
O US005452429A

United States Patent (19) 11 Patent Number: 5,452,429
Fuoco et al. 45 Date of Patent: Sep.19, 1995

54 ERROR CORRECTION CODEON ADD-ON 5,051,995 9/1991 Tobita 371/21.1
CARDS FORWRITING PORTIONS OF DATA 5,067,110 1 1/1991 Runaldue 365/189,07
WORDS 5,289,477 2/1994 Lenta et al. 371/37.7

75 Inventors: Daniel P. Fuoco, Boca Raton, Fla.; Primary Examiner Robert B. Harrell o
Christopher M. Herring; Mark W. Attorney, Agent, or Firm-Calfee, Halter & Griswold
Kellogg, both of Essex Junction, Vt.; (57) ABSTRACT
Jorge E. Lenta, Boca Raton, Fla. g ta, 9 The present invention provides a computer system and

73) Assignee: International Business Machines method of using the same. Add-on memory cards for
Corporation, Armonk, N.Y. the system are provided which cards have error correc

(21) Appl. No.: 154,191 tion code logic on the card, and logic to do partial
writes of data words. The system has a central process

22 Filed: Nov. 17, 1993 ing unit (CPU), a BUS interconnecting the CPU and the
51) Int. Cl. .. G06F 11/10 add-on memory cards. The CPU or associated compo
52 U.S. Cl. 395/182,04; 371/402, nents are configured to write data and read data from

364/DIG. 1; 364/DIG 2: 364/243; 364/265; the add-on memory as several data bytes constituting
364/265.3; 364/266.3; 364/943.9; 364/944.9; data words. The system is further configured either

364/945.6; 395/432; 395/442; 395/482; within the CPU or as a separate function to generate
395/494 parity bits associated with each of the bytes of data the

58) Field of Search 364/DIG. 1 MS File, CPU writes to the add-on memory and to read parity
364/DIG. 2 MS File; 371/10.1, 10.2, 10.3, bits associated with data the CPU reads from the add-on

21.1, 21.2, 21.3, 30, 37.7, 40.1, 40.2, 40.3, 40.4: memory and regenerate new parity bits and compare
395/400, 425, 575, 700, 750 the newly generated parity bits with the original parity

56) References Cited bits to detect data errors on data read from the add-on
memory. The system itself does not contain error cor

U.S. PATENT DOCUMENTS rection code (ECC). The add-on memory has ECC
4,249,253 3/1981 Gentili et al. 371/38 logic to identify any byte having a single bit error in the
4,468,731 8/1984 Johnson et al. 364/200 data bytes or the parity bits written by the CPU to the
4,545,010 10/1985 Salas et al. 364/200 add-on memory and to correct all single bit errors in
4,561,095 12/1985 Khan 371/38 data read from the add-on memory to the CPU. The
4,780,809 10/1988 Woffinden et al. ... 364/200 error correcting code includes logic to generate parity
4,789,967 12/1988 Liou et al. 365/189 bits in the data bytes written by the CPU to the add-on
2: 2. My al. o 3:23; memory and logic to compare the parity bits written by
4,896.289 1/1990 Svinicki et al. 364/900 the CPU with those generated by the error correcting
4,951,248 8/1990 Lynch 36/goo code logic.
4,951,254 8/1990 Ontrop et al. 365/201
5,046,049 9/1991 Choi et al. 365/201 16 Claims, 6 Drawing Sheets

DATA to MEMORY
we To MEMORY 42

DATA FROM MMORY

CHECK BS
(s:o) to MEMORY

Mux CHECK at GENERATION

FROM SYST

RMW DATA SWCH
CORRECTE). CAAATCH

CORR DAA Act

to CPU SYNDROMES(5:0)

CORR dAAATCH

RMY CAA SWCH
Ecc twing wer FROM siste citrior cast To MelOr

WE TO MEMORY
oe To MoRY

RMY CYCLES

U.S. Patent Sep. 19, 1995 Sheet 1 of 6 5,452,429

a m www is a di -

--N PARTY 3 PROCESSOR CHECK/GEN
--- or--so

14

18

22
RAS/CAS/WE/OE/ADDR f

26 DATA -----------
ECC/WRITE DATA

MEMORY PARTY E - DRAM CONTROLLER -- an
28

26
2O so musae as amoa as as a

ECC/WRITE DATA

E. DRAM L
t-lar

28

26

HECCASTE DATA Fig.1A E CB
-N

28
lm-on-on---------- manus

ERROR U/E

U.S. Patent Sep. 19, 1995 Sheet 2 of 6 5,452,429

RAS/CAS/WE/OE/ADDR

MEMORY
CONTROLER

LOGIC FOR
ECC/WRITE
ERROR

PRESERVATION

F 9. 1 B

3

T
- 29

CONTROLLER

| ADD

U.S. Patent Sep. 19, 1995 Sheet 3 of 6 5,452,429

DATA O MEMORY
WE TO MEMORY

42

F DATA FROM MEMORY
SELECTOR

DAA
FROM
CPU CHECK BS

4O (6:0) TO MEMORY
CHECK BT GENERATION

FROM SYSTEM
CORRECTED DAIA LATCH

RMW DATA SWTCH CHECK BTS
FROM

CORR DATA LATCH MEMORY
46 48

ERROR/ UE

DAA CORRECTION

49

PARTY TO CPU SYNDROME DECODE ABLE

DAA TO CPU

PARTY ERROR ASBE
TO CPU SYNDROMES(6:0)

50

CORR DATA ATCH

CAS FROM SYSTEM RMW DAA SWITCH
ECC TMING

WE, FROM SYSTEM GENERATOR FOR CAS TO MEMORY
RMW CYCLES

WE TO MEMORY

OE TO MEMORY

U.S. Patent Sep. 19, 1995 Sheet 4 of 6 5,452,429

READ-MODIFY-WRTE FROM TMING GENERATOR TO ORAMS

RAS \-/ FROM SYSTEM

CS-V -FROM TMING GEN.
ADDR-CROWX-C COL)- FROM SYSTEM
WE — —FROM TMING GEN.
DO C READ)-KWRITE RMW DATA

OE - FROM TMING GEN.
WE \ / FROM SYSTEM
Fig4

61 62
DELAY

CAS TO MEM

U.S. Patent Sep. 19, 1995 Sheet 5 of 6 5,452,429

Fig.6

OE TO MEM (E)

NV (F)

DELAY (G) WE GEN.

Fig.6A FROM PD BIS
1 THRU 4

CAS PD1

PD2

PD3

PD4 Fig7
ECC
(ECC DE
TECT PIN)

ERROR
(To SYS.)

ERROR
(FROM CGC

LOGIC)

U.S. Patent Sep. 19, 1995 Sheet 6 of 6 5,452,429

5,452,429
1.

ERROR CORRECTION CODE ON ADD-ON CARDS
FOR WRITING PORTIONS OF DATA WORDS

RELATED APPLICATIONS

Patent application Ser. No. 08/154,193, filed Nov. 17,
1993, entitled “Initialization Methodology for Com
puter System Having Error Correction Code on Add
On Cards for Writing Portions of Data Words'; and
patent application Ser. No. 08/154,192, filed Nov. 17,
1993, entitled "Error Correction Code With Write
Error Preservation for Add-on Memory'.

FIELD OF THE INVENTION

This invention relates generally to the detection and
preservation of write errors and the correction of read
errors for parity systems that write to and read from
add-on memory in computer systems. In even more
particular aspects, this invention relates to error correc
tion code logic and add-on memory that allows the
detection and preservation of detected uncorrectable
errors occurring during the write cycle of a parity type
CPU and allows for correction of all single bit errors
occurring during the read cycle when the CPU is read
ing from the add-on memory and which allows writing
to the CPU of partial data words while maintaining an
error correction code capability.

BACKGROUND OF THE INVENTION

In a related application entitled "Error Correction
Code With Write Error Preservation for Add-on Mem
ory', a system and method is disclosed which permits
add-on memory cards to contain error correction code
in which data words are comprised of multiple data
bytes. However, the system disclosed in this related
application can function as disclosed only when an
entire data word is written which includes all of the
data bytes since bits from each of the data words are
included in generating the check bits.

SUMMARY OF THE INVENTION

According to the present invention, a computer sys
tem and method of using the same is provided in which
add-on memory cards are provided which have error
correction code logic on the card, and logic to do par
tial writes of data words. The system has a central pro
cessing unit (CPU), and a BUS interconnecting the
CPU and the add-on memory cards. The CPU or asso
ciated components are configured to write data and
read data from the add-on memory as several data bytes
constituting data words. The system is further config
ured either within the CPU or as a separate function to
generate parity bits associated with each of the bytes of
data the CPU writes to the add-on memory and to read
parity bits associated with data the CPU reads from the
add-on memory and regenerate new parity bits and
compare the newly generated parity bits with the origi
nal parity bits to detect data errors on data read from
the add-on memory. The system itself does not contain
error correction code (ECC). The add-on memory has
ECC logic to identify any byte having a single bit error
in the data bytes or the parity bits written by the CPU
to the add-on memory and to correct all single bit errors
in data read from the add-on memory to the CPU. The
error correcting code includes logic to generate parity
bits in the data bytes written by the CPU to the add-on
memory and logic to compare the parity bits written by

10

15

25

35

45

50

55

65

2
the CPU with those generated by the error correcting
code logic.
The error correcting code logic further includes logic

or structure which allows for writing less than an entire
data word, i.e. writing bytes to a data word which do
not constitute the entire data word and still maintain the
error correcting code capability for the entire data
word. This capability takes the form of providing for a
read-modify-write (R-M-W) function when less than
the entire data word is being written so that check bits
will be properly written even when writing only a par
tial data word and for the system to determine when a
R-M-W function is to be performed and adjust the nec
essary timing.
The data bytes are stored in a first format in the add

on memory when each newly generated parity bit com
pares with each corresponding originally written parity
bit and in a second format when at least one newly
generated parity bit does not compare with the corre
sponding originally written parity bit. The first and
second formats can be preferably accomplished by
using one of the bits in the transmission as a flag to
indicate the format in which the stored data is being
flagged when an additional unused bit is available for
this purpose. However, some other flag device, such as
drawing a certain line high or low can be used. The
logic also includes logic to correct any single bit error
in the data words in data being read out of memory to
the CPU when the data bytes are stored in the first
format, and logic to identify any byte or bytes on which
the corresponding parity bit does not compare when the
data bytes are read from memory when the data bytes
are stored in the second format. Thus, write errors to
add-on memory in any data byte are identified and sin
gle bit read errors from add-on memory are corrected.
The logic also preferably includes logic circuits to iden
tify all errors in two bits and some errors in more than
two bits in the read cycle from the add-on memory. The
invention also includes logic to detect whether the add
on card contains a read-modify-write type of system for
writing partial data words which preferably includes
some physical configuration of the memory card which
prevents insertion of a card having ECC capabilities to
a machine which is not adapted to utilize a card having
such ECC capabilities. Expressed another way, if a
system has internal to it ECC capabilities, it would not
be compatible with a card having ECC capabilities on
the card. Hence insertion of a card having an ECC
capability on the card into a system having ECC capa
bilities internal to the system is prevented.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high-level diagram showing the intercon
nection of a CPU BUS and add-on memory and an
add-on memory card according to this invention;
FIG. 1A is a block diagram of the interface of the

memory controller with various add-on memory cards
with ECC;

FIG. 1B is a high level block diagram of the memory
interface with a memory controller using a single ECC
unit for all DRAM or SIMM cards.
FIG. 2 is a high-level block diagram of a memory

interface with the memory controller and parts of the
logic on each DRAM card;
FIG. 3 is a flow diagram showing the error correc

tion system for a memory interface written for an entire
word and utilizing a read-modify-write cycle for partial
writes;

5,452,429
3

FIG. 4 is a timing diagram for a read-modify-write
cycle of the system shown in FIG. 3;

FIG. 5 is a block diagram showing the logic for gen
erating signals for the write and R-M-W operation and
showing the generation of certain timing requests; 5
FIG. 5A shows the signals as generated by the logic

of FIG. 5;
FIG. 6 is a block diagram showing the logic for gen

erating other requests for the write and R-M-W opera
tion;

FIG. 6A shows the signal as generated by the logic of
FIG. 6;
FIG. 7 is a view of an ECC card pin logic to identify

a card with ECC on board;
FIGS. 8A and 8B are diagrammatic representations

of cards which are useful in different systems.
DESCRIPTION OF THE PREFERRED

EMBODIMENT

The preferred embodiment will be described in the
environment of an IBM Personal Computer using an
Intel 80386 or 80486 microprocessor and with DRAM
cards or single in-line memory modules (SIMMs) pro
vided as add-on memory. For the purpose of this de
scription, the system will be described as it is used with
a CPU capable of generating parity bits for the bytes of
information that it writes and also reading and compar
ing parity information read from storage. In the pre
ferred embodiment, the address locations in add-on
memory are assumed to be 40 bits wide and the data
words are written as 4 byte strings with 7 check bits
generated thus accounting for 39 of the possible 40 bits
in each address. Such a system is conventional and need
not be described further. In the preferred embodiment,
the 40th bit is used as a flag bit for the syndrome decode
as will be described later.
As can be seen in FIG. 1, there is provided a central

processing unit (CPU) 10 which is connected to a CPU
or system bus 12. A parity generation and check unit 13 40
is also provided which generates or checks parity of
data being either written by or read by the CPU 10 to or
from the bus 12. The CPU bus may also have local I/O
ports 14, CACHE memory 16, and firmware subsys
tems 18 associated therewith. A memory controller 20
is also connected to the system bus 12, coupling it to a
memory subsystem 22, and also normally to an expan
sion bus 24 if one is present. The memory subsystem 22
is typically comprised of SIMMs or a plurality of
DRAMs 26, each of which is provided with error cor- 50
rection code logic (ECC) 28 of this invention as shown
in FIG. 1A. It should be noted that a single ECC unit 29
could be used for all DRAM cards as shown in FIG. 1B.
In either case, the ECC unit 28 or 29 operates the same.
As indicated above, the CPU 10 is capable of writing

data onto the bus 12 which in turn will be conveyed to
the correct memory address in subsystem 22 by the
memory controller 20. Upon writing data by the CPU
10, parity bits are generated for each byte of informa
tion written to memory by the parity generating and
checking device 13 which also checks parity on infor
mation read from the memory subsystem 22 during a
read cycle to determine parity error. The memory con
troller also provides the necessary signals, such as Row
Activation Strobe (RAS), Column Activation Strobe
(CAS), Write Enable (WE), Output Enable (OE), and
Address (ADDR), etc. to the memory subsystem 22 as
shown in FIGS. 1A and 1B. The memory controller

10

20

25

30

35

45

55

65

4
reads and writes both data and parity to each of the
DRAM cards 26, also as shown in FIGS. 1A and 1B.
The error correction code logic includes logic which

will store the parity bits written by the CPU on a
“write' cycle. The ECC logic will also calculate 7
check bits for each data word. Each memory location in
the card, which may extend to gigabyte depth, stores a
4 byte data word, the associated 7 check bits and the
flag bit for each data word. The error correction code
also can regenerate the check bits when the stored word
and associated check bits are read from memory. If a
single bit error occurs in the reading of the data, the
ECC will correct this error before passing the data with
good parity to the CPU on the CPU read cycle if the
data stored was properly written and uncorrupted. If
the data stored was corrupted or bad data, the logic will
force a “bad” parity bit or “inverted' bit associated
with any byte which showed a write error before it
passes the bytes back to the CPU on a read cycle. This
is shown in the application Ser. No. 08/154,192, filed
Nov. 17, 1993 entitled "Error Correction Code with
Write Error Preservation for Add On Memory'.

In systems of the present invention, a configuration of
the memory is such and the operation of the CPU is so
arranged that the data is stored in memory, arranged in
four data byte words with data bits in all of the four data
byte words participating in the generation of check bits;
i.e. the data bits in any given data byte may be used to
generate check bits for other data bytes. In this case
seven check bits are used to provide error correction
for any single bit error in a four byte data word. If all of
the data bytes are to be written, then the operation is as
described in application Ser. No. 08/154,192, filed Nov.
17, 1993, entitled "Error Correction Code with Write
Error Preservation for Add-on Memory'. However,
when reading or writing of less than the full four bytes
of data and generating and comparing check bits, this
cannot be done by simply reading directly or writing
directly only those bytes which are to be rewritten and
leaving the remaining bytes undisturbed since bits in
any of the four data bytes (i.e. any of the 32 bits irre
spective of the data byte in which they reside) may be
used to generate the check bits for a given data byte.
Therefore, when less than all the data bytes are to be
rewritten, it is necessary to implement a read-modify
write (R-M-W) cycle. What is done in such a scheme is
that when these newly written data bytes are generated
by the CPU, the full data word is read from the address
in memory where they are stored and multiplexed with
the newly written data bytes. Check bits are then gener
ated based on the newly written data bytes and those
which were previously written and read and which
were multiplexed to provide the new data word.
As can be seen in FIG. 3, data is written from the

CPU to a multiplexer or selector 40 which in turn writes
the data to memory. As will be described presently, the
CAS line from the system will activate the multiplexer
when required to multiplex the newly written data
bytes with the data bytes read from the memory on the
R-M-W write cycle and initiate the read-modify-write
cycle. If, on the other hand, the entire data word, (i.e.
all four bytes) is being rewritten there is no necessity for
having a read-modify-write cycle and the entire four
byte data word is written directly to memory. The data
which is being written is delivered through a selector or
multiplexer 42 to check bit generator 44. The check bit
generator 44 generates check bits zero to six and deliv
ers the generated check bits to memory. If the data

5,452,429
5

word being written is an entire four byte data word the
generation of the check bits is the same as described in
said co-pending application "Error Correction Code
With Write Error Preservation for Add-On Memory'.

6
are XOR'd to provide syndrome bits to syndrome de
code logic table 46.
The decode logic table 46 provides the function of

error correction of single bit read errors and detection
Briefly, the check bits are generated as shown in Table 5 of all double bit detect errors, and delivers the output to
1 below. XOR parity logic 49 which inverts the parity bit to the

TABLE 1.

GENERATION OF CHECKBITS
Generated
Check Participating Data Bits
Bits Parity 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CBO NOR X X X X X X
CB1 NOR X X X X X X X X
CB2 NOR X X X X X X X X X X X X
CB3 NOR X X X X X X X X
CB4 NOR X X X X X X
CB5 NOR X X
CB6 NOR X X X X X X

Generated
Check Participating Data Bits
Bits Parity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
CBO NOR X X X X X X X X
CB1 NOR X X X X X X
CB2 NOR X X
CB3 NOR X X X X X X
CB4 NOR X X X X X X X X
CBS NOR X X X X X X X X X X X X
CB6 NOR X X X X X X

In Table 1, the participating data bits are labeled from
O to 31. The first 8 data bits are the data bits for the first
byte, and the next 8 bits are the data bits for the second
data byte, etc. The 7 check bits are generated by
XNORing the participating data bits as indicated by the
x's in the table. Each check bit is generated by using a
unique pattern of data bits in the data word such that
when the check bits are regenerated later and the regen
erated check bits compared with the original check bits,
a single bit error in any data bit or check bit will be
identified uniquely as to its location. This type of error
correction code perse is known in the art. It should be
noted that in generating check bit 1 all of the bits of data
byte 1, i.e. bits 0 through 7 are included, check bit 2 is
generated by including all of the data bits in byte 2, i.e.
bits 8 through 15, check bit 3 includes all of the eight
data bits in byte 3, i.e. data bits 16 through 23, check bit
4 is generated including data bits 24 through 31. It will
be apparent to one skilled in the art that using only these
data bits which correspond to the data bits in each data
word that a parity bit will be generated for each data
word, i.e. that bits 0 through 7 forming check bit 1
constitute a parity bit for byte 1, that data bits 8 through
15 constitute a parity bit for byte 2, data bits 16 through
23 constitute a parity bit for the byte 3 and data bits 24
through 31 constitute a parity bit for the data byte 4.
When the data is read in four byte wide complete data

words, it is read and the data and check bits compared
as follows.
The data stored in memory together with the check

bits and system flag are read from memory as shown in
FIG. 3 with the arrows flowing from right to left. The
data from memory is read to the selector 42 and also to
an error correcting syndrome decode logic table 46.
The check bits in memory are read through XOR gate
48 to the error correcting syndrome decode logic table
46. The read data is delivered from the selector 42 to the
check bit generator 44. The check bit generator 44
delivers newly generated check bits to the XOR gate 48
which together with the check bits read from memory

30

35

45

50

55

65

system if an error occurs on the UE pin. If there was a
single bit error, the syndrome decode logic table 46 will
correct the error, and if there is multiple bit errors, this
will be transmitted to the parity logic 49 which will
force a bad parity bit signal. The functioning of the data
correcting syndrome decode table 46 is shown in Table
2 which is used to determine whether an error occurred
in the read data word. The detection of errors can be
reported if desired. This can be done by supplying a
signal to a pin on a card (e.g. Pin No. 66 on an IBM
SIMM) if a correctable error has occurred, and to an
other pin (e.g. Pin No. 71 on an IBM SIMM) if an un
correctable error has occurred.

TABLE 2
SYNDROMEDECODE TABLE WITH FLAG NOT SET

SYNIDROME S6 O 1. 0 l O 1 0 1
BITS S5 0 0 1 1. 0 0 1 1

SO S1 S2 S3 S4 O 0 0 O 1 1

0 0 0 0 * CB6 CB5 CB4 21
0 0 0 1 CB3 30 22 19
0 0 1 0 CB2 15 8
0 0 1 1 13 12 10
0 1 0 0 CB 31 20
0 1 0 1 7 25 O
0 1 1 0 S 24 4.
0 1 1 1 2
1 0 O 0 CBO 29 23 18
1 0 0 1 27 7
1 0 1 0 14 28 9
1 0 1 1 11
1 1 0 0 6 26 16
1 1 0 1 1
1 1 1 0 3
1 1 1 1

No error detected
Blanks in table indicate multiple errors

If no error occurred, all syndrome bits will be 0. If a
single bit error in the data word is detected, the exact bit
location will be identified and that bit reversed or
"flipped' to correct the data and read the corrected
data into the CPU as correct data from the decode table
46. How this is done is demonstrated in the syndrome

5,452,429
7

Decode table shown in Table 2. The syndrome decode
table indicates that when the check bits are each exclu
sively OR'ed with each other, if all of them compare the
syndrome bits will be all logic 0; this location is shown
in the upper left hand corner of the table indicating that
the data read is uncorrupted from that as written. Each
place where there is an indication in the table represents
the detection of a single bit error in one of the 4 bytes or
one of the seven check bits. In any of these cases, this
single bit error can be corrected and the correct data
passed to the CPU through parity logic 49 on a read
cycle. If, for example, data bit no. 1 were the corrupted
bit, the corresponding syndrome bits SO, S1 and S3
would be logic “1” while syndrome bits S2, S4, S5 and
S6 would be at logic 0. Thus, a reading of this code
would indicate that data bit 1 had been corrupted and it
is the only corrupted data bit. This data bit is changed
either from 'O' to '1' or '1' to 'O' whichever it should
be Similarly, if check bit 4 is the bit that was corrupted,
then syndrome bit S4 will be the only one that is a 1 and
syndrome bits S0, S1, S2, S3, S5 and S6 would read 0,
this code indicating that the check bit 4 was the one that
is corrupted, and no correction of the data need occur
since this is merely a check bit which will be discarded.
Similarly, if syndrome bits S4, S5 and S6 do not com
pare and syndrome bits S0, S1, S2 and S3 do compare,
this would represent data bit 21 as can be seen in the
upper right hand corner of the table.

All of the blanks in the table, i.e., where there is nei
ther an asterisk nor a bit location designated, represent
a multiple bit error and in this case the information of
multiple bit errors is delivered to logic 49 and passed on
to the CPU indicating corrupted data since with this
particular error correcting scheme no correction is
possible for multiple bit errors. A decode to a non-zero
syndrome that does not fall into an identified place in
the table will identify all 2 bit errors and certain errors
involving more than 2 bits. The data will be returned to
the XOR logic 49 indicating uncorrectable error (UE)
and force “bad” parity.

If a write is to be accomplished wherein less than an
entire four byte wide data word is to be written, the
read-modify-write operation must be performed. As
indicated above, the read-modify-write operation takes
place by reading the complete data word and multiplex
ing it with the data bytes which are being rewritten and
from this new four byte data word regenerating check
bits, and then storing the rewritten data word in mem
ory along with the newly generated check bits. This is
accomplished as follows. Still referring to FIG. 3, error
correction code timing generator logic 50 for a read
modify-write cycle is provided. The purpose of this
logic is to provide an additional cycle or cycles which
are necessary to perform the operation of reading the
data bytes from memory and multiplexing them with
the data bytes which are to be rewritten. This requires
an extra cycle to complete and is accomplished by the
timing generator 50 in a manner which will be described
presently.
The entire word which contains those data bytes

which are not to be overwritten is read from memory
into the syndrome decode table 46. The syndrome de
code table 46 will check for errors and correct any
single bit error and indicate multiple bit errors. The
entire correct data word is then written to the corrected
data latch 52. The latch 52 is switched "on' when the
read-modify-write cycle is actuated and these data bytes
stored in the latch 52, together with the data bytes from

O

15

20

25

30

35

45

50

55

65

8
the CPU which are being newly written, are supplied to
the multiplexer 40. The multiplexer 40 is actuated dur
ing the read-modify-write cycle by the CAS active line
from the system as will be described presently. This will
multiplex the newly written data bytes with the data
bytes stored in the corrected data latch 52 to thereby
form a new four byte data word comprised of the se
lected bytes to be rewritten and the newly written
bytes. The multiplexed data forming the new four byte
data word is then read to the selector 42 and also writ
ten to memory. The selector 42 then provides the newly
generated four byte data word to the check bit genera
tor 44 which generates seven new check bits which are
then written to memory as previously described accord
ing to Table 1. Thus the newly written four byte data
word together with the newly generated check bits are
stored in memory. The reading and writing of the
newly generated data word is then handled as previ
ously described according to Table 2.

FIG. 4 is a diagram showing the various signal con
figurations which are utilized to perform the read-modi
fy-write operation. This diagram shows the row activa
tion strobe (RAS) and the column activation strobe
(CAS) signals. It should be understood that there is a
CAS signal for each data byte being written and if this
signal is not activated for any one byte indicating that
this byte is not being rewritten, this high level will
implement the R-M-W cycle. This signal is generated
by the R-M-W logic 50. The RAS signal as shown is
generated by the CPU on the system. The Output En
able (OE) signal also is generated by the R-M-W logic
50 as is one write enable signal (WE). A second write
enable (WE) signal is generated by the system as are the
address (ADDR) signals. As indicated, if any one of the
four bytes is not to be written, then one of the CAS
signals will be held high; and, a read-modify-write cycle
will be performed if any of the CAS signals are not
active, i.e. held high. If all of the CAS signals are active
a writing of the four bytes is done as previously de
scribed with no read-modify-write operation and the
system operates in a conventional manner. However,
the system, whenever sending less than four CAS en
able signals, will then provide the additional timing
within the system to allow for the read-modify-write
operation to be performed.
The logic blocks in the ECC timing generator 50 for

the read-modify-write cycles is shown in FIGS. 5 and 6,
and the signals generated are shown in FIGS.5A and
6A, respectively, which provide an output enable to
memory. As seen in FIG. 5, the CAS and WE signals
are delivered from the system to a combination logic
gate 60. The CAS signal is also provided through a
delay 61 to a multiplexer 62 which has an output of a
CAS to memory and labelled point 1. The combination
logic gate 60 provides a signal responsive to the proper
combination of the CAS and WE signals from the sys
tem to generate a read-modify-write (R-M-W) signal
which is gated to the multiplexer 62 and also to multi
plexer 72 to provide a selection operation for OE to
memory labelled point 3. The CAS signals from the
system are also provided through AND gate 64 gener
ating a CAS enable if any of the CAS signals are active
low. The gate 64 also provides a signal to a delay 66
which provides an output to an inverter 68 which in
turn provides a signal to an OR-gate 70 which also
receives an input from the gate 64. Output from the
OR-gate 70 is an OE signal supplied to a multiplexer 72
which also receives a select signal from the combination

5,452,429
9

logic gate 60. With all the proper combinations of sig
nals, if a read-modify-write operation is to be provided,
the multiplexer 72 will provide an output enable signal
to allow the memory to read the complete data word. If
not selected for R-M-W operation, the OE to memory,
point 3, is held inactive high. The timing from the CAS,
the CAS delay, the inverter and the output enable
shown at points A, B, C, and D in FIG. 5 are shown in
the timing diagram of FIG. 5B.

FIG. 6 also shows part of the logic ECC timing gen
erator 50 for doing the R-M-W operation. When output
enable is sent to memory and also sent to inverter 74
which provides a signal (F) to a delay 76 which pro
vides an output which is a write enable generator (G).
The write enable from the system also goes to a delay 78
which in turn provides an output to multiplexer 80. The
write enable signal from the timing generator provides
a WE to memory point 2 when the R-M-W is received
at the multiplexer 80. The signals are shown in FIG. 6A
of the output from memory, converter, and the signal
shown at points E, F, and G in FIG. 6. Also, the output
enable to memory is used to actuate correct data latch
52 (FIG. 3) and supplies R-M-W signal switch to multi
plexer 40 responsive to a R-M-W signal from the ECC
timing generator 50. It is to be understood that the
performance of read-modify-write cycles is per se
known.
The logic shown in FIGS. 5 and 6 causes the memory

to read the data bytes to syndrome decode table 46 as
indicated previously which are then written to the cor
rected data latch 52 which corrected data latch when
activated will write those bits to the multiplexer 40 and
there the data bytes which are read from memory are
multiplexed with the new data bytes written by the
CPU as indicated previously and are read to the selector
42, and then to check bit generator 44 in which check
bits are generated all as previously described all as
shown in FIG. 3.
One of the important features of the present invention

is that these cards can be used on systems which do not
contain error correction code logic within but only
parity, but which cards will be prevented from being
utilized in systems which have error correction codes
within the system itself. The requirement of this is that
this be done on cards having conventional design. The
conventional card contains seventy-two contact pins,
most of which are used for other functions. Therefore,
it is desirable to have a single pin determine whether a
particular card has error correction code on the card
according to the present invention or does not have it;
and further, it is important that a card that has error
correction code on board according to this invention
not be inserted into a system which has error correction
code within the system. Moreover, it is desirable to
have a system which does not have error correction
code within the system accept a card that does not have
error correction code on board as well as accepting a
card that has error correction code onboard. Expressed
another way, there are generally two types of systems,
one which has parity generation only and not error
correction code within the system and another which
has error correction code within the system. There are
basically three system options. First, those systems
which have ECC in the system; second, those systems
which have only parity in the system and do not pro
vide wait states necessary for R-M-W, ECC on SIMMs;
and third, those systems which have parity and can
provide wait states for R-M-W, ECC on SIMM. It is

5

10

15

25

30

35

45

50

55

65

10
important and desirable that a system which has error
correction code within the system accept and function
with cards which do not have error correction code on
board but not either accept or function with cards
which do have error correction code on board. More
over, a system that has only parity and not error correc
tion code and can provide wait states for R-M-W opera
tions should accept cards that have either error correc
tion code on board or cards that do not have error
correction code on board. Further, a system that has
only parity and cannot provide the wait states should
accept only parity cards, and not those with ECC on
board.
To this end, the combination of electrical circuitry to

drive a particular pin high or low together with selected
card geometry are provided to allow insertion of appro
priate cards and prevent the insertion of cards which
are not appropriate as described above.
FIG. 7 shows a high level circuit diagram of a circuit

which allows that function. As shown in FIG. 7 the
RAS and CAS lines are each directed to the input side
of OR-gates 80, 82, 84, 86, 88, and 90. The output of the
OR-gates 80, 82, 84, 86, 88, and 90 are directed respec
tively to a series of non-inverting buffers which are
minus active enable. The buffers 92,94, 96, and 98 have
inputs from programmable presence detects on the card
and the buffers 100 and 102 have grounded input. It is
the output from the buffer 100 which is used to detect
whether a card is compatible and the output is supplied
to one of pins on the SIMM card. The reason for this
configuration is that there are only a limited number of
pins on an IBM or other SIMM card, and it is the pin on
the card which interacts with the output of buffer 100
which configures the system at all cycles other than
read or write or refresh output of buffer 100 will be
high. The state will signify the card as either a conven
tional parity card or a card with ECC on board. As will
be described presently, a card of this invention with
ECC on board will be provided with a reduced height
notch which will prevent if from being inserted into a
system having ECC capabilities in the system.
When RAS and CAS lines are both low, the output

from the buffer 100 is driven low which indicates that
the card is one which contains ECC R-M-W logic on
board. In order to prevent the card of this invention
from being inserted into a parity system without the
required wait state for R-M-W, the card of this inven
tion as shown in FIG. 8B is provided with a reduced
notch height, i.e. one eighth of an inch rather than one
quarter of an inch as shown in FIG. 8A. A system with
out the required wait states for R-M-W operation is so
configured that the system will block entry of a card
with only one eighth inch height, whereas it will accept
a conventional parity card with a one quarter inch high
notch. If the system is a system with error correction
code within the system. The card of this invention with
a 0.125" notch will fit the system but the pin connected
to buffer 100 will be high which means the card will not
work with the system and the card will be “ignored” by
the system. Of course, the card of this invention with a
0.125' notch does fit into a parity system which can
provide the necessary wait states for R-M-W opera
tions.

Referring again to the system where the buffer 100
puts out a high level signal indicating it can accept
either a parity card or a card that has ECC on board, the
system will read the card configuration, and determine
whether in fact the card is an ECC card according to

5,452,429
11

the present invention or is a standard parity card which
does not have error correction and respond accord
ingly. This is done by performing a read or a write
cycle. During such a cycle (it doesn't matter which), if
the pin reads low driven by logic on the card, then the
card has ECC on board. If the pin reads high, then it is
a standard parity card and the system does not need to
provide cycle for ECC or R-M-W. Thus, a standard
parity system with minor modifications can accept a
card with ECC on board or a standard parity card.
As indicated above, a feature of the present invention

is the provision of SIMM card geometry that prohibits
the insertion of SIMM having Error correction code
according to this invention into a parity system which
does not have the necessary wait states for R-M-W
operations. FIG. 8A shows a standard parity SIMM
card with a 36 bit data pin configuration and FIG. 8B
shows a SIMM according to this invention with a 40 bit
data pin configuration or a card with R-M-W or ECC
on board. Referring to FIG. 8A SIMM card 110 has a
plurality of electrical contacts or pins 112 some of
which are shown rather schematically along the edge
thereof. These are the contacts which must be engaged
when the card is inserted into the CPU. The card 110
includes a notch 114 in one corner which is 0.25' high.
FIG. 8B shows a SIMM card 116 for use in a system
that supports error correction code logic on the SIMM
card. The card 116 has contacts or pins 118 similar to
contacts 112 on card 110. Card 116 also has a notch 120
in one corner, but the notch 120 is only 0.125' in height.
This reduced size notch 120 in the card 116 prevents the
card from being used in a system that does not support
ECC on SIMM's but allows for either the card 110 or
card 116 to be used in a straight parity system as de
scribed above.
The output signal from buffer 100 is supplied to one

of the pins or contacts 112 or 118 to signify whether the
system is a system with ECC on board or a parity sys
tem; and only a parity system having sufficient wait
states for R-M-W operations will accept the card 116
with a 0.125' notch, as described above. The selected
pin or contact 112 or 118 is one that is normally not used
for data transfer during operation of the system. Such
selection would be apparent to one skilled in the art, e.g.
the/ECC pin in an IBM card.
Although one embodiment of this invention has been

shown and described, various adaptations and modifica
tions can be made without departing from the scope of
the invention as defined in the appended claims.
What is claimed is:
1. A memory card adapted to interface with a con

puter system having an operating mode, and wherein
said computer system has a write cycle, and said com
puter system and said card are configured to write and
store data words at selected addresses on said memory
card during said write cycle, wherein each data word
has multiple bytes, and wherein said computer system is
configured to write all of the bytes of any of said data
words or write less than all of the bytes of any of said
data words selectively to memory, and wherein said
computer system is free of error correction code capa
bilities but capable of providing varying wait states
during said write cycle, and wherein said computer
system is configured to provide sufficient cycle time for
card logic to perform read-modify-write operations to
memory; -

said memory card comprising;

5

10

15

20

25

30

35

45

50

55

65

12
logic to generate check bits from each data word

written and logic to write each of said written data
words and said check bits generated from each of
said written data words to a selected memory loca
tion on said card;

logic to detect when less than all of the bytes of any
of said data words are to be rewritten to a given
address and to initiate a read-modify-write cycle
when less than all of the bytes of any of said data
words are to be rewritten;

logic to perform a read-modify-write operation
wherein the bytes of a word at the given address
are read from memory and multiplexed with newly
written bytes by said system to form a new data
word of multiplexed bytes, new check bits are
generated from each new data word of said multi
plexed bytes and the new data words of said multi
plexed bytes and check bits that have been gener
ated from said new data words of multiplexed bytes
are written to memory,

said logic to perform said read-modify-write opera
tion including logic to generate a delay in the write
cycle for a sufficient time to read from memory
said data bytes at said given address, multiplex said
data bytes read from memory with the newly writ
ten data bytes and write the multiplexed data bytes
and the check bits generated from said new data
word to memory;

logic to read the bytes of each data word and check
bits from any said selected location in memory; and

error correction code logic to generate syndrome bits
and correct all one bit errors in said bytes of said
data word read from said selected locations during
said operating mode.

2. The memory card as defined in claim 1 wherein
said card includes means to identify said card to a com
puter system as having error correction code capabili
ties.

3. The memory card as defined in claim 2 wherein
said means to identify said card includes circuit means
on said card to provide a signal to the computer system
responsive to a given configuration of the computer
system.

4. The memory card as defined in claim 3 wherein
said given configuration is supplied by a signal from the
system and received by a contact on said card.

5. The memory card as defined in claim 1 further
characterized by said card having means to prevent said
card from being inserted into a system which does not
provide sufficient cycle time for a read-modify-write
operation.

6. The memory card as defined in claim 5 wherein
said means to prevent the insertion includes notch
means on said card configured to prevent said insertion.

7. A computer system comprising:
a CPU;
at least one memory card adapted to interface in the
computer system;

said computer system having a write cycle, and said
computer system and said card being configured to
write and store data words at selected addresses on
said memory card during said write wherein each
data word has multiple bytes, said computer system
being configured to write all of the bytes of any of
said data words or write less than all the bytes of
any of said data words selectively to memory, said
computer system being free of error correction
code capabilities but capable of providing varying

5,452,429
13

wait states during said write cycle, said computer
system being configured to provide sufficient cycle
time for card logic to perform read-modify-write
operations to memory;

said memory card including:
logic to generate check bits from each data word

written and logic to write each of said written data
words and said check bits generated from each of
said written data words to a selected memory loca
tion on said card;

logic to detect when less than all of the bytes of any
of said data words are to be rewritten to a given
address and to initiate a read-modify-write cycle
when less than all of the bytes of any of said data
words are to be rewritten;

logic to perform a read-modify-write operation
wherein the bytes of a word at the given address
are read from memory and multiplexed with newly
written bytes by said system to form a new data
word of multiplexed bytes, new check bits are
generated from each new data word of said multi
plexed bytes and the check bits that have been
generated from said new data words of multiplexed
bytes are written to memory;

said logic to perform a read-modify-write operation
including logic to generate a delay in the write
cycle for a sufficient time to read from memory
said data bytes at said given address, multiplex said
data bytes read from memory with the newly writ
ten data bytes and write the multiplexed data bytes
and new check bits to memory;

logic to read the bytes of each data word and check
bits from any said selected location in memory; and

error correction code logic to generate syndrome bits
and correct all one bit errors in said bytes of said
data words read from said selected location.

8. The system and card as defined in claim 7 wherein
said card includes means to identify said card to a sys
tem as having error correction code capabilities.

9. The system and card as defined in claim 8 wherein
said means to identify said card includes circuit means
on said card to provide a signal to the computer system
responsive to a given condition of the computer system
configuration.

10. The system and card as defined in claim 9 wherein
said given condition is supplied by a signal from the
system and received by a contact on said card.

11. The system and card as defined in claim 7 further
characterized by said card having means to prevent said
card from being inserted into a system which does not
provide sufficient cycle time for a read-modify-write
operation.

12. The system and card as defined in claim 11
wherein said means to prevent the insertion includes
notch means on said card configured to prevent said
insertion.

13. The system and card as defined in claim 7 wherein
said system includes means to detect whether said sys
tem is entering a cycle wherein all the bytes of the data
word are being rewritten or less than all of the bytes are
being rewritten, and means to provide the required wait
states for each.

5

10

15

25

30

35

45

50

55

65

14
14. In a computer system including a CPU having an

operating cycle; at least one memory card adapted to
interface in the computer system; said computer system
having a write cycle and said computer system and said
card being configured to write and store data words at
selected addresses on said memory card during said
write cycle, wherein each data word has multiple bytes,
said computer system being configured to write all of
the bytes of any of said data words or write less than all
the bytes of any of said words selectively to memory,
said computer system being free of error correction
code capabilities but capable of providing varying wait
states during said write cycle, said computer system
being configured to provide sufficient cycle time for
card logic to perform read-modify-write operations to
memory;

said memory card including:
logic to generate check bits from each data word

written and logic to write each of said written data
words and said check bits generated from each of
said written data words to a selected memory loca
tion on said card;

a method of operating the computer system to per
form a read-modify-write function comprising the
steps of:

first detecting when less than all of the bytes of a data
word are to be rewritten to a given address and
initiating a read-modify-write cycle;

thereafter performing a read-modify-write function
wherein the bytes of a data word at the given ad
dress are read from memory and multiplexed with
newly written bytes from said system that are to be
rewritten to generate a new data word of multi
plexed bytes, generating check bits to form new
data words of multiplexed bytes, and writing the
new data word of multiplexed bytes and check bits
generated by said new data words of multiplexed
bytes to memory;

after detecting when less than all of the data bytes are
to be rewritten, generating a delay in the write
cycle for a sufficient time to read said bytes of said
data word at said given address from memory,
multiplexing said read bytes of the data with the
newly written data bytes and writing the new data
word of the multiplexed data bytes and check bits
generated from the new data word of multiplexed
bytes to memory;

thereafter reading the bytes of each data word and
check bits from selected locations in memory;

thereafter generating syndrome bits and correcting
all one bit errors in said bytes of said data words
read from selected locations.

15. The machine executed steps as defined in claim 14
including the steps of detecting whether said system is
entering a cycle wherein all the bytes of the a word are
being rewritten or less than all of the bytes of a data
word are being rewritten, and providing the required
wait states for each cycle.

16. The machine executed steps as defined in claim 14
including the step of detecting whether the card has
error correction code capabilities.

it 3k k is sk

