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57 ABSTRACT 

The present invention relates to a method and structure for 
implementing a 64/8 ECC algorithm on a SIMM using a 
computer which has a 32-bit bus and is configured with a 
36-bit wide memory. This is accomplished by writing two 
successive 4 byte words from the system to latches, to form 
an 8 byte quad word, and writing 8 check bits utilizing the 
entire 64 bits of the quad word. One-half of the quad word 
(i.e., 32 bits) together with 4 of the 8 check bits for a total 
of 36 bits is stored at one address location in memory, and 
the remaining 32 bits of the quad word, together with the 
remaining 4 check bits, are stored at another, preferably the 
successive 36 bit, address location in memory. When the 
quad word and checkbits are read from the memory, they are 
read serially, i.e., the first 32 bits and 4 associated check bits 
are read and latched, followed by the second 32 bits and the 
4 associated check bits being read and combined with the 
first 32 bits of data and 4 check bits so as to essentially 
"reconstitute' the original 64-bit quad word with 8 check 
bits. From the "reconstituted'' 64-bit data word and 8 check 
bits, the error correction is performed. The 64-bit quad word 
with the corrected data is latched and asserted successively 
on the data bus as two 32-bit words. Also, preferably logic 
and circuitry to perform a read-modify-write (R-M-W) 
function are provided. 

17 Claims, 5 Drawing Sheets 
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1. 

METHOD AND STRUCTURE FOR 
PROVIDING ERROR CORRECTION CODE 
FOR 8-BYTE DATA WORDS ON SLMM 

CARDS 

FIELD OF THE INVENTION 

This invention relates generally to error correction code 
on single inline memory modules (SIMMs) which can be 
used in computer systems, which systems do not have error 
correction code. More particularly, this invention relates to 
utilizing 8-byte (64 bit) data words with error correction 
code for the entire 8 byte data word on computer systems 
having 32 bit (4 byte) data busses and on SIMMs which are 
configured with 36-bit wide memory bus at each address 
space. 

BACKGROUND OF THE ENVENTION 

The integrity requirements for personal computer systems 
has grown rapidly in the past few years. At the present time, 
newer operating systems and applications require a great 
deal of memory, and the amount of memory which can be 
accommodated in personal computer systems continues to 
increase rapidly. Such personal computer systems have in 
the past typically been provided only with the capability of 
writing and checking parity. In such a case, if a single bit of 
memory is corrupted, the non-parity condition will be 
flagged, and generally the system will halt when the error is 
detected. This poses a significant problem since users can ill 
afford to have periodic system crashes and/or loss of data, 
and as the amount of memory increases, the possibility of 
such data corruption increases significantly. Moreover, with 
the advent of large applications which normally require large 
amounts of memory, these are the most exposed to such 
crash and data corruption. 
As indicated above, until very recently most conventional 

current low end personal computer systems contained only 
parity SIMMs which can detect single bit errors, but cannot 
correct such errors. Moreover, a parity function may not 
detect double or other multiple-bit errors. 
One solution which has been proposed to eliminate sys 

tem crash or loss of data due to single-bit errors is to provide 
error correction code for use in computer systems which do 
not have error correction code capabilities internal thereto. 
Typically, this error correction code allows for the detection 
of most double-bit errors and the correction of all single-bit 
errors. These schemes are a significant improvement over 
purely parity SIMMs. One technique for utilizing ECC is the 
so-called 32/7-bit ECC algorithm. This ECC algorithm 
requires 7 check bits for each double word (i.e., 4 bytes or 
32 bits). This results in a 39-bit wide memory SIMM 
required for each double word and associated 7-check bits 
(32 data bits+ 7 check bits). Thus, the widely-used 36-bit 
wide memory SIMM is not available to be used, although 
this is a conventional and popular size SIMM and is used 
with double words containing only parity bits which requires 
only 36 bits (32 data bits plus 4 parity bits). Thus, the ECC 
requires an increase of 8% to 9% in storage capacity above 
that required for a similar number of data words, using only 
parity rather than ECC. However, this 32/7 bit ECC algo 
rithm does allow for double bit detection and single bit 
correction. Typically a 40-bit wide SIMM is used for 32/7 
error correction code resulting in one unused bit (i.e., 40 
minus 32 minus 7 equals 1). Examples of how this is 
implemented on certain types of SIMMs are shown in U.S. 
patent applications Ser. No. 08/154,193, filed Nov. 17, 1993, 
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2 
and entitled "Initialization Methodology for Computer Sys 
tem. Having Error Correction Code on Add-On Cards for 
Writing Portions of Data Words' (Atty. Docket No. BC9 
92-053); Ser. No. 08/154,192, filed Nov. 17, 1993, and 
entitled "Error Correction Code with Write Error Preserva 
tion for Add-On Memory” (Atty. Docket No. BC9-92-067); 
and U.S. Pat. No. 5,452,429 entitled "Error Correction Code 
on Add-On Cards for Writing Portions of Data Words'. 
Another complication which arises from using a 32/7-bit 
ECC algorithm is encountered due to the fact that SIMMs 
are created from memory modules which typically are 4, 8, 
9, 16 or 18-bits wide. Thus, the amount of memory required 
must be selected as multiples of these module sizes. This 
may require extra memory space to store differently config 
ured memory, as will be described presently. 

Another potential technique for providing ECC is by use 
of the 64/8-bit ECC algorithm. In this algorithm, 8 checkbits 
are generated for each quad word (i.e., 8 bytes or 64bits) of 
data in memory. This technique takes advantage of the fact 
that the 64/8-bit ECC algorithm is as efficient as the 32/4-bit 
parity technique in the amount of memory needed for 
storage; i.e., if two parity SIMM addresses are used, the 
result is 2x32/4 or 6418. Thus, the heed for additional 
modules to store the same amount of data is eliminated. 
However, if implemented conventionally, this technique has 
the disadvantage that it requires a 72-bit data path to 
memory (i.e., 64 data bits+ 8 parity bits= 72 bits) including 
either a 32-bit or a 64-bit system bus. For a high perfor 
mance system with large memory capacity and advanced 
CPUs, this implementation works well. However, for low 
cost solutions, this is not an alternative since most personal 
computers are configured with a 32-bit memory bus, and 
thus the implementation would require a second 32-bits of 
memory bus and more control chips which would add 
significantly to the cost of this system. 

Thus, it is an object of the present invention to provide an 
improved ECC on SIMM which uses no more capacity than 
conventional parity SIMMs and which can be implemented 
on a 32-bit memory bus. 

SUMMARY OF THE INVENTION 

According to the present invention, a method and struc 
ture for implementing a 64/8 ECC algorithm on a SIMM 
using a computer which has a 32-bit bus and in a memory 
that is configured with a 36-bit wide memory is provided. 
This is accomplished by writing two successive 4 byte 
words from the system to latches, to form an 8 byte quad 
word, and writing 8 check bits utilizing the entire 64 bits of 
the quad word. One-half of the quad word (i.e., 32 bits) 
together with 4 of the check bits for a total of 36 bits are 
stored at each 8 address location in memory, and the 
remaining 32 bits of the quad word, together with the 
remaining 4 check bits, are stored at another, preferably the 
successive 36 bit, address location in memory. When the 
quad word and check bits are read from the memory, they are 
read serially, i.e., the first 32 bits and 4 associated checkbits 
are read and latched, followed by the second 32 bits and the 
4 associated check bits being read and combined with the 
first 32 bits of data and 4 check bits so as to essentially 
"reconstitute' the original 64-bit quad word with 8 check 
bits. From the "reconstituted'' 64-bit data word and 8 check 
bits, the error correction is performed. The 64-bit quad word 
with the corrected data is latched and asserted successively 
on the data bus as two 32-bit words. Also, preferably logic 
and circuitry to perform a read-modify-write (R-M-W) 
function are provided. 



5,481,552 
3 

DESCRIPTION OF THE DRAWINGS 

FIGS. 1A and 1B show in diagrammatic form, very 
schematically, two prior art techniques of ECC on SIMMs; 

FIG. 1C shows in diagrammatic form, very schematically, 
error correction code on ECCs according to the present 
invention; 

FIG. 2 is a high level diagram of the circuitry to perform 
the error correction code on 64 bits of data as quad words 
from a 32-bit CPU data bus according to the present inven 
tion; 

FIG. 3A is a wave form diagram of a write cycle for the 
circuitry of FIG. 2; 

FIG. 3B is a wave form diagram of a read cycle for the 
circuitry of FIG. 2; and 

FIG. 3C is a wave form diagram of a read-modify-write 
cycle for the circuitry of FIG. 2. 

DESCRIPTION OF THE PREFERRED 
EMBODEMENT 

As indicated previously, there have been several prior art 
techniques advanced for utilizing error correction code in 
computer systems, and particularly using ECC on add-on 
SIMMs (single inline memory modules) for use in personal 
computers. Two of these techniques are shown very dia 
grammatically in FIGS. 1A and 1B. FIG. 1A depicts a 
technique wherein a quad word (e.g., a word of 64-bits in 
length, i.e., 8 bytes) is written as 2 separate double words, 
each 32 bits wide from the write cycle. Each 32-bit portion 
of the word is utilized to calculate 7 check bits, and these 
32-bits of data with the 7 check bits are independently 
generated, stored, read and used to create syndrome bits for 
error correction. Thus, to get a 64-bit word, two completely 
separate operations are required, each operation being 
treated essentially as writing a single word and generating 
check bits therefrom. Only after the operation has been 
completed of writing, storing and reading back the data bits 
and associated check bits with each 32-bits of data, are the 
two 32-bits of data put together to form a 64-bit quad word. 
This has several disadvantages. First, since there are 32 data 
bits and 7 checkbits required for each half of the data word, 
this requires storage of a total of 78 bits. Moreover, separate 
operations have to be performed for generating check bits 
and generating syndrome bits for each half of the word, thus 
requiring two separate operations for running the error 
correction code. 

FIG. 1B shows another prior art technique wherein a quad 
word, e.g. a word of 64 bits in length, is used to generate 8 
check bits. This is done in a single write operation and is 
read in a single read operation, and the check bits are used 
to provide a single set of 8 syndrome bits. This technique has 
the advantage of requiring only 72 bits of storage per data 
word and associated check bits as opposed to the require 
ment of 78 bits of storage for the data and check bits as 
shown in the technique of FIG. 1A. It also has the advantage 
of only doing a single operation on generating checkbits and 
Syndrome bits for each entire data word. It does, however, 
present the problem of requiring 72-bit wide buses and data 
storage. Most personal computers have buses which at the 
most are 32-bits wide. Hence, this would require increasing 
the bus an additional 32 bits, with the associated buffers and 
additional logic as indicated previously. This is costly and 
requires redesign of the computer system to accommodate 
72-bit width of storage and bus. 
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4 
FIG. 1C depicts diagrammatically the ECC technique as 

used on a SIMM according to the present invention. Accord 
ing to the present invention, the quad data word of 64 bits 
is written by first writing two 32 bit data word successively 
on a 32-bitbus, and combining these two 32bit word to form 
a 64bit Quad word. From the 64 bit quad word, 8 check bits 
are generated using all 64 bits of the quad data word. These 
are stored in two separate addresses of memory, one address 
storing the first 32 bits of the data word together with 4 of 
the check bits, and a second address storing the second 32 
bits of the data word together with the other 4 of the check 
bits. To access the word, two separate accesses are required; 
on the first access, the first 32 bits of data and 4 associated 
check bits are accessed and latched in a buffer. Following 
this, the second 32 bits, together with their 4 associated 
check bits are accessed and also latched in the buffer. The 
entire 64 bits of data and 8 check bits are used for error 
correction, the error correction taking place just as it would 
with the correction code of FIG. 1B, but this has been 
accomplished by using a 36-bit wide channel as opposed to 
a 64-bit wide channel. Moreover, it will be noticed that the 
two sections of the quad word each contain 32-bits of data 
and 4 check bits. This is the exact configuration used to store 
data bits with parity bits rather than ECC. Thus, with the 
same amount of storage space required for parity, and still 
utilizing a 36-bit wide address, a quad data word of 64 bits 
with error correction code onboard the SIMM can be pro 
vided without increasing the amount of storage necessary for 
conventional parity SIMM configuration. This can be shown 
from an examination of Table I below. 

TABLE I 

Module 
Width Parity (36-bits) ECC (40-bits) 

x4 9 - x4 modules 10 - x4 modules 
x8 4-x8 modules 5 - x8 modules 

- x4 modules 
x9 4 - x9 modules 4 - x9 nodules 
x16 2 - x16 modules 2 - x16 modules 

1 - x4 modules 2 - x4 modules 
x8 2 - x18 modules 2 - x4 modules 

As can be seen in Table I, a comparison is made of various 
module widths and how many modules are required for a 
comparable amount of data storage for ECC on 32-bit words 
as compared to parity bits of 32-bit words. In each instance, 
one or two additional modules or larger modules are 
required to store the information. However, with the present 
invention, the same amount of storage is used for error 
correction on 64 data bits as is used for parity on two 32-bit 
data words, i.e., in each case 8 additional bits are required, 
which in the case of 64-bit error correction are 8 check bits, 
and which in the case of two 32-bit words for parity, 4 parity 
bits are used for each double word. 

Turning now to FIG. 2, the circuitry for performing error 
correction code on board or in conjunction with a SIMM is 
shown in which two 32-bit words are received from a 32 bit 
system bus in a computer. The two 32-bit double words are 
combined to form a quad or 64-bit word which is then used 
to generate 8 error correction code check bits. The 64 data 
bits and 8 check bits are stored in memory at two separate 
addresses, with the 32-bits of data and 4 check bits stored at 
each location. On a read cycle, the two addresses in memory 
are read successively, and the two double words of 32 bits 
each are recombined to form a "reconstituted” original 
64-bit quad word. The reconstituted 64bit Quad word is then 
run through the error correction tree together with the eight 
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check bits, any errors corrected, and the corrected reconsti 
tuted 64-bit word is outputted and latched and then asserted 
on the CPU data bus as two successive 32-bit double words. 
As shown in FIG. 2, a central processing unit (CPU) 10 

is provided which has a microprocessor which could be 
80386 or 80486 or Pentium chips of the type manufactured 
by Intel Corporation or the 601 or 603 chips manufactured 
by Motorola Corp. could be used. Preferably, the CPU is 
designed to support write in Burst mode. To efficiently 
operate in this mode a write-back cache 12 is provided 
which writes onto a 32-bit data bus 14. Also the write-back 
cache writes onto an address and control bus 16, which 
together with the data bus 14 constitutes the CPU or system 
bus. The data bus 14 and control bus 16 are connected to a 
memory controller chip 17 having circuitry which controls 
the read-write cycles between the CPU 10 and memory. To 
perform the ECC and data control function of the present 
invention, the memory controller includes a write latch 18 
which is connected to the data bus 14 by a data line 20, and 
a write latch 22 which is connected by a data line 24 to the 
data bus 14. The latches 18, 22 write 64 bits of data to a 128 
bit wide read-modify-write multiplexor 26 through lines 28, 
30, each of which is a 32-bit line to match the 32-bit input 
from the data bus 14 and out of each of the latches 18, 22. 
From the read-modify-write multiplexor 26, the data goes 
through ECC latch 32 onto a 64-bit data line 34, which is 
provided with two 32-bit paths 36, 38 to a high/low multi 
plexor 40 which in turn is connected to a driver 42, which 
driver 42 asserts memory bits onto line 44 for storage in 
memory 45. The 64-bit line 34 also connects to the error 
correction code generator/corrector 46, which in a conven 
tional manner generates error correction code check bits and 
also decodes check bits. Thus, the error correction code 
generator/corrector has a generating section 46a and a 
correcting section 46b. The generating section 46a generates 
8 check bits based on the 64-bit quad word which was 
delivered from the multiplexor 26 through latch 32 and puts 
four of the checkbits online 48, i.e., checkbits 0-3, and four 
of the check bits online 50, i.e., checkbits 4-7. Lines 48 and 
50 deliver the check bits to check bit multiplexor 52, which 
is connected to a driver 54 which puts the check bits on 
checkbitline 55 which are delivered to memory 45, with the 
check bits 0-3 being stored with memory data bits 0-31 and 
checkbits 4-7 being stored with memory data bits 32-63, as 
will be described presently. At this point it should be noted 
that all of the 64 bits are used to generate the 8 check bits; 
thus the four check bits stored with each 32 bit double word 
do not relate only the that double word. 

Very briefly, the section of the memory controller 17 
described so far reads a first double word consisting of bits 
0-31, latches it in latch 18 and then reads a second double 
word of 32 bits, i.e. bits 32-63 and latches it in latch 22. 
These two double words are impressed on multiplexor 26 as 
a 64-bit quad word, which in turn delivers the quad word 
through ECClatch 32 to a 64-bit line 34 and also to the error 
correction code generator/corrector 46. The 64-bit line 34 
provides two 32-bit paths of data, the data path for data bits 
0-31 being line 36 and the data path for data bits 32-63 
being line 38 which are impressed on multiplexor 40. The 
error correction code generator/corrector 46 generates 8 
check bits, 0-7, based on the entire 64-byte quad word. The 
check bits 0-3 are impressed on line 48 and check bits 4-7 
are impressed on line 50 to multiplexor 52. Multiplexors 40 
and 52 are actuated and driven by drivers 42, 54 to store data 
bits 0-31 together with check bits 0-3 at a first memory 
address which is 36 bits wide, and to store memory bits 
32-63 at the second double word together with check bits 
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6 
4-7 on the next adjacent memory location which is also 36 
bits wide. The operation of the write portion of the logic 
circuitry will be described in more detail presently in 
conjunction with the timing diagrams. 
To read the data, essentially the reverse of the operation 

of writing is performed. The lower 32 bits of memory are 
read from memory line 44 and latched into latch 56. Once 
latched into latch 56, the upper 32bits are read from memory 
on line 44 and latched into latch 58. At the same time that 
the memory bits are read on line 44, the check bits are read 
on line 55, check bits 0-3 being read when memory bits 
0-31 are read, and checkbits 4-7 are read when memory bits 
32-63 are read. The check bits 0-3 are impressed on latch 
62 and latched, and check bits 4-7 are impressed on and 
latched in latch 64. When the entire 64 bit quad word and the 
associated 8 check bits are read, the data is read from latches 
56 and 58 onto 64-bit data line 66 which is a reconstitution 
of the original 64 bit quad word, which reconstructed 64-bit 
quad word is then delivered into the correcting section 46b 
of the ECC generator/corrector, and check bits 0-7 are read 
from latches 62 and 64 onto 8-bit check bit line 68 into the 
correcting section 46b of the error correction code generator 
46. The necessary correction function is performed by the 
error correction code generator/corrector 46 and correct data 
in the form of a corrected reconstituted 64bit Quad word is 
supplied on 64-bit line 70 to the corrected data latch 72, 
which impresses the corrected data on multiplexor 74. The 
multiplexor 74 divides the 64 bits of corrected data into the 
lower 32 bits, bits 0-31, and impresses them onto the data 
line 14 of the system bus and then, after these have been 
asserted on the system bus, the remaining 32 bits are 
asserted onto the line, completing a read cycle. The read 
cycle will be described in more detailin conjunction with the 
wave form diagram of the read cycle. 

If a read-modify-write cycle is to be performed, a read 
cycle is performed prior to the write cycle with the corrected 
data in the form of the corrected reconstituted 64bit Quad 
word being impressed from the corrected data latch 72 
through line 76 onto the 128 bit wide read-modify-write 
multiplexor 26. Then, partial data being written on the CPU 
bus data line 14 is asserted on the multiplexor latch 18 or 
latch 22, and the multiplexor overlays the corrected data and 
the system data from latch 18 or 22 into the ECC latch 32 
which supplies the new data for which check bits are to be 
generated onto line 34 and the write cycle continues as 
previously described. If more than 4 bytes are to be written 
in a 32-bit system bus system in the RWM operation a 
second cycle is needed. 
The various operations will now be described in more 

detail with respect to the various wave form diagrams. 
Referring now to FIG.3A, on clockcycle T1 the ADS signal 
goes low, and the CPU starts writing data during clockcycle 
T2, the data being the data of double word one (DW1) which 
is 32 bits wide, i.e., bits 0-31, as shown on CPU data line. 
At the end of clockcycle T3, the latch 18 latches in data word 
DW1 and immediately data word DW1 is impressed through 
multiplexor 26 and latch 32, (which in this configuration are 
open and transparent) onto line 34, and on multiplexor 40. 
These bits constitute the data memory DW1 shown in the 
memory data. Once the data word DW1 has been latched in 
at clock cycle T4, the CPU generates double word DW2, i.e., 
the next 32 bits, bits 31-64 which are put on the CPU bus 
and they appear at latch 22. These then are immediately 
impressed through multiplexor 26 and latch 32, (which are 
both open) and onto the line 34, and are latched at latch 22 
thus providing a complete quad data word of 64 bits wide, 
i.e., bits 0-63, at the multiplexor 40. These same 64 bits are 
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also impressed on the ECC generator/decoder 46, and the 
generating section 46a generates check bits 0-7. Check bits 
0-3 are impressed on line 48 to multiplexor 52, and check 
bits 4-7 are impressed on line 50 to multiplexor 52. Thus, at 
this point, the 64-bit data word is impressed on the multi 
plexor 40 and the 8 check bits are impressed on the multi 
plexor 52. Once data and check bits have been generated, 
multiplexors 40 and 52 send the data bits 0-31 and check 
bits 0-3 onto data memory bus 44 and check bit bus 55 as 
indicated by the multiplexor LIH line. Data and check bits 
are written into memory with CAS pulse at clockcycle T6. 
At clockcycle T7 when the multiplexor line goes high, the 
multiplexor 40 and multiplexor 52 are driven to the high data 
bus to write the data bits 32-63 and check bits 4-7 to 
memory. During clockcycle T8 CAS goes low to write data 
and check bits into memory. The 64 data bits and 8 check 
bits have been latched into memory by the end of the 8th 
clockcycle. This completes the write operation. It will be 
noticed, however, that in order to achieve economy of 
operation and speed up the write cycle, the writing of the 
second quad word, which will be composed of double word 
3 (DW3) and double word 4 (DW4) of CPU data, does not 
have to wait until the end of the entire cycle. It can be seen 
that as soon as DW2 of the first quad word has been latched 
in memory, and since DW1 is also latched therein, the CPU 
bus need no longer be maintained generating these words 
and is thus free to start the generation of the next quad word. 
Therefore, as can be seen on the CPU data line, after the 6th 
clock cycle line, DW2 is put onto the CPU bus. This will not 
affect, any part of the writing or latching of the first quad 
word because the latch 18 is latched, and latch 22 is also 
latched, and the latch 32 has latched therein both halves of 
the quad word. Therefore, activity on the bus will not affect 
the generation of the check bits or writing the correct data 
and check bits to memory. The various signals provide 
timing such that two quad words can be written and latched 
into memory within 14 clockcycles even though the first 
data word may not be latched into memory until after 9 
clockcycles. 

Referring now to FIG.3B, a diagram of the wave form for 
a read cycle of the present invention is shown. In the first 
clockcycle T1, the ADS line goes low, indicating that a read 
is to be started. At this point, the RAS line goes high, 
followed by the CAS line going low, and on clockcycle T6 
the lower portion of the quad word orbits 0-31 of the DW1 
are read from memory as shown on the memory data line. At 
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8 
the 32-bit word DW1 from line 44. In clockcycle T9, the 
data word DW2 is read from memory onto line 44 and 
latched into latch 64 at clockcycle T10. As soon as the DW2 
constituted of bits 32-63 is impressed on latch 58, these are 
read onto the 64-bit data line 66 together with the lower 32 
bits, i.e., bits 0-31, into the correction section 46b of the 
error correction code generator/decoder 46. Similarly, when 
all of the check bits 0-7 have been impressed on latch 62, 
64, they are read into the correcting section 46b of the error 
correction code generator 46, and the data is corrected and 
put on 64-bit line 70 and impressed on the corrected data 
latch 72 as corrected reconstituted original 64 bit Quad 
word. This is shown at clock cycle T10 on the corrected data 
latch 72. When the BRDY goes low, data word DW1 is 
delivered by the multiplexor 74, driver 78 and 32-bit line 20 
and impressed on the data bus 14 of the CPU, following 
which the BRDY line goes high and then low again and 
impresses the second data word DW2, i.e., bits 31-63, onto 
32-bit line 20 and onto the dataline 14. This is controlled by 
controlling the multiplexor line going high at clockcycle 12 
and then again low at clockcycle 13. 
The read-modify-write cycle is shown in the read-modify 

write wave form. The ADS signal at clockcycle 1 goes low, 
indicating that the write operation is to begin. The BLAST 
line is low at clockcycle 2 indicating that a non-burst write 
mode will occur. According to this invention, this is a 
read-modify-write and not a regular write cycle. The RAS 
goes high and CAS goes low, and the memory data and 
check bits are read from memory as previously described. 
DW1 is latched in. Latch 56 and check bits associated with 
DW1 are latched in latch 62. CAS then goes high and low 
again indicating a second read cycle at the next address, and 
DW2, i.e., data bits 32-63 and check bits 4-7 are latched in 
latches 62, 64 as previously described, and thus delivered 
through the correction section 46b of the error correction 
code generator/corrector 46 and are applied on the 64-bit 
line 70 and latched in the corrected data latch 72 as the 
corrected data. These are then applied through 64-bit line 76 
to the read-modify-write multiplexor 26. 
The read-modify-write cycle continues by utilizing the 

so-called overlay technique in which system data is written 
through latches 18 or 22 to the multiplexor 26 and overlaid 
on the corrected, reconstituted 64-bit quad word. This tech 
nique is represented diagrammatically in Table II below. 

TABLE II 

Byte Enables Data from CPU Read Data from Overlay of CPU 

CPU HIGH- Memory Corrected & Corrected Data 

BEi (3:0) Addr WR2 LOW-WR1 CD-HIGH CD-LOW HIGH LOW 

RMW 3 2 1 0 A2 3 2 1 0 3 2 1 0 7 6 5 4 3 2 1 0 3 2 1 0 3 2 1 0 

YES 0 0 0 O O. A B C D A B C D S T U W W X Y Z S T U W A B C D 
YES 1 0 0 O 0 - B C D - B C D S T U W W X Y Z S T U W W B C D 
YES 1 1 0 O 0 - - C C - - C D S T U W W X Y Z S T U W W X C D 
YES 1 1 1 0 0 - - - D - - - D W X Y Z S T U W W X Y D 
YES O 0 O O 1 A B C D A B C D S T U W W X Y Z. A B C D W X Y Z. 
YES 1 0 0 0 1 - B C D - B C D S T U V W X Y Z S B C D W X Y Z. 
YES 1 1 0 O 1 - - C D - - C D S T U W W X Y Z S T C D W X Y Z. 
YES 1 1 1 1. 1 - - - - - D - - - D S T U W W X Y Z S T U D W X Y Z. 

HIGH-BITS 63-32 
LOW - BITS 32-0 

65 
the same time, the check bits are also asserted on the check 
bit line. When these are asserted on the line, latch 56 latches 
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First, it should be noted that in a 32-bit wide CPU bus 
system, only a single double word of 32 bits can be overlaid 
on the quad word in any read-modify-write operation. 
Therefore, if more than 32 bits, i.e., more than 4 bytes, are 
to be rewritten during the read-modify-write cycle, two 
read-modify-write cycles must be performed, the first read 
modify-write cycle being performed to correct the lower 
data bits, e.g., 0-31 (bytes 0-3) of the quad word, and the 
second read-modify-write cycle being performed to correct 
that portion of the higher bits, e.g., 32-63 (bytes 4-7) of the 
quad word, which must be corrected. 

In Table II, the data read and corrected from memory is 
represented by the letters S, T, U, V, W, X, Y, Z. This is 
accomplished in the following fashion. The letter Z repre 
sents the first eight bits of data word DW1 and is shown as 
byte 0 in the table; the letter Y represents byte 1 of data word 
DW1; letter Xrepresents byte 2 of data word DW1; letter W 
represents byte 3 of data word DW1; letter V represents byte 
4 of the entire quad word which is byte 0 of data word DW2; 
letter U represents byte 5 of the quad word; letter T repre 
sents byte 6 of the quad word; and the letter S represents byte 
7 of the quad word. Thus, the eight bytes of the corrected 
data are represented by the letters S, T, U, V, W, X, Y, Z in 
Table II. Data written from the CPU is represented by letters 
A, B, C and D. Letter D represents byte 0 from the new data 
word being written; letter C represents byte 1 from the new 
data word being written; letter B represents byte 2 from the 
new data word being written; and letter A represents byte 3 
from the new data word being written. Since only one 
4-byte, 32-bit data word can be written at a time for any 
given cycle, only the letters A, B, C and D are used to 
describe the bytes. Whether these are to be used to correct 
the bits represented by S, T, U and V, or W, X, Y and Zwill 
depend on the state of the byte enable lines and state of the 
address line A2 from the CPU, as will be described pres 
ently. 

In all instances, the corrected quad data word is applied to 
the multiplexor 26 as an 8-byte word S, T, U, V, W, X, Y, Z. 
The number of bytes to be rewritten is controlled by the 
CPU, and those bytes are impressed on the data bus 14. How 
these bytes are controlled for rewriting is controlled by the 
byte enable lines 0, 1, 2 and 3 as shown in Table II. When 
these lines are all in the "O' state, then the CPU will write 
data bytes A, B, C and D. The other patterns of 1's and 0's 
on the byte enable lines as shown in Table II indicate 
whether data bytes B,C,D, C and D, or just D are written. 
Further, whether these constitute a part of data word DW1, 
i.e., bytes 0-31, or part of data word DW2, i.e., bytes 32-63 
of quad word, depends on whether CPU address line A2 is 
at logic “0” or logic “1”. 

Thus, the first read-modify-write cycle would proceed in 
the following way. The reconstituted, corrected quad data 
word of 64 bits, i.e., bytes 0-7, are impressed in the 
multiplexor 26. If the CPU is to rewrite all four bytes of data 
word DW1, bytes A, B, C and Dare written onto the data bus 
14 and onto the lines 20 and 24 at the same time. Data can 
be latched in either latch 18 or 22, or the latches 18 and 22 
can be transparent to the data bus system. These are 
impressed on the multiplexor 26 as data bytes A, B, C and 
D by byte enable lines 0, 1, 2 and 3 being at logic “0” and 
the CPU address line being at logic “0”. This will cause 
bytes A, B, C and D to be overlaid on bytes 0, 1, 2 and 3 of 
the corrected, reconstituted data word and written into the 
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10 
ECC latch 32 as a quad data word with bytes S, T, U, V, A, 
B, C, D as shown in Table II. This new quad data word, as 
modified, then goes through the error correction code gen 
erating section 46a and is impressed on multiplexor 40, and 
the modified data word is written to memory with the check 
bits as described previously. 

If only databytes B, C and D are to be rewritten in the data 
word DW1 portion of the quad word, then byte enable line 
3 is driven to a logic “1” while byte enable line 2, 1 and 0 
are held at logic “0”. This will cause a rewritten data word 
of bytes S, T, U, V, W, B, C and D to be impressed on the 
ECC latch 32 as the rewritten quad word. Similarly, if bytes 
C and D of the data word DW1 are to be rewritten, then the 
corrected rewritten data word would be S, T, U, V, W, X, C 
and D; and if only byte D of data word DW1 is to be 
rewritten, then the rewritten data word would be S, T, U, V, 
W, X, Y and D. This is all that is required if only bytes 0, 1, 
2, and 3, or 0, 1 and 2, or 0 and 1 or just 0 in the quad word 
are to be rewritten. 

If, however, a read-modify-write operation requires writ 
ing of more than four consecutive bytes of data, then this 
requires rewriting of data word DW1 and some of the bytes 
of data word DW2 of the quad word. At this point, the cycle 
of rewriting the modified data with the modified data bits is 
repeated but with the CPU address line A2 driven to the 
opposite logic state. Again, a read cycle is performed which 
reads data from the address locations which include both the 
upper and lower bits of the quad word, i.e., the entire 64bits 
of the quad word. In this read cycle, the newly written bytes 
0, 1, 2 and 3 are read as data from the address, and again are 
indicated with the letters S, T, U and V for consistency, it 
being understood that in this case the S, T, U and V represent 
the rewritten data from the lowerbytes in the previous cycle. 
To modify the bytes 0, 1, 2 and 3 of the data word DW2, the 
byte enable lines 3, 2, 1 and 0 are all held at a logic “0” and 
the CPU address line is held at a logic “1”. These bytes are 
then written as bytes A, B, C and D on the CPU bus 16 
through latches 18 and 22 and impressed on the multiplexor 
26. Since the multiplexor is driven high, the overlay occurs 
on bytes 4, 5, 6 and 7 of the quad word, thus causing the 
overlay to be A, B, C, D, W, X, Y, Z as shown in the 
corrected data table. Similarly, if only bytes B, C and D, or 
C and D, or D are to be rewritten, a similar pattern is 
followed as described above so that the data is overlaid. The 
end resultis in either one cycle if only four bytes or less are 
to be written, or two cycles if more than four bytes are to be 
written, a read-modify-write operation has been performed, 
and the modified word stored in memory. 

It will be noted that the read-modify-write cycle takes a 
significant number of clockcycles. However, for most opera 
tions, a read-modify-write cycle is not necessary and the 
data is transferred in burst transfers or burst cycles. Hence, 
very little of the data is actually rewritten in a read-modify 
write cycle. 
With respect to the type of error correction code, any type 

of 64-bit error correction code can be used. A particularly 
desired one is the SEC-DED-S4ED code. This is the well 
known SEC-DED Hsiao code rearranged so that adjacent 
4-bit errors can be detected. This is the preferred code, and 
the matrix for generating check bits is shown in the follow 
ing table. However, any 64/8 algorithm ECC code can be 
used. 
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TABLE II 

Generated Participating Data Bits 

Check Bits 0 1 2 3 4 5 6 7 8 9 O 11 12 13 14 5 

CBO X X 
CB1 X X 
CB2 X X X 
CB3 X X 
CB4 X X X 
CBS X X X X 
CB6 X X X 
CBT X X 

X X X X 
X X X 

X 

Generated Participating Data Bits 

Check Bits 16 17 8 19 20 21 22 23 24 25 26 27 28 29 30 31 

CBO X X X 
CB1 X X X X 
CB2 X X X X X X 
CB3 X X X X X X 
CB4 X X 
CB5 X X X 
CB6 X X X 
CB7 X X 

X 

: 
Generated Participating Data Bits 

Check Bits 32 33 34 35 36 37 38 39 40 41. 42 43 44 45 46 47 

CBO X X X X X X X 
CB1 X X X X X X 
CB2 X X X X 
CB3 X X X X X X X X 
CB4 X X X X X X X X 
CB5 X X X X X X 
CB6 X X X X X X 
CB7 X X X X X X X X X 

Generated Participating Data Bits 

Check Bits 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

CBO X X X X X X X 
CB1 X X X 
CB2 X X 
CB3 X 
CB4 X 
CB5 X 
CB6 X X 
CBT X X 

: : 
Generated Participating Data Bits 

Check Bits 64. 65 66 67 68 69 70 7. 

C B 3 
X 

The following Table IV indicates the comparison of data 
read and write time, comparing the method shown in FIG. TABLE IV-continued 
1A with that of the invention shown in FIG. 1C and Cycle Method Invention 
described herein. 60 

Write ió-bytes 12 telks 14 tclks 
TABLE IV RMW 1-byte 10 tecks 15tcks 

Cycle Method 1 Invention 

Read 16-bytes T tecks 18 toks 
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It can be seen that there is very little additional time 
required to perform either the read or the write cycles, and 
then is a substantial savings as indicated above in the amount 
of storage space required and the number of modules 
required for the design of the present invention compared to 
the design utilizing the techniques shown in FIG. 1A. 
What is claimed is: 
1. A computer system and a memory storage device 

interfacing with said computer system through a memory 
controller, said computer system including a 32-bit data bus 
and logic to write 4-byte data words on said data bus, said 
memory storage device being configured to store 36 bits at 
each address location of said storage device, 

said memory controller comprising: 
logic to receive first and second successive 4-byte data 

words from said data bus and combine said two 
4-byte data words to form a single 8-byte data word; 

error correction code generating logic to generate an 8 
check biterror correction code from said 8-byte data 
word; 

logic to successively store one of said 4-byte data 
words with a first 4 of said generated check bits at a 
first address location, and the other of said 4-byte 
data words with a second 4 of said generated check 
bits at a second address location; 

logic to read successively each of said first and second 
4-byte data words along with the check bits stored 
with each 4-byte data word from said first and 
second address location in said memory device, and 
combine said first and second 4-byte data words to 
reconstitute the originally formed 8-byte data word; 

error correcting decode logic to receive said reconstituted 
8-byte data word and associated 8 check bits and 
correct errors detected; 

and logic to write said reconstituted and corrected 8-byte 
data word onto the data bus of said computer system as 
two successive 4-byte data words. 

2. The system as defined in claim 1 wherein said logic to 
receive said first and second data words written from said 
bus includes a first write data word latch device to latch said 
first data word written by said bus while said second data 
word is being written by said bus. 

3. The system as defined in claim 2, including a second 
data word latch to latch said second data word after it has 
been written by said bus and during logic function gener 
ating error correction code. 

4. The system as defined in claim 2, including logic to 
combine the first data word from the first data word latch 
device and the second data word to form said 8-byte data 
word. 

5. The system as defined in claim 4, wherein the logic to 
combine the first and second written data words includes a 
multiplexor. 

6. The system as defined in claim 1, wherein the logic to 
receive and successively store said 8-byte data word as two 
4-byte words includes a multiplexor. 

7. The system as defined in claim 1, wherein said logic to 
read each of said 8-byte data words and check bits from the 
memory storage device includes logic to read said first 
4-byte data word and associated check bits first and read said 
second 4-byte data word and associated check bits next. 

8. The system as defined in claim 7, wherein said logic to 
read said 8-byte data words and check bits stored therewith 
from the memory storage device includes a first read data 
word latch device to store said first 4-byte data word and 
associated check bits read from the address while said 
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second 4-byte data word and associated check bits are being 
read from address storage. 

9. The system as defined in claim 8, further including 
logic to read said 8-byte data word from storage includes a 
second 4-byte read data word latch device to latch said 
second data word when it is read from storage. 

10. The system as defined in claim 1, further comprising 
said logic to write said corrected 8-byte data word onto the 
data bus including an 8-byte read data word latch device to 
store said corrected 8-byte data word. 

11. The system as defined in claim 10, wherein said logic 
to write said corrected 8-byte data word onto the data bus 
includes a multiplexor to write said data from said 8-byte 
read data word latch device onto said data bus as two 
successive 4-byte data words. 

12. A method of forming 8-byte data words with error 
correction code in a computer system and a memory storage 
device interfacing with said computer system, and wherein 
said computer system includes a 32-bit data bus and logic to 
write 4-byte data words on said data bus, and said memory 
storage device is configured to store 36 bits at each address 
location of said storage device, and a memory controller, 

said method comprising: 
receiving first and second successive 4-byte data words 

from said data bus, combining said two successive 
4-byte data words received from the data bus to form 
a single 8-byte data word; 

generating an 8 check bit error correction code from 
said 8-byte data word; 

successively storing one of said 4-byte data words with 
a first 4 of said generated check bits at a first address 
location, and the other 4-byte data word with 4 of 
said generated check bits at a second address loca 
tion; 

reading successively each of said first and second 
4-byte data words together with the check bits stored 
with said data words from said first and second 
address locations in said memory device, and com 
bining said first and second 4-byte data words to 
reconstitute the originally formed 8-byte data word; 

correcting any errors in the reconstituted 8-byte data word 
using the associated 8 check bits; 

and writing said reconstituted and corrected 8-byte data 
word onto the data bus of said computer system as two 
successive 4-byte data words. 

13. The method as defined in claim 12, including latching 
said first data word written by said bus while said second 
data word is being written by said bus. 

14. The method as defined in claim 13, including latching 
said second data word after it has been written by said bus 
and during the logic function generating error correction 
code. 

15. The method as defined in claim 12, wherein said first 
4-byte data word and associated check bits are read first and 
said second 4-byte data word and associated check bits are 
read next from memory. 

16. The method as defined in claim 15, including latching 
said first 4-byte data word and associated check bits read 
from the address while said second 4-byte data word and 
associated check bits are being read from said storage 
device. 

17. The method as defined in claim 16, including latching 
said second 4-byte data word when it is read from said 
storage device. 


