
United States Patent (19)
Aldereguia et al.

||||||||||
US005481552A

11 Patent Number:
Date of Patent:

5,481,552
45) Jan. 2, 1996

54 METHOD AND STRUCTURE FOR
PROVIDING ERROR CORRECTION CODE
FOR 8-BYTE DATA WORDS ON SLMM
CARDS

75 Inventors: Alfredo Aldereguia, Boca Raton; Daryl
C. Cromer, Boynton Beach; Kim K.
Sendlein, Boca Raton, all of Fla.

73) Assignee: International Business Machines
Corporation, Armonk, N.Y.

(21) Appl. No.: 177,078
22 Filed: Dec. 30, 1993
I51) Int. Cl. H03M 13/00
(52 U.S. Cl. .. 371/40.1; 371/37.1
58 Field of Search 371/37.1, 37.2,

371/37.4, 37.6, 37.7, 40.1, 43, 37.3, 402;
395/425

56) References Cited

U.S. PATENT DOCUMENTS

5,235,693 8/1993 Chinnaswamy et al. 395/425
5,283,877 2/1994 Gastinel et al. 395/425
5,313.475 5/1994 Cromer et al. 371/40.1
5,331,645 7/1994 Miller et al. 371/37.1
5,335,234 8/1994 Matteson et al. 371140.1
5,430,742 7/1995 Jeddeloh et al. 371140,1

Primary Examiner-Roy N. Envall, Jr.

10 ADDRESS
c

12 CONTROL

MEMORY CONTROLLER/
DATA FLOW

CORRECTED
DATA

Assistant Examiner-Brian C. Oakes
Attorney, Agent, or Firm-Calfee, Halter & Griswold

57 ABSTRACT

The present invention relates to a method and structure for
implementing a 64/8 ECC algorithm on a SIMM using a
computer which has a 32-bit bus and is configured with a
36-bit wide memory. This is accomplished by writing two
successive 4 byte words from the system to latches, to form
an 8 byte quad word, and writing 8 check bits utilizing the
entire 64 bits of the quad word. One-half of the quad word
(i.e., 32 bits) together with 4 of the 8 check bits for a total
of 36 bits is stored at one address location in memory, and
the remaining 32 bits of the quad word, together with the
remaining 4 check bits, are stored at another, preferably the
successive 36 bit, address location in memory. When the
quad word and checkbits are read from the memory, they are
read serially, i.e., the first 32 bits and 4 associated check bits
are read and latched, followed by the second 32 bits and the
4 associated check bits being read and combined with the
first 32 bits of data and 4 check bits so as to essentially
"reconstitute' the original 64-bit quad word with 8 check
bits. From the "reconstituted'' 64-bit data word and 8 check
bits, the error correction is performed. The 64-bit quad word
with the corrected data is latched and asserted successively
on the data bus as two 32-bit words. Also, preferably logic
and circuitry to perform a read-modify-write (R-M-W)
function are provided.

17 Claims, 5 Drawing Sheets

U.S. Patent Jan. 2, 1996 Sheet 1 of 5 5,481,552

3. O 6 5 4 3 2 1 O 3 O 6 5 4 3 2 1 O 1 1

ACCESS 1 || Access 2
-- -- - - - - -A - - - - - - - - - A- - - - - - H - - - -AA- - - - - - - - - A- - - - - -

ECC CHECK ECC CHECK

Fig.1A
(PRIOR ART)

63 O 7 6 5 4 3 2 1 O

Access 1 & 2
- - - - - - - - -A A- - - - - - -- - - - - -A A- - - - - -

ECC CHECK
Fig.1B

(PRIOR ART)

31 O 3 2 1 O 31 O 3 2 1 O

ACCESS 1 Access 2

Fig.1C ECC CHECK

MOTH VIVO /HETTOHINOO ANOWBW
TOÀN 1 NOOZ ||:|| 2?Dae |×

U.S. Patent

5,481,552
1.

METHOD AND STRUCTURE FOR
PROVIDING ERROR CORRECTION CODE
FOR 8-BYTE DATA WORDS ON SLMM

CARDS

FIELD OF THE INVENTION

This invention relates generally to error correction code
on single inline memory modules (SIMMs) which can be
used in computer systems, which systems do not have error
correction code. More particularly, this invention relates to
utilizing 8-byte (64 bit) data words with error correction
code for the entire 8 byte data word on computer systems
having 32 bit (4 byte) data busses and on SIMMs which are
configured with 36-bit wide memory bus at each address
space.

BACKGROUND OF THE ENVENTION

The integrity requirements for personal computer systems
has grown rapidly in the past few years. At the present time,
newer operating systems and applications require a great
deal of memory, and the amount of memory which can be
accommodated in personal computer systems continues to
increase rapidly. Such personal computer systems have in
the past typically been provided only with the capability of
writing and checking parity. In such a case, if a single bit of
memory is corrupted, the non-parity condition will be
flagged, and generally the system will halt when the error is
detected. This poses a significant problem since users can ill
afford to have periodic system crashes and/or loss of data,
and as the amount of memory increases, the possibility of
such data corruption increases significantly. Moreover, with
the advent of large applications which normally require large
amounts of memory, these are the most exposed to such
crash and data corruption.
As indicated above, until very recently most conventional

current low end personal computer systems contained only
parity SIMMs which can detect single bit errors, but cannot
correct such errors. Moreover, a parity function may not
detect double or other multiple-bit errors.
One solution which has been proposed to eliminate sys

tem crash or loss of data due to single-bit errors is to provide
error correction code for use in computer systems which do
not have error correction code capabilities internal thereto.
Typically, this error correction code allows for the detection
of most double-bit errors and the correction of all single-bit
errors. These schemes are a significant improvement over
purely parity SIMMs. One technique for utilizing ECC is the
so-called 32/7-bit ECC algorithm. This ECC algorithm
requires 7 check bits for each double word (i.e., 4 bytes or
32 bits). This results in a 39-bit wide memory SIMM
required for each double word and associated 7-check bits
(32 data bits+ 7 check bits). Thus, the widely-used 36-bit
wide memory SIMM is not available to be used, although
this is a conventional and popular size SIMM and is used
with double words containing only parity bits which requires
only 36 bits (32 data bits plus 4 parity bits). Thus, the ECC
requires an increase of 8% to 9% in storage capacity above
that required for a similar number of data words, using only
parity rather than ECC. However, this 32/7 bit ECC algo
rithm does allow for double bit detection and single bit
correction. Typically a 40-bit wide SIMM is used for 32/7
error correction code resulting in one unused bit (i.e., 40
minus 32 minus 7 equals 1). Examples of how this is
implemented on certain types of SIMMs are shown in U.S.
patent applications Ser. No. 08/154,193, filed Nov. 17, 1993,

10

15

20

25

30

35

40

45

50

55

60

65

2
and entitled "Initialization Methodology for Computer Sys
tem. Having Error Correction Code on Add-On Cards for
Writing Portions of Data Words' (Atty. Docket No. BC9
92-053); Ser. No. 08/154,192, filed Nov. 17, 1993, and
entitled "Error Correction Code with Write Error Preserva
tion for Add-On Memory” (Atty. Docket No. BC9-92-067);
and U.S. Pat. No. 5,452,429 entitled "Error Correction Code
on Add-On Cards for Writing Portions of Data Words'.
Another complication which arises from using a 32/7-bit
ECC algorithm is encountered due to the fact that SIMMs
are created from memory modules which typically are 4, 8,
9, 16 or 18-bits wide. Thus, the amount of memory required
must be selected as multiples of these module sizes. This
may require extra memory space to store differently config
ured memory, as will be described presently.

Another potential technique for providing ECC is by use
of the 64/8-bit ECC algorithm. In this algorithm, 8 checkbits
are generated for each quad word (i.e., 8 bytes or 64bits) of
data in memory. This technique takes advantage of the fact
that the 64/8-bit ECC algorithm is as efficient as the 32/4-bit
parity technique in the amount of memory needed for
storage; i.e., if two parity SIMM addresses are used, the
result is 2x32/4 or 6418. Thus, the heed for additional
modules to store the same amount of data is eliminated.
However, if implemented conventionally, this technique has
the disadvantage that it requires a 72-bit data path to
memory (i.e., 64 data bits+ 8 parity bits= 72 bits) including
either a 32-bit or a 64-bit system bus. For a high perfor
mance system with large memory capacity and advanced
CPUs, this implementation works well. However, for low
cost solutions, this is not an alternative since most personal
computers are configured with a 32-bit memory bus, and
thus the implementation would require a second 32-bits of
memory bus and more control chips which would add
significantly to the cost of this system.

Thus, it is an object of the present invention to provide an
improved ECC on SIMM which uses no more capacity than
conventional parity SIMMs and which can be implemented
on a 32-bit memory bus.

SUMMARY OF THE INVENTION

According to the present invention, a method and struc
ture for implementing a 64/8 ECC algorithm on a SIMM
using a computer which has a 32-bit bus and in a memory
that is configured with a 36-bit wide memory is provided.
This is accomplished by writing two successive 4 byte
words from the system to latches, to form an 8 byte quad
word, and writing 8 check bits utilizing the entire 64 bits of
the quad word. One-half of the quad word (i.e., 32 bits)
together with 4 of the check bits for a total of 36 bits are
stored at each 8 address location in memory, and the
remaining 32 bits of the quad word, together with the
remaining 4 check bits, are stored at another, preferably the
successive 36 bit, address location in memory. When the
quad word and check bits are read from the memory, they are
read serially, i.e., the first 32 bits and 4 associated checkbits
are read and latched, followed by the second 32 bits and the
4 associated check bits being read and combined with the
first 32 bits of data and 4 check bits so as to essentially
"reconstitute' the original 64-bit quad word with 8 check
bits. From the "reconstituted'' 64-bit data word and 8 check
bits, the error correction is performed. The 64-bit quad word
with the corrected data is latched and asserted successively
on the data bus as two 32-bit words. Also, preferably logic
and circuitry to perform a read-modify-write (R-M-W)
function are provided.

5,481,552
3

DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B show in diagrammatic form, very
schematically, two prior art techniques of ECC on SIMMs;

FIG. 1C shows in diagrammatic form, very schematically,
error correction code on ECCs according to the present
invention;

FIG. 2 is a high level diagram of the circuitry to perform
the error correction code on 64 bits of data as quad words
from a 32-bit CPU data bus according to the present inven
tion;

FIG. 3A is a wave form diagram of a write cycle for the
circuitry of FIG. 2;

FIG. 3B is a wave form diagram of a read cycle for the
circuitry of FIG. 2; and

FIG. 3C is a wave form diagram of a read-modify-write
cycle for the circuitry of FIG. 2.

DESCRIPTION OF THE PREFERRED
EMBODEMENT

As indicated previously, there have been several prior art
techniques advanced for utilizing error correction code in
computer systems, and particularly using ECC on add-on
SIMMs (single inline memory modules) for use in personal
computers. Two of these techniques are shown very dia
grammatically in FIGS. 1A and 1B. FIG. 1A depicts a
technique wherein a quad word (e.g., a word of 64-bits in
length, i.e., 8 bytes) is written as 2 separate double words,
each 32 bits wide from the write cycle. Each 32-bit portion
of the word is utilized to calculate 7 check bits, and these
32-bits of data with the 7 check bits are independently
generated, stored, read and used to create syndrome bits for
error correction. Thus, to get a 64-bit word, two completely
separate operations are required, each operation being
treated essentially as writing a single word and generating
check bits therefrom. Only after the operation has been
completed of writing, storing and reading back the data bits
and associated check bits with each 32-bits of data, are the
two 32-bits of data put together to form a 64-bit quad word.
This has several disadvantages. First, since there are 32 data
bits and 7 checkbits required for each half of the data word,
this requires storage of a total of 78 bits. Moreover, separate
operations have to be performed for generating check bits
and generating syndrome bits for each half of the word, thus
requiring two separate operations for running the error
correction code.

FIG. 1B shows another prior art technique wherein a quad
word, e.g. a word of 64 bits in length, is used to generate 8
check bits. This is done in a single write operation and is
read in a single read operation, and the check bits are used
to provide a single set of 8 syndrome bits. This technique has
the advantage of requiring only 72 bits of storage per data
word and associated check bits as opposed to the require
ment of 78 bits of storage for the data and check bits as
shown in the technique of FIG. 1A. It also has the advantage
of only doing a single operation on generating checkbits and
Syndrome bits for each entire data word. It does, however,
present the problem of requiring 72-bit wide buses and data
storage. Most personal computers have buses which at the
most are 32-bits wide. Hence, this would require increasing
the bus an additional 32 bits, with the associated buffers and
additional logic as indicated previously. This is costly and
requires redesign of the computer system to accommodate
72-bit width of storage and bus.

5

10

15

20

25

30

35

40

45

50

55

60

65

4
FIG. 1C depicts diagrammatically the ECC technique as

used on a SIMM according to the present invention. Accord
ing to the present invention, the quad data word of 64 bits
is written by first writing two 32 bit data word successively
on a 32-bitbus, and combining these two 32bit word to form
a 64bit Quad word. From the 64 bit quad word, 8 check bits
are generated using all 64 bits of the quad data word. These
are stored in two separate addresses of memory, one address
storing the first 32 bits of the data word together with 4 of
the check bits, and a second address storing the second 32
bits of the data word together with the other 4 of the check
bits. To access the word, two separate accesses are required;
on the first access, the first 32 bits of data and 4 associated
check bits are accessed and latched in a buffer. Following
this, the second 32 bits, together with their 4 associated
check bits are accessed and also latched in the buffer. The
entire 64 bits of data and 8 check bits are used for error
correction, the error correction taking place just as it would
with the correction code of FIG. 1B, but this has been
accomplished by using a 36-bit wide channel as opposed to
a 64-bit wide channel. Moreover, it will be noticed that the
two sections of the quad word each contain 32-bits of data
and 4 check bits. This is the exact configuration used to store
data bits with parity bits rather than ECC. Thus, with the
same amount of storage space required for parity, and still
utilizing a 36-bit wide address, a quad data word of 64 bits
with error correction code onboard the SIMM can be pro
vided without increasing the amount of storage necessary for
conventional parity SIMM configuration. This can be shown
from an examination of Table I below.

TABLE I

Module
Width Parity (36-bits) ECC (40-bits)

x4 9 - x4 modules 10 - x4 modules
x8 4-x8 modules 5 - x8 modules

- x4 modules
x9 4 - x9 modules 4 - x9 nodules
x16 2 - x16 modules 2 - x16 modules

1 - x4 modules 2 - x4 modules
x8 2 - x18 modules 2 - x4 modules

As can be seen in Table I, a comparison is made of various
module widths and how many modules are required for a
comparable amount of data storage for ECC on 32-bit words
as compared to parity bits of 32-bit words. In each instance,
one or two additional modules or larger modules are
required to store the information. However, with the present
invention, the same amount of storage is used for error
correction on 64 data bits as is used for parity on two 32-bit
data words, i.e., in each case 8 additional bits are required,
which in the case of 64-bit error correction are 8 check bits,
and which in the case of two 32-bit words for parity, 4 parity
bits are used for each double word.

Turning now to FIG. 2, the circuitry for performing error
correction code on board or in conjunction with a SIMM is
shown in which two 32-bit words are received from a 32 bit
system bus in a computer. The two 32-bit double words are
combined to form a quad or 64-bit word which is then used
to generate 8 error correction code check bits. The 64 data
bits and 8 check bits are stored in memory at two separate
addresses, with the 32-bits of data and 4 check bits stored at
each location. On a read cycle, the two addresses in memory
are read successively, and the two double words of 32 bits
each are recombined to form a "reconstituted” original
64-bit quad word. The reconstituted 64bit Quad word is then
run through the error correction tree together with the eight

5,481,552
5

check bits, any errors corrected, and the corrected reconsti
tuted 64-bit word is outputted and latched and then asserted
on the CPU data bus as two successive 32-bit double words.
As shown in FIG. 2, a central processing unit (CPU) 10

is provided which has a microprocessor which could be
80386 or 80486 or Pentium chips of the type manufactured
by Intel Corporation or the 601 or 603 chips manufactured
by Motorola Corp. could be used. Preferably, the CPU is
designed to support write in Burst mode. To efficiently
operate in this mode a write-back cache 12 is provided
which writes onto a 32-bit data bus 14. Also the write-back
cache writes onto an address and control bus 16, which
together with the data bus 14 constitutes the CPU or system
bus. The data bus 14 and control bus 16 are connected to a
memory controller chip 17 having circuitry which controls
the read-write cycles between the CPU 10 and memory. To
perform the ECC and data control function of the present
invention, the memory controller includes a write latch 18
which is connected to the data bus 14 by a data line 20, and
a write latch 22 which is connected by a data line 24 to the
data bus 14. The latches 18, 22 write 64 bits of data to a 128
bit wide read-modify-write multiplexor 26 through lines 28,
30, each of which is a 32-bit line to match the 32-bit input
from the data bus 14 and out of each of the latches 18, 22.
From the read-modify-write multiplexor 26, the data goes
through ECC latch 32 onto a 64-bit data line 34, which is
provided with two 32-bit paths 36, 38 to a high/low multi
plexor 40 which in turn is connected to a driver 42, which
driver 42 asserts memory bits onto line 44 for storage in
memory 45. The 64-bit line 34 also connects to the error
correction code generator/corrector 46, which in a conven
tional manner generates error correction code check bits and
also decodes check bits. Thus, the error correction code
generator/corrector has a generating section 46a and a
correcting section 46b. The generating section 46a generates
8 check bits based on the 64-bit quad word which was
delivered from the multiplexor 26 through latch 32 and puts
four of the checkbits online 48, i.e., checkbits 0-3, and four
of the check bits online 50, i.e., checkbits 4-7. Lines 48 and
50 deliver the check bits to check bit multiplexor 52, which
is connected to a driver 54 which puts the check bits on
checkbitline 55 which are delivered to memory 45, with the
check bits 0-3 being stored with memory data bits 0-31 and
checkbits 4-7 being stored with memory data bits 32-63, as
will be described presently. At this point it should be noted
that all of the 64 bits are used to generate the 8 check bits;
thus the four check bits stored with each 32 bit double word
do not relate only the that double word.

Very briefly, the section of the memory controller 17
described so far reads a first double word consisting of bits
0-31, latches it in latch 18 and then reads a second double
word of 32 bits, i.e. bits 32-63 and latches it in latch 22.
These two double words are impressed on multiplexor 26 as
a 64-bit quad word, which in turn delivers the quad word
through ECClatch 32 to a 64-bit line 34 and also to the error
correction code generator/corrector 46. The 64-bit line 34
provides two 32-bit paths of data, the data path for data bits
0-31 being line 36 and the data path for data bits 32-63
being line 38 which are impressed on multiplexor 40. The
error correction code generator/corrector 46 generates 8
check bits, 0-7, based on the entire 64-byte quad word. The
check bits 0-3 are impressed on line 48 and check bits 4-7
are impressed on line 50 to multiplexor 52. Multiplexors 40
and 52 are actuated and driven by drivers 42, 54 to store data
bits 0-31 together with check bits 0-3 at a first memory
address which is 36 bits wide, and to store memory bits
32-63 at the second double word together with check bits

10

15

20

25

30

35

40

45

50

55

60

65

6
4-7 on the next adjacent memory location which is also 36
bits wide. The operation of the write portion of the logic
circuitry will be described in more detail presently in
conjunction with the timing diagrams.
To read the data, essentially the reverse of the operation

of writing is performed. The lower 32 bits of memory are
read from memory line 44 and latched into latch 56. Once
latched into latch 56, the upper 32bits are read from memory
on line 44 and latched into latch 58. At the same time that
the memory bits are read on line 44, the check bits are read
on line 55, check bits 0-3 being read when memory bits
0-31 are read, and checkbits 4-7 are read when memory bits
32-63 are read. The check bits 0-3 are impressed on latch
62 and latched, and check bits 4-7 are impressed on and
latched in latch 64. When the entire 64 bit quad word and the
associated 8 check bits are read, the data is read from latches
56 and 58 onto 64-bit data line 66 which is a reconstitution
of the original 64 bit quad word, which reconstructed 64-bit
quad word is then delivered into the correcting section 46b
of the ECC generator/corrector, and check bits 0-7 are read
from latches 62 and 64 onto 8-bit check bit line 68 into the
correcting section 46b of the error correction code generator
46. The necessary correction function is performed by the
error correction code generator/corrector 46 and correct data
in the form of a corrected reconstituted 64bit Quad word is
supplied on 64-bit line 70 to the corrected data latch 72,
which impresses the corrected data on multiplexor 74. The
multiplexor 74 divides the 64 bits of corrected data into the
lower 32 bits, bits 0-31, and impresses them onto the data
line 14 of the system bus and then, after these have been
asserted on the system bus, the remaining 32 bits are
asserted onto the line, completing a read cycle. The read
cycle will be described in more detailin conjunction with the
wave form diagram of the read cycle.

If a read-modify-write cycle is to be performed, a read
cycle is performed prior to the write cycle with the corrected
data in the form of the corrected reconstituted 64bit Quad
word being impressed from the corrected data latch 72
through line 76 onto the 128 bit wide read-modify-write
multiplexor 26. Then, partial data being written on the CPU
bus data line 14 is asserted on the multiplexor latch 18 or
latch 22, and the multiplexor overlays the corrected data and
the system data from latch 18 or 22 into the ECC latch 32
which supplies the new data for which check bits are to be
generated onto line 34 and the write cycle continues as
previously described. If more than 4 bytes are to be written
in a 32-bit system bus system in the RWM operation a
second cycle is needed.
The various operations will now be described in more

detail with respect to the various wave form diagrams.
Referring now to FIG.3A, on clockcycle T1 the ADS signal
goes low, and the CPU starts writing data during clockcycle
T2, the data being the data of double word one (DW1) which
is 32 bits wide, i.e., bits 0-31, as shown on CPU data line.
At the end of clockcycle T3, the latch 18 latches in data word
DW1 and immediately data word DW1 is impressed through
multiplexor 26 and latch 32, (which in this configuration are
open and transparent) onto line 34, and on multiplexor 40.
These bits constitute the data memory DW1 shown in the
memory data. Once the data word DW1 has been latched in
at clock cycle T4, the CPU generates double word DW2, i.e.,
the next 32 bits, bits 31-64 which are put on the CPU bus
and they appear at latch 22. These then are immediately
impressed through multiplexor 26 and latch 32, (which are
both open) and onto the line 34, and are latched at latch 22
thus providing a complete quad data word of 64 bits wide,
i.e., bits 0-63, at the multiplexor 40. These same 64 bits are

5,481,552
7

also impressed on the ECC generator/decoder 46, and the
generating section 46a generates check bits 0-7. Check bits
0-3 are impressed on line 48 to multiplexor 52, and check
bits 4-7 are impressed on line 50 to multiplexor 52. Thus, at
this point, the 64-bit data word is impressed on the multi
plexor 40 and the 8 check bits are impressed on the multi
plexor 52. Once data and check bits have been generated,
multiplexors 40 and 52 send the data bits 0-31 and check
bits 0-3 onto data memory bus 44 and check bit bus 55 as
indicated by the multiplexor LIH line. Data and check bits
are written into memory with CAS pulse at clockcycle T6.
At clockcycle T7 when the multiplexor line goes high, the
multiplexor 40 and multiplexor 52 are driven to the high data
bus to write the data bits 32-63 and check bits 4-7 to
memory. During clockcycle T8 CAS goes low to write data
and check bits into memory. The 64 data bits and 8 check
bits have been latched into memory by the end of the 8th
clockcycle. This completes the write operation. It will be
noticed, however, that in order to achieve economy of
operation and speed up the write cycle, the writing of the
second quad word, which will be composed of double word
3 (DW3) and double word 4 (DW4) of CPU data, does not
have to wait until the end of the entire cycle. It can be seen
that as soon as DW2 of the first quad word has been latched
in memory, and since DW1 is also latched therein, the CPU
bus need no longer be maintained generating these words
and is thus free to start the generation of the next quad word.
Therefore, as can be seen on the CPU data line, after the 6th
clock cycle line, DW2 is put onto the CPU bus. This will not
affect, any part of the writing or latching of the first quad
word because the latch 18 is latched, and latch 22 is also
latched, and the latch 32 has latched therein both halves of
the quad word. Therefore, activity on the bus will not affect
the generation of the check bits or writing the correct data
and check bits to memory. The various signals provide
timing such that two quad words can be written and latched
into memory within 14 clockcycles even though the first
data word may not be latched into memory until after 9
clockcycles.

Referring now to FIG.3B, a diagram of the wave form for
a read cycle of the present invention is shown. In the first
clockcycle T1, the ADS line goes low, indicating that a read
is to be started. At this point, the RAS line goes high,
followed by the CAS line going low, and on clockcycle T6
the lower portion of the quad word orbits 0-31 of the DW1
are read from memory as shown on the memory data line. At

10

15

20

25

30

35

40

8
the 32-bit word DW1 from line 44. In clockcycle T9, the
data word DW2 is read from memory onto line 44 and
latched into latch 64 at clockcycle T10. As soon as the DW2
constituted of bits 32-63 is impressed on latch 58, these are
read onto the 64-bit data line 66 together with the lower 32
bits, i.e., bits 0-31, into the correction section 46b of the
error correction code generator/decoder 46. Similarly, when
all of the check bits 0-7 have been impressed on latch 62,
64, they are read into the correcting section 46b of the error
correction code generator 46, and the data is corrected and
put on 64-bit line 70 and impressed on the corrected data
latch 72 as corrected reconstituted original 64 bit Quad
word. This is shown at clock cycle T10 on the corrected data
latch 72. When the BRDY goes low, data word DW1 is
delivered by the multiplexor 74, driver 78 and 32-bit line 20
and impressed on the data bus 14 of the CPU, following
which the BRDY line goes high and then low again and
impresses the second data word DW2, i.e., bits 31-63, onto
32-bit line 20 and onto the dataline 14. This is controlled by
controlling the multiplexor line going high at clockcycle 12
and then again low at clockcycle 13.
The read-modify-write cycle is shown in the read-modify

write wave form. The ADS signal at clockcycle 1 goes low,
indicating that the write operation is to begin. The BLAST
line is low at clockcycle 2 indicating that a non-burst write
mode will occur. According to this invention, this is a
read-modify-write and not a regular write cycle. The RAS
goes high and CAS goes low, and the memory data and
check bits are read from memory as previously described.
DW1 is latched in. Latch 56 and check bits associated with
DW1 are latched in latch 62. CAS then goes high and low
again indicating a second read cycle at the next address, and
DW2, i.e., data bits 32-63 and check bits 4-7 are latched in
latches 62, 64 as previously described, and thus delivered
through the correction section 46b of the error correction
code generator/corrector 46 and are applied on the 64-bit
line 70 and latched in the corrected data latch 72 as the
corrected data. These are then applied through 64-bit line 76
to the read-modify-write multiplexor 26.
The read-modify-write cycle continues by utilizing the

so-called overlay technique in which system data is written
through latches 18 or 22 to the multiplexor 26 and overlaid
on the corrected, reconstituted 64-bit quad word. This tech
nique is represented diagrammatically in Table II below.

TABLE II

Byte Enables Data from CPU Read Data from Overlay of CPU

CPU HIGH- Memory Corrected & Corrected Data

BEi (3:0) Addr WR2 LOW-WR1 CD-HIGH CD-LOW HIGH LOW

RMW 3 2 1 0 A2 3 2 1 0 3 2 1 0 7 6 5 4 3 2 1 0 3 2 1 0 3 2 1 0

YES 0 0 0 O O. A B C D A B C D S T U W W X Y Z S T U W A B C D
YES 1 0 0 O 0 - B C D - B C D S T U W W X Y Z S T U W W B C D
YES 1 1 0 O 0 - - C C - - C D S T U W W X Y Z S T U W W X C D
YES 1 1 1 0 0 - - - D - - - D W X Y Z S T U W W X Y D
YES O 0 O O 1 A B C D A B C D S T U W W X Y Z. A B C D W X Y Z.
YES 1 0 0 0 1 - B C D - B C D S T U V W X Y Z S B C D W X Y Z.
YES 1 1 0 O 1 - - C D - - C D S T U W W X Y Z S T C D W X Y Z.
YES 1 1 1 1. 1 - - - - - D - - - D S T U W W X Y Z S T U D W X Y Z.

HIGH-BITS 63-32
LOW - BITS 32-0

65
the same time, the check bits are also asserted on the check
bit line. When these are asserted on the line, latch 56 latches

5,481,552

First, it should be noted that in a 32-bit wide CPU bus
system, only a single double word of 32 bits can be overlaid
on the quad word in any read-modify-write operation.
Therefore, if more than 32 bits, i.e., more than 4 bytes, are
to be rewritten during the read-modify-write cycle, two
read-modify-write cycles must be performed, the first read
modify-write cycle being performed to correct the lower
data bits, e.g., 0-31 (bytes 0-3) of the quad word, and the
second read-modify-write cycle being performed to correct
that portion of the higher bits, e.g., 32-63 (bytes 4-7) of the
quad word, which must be corrected.

In Table II, the data read and corrected from memory is
represented by the letters S, T, U, V, W, X, Y, Z. This is
accomplished in the following fashion. The letter Z repre
sents the first eight bits of data word DW1 and is shown as
byte 0 in the table; the letter Y represents byte 1 of data word
DW1; letter Xrepresents byte 2 of data word DW1; letter W
represents byte 3 of data word DW1; letter V represents byte
4 of the entire quad word which is byte 0 of data word DW2;
letter U represents byte 5 of the quad word; letter T repre
sents byte 6 of the quad word; and the letter S represents byte
7 of the quad word. Thus, the eight bytes of the corrected
data are represented by the letters S, T, U, V, W, X, Y, Z in
Table II. Data written from the CPU is represented by letters
A, B, C and D. Letter D represents byte 0 from the new data
word being written; letter C represents byte 1 from the new
data word being written; letter B represents byte 2 from the
new data word being written; and letter A represents byte 3
from the new data word being written. Since only one
4-byte, 32-bit data word can be written at a time for any
given cycle, only the letters A, B, C and D are used to
describe the bytes. Whether these are to be used to correct
the bits represented by S, T, U and V, or W, X, Y and Zwill
depend on the state of the byte enable lines and state of the
address line A2 from the CPU, as will be described pres
ently.

In all instances, the corrected quad data word is applied to
the multiplexor 26 as an 8-byte word S, T, U, V, W, X, Y, Z.
The number of bytes to be rewritten is controlled by the
CPU, and those bytes are impressed on the data bus 14. How
these bytes are controlled for rewriting is controlled by the
byte enable lines 0, 1, 2 and 3 as shown in Table II. When
these lines are all in the "O' state, then the CPU will write
data bytes A, B, C and D. The other patterns of 1's and 0's
on the byte enable lines as shown in Table II indicate
whether data bytes B,C,D, C and D, or just D are written.
Further, whether these constitute a part of data word DW1,
i.e., bytes 0-31, or part of data word DW2, i.e., bytes 32-63
of quad word, depends on whether CPU address line A2 is
at logic “0” or logic “1”.

Thus, the first read-modify-write cycle would proceed in
the following way. The reconstituted, corrected quad data
word of 64 bits, i.e., bytes 0-7, are impressed in the
multiplexor 26. If the CPU is to rewrite all four bytes of data
word DW1, bytes A, B, C and Dare written onto the data bus
14 and onto the lines 20 and 24 at the same time. Data can
be latched in either latch 18 or 22, or the latches 18 and 22
can be transparent to the data bus system. These are
impressed on the multiplexor 26 as data bytes A, B, C and
D by byte enable lines 0, 1, 2 and 3 being at logic “0” and
the CPU address line being at logic “0”. This will cause
bytes A, B, C and D to be overlaid on bytes 0, 1, 2 and 3 of
the corrected, reconstituted data word and written into the

10

15

20

25

30

35

40

45

50

55

60

10
ECC latch 32 as a quad data word with bytes S, T, U, V, A,
B, C, D as shown in Table II. This new quad data word, as
modified, then goes through the error correction code gen
erating section 46a and is impressed on multiplexor 40, and
the modified data word is written to memory with the check
bits as described previously.

If only databytes B, C and D are to be rewritten in the data
word DW1 portion of the quad word, then byte enable line
3 is driven to a logic “1” while byte enable line 2, 1 and 0
are held at logic “0”. This will cause a rewritten data word
of bytes S, T, U, V, W, B, C and D to be impressed on the
ECC latch 32 as the rewritten quad word. Similarly, if bytes
C and D of the data word DW1 are to be rewritten, then the
corrected rewritten data word would be S, T, U, V, W, X, C
and D; and if only byte D of data word DW1 is to be
rewritten, then the rewritten data word would be S, T, U, V,
W, X, Y and D. This is all that is required if only bytes 0, 1,
2, and 3, or 0, 1 and 2, or 0 and 1 or just 0 in the quad word
are to be rewritten.

If, however, a read-modify-write operation requires writ
ing of more than four consecutive bytes of data, then this
requires rewriting of data word DW1 and some of the bytes
of data word DW2 of the quad word. At this point, the cycle
of rewriting the modified data with the modified data bits is
repeated but with the CPU address line A2 driven to the
opposite logic state. Again, a read cycle is performed which
reads data from the address locations which include both the
upper and lower bits of the quad word, i.e., the entire 64bits
of the quad word. In this read cycle, the newly written bytes
0, 1, 2 and 3 are read as data from the address, and again are
indicated with the letters S, T, U and V for consistency, it
being understood that in this case the S, T, U and V represent
the rewritten data from the lowerbytes in the previous cycle.
To modify the bytes 0, 1, 2 and 3 of the data word DW2, the
byte enable lines 3, 2, 1 and 0 are all held at a logic “0” and
the CPU address line is held at a logic “1”. These bytes are
then written as bytes A, B, C and D on the CPU bus 16
through latches 18 and 22 and impressed on the multiplexor
26. Since the multiplexor is driven high, the overlay occurs
on bytes 4, 5, 6 and 7 of the quad word, thus causing the
overlay to be A, B, C, D, W, X, Y, Z as shown in the
corrected data table. Similarly, if only bytes B, C and D, or
C and D, or D are to be rewritten, a similar pattern is
followed as described above so that the data is overlaid. The
end resultis in either one cycle if only four bytes or less are
to be written, or two cycles if more than four bytes are to be
written, a read-modify-write operation has been performed,
and the modified word stored in memory.

It will be noted that the read-modify-write cycle takes a
significant number of clockcycles. However, for most opera
tions, a read-modify-write cycle is not necessary and the
data is transferred in burst transfers or burst cycles. Hence,
very little of the data is actually rewritten in a read-modify
write cycle.
With respect to the type of error correction code, any type

of 64-bit error correction code can be used. A particularly
desired one is the SEC-DED-S4ED code. This is the well
known SEC-DED Hsiao code rearranged so that adjacent
4-bit errors can be detected. This is the preferred code, and
the matrix for generating check bits is shown in the follow
ing table. However, any 64/8 algorithm ECC code can be
used.

5,481,552
11 12

TABLE II

Generated Participating Data Bits

Check Bits 0 1 2 3 4 5 6 7 8 9 O 11 12 13 14 5

CBO X X
CB1 X X
CB2 X X X
CB3 X X
CB4 X X X
CBS X X X X
CB6 X X X
CBT X X

X X X X
X X X

X

Generated Participating Data Bits

Check Bits 16 17 8 19 20 21 22 23 24 25 26 27 28 29 30 31

CBO X X X
CB1 X X X X
CB2 X X X X X X
CB3 X X X X X X
CB4 X X
CB5 X X X
CB6 X X X
CB7 X X

X

:
Generated Participating Data Bits

Check Bits 32 33 34 35 36 37 38 39 40 41. 42 43 44 45 46 47

CBO X X X X X X X
CB1 X X X X X X
CB2 X X X X
CB3 X X X X X X X X
CB4 X X X X X X X X
CB5 X X X X X X
CB6 X X X X X X
CB7 X X X X X X X X X

Generated Participating Data Bits

Check Bits 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CBO X X X X X X X
CB1 X X X
CB2 X X
CB3 X
CB4 X
CB5 X
CB6 X X
CBT X X

: :
Generated Participating Data Bits

Check Bits 64. 65 66 67 68 69 70 7.

C B 3
X

The following Table IV indicates the comparison of data
read and write time, comparing the method shown in FIG. TABLE IV-continued
1A with that of the invention shown in FIG. 1C and Cycle Method Invention
described herein. 60

Write ió-bytes 12 telks 14 tclks
TABLE IV RMW 1-byte 10 tecks 15tcks

Cycle Method 1 Invention

Read 16-bytes T tecks 18 toks

5,481,552
13

It can be seen that there is very little additional time
required to perform either the read or the write cycles, and
then is a substantial savings as indicated above in the amount
of storage space required and the number of modules
required for the design of the present invention compared to
the design utilizing the techniques shown in FIG. 1A.
What is claimed is:
1. A computer system and a memory storage device

interfacing with said computer system through a memory
controller, said computer system including a 32-bit data bus
and logic to write 4-byte data words on said data bus, said
memory storage device being configured to store 36 bits at
each address location of said storage device,

said memory controller comprising:
logic to receive first and second successive 4-byte data

words from said data bus and combine said two
4-byte data words to form a single 8-byte data word;

error correction code generating logic to generate an 8
check biterror correction code from said 8-byte data
word;

logic to successively store one of said 4-byte data
words with a first 4 of said generated check bits at a
first address location, and the other of said 4-byte
data words with a second 4 of said generated check
bits at a second address location;

logic to read successively each of said first and second
4-byte data words along with the check bits stored
with each 4-byte data word from said first and
second address location in said memory device, and
combine said first and second 4-byte data words to
reconstitute the originally formed 8-byte data word;

error correcting decode logic to receive said reconstituted
8-byte data word and associated 8 check bits and
correct errors detected;

and logic to write said reconstituted and corrected 8-byte
data word onto the data bus of said computer system as
two successive 4-byte data words.

2. The system as defined in claim 1 wherein said logic to
receive said first and second data words written from said
bus includes a first write data word latch device to latch said
first data word written by said bus while said second data
word is being written by said bus.

3. The system as defined in claim 2, including a second
data word latch to latch said second data word after it has
been written by said bus and during logic function gener
ating error correction code.

4. The system as defined in claim 2, including logic to
combine the first data word from the first data word latch
device and the second data word to form said 8-byte data
word.

5. The system as defined in claim 4, wherein the logic to
combine the first and second written data words includes a
multiplexor.

6. The system as defined in claim 1, wherein the logic to
receive and successively store said 8-byte data word as two
4-byte words includes a multiplexor.

7. The system as defined in claim 1, wherein said logic to
read each of said 8-byte data words and check bits from the
memory storage device includes logic to read said first
4-byte data word and associated check bits first and read said
second 4-byte data word and associated check bits next.

8. The system as defined in claim 7, wherein said logic to
read said 8-byte data words and check bits stored therewith
from the memory storage device includes a first read data
word latch device to store said first 4-byte data word and
associated check bits read from the address while said

10

15

20

25

30

35

40

45

50

55

60

65

14
second 4-byte data word and associated check bits are being
read from address storage.

9. The system as defined in claim 8, further including
logic to read said 8-byte data word from storage includes a
second 4-byte read data word latch device to latch said
second data word when it is read from storage.

10. The system as defined in claim 1, further comprising
said logic to write said corrected 8-byte data word onto the
data bus including an 8-byte read data word latch device to
store said corrected 8-byte data word.

11. The system as defined in claim 10, wherein said logic
to write said corrected 8-byte data word onto the data bus
includes a multiplexor to write said data from said 8-byte
read data word latch device onto said data bus as two
successive 4-byte data words.

12. A method of forming 8-byte data words with error
correction code in a computer system and a memory storage
device interfacing with said computer system, and wherein
said computer system includes a 32-bit data bus and logic to
write 4-byte data words on said data bus, and said memory
storage device is configured to store 36 bits at each address
location of said storage device, and a memory controller,

said method comprising:
receiving first and second successive 4-byte data words

from said data bus, combining said two successive
4-byte data words received from the data bus to form
a single 8-byte data word;

generating an 8 check bit error correction code from
said 8-byte data word;

successively storing one of said 4-byte data words with
a first 4 of said generated check bits at a first address
location, and the other 4-byte data word with 4 of
said generated check bits at a second address loca
tion;

reading successively each of said first and second
4-byte data words together with the check bits stored
with said data words from said first and second
address locations in said memory device, and com
bining said first and second 4-byte data words to
reconstitute the originally formed 8-byte data word;

correcting any errors in the reconstituted 8-byte data word
using the associated 8 check bits;

and writing said reconstituted and corrected 8-byte data
word onto the data bus of said computer system as two
successive 4-byte data words.

13. The method as defined in claim 12, including latching
said first data word written by said bus while said second
data word is being written by said bus.

14. The method as defined in claim 13, including latching
said second data word after it has been written by said bus
and during the logic function generating error correction
code.

15. The method as defined in claim 12, wherein said first
4-byte data word and associated check bits are read first and
said second 4-byte data word and associated check bits are
read next from memory.

16. The method as defined in claim 15, including latching
said first 4-byte data word and associated check bits read
from the address while said second 4-byte data word and
associated check bits are being read from said storage
device.

17. The method as defined in claim 16, including latching
said second 4-byte data word when it is read from said
storage device.

