bus of an IBM 
PS/2 computer system, which is well known in the art, 
alternative bus architectures could also be used to employ 
the invention. 

Connected to the I/O bus 230 is a plurality of I/O bus 
connectors having slots 232 for receiving adapter cards (not 
shown) which may be further connected to I/O devices or 
memory (e.g., hardfile 106). Two I/O connectors 232 are 
shown for convenience, but additional I/O connectors may 
easily be added to Suit the needs of a particular System. An 
arbitration bus 226 couples the DMA controller 222 and the 
central arbiter 224 to the I/O connectors 232 and a diskette 
adapter 246. Also connected to the system bus 216 is a 



5,826,075 
7 

memory control unit 256 which includes a memory control 
ler 258, an address multiplexer 260, and a data buffer 262. 
The memory control unit 256 is further connected to a main 
memory Such as a random acceSS memory as represented by 
the RAM module 264. The memory controller 258 includes 
logic for mapping addresses to and from the processor 202 
to and from particular areas of the RAM 264. While the 
system 100 is shown with a basic one megabyte RAM 
module 264, it is understood that additional memory can be 
interconnected as represented in FIG. 2 by the optional 
memory modules 266, 268,270. 
A buffer 218 is coupled between the system bus 216 and 

a planar I/O bus 234. The planar I/O bus 234 includes 
address, data, and control components. Coupled along the 
planar I/O bus 234 are a variety of I/O adapters and other 
peripheral components Such as a display adapter 236 (which 
is used to drive the optional display 104), a clock 250, a 
nonvolatile RAM 248 (hereinafter referred to as NVRAM), 
a serial adapter 240 (other common terms used for “serial” 
are “asynchronous” and “RS232), a parallel adapter 238, a 
plurality of timers 252, the diskette adapter 246, a keyboard/ 
mouse controller 244, an interrupt controller 254, and a 
firmware subsystem 242 which is essential to the present 
invention. According to the present invention, the Subsystem 
242 includes a plurality (e.g., two) of nonvolatile alterable 
electronic memory devices which are connected in an elec 
trically mutually parallel circuit arrangement. Each memory 
device includes the POST and the BIOS programs. POST 
includes a Bank Check and Select program portion of the 
invention. The firmware Subsystem 242 and the remaining 
essential elements of the invention will be described later 
with respect to FIGS.5A, 5B, 5C, 5D, 6A, 6B, 6C, 6D, 6E, 
6F, 7, 8, 9, 10A, 10B, 10C, 11A, 11B, 11C and 12. 
The clock 250 is used for time of day calculations. The 

NVRAM 248 is used to store system configuration data. 
That is, the NVRAM 248 will contain values which describe 
the present configuration of the system 100. The NVRAM 
248 contains information which describes, for example, 
adapter card initialization data, capacity of a fixed disk or a 
diskette, the amount of memory, etc. Furthermore, these data 
are stored in NVRAM 248 whenever a configuration pro 
gram is executed. This configuration program can be a 
conventional Set Configuration program provided on a SyS 
tem. Reference Diskette included with IBM PS/2 computer 
systems. The Reference Diskette is sometimes referred to as 
a diagnostic, maintenance or a Service diskette. The purpose 
of the configuration program is to Store values characterizing 
the configuration of this system 100 to NVRAM 248 which 
are saved when power is removed from the system. The 
NVRAM can be a low power CMOS memory with a battery 
backup. 

Connected to the keyboard/mouse controller 244 are a 
port A278 and a port B 280. These ports are used to connect 
the keyboard 110 and the mouse 112 to the personal com 
puter system 100. Coupled to the serial adapter unit 240 is 
a Serial connector 276. An optional device Such as a modem 
(not shown) can be coupled to the System through this 
connector 276. Coupled to the parallel adapter 238 is a 
parallel connector 274 to which a device such as the printer 
114 can be connected. Connected to the diskette adapter 246 
is a diskette connector 282 used to attach one or more 
diskette drives 108. 

Planar Board 

According to an alternative embodiment of the personal 
computer system 100, the unified planar 200 is replaced by 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
a planar board 300 and a processor card 400 (FIGS. 3 and 
4). The processor card 400 is removably mounted on and is 
electrically connected to the planar board 300. Identical 
element numbers of FIG. 2 correspond to identical elements 
in FIGS. 3 and 4. Referring now to FIG. 3, the planar board 
300 comprises a printed circuitboard (PCB) 301 upon which 
are mounted (e.g., Surface mounted) various components 
that are interconnected by wiring or circuits in the PCB. 
Such components include a Suitable commercially available 
electrical connector 302 into which an edge 416 of the 
processor card 400 is plugged for removably mounting and 
electrically connecting the processor card 400 to the planar 
board 300. A plurality of single in-line memory module 
(SIMM) connectors 306 is also mounted on the PCB 301 for 
connecting to the memory banks 308A, 308B forming the 
system main memory or RAM. One or more I/O bus or 
expansion connectors 232 are also mounted on the PCB 301 
for connection to different expansion adapters and options 
that might be added or incorporated into the personal 
computer system 100. For example, the fixed disk drive 106 
may be connected to an adapter card (not shown) having a 
disk controller which is connected to a connector 232. 
Preferably, each connector 232 is a commercially available 
connector of the type conforming to the above-mentioned 
MICRO CHANNEL architecture. 

Also mounted on the planar board 300 are an interrupt 
controller 254 and a keyboard and mouse controller 244 
which are connected to keyboard and mouse connectorS 278, 
280, a diskette controller 246 connected to a diskette con 
nector 282, and serial and parallel adapters 240, 238 con 
nected to serial and parallel connectors 276, 274 which 
allow the various I/O devices to be connected into the 
system. A system power connector 205 is mounted on the 
PCB 301 for connection to a power unit (not shown) that 
Supplies the necessary power for the System. A nonvolatile 
memory (NVRAM) 248 and a time-of-day clock 250 are 
also mounted on the PCB 301. The PCB 301 also has 
mounted thereon various oscillators (not shown) to provide 
timing signals, and buffers 342, 344 (not all shown) to 
isolate Sections of the circuitry in a manner well known. 
The wiring of PCB 301 interconnects the various com 

ponents as shown in the drawing and is grouped into three 
groupings, a memory bus 310 (including lines 324–338), a 
channel bus 312 (including address bus 322, data bus 320 
and control bus 318), and miscellaneous signal lines includ 
ing interrupt lines 314, 316, all of which are connected to 
counterpart wiring on the PCB 401 through the connectors 
302, 416. Tapped off the bus 312 is a planar function bus 
319. 

Processor Card 

Referring to FIG. 4, there is shown the processor card 400 
for removably mounting on the planar board 300. The 
processor card 400 comprises a printed circuit board (PCB) 
401 having mounted (e.g., Surface mounted) thereon a 
plurality of commercially available components including a 
processor 202, an optional math coprocessor 204, an 
optional cache controller 206, an optional cache memory 
208, a direct memory access (DMA) control unit 220, a bus 
control unit 214, a memory control unit 256, a firmware 
Subsystem 242 of the present invention, and parity checking 
units 402, 404. The processor 202 preferably is a high 
performance type, Such as an Intel 80486, having thirty-two 
bit data paths and providing thirty-two bit addressing capa 
bility. Of course, Intel 80386 and the like processors can be 
used. The remaining components are Selected in conven 
tional fashion for their compatibility with Such processor. A 



5,826,075 
9 

plurality of buffers 406, 408, 410, 412, 414 is connected as 
shown. The buffers provide selective isolation or connection 
between the circuits allowing different portions to be used 
concurrently, for example, to move data between the pro 
cessor 202 and cache memory 208 while other data is being 
transferred between an I/O unit and the main memory 308A, 
308B. All of the above components are electrically con 
nected to each other as appropriate by printed wiring circuits 
in PCB 401 which terminate at the edge connector 416. The 
edge connector 416 is pluggable into the edge connector 302 
on the planar board 300 shown in FIG. 3 so that the planar 
board 300 and the processor card 400 are electrically and 
mechanically interconnectable. 

The wiring circuits of the PCB 401 include a local bus 418 
including data, address and control lines 420, 422, 424, 
respectively, which interconnect the processor 202 with an 
optional math coprocessor 204, an optional cache controller 
206 and an optional cache memory 208, as shown in FIG. 4. 
The remaining circuit lines generally include interrupt lines 
316, channel bus lines 312 and memory bus lines 310. The 
channel bus lines 312 include control, data and address bus 
lines 318, 320, 322, respectively. Memory bus lines 310 
include multiplexed memory address lines 324, 332, row 
address strobe (RAS) lines 328, 336 for memory banks 
308A, 308B, column address strobe (CAS) line 338, data 
bus A and Blines 326 and 334, and a line 330 for use in error 
checking via parity check or ECC checking. An oscillator 
207 is connected as shown for providing suitable clock 
Signals to the firmware Subsystem 242. For simplicity, 
certain miscellaneous lines, Such as reset, grounds, power 
on, etc. have been omitted from FIGS. 2, 3 and 4. 

During normal operation of a personal computer System 
100 having a board 300 and a card 400, the card 400 is 
electrically and mechanically connected to the board 300 
and typically lies in a plane oriented Substantially perpen 
dicularly to the board 400. 

Firmware Subsystem 

The system firmware includes the Power-On Self Test 
program (POST) and the Basic Input Output System pro 
gram (BIOS). POST is the set of instructions which execute 
when the system is first powered-on. The execution of POST 
is critical to the initialization of the personal computer 
system 100. Without POST, the system would be unable to 
load an operating System or other programs (e.g., an update 
utility program). BIOS is the set of instructions which 
facilitates the transfer of data and control instructions 
between the processor 202 and I/O devices. 

Referring now to FIG. 5A, there is shown a block diagram 
of the firmware Subsystem 242 according to the present 
invention. Two memory banks 502, 504 are shown managed 
by a control apparatus 505 which controls the reading and 
writing of the firmware from and into the memory banks 
502, 504. The firmware subsystem 242 is connected to the 
appropriate address, data and control lines as shown in FIG. 
2 or FIG. 4. The banks 502, 504 are connected in an 
electrically mutually parallel circuit arrangement, and are 
also connected to the control apparatus 505, all as shown in 
FIG. 5A. The control apparatus always write protects a 
selected one of the banks 502, 504. Preferably, complete 
firmware (i.e., POST and BIOS necessary for operation of 
the computer system) is stored within each of the banks 502, 
504. POST includes a portion of code according to the 
invention. Such code portion is/performs a Bank Check and 
Select routine as shown in FIG. 7, steps 702-728. Bank 
Update code, which is part of a firmware update utility 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
program (FIG. 8), is resident initially, e.g., on a diskette (not 
shown). The diskette is received within the diskette drive 
108 so that the Bank Update code can be suitably loaded into 
the unit 102. Furthermore, when the unit 102 is connected as 
a server within a LAN as shown in FIG. 1B, the clients can 
suitably load the Update code from the server 102. Such 
Update code causes the reprogramming of a Selected 
memory bank 502, 504 with updated firmware. The control 
apparatus 505, thus, operates responsive to Signals origi 
nated at least by the Bank Check and Select code and/or the 
Bank Update code. 

FIG. 5B shows the firmware subsystem 242 in more 
detail. The Subsystem 242 includes a plurality (e.g., two) of 
in-circuit reprogrammable (i.e., alterable) nonvolatile 
memory devices, bank 0502 and bank 1504. The memory 
devices or banks 502, 504 are of the semiconductor type 
such as the Intel 28F010 Flash Memory device described in 
Intel Memory Products 1991, pages 6-55 through 6-80 
which is incorporated herein by reference. The Intel 28F010 
Flash Memory provides 128 kilobytes of data storage capac 
ity. The apparatus 505 of FIG. 5A includes an enable logic 
device 500 having input lines 508–520 for the signals 
WRSEL, WAE, WRGATE, ALTBANK, FSEL, SWR, BSP 
and output lines 522–530 for the signals CE1, CE0, OE, WE, 
PVE, Voltage generator 507, 506 and various generators of 
the input signals (WRSEL, WAE, WRGATE, ALTBANK, 
FSEL, SWR, BSP) on the input lines 508–520. The input 
Signals originate in the Bank Check and Select code, the 
Bank Update code, a BSP signal generator 600 and/or in 
various hardware, all as is well understood by those skilled 
in view of the instant specification. The device 500 is, for 
example, a logic device “PAL16R8D' commercially manu 
factured by Advanced Micro Devices, Inc. (AMD). Either 
the bank 0502 or the bank 1504 may be active at any given 
time. The enable logic of the device 500 determines which 
bank is to be active (active bank). A Switch 506 controls a 
DC to DC converter 507 (converting +5 V to +12 V) which 
provides a programming Voltage Vpp on a line 532 to the 
banks 502, 504. The Switch 506 is, for example, a transistor 
device "2N3904” commercially manufactured by Motorola, 
Inc. The DC to DC converter 507 is, for example, a device 
“NMFO512S” commercially manufactured by International 
Power Sources, Inc. The memory banks 502, 504 are con 
nected to the address and the data lines and the input lines 
508-518 are connected to the control lines in a manner well 
within the skill of the art (see FIG. 2 or FIG. 4). The parallel 
banks 502,504 can be permanently affixed to the PCB 201, 
401 board because they can be reprogrammed in-place, 
unlike a ROM of previous computer systems which was 
socketed. The output lines 520, 604 of the generator 600 will 
be discussed hereinafter with respect to FIG. 6A. 

It should be noted that a subsystem which employed only 
a single memory bank of Intel 28F010 Flash Memory would 
be vulnerable to incapacitation. Because of its construction, 
a Flash memory device must first be completely erased 
before it can be reprogrammed. If there is a power loSS to a 
computer System during the time period in which a Flash 
memory is being erased or before it can be completely 
reprogrammed, then the critical initialization program 
(POST) is likely to be lost. Without POST, the system could 
not "boot' and, thus, could not load and run an update 
program which would update the firmware in the Single 
memory bank. 

Continuing to refer to FIG. 5B, a more detailed descrip 
tion of the enable logic device 500 is hereinafter presented. 
The enable logic device 500 has as an input a Write Select 
bit or signal (WRSEL) which is a bit obtained from an I/O 



5,826,075 
11 

control port and is used to enable writes to the Selected bank 
502 or 504. The control port used to provide the WRSEL 
Signal is, for example, a Standard I/O port resident in the 
Memory Control Unit 256 of FIG. 2 or FIG. 4. A control port 
is accessed through an "OUT" instruction of the Intel 86 
Family of processors which is well known in the art. When 
WRSEL on the line 508 is a logical Zero, writes are enabled. 
This WRSEL bit is under direct program control. Direct 
program control is understood to be a control by program 
code such as the Bank Update code, steps 800-810, of the 
update utility program (see FIG. 8) and the Bank Check and 
Select code, steps 702-728. 
The Write Authority Enable (WAE) bit (signal) on the line 

510 is a security feature which allows bank reprogramming 
to be prevented. For example, the control apparatus 505 may 
include a signal generator 534 (FIG.5C). The generator 534 
consists of, e.g., a three position key Switch and a Source of 
suitable potential (both not shown). One position of this 
Switch is the OFF or disabled position. The second position 
of the Switch is ON, but no maintenance authority. The third 
position is ON with maintenance authority. Maintenance 
authority can be considered to be equivalent to a "service 
mode' of operation. That is, a mode in which only a 
qualified computer Service technician is allowed to perform 
certain tasks. The signal WAE would only be enabled (e.g., 
logical 0) by the Switch when the Switch is in the ON with 
maintenance authority position. This would ensure that the 
casual user could not alter the contents of the firmware banks 
502, 504. Of course, the WAE bit on the line 510 could be 
controlled in a number of ways and the Switch is only one 
such example. The WAE signal could be controlled by other 
logic in the computer System which could include a pro 
grammable I/O port. In systems which do not wish to 
support this added level of security, this WAE signal is 
always in the enabled State. 

Continuing now with discussion of the enable logic 
device 500, the Write Gate (WRGATE) bit on the line 512 
is a hardware generated timing Signal (active low) received 
from the Memory Control Unit 256 of FIG. 2 or FIG. 4. 
WRGATE controls the pulse width of the Write Enable 528 
(WE) signal on the line 528 to the firmware banks 502,504 
as set forth in the Intel 28F010 Flash device specification 
previously incorporated by reference and as shown in FIGS. 
11B, 11C. The Alternate-Bank bit (ALTBANK) on the line 
514 selects the Alternate-Bank for reads or writes (logical 
0=Alternate-Bank). The Alternate-Bank is the bank which is 
not selected by a BSP signal on the line 520. The ALTBANK 
signal on the line 514 is received from the Memory Control 
Unit 256 of FIG. 2 or FIG. 4 and is under direct program 
control. The Bank Select and Protect (BSP) signal on the line 
520, described in more detail with reference to FIG. 6, 
determines which bank is to be the “base', cold-start or 
default bank (logical 0=bank 0502). The Firmware Select 
(FSEL) signal on the line 516 is active when any firmware 
address has been decoded during read or write cycles. FSEL 
516 is received from hardware such as the Memory Control 
Unit 256 of FIG. 2 or FIG. 4 and is active low. System 
Write/Read 518 (SWR) signal on the line 518, a hardware 
generated timing Signal, is high for a System write cycle, low 
for a read cycle. SWR 518 is received from hardware such 
as the Memory Control Unit 256 of FIG. 2 or FIG. 4. The 
signals WRGATE 512, FSEL 516, and SWR 518 are hard 
ware generated timing and control Signals which are well 
understood in the art in View of the instant Specification. 
A Programming Voltage Enable (PVE) output signal on 

the output line 530 of the enable logic device 500 controls 
the operation of the switch 506. When PVE 530 enables the 

5 

15 

25 

35 

40 

45 

50 

55 

60 

65 

12 
Switch 506, the DC to DC converter 507 is enabled and 
provides a +12 V programming Voltage Vpp on the line 532 
to the banks 502,504. The converter 507 is connected to a 
source of potential (+5 V) readily available within the unit 
102. When PVE 530 disables the Switch 506, successful 
writes to the banks 502,504 cannot occur. The Intel 28F010 
Flash memory device requires +12 V to enable the repro 
grammable or alterable feature of the device. 
The Chip Enable signals (CE1, CE0), the Output Enable 

signal (OE), and the Write Enable signal (WE) are input 
signals to the Intel 28F010 Flash memory devices 502,504. 
Chip Enable 0 524 (CEO) signal and Chip Enable 1522 
(CE1) signal determine which one of the banks 502,504 is 
active. The respective Chip Enable Signal activates the 
respective device's control logic, input buffers, decoderS and 
Sense amplifiers which are included within the elements of 
a respective Flash device as shown in FIG. 10C. Output 
Enable (OE) on the line 526 is an input signal common to 
both the bank O 502 and the bank 1504 which enables the 
reading of the active bank. Output Enable (OE) activates the 
device's data output Signals during a read cycle. Write 
Enable (WE) on the line 528 is an input signal common to 
both the bank O 502 and the bank 1 504 which determines 
if and when a data write will be accepted. Write Enable 
controls writes to the control register and the array of the 
active bank. Both of these signals (OE and WE) are gated 
internal to the Flash memories by the CEO and CE1 signals. 
Thus, reads and writes can occur with respect to only the 
active bank. 

The enable logic device 500 is defined by a set of 
equations hereinafter Set forth for use in the programmable 
logic device 500 or other physical implementation (not 
shown). In the notation which follows, the underscore “ ” 
is purely notational for the reader and means that the Signal 
is active low. The notation used on the right-hand side of the 
equation is: the “” means logical NOT, the “&” means 
logical AND, the “if” means logical OR. The “” when used 
on the left-hand Side of the equation is used to mean active 
low. That is, when the right-hand Side evaluates to be active, 
the signal on the left-hand side is to be active in the low 
State. The five equations for these signals are: 

PVE =WRSEL &WAE 

CEO =FSEL & BSP &ALTBANK #FSEL &BSP &ALT 
BANK 

CE1 =FSEL &CEO 

OE =FSEL &SWR 

WE =FSEL &SWR &ALTBANK &WRSEL & 

WAE &WRGATE 

Although the above five equations completely describe 
the operation of the device 500, several example calculations 
may be instructive: 

Example #1, a read operation directed to the default (base) 
power-on bank (bank 0) (reference FIG. 5D, ROW 1): 

With: 
SWR=0, WRSEL=1, WAE=0, FSEL=1, BSP=0, 
ALTBANK=1, WRGATE=1 

Then: 
PVE=1, CEO=1, CE1=1, OE=1, WE=1 

Then: 
FSEL=0 to start the read operation. 
Since SWR=0, a read will occur. 



5,826,075 
13 

Then: 
PVE=1, CE1=1, WE=1, CE0=0, OE=0 
Data will then become valid until FSEL goes to 1. 

Example #2, with bank 1 updates enabled, a write opera 
tion is directed to bank 1 (reference FIG. 5D, ROW 4): 

First: 
SWR=0, BSP=0, WRSEL=1, WAE=0, FSEL=1, 
ALTBANK=0, WRGATE=1 

Then: 
PVE=1, CEO=1, CE1=1, OE=1, WE=1 

Then: 
WAE=0, WRSEL=0, Then: PVE=0 

At this point, the System waits a specified period of time 
(delay) for the +12 V Vpp 532 voltage to stabilize. 

Then: 
The processor 202 initiates a write cycle of the desired 

data. 
Then: 
WRGATE=0, SWR=1, FSEL=0 

Then: 
CE0=1, WE=0, PVE=1, CE1=0, OE=1 

At this point, the data is written until WRGATE goes to 1. 
See FIGS. 11A, 11B, and 11C for graphs of waveforms for 

various signals used for reading from and writing to a single 
Flash memory device, e.g., the bank 504. Further, see the 
chart of FIG.5D which shows the read and write conditions 
of the banks 502,504 dependent upon the input signals BSP, 
ALTBANK, WAE to the enable logic device 500. 

Referring again to FIG. 5B, the banks 502, 504 are not 
required to be physically Separate parts. A part can be built 
which represents the logical functions of the two banks 502, 
504 while being packaged as a single device. The parts can 
be repackaged for purposes which can include reduced cost 
and reduced board Space. 
The Bank Select and Protect (BSP) Signal Generator 600 

of FIG. 5B determines which bank, either the bank 0502 or 
the bank 1504, is selected as the “base', cold-start or default 
bank. The BSP Signal Generator 600 also includes a “tim 
eOut' feature or timeout means. The timeout feature works 
in conjunction with POST to select the base bank. When the 
computer system 100 is first powered on, the BSP Signal 
Generator 600 will by default automatically select, for 
example, the bank 0502 as the base bank. If POST does not 
“accept this Setting in a predetermined amount of time, the 
hardware of the generator 600 automatically changes the 
base bank selection to the bank 1 504 and restarts the 
processor 202. POST considers the firmware in the current 
bank as “acceptable' if Such firmware passes a validity 
check, Such as a checksum, which must result in a prede 
termined value. POST accepts a BSP setting by canceling 
the timeout used to automatically perform a new Selection. 
The timeout means is more fully described in conjunction 
with FIGS. 6A, 6B, and 6D. This automatic reselection 
allows for the system 100 to recover from an invalid 
firmware image in the bank 0502 or allows for the write 
protect setting to be applied to the bank 1 504 for updating 
the bank O 502. 

Referring now to FIG. 6A, there is shown a schematic 
diagram of the apparatuS 600 for automatically generating 
the BSP 520 signal, the BSP Signal Generator 600. The 
Generator 600 includes an Automatic Set/Reset Control 602 
having a first plurality (e.g., four) of input lines 606, 608, 
610, 612 and a second plurality (e.g., two) of output lines 
520, 604. The input lines 606, 608, 610, 612 and the output 
line 604 are suitably electrically connected to the control 
component or lines of the bus 234 (FIG. 2) or the bus 418 

15 

25 

35 

40 

45 

50 

55 

60 

65 

14 
(FIG. 4). The Generator 600 also includes various generators 
of the input signals LOCK BSP, CANCEL TIMEOUT, 
POWER ON RESET, CLOCK. The two output signals, BSP 
520 and Processor Reset 604, are shown controlled by the 
Automatic Set/Reset Control device 602. The BSP signal 
520 indicates to the Enable Logic 500 of FIG. 5B which of 
two possible firmware banks should be selected as the 
“base,” cold-start or default bank. The Processor Reset 
Signal on the line 604 is connected to the control component 
of the bus 234 or 424. The Processor Reset signal 604 is an 
output signal which when driven active indicates that the 
System processor 202, but not the remainder of the computer 
system, should be reset. When the system processor 202 is 
reset, it will restart execution at a predefined location in the 
firmware subsystem 242. The Automatic Set/Reset Control 
has as inputs Lock BSP 606, Cancel Timeout 608, Power On 
Reset 610, and Clock 612 signals. After a system reset, the 
Cancel Timeout 608 and the Lock BSP 606 signals are 
required to be a logical zero. The signals 606, 608 are 
supplied from a control part of the memory control unit 252 
and are under direct program control. 
The Lock BSP 606 signal locks the BSP520 output signal 

in its currently defined state for the duration of the current 
power-on cycle. Once locked, the BSP 520 signal cannot be 
changed until power to the device 602 is turned off and then 
back on again. The BSP 520 signal is locked to ensure that 
only one of the banks 502 or 504 can be altered during a 
Single power-on Session. This locking provides an added 
level of system integrity. Once the BSP 520 signal is locked, 
a fixed selection is made as to which bank is the “base' bank 
and write-protected. Once the “base' bank is selected, the 
bank which is not the base bank is then the alternate-bank. 
The Cancel Timeout 608 Signal cancels any currently active 
timeout Sequence. This timeout Sequence provides a means 
for automatically altering the bank Selection (through the 
BSP Signal) and automatically restarting the processor, thus 
beginning System initialization again but with a different 
bank of firmware. A valid POST would cancel the timeout 
before it occurred So as to prevent the occurrence of a 
different bank selection. An invalid POST would not cancel 
the timeout or would not be able to cancel the timeout so that 
the timeout means would Select the other, and valid 
firmware, bank. The Power On Reset 610 signal is an input 
generated from a System power Supply (not shown). The 
Power On Reset 610 signal is driven active once system 
power has reached a Specified level, and held active for a 
Specified period of time So that all computer System com 
ponents may be initialized. The Power On Reset 610 signal 
then goes inactive and remains inactive until System power 
is interrupted. The Power Supply and its operation are 
conventional and well known. The Clock 612 signal is 
generated by a System oscillator 207 running at a fixed 
frequency. A typical value for the Clock 612 frequency is, 
e.g., 25 megahertz. 

FIG. 6B shows the preferred embodiment of the Auto 
matic Set/Reset Control logic device 602 in more detail. The 
Automatic Set/Reset Control 602 logic device includes, for 
example, a BSP Lock Control 614, a Timer (Counter) Logic 
616, a Toggle Latch 618, and a Reset Pulse Generator 620 
connected as shown. Signals internal to the Automatic 
Set/Reset Control 602 are End Reset 605, Internal Reset 
624, Timeout 626, and Restart 622. End Reset 605 is an 
output of the Reset Pulse Generator 620 which signals the 
completion of the processor reset action to the Timer 
(Counter) Logic 616. Internal Reset 624 is an output of the 
Timer (Counter) Logic 616 and, when active, is used by the 
BSP Lock Control 614 to initialize to a known state. Timeout 



5,826,075 
15 

626 is an output of the Timer (Counter) Logic and when 
active indicates to the BSP Lock Control 614 that a timeout 
has occurred and that a firmware restart Sequence is 
required. Restart 622 is an output of the BSP Lock Control 
614 and, when active, causes the Toggle Latch 618 to toggle 
the BSP520 signal and, thus, a Processor Reset 604 to occur. 

FIGS. 6C, 6D, 6E, and 6F use Ground (GND) to indicate 
System ground which is a logical Zero and Vcc to indicate 
System power which is a logical one. Referring now to FIG. 
6C, there is shown a block schematic diagram of the BSP 
Lock Control 614 Logic. The BSP Lock Control 614 Logic 
includes two standard J-K Flip-flops 638, 640 and one NOT 
(inverter) gate 642. A preceding tilde “” notation is being 
used in place of the more traditional overbar notation to 
indicate NOT or inverse. These elements 638, 640, 642 are 
connected as shown. The first J-K flip-flop is cleared by the 
Power On Reset 610 signal, after the Power On Reset 610 
signal passes through the inverter 642. This will initialize its 
Q output to the Logic 0 state. The Jinput is connected to the 
Vcc terminal to establish a Logic 1 state, while the Kinput 
is connected in a feedback loop from the Q output. Thus, 
immediately after Power On Reset 610, the Kinput will be 
at the logic 0 state. A truth table (FIG. 12) for the J-K 
flip-flop shows that once this state is established on the J and 
Kinputs, and upon receiving a positive going transition on 
the Lock BSP 606 signal, the Q output will toggle, thus 
changing Q to the 1 State. Further examination of the truth 
table for this J-K flip-flop reveals that at this new state (J-1, 
K=1), subsequent transitions on the Lock BSP 606 line will 
continue to keep the Q output in the high State. Thus, this 
flip-flop 638 can only change its state from the (J-1, 
K=1) state by receiving an active input on its clear (CLR) 
input, which is derived directly from the Power On Reset 
610 signal. Notice also that the Q output of this flip-flop 
follows as the logical inversion of the Q output. The Q 
output of the first flip-flop 638 is connected to the Jinput of 
the second flip-flop 640. The Kinput of this flip-flop 640 is 
connected to the logically high Vcc terminal, as is the 
“Preset' (PRE) input. The clock (CLK) input is connected to 
the Timeout 626 signal, while the clear (CLR) input is 
connected to the Internal Reset 624 signal line, as previously 
described. The Q output is the Restart signal 622. 

In operation, the flip-flop 640 is initialized as a result of 
the Internal Reset 624 signal. This establishes the Q output 
622 at the logical Ostate. The flip-flop 640 will now respond 
to a clock input (Timeout 626) in one of two ways. If the J 
input is 1 (as is normal after a power on reset), a rising edge 
of the Timeout 626 signal will force the Q output to the logic 
1 state, as is shown in the truth table. This indicates to other 
devices that the Restart 622 state is active. If, however, the 
J input is 0 at the time of the Timeout 626 signal rising 
transition, the Q output will remain in its current State 0. 

The combination of these two flip-flops, in the described 
connection shown in FIG. 6C, establishes the following 
operation for the BSP LOCK control 614: 

After a Power On Reset 610, a Timeout 626 low-to-high 
(0 to 1) transition, prior to a low-to-high Lock BSP 606 
transition, will indicate a Restart 622. 

After a low-to-high Lock BSP 606 transition, any Timeout 
626 transitions will be ignored. 

After a low-to-high Lock BSP 606 transition, a Power On 
Reset 610 will be required to create a low-to-high 
transition on the Restart 622 line. 

This operation establishes that the Timeout 626 signal will 
be capable of generating a Restart 622 condition as long as 
the Lock BSP 606 signal remains inactive. However, after 
any low-to-high transition on the Lock BSP signal, the 

15 

25 

35 

40 

45 

50 

55 

60 

65 

16 
Restart 622 line can no longer be activated until the Power 
On Reset 610 signal resets the BSP Lock Control 614 logic. 
The BSP Lock Control 614 logic includes, for example, 
standard commercially available TTL parts such as the Texas 
Instruments SN74ALS109A for the J-K flip-flops 638, 640, 
and the Texas Instruments SN74ALS04 for the inverter 642. 
Of course, equivalent logic using other logic 
implementations, both discrete and VLSI components, could 
be utilized. 

Referring now to FIG. 6D, there is shown a block sche 
matic circuit diagram of the Timer (Counter) Logic 616 for 
generating the Timeout 626 Signal. This circuit includes four 
Separate 8-bit binary resettable Synchronous up counters 
630-636 and a single two-input NOR gate 628. The four 
counters are connected in a Standard cascade arrangement, 
So that they are linked together to act as a Single 32-bit 
counter. The NOR gate combines the Power On Reset 610 
signal with the End Reset 605 signal. The output of the 
Logical NOR is the Internal Reset 624 signal, which is used 
within the Timer (Counter) Logic 616 to reset the counters, 
and is also an output 624 of the Timer (Counter) Logic 616. 
The counters 630-636 are initialized to zero by this Internal 
Reset 624 signal via the respective 8-bit Counter lines S0 
and S1. Two additional inputs on the counters, ENT and 
ENP, must be low to gate the counters on. 
The ENP input on each stage is connected to the Cancel 

Timeout 608 signal. Cancel Timeout 608 effectively controls 
whether or not the counters are counting. The ENT input on 
the three upper stages 630-634 is connected to the previous 
stage’s ripple carry out (RCO). This ENT and RCO com 
bination completes the cascade connection of the four 
Stages. 

After exiting the reset State, the counters increment their 
outputs at the Clock 612 rate in Standard binary counter 
format. Thus, the lowest order bit (or least significant bit 
LSB) will toggle at half the rate of the CLK clock input. The 
output bit QA is the least significant bit and QB the next 
significant bit and so on. The bit QH is the most significant 
bit. Each higher order bit will toggle at half of the previous 
bits rate, and So on. This operation is typical of a Standard 
digital binary counter and is well known in the art. 

Because Timeout 626 is connected to the twenty-eighth 
output bit of the counter array, Timeout 626 will go active 
after (2**27)-1 input clocks. With a 25 megahertz Clock 
612, the Timeout 626 output will go active in approximately 
5.37 seconds. The selection of 5.37 seconds is discussed in 
greater detail in conjunction with FIG. 7. At any time during 
the counting operation, a logical high level on the Cancel 
Timeout 608 input will suspend the counting. The use of this 
signal is also discussed in conjunction with FIG. 7. The 
Timer (Counter) Logic 616 includes, for example, standard 
TTL parts such as four Texas Instruments SN74ALS867 
counters and a Texas Instruments SN74ALS02 quad dual 
input NOR gate. These parts are commercially available, or 
the equivalent logic may be made from other logic 
implementations, both discrete and VLSI components, as is 
well known in the art. The synchronous nature of the counter 
shown here is also not critical; for instance, a ripple counter 
or other timing device may produce a similar output 626. 
Also, the particular count duration or time duration of the 
Timeout 626 signal, as produced by the counter 616, may be 
varied according to the application by Selecting other 
counter outputs or combinations of the counter outputs to 
produce the desired result. 

Referring now to FIG. 6E, there is shown a block sche 
matic diagram of the Toggle Latch 618 Logic device. The 
Toggle Latch 618 Logic device includes a standard J-K 



5,826,075 
17 

flip-flop 646 and an inverter 648. In this application, the J 
K flip-flop is wired for toggle mode operation. The Jinput 
is connected to the Vcc node to establish a Logic 1 input, and 
the Kinput is connected to GND, to establish a logic 0 state. 
The flip-flop 646 is cleared by a signal that is the NOT of the 
Power On Reset 610 signal. Thus, the Q output (the BSP520 
Signal) will be initialized to 0 after each power on reset 
Sequence. The toggle operation occurs whenever a low-to 
high (logical 0 to logical 1) transition occurs on the Restart 
622 input. This transition causes the Q output (BSP 520) to 
toggle to the logically opposite State. The Toggle Latch 618 
logic device includes, for example, Standard TTL parts Such 
as the Texas Instruments SN74ALS109A for the J-K flip 
flop, and the Texas Instruments SN74ALS04 for the inverter 
648. These parts are commercially available. It should also 
be obvious that equivalent logic could result from other 
logic implementations, both discrete and VLSI components. 

Referring now to FIG. 6F, there is shown a block sche 
matic diagram of the Reset Pulse Generator 620. The logic 
of the Reset Pulse Generator 620 generates a fixed width 
output pulse (Processor Reset) 604 when signalled by a high 
state on the Restart 622 input. The Reset Pulse Generator 
620 includes, for example, a Standard counter that is well 
known in the art. The Reset Pulse Generator 620 includes, 
for example, an 8-bit resettable synchronous up counter 650. 
The counter 650 is clocked with the Clock 612 signal, as 
previously described. The Restart 622 input, when low, 
clears the counter to the 0 count. Note that this also clears 
the QF output, End Reset 605, to the low state. When Restart 
622 is high, the counter is enabled to count up. When the 
Restart 622 input goes high, the counter begins counting. 
After 2**4 clocks (16 clocks), the QE output (Processor 
Reset 604) goes high. It will remain in this high state for an 
additional 16 clocks. After a total of 32 clocks, the OE 
output will go low, and the QF output, End Reset 605, will 
go high. Recall that End Reset 605 signals the completion of 
the processor reset action to the Timer (Counter) Logic 616 
of FIG. 6B. The Reset Pulse Generator 620 logic includes, 
for example, Standard TTL parts Such as the Texas Instru 
ments SN74ALS867 for the counter. This part is commer 
cially available. It should also be obvious that equivalent 
logic could be realized using other logic implementations, 
both discrete and within VLSI components, as is well known 
in the art. 

Description of Operation 
We now discuss four cases describing the operation of the 

firmware subsystem 242. The first case #1 is a computer 
system 100 including two firmware banks 502, 504 each 
containing an identical program code image (i.e., identical 
firmware). This is a typical case at time of computer System 
100 manufacture. Referring now to the flowchart of FIG. 7, 
the initialization of computer system 100 will be described. 
Only actions relevant to the operation of the firmware 
Subsystem 242 will be discussed. Case #1 describes the 
usual actions taken in a properly configured System. First, 
the computer system 100 is powered on and the processor 
202 begins attempting to fetch program code from a prede 
termined address in the bank 0502. Because the firmware is 
mapped into this predetermined address Space and because 
the bank 0502 is the default active bank at power-on, the 
processor 202 obtains the program code from the bank 0 
502. Because case #1 describes a properly configured 
system, processor 202 successfully obtains POST program 
code from bank 0502. The POST performs some prelimi 
nary initialization, Step 700, Such as checking the processor 
202 Status. The type and Scope of these early tests are 
matters of design choice. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

18 
After the early initialization of step 700, POST checks the 

BSP bit, step 702, to ascertain if it is in the locked state. BSP 
locked indicates that the System has already been powered 
on and that POST is simply being reentered. With BSP 
locked, bank selection is already complete and POST con 
tinues at step 730. However, case #1 describes the normal 
power on Sequence So the check of BSP being locked in Step 
702 would indicate that BSP is not locked. Next, POST 
checks the bank 0 502 firmware for validity. The validity 
check, step 704, on the bank 0 502 can be a checksum 
procedure which must result in a predetermined value. For 
example, an eight-bit running Sum of every byte in the 
firmware image can be computed and compared to Zero, and 
if found to be zero the firmware image would be considered 
valid. Other forms of validity checks can include a cyclic 
redundancy check (CRC). The type of validity test, if one is 
used at all, is a matter of well-known design choice. 

If the firmware of the bank 0502 were found to be invalid, 
then the POST would halt and wait for the Automatic 
Set/Reset Control 602 logic to toggle to the bank 1504 and 
restart the processor 202, step 718. If bank 0502 is found to 
be valid, then POST cancels the timeout, step 706. POST 
cancels the timeout by setting Cancel Timeout 608 which is 
done through an I/O port under direct program control. The 
previously described 5.37 second timeout value is chosen as 
an adequate amount of time for POST to begin execution 
from reset and check the validity of a firmware bank and, if 
desired, to cancel the timeout. POST then checks the con 
tents of NVRAM for validity, step 708. Once again, a 
checksum or other procedure can be used to ascertain if the 
data Stored in NVRAM is valid. If the contents of NVRAM 
are found to be not valid in step 708, then a configuration 
error exists 720 and the system proceeds to step 716 where 
the BSP signal is locked. The BSP signal is locked by setting 
the Lock BSP 606 bit and is done through an I/O port under 
direct program control. 

If the contents of NVRAM are found to be valid in step 
708, then an Update-Phase indicator (described in more 
detail hereinafter) stored in NVRAM is checked for a value 
of Zero. If the Update-Phase indicator is found to be zero in 
step 710, then POST initializes a small section (64K) of 
system RAM and copies a portion 712,714, 728 of the bank 
0502 code into that small section of system RAM. POST in 
the bank 0502 then transfers control to this Small section of 
POST in system RAM. The POST code in system RAM, 
shown in FIG. 7, then checks bank 1 504 for validity, step 
712. If bank 1504 is not valid, then there is a firmware bank 
error 728 and POST proceeds to lock the BSP signal, step 
716. If bank 1504 is valid in step 712, then the version codes 
of both the bank 0502 and the bank 1 504 are compared, 
Step 714. This version comparing can be of, for example, a 
version number, a Sequence number, or a date value. The 
nature of the means to track versions is a matter of well 
known design choice. A convenient version code is the date 
included at a fixed location near the end of every IBM 
personal computer firmware image. 

If the firmware of bank 1 504 is found to be newer than 
the firmware of bank 0502, then this is also a firmware bank 
error, step 728. This is an error because the Update-Phase 
indicator was not in a state which allows the firmware of the 
bank 1504 to be newer than the firmware of the bank 0502. 
If the firmware of the bank 1 504 is found to be not newer 
than the firmware of the bank 0 in step 714, then the BSP 
signal is locked, step 716, and POST proceeds with system 
initialization, step 730. Locking the BSP signal in step 716 
prevents the BSP Signal from being changed during the 
remainder of computer system operation. The BSP signal 



5,826,075 
19 

can once again be changed when the System is powered off 
and then powered on. 

Case #2 is a case wherein the firmware of the bank 0502 
is corrupted or found to be invalid by POST. If the firmware 
of the bank 0502 contains no program code, such as would 
be case if an update operation were interrupted by a power 
outage, then a cancel timeout 706 will not occur. As a result, 
the Automatic Set/Reset Control 602 will automatically 
select the bank 1504 and automatically reset the processor 
202. If the bank O 502 does contain Some POST code but is 
not entirely valid, then the previously described steps of 700, 
702, 704, 718 would occur. 

Case #3 is a case wherein the firmware of the bank 1504 
is corrupted or found the be invalid by POST. This case was 
previously described by the steps 700, 702, 704, 706, 708, 
710, 712,728, 716, 730. 

Before proceeding with case #4, we will outline the 
update operation as it relates to the Update-Phase indicator. 
An update will occur in two basic phases. Phase A is a phase 
wherein the firmware of the bank 1504 is updated and Phase 
B is a phase wherein the firmware of the bank 0 502 is 
updated. The Update-Phase indicator stored in NVRAM is 
used to track the progreSS of the update procedure and is 
used by both POST and the update program. When the 
Update-Phase indicator equals Zero, the System is not cur 
rently in an update operation. When Update-Phase indicator 
equals one, the update program has completed programming 
the bank 1504 with new firmware. When the Update-Phase 
indicator equals two, POST has locked down the bank 1504 
and the bank 0 502 is ready to accept an update. 

Referring to FIG. 8, the operation of the update procedure 
is described. An understanding of FIG.8 will assist in the 
further description of FIG. 7 and the remaining case (#4). 
Once the update program is running, the Update program 
checks the contents of NVRAM for validity, step 800. If the 
contents of NVRAM are not valid, then the user is instructed 
to Fix NVRAM, step 812, before the update procedure can 
continue. “Fixing NVRAM can be accomplished through 
running a Setup program which is distributed on the Refer 
ence Diskette of all PS/2 systems and is well known. Setup 
is described, for example, in IBM Personal System/2 Hard 
ware Interface Technical Reference Architectures, pages 
1-54, which is hereby incorporated by reference. With 
invalid NVRAM contents, the update program then exits, 
step 822. When the contents of NVRAM are found to be 
valid in step 800, the Update-Phase indicator is checked for 
a value of Zero, step 802. If the Update-Phase indicator is 
Zero, then the update program can proceed to the Step 804 
where the Alternate-Bank is reprogrammed. The update 
program then Sets the Update-Phase indicator to one, Step 
806, indicating that the Phase A (as described above) is 
complete. The update program then instructs the user to 
power the computer system 100 off and then on, step 808, 
and halts, step 810, waiting for the user to power the system 
off. 

Referring back to FIG. 7, case #4 will now be described. 
With the Update-Phase indicator equal to one, the steps 700, 
702, 704, 706, 708 occur as described previously. At step 
710, the Update-Phase indicator is found to be nonzero and 
control passes to the step 722. In step 722, Update-Phase 
indicator is checked for a value of one. In this case, the 
Update-Phase is one so the Update-Phase indicator is set to 
a value of two, step 724. POST then engages the timeout 
apparatus and halts, Step 726, waiting for the computer 
system to be restarted with the BSP 520 bit toggled. Once 
the system is reset and POST restarts, the steps 700, 702, 

15 

25 

35 

40 

45 

50 

55 

60 

65 

20 
704, 706, 708, 710 are again executed. In step 722, the 
Update-Phase indicator will not equal one So that control 
passes to step 716 where BSP is locked, thus establishing the 
bank 1 504 as write protected and the bank 0502 as the 
Alternate-Bank. 

Referring again to FIG. 8, the update program is once 
again executed-because the Update-Phase indicator 
requires further update processing. When POST ascertains 
that an update procedure is in progress, POST will require a 
Reference Diskette boot in order to complete the update 
operation. The contents of NVRAM are found to be valid in 
step 800. The Update-Phase indicator is checked in step 802 
and not found to be zero because it is two. The Update-Phase 
indicator is then checked in step 816 for a value of two and 
is found to be two. If Update-Phase were not two, then 
control would be passed to the step 814 where the Update 
Phase indicator would be reset to zero and the update 
procedure reinitiated. With Update-Phase indicator equal to 
two in step 816, control passes to step 818 where the 
Alternate-Bank, now the bank 0502, is programmed with 
the firmware image. Next, the Update-Phase indicator is set 
to Zero, Step 820, indicating that the update phases are 
complete. The update program then exits, Step 822. There is 
no need to restart the computer System at this point because 
the firmware in the bank 1504 is the same as the firmware 
now in the bank 0502. The bank O 502 will be the bank 
selected by the BSP520 signal after the next power on cycle. 
Finally, Suitably coding all of the steps shown in FIG. 7 and 
FIG. 8 is well within the skill of the art in view of the instant 
Specification. 
The firmware subsystem 242 of the invention is also 

valuable during the time period in which the computer 
system is under development. With firmware in erasable 
programmable read only memory (EPROM), each firmware 
revision would need to be programmed or “burned' into the 
EPROM. The procedure to burn an EPROM entails first 
locating an EPROM of the correct type and then erasing it 
through exposing it to ultraViolet light in a special erasing 
device. The time to erase an EPROM may vary, but it can 
take over ten minutes. Then, the erased EPROM must be 
placed into another special device called an EPROM pro 
grammer. The new firmware program code must then be 
loaded into this EPROM programmer which is often a time 
consuming operation. Then, the EPROM programmer must 
be instructed to transfer or burn the loaded firmware code 
into the EPROM device. This operation takes yet more 
minutes to accomplish. Then, the EPROM device must be 
removed from the EPROM programmer and inserted into 
the system under test. To insert the new EPROM, the old 
EPROM currently in the system must be removed. The 
removal and insertion process of these devices. Sometimes 
results in damaged hardware. It should be appreciated that 
the firmware subsystem 242 of the present invention, in 
which it normally takes no more than 15 Seconds to com 
plete the reprogramming of the Alternate-Bank, can be 
utilized in the System development environment, and is a 
significant improvement over the old EPROM scenario. 
While the present invention was described above, it will 

be understood by those skilled in the art that various changes 
in detail may be made without departing from the Spirit, 
Scope, and teaching of the invention. For example, while the 
preferred embodiment uses Intel processors and an IBM 
PS/2 MICRO CHANNEL bus for illustrative purposes, this 
invention can be implemented on other processors and/or 
bus types. Likewise, those skilled in the art will recognize 
that many elements of the invention can be implemented in 
hardware or Software. Accordingly, the invention should be 
limited only as Specified by the appended claims. 



5,826,075 
21 

What is claimed is: 
1. An apparatus for Storing firmware, including: 
a plurality of nonvolatile alterable electronic memory 

devices connected in an electrically mutually parallel 
circuit arrangement; each Said memory device Storing 
firmware for controlling operation of a computer 
System, each Said memory device being reprogram 
mable while in a said computer System to Store either 
the same Said firmware or an updated version thereof, 
and each Said memory device being of a type which is 
potentially vulnerable to loss of data while the device 
is being reprogrammed; and control means electrically 
connected to Said memory devices for automatically 
and Selectively controlling the accessibility of Said 
memory devices to be read or written by a said com 
puter System, Such that at any instant of time only a 
Single Selected one of Said memory devices is enabled 
to be accessed by Said computer System at any time, 
and Such that Said Selected one of Said memory devices 
is adaptively Selectable by Said control means in 
response to conditions encountered during Startup of a 
Said computer System: whereby, a Said memory device 
first Selected during Said computer System Startup and 
having invalid firmware can be automatically replaced 
by another of Said memory devices prior to completion 
of Said Startup. 

2. An apparatus as claimed in claim 1, wherein Said 
control means includes means for conditionally write pro 
tecting Said memory devices Such that a Said Selected 
memory device that is currently enabled for read or write 
access by a Said computer System can be reprogrammed to 
contain a new copy of Said firmware only by a party having 
a special authorization identity. 

3. An apparatus as claimed in claim 1, wherein Said 
control means includes means for automatically controlling 
enablement of Said memory devices to be written to, and 
thereby reprogrammed, by a Said computer System, Such that 
a single Selected one of Said devices can be reprogrammed 
without affecting the memory content of any other said 
memory devices. 

4. An apparatus as claimed in claim3, wherein Said means 
for controlling reprogramming access to Said memory 
devices further includes means for automatically write pro 
tecting the memory content of Said any other memory 
devices. 

5. An apparatus as claimed in claim 3, wherein Said 
memory devices are configured by Said control means into 
an active/standby configuration in which only a single 
Selected one of Said memory devices is active relative to a 
respective Said computer System at any instant of time, and 
only Said Single Selected one of Said memory devices is 
being used to furnish firmware to Said computer System; and 
wherein any other one of Said memory devices, that is not 
currently Selected, is available, on a Standby basis, to be 
Selected to replace Said Single Selected one of Said one 
memory devices. 

6. An apparatus as claimed in claim 5, wherein Said 
control means includes an enable logic device having out 
puts connected to Said memory devices and having an input 
connected to a signal generator, Said logic device including 
logic for Selecting different ones of Said memory devices, as 
Said Single Selected one of Said memory devices, in response 
to Signals from Said Signal generator. 

7. An apparatus as claimed in claim 6, wherein Said enable 
logic device further includes Selective write enabling logic 
for enabling Said any other one of memory devices to be 
reprogrammed while simultaneously preventing alteration 

15 

25 

35 

40 

45 

50 

55 

60 

65 

22 
of the memory content of Said Single Selected one of Said 
memory devices. 

8. An apparatus as claimed in claim 6, wherein Said Signal 
generator includes means for automatically Selecting Said 
another of Said memory devices. 

9. An apparatus as claimed in claim 6, wherein Said Signal 
generator includes means for generating a processor reset 
Signal. 

10. An apparatus as claimed in claim 1, wherein Said 
control means is adapted for performing a Bank Check and 
Select function, relative to Said any other one of Said 
memory devices, for generating a validity check on the 
memory content of Said any other one of Said memory 
devices, for ascertaining a characteristic of Said memory 
content, and for Selecting Said one or Said another memory 
device dependent upon Said characteristic. 

11. An apparatus as claimed in claim 10, wherein Said 
firmware is available in a number of different versions and 
Said characteristic is indicative of a specific one of Said 
different versions. 

12. An apparatus as claimed in claim 10, wherein Said 
Bank Check and Select function is defined by the firmware 
Stored within Said Single Selected one of Said memory 
devices. 

13. A personal computer System having an alterable 
firmware Store, comprising: 

a proceSSOr, 

an electronic volatile memory, Said memory being elec 
trically connected to Said processor, 

a plurality of alterable electronic nonvolatile memories 
connected in a mutually parallel circuit arrangement, 
Said nonvolatile memories being electrically connected 
to Said processor and to Said volatile memory; 

firmware Stored within each of Said nonvolatile memories, 
Said nonvolatile memories being reprogrammable by 
operations of Said computer System, and also being of 
a type which is vulnerable to potential loss of firmware 
data while being reprogrammed, 

means for automatically controlling access to Said non 
Volatile memories to permit an alteration of Said firm 
ware Stored within one of Said nonvolatile memories, 
while preventing alteration of Said firmware Stored 
within any other one of Said nonvolatile memories. 

14. A personal computer System as claimed in claim 13, 
wherein Said means for automatically controlling access to 
Said nonvolatile memories includes means for controlling 
reprogramming access to Said one of Said nonvolatile memo 
ries to allow for alteration of the firmware stored within said 
one nonvolatile memory. 

15. A personal computer System as claimed in claim 14, 
wherein Said altering means includes an update enable code 
for allowing alteration of firmware Stored within Said one 
nonvolatile memory. 

16. A personal computer System as claimed in claim 15, 
wherein Said update enable code includes a plurality of code 
elements, including one element for Selecting Said one 
nonvolatile memory as an active memory, another element 
for enabling Said one nonvolatile memory to receive a new 
firmware image, and vet another element for enabling writ 
ing of Said new firmware image into Said one nonvolatile 
memory. 

17. A personal computer System as claimed in claim 16, 
wherein said firmware includes a Bank Check and Select 
Code for checking a validity offirmware Stored in a Selected 
one of Said memory devices, for ascertaining a characteristic 
of the Said Stored firmware, and for Selecting either said one 



5,826,075 
23 

memory device containing Said checked firmware or another 
one of Said memory devices other than Said device contain 
ing Said checked firmware as the Source of firmware to be 
read out to Said computer System when said System is fully 
operational, in functional dependence upon Said checked 
characteristic. 

18. A personal computer System as claimed in claim 17, 
wherein said firmware includes a POST program for check 
ing Said computer System when said System is booted up, 
and wherein said Bank Check and Select Code is a part of 
said POST program. 

19. A method as claimed in claim 17, further comprising 
Storing complete firmware images respectively within the 
one and the another of the memory banks prior to Said first 
Selecting Step. 

20. A method as claimed in claim 19, wherein the com 
plete firmware images are identical. 

21. A method for accessing firmware in a personal com 
puter System, comprising: 

automatically first Selecting one of a plurality of memory 
banks, each having respective firmware Stored therein 
as a Source of firmware to be read out to the respective 
computer System: each of Said memory banks of Said 
plurality of memory banks comprising a nonvolatile 
memory device that is reprogrammable to contain a 

1O 

15 

24 
new version of Said firmware, and each Said memory 
device being of a type which is Vulnerable to potential 
loSS of data while the device is being reprogrammed; 

checking a validity of the firmware Stored in another one 
of Said memory banks, 

comparing a characteristic of the firmware Stored in Said 
one of Said memory banks with a characteristic of the 
firmware Stored in Said another one of Said memory 
banks to produce a result, 

Second Selecting between Said one and Said another one of 
Said memory banks as the Said Source offirmware to be 
read out to Said computer System dependent upon the 
result of Said comparing Step. 

22. A method as claimed in claim 21, further comprising 
copying the firmware from Said bank Selected in Said Second 
Selecting Step into a volatile memory of Said computer 
System. 

23. A method as claimed in claim 21, further comprising: 
enabling Said another one of Said memory banks to 

receive a new firmware image and then; 
Writing the new firmware image into Said another bank. 


