
||||||||||III
US005524267A

United States Patent (19) 11 Patent Number: 5,524,267
Chin et al. (45) Date of Patent: Jun. 4, 1996

54) DIGITAL I/O BUS CONTROLLER CIRCUIT 5,150,328 9/1992 Aichelmann, Jr. 365/189.03
WITH AUTO-INCREMENTING, 5,166,903 11/1992 Aichelmann, Jr. 365/89.03
AUTO-DECREMENTING AND 5,187,795 2/1993 Balmforth et al. 395/800
NON-INCREMENTENG/DECREMENTING 5,214,760 5/1993 Hammond et al. 395/250
ACCESS DATA PORTS 5,235,689 8/1993 Baker et al. 395/309

75) Inventors: Arthur L. Chin, Boca Raton; Serafin
J. E. Garcia, Jr., Lake Worth, Don S.
Keener, Boca Raton; Gregory J.
Moore, Boca Raton; Stephanie P.
Payne, Boca Raton; Eric S. Stine,
Delray Beach, all of Fla.

73) Assignee: International Business Machines
Corporation, Armonk, N.Y.

(21) Appl. No.: 220,793

Primary Examiner-David L. Robertson
Attorney, Agent, or Firm-Calfee, Halter & Griswold; R. S.
Babayi

(57) ABSTRACT

A digital bus circuit having an Address/Data port select
decoder 170 in circuit communication with a Selector 194,
a DataPort Buffer/Register 181, and an Address Port register
208. The Selector 194 is in circuit communication with an
auto incrementor 216, an auto decrementor 218, and a
polling function. The incrementor 216 serves to automati
cally increment an address present in the Address port

22 Filed: Mar. 31, 1994 register 208. The decrementor 218 serves to automatically
6 decrement an address present in the Address port register

3. ts -395/823: 395/8 St.e 208. The polling function serves to reload the Address port
OAO M. we rve Pew saw on 3951837. 395/866 register 208 with the same address. The present invention
O allows a number of enhanced programming methods which

58 Field of Search 395/309, 39, permit input and output operations to be implemented with
395/823, 824, 835, 837, 867, 868, 866; fewer program code instructions. One of the programming

365/189.03 methods disclosed by the present invention is an enhanced
56) References Cited notA. E. a device's internal register by accessing

U.S. PATENT DOCUMENTS

4,177,512 12/1979 Moggia 395/866 13 Claims, 10 Drawing Sheets

ADDRESS
LINES 78 NPUT DAA

170 184
186 198

DAARO SEL. DATA

ADDRESS/DATA / T SEl DATA INC 2OO
PORT SELECT SEL DATA DEC S.SE SEL DAADEC 2O2

2O3

194
A1

CONTROL 76

CONTROL
CRCUT

179

81 DAA PORT
BUFFER/REGISTER

180

DATA
NES

|''SE ADDR |
r

S1 S2 S3 S4

SELECFOR C ADDRESS PORT
A3 REGISTER

A4 N210 208

U.S. Patent Jun. 4, 1996 Sheet 1 of 10 5,524,267

5,524,267 U.S. Patent

U.S. Patent Jun. 4, 1996 Sheet 3 of 10 5,524,267

46 44 42 CPU
52

BC MCPU

-o SCSI SMMS 54-n-- SCSI 58

BOS ROM ROM RAM
60 50 82 FLOPPY

o PRINTER
/O PKEYBOARD-MOUSE

84. SERAL
EEPROM

78 HEADPHONE

72 Tudo LNE N MSFENE
SPEAKER

O MD
DSP o CABLE

INST. RAMN74 DATA RAM 76 8O

O NATURAL MAGE
7O

MS; VFB DAC MONTOR

N 66 N Fig3 ex

U.S. Patent Jun. 4, 1996

90
LOAD DEVICE INERNAL
ADDRESS INTO ADDRESS

PORT (REGADDR) 92
WRITE DATA TO DAIA PORT

(DEVICE INTERNAL
REGISTER)

LOAD NEXT SUCCESSIVE 94.
DEVICE ADDRESS INTO

ADDRESS PORT 96
(REG ADDR + 1)

READ DAA FROM DATA POR
(DEVICE INTERNAL

REGISTER)

LOAD NEXT SUCCESSIVE 98
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR + 2) 1 OO

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSIVE 102
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR + 3)

WRITE DATA TO OAA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSME 106
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR + 4)

WRITE DATA TO DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSIVE 110
DEVICE ADDRESS NTO

ADDRESS PORT
(REGADDR + 5)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)

104

1 O8

Sheet 5 of 10 5,524.267

LOAD NEXT SUCCESSME 114
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR + 6)

WRITE DATA TO DATA PORT
(DEVICE INTERNAL

REGISTER)

116

LOAD NEXT SUCCESSME 118
DEVICE ADDRESS INTO

ADDRESS PORT 12O
(REGADDR + 7)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSME 122
DEVICE ADDRESS INTO

ADDRESS PORT 124
(REGADDR + 8)

WRITE DATA TO DATA PORT
(DEVICE tNTERNAL

REGISTER)

LOAD NEXT SUCCESSME 126
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR + 9)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)

128

LOAD NEXT SUCCESSME 130
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR + 10) 152

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)

Fig.6

U.S. Patent Jun. 4, 1996 Sheet 6 of 10 5,524.267

LOAD DEVICE INTERNAL
ADDRESS INTO ADDRESS

PORT (REGADDR)
WRITE DATA TO DATA PORT 136

(DEVICE INTERNAL
REGISTER REGADDR)

1.34

READ DATA FROM DATA PORT 138
(DEVICE INTERNAL

REGISTER REGADDR + 1)

READ DATA FROM DATA PORT 14O
(DEVICE INTERNAL

REGISTER REGADDR + 2)
WRITE DATA TO DATA POR 142

(DEVICE INTERNAL
REGISTER REGADDR + 3)

WRTE DATA TO DATA PORT 1 4-4
(DEVICE INTERNAL

REGISTER REGADDR + 4)

READ DATA FROM DATA PORT 1 4-6
(DEMCE INTERNAL

REGISTER REGADDR + 5)
WRITE DATA TO DATA PORT 148

(DEVICE INTERNAL
REGISTER REGADDR + 6)

READ DAA FROM DATA PORT 150
(DEMCE INTERNAL

REGISTER REGADDR + 7)
WRITE DATA TO DATA PORT 152

(DEVICE INTERNAL
REGISTER REGADDR + 8)

READ DAA FROM DATA PORT 154
(DEVICE INTERNAL

REGISTER REGADDR + 9)
READ DATA FROM DATA PORT 156

(DEVICE INTERNAL
REGISTER REGADDR + 10)

Fig7

U.S. Patent Jun. 4, 1996 Sheet 7 of 10 5,524.267

NSTRUCTION
NO.1

PRESERVE
AFTER ACCESS

AO | NEW REGISTER
ADDRESS

INSTRUCTION
NO.2

Ao NEW REGISTER
ADDRESS

A INCREMENT INSTRUCTION AFTER ACCESS
NO.3

PRESERVE
AFTER ACCESS

A2 DECREMENT
AFTER ACCESS

Fig7a

U.S. Patent Jun. 4, 1996

load device INTERNAll 32
ADDRESS INTO ADDRESS 250

PORT (REGADDR)
WRITE DATA TO DATA PORT

(DEVICE INTERNAL
REGISTER)

LOAD NEXT SUCCESSIVE 232
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR - 1) 234

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSIVE 236
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR 2) 28

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSIVE 24O
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR - 3)

WRITE DATA TO DATA PORT
(DEVICE INTERNAL

REGISTER)

242

LOAD NEXT SUCCESSIVE 244
DEVICE ADDRESS INTO

ADDRESS PORT 246
(REGADDR - 4)

WRITE DATA TO DATA PORT
(DEVICE INTERNAL

REGISTER)
OAD NEXT SUCCESSIVE 248
DEVICE ADDRESS NO

ADDRESS PORT
(REG ADDR - 5)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)

25O

Sheet 8 of 10 5,524.267

252 LOAD NEXT SUCCESSME
DEVICE ADDRESS INTO

ADDRESS PORT 254
(REGADDR - 6)

WRITE DATA TO DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSME 256
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR - 7)

READ DATA FROM DAA PORT
(DEVICE INTERNAL

REGISTER)

258

LOAD NEXISUCCESSME 260 DEVICE ADDRESS INTO
ADDRESS PORT
(REGADDR - 8)

WRITE DATA TO DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSME 264
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR - 9)

262

266

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)
LOAD NEXT SUCCESSME 268
DEVICE ADDRESS INTO

ADDRESS PORT
(REGADDR - 10)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER)

27O

Fig.8

U.S. Patent Jun. 4, 1996 Sheet 9 of 10

LOAD DEVICE INTERNAL
ADDRESS INTO ADDRESS

PORT (REG ADDR)
WRITE DATA TO DATA PORT

(DEVICE INTERNAL
REGISTER REGADDR)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER REG. ADDR - 1)
READ DATA FROM DATA PORT

(DEVICE INTERNAL
REGISTER REGADDR - 2)
WRITE DATA TO DATA PORT

(DEVICE INTERNAL
REGISTER REGADDR - 3)

WRE DATA TO DATA PORT
(DEVICE INTERNAL

REGISTER REGADDR - 4)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER REGADDR - 5)
WRITE DATA TO DATA PORT

(DEVICE INTERNAL
REGISTER REGADDR - 6)

READ DATA FROM DAA PORT
(DEVICE INTERNAL

REGISTER REGADDR - 7)
WRITE DATA TO DATA PORT

(DEVICE INTERNAL
REGISTER REGADDR - 8)

READ DATA FROM DATA PORT
(DEVICE INTERNAL

REGISTER REGADDR - 9)
L- READ DAA FROM DATA PORT

(DEVICE INTERNAL
REGISTER REGADDR - 10)

Fig.9

5,524,267

U.S. Patent Jun. 4, 1996 Sheet 10 of 10 5,524,267

LOAD DEVICE INTERNAL 158
ADDRESS INTO ADDRESS

PORT (REG ADDR)

READ DATA FROM DATA
PORT (DEVICE INTERNAL

REGISTER) 16O

CHECK
TO SEE IF

BIT IS
SET

p

162

Fig.10 YES

CONTINUE
PROGRAM

LOAD DEMCE INTERNAL 164
ADDRESS INTO ADDRESS

PORT (REGADDR)

READ DATA FROM DATA
PORT (DEVICE INTERNAL

REGISTER) 166

CHECK
TO SEE IF

BIT IS
SET

168

Fig.11
CONTINUE
PROGRAM

5,524.267
1.

DIGITAL I/O BUS CONTROLLER CIRCUIT
WITH AUTO-INCREMENTING,
AUTO-DECREMENTING AND

NON-INCREMENTING/DECREMENTING
ACCESS DATA PORTS

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to digital systems,

especially to such digital systems utilizing processor based
devices that are input/output intensive and, more specifically
to a digital I/O bus controller circuit with auto-incrementing,
auto-decrementing, and non incrementing/decrementing
access data ports.

2. Description of Prior Art
Personal Computer systems in general and IBM personal

computers in particular have attained widespread use for
providing computer power to many segments of today's
modern society. A Personal computer system can usually be
defined as a desk top, floor standing, or a portable micro
computer that is comprised of a system unit having a single
system processor and associated volatile and non-volatile
memory, a display monitor and/or other output devices, a
keyboard and/or other input devices, one or more diskette
drives, a fixed disk storage, and, optionally, a printer. One of
the distinguishing characteristics of these systems is the use
of a mother board or system planar to electrically connect
these components together. These systems are designed
primarily to give independent computing power to a single
user and are inexpensively priced for purchase by individu
als or small businesses. Examples of such personal computer
systems are IBM's PERSONAL COMPUTER AT and
IBM's PERSONAL SYSTEMI2.

These systems can be classified into two general families.
The first family, usually referred to as Family I Models, use
a bus architecture exemplified by the IBM PERSONAL
COMPUTER AT and the other Industry Standard Architec
ture (ISA) machines. The second family, referred to as
Family II Models, use IBM's MICRO CHANNEL bus
architecture exemplified by IBM's PERSONAL SYSTEM/
2

The Family I models typically have used the popular
INTEL 8088 or 8086 microprocessor as the system proces
sor. These processors have the ability to address one mega
byte of memory.
The Family II models typically use the high speed INTEL

80286, 80386, and 80486 microprocessors which can oper
ate in a real mode to emulate the slower speed INTEL 8086
microprocessor or a protected mode which extends the
addressing range from megabytes to gigabytes for some
models. In essence, the real mode feature of the 80286,
80386, and 80486 processors provide hardware compatibil
ity with software written for the 8086 and 8088 micropro
CCSSOS.

The development of personal computer systems is an
extremely competitive industry. There are many standards
by which personal computer systems are judged. Some of
the more important standards are affordability, expandabil
ity, processor type and speed, and overall system speed. One
of the most important criteria by which a computer system
is judged by is the system price compared to the overall
system speed.
A computer system's overall speed is commonly influ

enced by: a) the system processor's operating speed, b) the
input and output data transferrates within the system, and c)

10

15

20

25

30

35

40

45

50

55

60

65

2
the efficiency with which the instruction code is imple
mented.

Normally, the system processor has the largest influence
on the system's overall speed. A processor's speed is largely
determined by the time required for the processor to execute
a single program instruction, or alternatively, the number of
program instructions that the processor can execute in one
second. Fast processors, such as the INTEL80486, execute
instructions in the range of millions of instructions per
second. The term "millions of instructions per second” is
generally referred to by the acronym "MIPS".

Often, input and output devices have data transfer rates
that are slower than the system processor's. As a result, the
system processor must "wait” until the data transfer is
complete before it can proceed to execute the next program
instruction.

Typically, the system processor accomplishes this "wait”
through its programming code. A common method used is to
create a set of program instructions that will continuously
test an input/output status bit to determine if the data transfer
is complete. The instruction set usually creates a continuous
loop that tests this status bit repeatedly until a test condition
is satisfied.

The efficiency with which the instruction code is imple
mented also influences the computer system speed. Each
program instruction takes a finite time to be executed within
the system processor. Execution time generally varies
depending on what type of program instruction is being
executed. The standard listed for a particular system pro
cessor is generally the average time required for execution
of an instruction. Given that a system processor requires a
finite length of time to execute a single program instruction,
it can generally be said that the time to execute three
instructions will be less than the time required to execute
four instructions. Thus, if a function could be implemented
in three instructions instead of four, it would create the
desirable parallel effects of (a) a quicker execution time and
(b) a reduction in the amount memory necessary to store the
program.

Conventional processor based devices, generally, perform
input and output operations through a single address port
and a single data port. A program must first load the address
port with an address of a device's internal register and then
either read the register data, or write data to the register, via
the data port.
A system processor must, at times, also "poll” a device

register. The system processor"polls'adevice register when
it executes many reads from the register to determine if a
device's status has changed so that the program can continue
onto the next operation. In a conventional processor based
device, "polling' requires that the address port be reloaded
constantly with the address of the devices internal register
that is being "polled”.

In an input and output intensive computer system, many
read and write functions are necessary to transfer data within
the system. The amount of program code required to imple
ment such functions is directly related to the system's
hardware architecture. For a conventional system architec
ture with a single address port and a single data port, the
required number of program code instructions can be large.
The resulting effect on the computer system is three fold.
First, more memory will be required to store the program
code. Second, a larger memory requirement for the system
will increase the bill of materials and the system's price.
Third, the computer system's overall operating speed will be
reduced due to a large number of program instructions

5,524,267
3

required to be executed by the system processor for the data
transfers.

In Summary, conventional processor based computer sys
tems suffer from a number of disadvantages when they are
required to perform a large number of input and output
operations:

(a) They include a single address port and single data port;
(b) They require a large amount of memory to store the

program code required to perform the large number of input
and output operations and as a result increased costs in
providing more memory; and

(c) Intensive input and output operations require a system
processor to execute many program instructions, such as
"polling', which tend to reduce the overall computer sys
tem's speed.

SUMMARY, RAMIFICATIONS, AND SCOPE

The present invention is utilized to increase the efficiency
with which a computer system transfers information
between input/output devices and a system's processor and
local bus. The present invention includes a register pointer
in circuit communication with pointer generation circuitry
and a plurality of registers. The pointer generation circuity
is adapted to receive a first, second, third and forth address
from the system processor via an address bus. Accessing the
first address causes the pointer generation circuity to dec
rement the register pointer. Accessing the second address
causes the pointer generation circuitry to increment the
register pointer. Accessing the third register address causes
the current value stored in the register pointer to be pre
served. Accessing the fourth register address causes a new
value to be loaded into the register pointer. By accessing the
first, second, or third addresses, a programming instruction
that would normally be required to perform these functions
on the register pointer would be eliminated.

Accordingly, the reader will see that the present invention
can be used to provide a computer system that performs
input and output operations more efficiently by decreasing
the number of program instructions required for such opera
tions. By reducing the number of program instructions
necessary, the system's speed will be increased because the
system processor does not have to execute as many instruc
tions.

Several advantages of the present invention are:
a) To provide a digital I/O bus controller circuit that

comprises at least one non incrementing/decrementing data
port. This will allow polling of a device's internal register
without having to reload the device's internal register
address every time a poll operation is performed.

b) To provide a computer system that performs input and
output operations more efficiently by reducing the number of
program instructions required to implement these opera
tions. By reducing the number of program instructions
necessary, the computer system's speed will be increased
because the system processor does not have to execute as
many instructions.

c) To provide a computer system that requires less pro
gram code and memory to implement input and output
operations. By requiring less program code, the amount of
system memory (RAM and/or ROM) can be reduced. This
would improve the system performance, and allow the
system to be more competitively priced.

d) To provide a computer system that comprises a plu
rality of data ports to facilitate the computer system's input
and output operations.

10

15

20

25

30

35

40

45

50

55

60

65

4
Further advantages of the present invention will become

apparent from a consideration of the drawings and ensuing
description.

DRAWING FIGURES

FIG. 1 is a perspective view of a personal computer with
one digital I/O bus circuit comprising at least one non
incrementing/decrementing access data port,

FIG. 2 is an exploded perspective view of certain ele
ments of the personal computer of FIG. 1 including a
chassis, a cover, an electromechanical direct access storage
device and a planar board, illustrating certain relationships
among those elements;

FIG. 3 is a schematic view of certain components of the
personal computer of FIGS. 1 and 2;

FIG. 4 is a block diagram illustrating the general inter
connections of a digital I/O controller, incorporating the
present invention, with its relationship to a system processor
and system buses;

FIG. 5 is a block diagram illustrating the components and
interconnections therebetween of the present invention;

FIG. 6 is a flow chart of the prior art incrementing
program code listed in Table 2.

FIG. 7 is a flow chart of the enhanced incrementing
program code listed in Table 3.

FIG. 7a is a diagram illustrating the first three instructions
in the enhanced incrementing code listed in Table 3 and
diagrammed in FIG. 7.

FIG. 8 is a flow chart of the prior art decrementing
program code listed in Table 4.

FIG. 9 is a flow chart of the enhanced decrementing
program code listed in Table 5.

FIG. 10 is a flow chart of the prior art polling program
code listed in Table 6.

FIG. 11 is a flow chart of the enhanced polling program
code listed in Table 7.

DESCRIPTION OF THE LLUSTRATED
EMBODIMENT

Referring now to the drawings, and for the present to FIG.
1, a microcomputer embodying the present digital bus
circuit of the present invention is shown and generally
indicated at 10. As mentioned hereinabove, the computer 10
may have an associated monitor 14, keyboard 12 and printer
or plotter 16.

Referring now to FIG. 2, the computer 10 has a cover 18
formed by a decorative outer member 20 and an inner shield
member 22 which cooperate with a chassis 28 in defining an
enclosed, shielded volume for receiving electrically pow
ered data processing and storage components for processing
and storing digital data. At least certain of these components
are mounted on a multi-layer planar board 26 or mother
board which is mounted on the chassis 28 and provides a
structure for electrically interconnecting the components of
the computer 10 including those identified above and such
other associated elements as floppy disk drives, various
forms of direct access storage devices, accessory cards or
boards, and the like. As pointed out more fully hereinafter,
provisions are made in the planar board 26 for the passage
of input/output signals to and from the operating compo
nents of the microcomputer.

5,524,267
S

Still referring to FIG. 2, the chassis 28 has a base
indicated at 24, a front panel indicated at 30, and a rear panel
indicated at 32. The front panel 30 defines at least one open
bay (and in the form illustrated, four bays) for receiving a
data storage device such as a disk drive for magnetic or
optical disks, a tape backup drive, or the like. In the
illustrated form, a pair of upper bays 34, 36 and a pair of
lower bays 38, 40 are provided. One of the upper bays 34 is
adapted to receive peripheral drives of a first size (such as
those known as 3.5 inch drives) while the other bay 36 is
adapted to receive drives of a selected one of two sizes (such
as 3.5 and 5.25 inch) and the lower bays are adapted to
receive devices of only one size (3.5 inch). One floppy disk
drive is indicated at 15 in FIG. 1, and is a removable media
direct access storage device capable of receiving a diskette
inserted thereinto and using the diskette to receive, store and
deliver data as is generally known.

Prior to relating the above structure to the present inven
tion, a summary of the operation in general of the personal
computer system 10 merits review. Referring to FIG.3, there
is shown a block diagram of a personal computer system
illustrating the various components of the computer system
10 in accordance with the present invention, including
components mounted on the planar 26 and the connection of
the planar to the I/O slots and other hardware of the personal
computer system. Connected to the planar board 26 is the
system processor 42. While any appropriate microprocessor
can be used as the CPU 42, one suitable microprocessor is
the 80486 which is sold by Intel Corp. The CPU 42 is
connected by a high speed CPU local bus 44 to a bridge/
memory controller 46, to volatile random access memory
(RAM) 48 here shown as Single Inline Memory Modules
(SIMMs) and to BIOS ROM 50 in which is stored instruc
tions for basic input/output operations to the CPU 42. The
BIOS ROM 50 includes the BIOS that is used to interface
between the I/O devices and the operating system of the
microprocessor 42. Instructions stored in ROM 50 are
copied into RAM48 to decrease the execution time of BIOS.

While the present invention is described hereinafter with
particular reference to the system block diagram of FIG. 3,
it is to be understood that the present invention may be used
in conjunction with other hardware configurations of the
planar board. For example, the system processor could be an
Intel Pentium microprocessor.

Returning now to FIG. 3, the CPU local bus 44 (com
prising data, address and control components) also provides
for the connection of the microprocessor 42 with a math
coprocessor 52 and a Small Computer Systems Interface
(SCSI) controller 54. The SCSI controller 54 is connected
with Read Only Memory (ROM) 56, RAM 58, and suitable
external devices of a variety of types as facilitated by the I/O
connection indicated to the right in the Figure. The SCSI
controller 54 functions as a storage controller in controlling
storage memory devices such as fixed or removable media
electromagnetic storage devices (also known as hard and
floppy disk drives respectively), and other types of storage
devices such as electro-optical drives and tape drives.
The bridge/memory controller (hereinafter bridge) 46

couples the CPU local bus 44 with an I/O bus 60. By means
of the bus 60, the bridge 46 is coupled with an optional
feature bus such as a Peripheral Component Interconnect
(PCI) bus having a plurality of I/O slots for receiving
Peripheral Component Interconnect standard adapter cards
62 which may be further connected to an I/O device or
memory (not shown). The I/O bus 60 includes address, data,
and control components.

Coupled along the I/O bus 60 are a variety of I/O
components such as a video signal processor (VSP) 64

10

15

20

25

30

35

40

45

50

55

60

65

6
which is associated with video RAM (VRAM) for storing
graphic information (indicated at 66), and for storing image
information (indicated at 68). Video signals exchanged with
the processor 64 may be passed through a Digital to Analog
Converter (DAC) 70 to a monitor, video frame buffer (VFB)
or other display device. Provision is also made for connect
ing the VSP 64 directly with what is here referred to as a
natural image input/output, which may be the form of a
video recorder/player, camera, etc. (not shown). The I/O bus
60 may also be coupled with a Digital Signal Processor
(DSP)72 which has associated instruction RAM 74 and data
RAM 76 available to store software instructions for the
processing of signals by the DSP 72 and data involved in
such processing. The DSP 72 provides for processing of
audio inputs and outputs by the provision of an audio
controller 78, and for handling of other signals by provision
of an analog interface controller 80. Lastly, the I/O bus 60
is coupled with a input/output controller 82 with associated
Electrical Erasable programmable Read Only Memory
(EEPROM) 84 by which inputs and outputs are exchanged
with conventional peripheral devices including floppy disk
drives, a printer 16, keyboard 12, amouse or pointing device
(not shown), and a serial port.
The present invention is utilized to increase the efficiency

with which a computer system transfers information
between input/output devices and a system's processor and
local bus. In broad terms, the present invention includes a
register pointer in circuit communication with pointergen
eration circuitry and a plurality of registers. The pointer
generation circuity is adapted to receive first, second, third
and forth addresses from a system processor via an address
bus. A software programmer may access any of the four
addresses through programming code, or a compiler may be
developed that would compile code to utilize the addresses.

Accessing the first address, which is assigned to the Auto
decrementing data port, causes the pointer generation cir
cuity to decrement the register pointer. Accessing the second
address, which is assigned to the Auto incrementing data
port, causes the pointer generation circuitry to increment the
register pointer. Accessing the third register address, which
is assigned to the Polling data port, causes the current value
stored in the register pointer to be preserved. Accessing the
fourth register address causes a new value to be loaded into
the register pointer. By accessing the first, second, or third
addresses, a program instruction that would normally be
required to load the register pointer to the next address, or
preserve the current address, is eliminated.
One preferred embodiment of this feature is shown in

FIG. 4 as being incorporation into an I/O controller 86 of a
computer system. The I/O controller 86 is interposed
between two I/O buses, 60 and 88. The I/O bus 60 is a
Peripheral Component Interconnect (hereinafter PCI) stan
dard bus. The I/O bus 60 connects the I/O controller 86 to
the bridge/memory controller 46 of a computer system. The
bridge/memory controller 46 is electrically connected to a
system processor 42 through a system processor local bus
44

The I/O bus controller 86 is electrically connected to
various I/O devices 89 (such as modems, hard disk control
lers, serial interfaces, etc. (not shown)), through a second
I/O bus 88. In the preferred embodiment, the second I/O bus
88 is a Small Computer System Interface (SCSI) bus. The
I/O bus controller 86 would serve to translate I/O informa
tion between the two I/O buses, 60 and 88, and thereby allow
the system processor 42 to communicate with devices on
dissimilar bus standards. While the preferred embodiment
illustrates a single I/O bus controller 86, a plurality of I/O

5,524,267
7

bus controllers comprising the present invention can be
incorporated into a computer system to control other buses
that are not compatible with the main I/O bus 60.

FIG. 5 is a functional block diagram of the digital I/O bus
controller circuit of the present invention. Address lines 178
from the system processor 42 (not shown in FIG. 5) are
electrically connected to an Address/Data Port Select
decoder 170. Design and implementation of decoder circuits
are well known to those skilled in the art. The Address/Data
Port Select decoder 170 decodes an incoming address on the
address lines 178 to determine whether a Polling data port,
an Auto incrementing data port, an Auto Decrementing data
port, or a Write Address port is being accessed as will be
described presently.
A Control element 179 is electrically connected to the

Address/Data Port Select decoder 170 by means of a plu
rality of Control lines 176. The Control element 179 serves
to control the timing sequences within the circuitry of the
present invention. The Control element 179 utilizes a state
machine that produces synchronizing logic from a host
system processor's control, read, and write cycles to various
data ports. The synchronizing logic ensures that an address
is not incremented, decremented, or polled before a particu
lar data port is accessed. The control lines 176 are electri
cally connected (by connections not shown) to all circuit
elements to ensure proper synchronization.
The Address/Data Port Select decoder 170 is electrically

connected to a three-input OR gate 198 and a Data Port
Buffer/Register 181 by means of a Select Data poll line 184,
a Select Data increment line 186, a Select Data decrement
line 188, and a Select address line 190. Decoding of the
address lines 178 by the Address/Data Port Select decoder
170 will allow a desired data or address port to be accessed
based on its unique address. The Data Port Buffer/Register
181 is electrically connected to the system processor 42 (not
shown in FIG. 5) via a plurality of Data lines 180.
The Data Port Buffer/Register 181 is connected to a

plurality of device internal registers 225 by means of a
plurality of Output data lines 226. The Data Port Buffer/
Register 181 contains input and output registers that store
data for the Polling data port, Auto incrementing data port,
the Auto decrementing data port, or the write address port.
The select lines, Select Data poll 184, Select Data increment
186, Select Data decrement 188, and Select address 90
serve to control which particular data port's (i.e. the Polling
data port, the Auto incrementing data port, or the Auto
decrementing data port, or the address port) register is being
written to or read from. Design of input and output registers
and control (or "enabling') circuits is well known to those
skilled in the art.
A Delay for Cycle End control element 202 is electrically

connected to the three-input OR gate 198 via a Select data
line 200. The Delay for Cycle End control element 202
causes a wait to occur before another address is loaded and
latched into the address port. This wait is to ensure that a
data port has been accessed (read from or written to)
completely before another input or output operation is
performed. The Delay for Cycle End control element is
achieved via the Control element 179. The Delay for Cycle
End control element 202 is electrically connected to a
two-input OR gate 204 via a Cycle complete line 203. The
Cycle complete line 203 changes states when the Control
element 179 determines that a particular data port access
cycle has been completed.
The two-input OR gate 204 is electrically connected to the

Address/Data Port Select decoder 170 via a Select address

O

15

20

25

30

35

40

45

50

55

60

65

8
line 190. The two-input OR gate 204 serves to control a
register pointer 298. The register pointer 298 comprises an
writable Address Port register 208 and an Address decoder
212. The two-input OR gate 204 controls the Address Port
register 208 through a Load Address line 206. Whenever a
new address is required by a program instruction and the
Delay for Cycle End control element 202 indicates an
input/output operation is complete, the Load Address line
206 is driven high, causing the Address Port register 208 to
be enabled and thereby loaded with a new register address.
The Address Port Register 208 is electrically connected to

an Address Decoder 212 by means of a plurality of Internal
Register address lines 214. The Address Decoder 212
decodes the register address stored in the Address Port
Register 208 and causes a plurality of Select Internal Reg
ister Address lines 224 to become active with the register
address value, thereby allowing the register addressed to be
read from or written to via the Output data lines 226. The
Select Internal Register Address lines 224 are electrically
connected to the internal registers 225.
The Internal Register Address lines 214 connect the

Address Port Register 208 to pointer generation circuity
296. The pointer generation circuitry 296 comprises a Selec
tor element 194, an Increment element 216, and a Decre
ment element 218. The Internal Register Address lines 214
serve to feedback a current device's internal register address
into the pointer generation circuity 296 so that the address
may be incremented, decremented, or preserved.
The device's register address which is currently loaded in

the register pointer 298 is fed into the Increment element 216
by the Internal Register Address lines 214. The Increment
element 216 will increment the device register address by a
value of one such as by Up/Down counters, decade counters,
count-by-n circuits (where n=1 to any number), or other
similar circuits. The Increment element 216 is electrically
connected to the Selector 194 via a plurality of Increment
Address lines 220. The Increment Address lines 220 are
connected to input A3 on the Selector 194.
The device's register address which is currently in the

register pointer 298 is also fed into the Decrement element
218 by the Internal Register Address lines 214. The Decre
ment element 218 will decrement the device register address
by a value of one. A plurality of Decrement Address lines
222 electrically connect the Decrement element 216 to the
Selector 194. The Decrement element 216 may implemented
by Up/down counters, decade counters, subtract-by-n cir
cuits (where n=1 to any number), or other similar circuits.
The Decrement Address lines 222 are electrically connected
to input A2 on the Selector 194. The Selector 194 is coupled
to the Data port buffer/register 181 via a plurality of Data
port buffer/register output lines 183 at input A1. The Data
port buffer/register lines 183 also couple the Data port
buffer/register 181 to the device internal registers 225
whereby input data to the device internal registers 225 is
transferred. Design and Implementation of Selector ele
ments are well known to those skilled in the art.
The Address port register 208 is electrically connected to

the Selector 194 address input A4 via the Internal Register
Address lines 214. When Selector 194 input S4 is driven
high, the address present on the Internal Register Address
lines 214 is passed-through Selector 194 and fed into the
Address port register 208.
The Selector 194 is controlled by four select lines: the

Select Data Poll line 184, Select Data Increment line 186,
Select Data Decrement line 188, and the Select Address line
190. In other embodiments, the Selector may have more or

5,524.267
9

less then four select lines depending on the number of
functions desired to be selected. For example, the pointer
generation circuity 296 may comprise of 2 or more incre
ment elements which will increment a given address by
separate values (i.e. one element will increment by a value
of one (1) and the other will increment by a value of two (2)).
Similarly, the pointer generation circuitry may comprise of
2 or more decrement elements in combination with the
increment elements.

OUT

OUT

OUT

OUT

OUT
OUT
OUT
OUT
OUT

OUT
OUT
OUT

OUT
OUT
OUT

OUT

The Selector 194 is electrically connected to the Address
Port Register 208 via a plurality of Selector Output address
lines 210. The Selector lines 184, 186, 188, 190, designate
which address input lines 183, 216, 220, or 222, will be
placed on the Selector Output address lines 210 (See Table
1 for Selector 194 output definitions).

TABLE 1.

Selector Input

Selector Output S1 S2 S3 S4

A1
A2
A3
A4 : i

Where:
sHI
O-LOW
S1=Select Address
S2=Select Decrement
S3=Select Increment
S4=Select Poll
A1=New Address
A2=Decremented Address
A3=Incremented Address
A4=Polled Address

ADDR PORTREGADDR

DATA PORTAL

ADDR PORTREG. ADDR-1

AL, DATA PORT

40

45

50

55

60

65

10
To facilitate an understanding of the operation, advan

tages and ramifications of the present invention, a discussion
of the prior art programming methods will be reviewed first,
followed by a description of an enhanced programming
method presented by the present invention. A typical prior
art method of programming consecutive incremental input
and output functions is illustrated in machine independent
program code in Table 2 and its associated flow chart is
diagrammed in FIG. 6.

TABLE 2

Prior Art Incrementing Code

load device internal address into
address port
write data to device internal
register
load device internal address into
address port
read data from device internal
register

ADDR PORTREGADDR-2
AL, DATA PORT
ADDR PORTREG. ADDR-3
DATA PORT, AL
ADDR PORTREGADDR-4
DATA PORT, AL
ADOR PORTREG. ADDR-5
AL, DATA PORT
ADDR PORTREGADDR-6
DATA PORT, AL
ADDR PORTREG. ADDR-7
AL, DATA PORT
ADDR PORTREGADDR-8
DATA PORT, AL
ADDR PORTREGADDR-9
AL, DATA PORT
ADDR PORTREGADDR-10
AL, DATA PORT

The prior art program code consists of a number of
instructions that load a device's internal register address into
an address port and subsequently read or write data to the
device internal register to which the address port is pointing.

In FIG. 6, a first program element 90 loads a device's
internal register address (i.e. REG. ADDR) into a address
port register. A second program element 92, writes data to
the device's internal register (i.e. REG. ADDR), that is
pointed to by the address port register, by storing data in an
output data port register. This data is then sent to the device
internal register whose address is currently loaded in the
address port register. To read a next consecutive device
internal register (i.e. REG. ADDR-1), the program needs to
load the device's internal register address (i.e. REG
ADDR-1) into the address port register. This is accom
plished via program element 94. The program can now read,
by means of a read data instruction shown in program
element 96, the device's internal register (i.e. REG
ADDR-1) via a data port register.

Similarly, program elements 98, 102, 106, 110, 114, 118,
122, 126, and 130 all serve to load the next consecutive
device internal register (i.e. REG. ADDR-2 to REG
ADDR-10) into the address port. Program elements 100,
104, 108, 112, 116, 120, 124, 128, and 132 all either write
or read the device's internal register that a previous "load”
program element has loaded into the address port. Table 2
and FIG. 6 illustrate that twenty-two (22) program instruc
tions, or elements, are required to perform eleven (11) I/O
operations (five (5) write operations and six (6) read opera
tions). Furthermore, the prior art programming method

5,524,267
11

illustrated in Table 2 and FIG. 6 demonstrates that the
address port must be loaded a total of ten (10) times, once
for each read or write operation.
The present invention comprises an auto incrementing

data port. Whenever the auto incrementing data port is read
from or written to, the address port will automatically
increment to a next address. Through the use of the auto
incrementing data port, the number of address port load
instructions can be reduced when performing consecutive
read or write operations. This allows for an enhanced
programming method that provides faster execution time
and requires less memory. An enhanced programming
method of the present invention is shown in Table 3. A flow
chart of the program code in Table 3 is diagrammed in FIG.
7. The enhanced programming method shown in Table 3 is
illustrative only and should not be interpreted as limiting.
The enhanced programming method of the present invention
shown in Table 3 and diagrammed in FIG. 6 is applicable to
as many incremental input/output operations as a program
requires.

TABLE 3

Enhanced incrementing code utilizing the Auto incrementing Data port

OUT ADDR PORTREG. ADDR gload device internal address into
address port

OUT DATA PORT, AL write data to device internal
register

IN AL, DATA PORT read data from device internal
register

N AL, DATA PORT
OUT DATA PORT, AL
OUT DATA PORT, AL
IN AL, DATA PORT
OUT DATA PORT, AL
IN AL, DATA PORT
OUT DATA PORT, AL
IN AL, DATA PORT
IN AL, DATA PORT

Note: DATA PORT is the Auto incrementing data port's address.

In all of the Operational Descriptions that follow, the
initial states of each line is LOW and all of the address lines
are empty (i.e. there is no initial address present). Also,
Positive Logic (i.e. the Positive or HI state is equivalent to
a logic level of "1" and the more Negative or LOW state is
equivalent to a logic level "0") is employed to assist in the
understanding of the present invention's operation. The use
of Positive logic should not be interpreted as limiting, for
Negative Logic (i.e. the Positive or HI state is equivalent to
a logic level of “0” and the more Negative or LOW state is
equivalent to a logic level of “1”) can also be used in the
description and implementation of the preferred embodi
nent.

Referring now to FIGS. 5 and 7, a first program element
134 loads a device's internal address register (i.e. REG
ADDR) into an address port. The Address/Data Port select
decoder 170 decodes the incoming address and makes the
Select Address line 190 change state from LOW to HI. When
the Select address line 190 goes to HI, it causes an address
stored (i.e. REG. ADDR) in the Data port buffer/register
181 to appear on the Data port buffer/register output lines
183 and thereby at Selector 194 input A1. The Select
Address line 190, currently still in the HI state, is also fed
into select input S1 on the Selector 194 and the two-input
OR gate 204. When selectinput S1 on the Selector 194 is HI,
it causes the address present at address input A1 (i.e.
REG ADDR) to appear at the output of Selector 194 on the
Selector Output Address lines 210 which feed the Address

5

10

15

40

45

50

55

60

65

12
Port Register 208. The device's internal register address (i.e.
REGADDR) now remains present on the Selector Output
Address lines 210. Because the Select Address line 190 is
HI, the Load Address line 206 of the Two-input OR gate 204
will go HI. When the Load Address line 206 is driven HI, it
will cause the address present (i.e. REG. ADDR) on the
Selector Output Address lines 210 to be loaded and latched
into the Address Port Register 208. Once the Address Port
Register is loaded, the device's internal register address (i.e.
REG. ADDR) is then fed into the Address Decoder 212 via
the Internal Register Address lines 214 where it is decoded
and placed on the Select Internal Register Address lines 224
for the following read or write operation.
The Internal Register Address lines 214 feed the device

internal register address (i.e. REG. ADDR) to Selector 194
address input A4, the Increment element 216, and the
Decrement element 218. The devices internal register
address (i.e. REG. ADDR) is fed into the Increment ele
ment 216 by the Internal Register Address lines 214 where
it is incremented by one (i.e. from REG. ADDR to REG

ADDR-1) and fed into the Selector 194 address input A3 via
the Increment Address lines 220. The device internal register
address present at Selector 194 address input A3 is now
REG ADDR--1. The devices internal register address (i.e.
REG. ADDR) is also fed into the Decrement element 268
by the Internal Register Address lines 194 where it is
decremented by one (1) (i.e. from REG. ADDR to REG
ADDR-1) and fed into the Selector 194 address input A2 via
the Decrement Address lines 222. The device internal reg
ister address present at Selector 194 address input A2 is now
REG. ADDR-1.
A second program element 136 writes data to the device's

internal register (i.e. REG. ADDR) by writing to the auto
incrementing data port. The Address/Data Port Select
decoder 170 decodes the incoming auto incrementing data
port address and causes the Select Data Increment line 186
change from a LOW state to a HI state. The Select Data
Increment line 186 is fed to one of three inputs on the
Three-input OR gate 198 and to select input S3 on the
Selector 194. The HI state of the Select Data Increment line
186 causes the Select Data line 200 to change from a LOW
state to a HI state. When the Select Data line 200 is HI,
devices on the I/O bus are notified that the data lines are
available with data to be written to the device's internal
register (i.e. REG. ADDR). The Delay for Cycle End func
tion 202 now waits for the Auto incrementing data port
access to be complete before the next address is loaded and
latched into the Address port register 208.

5,524,267
13

Since the Select Data Increment line 186 is H at select
input S3 (as a result of writing to the Auto incrementing data
port) of the Selector 194, the Selector Output Address lines
210 contain the incremented device register address present
at address input A3 (i.e. REG. ADDR--1); See Table 1. The
incremented device register REG. ADDR-1 is now at the
input of the Address Port Register 208. The Address Port
Register 208 will not load the incremented device register
address (i.e. REG. ADDR-1) until the Load Address line
206 changes states from LOW to HI.
When the Auto incrementing data port access is complete,

the Cycle Complete output line 203 changes from a LOW to
a HI state and is fed into the Two-input OR gate 204. This
causes the Load Address line 206 at the output of the
Two-input OR gate 204 to change from a LOW to a HI state.
This enables the Address Port Register 208 to load the
incremented device register address (i.e. REG. ADDR-1)
present on the Selector Output Address line 210. The
Address Decoder 212 decodes the incremented device's
register address (i.e. REG. ADDR--1) and places it on the
Select Internal Register Address lines 224 for use in a next
read or write operation.
The Internal Register Address lines 214 now feed the

device internal register address (i.e. REG. ADDR-H1) to
Selector 194 address input A4, the Increment element 216,
and the Decrement element 218.
The device's internal register address (i.e. REG. ADDR--

1) is fed into the Increment element 216 by the Internal
Register Address lines 214 where it is incremented by one
(1) (i.e. from REG. ADDR-1 to REG. ADDR-2) and fed
into the Selector 194 address input A3 via the Increment
Address lines 220. The device internal register address
present at Selector 194 address input A3 is now REG
ADDR-2.
The devices internal register address (i.e. REG. ADDR--

1) is also fed into the Decrement element 218 by the Internal
Register Address lines 214 where it is decremented by one
(1) (i.e. from REG. ADDR-1 to REG. ADDR) and fed into
the Selector 194 address input A2 via the Decrement
Address lines 222. The device internal register address
present at Selector 194 address input A2 is now REG
ADDR.
A third program element 138 reads data from the device's

next consecutive internal register (i.e. REG. ADDR-1)
without having to execute a load address instruction. This is
accomplished by reading data from the Auto incrementing
data port. The Address/Data Port Select decoder 170
decodes the incoming auto incrementing data port address
and causes the Select Data Increment line 186 go from LOW
to HI. The Select Data Increment line 186 is fed to one of
three inputs on the Three-input OR gate 198 and to select
input S3 on the Selector 194. The HI state of the Select Data
Increment line 186 causes the Select Data line 200 to go to
the HI state. When the Select Data line 200 is HI, devices on
the I/O bus are notified that the data lines are available with
data from the data port registers to be written to the device's
internal register (i.e. REG. ADDR-1). The Delay for Cycle
End function 202 now waits for the Auto incrementing data
port access to be completed before the next address (i.e.
REG ADDR-2) is loaded and latched into the Address port
register 208.

Since the Select Data Increment line 186 is HI at select
input S3 (as a result of reading from the auto incrementing
data port) of the Selector 194, the Selector Output Address
lines 210 contain the incremented device register address
present at A3 (i.e. REG. ADDR-2); See Table 1. The
incremented device register REG. ADDR-H2 is now at the

O

15

20

25

30

35

40

45

50

55

60

65

14
input of the Address Port Register 208. The Address Port
Register 208 will not load the incremented device register
address (i.e. REG. ADDR-2) until the Load Address line
206 changes states from LOW to HI.
When the Auto incrementing data port access is com

pleted, the Cycle Complete output line 203 changes from a
LOW to a HI state and is fed into the two-input OR gate 204.
This causes the Load Address line 206 at the output of the
two-input OR gate 204 to change from a LOW to a HI state.
This enables the Address Port Register 208 to load the
incremented device register address (i.e. REG. ADDR-H2)
present on the Selector Output Address line 210. The
Address Decoder 212 decodes the incremented device's
register address (i.e. REG. ADDR-2) and places it on the
Select Internal Register Address lines 224 for use in the next
read or write operation.
The Internal Register Address lines 214 feed the device

internal register address (i.e. REG. ADDR-2) to Selector
194 address input A4, the Increment element 216, and the
Decrement element 218.
The device's internal register address (i.e. REG. ADDR

2) is fed into the Increment element 216 by the Internal
Register Address lines 214 where it is incremented by one
(1) (i.e. from REG. ADDR-2 to REG. ADDR-3) and fed
into the Selector 194 address input A3 via the Increment
Address lines 220. The device internal register address
present at Selector 194 address input A3 is now REG
ADDR-3.
The devices internal register address (i.e. REG. ADDR

2) is also fed into the Decrement element 218 by the Internal
Register Address lines 214 where it is decremented by one
(1) (i.e. from REGADDR-2 to REG. ADDR-1) and fed
into the Selector 194 address input A2 via the Decrement
Address lines 222. The device internal register address
present at Selector 194 address input A2 is now REG
ADDR--1.
The next read and write operations, program elements

140, 142,144, 146, 148, 150, 152, 154, and 156, to the next
nine (9) consecutive device internal registers (i.e. REG
ADDR-2 to REGADDR-10) are performed in a similar
manner as described for REG. ADDR and REG. ADDR--1.
As described above, the address port is automatically incre
mented each time the auto incrementing access data port is
read or written to via a program instruction.
A summary of the enhanced incrementing code is shown

in simplified form in FIG. 7a. Instruction No. 1 is equivalent
to program element 134 (in FIG. 7) and has the effect of
loading a new device register address into the Pointer.
Instruction No. 2 is equivalent to program element 136 (in
FIG. 7) has the effect of writing data to the register (i.e. R)
that the Pointer is addressing and after the write access is
complete, the Pointer is incremented to the next register
address (i.e. R+1). Instruction No. 3 is equivalent to program
element 138 (in FIG. 7) and has the effect of reading data
from the register (i.e. R+1) that the Pointer is addressing and
after the read access is complete, the Pointer is incremented
to the next register address (i.e. R+2). After each read/write
access is complete, the Pointer continues to increment to the
next register address, as long as the auto incrementing data
port is addressed by the software.

Referring to Table 2 and FIG. 6, the conventional incre
menting programming method requires a total of ten (10)
address port load instructions to implement five (5) write
and six (6) read operations, for a total of twenty (22)
program instructions. The enhanced programming method
of the present invention shown in Table 3 and FIG. 7
requires one (1) address port load instruction and five (5)

5,524,267
15

write and (6) read operations, for a total of 12 program
instructions. The enhanced programming method of the
present invention reduces the required number of instruc
tions by approximately 45%.
A prior art method of programming consecutive decre

mental input and output functions is illustrated in machine
independent program code in Table 4 and its associated flow
chart is diagrammed in FIG. 8. The program code consists
of a number of instructions that load a device's internal
register address into an address port and subsequently read
or write data to the device internal register that the address
port is pointing to.

TABLE 4

Prior Art Decrementing code

O

16
decrement to a next address. Through the use of the auto
decrementing data port, the number of address port load
instructions can be reduced when performing consecutive
read or write operations. This allows for an enhanced
programming method that provides faster execution time
and requires less memory. The enhanced programming
method of the present invention implementing the prior art
programming method of Table 4 and FIG. 8 is shown in the
enhanced programming method Table 5 and is diagrammed
in FIG. 9.

OUT ADDR PORTREG. ADDR
address port

OUT DATA PORT, AL
register

OUT ADDR PORTREG. ADDR-1
address port

IN AL, DATA PORT
register

OUT DATA PORTREG. ADDR-2
IN AL, DATA PORT
OUT ADDR PORTREGADDR-3
OUT DATA PORT, AL
OUT ADDR PORTREGADDR-4
OUT DATA PORT, AL
OUT ADDR PORTREG. ADDR-5
IN AL, DATA PORT
OUT ADDR PORTREGADEDR-6
OUT DATA PORT, AL
OUT ADDR PORTREGADDR-7
IN AL, DATA PORT
OUT ADDR PORTREG ADDR-8
OUT DATA PORT, AL
OUT ADDR PORTREGADDR-9
IN AL, DATA PORT
OUT ADDR PORTREG. ADDR-10
IN AL, DATA PORT

write data to device internal

read data from device internal

load device internal address into

load device internal address into

Analysis of the prior art decremental code shown in Table 4
and diagrammed in FIG. 8 is identical to the analysis of the
prior art incremental code shown in Table 3 and diagrammed
in FIG. 6 and thus will not be pursued.

40

TABLE 5

Enhanced decrementing code utilizing the Auto decrementing Data port

ADDRPORTREGADDR load device internal address into
address port

DATA PORT, AL

AL, DATA PORT

AL, DATA PORT
DATA PORT, AL
DATA PORT, AL
AL, DATA PORT
DATA PORT, AL
AL, DATA PORT
DATA PORT, AL
AL, DATA PORT
AL, DATA PORT

write data to device internal
register
read data from device internal
register

Note: DATA PORT is the Auto decrementing data port's address.

The present invention comprises an auto decrementing
data port. Whenever the auto decrementing data port is read
from or written to, the address port will automatically

65 Analysis of the enhanced decrementing code utilizing the
Auto decrementing data port is analogous to the analysis of
the enhanced incrementing code utilizing the Auto incre

5,524,267
17

menting data port (as shown in Table 3). The only difference
is that each time the Auto decrementing Data port is
addressed, the pointer generation circuitry 296 (in FIG. 5)
routes a decremented address into the Address port register
208 (in FIG. 5) from the Selector 194 (in FIG. 5).

Referring to Table 4 and FIG. 8, the prior art decrement
ing programming method requires a total often (10) address
port load instructions to implement five (5) write and six (6)
read operations, for a total of twenty (22) program instruc
tions. The enhanced programming method of the present
invention requires one (1) address port load instruction and
five (5) write and (6) read operations, for a total of 12
program instructions. The enhanced decremental program
ming method of the present invention reduces the required
number of instructions by approximately 45%.

Aprior art method of implementing the "polling' function
in machine independent programming code is shown in
Table 6 and its associated flow chart is diagrammed in FIG.
10.

TABLE 6

Prior Art Polling Code

LOOP: OUT ADDR PORT, REG. ADDR

10

15

load device internal

18
element 158 (i.e. load address port) must be executed 50
times. Thus, to "poll' the device's internal register address
50 times, the devices internal register address must be
loaded into the address port 50 times.
An enhanced programming method of the present inven

tion implementing the prior art"polling' code of Table 6 and
FIG. 10 is shown in Table 7 and diagrammed in FIG. 11. The
enhanced programming code of Table 7 is accomplished
through use of a Polling data port provided by the present
invention. The Polling data port of the present invention
eliminates the need for loading the address port register with
a device's internal register address after the internal register
has been polled once.

address into address port
IN AL, DATA PORT

internal register
TEST AL 80H
Z LOOP

A first program element 158 loads an address of a device's
internal register that is to be "polled' into the address port
register (i.e. REG. ADDR). A second program element 160

LOOP:

read data from device

OUT ADDR PORT, REG. ADDR

IN AL, DATA PORT

TEST AL, 8OH
JZ LOOP

check to see if bit is set
jump if bit not set

TABLE 7

Enhanced Polling Code

;load device internal
address into address port
read data from device
internal reg
check to see if bit is set
jump if bit not set

Note: DATA PORT is the Polling data port's address

then reads data from the device's internal register (whose
address was loaded into address port register by program
element 158) via an input/output data port register.
The data is then checked, or "tested', by a third program

element 162 to see if a status bit is set to indicate that a
specific data transfer is complete. If the status bit is set, the
program continues to the next instruction. If the status bit is
not set, the program performs a branch, or "jump', to the
program element 158. The branch to program element 158
is typically called a "loop' because the program, in effect,
loops to element 158 every time the status bit is not set. The
program elements 160 and 162 are then executed again until
the status bit is set.
The "polling” program shown in Table 6 and illustrated in

FIG. 10 requires four (4) program instructions to implement
the loop. One of the program instructions that must be
executed in every "loop” is program element 158 (i.e. load
device internal address into the address port register). If the
program polls a device register fifty (50) times, it then
requires the execution of two hundred (200) instructions. Of
the two hundred program instructions executed, program

50

55

60

65

Referring now to Table 7 and FIG. 11, a first program
element 164 loads a device's internal register address into
the address port register. The Address/Data Port select
decoder 170 decodes the incoming Address port address and
makes the Select Address line 190 change state from LOW
to HI. When the Select address line 190 goes to HI, it causes
an address stored (i.e. REG. ADDR) in the Data port
buffer/register 181 to appear on the Data port buffer/register
output lines 183 and thereby at Selector 194 input A1. The
Select Address line, currently still in the HI state, is also fed
into select input S1 on the Selector 194 and the two-input
OR gate 204. When selectinput S1 on the Selector 194 is HI,
it causes the address present at address input A1 (i.e.
REG ADDR) to appear at the output of Selector 194 on the
Selector Output Address lines 210 which feed the Address
Port Register 208. The device's internal register address (i.e.
REG ADDR) is now present on the Selector Output
Address lines 210.

Since the Select Address line 190 is HI, the Load Address
line 206 of the two-input OR gate 204 will go HI. When the
Load Address line 206 is driven HI, it will cause the address

5,524,267
19

present (i.e. REG. ADDR) on the Selector Output Address
lines 210 to be loaded and latched into the Address Port
Register 208. Once the Address Port Register 208 is loaded,
the device's internal register address (i.e. REG. ADDR) is
fed into the Address Decoder 212 via the Internal Register
Address lines 214 where it is decoded and placed on the
Select Internal Register Address lines 224.
The Internal Register Address lines 214 feed the device's

internal register address (i.e. REG. ADDR) to Selector 194
address input A4, the Increment element 216, and the
Decrement element 218. The devices internal register
address (i.e. REG. ADDR) is fed into the Increment ele
ment 216 by the Internal Register Address lines 214 where
it is incremented by one (1) (i.e. from REG. ADDR to
REG. ADDR-1) and fed into the Selector 194 address input
A3 via the Increment Address lines 220. The device internal
register address present at Selector 194 address input A3 is
now REG. ADDR--1.
The devices internal register address (i.e. REG. ADDR)

is also fed into the Decrement element 218 by the Internal
Register Address lines 214 where it is decremented by one
(1) (i.e. from REG. ADDR to REG. ADDR-1) and fed into
the Selector 194 address input A2 via the Decrement
Address lines 222. The device internal register address
present at Selector 194 address input A4 is REG ADDR.
A second program element 166, reads the data from the

device's internal register that was loaded into the address
port by program element 164 via the Polling data port
register. The Address/Data Port Select decoder 170 decodes
the incoming polling data port register address and causes
the Select Data Poll line 184 go from LOW to HI. The Select
Data Poll line 184 is fed to one of three inputs on the
Three-input OR gate 198 and to select input S4 on the
Selector 194. The HI state of the Select Data Poll line 188
causes the Select Data line 200, of the three-input OR gate
198, to go to the HI state. The Select Data line 200 is
connected to the Delay for Cycle End function 202 and the
I/O bus. When the Select Data line 200 is H, devices on the
I/O bus are notified that the Output data lines 226 are
available for data stored in REG. ADDR to be written to the
polling data port register. The Delay for Cycle End function
202 now waits for the Polling data port access to be
completed before the same address (i.e. REGADDR) is
loaded and latched into the Address port register 208.

Since the Select Data Poll line 184 is HI at select input S4
of the Selector 194 (as a result of accessing the Polling data
port), the Selector Output Address lines 210 contain the
device's register address present at address input A4 (i.e.
REG ADDR); See Table 1. The device's internal register
address, REG. ADDR, is now at the input of the Address
Port Register 208. The Address Port Register 208 will not
load the device's internal register address (i.e. REG
ADDR) until the Load Address line 206 changes states from
LOW to H.
When the Polling data port access is complete, the Cycle

Complete outputline 203 changes from a LOW to a HI state
and is fed into the two-input OR gate 204. This causes the
Load Address line 206 at the output of the two-input OR gate
204 to change from a LOW to a HI state. This enables the
Address Port Register 208 to load the polled device's
internal register address (i.e. REG. ADDR) present on the
Selector Output Address line 210. The Address Decoder 212
decodes the polled device's internal register address (i.e.
REGADDR) and places it on the Select Internal Register
Address lines 224 for use in the next read operation.
The data stored in the Polling data port is then checked,

or "tested', by a third program element 168 to see if a data

10

15

25

30

35

40

45

50

55

60

65

20
bit is set to indicate that the transfer is complete. If the data
bit is set, the program continues to the next instruction. If the
data bit is not set, the program performs a branch, or 'jump',
to program element 166.
The device's internal register is then "polled" again

without having to load the devices internal register address
into the address port. This is accomplished by reading from
the Polling data port via program element 166.
The Address/Data Port Select decoder 170 decodes the

incoming Polling data port address and causes the Select
Data Poll line 184 go from LOW to HI. The Select Data Poll
line 184 is fed to one of three inputs on the three-input OR
gate 198 and to select input S4 on the Selector 194. The HI
state of the Select Data Poll line 188 causes the Select Data
line 200, of the three-input OR gate 198, to go to the HI
state. When the Select Data line 200 is HI, devices on the I/O
bus are notified that the Output data lines 226 are available
for data stored in REG. ADDR to be written to the polling
data port register. The Delay for Cycle End function 202
now waits for the Polling data port access to be completed
before the same address (i.e. REG. ADDR) is loaded and
latched into the Address port register 208.

Since the Select Data Poll line 184 is HI at selectinput S4
of the Selector 194 (as a result of accessing the Polling data
port), the Selector Output Address lines 210 contain the
device's register address present at address input A4 (i.e.
REG ADDR); See Table 1. The device's internal register
address, REGADDR, is now at the input of the Address
Port Register 208. The Address Port Register 208 will not
load the device's internal register address (i.e. REG
ADDR) until the Load Address line 206 changes states from
LOW to HI.
When Polling data port access is complete, the Cycle

Complete outputline 203 changes from a LOW to a HI state
and is fed into the two-input OR gate 204. This causes the
Load Address line 206 at the output of the two-input OR gate
204 to change from a LOW to a HI state. This enables the
Address Port Register 208 to load the polled device's
internal register address (i.e. REG. ADDR) present on the
Selector Output Address line 210. The Address Decoder 212
decodes the polled device's internal register address (i.e.
REG. ADDR) and places it on the Select Internal Register
Address lines 224 for use in the next read operation.
The data stored in the Polling data port is then checked,

or “tested', again by program element 168 to see if a data bit
is set to indicate that the transfer is complete. If the data bit
is set, the program continues to the next instruction. If the
data bit is not set, the program performs a branch, or "jump',
to program element 166 and the device's internal register is
"polled” again. The loop is repeated until the tested condi
tion is satisfied.
The enhanced programming method illustrated requires

three (3) instructions to implement the "polling” loop. If the
enhanced program polls a device register fifty (50) times, it
then requires the execution of one hundred fifty-one (150)
instructions instead of the two hundred (200) required by the
conventional polling method illustrated in FIG. 10. This
allows the enhanced programming method to execute the
loop quicker and thereby reduce the amount of execution
time required to perform "polling' operations.

Although the description above contains many specifici
ties, these should not be construed as limiting the scope of
the invention but as merely as providing illustrations of
some of the presently preferred embodiments of the inven
tion. For example, some of the functions, such as registers
and decoders may be combined into single functional units;
increment and decrement elements may be implemented via

5,524,267
21

a single Up/Down counter; and the increment and decrement
values may by any number (instead of one (1)).

Thus, the scope of the invention should be determined by
the appended claims and their legal equivalents, rather than
by the examples given.
What is claimed is:
1. A device for use in a computer system having a CPU

coupled to a data bus and an address bus comprising:
(a) a first address decoder configured to be placed in

circuit communication with the CPU via the address
bus and further configured to decode the address bus
into a first signal corresponding to a first address on the
address bus and a second signal corresponding to a
second address on the address bus;

(b) a plurality of registers each of which is configured to
store a data value and which is accessible by the CPU
via the data bus;

(c) a register pointer in circuit communication with said
plurality of registers, configured to store a pointer
value, and further configured to select any one of said
plurality of registers responsive to the pointer value
stored in said register pointer;

(d) pointer generation circuitry in circuit communication
with said address decoder and said register pointer and
configured to modify the register pointer responsive to
an access of said first address of the address bus and
further configured to preserve the state of said register
pointer responsive to an access of said second address
of the address bus.

2. The device of claim 1 wherein said pointer generation
circuity is configured to increment the register pointer
responsive to access of said first signal.

3. The device of claim 1 wherein said pointer generation
circuity is configured to decrement the register pointer
responsive to access of said first signal.

4. The device of claim 1 wherein said register pointer
comprises:

(a) a writable register in circuit communication with the
data bus and

(b) a second address decoder in circuit communication
with said writable register and said plurality of regis
terS.

5. The device of claim 1 wherein said pointer generation
circuitry comprises: a selector in circuit communication with
said first address decoder, a pass-through, and counter all of
which are in circuit communication with said register
pointer.

6. The device of claim 5 wherein said counter is in the
form of an incrementor.

7. The device of claim 5 wherein said counter is in the
form of a decrementor.

8. The device of claim 1 wherein said pointer generation
circuitry comprises: a selector in circuit communication with
said address decoder, a pass-through, an incrementor, and a
decrementor all of which are in circuit communication with
said register pointer.

9. A method of using a CPU to access data stored within
a plurality of registers, wherein the CPU is coupled to an
address bus and a data bus, comprising the steps of:

(a) providing a register pointer in circuit communication
with said plurality of registers, configured to store a
pointer value, and further configured to select any one

22
of said plurality of registers responsive to the pointer
value stored in said register pointer

(b) providing an address decoder in circuit communica
tion with said register pointer and configured to decode

5 the address bus into a first signal corresponding to a
first address on the address bus and a second signal
corresponding to a second address on the address bus,

(c) accessing via the data bus the contents of the register
of said plurality of registers pointed to by said register
pointer responsive to accesses of said first and second
addresses of the address bus;

(d) modifying said register pointer responsive to an access
of said first address of the address bus; and

(e) preserving the state of said register pointer responsive
to an access of said Second address of the address bus.

10. The device of claim 9 wherein modifying said register
pointer responsive to an access of said first address includes
incrementing.

11. The device of claim 9 wherein modifying said register
20 pointer responsive to an access of said first address includes

decrementing.
12. A method of using a CPU to access data stored within

a plurality of registers, wherein the CPU is coupled to an
address bus and a data bus, comprising the steps of:

(a) providing a register pointer in circuit communication
with said plurality of registers, configured to store a
pointer value, and further configured to select any one
of said plurality of registers responsive to the pointer
value stored in said register pointer;

(b) providing an address decoder in circuit communica
tion with said register pointer and configured to decode
the address bus into a first signal corresponding to a
first address on the address bus, a second signal cor
responding to a second address on the address bus, and
a third signal corresponding to a third address on the
address bus;

(c) accessing via the data bus the contents of the register
of said plurality of registers pointed to by said register
pointer responsive to accesses of said first, second, and
third addresses of the address bus;

(d) incrementing said register pointer responsive to an
access of said first address of the address bus;

(e) decrementing said register pointer responsive to an
access of said second address of the address bus; and

(f) preserving the state of said register pointer responsive
to an access of said third address of the address bus.

13. A method of "polling' a devices internal register
comprising:

(a) loading an address port with a device's internal
register address that is to be "polled' via a first program
instruction,

(b) reading said device's internal register by reading from
a polling data port via a second program instruction,

(c) loading said address port with said device's internal
register address automatically without having to use a
program instruction,

(d) testing data read from said device's internal register
address via a third program instruction, and

(e) repeating steps (b), (c), and (d) without repeating step
(a) until said testing in step (d) is satisfied.

10

15

25

30

35

40

45

50

55

60

k : :

