
United States Patent (19)
||||III

US005541941A

11 Patent Number: 5,541,941
Dell et al. (45. Date of Patent: Jul. 30, 1996

54 METHOD AND STRUCTURE FOR 5,058,115 10/1991 Blake et al. 371/40.
PROVIDING AUTOMATIC PARTY SENSING 5,070,450 12/1991 Holman, Jr. et al..

5,088,092 2/1992 Jeppesen, III et al. 37/49.3
75 Inventors: Timothy J. Dell, Colchester, Vt.; E. 3.2: E. III et al. 371151.1

e all 7 p. aynham.

Jimmy G. Foster, Boca Raton, Fla. 5,235,602 8/1993 Klim 371,49.
innar. s 5,241,643 8/1993 Durkin et al. .

(73) Assignee agains Machines 5,355.377 10/1994 Venkidu et al. 37/51.
orporation, Armonk, N.Y. 5,367,526 11/1994 Kong...................................... 371151

(21) Appl. No.: 487,809 Primary Examiner-Roy N. Envall, Jr.
Assistant Examiner-Steven R. Garland

22 Filed: Jun. 7, 1995 Attorney, Agent, or Firm-Calfee, Halter & Griswold
Related U.S. Application Data 57 ABSTRACT

63 Continuation of Ser. No. 227.444, Apr. 14, 1994, Pat. No. A SIMM is provided which adds ECC onto a computer
5,465,262. system, which system does not have ECC capabilities. The

51 Int. Cl. G06F 11/10 SIMM has ECC onboard. The SIMM also has logic to sense
A a on a was a vu sess saw a so w w an in a spense or so won a earnese saw whether the system is an "even' parity or "odd" parity

(52) U.S. . - 371149.3; 371/49.1 system. Parity of the written data bytes is checked, and

(58) Field of Search 37 1/40.1, 51.1, check bits used for the ECC are manipulated to check parity
37/49.3, 40.4, 49.1, 49.2 on the read cycle responsive to the sensed parity of the

56 References Cited system. During the read cycle, parity is generated by the

U.S. PATENT DOCUMENTS

4,850,892 7/1989 Clayton et al. .
5,052,001 9/1991 Jeppesen, III et al. 37/49.3

1 O
wk or - www a wry wronw -

PARITY 3 PROCESSOR CHECK/GEN
14

18

16

logic corresponding to the sensed system parity, and ECC is
performed.

3 Claims, 4 Drawing Sheets

22

MEMORY
SUBSYSTEM

U.S. Patent Jul. 30, 1996 Sheet 1 of 4 5,541,941

a war- a ran -- H -

PARITY 3 PROCESSOR CHECK/GEN
22

14

MEMORY
SUBSYSTEM

R FIRMWARE
SUBSYSTEM

16
CACHE

EXPANSION
BUS FiO1 26 9 24

| I
RAS MOns

CAS
-- W/R TO SIMM - N - - -
W/R TO DRAM N /

OE / N (GENERATED ASIC)

SS PATA X vaLD DAIA BITS X TO SIMM VALID DATA BTS

SYS DATA AND
CHECK BTS
TO DRAMS

VALID CHECK & DATA BITS

Fig4

U.S. Patent Jul. 30, 1996 Sheet 2 of 4 5,541,941

DO
DQ
DQ
DQ
DQ
DQ
DO
DO
PQ

RAS 3

t 30g

IT III
3Oh

T. L.

DATA--CB

OE 32c
DQ 18
DQ 19
DQ 20
DQ 21
DQ 22
DQ 23
DQ 24
DQ 25
PQ 26

U.S. Patent Jul. 30, 1996 Sheet 3 of 4 5,541,941

COUNTER + nth - ODD
wo PARITY POR RESET WRITE- R:10ns -> CLK
49b. 49d aaaaaa. - EVEN

PARTY
DCLOCK 49d Q DELAY D RESETN-4ge

PARITY
DETECT WRTE OPERATION -POR

RAS RAS W/R RAS WAR -- CLOCK
CAS TO

COUNTER
W/R 49g

49C
SYS PARITY -- ODD

49f -- EVEN xOR PARTY
SYS DATA PARTY PARITY

GEN. Fig3A
34d CKBIT O

CKBT 1
CKBT 2.
CKBIT 3
49

-- FLIP
SYSTEM CHECK BS
DATA DUE TO PARITY

8 ERROR
SYSTEM PARTY

+ (SET TO) ODD PARITY Fig3B
FROM PARTY LATCH

49k
CKBIT O NTERNAL

XOR CKBIT O TO DRAM
49

CKBIT 1 INTERNAL

xor CKBT 1 TO DRAM
49m

CKBIT 2 INTERNAL

o CKBIT 2. TO DRAM
49n

o CKBIT 3 TO DRAM
-- FLIP CKBITS DUE TO

PARTY ERROR Fig3C

CKBIT 3 NTERNAL

U.S. Patent Jul. 30, 1996 Sheet 4 of 4 5,541,941

--WRTE 42
LATCHED
WITH CAS 46 -DELAYED

WRITE
TO DRAMS

DATA AT SIMM
PINS (AFTER ASIC) VALID DATA

62 6O
64. -- CORRECT

PARTY PARITY
TO SYSTEM

-- ODD PARITY
FROM PARITY

ATCH
- ERROR DETECTED

FROM SYNDROME TABLE
(TAKE FROM "FLIP PARITY BIT COLUMN)

SYSTEM
CORRECTOR

of El CHECK BTS GENERATOR

MEMORY CHECK BTS

ERROR LINE

Fig.7

5,541,941
1.

METHOD AND STRUCTURE FOR
PROVIDING AUTOMATIC PARITY SENSING

RELATED APPLICATION

This is a continuation of application Ser. No. 08/227,444,
filed on Apr. 14, 1994, now U.S. Pat. No. 5,465,262.
Application Ser. No. 08/188,245, filed Jan. 28, 1994, entitled
"Method and Structure for Providing Error Correction Code
for Each Byte on SIMMs now U.S. Pat. No. 5,450,422, and
application Ser. No. 08/187,859, filed Jan. 28, 1994, entitled
"Method and Structure for Providing Error Correction Code
and Parity for Each Byte on SIMMs now U.S. Pat. No.
5,379,304.

FIELD OF THE INVENTION

This invention relates generally to handling of parity on
single inlinc memory modules (SIMMs) which can be used
in computer systems, which SIMMS do not store parity bits,
but which systems may generate and check either odd or
even parity. In certain embodiments, this invention relates to
providing error correction code on each byte of a data word
written to and from a computer system SIMM as a part of a
multiple byte data word or as a single-byte data word and
which SIMMs can be used on computer systems which do
not have or cannot change dynamically their wait states and
which SIMMs can handle parity whether their computer
system is configured to write odd parity or even parity.

BACKGROUND OF THE INVENTION

The integrity requirements for personal computer systems
have grown rapidly in the past few years. At the present
time, newer operating systems and applications require a
great deal of memory, and the amount of memory which can
be accommodated in personal computer systems continues
to increase rapidly. Such personal computer systems have in
the past typically been provided only with the capability of
writing and checking parity-if even that. Moreover, some
computer systems generate "odd" parity and some generate
"even” parity. In such a case of parity, if an odd number of
bits of memory is corrupted, the bad parity condition will be
flagged, and generally the system will halt when the erroris
detccted. This poses a significant problem since users can ill
afford to have periodic system crashes and/or loss of data,
and as the amount of memory increases, the possibility of
such data corruption increases significantly. In the case of
systems which do not write and check parity, corrupted data
can causc malfunction of the system. Moreover, with the
advent of large applications which normally require large
amounts of memory, these are the most exposed to such a
crash and data corruption.
As indicated above, until very recently most conventional

current low end personal computer systems contained at best
only parity SIMMs which can detect an odd number of bit
errors, but cannot correct such errors. Moreover, a parity
function cannot detect double or other even number bit

OS.

One solution which has been proposed to eliminate sys
tem crash or corruption of data due to single-bit errors is to
provide error correction code for use in computer systems
which do not have crror correction code capabilities internal
thereto. Typically, this error correction code allows for the
detection of most double-bit errors and the correction of all
single-bit crrors. These schemes are a significant improve
ment over purely parity SIMMs. One technique for utilizing
ECC is the so-called 32/7-bit ECC algorithm. This ECC

10

15

20

25

30

35

45

50

55

60

65

2
algorithm requires 7 check bits for each double word (i.e., 4
bytes or 32 bits, thus the designation 32/7). This results in a
39-bit wide memory SIMM required for each double word
and associated 7-check bits (32 data bits+7 check bits).
Thus, the widely-used 36-bit wide memory SIMM is not
available to be used, although this is a conventional and
popular size SIMM and is used with double words contain
ing only parity bits which requires only 36 bits (32 data bits
plus 4 parity bits). More importantly, many systems do not
have wait states programmed either in the system or in the
bus interface circuit, and thus read-modify-write (RMW)
operations cannot be performed because of the additional
time required from RMW. RMW is required when less than
all of the bytes of a multiple data byte word are being
written. For example, if only one byte of a four-byte data
word is being rewritten, a RMW cycle must be performed to
recalculate and generate new check bits or the check bits
associated with the entire 32 bits of data will be in error.

Thus, in the case of systems configured to write less than
all the bytes of a multiple byte data word (which is typical)
and where ECC has been attempted, the systems or at least
the interface circuit has to be modified to provide for the
necessary delays to perform a RMW cycle when the ECC
algorithm uses all of the data bits and generate check bits
such as in the 32/7 bit ECC algorithm.

In the application Ser. No. 08/187,859, filed Jan. 28, 1994
(Atty. Docket BC9-94-003), an improved ECC on SIMM is
disclosed which allows writing of single byte words and
which SIMMs are compatible with systems which do not
have wait states necessary for RWM cycles and wherein
parity of the written data is checked. If bad parity is detected
such bad parity is flagged on the read cycle. However, in this
disclosed system, the SIMM must "know" whether the
system is configured to check either "odd" parity or "even”
parity. Thus, a given SIMM is useful only in one or the other
type of parity systems. This requires not only two different
types of SIMMs, but knowledge on the part of the SIMM
user or installer which parity is being generated by the
system on which it is to be installed.

SUMMARY OF THE INVENTION

According to the present invention, a SIMM and method
of operating the SIMM are provided wherein the SIMM has
error correction code on board and is compatible with
computer systems not having error correction code and
which computer systems need not dynamically change their
wait states. The SIMM has logic circuitry to detect whether
the system is an "odd" parity or "even” parity system. Parity
of the written data is checked. If bad parity is detected, the
generated check bits are manipulated to show such bad
parity on the read cycle. Also, proper parity (i.e., either
"odd" or "even') is generated when the stored data is read
and delivered to the computer system where it can be
checked.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level diagram showing the interconnects
of a personal computer with a bus and an add-on memory
cards according to this invention;

FIG. 2 is a high-level schematic representation of a SIMM
card with ECC capabilities according to this invention
connected to a computer system bus;

FIG. 3A is a circuit diagram showing the logic for sensing
whether the system is generating "even” or "odd" parity;

5,541,941
3

FIG. 3B is a circuit diagram showing the logic for
checking parity on a write cycle;

FIG. 3C is a circuit diagram showing the logic for
"flipping' the check bits if bad parity is detected;

FIG. 4 is a timing diagram of certain signals used on the
write cycle;

FIG. 5 is a block diagram of the components to do a late
write function;

FIG. 6 is a timing diagram of the read cycle; and
FIG. 7 is a circuit diagram showing the logic for regen

eration of check bits, generation of syndrome bits, and
correcting single-bit errors and delay some multi-bit errors
and generating parity from the stored data.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The preferred embodiment will be described in the envi
ronment of an IBM Personal Computer using an Intel 80386
or 80486 microprocessor and with single in-line memory
(SIMMs) having dynamic random access memory (DRAM)
chips to provide and control the memory function. (ASIMM
is sometimes referred to as a DRAM card which means the
DRAM and all chips and circuits on the SIMM.) For the
purpose of this description, the system will be described as
it is used with a CPU capable of generating parity bits for the
data bytes that it writes and also reading and comparing
parity information read from storage. The CPU and its
associated system will not have error correction code logic
contained within the CPU system. Moreover, the CPU and
associated system generates parity bits, and it does not
matter whether the system generates "odd' parity or "even'
parity; i.e., the invention can be used with either type of
system.
As can be seen in FIG. 1, there is provided a CPU 10

which is connected to a CPU or system bus 12. A parity
generation and check unit 13 preferably is provided which
also generates or checks parity of data being either written
by or read by the CPU 10 to or from the bus 12. This can be
either "odd" or "even” parity. The CPU bus 12 may also
have local I/O ports 14, CACHE memory 16, and firmware
subsystems 18 associated therewith. A memory controller 20
is also connected to the system bus 12, coupling it to a
memory subsystem 22, and also normally to an expansion
bus 24 if one is present. The memory subsystem 22 is
typically comprised of one or more SIMMs 26, each of
which is provided with DRAM chips and ASIC chips having
error correction code. It is to be understood that the system
just described is illustrative of systems on which the present
invention can be used since one feature or aspect of the
present invention is the provision of a SIMM card having
parity checking and generations which can be utilized on
virtually any system CPU and system having the capacity of
receiving non-ECC SIMMs as add-on memory.
As indicated above, the CPU 10 is capable of writing data

onto the bus 12 which in turn will be conveyed to the correct
memory address in subsystem 22 by the memory controller
20. Upon writing data by the CPU 10, parity bits are
generated for each byte of information written to memory by
the parity generating and checking device 13 which also
checks parity on information read from the memory sub
system 22 during a read cycle to determine parity error as
will be described presently. The memory controller also
provides the necessary signals, such as Row Activation
Strobe (RAS), Column Activation Strobe (CAS), Write
Enable (WE), and on some systems Output Enable (OE),

10

15

20

25

30

35

40

45

50

55

60

65

4
and Byte Select (BS), etc., to the memory subsystem 22. The
memory controller reads and writes both data and parity to
each of the SIMMs 26, also as shown in FIG. 2. It should be
understood that this invention is applicable to a wide variety
of SIMMs having many different form factors. For example,
it can be used in conjunction with the following SIMM
forms: 72 pinx32; 72 pinx36; 168 pinx64; 168 pinx72; 88
pin DRAM card; 68 pin DRAM card; 68 pin PCMCIA card,
and 72 pin small outline DRAM card.
The error correction code logic includes logic which will

check the parity bits written by the CPU on a “write" cycle
and manipulate the check bits if bad parity is detected to
show bad parity when read. The logic will also regenerate
parity bits for each byte fetched on a read cycle.

Referring now to FIG. 2, a 72 pin SIMM 26 constructed
according to this invention is shown. The SIMM 26 has a
plurality of DRAMs 28a–28l. These are conventional 1MX4
DRAM chips which are commercially available. The 1MX4
DRAMs have 4 data I/O pins (DQ 1-4) and 2' addresses.
Thus, each series of 3 DRAM chips can receive 12 data bits,
i.e., 28a, 28b, 28c can each receive a 4-bit wide data field,
and thus together have a 12-bit wide bus. DRAM 28d, 28e
and 28falso each are 1MX4 and together form a 12-bit wide
data bus. The same is true for DRAMs 28g-28i, and DRAM
28j-28l. These type of DRAMs used on SIMMs are con
ventional for add-on memory modules and need not be
described further. Other DRAMs such as 256Kx4; 4MX4;
16MX4, etc., can also be used. If desired, the DRAMs can
be formed in a stacked configuration as shown in dotted
lines, thus having a second DRAM chip 30a-301, each
stacked respectively on the corresponding DRAM chip
28a-28l. This configuration as shown in dotted lines does in
fact provide a more dense memory if desired.

Also provided on the SIMM are 4 ASIC (application
specific integrated circuit) chips 32a, 32b, 32c and 32d. As
can be seen in FIG. 2, various lines coming from the
memory controller 20 bring the various signals such as RAS,
CAS and WE. Also, a bus between the SIMM 28 and the
memory controller 20 provides for interchange of data
between the SIMM26 and CPU 10. In this particular format,
a 36-bit wide bus is used which delivers 8 data bits and 1
parity bit to each ASIC chip 32a, 32b, 32c and 32d. The
ASIC chips 32a-32d provide, among other things, the logic
needed to perform the read and write functions of the data
to the DRAMs 26a-26l, and in so doing generate check bits,
the check bits being generated such that there are 4 check
bits generated for each byte of data. Each data byte (8bits)
together with the generated 4 check bits from the ASIC chip
32a are stored in DRAMs 28a, 28b and 28c, four bits in each
DRAM for a total of 12 bits, i.e., a single byte plus 4 check
bits. The same is true for ASIC chips 32b, 32c and 32d with
respect to DRAM 28d 28f, 28g-28i, and 28j-28l, respec
tively. Thus, it will be appreciated that the arrangement and
configuration of the SIMM 26 as shown allows a 4-byte data
word to be written and the ECC check bits generated
individually for each byte and each byte with its associated
check bits stand individually. Therefore, if during any write
cycle less than the entire four byte data word is being written
or rewritten, this can be done without doing a read-modify
write cycle which would be required if all of the data bytes
participated in writing all of the check bits such as is
common in the 32/7 algorithm. Hence, a wait state need not
be programmed into the computer system with its inherent
loss of performance, including the processor or memory
controller, but rather during each write operation check bits
are generated, and during each read operation check bits are
regenerated as syndrome bits and error correction made on
each byte individually on each read operation.

5,541,941
S

The logic and generation of the bits will be described with
respect to the ASIC chip 32a, in combination with the
DRAM chips 28a, 28b and 28c. It is to be understood that
the same operations take place with respect to the ASIC chip
32b and the DRAMs 28d, 28e and 28?, ASIC chip 32c in
combination with DRAMs 28g, 28h and 28i, and ASIC chip
32d in combination with DRAMs, 28i, 28k and 28l. Thus,
each ASIC receives 8 bits of data plus 1 parity bit on the
36-bit bus, and included in the logic of each ASIC chip 32
the circuitry generates 4 check bits from the 8 data bits
supplicd thereto with the check bits being generated spe
cifically with the data bits only of 1 byte of data.
The circuitry for generating check bits and also for

sensing the parity type of the system parity generation and
chccking the parity of the data is shown in FIGS. 3A-3C.
The data bits DQ0 through DQ7 and parity bit PQ8 are
received by ASIC chip 32a. The ASIC chip 32a senses and
checks parity as will be described presently, and the data bits
DQ0-DQ7 are supplied to a check bit generator 34b (FIG.
3B) which generates 4 check bits. The check bits are
supplied together with the 8 memory data bits to a 12-bit bus
linc36a, and the data bits are then stored in the DRAMs 28a,
28b, 28c. As indicated above, each DRAM is 1MX4 so that
4 of the data bits are stored in DRAM 28a, 4 data bits are
stored in DRAM 28b and the 4 check bits in DRAM 28c.
The crror correction algorithm is shown in Table I below. In
this table, the data bits which participate in generating each
check bit are shown and marked with an 'X'.

TABLE I

Data Bit 7 6 5 4 3 2 1 O

Chicck Bit 0 X X X X X
Check Bit X X X X X
Check Bit 2 X X X X
Check Bit 3 X X X X

The handling of the parity is as follows: since the ECC
docs not store a parity bit per se, each access must handle
parity bit generation on the fly. For read operations, the
parity bit is generated from the 8 data bits and is not affected
by the check bits unless an uncorrectable error occurs in
which case bad parity is flagged to the CPU. On a write
operation, parity is checked on each byte, every single write
cyclic. The reason for this can be understood by comparing
the ECC parity bit handling according to this invention with
a typical X36 SIMM's parity handling. In a typical X36
SIMM, the parity bit is just another "data” bit and, if bad
parity is sent on a store operation, it will remain in memory
as bad parity. On any subsequent read of that data, bad parity
will be presented to the system and recognized. In the ECC,
the parity bit is not used at all to generate the check bits and
is not stored. Therefore, if parity were not distinctly checked
and accounted for, a write with bad parity would be stored
in memory with correctly generated check bits for the
incorrect data pattern. Then, the subsequent access of that
data would see a new parity bit generated and the data would
be sent back to the system with correct parity on incorrect
data. The effect is to change a detectable error into an
undetectable one. Since this is clearly not a desirable effect,
the parity is checked on every write and if an error is
detected, the check bits are manipulated such that on the
subsequent read of that data, an uncorrectable error syn
dromc is generatcd and bad parity is guaranteed to be sent
back to the system, regaining the data integrity that is
required. The manipulation of the check bits in the preferred
cmbodiment is to "flip" each check bit to its inverted logic

O

15

20

25

30

35

40

45

50

55

60

65

6
state. As will be seen presently, this will have the effect of
causing the subsequently generated syndrome bits to show
an uncorrectable error.
The logic for sensing the system parity and for checking

the parity of the stored data word written, and inverting or
flipping the check bits if bad parity is detected is shown in
FIG. 3A. In the illustrated embodiment, the parity (i.e.,
"even” or "odd") of the system is sensed during initialization
and latched in for subsequent operations. As shown in FIG.
3A, a counter 49a is provided which has a reset input which
is actuated by power on reset (POR) signal 49b and also
receives signals from write operation detect logic 49c which
receives CAS, RAS and WR signals which in a certain
combination initiates a write operation. The output from the
counter 49a is supplied to a delay circuit 49d, which in the
disclosed embodiment is a 10 ns delay circuit. The output
from the delay circuit 49d is sent to a parity latch 49e. A
parity generator 49f is also provided which receives each
byte of data and generates a predetermined parity (either odd
or even) from the eight bits in the byte. In this embodiment,
even parity is generated, but it could be odd parity if desired.
The output parity bit (either a “1” or "0") is delivered to an
XOR gate 49g where it is XOR'd with the parity bit
generated by the CPU system parity generator 13. The
output from the XOR gate 49g (either a “1” or "0") is
supplied to an input of parity latch 49e along with the output
of the delay logic 49d. The output of the latch 49e is then
determinative of whether the system is "even” parity or
"odd" parity, the circuit having performed this determination
in the following manner.
When the power on Reset (POR) is activated indicating

that the system has been turned on, this signal (which is
generated by the chip in a conventional manner), together
with a signal from the detect write operation is supplied to
the counter 49c. This assures that the system is activated and
is in a write configuration. Preferably, the counter is a single
latch which counts to “1”, although counter numbers could
be as high as 2'. This count is to assure that valid data with
generated parity is being sent to the chip from the system.
The sensing is based on the assumption that the data
received during power up has "good' parity as received, be
it "odd" or "even” parity, and it is this sensed parity which
is used to subsequently determine whether there is good
parity or bad parity in any received byte, and also to generate
the correct (either "even" or "odd") parity during the read
cycle. At the same time, system data is being inputted to the
parity generator 49f which is set arbitrarily to generate either
"even” parity or "odd" parity. In the disclosed embodiment,
the parity generator 49f generates even parity. The output
from parity generator 49f and the system parity is inputted
to XOR gate 49g. If the system parity is even, then the XOR
gate 49g will generate a “0” indicating even parity; if the
system generated "odd" parity the output for XOR gate 49g
will be logic “1”, indicating the system is generating "odd'
parity. This output is inputted to parity latch 49e; and when
the latch is activated by the signal from the delay circuit 49d,
the output from the latch is Q if the system is odd parity and
Q if the system is generating even parity. This parity is
latched during the operation until the system is turned off.
The output from the latch 49e is used to flag or identify

bad parity on system bits by the logic shown in FIG. 3B. In
FIG. 3B showing the data write logic, each data eight-bit
word is supplied to the check bit generator 34a and also to
a parity generator 49h which generates even parity which is
supplied to XOR gate 49i. The parity bit (“0” or “1”)
supplied by the system is also supplied to XOR gate 49i. The
output of XOR gate 49i is supplied to XOR gate 49i. If the

5,541,941
7

system parity is even and correct, the output of XOR gate 49i
is a logic “0”, and if the system parity is odd and correct, the
output of XOR gate 49i is a logic “1”. XOR gate 49i XOR's
the output from XOR gate 49i with the setting output of the
latch 49e. If the system parity is set to even parity and the
correct parity is sensed by the XOR gate 49i, then the logic
“O'” is output from XOR gate 49j since logic “0’s” are
received from both the latch 49e and XOR gate 49i. Simi
larly, if the system parity is odd and the output of XOR gate
is good, parity is detected as a logic “1” and the input from
latch 49e to XOR gate 49i is also a logic “1”.

Thus, in either case, whether the system is generating
"odd" parity or "even” parity, the output from XOR gate 49i
is a logic “0” indicating good parity. Conversely, assuming
that this received system parity is bad parity, then if the
system is generating even parity it will be received as odd
parity, which will be different from the even parity which is
generated from the byte by parity generator 49h. These will
then be outputted from XOR gate 49i and inputted to XOR
gate 49l as a logic “1”. XOR gate 49i is receiving even parity
from the latch 49e as a logic “0” which causes the XOR gate
to output a logic “1” indicating bad parity, which will invert
or "flip' the check bits as previously described. Similarly, if
the system is generating "even' parity, the logic of the XOR
gates 49i and 49j will generate a logic “1” or bad parity if
bad parity is received from the system.
The circuit for inverting or flipping the check bits is

shown in FIG. 3C. As shown herein, each of the check bits
0–3 from the check bit generator 34a is inputted to one of
XOR gates 49k, 49l, 49m, 49n, respectively. Also, the output
from XOR gate 49i is inputted to each XOR gate 49k, 49l,
49m, 49n. If the output is bad parity, it will flip each of the
check bits from either a 'O' to "' or a '1' to a 'O'.
"Flipped' check bits indicate bad parity. Hence both
manipulated check bits and data bits are stored in DRAM
memory, with one type of manipulated check bits indicating
bad parity.
The output from parity latch 49e is also used in the

generation of parity on the read cycle as will be described
presently.
The timing for generating and storing the check bits

together with the data bits is crucial and can best be
understood by reference to the timing diagram shown in
FIG. 4. In FIG. 4, the timing diagram shows the RAS, CAS,
W/R to SIMM, WR DRAM, OE, the system data to SIMM
and system data and check bits to the DRAMs. W/R to
SIMM is the signal from the memory controller to the SIMM
and the WR to DRAM is the "late' write enable signal to
the DRAM. In order for the error correction code to operate
within a single write operation cycle of the SIMM without
requiring wait states and to be able to read the check bits,
generate syndrome bits and correct data, it is necessary that
the DRAMs 28a-28l operate at a faster speed than the
operating speed of the SIMM itself. SIMM architecture
standards are, in general, governed by JEDEC (Joint Elec
tronic Device Engineering Council) standards. Industry
standards for timing are based on the JEDEC architecture
standards. According to one conventional industry standard,
either a read operation or a write operation based on the
timing of the signals must be completed within 70 nanosec
onds. However, the JEDEC industry standards do not pre
suppose error correction taking place, and thus in order to
stay within this parameter, it is necessary to perform the
error correction function within the time limit normally
allocated to merely read and write and perhaps check parity.
To accomplish this, DRAM chips are selected which have a
faster operating speed than the speed of the SIMM by at least

10

15

20

25

30

35

40

45

50

55

60

65

8
about 10 nanoseconds. Thus, for a SIMM which has an
operating time or parameter of 70 nanoseconds for a read
operation or write operation, the DRAM must operate at
about 60 nanoseconds or faster.

Referring now to FIG. 4, after RAS goes low followed by
the WIR to SIMM going low when CAS goes low valid data
will appear on the bus from the memory controller 20 to
memory subsystem 22. To assure a read cycle does not
occur, the OE signal from ASIC chip 32a is used to tristate
the DRAM I/O's before the WR to SIMM goes low.
However, this data cannot be latched into memory until the
check bits are generated, which requires a certain finite
amount of time. Thus, to this end, as indicated above, the
late write cycle on the DRAM is used. This is done by
maintaining the WIR to DRAM line high for about 10
nanoseconds after CAS has gone low. During this 10 nano
seconds, check bits are being written. At the end of these 10
nanoseconds when the W/R to DRAM goes low, both the
data bits and the check bits are latched into DRAMs 28a,
28b, 28c as indicated before. This is shown in the system
data-to-SIMM and system data-to-DRAM lines wherein it is
shown that valid data write takes place when the CAS goes
low, but the valid data and check bits do not appear until the
write to DRAM line has gone low. These data bits and check
bits are latched in DRAMs 28a–28c.
The logic to perform this and to manipulate the check bits

for bad parity is shown in FIG. 5, wherein the WR to SIMM
line and the CAS lines are shown going to a latch 40. The
output from the latch 40 is supplied as a +write latched
together with CAS to an AND gate 42, the output of which
is supplied to a delay block 44 and thence to a driver 46 the
output of which is the delayed write to DRAM. Also, inputs
to the AND gate are a +not CBR (CAS before RAS) and also
a +CAS input. The +write latched with CAS is also supplied
to a second driver 48 so as to provide an OE signal to the
DRAM.
The reason for and functioning of this circuit are as

follows. Typically, the W/R to SIMM must be valid and
often only is valid before CAS falls and then held for about
a maximum of 15 ns after CAS falls. A straight delay on
WR to SIMM would not be wide enough to write data.
Hence, this is written to the latch 40, and when CAS falls,
the latch samples the signal on WR to SIMM line. The latch
40 maintains the data valid as long as CAS stays low.
The latch 40 is transparent, so what is impressed on the

input of the latch 40 appears at the output which is a write
enable as CAS goes low, and will stay as an output as long
as CAS is low. In this state, the data flows through the latch
40 and thus the need for the delay. The AND gate 42 operates
to block signals before CAS becomes active. The delay
block 44 provides the necessary time to generate the check
bits before the data is latched into memory. The time of
delay is less than 20 ns, typically 7-9 ns. The +CAS and not
CBR (CAS before RAS) signals are impressed on the input
of the AND gate 42 so that data will not be written on a
refresh cycle if CAS is low during a refresh mode done as
CBR. Thus, by utilizing the late write function of the
DRAMs together with a DRAM that is faster than the speed
of the SIMM, an 8-bit databyte can be written and checkbits
generated in the normal write operation of the SIMM.
The data when read on a read operation goes through logic

which generates new check bits, compares the newly-gen
erated check bits with the stored check bits and then writes
a syndrome table which is the well-known manner of error
correction of single-bit errors and detection of some multi
bit errors. This also has to be done within the time standard

5,541,941
9

set for the SIMM card. Once again, there is a need for the
fast DRAM, the DRAM being at least 10 nanoseconds faster
than the SIMM. The circuitry for the error correction code
is shown in FIG. 7 wherein the 8 bits of memory data
constituting a data byte are read from memory to a corrector
50. At the same time, the 4 stored check bits that have been
stored with the 8 bits of data memory are impressed on a
comparitor 52. The 8 memory data bits are also impressed on
a check bit generator 54 which regenerates the check bits
based on the stored 8 bits of data. These regenerated check
bits are also supplied to the comparitor 52 where the
originally-generated and stored check bits are compared
with the newly-generated check bits to generate syndrome
bits. The syndrome bit table and the errors which they
indicatc are shown in Table II below.

TABLE II

Action

Syndrome Toggle Toggle Error
3210 Bit in Error Data Parity Output

0000 Nonc N N N
000 Check Bit O N N Y
O) Check Bit 1 N N Y
00 Data Bit O Y Y Y
O100 Check Bit 2 N N Y
010 Data Bit 1 Y Y Y
010 Data Bit 2 Y Y Y
011 Data Bit 3 Y Y Y
1000 Check Bit 3 N N Y
1001 Data Bit 4 Y Y Y
010 Data Bit 5 Y Y Y
1011 Data Bit 6 Y Y Y
100 Data Bit 7 Y Y Y
101 Multi Bit N Y Y

Error
110 Multi Bit N Y Y

Error
l Multi Bit N Y Y

Error

The syndrome bits are generated by XORing each newly
generated check bit with the comparable stored check bit. If
they are all "O's, the syndrome bits as shown in the table
will be 0000, which will indicate that there is no error. Single
bit errors will show up as various syndrome bit patterns. It
will be noted that all single-bit errors can be detected and
hence corrected. Certain multi-bit errors can be detected
which are shown in the syndrome table as syndrome 1101,
1110 and llll. These all indicate multi-bit, and hence
uncorrectable, errors. (It should be noted that if desired a
4-bit ECC code for a single byte can be used to detect all two
bit errors but not correct them-but it cannot both correct all
single bit errors and detect all two bit errors.) With respect
to the parity handling, if a parity error on the write cycle was
detected, then the check bits generated were all "flipped.”
Hence, in this case, when the check bits are regenerated, and
not "flipped' during a read cycle the XORing will cause a
syndrome bit pattern of "1111" indicating an uncorrectable
crror. The syndrome bits are impressed on the corrector 50
and if any bit needs to be corrected because of a single-bit
error, that particular bit is "flipped'. The corrected data is
delivered out as system data in 8 bits out to the system bus.

During the read cycle parity is also generated so that any
error involving an odd number of bits occurring in the
transmission of the data bytes to the system can be detected
by the system as parity error. Again, it does not matter
whether the system is an "even' parity or "odd" parity
system. The logic for this is shown in FIG. 7, and includes
a parity generator 60 which receives each eight-bit data

5

10

15

20

25

30

35

40

45

50

55

60

65

10
word as it is received from memory and generates even
parity, which is inputted to XOR gate 62. The output of
parity latch 49e is also impressed on XOR gate 62. If the
latch 49e has sensed even parity, a logic “0” will be
impressed and the output of the XOR gate 62 will be logic
"0". If the sensed system parity by the latch 49his "odd", the
XOR gate 62 will generate a logic “1” which indicates "odd"
parity. In either case, the parity output from XOR gate is the
proper parity for the system as received by latch 49e. The
output of XOR gate 62 is inputted to XOR gate 64 along
with the output of comparitor 52. Block 60 generates (arbi
trarily) "even' parity for the memory read data. XOR gate
62 adjusts the parity if the SIMM has sensed that it is in an
"odd" parity system. XOR gate 64 inverts the correct parity
coming out of XOR gate 62 according to the "toggle'
column of Table II. Comparitor 52 provides the logic to do
the "toggle parity' column. The toggle logic performs in the
following manner. If the corrector 50 corrects a single bit
error in a data byte by flipping that bit, the generated parity
bit, which was generated using the uncorrected data, must
also be "flipped' by output to XOR gate from the comparitor
52. However if an error is detected in a check bit according
to the syndrome table, this will not affect the parity since
generating parity does not involve check bits. The final
correct parity (good or bad) is delivered to these memory
controller 20 from XOR gate 64. If a single bit or other odd
number of bit error occurs in transferring the data from the
SIMM to the system, or if uncorrectable error of read data
is detected, the system parity generating check 13 will detect
such an error in a conventional manner.
The signal diagram for this is shown in FIG. 6. When the

RAS goes low followed by CAS going low and the WR to
SIMM being high, data is read from the DRAMs and
because it can be read in 60 nanoseconds as shown on the
RAS line, there is an additional 10 nanoseconds available for
the generation of the additional check bits, the generation of
the syndrome bits and error correction which is shown as the
10 nanosecond delay. After the specified CAS access time
(TA), the data at the SIMM can be latched as corrected
data and impressed on the bus to the memory controller 20.
Thus it can be seen that by providing DRAMs which can

operate faster than the operation cycle time of the SIMM
according the JEDEC or whatever other standard to which it
has been manufactured, error correction can be performed
on each byte of data independently. Hence, such a SIMM
can be utilized in a wide variety of computer systems which
do not have the wait states necessary to perform read
modify-write operations and which write multi-byte data
words and which allows error correction to take place on the
add-on SIMM even when the computer system is not
configured to include error correction.

Again, it should be noted that the present invention is not
limited to the particular SIMM as shown and described, but
is applicable to SIMMs have various form factors. All that
is required is that the DRAM on the SIMM be able to operate
at least about 10 nanoseconds faster than the operating time
of a read or write operation of the SIMM. The error
correction function thus can be afforded to any system which
writes one or more data bytes irrespective of the width or
number of bytes in a data word. Of course, there is some
penalty for utilizing 4 bits of error correction for each 8 bits
of a data word; i.e., there is a somewhat increased amount
of storage space necessary as opposed to utilizing a 32/7 or
64/8 algorithm of generating check bits. However, the
advantage is that these SIMMs can be used in many systems,
including those which do not have the necessary wait states
for a read-modify-write and thus has wide applicability in

5,541,941
11

retrofitting systems which do not have error correction code
on board.

Also, it is to be understood that the invention can be
performed generating more than 4 check bits; e.g., 5 check
bits. In such a case, more types of errors can be detected
and/or corrected. This would require additional memory
space and logic for each check bit which could be supplied
by additional X1 DRAMs. At least 4 check bits are necessary
to correct all single bit errors.

In another embodiment, this technique can be used on
SIMMs which do not do either ECC or store parity bits to
make them compatible with systems that generate and check
either odd or even parity. In such an implementation, the
parity of this system is sensed and latched in the manner as
described above. This latched parity sense is then used in
combination with a parity generator which receives read
stored data to deliver data with correct parity to the system.
It should be noted however, that bad or corrupted data that
is stored will not be detected, and system will react as if it
were uncorrupted. What this embodiment does is allow the
system to 'see' some parity so it will operate, even with
some corrupted or bad data.

Accordingly, the preferred embodiment of the present
invention has been described. With the foregoing description
in mind, however, it is understood that this description is
made only by way of example, that the invention is not
limited to the particular embodiments described herein, and
that various rearrangements, modifications, and substitu
tions may be implemented without departing from the true
spirit of the invention as hereinafter claimed.
What is claimed is:
1. A SIMM memory adapted to be added as add-on

memory to a computer system, which system writes eight
bit bytes of data together with a parity bit and wherein said
system writes one of either "even" parity or "odd" parity,
and wherein said SIMM is configured to operate at a given
speed for read and write operations, comprising:

logic to sense whether the system is utilizing "odd' or
"even' parity; DRAM chips to store the data bytes in
said DRAM chips;

10

15

20

25

30

35

12
logic to read said data bytes from the DRAM; and
logic to write parity bits from said read data bytes

corresponding to the sensed parity type of said system;
whereby a given SIMM can be added to either an "even”

parity or "odd' parity system.
2. A computer system comprising:
a CPU and a bus having a SIMM memory added as

add-on memory to said computer system, said con
puter system configured to write eight bit bytes of data
together with a parity bit, and wherein said system
writes one of either even parity or odd parity,

said SIMM including:
logic to sense whether the system is utilizing "even' or

"odd" parity; DRAM chips to store said data bytes in
said SIMM;

logic to read said data bytes from the DRAM; and
logic to write parity bits from said read data bytes

corresponding to the sensed parity type of said system;
whereby a given SIMM can be added to either an "even”

parity or "odd" parity system.
3. A method of providing SIMM memory added as add-on

memory to a computer system which system writes eight-bit
bytes of data together with a parity bit; and wherein said
system utilizes either one of odd parity or even parity,
comprising the steps of:

sensing whether the system is writing odd parity or even
parity, storing said data bytes in DRAMS on said
SIMM;

reading said data bytes from the DRAM;
writing parity bits from said read data bytes correspond

ing to the sensed parity type of said system;
whereby a given SIMM can utilize either an "even' parity

or "odd" parity system.

ck k : : k

