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METHOD AND STRUCTURE FOR 
PROVIDING AUTOMATIC PARITY SENSING 

RELATED APPLICATION 

This is a continuation of application Ser. No. 08/227,444, 
filed on Apr. 14, 1994, now U.S. Pat. No. 5,465,262. 
Application Ser. No. 08/188,245, filed Jan. 28, 1994, entitled 
"Method and Structure for Providing Error Correction Code 
for Each Byte on SIMMs now U.S. Pat. No. 5,450,422, and 
application Ser. No. 08/187,859, filed Jan. 28, 1994, entitled 
"Method and Structure for Providing Error Correction Code 
and Parity for Each Byte on SIMMs now U.S. Pat. No. 
5,379,304. 

FIELD OF THE INVENTION 

This invention relates generally to handling of parity on 
single inlinc memory modules (SIMMs) which can be used 
in computer systems, which SIMMS do not store parity bits, 
but which systems may generate and check either odd or 
even parity. In certain embodiments, this invention relates to 
providing error correction code on each byte of a data word 
written to and from a computer system SIMM as a part of a 
multiple byte data word or as a single-byte data word and 
which SIMMs can be used on computer systems which do 
not have or cannot change dynamically their wait states and 
which SIMMs can handle parity whether their computer 
system is configured to write odd parity or even parity. 

BACKGROUND OF THE INVENTION 

The integrity requirements for personal computer systems 
have grown rapidly in the past few years. At the present 
time, newer operating systems and applications require a 
great deal of memory, and the amount of memory which can 
be accommodated in personal computer systems continues 
to increase rapidly. Such personal computer systems have in 
the past typically been provided only with the capability of 
writing and checking parity-if even that. Moreover, some 
computer systems generate "odd" parity and some generate 
"even” parity. In such a case of parity, if an odd number of 
bits of memory is corrupted, the bad parity condition will be 
flagged, and generally the system will halt when the erroris 
detccted. This poses a significant problem since users can ill 
afford to have periodic system crashes and/or loss of data, 
and as the amount of memory increases, the possibility of 
such data corruption increases significantly. In the case of 
systems which do not write and check parity, corrupted data 
can causc malfunction of the system. Moreover, with the 
advent of large applications which normally require large 
amounts of memory, these are the most exposed to such a 
crash and data corruption. 
As indicated above, until very recently most conventional 

current low end personal computer systems contained at best 
only parity SIMMs which can detect an odd number of bit 
errors, but cannot correct such errors. Moreover, a parity 
function cannot detect double or other even number bit 

OS. 

One solution which has been proposed to eliminate sys 
tem crash or corruption of data due to single-bit errors is to 
provide error correction code for use in computer systems 
which do not have crror correction code capabilities internal 
thereto. Typically, this error correction code allows for the 
detection of most double-bit errors and the correction of all 
single-bit crrors. These schemes are a significant improve 
ment over purely parity SIMMs. One technique for utilizing 
ECC is the so-called 32/7-bit ECC algorithm. This ECC 
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2 
algorithm requires 7 check bits for each double word (i.e., 4 
bytes or 32 bits, thus the designation 32/7). This results in a 
39-bit wide memory SIMM required for each double word 
and associated 7-check bits (32 data bits+7 check bits). 
Thus, the widely-used 36-bit wide memory SIMM is not 
available to be used, although this is a conventional and 
popular size SIMM and is used with double words contain 
ing only parity bits which requires only 36 bits (32 data bits 
plus 4 parity bits). More importantly, many systems do not 
have wait states programmed either in the system or in the 
bus interface circuit, and thus read-modify-write (RMW) 
operations cannot be performed because of the additional 
time required from RMW. RMW is required when less than 
all of the bytes of a multiple data byte word are being 
written. For example, if only one byte of a four-byte data 
word is being rewritten, a RMW cycle must be performed to 
recalculate and generate new check bits or the check bits 
associated with the entire 32 bits of data will be in error. 

Thus, in the case of systems configured to write less than 
all the bytes of a multiple byte data word (which is typical) 
and where ECC has been attempted, the systems or at least 
the interface circuit has to be modified to provide for the 
necessary delays to perform a RMW cycle when the ECC 
algorithm uses all of the data bits and generate check bits 
such as in the 32/7 bit ECC algorithm. 

In the application Ser. No. 08/187,859, filed Jan. 28, 1994 
(Atty. Docket BC9-94-003), an improved ECC on SIMM is 
disclosed which allows writing of single byte words and 
which SIMMs are compatible with systems which do not 
have wait states necessary for RWM cycles and wherein 
parity of the written data is checked. If bad parity is detected 
such bad parity is flagged on the read cycle. However, in this 
disclosed system, the SIMM must "know" whether the 
system is configured to check either "odd" parity or "even” 
parity. Thus, a given SIMM is useful only in one or the other 
type of parity systems. This requires not only two different 
types of SIMMs, but knowledge on the part of the SIMM 
user or installer which parity is being generated by the 
system on which it is to be installed. 

SUMMARY OF THE INVENTION 

According to the present invention, a SIMM and method 
of operating the SIMM are provided wherein the SIMM has 
error correction code on board and is compatible with 
computer systems not having error correction code and 
which computer systems need not dynamically change their 
wait states. The SIMM has logic circuitry to detect whether 
the system is an "odd" parity or "even” parity system. Parity 
of the written data is checked. If bad parity is detected, the 
generated check bits are manipulated to show such bad 
parity on the read cycle. Also, proper parity (i.e., either 
"odd" or "even') is generated when the stored data is read 
and delivered to the computer system where it can be 
checked. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a high-level diagram showing the interconnects 
of a personal computer with a bus and an add-on memory 
cards according to this invention; 

FIG. 2 is a high-level schematic representation of a SIMM 
card with ECC capabilities according to this invention 
connected to a computer system bus; 

FIG. 3A is a circuit diagram showing the logic for sensing 
whether the system is generating "even” or "odd" parity; 
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FIG. 3B is a circuit diagram showing the logic for 
checking parity on a write cycle; 

FIG. 3C is a circuit diagram showing the logic for 
"flipping' the check bits if bad parity is detected; 

FIG. 4 is a timing diagram of certain signals used on the 
write cycle; 

FIG. 5 is a block diagram of the components to do a late 
write function; 

FIG. 6 is a timing diagram of the read cycle; and 
FIG. 7 is a circuit diagram showing the logic for regen 

eration of check bits, generation of syndrome bits, and 
correcting single-bit errors and delay some multi-bit errors 
and generating parity from the stored data. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The preferred embodiment will be described in the envi 
ronment of an IBM Personal Computer using an Intel 80386 
or 80486 microprocessor and with single in-line memory 
(SIMMs) having dynamic random access memory (DRAM) 
chips to provide and control the memory function. (ASIMM 
is sometimes referred to as a DRAM card which means the 
DRAM and all chips and circuits on the SIMM.) For the 
purpose of this description, the system will be described as 
it is used with a CPU capable of generating parity bits for the 
data bytes that it writes and also reading and comparing 
parity information read from storage. The CPU and its 
associated system will not have error correction code logic 
contained within the CPU system. Moreover, the CPU and 
associated system generates parity bits, and it does not 
matter whether the system generates "odd' parity or "even' 
parity; i.e., the invention can be used with either type of 
system. 
As can be seen in FIG. 1, there is provided a CPU 10 

which is connected to a CPU or system bus 12. A parity 
generation and check unit 13 preferably is provided which 
also generates or checks parity of data being either written 
by or read by the CPU 10 to or from the bus 12. This can be 
either "odd" or "even” parity. The CPU bus 12 may also 
have local I/O ports 14, CACHE memory 16, and firmware 
subsystems 18 associated therewith. A memory controller 20 
is also connected to the system bus 12, coupling it to a 
memory subsystem 22, and also normally to an expansion 
bus 24 if one is present. The memory subsystem 22 is 
typically comprised of one or more SIMMs 26, each of 
which is provided with DRAM chips and ASIC chips having 
error correction code. It is to be understood that the system 
just described is illustrative of systems on which the present 
invention can be used since one feature or aspect of the 
present invention is the provision of a SIMM card having 
parity checking and generations which can be utilized on 
virtually any system CPU and system having the capacity of 
receiving non-ECC SIMMs as add-on memory. 
As indicated above, the CPU 10 is capable of writing data 

onto the bus 12 which in turn will be conveyed to the correct 
memory address in subsystem 22 by the memory controller 
20. Upon writing data by the CPU 10, parity bits are 
generated for each byte of information written to memory by 
the parity generating and checking device 13 which also 
checks parity on information read from the memory sub 
system 22 during a read cycle to determine parity error as 
will be described presently. The memory controller also 
provides the necessary signals, such as Row Activation 
Strobe (RAS), Column Activation Strobe (CAS), Write 
Enable (WE), and on some systems Output Enable (OE), 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
and Byte Select (BS), etc., to the memory subsystem 22. The 
memory controller reads and writes both data and parity to 
each of the SIMMs 26, also as shown in FIG. 2. It should be 
understood that this invention is applicable to a wide variety 
of SIMMs having many different form factors. For example, 
it can be used in conjunction with the following SIMM 
forms: 72 pinx32; 72 pinx36; 168 pinx64; 168 pinx72; 88 
pin DRAM card; 68 pin DRAM card; 68 pin PCMCIA card, 
and 72 pin small outline DRAM card. 
The error correction code logic includes logic which will 

check the parity bits written by the CPU on a “write" cycle 
and manipulate the check bits if bad parity is detected to 
show bad parity when read. The logic will also regenerate 
parity bits for each byte fetched on a read cycle. 

Referring now to FIG. 2, a 72 pin SIMM 26 constructed 
according to this invention is shown. The SIMM 26 has a 
plurality of DRAMs 28a–28l. These are conventional 1MX4 
DRAM chips which are commercially available. The 1MX4 
DRAMs have 4 data I/O pins (DQ 1-4) and 2' addresses. 
Thus, each series of 3 DRAM chips can receive 12 data bits, 
i.e., 28a, 28b, 28c can each receive a 4-bit wide data field, 
and thus together have a 12-bit wide bus. DRAM 28d, 28e 
and 28falso each are 1MX4 and together form a 12-bit wide 
data bus. The same is true for DRAMs 28g-28i, and DRAM 
28j-28l. These type of DRAMs used on SIMMs are con 
ventional for add-on memory modules and need not be 
described further. Other DRAMs such as 256Kx4; 4MX4; 
16MX4, etc., can also be used. If desired, the DRAMs can 
be formed in a stacked configuration as shown in dotted 
lines, thus having a second DRAM chip 30a-301, each 
stacked respectively on the corresponding DRAM chip 
28a-28l. This configuration as shown in dotted lines does in 
fact provide a more dense memory if desired. 

Also provided on the SIMM are 4 ASIC (application 
specific integrated circuit) chips 32a, 32b, 32c and 32d. As 
can be seen in FIG. 2, various lines coming from the 
memory controller 20 bring the various signals such as RAS, 
CAS and WE. Also, a bus between the SIMM 28 and the 
memory controller 20 provides for interchange of data 
between the SIMM26 and CPU 10. In this particular format, 
a 36-bit wide bus is used which delivers 8 data bits and 1 
parity bit to each ASIC chip 32a, 32b, 32c and 32d. The 
ASIC chips 32a-32d provide, among other things, the logic 
needed to perform the read and write functions of the data 
to the DRAMs 26a-26l, and in so doing generate check bits, 
the check bits being generated such that there are 4 check 
bits generated for each byte of data. Each data byte (8bits) 
together with the generated 4 check bits from the ASIC chip 
32a are stored in DRAMs 28a, 28b and 28c, four bits in each 
DRAM for a total of 12 bits, i.e., a single byte plus 4 check 
bits. The same is true for ASIC chips 32b, 32c and 32d with 
respect to DRAM 28d 28f, 28g-28i, and 28j-28l, respec 
tively. Thus, it will be appreciated that the arrangement and 
configuration of the SIMM 26 as shown allows a 4-byte data 
word to be written and the ECC check bits generated 
individually for each byte and each byte with its associated 
check bits stand individually. Therefore, if during any write 
cycle less than the entire four byte data word is being written 
or rewritten, this can be done without doing a read-modify 
write cycle which would be required if all of the data bytes 
participated in writing all of the check bits such as is 
common in the 32/7 algorithm. Hence, a wait state need not 
be programmed into the computer system with its inherent 
loss of performance, including the processor or memory 
controller, but rather during each write operation check bits 
are generated, and during each read operation check bits are 
regenerated as syndrome bits and error correction made on 
each byte individually on each read operation. 
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The logic and generation of the bits will be described with 
respect to the ASIC chip 32a, in combination with the 
DRAM chips 28a, 28b and 28c. It is to be understood that 
the same operations take place with respect to the ASIC chip 
32b and the DRAMs 28d, 28e and 28?, ASIC chip 32c in 
combination with DRAMs 28g, 28h and 28i, and ASIC chip 
32d in combination with DRAMs, 28i, 28k and 28l. Thus, 
each ASIC receives 8 bits of data plus 1 parity bit on the 
36-bit bus, and included in the logic of each ASIC chip 32 
the circuitry generates 4 check bits from the 8 data bits 
supplicd thereto with the check bits being generated spe 
cifically with the data bits only of 1 byte of data. 
The circuitry for generating check bits and also for 

sensing the parity type of the system parity generation and 
chccking the parity of the data is shown in FIGS. 3A-3C. 
The data bits DQ0 through DQ7 and parity bit PQ8 are 
received by ASIC chip 32a. The ASIC chip 32a senses and 
checks parity as will be described presently, and the data bits 
DQ0-DQ7 are supplied to a check bit generator 34b (FIG. 
3B) which generates 4 check bits. The check bits are 
supplied together with the 8 memory data bits to a 12-bit bus 
linc36a, and the data bits are then stored in the DRAMs 28a, 
28b, 28c. As indicated above, each DRAM is 1MX4 so that 
4 of the data bits are stored in DRAM 28a, 4 data bits are 
stored in DRAM 28b and the 4 check bits in DRAM 28c. 
The crror correction algorithm is shown in Table I below. In 
this table, the data bits which participate in generating each 
check bit are shown and marked with an 'X'. 

TABLE I 

Data Bit 7 6 5 4 3 2 1 O 

Chicck Bit 0 X X X X X 
Check Bit X X X X X 
Check Bit 2 X X X X 
Check Bit 3 X X X X 

The handling of the parity is as follows: since the ECC 
docs not store a parity bit per se, each access must handle 
parity bit generation on the fly. For read operations, the 
parity bit is generated from the 8 data bits and is not affected 
by the check bits unless an uncorrectable error occurs in 
which case bad parity is flagged to the CPU. On a write 
operation, parity is checked on each byte, every single write 
cyclic. The reason for this can be understood by comparing 
the ECC parity bit handling according to this invention with 
a typical X36 SIMM's parity handling. In a typical X36 
SIMM, the parity bit is just another "data” bit and, if bad 
parity is sent on a store operation, it will remain in memory 
as bad parity. On any subsequent read of that data, bad parity 
will be presented to the system and recognized. In the ECC, 
the parity bit is not used at all to generate the check bits and 
is not stored. Therefore, if parity were not distinctly checked 
and accounted for, a write with bad parity would be stored 
in memory with correctly generated check bits for the 
incorrect data pattern. Then, the subsequent access of that 
data would see a new parity bit generated and the data would 
be sent back to the system with correct parity on incorrect 
data. The effect is to change a detectable error into an 
undetectable one. Since this is clearly not a desirable effect, 
the parity is checked on every write and if an error is 
detected, the check bits are manipulated such that on the 
subsequent read of that data, an uncorrectable error syn 
dromc is generatcd and bad parity is guaranteed to be sent 
back to the system, regaining the data integrity that is 
required. The manipulation of the check bits in the preferred 
cmbodiment is to "flip" each check bit to its inverted logic 

O 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
state. As will be seen presently, this will have the effect of 
causing the subsequently generated syndrome bits to show 
an uncorrectable error. 
The logic for sensing the system parity and for checking 

the parity of the stored data word written, and inverting or 
flipping the check bits if bad parity is detected is shown in 
FIG. 3A. In the illustrated embodiment, the parity (i.e., 
"even” or "odd") of the system is sensed during initialization 
and latched in for subsequent operations. As shown in FIG. 
3A, a counter 49a is provided which has a reset input which 
is actuated by power on reset (POR) signal 49b and also 
receives signals from write operation detect logic 49c which 
receives CAS, RAS and WR signals which in a certain 
combination initiates a write operation. The output from the 
counter 49a is supplied to a delay circuit 49d, which in the 
disclosed embodiment is a 10 ns delay circuit. The output 
from the delay circuit 49d is sent to a parity latch 49e. A 
parity generator 49f is also provided which receives each 
byte of data and generates a predetermined parity (either odd 
or even) from the eight bits in the byte. In this embodiment, 
even parity is generated, but it could be odd parity if desired. 
The output parity bit (either a “1” or "0") is delivered to an 
XOR gate 49g where it is XOR'd with the parity bit 
generated by the CPU system parity generator 13. The 
output from the XOR gate 49g (either a “1” or "0") is 
supplied to an input of parity latch 49e along with the output 
of the delay logic 49d. The output of the latch 49e is then 
determinative of whether the system is "even” parity or 
"odd" parity, the circuit having performed this determination 
in the following manner. 
When the power on Reset (POR) is activated indicating 

that the system has been turned on, this signal (which is 
generated by the chip in a conventional manner), together 
with a signal from the detect write operation is supplied to 
the counter 49c. This assures that the system is activated and 
is in a write configuration. Preferably, the counter is a single 
latch which counts to “1”, although counter numbers could 
be as high as 2'. This count is to assure that valid data with 
generated parity is being sent to the chip from the system. 
The sensing is based on the assumption that the data 
received during power up has "good' parity as received, be 
it "odd" or "even” parity, and it is this sensed parity which 
is used to subsequently determine whether there is good 
parity or bad parity in any received byte, and also to generate 
the correct (either "even" or "odd") parity during the read 
cycle. At the same time, system data is being inputted to the 
parity generator 49f which is set arbitrarily to generate either 
"even” parity or "odd" parity. In the disclosed embodiment, 
the parity generator 49f generates even parity. The output 
from parity generator 49f and the system parity is inputted 
to XOR gate 49g. If the system parity is even, then the XOR 
gate 49g will generate a “0” indicating even parity; if the 
system generated "odd" parity the output for XOR gate 49g 
will be logic “1”, indicating the system is generating "odd' 
parity. This output is inputted to parity latch 49e; and when 
the latch is activated by the signal from the delay circuit 49d, 
the output from the latch is Q if the system is odd parity and 
Q if the system is generating even parity. This parity is 
latched during the operation until the system is turned off. 
The output from the latch 49e is used to flag or identify 

bad parity on system bits by the logic shown in FIG. 3B. In 
FIG. 3B showing the data write logic, each data eight-bit 
word is supplied to the check bit generator 34a and also to 
a parity generator 49h which generates even parity which is 
supplied to XOR gate 49i. The parity bit (“0” or “1”) 
supplied by the system is also supplied to XOR gate 49i. The 
output of XOR gate 49i is supplied to XOR gate 49i. If the 
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system parity is even and correct, the output of XOR gate 49i 
is a logic “0”, and if the system parity is odd and correct, the 
output of XOR gate 49i is a logic “1”. XOR gate 49i XOR's 
the output from XOR gate 49i with the setting output of the 
latch 49e. If the system parity is set to even parity and the 
correct parity is sensed by the XOR gate 49i, then the logic 
“O'” is output from XOR gate 49j since logic “0’s” are 
received from both the latch 49e and XOR gate 49i. Simi 
larly, if the system parity is odd and the output of XOR gate 
is good, parity is detected as a logic “1” and the input from 
latch 49e to XOR gate 49i is also a logic “1”. 

Thus, in either case, whether the system is generating 
"odd" parity or "even” parity, the output from XOR gate 49i 
is a logic “0” indicating good parity. Conversely, assuming 
that this received system parity is bad parity, then if the 
system is generating even parity it will be received as odd 
parity, which will be different from the even parity which is 
generated from the byte by parity generator 49h. These will 
then be outputted from XOR gate 49i and inputted to XOR 
gate 49l as a logic “1”. XOR gate 49i is receiving even parity 
from the latch 49e as a logic “0” which causes the XOR gate 
to output a logic “1” indicating bad parity, which will invert 
or "flip' the check bits as previously described. Similarly, if 
the system is generating "even' parity, the logic of the XOR 
gates 49i and 49j will generate a logic “1” or bad parity if 
bad parity is received from the system. 
The circuit for inverting or flipping the check bits is 

shown in FIG. 3C. As shown herein, each of the check bits 
0–3 from the check bit generator 34a is inputted to one of 
XOR gates 49k, 49l, 49m, 49n, respectively. Also, the output 
from XOR gate 49i is inputted to each XOR gate 49k, 49l, 
49m, 49n. If the output is bad parity, it will flip each of the 
check bits from either a 'O' to "' or a '1' to a 'O'. 
"Flipped' check bits indicate bad parity. Hence both 
manipulated check bits and data bits are stored in DRAM 
memory, with one type of manipulated check bits indicating 
bad parity. 
The output from parity latch 49e is also used in the 

generation of parity on the read cycle as will be described 
presently. 
The timing for generating and storing the check bits 

together with the data bits is crucial and can best be 
understood by reference to the timing diagram shown in 
FIG. 4. In FIG. 4, the timing diagram shows the RAS, CAS, 
W/R to SIMM, WR DRAM, OE, the system data to SIMM 
and system data and check bits to the DRAMs. W/R to 
SIMM is the signal from the memory controller to the SIMM 
and the WR to DRAM is the "late' write enable signal to 
the DRAM. In order for the error correction code to operate 
within a single write operation cycle of the SIMM without 
requiring wait states and to be able to read the check bits, 
generate syndrome bits and correct data, it is necessary that 
the DRAMs 28a-28l operate at a faster speed than the 
operating speed of the SIMM itself. SIMM architecture 
standards are, in general, governed by JEDEC (Joint Elec 
tronic Device Engineering Council) standards. Industry 
standards for timing are based on the JEDEC architecture 
standards. According to one conventional industry standard, 
either a read operation or a write operation based on the 
timing of the signals must be completed within 70 nanosec 
onds. However, the JEDEC industry standards do not pre 
suppose error correction taking place, and thus in order to 
stay within this parameter, it is necessary to perform the 
error correction function within the time limit normally 
allocated to merely read and write and perhaps check parity. 
To accomplish this, DRAM chips are selected which have a 
faster operating speed than the speed of the SIMM by at least 
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8 
about 10 nanoseconds. Thus, for a SIMM which has an 
operating time or parameter of 70 nanoseconds for a read 
operation or write operation, the DRAM must operate at 
about 60 nanoseconds or faster. 

Referring now to FIG. 4, after RAS goes low followed by 
the WIR to SIMM going low when CAS goes low valid data 
will appear on the bus from the memory controller 20 to 
memory subsystem 22. To assure a read cycle does not 
occur, the OE signal from ASIC chip 32a is used to tristate 
the DRAM I/O's before the WR to SIMM goes low. 
However, this data cannot be latched into memory until the 
check bits are generated, which requires a certain finite 
amount of time. Thus, to this end, as indicated above, the 
late write cycle on the DRAM is used. This is done by 
maintaining the WIR to DRAM line high for about 10 
nanoseconds after CAS has gone low. During this 10 nano 
seconds, check bits are being written. At the end of these 10 
nanoseconds when the W/R to DRAM goes low, both the 
data bits and the check bits are latched into DRAMs 28a, 
28b, 28c as indicated before. This is shown in the system 
data-to-SIMM and system data-to-DRAM lines wherein it is 
shown that valid data write takes place when the CAS goes 
low, but the valid data and check bits do not appear until the 
write to DRAM line has gone low. These data bits and check 
bits are latched in DRAMs 28a–28c. 
The logic to perform this and to manipulate the check bits 

for bad parity is shown in FIG. 5, wherein the WR to SIMM 
line and the CAS lines are shown going to a latch 40. The 
output from the latch 40 is supplied as a +write latched 
together with CAS to an AND gate 42, the output of which 
is supplied to a delay block 44 and thence to a driver 46 the 
output of which is the delayed write to DRAM. Also, inputs 
to the AND gate are a +not CBR (CAS before RAS) and also 
a +CAS input. The +write latched with CAS is also supplied 
to a second driver 48 so as to provide an OE signal to the 
DRAM. 
The reason for and functioning of this circuit are as 

follows. Typically, the W/R to SIMM must be valid and 
often only is valid before CAS falls and then held for about 
a maximum of 15 ns after CAS falls. A straight delay on 
WR to SIMM would not be wide enough to write data. 
Hence, this is written to the latch 40, and when CAS falls, 
the latch samples the signal on WR to SIMM line. The latch 
40 maintains the data valid as long as CAS stays low. 
The latch 40 is transparent, so what is impressed on the 

input of the latch 40 appears at the output which is a write 
enable as CAS goes low, and will stay as an output as long 
as CAS is low. In this state, the data flows through the latch 
40 and thus the need for the delay. The AND gate 42 operates 
to block signals before CAS becomes active. The delay 
block 44 provides the necessary time to generate the check 
bits before the data is latched into memory. The time of 
delay is less than 20 ns, typically 7-9 ns. The +CAS and not 
CBR (CAS before RAS) signals are impressed on the input 
of the AND gate 42 so that data will not be written on a 
refresh cycle if CAS is low during a refresh mode done as 
CBR. Thus, by utilizing the late write function of the 
DRAMs together with a DRAM that is faster than the speed 
of the SIMM, an 8-bit databyte can be written and checkbits 
generated in the normal write operation of the SIMM. 
The data when read on a read operation goes through logic 

which generates new check bits, compares the newly-gen 
erated check bits with the stored check bits and then writes 
a syndrome table which is the well-known manner of error 
correction of single-bit errors and detection of some multi 
bit errors. This also has to be done within the time standard 
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set for the SIMM card. Once again, there is a need for the 
fast DRAM, the DRAM being at least 10 nanoseconds faster 
than the SIMM. The circuitry for the error correction code 
is shown in FIG. 7 wherein the 8 bits of memory data 
constituting a data byte are read from memory to a corrector 
50. At the same time, the 4 stored check bits that have been 
stored with the 8 bits of data memory are impressed on a 
comparitor 52. The 8 memory data bits are also impressed on 
a check bit generator 54 which regenerates the check bits 
based on the stored 8 bits of data. These regenerated check 
bits are also supplied to the comparitor 52 where the 
originally-generated and stored check bits are compared 
with the newly-generated check bits to generate syndrome 
bits. The syndrome bit table and the errors which they 
indicatc are shown in Table II below. 

TABLE II 

Action 

Syndrome Toggle Toggle Error 
3210 Bit in Error Data Parity Output 

0000 Nonc N N N 
000 Check Bit O N N Y 
O) Check Bit 1 N N Y 
00 Data Bit O Y Y Y 
O100 Check Bit 2 N N Y 
010 Data Bit 1 Y Y Y 
010 Data Bit 2 Y Y Y 
011 Data Bit 3 Y Y Y 
1000 Check Bit 3 N N Y 
1001 Data Bit 4 Y Y Y 
010 Data Bit 5 Y Y Y 
1011 Data Bit 6 Y Y Y 
100 Data Bit 7 Y Y Y 
101 Multi Bit N Y Y 

Error 
110 Multi Bit N Y Y 

Error 
l Multi Bit N Y Y 

Error 

The syndrome bits are generated by XORing each newly 
generated check bit with the comparable stored check bit. If 
they are all "O's, the syndrome bits as shown in the table 
will be 0000, which will indicate that there is no error. Single 
bit errors will show up as various syndrome bit patterns. It 
will be noted that all single-bit errors can be detected and 
hence corrected. Certain multi-bit errors can be detected 
which are shown in the syndrome table as syndrome 1101, 
1110 and llll. These all indicate multi-bit, and hence 
uncorrectable, errors. (It should be noted that if desired a 
4-bit ECC code for a single byte can be used to detect all two 
bit errors but not correct them-but it cannot both correct all 
single bit errors and detect all two bit errors.) With respect 
to the parity handling, if a parity error on the write cycle was 
detected, then the check bits generated were all "flipped.” 
Hence, in this case, when the check bits are regenerated, and 
not "flipped' during a read cycle the XORing will cause a 
syndrome bit pattern of "1111" indicating an uncorrectable 
crror. The syndrome bits are impressed on the corrector 50 
and if any bit needs to be corrected because of a single-bit 
error, that particular bit is "flipped'. The corrected data is 
delivered out as system data in 8 bits out to the system bus. 

During the read cycle parity is also generated so that any 
error involving an odd number of bits occurring in the 
transmission of the data bytes to the system can be detected 
by the system as parity error. Again, it does not matter 
whether the system is an "even' parity or "odd" parity 
system. The logic for this is shown in FIG. 7, and includes 
a parity generator 60 which receives each eight-bit data 
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10 
word as it is received from memory and generates even 
parity, which is inputted to XOR gate 62. The output of 
parity latch 49e is also impressed on XOR gate 62. If the 
latch 49e has sensed even parity, a logic “0” will be 
impressed and the output of the XOR gate 62 will be logic 
"0". If the sensed system parity by the latch 49his "odd", the 
XOR gate 62 will generate a logic “1” which indicates "odd" 
parity. In either case, the parity output from XOR gate is the 
proper parity for the system as received by latch 49e. The 
output of XOR gate 62 is inputted to XOR gate 64 along 
with the output of comparitor 52. Block 60 generates (arbi 
trarily) "even' parity for the memory read data. XOR gate 
62 adjusts the parity if the SIMM has sensed that it is in an 
"odd" parity system. XOR gate 64 inverts the correct parity 
coming out of XOR gate 62 according to the "toggle' 
column of Table II. Comparitor 52 provides the logic to do 
the "toggle parity' column. The toggle logic performs in the 
following manner. If the corrector 50 corrects a single bit 
error in a data byte by flipping that bit, the generated parity 
bit, which was generated using the uncorrected data, must 
also be "flipped' by output to XOR gate from the comparitor 
52. However if an error is detected in a check bit according 
to the syndrome table, this will not affect the parity since 
generating parity does not involve check bits. The final 
correct parity (good or bad) is delivered to these memory 
controller 20 from XOR gate 64. If a single bit or other odd 
number of bit error occurs in transferring the data from the 
SIMM to the system, or if uncorrectable error of read data 
is detected, the system parity generating check 13 will detect 
such an error in a conventional manner. 
The signal diagram for this is shown in FIG. 6. When the 

RAS goes low followed by CAS going low and the WR to 
SIMM being high, data is read from the DRAMs and 
because it can be read in 60 nanoseconds as shown on the 
RAS line, there is an additional 10 nanoseconds available for 
the generation of the additional check bits, the generation of 
the syndrome bits and error correction which is shown as the 
10 nanosecond delay. After the specified CAS access time 
(TA), the data at the SIMM can be latched as corrected 
data and impressed on the bus to the memory controller 20. 
Thus it can be seen that by providing DRAMs which can 

operate faster than the operation cycle time of the SIMM 
according the JEDEC or whatever other standard to which it 
has been manufactured, error correction can be performed 
on each byte of data independently. Hence, such a SIMM 
can be utilized in a wide variety of computer systems which 
do not have the wait states necessary to perform read 
modify-write operations and which write multi-byte data 
words and which allows error correction to take place on the 
add-on SIMM even when the computer system is not 
configured to include error correction. 

Again, it should be noted that the present invention is not 
limited to the particular SIMM as shown and described, but 
is applicable to SIMMs have various form factors. All that 
is required is that the DRAM on the SIMM be able to operate 
at least about 10 nanoseconds faster than the operating time 
of a read or write operation of the SIMM. The error 
correction function thus can be afforded to any system which 
writes one or more data bytes irrespective of the width or 
number of bytes in a data word. Of course, there is some 
penalty for utilizing 4 bits of error correction for each 8 bits 
of a data word; i.e., there is a somewhat increased amount 
of storage space necessary as opposed to utilizing a 32/7 or 
64/8 algorithm of generating check bits. However, the 
advantage is that these SIMMs can be used in many systems, 
including those which do not have the necessary wait states 
for a read-modify-write and thus has wide applicability in 
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retrofitting systems which do not have error correction code 
on board. 

Also, it is to be understood that the invention can be 
performed generating more than 4 check bits; e.g., 5 check 
bits. In such a case, more types of errors can be detected 
and/or corrected. This would require additional memory 
space and logic for each check bit which could be supplied 
by additional X1 DRAMs. At least 4 check bits are necessary 
to correct all single bit errors. 

In another embodiment, this technique can be used on 
SIMMs which do not do either ECC or store parity bits to 
make them compatible with systems that generate and check 
either odd or even parity. In such an implementation, the 
parity of this system is sensed and latched in the manner as 
described above. This latched parity sense is then used in 
combination with a parity generator which receives read 
stored data to deliver data with correct parity to the system. 
It should be noted however, that bad or corrupted data that 
is stored will not be detected, and system will react as if it 
were uncorrupted. What this embodiment does is allow the 
system to 'see' some parity so it will operate, even with 
some corrupted or bad data. 

Accordingly, the preferred embodiment of the present 
invention has been described. With the foregoing description 
in mind, however, it is understood that this description is 
made only by way of example, that the invention is not 
limited to the particular embodiments described herein, and 
that various rearrangements, modifications, and substitu 
tions may be implemented without departing from the true 
spirit of the invention as hereinafter claimed. 
What is claimed is: 
1. A SIMM memory adapted to be added as add-on 

memory to a computer system, which system writes eight 
bit bytes of data together with a parity bit and wherein said 
system writes one of either "even" parity or "odd" parity, 
and wherein said SIMM is configured to operate at a given 
speed for read and write operations, comprising: 

logic to sense whether the system is utilizing "odd' or 
"even' parity; DRAM chips to store the data bytes in 
said DRAM chips; 
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logic to read said data bytes from the DRAM; and 
logic to write parity bits from said read data bytes 

corresponding to the sensed parity type of said system; 
whereby a given SIMM can be added to either an "even” 

parity or "odd' parity system. 
2. A computer system comprising: 
a CPU and a bus having a SIMM memory added as 

add-on memory to said computer system, said con 
puter system configured to write eight bit bytes of data 
together with a parity bit, and wherein said system 
writes one of either even parity or odd parity, 

said SIMM including: 
logic to sense whether the system is utilizing "even' or 

"odd" parity; DRAM chips to store said data bytes in 
said SIMM; 

logic to read said data bytes from the DRAM; and 
logic to write parity bits from said read data bytes 

corresponding to the sensed parity type of said system; 
whereby a given SIMM can be added to either an "even” 

parity or "odd" parity system. 
3. A method of providing SIMM memory added as add-on 

memory to a computer system which system writes eight-bit 
bytes of data together with a parity bit; and wherein said 
system utilizes either one of odd parity or even parity, 
comprising the steps of: 

sensing whether the system is writing odd parity or even 
parity, storing said data bytes in DRAMS on said 
SIMM; 

reading said data bytes from the DRAM; 
writing parity bits from said read data bytes correspond 

ing to the sensed parity type of said system; 
whereby a given SIMM can utilize either an "even' parity 

or "odd" parity system. 
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