
United States Patent 19
Bealkowski et al.

54

I75

(73)

21
22
51
52)

58)
56

METHOD AND APPARATUS FOR
CONFIGURING AND INSTALLING A
LOADABLE ABIOS DEVICE SUPPORT
LAYER IN A COMPUTER SYSTEM

Inventors: Richard Bealkowski; Mary M. Bolt,
both of Delray Beach, Fla.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appi. No.: 902,134
Filed: Jun. 22, 1992
int. Cl. G06F 9/44; G06F 9/445
U.S.C. 395/700; 395/500;

395/427; 364/231; 364/243; 364/246.3;
364/280.2; 364/280

Field of Search 395/700, 650, 500

References Cited

U.S. PATENT DOCUMENTS

5,136,713 8/1992 Bealkowski et al. 395/700
5,175,831 12/1992 Kumar 395/425
5,187,792 2/1993 Dayan et al. 395/725
5,210,875 5/1993 Bealkowski et al. 395/700
5,220,667 6/1993 Ichieda 395/700
5,230,052 7/1993 Dayan et al. 395/700
5,230,058 7/1993 Kumar 395/800
5,247,659 9/1993 Curran et al... ... 395/575
5,257,378 10/1993 Sideserf et al. 395/700
5,269,022 12/1993 Shinjo et al............ ... 395/700
5,355,489 10/1994 Bealkowski et al. 395/700

III IIHIIII
USOO5446898A

11 Patent Number: 5,446,898
(45) Date of Patent: Aug. 29, 1995

Primary Examiner-Kevin A. Kriess
Assistant Examiner-Kakali Chaki
Attorney, Agent, or Firm-Robert S. Babayi; Stephen A.
Terrile

57 ABSTRACT
A personal computer system which is compatible with
application programs and operating system software is
disclosed. The personal computer system includes a
microprocessor electrically coupled to a data bus, non
volatile memory electrically coupled to the data bus,
volatile memory electrically responsive to the data bus,
a memory controller electrically coupled to the micro
processor, the volatile memory and the non-volatile
memory, and, a direct access storage device electrically
responsive to the data bus. The non-volatile memory
stores a first portion of operating system microcode and
request information which indicates whether a second
portion of operating system microcode is required by
the personal computer system. The volatile memory
includes a volatile operating system portion intended
for use by the first portion of the operating system mi
crocode. The memory controller regulates communica
tions between the volatile memory, the non-volatile
memory and the high speed microprocessor. The direct
access storage device stores the second portion of oper
ating system microcode which is accessed by the micro
processor based upon the request information.

9 Claims, 16 Drawing Sheets

U.S. Patent Aug. 29, 1995 Sheet 1 of 16 5,446,898

U.S. Patent Aug. 29, 1995 Sheet 2 of 16 5,446,898

Sheet 4 of 16 5,446,898 Aug. 29, 1995 U.S. Patent

Å!-IOWEWN |OSOE HOVO OE)

EIHOVO 202CITOH

b?OSSE OOHc{OO HIV/W

BOSSHOOHd

Sheet 6 of 16 5,446,898 Aug. 29, 1995 U.S. Patent

BETTIOHINOO ESTOW / CHVOGAEX 0828/2

)±LLEXISIC]
onaseasopamnesses poemaease ----------------

Sheet 7 of 16 5,446,898 Aug. 29, 1995 U.S. Patent

082

282

SNOLLOENNOO HOLINAS HLIWA HO1OHNNOO BEINWOd WELLSÅS

Z£2 SHOLOENNOO STIE IndInO / IndNI

20£ BOLOENNOO

Sheet 8 of 16 Aug. 29, 1995 U.S. Patent

(

|

20€

Sheet 9 of 16 5,446,898 Aug. 29, 1995 U.S. Patent

WWIS WHOWEW

888—5,5. 988 / -?TSWE ?7$£TeisnawiwaraeoWEW Z$$8 SSE HOJCIV/X/TW

Sheet 10 of 16 Aug. 29, 1995 U.S. Patent

028 VIVOJ

TOHINOO

SSEBOJOV/

TOHINOO

WELLSÅSET'S
š?vi, D)

ST18 V LVCI

Å?OWE WZ
0

--? • • • KOSO
Z

VIVO TVOOT
BOSSEÏOOHd HOSSE OOHdOO HIV/W

Sheet 11 of 16 5,446,898 Aug. 29, 1995 U.S. Patent

•088 | || ALIHwd / OOB #CE € STYE VIVOJ

| || F(s): TT gañounoo BE-J-ITT8I-II-EIHOVO
|?

1?NT! TOHINOO

902

U.S. Patent Aug. 29, 1995 Sheet 12 of 16 5,446,898

OW MEMORY FIG. 5A
502

VIDEO SPACE AOOOOHEX
504

BOOOOHEX

FEATURESPACE COOOO HEX

DOOOO HEX

SYSTEM FIRMWARE EOOOOHEX
SPACE
508

FOOOO HEX

MEGABYE

HIGH MEMORY
50

TOP

FIG. 5B

ABIOS CBOS POST

554 552 550

U.S. Patent Aug. 29, 1995

FIG. 6

BEGINOPERATING
SYSTEM BOOTSTRAP

PRELMINARY O.S.
NAZATION

O.S. LOADSABIOS
PATCH MODULES

O.S. ISSUES CBIOS
CALS TO

INTAZE ABOS

O.S. CONTINUED
NTALIZATION

Sheet 13 of 16 5,446,898

FIG. 8

CBIOS CAL
INT 15HAH=04, AH=05

FAR INDIRECTION
THROUGH ABIOSHEADER

PERFORM MODULAR SCAN
FOR ABIOS

PERFORM ROM SCAN
FOR ABIOS

PERFORM RAM SCAN
FOR ABIOS

ABIOS INITIALIZATION
CAL COMPLETE

Sheet 14 of 16 5,446,898 Aug. 29, 1995 U.S. Patent

ABIOS

FIG. 7

550 552

MODUE-3-

MODULE-N-

U.S. Patent Aug. 29, 1995 Sheet 15 of 16 5,446,898

FIG. 9

Field Offset Length

Signature = AA55H (Word Value) -ooh 2

Length in 512Bye Blocks roah

Device D Tosh 2

Buildiniatalontable enty Point Tosh
seconday Deviced och

Reserved to 2
Reserved 12H 2
initialization Routine Offset 14H 2

U.S. Patent Aug. 29, 1995 Sheet 16 of 16 5,446,898

FIG. OB
OO2

A.D.P. START

OO4

DOES THE LA.R.B ECUA.
THE SIGNATURE WALUE

1006
SET L.A.R.BTO THE
SIGNATURE WALUE

A.D.P. CONTINUE

1OO

FIG. OA
248

OOO

FIG. 11 BEGIN. O.S. NSTAL

CUERYTHE LA.R.B.

DOES THE LA.R.B EQUAL
THE SIGNATUREVALUE2

YES

PROMPT FOR SUPPORT
DISKETE

OBTAIN RECURED
PROGRAMMODULES

CONTINUE INSTALATION

O2

110

5,446,898
1.

METHOD AND APPARATUS FOR CONFIGURING
AND INSTALLING A LOADABLE ABIOS DEVICE
SUPPORT LAYERN A COMPUTER SYSTEM

RELATED APPLICATIONS
The following United States patent applications,

which are filed on even date herewith, are incorporated
by reference:
Application Ser. No. 07/902,311, Filed Jun. 22, 1992.

Entitled “A METHOD AND APPARATUS FOR
DYNAMIC LOAD OF AN ABIOS DEVICE SUP
PORT LAYER IN A COMPUTER SYSTEM
(Further identified as Attorney Docket BC9-92-018)

Application Ser. No. 07/902,330, Filed Jun. 22, 1992.
Entitled “A METHOD AND APPARATUS FOR
PROVIDING A MODULAR ABIOS DEVICE
SUPPORT LAYER IN A COMPUTER SYSTEM
(Further identified as Attorney Docket BC9-92-019)

Application Ser. No. 07/902,315, Filed Jun. 22, 1992.
Entitled 'A METHOD AND APPARATUS FOR
AN AUTOMATED DYNAMIC LOAD OF AN
ABIOS DEVICE SUPPORT LAYER IN A COM
PUTER SYSTEM" (Further identified as Attorney
Docket BC9-92-083)

FIELD OF THE INVENTION

This invention relates to personal computer systems
and, more particularly, to a method and apparatus for
configuring and installing firmware.

BACKGROUND OF THE INVENTION

- Personal computer systems in general, and IBM per
sonal computers in particular, have attained widespread
use for providing computer power to many segments of
today's society. A personal computer system can usu
ally be defined as a desktop, floor standing, or portable
computer that includes a system unit having a system
processor, a display monitor, a keyboard, one or more
diskette drives, a fixed disk storage, an optional pointing
device such as a "mouse,” and an optional printer.
These systems are designed primarily to give indepen
dent computing power to a single user or small group of
users and are inexpensively priced for purchase by indi
viduals or businesses. Examples of such personal con
puter systems are sold under the trademarks: IBM's
PERSONAL COMPUTER PERSONAL COM
PUTER XT, PERSONAL COMPUTER AT and
IBM's PERSONAL SYSTEM/2 Models 25, 30, 50, 55,
56, 57, 60, 65, 70, 80, 90 and 95 (hereinafter referred to
as the IBM PC, XT, AT, and PS/2, respectively).
These systems can be classified into two general fami

lies. The first family, usually referred to as Family 1
Models, uses a bus architecture exemplified by the AT
computer and other “IBM compatible' machines. The
second family, referred to as Family 2 Models, uses
IBM's MICRO CHANNEL bus architecture exempli
fied by IBM's PS/2 Models 50 through 95. The bus
architectures used in Family 1 and Family 2 models are
well known in the art.

Beginning with the earliest personal computer system
of the Family 1 models, the IBM PC, and through the
current Family 2 models, the system processor of the
personal computer is from the Intel 86 Family of micro
processors. The Intel 86 Family of processors includes
the 8088, 8086, 80286, 80386, and 80486 processors
commercially available from Intel Corporation. The
architecture of the Intel 86 Family of processors pro

O

15

25

30

35

40

45

50

55

65

2
vides an upwardly compatible instruction set which
assists in preserving software investments from previous
processors in the 86 Family of processors. This upward
compatibility preserves the software application base of
the personal computers which use this family of proces
sors. A variety of commonly available and well known
software operating systems, such as a DOS or an OS/2
operating system, operate on various members of the
Intel 86 Family of processors.
The PC and XT computers use the Intel 8088 proces

sor. The AT computers use the Intel 80286 processor.
The PS/2 line spans several of the Intel processors.
More specifically, a PS/2 Model 30, which is similar to
the IBM PC and XT, uses an Intel 8086 processor. The
PS/2 Models 50 and 60 both use the Intel 80286 proces
sors. The Intel 80386 processor is used in the IBM PS/2
Model 80 and certain versions of the IBM PS/2 Model
70. Other versions of the IBM PS/2 Model 70, as well
as the PS/2 Models 90 XP 486 and 95 XP 486, use the
Intel 80486 processor.
The processors in the Intel 86 Family support a vari

ety of operating modes. Real mode, which supports a
one megabyte system address space, is the only operat
ing mode of the 8088 and 8086 processors. The 80286
supports both a real and a protected operating mode.
Protected mode provides a mode of operation which
prevents an application from interfering with the opera
tion of other applications or the operating system. The
80286 provides extended addressing capabilities, allow
ing up to sixteen megabytes of memory to be addressed
directly. To maintain downward compatibility, the
80286 can be operated in real mode to emulate the real
mode of the 8088 or 8086. The 80386 and 80486 can
address up to four gigabytes of physical memory. The
80386 and 80486 also support a virtual 86 mode of oper
ation. The virtual 86 mode supports the operational
characteristics of the real mode within the overall con
fines of the protected mode environment.
With personal computers, software and hardware

compatibility is of great importance. To provide soft
ware and hardware compatibility, an insulation layer of
system resident code, also referred to as microcode, was
established between the hardware and the software.
This code provided an operational interface between a
user's application program or operating system and the
hardware device to relieve the user of the concern
about the characteristics of hardware devices. Eventu
ally, the code developed into a basic input/output sys
tem (BIOS), for allowing new hardware devices to be
added to the system, while insulating the application
program/operating system from the peculiarities of the
hardware devices. The importance of BIOS was imme
diately evident because it freed a device driver from
depending on specific hardware device characteristics
while providing the device driver with an intermediate
interface to the hardware device. Because BIOS was an
integral part of the computer system and controlled the
movement of data in and out of the system processor, it
was resident on a system planar board of the system unit
and was shipped to the user in either a read-only mem
ory (ROM) or an erasable programmable read-only
memory (EPROM). BIOS in the original IBM PC oc
cupied 8K bytes (a kilobyte or “K byte” refers to a
quantity of 1024 bytes) of ROM resident on the planar
board. The ROM also contained a power-on self test
(POST) program which was used to test and initialize
the computer system. The accumulation of code resi

5,446,898
3

dent in the computer "system ROM became known as
the "system firmware,” or simply firmware.” Thus, the
firmware included a POST portion and a BIOS portion.
Sometimes, BIOS was defined to include the POST
program.
As new models of the personal computer family were

introduced, the firmware was updated and expanded to
support new hardware devices such as new input/out
put (I/O) devices. As could be expected, the firmware
started to increase in memory size. For example, with
the introduction of the IBM AT, the firmware required
32K bytes of ROM. With the introduction of the PS/2
line, a significantly new BIOS, known as Advanced
BIOS, or ABIOS, was developed. However, to main
tain software compatibility, BIOS from the Family 1
models had to be included in the Family 2 models. The
Family 1 BIOS became known as Compatibility BIOS
or CBIOS. Thus, BIOS evolved to include more than
one type of BIOS. Present architectural definitions for
personal computer systems allow for up to 128K bytes
of system firmware address space.

Personal computer systems may be linked to form a
network of computers (e.g., a Local Area Network
(LAN) so that users can exchange information, share
I/O devices, and utilize a particular direct access stor
age device (DASD) such as a particular hardfile or
diskette. Typically, the LAN includes a client and a
server. A server is a computer system which includes a
DASD for supplying the storage for one or more clients
of the local area network. A client or server may re
quire modifications, updates, extensions or mainte
nances of the system firmware.
Arrangements for storing, loading and initializing

firmware are known. See, for example, commonly
owned: U.S. patent application Ser. No. 07/521,050
entitled "Method and Apparatus for Selectively Re
claiming a Portion of RAM in a Personal Computer
System,” U.S. patent application Ser. No. 07/398,865,
entitled “Initial BIOS Load for a Personal Computer
System,” U.S. patent application Ser. No. 07/777,844,
entitled "Programmable Firmware Store for a Personal
Computer System,” U.S. patent application Ser. No.
07/799,486, entitled "Automated Programmable Firm
ware Store for a Personal Computer System,” and U.S.
patent application Ser. No. 07/590,749, entitled "Appa
ratus and Method for Loading BIOS into a Computer
System from a Remote Storage Location,” which are
all incorporated herein by reference.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a
configuration procedure in which a requirement for
ABIOS can be determined and stored within the sys
ten.
Another object of the present invention is to provide

a program installation procedure capable of supporting
a loadable ABIOS.

BRIEF DESCRIPTION OF THE DRAWING

Further and still other objects of the present inven
tion will become more readily apparent in light of the
following description when taken in conjunction with
the accompanying drawing, in which:
FIG. 1A is a perspective view of a typical personal

computer system;
FIG. 1B is a diagram of a typical local area network;
FIG. 2 is a block schematic diagram of a unified

planar board for the computer system of FIG. 1A;

10

15

20

25

30

35

45

50

55

65

4.
FIG. 3 is a block schematic diagram of an alternative

planar board for the computer system of FIG. 1A;
FIG. 4 is a block schematic diagram of a processor

card for use with the alternative planar board of FIG.3;
FIG. 5A is a diagram of the system address space for

the computer system of FIG. 1A;
FIG. 5B is a diagram of a typical firmware memory

map:
FIG. 6 is a flow diagram of a system initialization

sequence as it pertains to ABIOS;
FIG. 7 is a diagram of an enhanced delivery mecha

nism for ABIOS;
FIG. 8 is a flow diagram of the internals of ABIOS

initialization;
FIG. 9 is an ABIOS program module header;
FIG. 10A is a diagram of NVRAM showing the data

area used in the present invention;
FIG. 10B is a flow diagram of a configuration method

as it relates to the present invention and
FIG. 11 is a flow diagram of an operating system

install operation as it relates to ABIOS.
DETAILED DESCRIPTION OF A PREFERRED

EMBODIMENT

Referring to FIG. 1A, there is shown a personal com
puter system 100 which employs the present invention.
The personal computer system 100 includes a system
unit 102 having a suitable enclosure or casing 103, out
put device or monitor 104 (such as a conventional video
display), input devices such as a keyboard 110, an op
tional mouse 112, and an optional output device such as
a printer 114. Finally, the system unit 102 may include
one or more mass storage devices such as a diskette
drive 108 (operable with a diskette-not shown) and a
hard disk drive (hardfile) 106.

Referring to FIG. 1B, the system unit 102 may be
connected electronically in a well-known manner with
other system units 102B to form a local area network
(LAN). In the LAN, system unit 102 functions as the
server and system units 102B function as the clients.
System units 102B are identical to the unit 102, except
that units 102B include no drives 106, 108 and are thus
referred to as medialess clients. Other conventional I/O
devices may be connected to the system units 102, 102B
for interaction therewith.

Referring to FIG. 2, there is shown a block diagram
of a unified planar 200 of the system unit 102. The pla
nar 200 includes a printed circuitboard (PCB) 201 upon
which are mounted or connected a number of input
/output bus connectors 232 having I/O slots, a proces
sor 202 which is connected by a high speed CPU local
bus 210 under control of a bus control unit 214 to a
memory control unit 256. The unit 256 is further con
nected to a main memory such as volatile random ac
cess memory (RAM) 264. Any appropriate processor
202 can be used such as an Intel 80386, Intel 80486 or
the like. A system power connector 205 is mounted on
the PCB201 for connection to a power unit (not shown)
that supplies the necessary power for the system 100.
The CPU local bus 210 (comprising address, data and

control components) provides for the interconnection
of the processor 202, an optional math coprocessor 204,
an optional cache controller 206, and an optional cache
memory 208. Also coupled onto the CPU local bus 210
is a system buffer 212. The system buffer 212 is itself
connected to a system bus 216 which comprises address,
data and control components. The system bus 216 ex
tends between the system buffer 212 and an I/O buffer

5,446,898
5

228. The system bus 216 is further connected to the bus
control unit 214 and to a direct memory access (DMA)
control unit 220. The DMA control unit 220 includes a
central arbiter 224 and a DMA controller 222. The I/O
buffer 228 provides an interface between the system bus
216 and an I/O bus 230. An oscillator 207 is connected
as shown for providing suitable clock signals to the
computer system 100. Those skilled in the art will rec
ognize that while the preferred embodiment is imple
mented on the MICRO CHANNEL bus of an IBM
PS/2 computer system, which is well known in the art,
alternative bus architectures could also be used to em
ploy the invention.
Connected to the I/O bus 230 is a plurality of I/O bus

connectors having slots 232 for receiving adapter cards
(not shown) which may be further connected to I/O
devices or memory (e.g., hardfile 106). Two I/O con
nectors 232 are shown for convenience, but additional
I/O connectors may easily be added to suit the needs of
a particular system. An arbitration bus 226 couples the
DMA controller 222 and the central arbiter 224 to the
I/O connectors 232 and a diskette adapter 246. Also
connected to the system bus 216 is the memory control
unit 256 which includes a memory controller 258, an
address multiplexer 260, and a data buffer 262. The
memory control unit 256 is further connected to the
main memory such as the random access memory as
represented by the RAM module 264. The memory
control unit 256 includes logic for mapping addresses to
and from the processor 202 to and from particular areas
of the RAM 264. While the system 100 is shown with a
basic one megabyte RAM module 264, it is understood
that additional memory can be interconnected as repre
sented in FIG. 2 by optional memory modules 266, 268,
270.
A buffer 218 is coupled between the system bus 216

and a planar I/O bus 234. The planar I/O bus 234 in
cludes address, data, and control components. Coupled
along the planar I/O bus 234 are a variety of I/O adapt
ers and other peripheral components such as a display
adapter 236 (which is used to drive the optional display
104), a clock/CMOSRAM 250, a nonvolatile RAM 248
(hereinafter referred to as NVRAM), a serial adapter
240 (other common terms used for "serial” are "asyn
chronous” and “RS232'), a parallel adapter 238, a plu
rality of timers 252, the diskette adapter 246, a key
board/mouse controller 244, an interrupt controller
254, and a firmware subsystem 242. The firmware sub
system typically includes a nonvolatile program store
(e.g., ROM) which contains the POST and BIOS pro
grams.
The clock/CMOS RAM 250 is used for time of day

calculations. The NVRAM 248 is used to store system
configuration data. That is, the NVRAM 248 will con
tain values which describe the present configuration of
the system 100. The NVRAM 248 contains information
which describes, for example, adapter card initialization
data, capacity of a fixed disk or a diskette, the amount of
main memory, etc. Furthermore, these data are stored
in NVRAM 248 whenever a configuration program is
executed. This configuration program can be a conven
tional Set Configuration program provided on a system
Reference Diskette included with IBM PS/2 computer
systems. The Reference Diskette is sometimes referred
to as a diagnostic, maintenance or service diskette. The
purpose of the configuration program is to store values
characterizing the configuration of this system 100 to
NVRAM 248 which are saved when power is removed

O

15

25

35

45

50

55

60

65

6
from the system. The NVRAM can be a low power
CMOS memory with a battery backup.
Connected to the keyboard/mouse controller 244 are

a port A278 and a port B 280. These ports A,B are used
to connect the keyboard 110 and the mouse 112 to the
personal computer system 100. Coupled to the serial
adapter 240 is a serial connector 276. An optional de
vice such as a modem (not shown) can be coupled to the
system through this connector 276. Coupled to the
parallel adapter 238 is a parallel connector 274 to which
a device such as the printer 114 can be connected. Con
nected to the diskette adapter 246 is a diskette connec
tor 282 used to attach one or more diskette drives 108.

Referring to FIGS. 3 and 4, system unit 102 may also
use a planar board 300 and a processor card 400 (FIGS.
3 and 4). The processor card 400 is removably mounted
on and is electrically connected to the planar board 300.
Identical element numbers of FIG. 2 correspond to
identical elements in FIGS. 3 and 4.

Referring now to FIG. 3, the planar board 300 com
prises a printed circuit board (PCB) 301 upon which are
mounted (e.g., surface mounted) various components
that are interconnected by wiring or circuits in the
PCB. Such components include a suitable commercially
available electrical connector 302 into which an edge
416 of the processor card 400 is plugged for removably
mounting and electrically connecting the processor
card 400 to the planar board 300. A plurality of single
in-line memory module (SIMM) connectors 306 is also
mounted on the PCB 301 for connecting to memory
banks 308A, 308B forming the system main memory or
RAM. One or more I/O bus or expansion connectors
232 are also mounted on the PCB 30 for connection to
different expansion adapters and options that may be
added or incorporated into the personal computer sys
tem 100. For example, the fixed disk drive 106 may be
connected to an adapter card (not shown) having a disk
controller which is connected to a connector 232. Pref
erably, each connector 232 is a commercially available
connector of the type conforming to the above-men
tioned MICRO CHANNEL architecture.
Also mounted on the planar board 300 are an inter

rupt controller 254 and a keyboard/mouse controller
244 which are connected to keyboard and mouse con
nectors 278, 280, a diskette controller or adapter 246
connected to a diskette connector 282, and serial and
parallel adapters 240, 238 connected to serial and paral
lel connectors 276, 274 which allow the various I/O
devices to be connected into the system. A system
power connector 205 is mounted on the PCB 301 for
connection to a power unit (not shown) that supplies
the necessary power for the system. A nonvolatile
memory (NVRAM) 248 and a time-of-day clock/-
CMOS RAM 250 are also mounted on the PCB 301.
The PCB 301 also has mounted thereon various oscilla
tors (not shown) to provide timing signals, and buffers
342, 344 (not all shown) to isolate sections of the cir
cuitry in a manner well known.
The wiring of PCB 301 interconnects the various

components as shown in the drawing and is grouped
into three groupings, a memory bus 310 (including lines
324-338), a channel bus 312 (including an address bus
322, a data bus 320 and a control bus 318), and miscella
neous signal lines including interrupt lines 314, 316, all
of which are connected to counterpart wiring on the
PCB 401 through the connectors 302, 416. Tapped off
the bus 312 is a planar function bus 319.

5,446,898
7

Referring to FIG. 4, there is shown the processor
card 400 for removably mounting on the planar board
300. The processor card 400 comprises a printed circuit
board (PCB) 401 having mounted (e.g., surface
mounted) thereon a plurality of commercially available
components including a processor 202, an optional math
coprocessor 204, an optional cache controller 206, an
optional cache memory 208, a direct memory access
(DMA) control unit 220, a bus control unit 214, a mem
ory control unit 256, a firmware subsystem 242, and
parity checking units 402,404. The processor 202 pref
erably is a high performance type, such as an Intel
80486, having thirty-two bit data paths and providing
thirty-two bit addressing capability. Of course, Intel
80386 and the like processors can be used. The remain
ing components are selected in conventional fashion for
their compatibility with such processor. A plurality of
buffers 406, 408, 410, 412, 414 is connected as shown.
The buffers provide selective isolation or connection
between the circuits allowing different portions to be
used concurrently, for example, to move data between
the processor 202 and the cache memory 208 while
other data is being transferred between an I/O unit and
the main memory 308A, 308B. All of the above compo
nents are electrically connected to each other as appro
priate by printed wiring circuits in PCB 401 which
terminate at the edge connector 416. The edge connec
tor 416 is pluggable into the edge connector 302 on the
planar board 300 shown in FIG. 3 so that the planar
board 300 and the processor card 400 are electrically
and mechanically interconnectable.
The wiring circuits of the PCB 401 include a local bus

418 including data, address and control lines 420, 422,
424, respectively, which interconnect the processor 202
with an optional math coprocessor 204, an optional
cache controller 206 and an optional cache memory
208, as shown in FIG. 4. The remaining circuit lines
generally include interrupt lines 316, channel bus lines
312 and memory bus lines 310. The channel bus lines
312 include control, data and address bus lines 318,320,
322, respectively. Memory bus lines 310 include multi
plexed memory address lines 324, 332, row address
strobe (RAS) lines 328, 336 for memory banks 308A,
308B, column address strobe (CAS) line 338, data bus A
and B lines 326 and 334, and a line 330 for use in error
checking via parity check or ECC checking. An oscilla
tor 207 is connected as shown for providing suitable
clock signals to the computer system 100. For simplic
ity, certain miscellaneous lines, such as reset, grounds,
power-on, etc. have been omitted from FIGS. 2, 3 and
4.

During operation of a personal computer system 100
having a board 300 and a card 400, the card 400 is elec
trically and mechanically connected to the board 300
and typically lies in a plane perpendicular to the board
400.
ABIOS Load and Access
System firmware includes the Power-On Self Test

program (POST) and the Basic Input Output System
program (BIOS). BIOS further includes the compatibil
ity BIOS or CBIOS and the advanced BIOS or ABIOS.
POST is the set of instructions which execute when the
system is first powered-on to initialize the personal
computer system 100. BIOS is the set of instructions
which facilitates the transfer of data and control instruc
tions between the processor 202 and I/O devices.

In the medialess environment, a medialess system unit
(e.g., 102B) includes a suitable network adapter or card

10

15

20

25

30

35

45

50

55

60

65

8
(not shown) for providing a Remote Initial Program
Load (RIPL) facility within the unit 102B. The card is
connected, for example, to one of the connectors 232.
The RIPL program permits booting an operating sys
tem from a network server 102 rather than from a local
storage device such as the fixed disk 106 or the diskette
108. RIPL is also referred to as simply Remote Program
Load or RPL, and the terms are used interchangeably.
RPL is well understood in the art.
POST contains a bootstrap program which attempts

to locate a boot device and load a boot record. Typi
cally, the boot device is hardfile 106 or diskette drive
108. Diskette drive 108 requires a boot or operating
system diskette to operate. If POST successfully loads a
boot record from a boot device, then POST transfers
control to the boot record, completing the operation of
the POST bootstrap program. If a boot record was
unable to be loaded and a RPL adapter is present, then
POST transfers control to an RPL program. If no RPL
program is present, then POST prompts the user indi
cating that a boot source is required. CBIOS is essential
to the bootstrap operation of the computer. CBIOS
provides a number of services including access to the
hardfile 106 and diskette drive 108. ABIOS is demand
initialized and normally not a required part of the POST
bootstrap process.

Referring now to FIG. 5A, there is shown a memory
map of the system address space 500 for a client 102B or
server 102 (FIG. 1B). The system address space 500
includes a plurality of memory address regions 502,504,
506, 508, 510 which are addressable by the processor
202. The low memory region 502 is the traditional com
patibility space in which real mode programs operate.
For example, both DOS and CBIOS are real mode
programs. The video region 504 occupies a 128K byte
address space beginning at a physical location A0000
hex up through a physical location BFFFF hex or the
A000 hex and B000 hex segments. (A segment is a real
mode term used to describe a 64K byte region which is
aligned on a 16 byte boundary, i.e., a paragraph bound
ary.) The video region 504 provides video regeneration
buffers; data which are stored in these buffers define
what a user sees on the computer display 104. The fea
ture region 506 occupies a 128K byte address space
beginning at a physical location C0000 hex up through
a physical location DFFFF hex or the C000 hex and
D000 hex segments. The feature region 506 is used to
store adapter firmware; this region may also provide
buffer space. For example, a small computer system
interface (SCSI) disk controller adapter includes an
adapter firmware ROM containing POST, CBIOS and
ABIOS programs which during operation is stored in
feature region 506. The system firmware region 508
occupies a 128K byte address space beginning at a phys
ical location E0000 hex up through a physical location
FFFFF hex or the E000 hex and F000 hex segments.
The system firmware region 508 stores the system firm
ware including POST and BIOS. The region above a
one megabyte boundary is a high or extended memory
region 510. High memory 510 is utilized by operating
systems such as the OS/2 operating system.

Extended memory refers to memory above the one
megabyte address location. Expanded memory refers to
memory which is bank switched into an area below the
one megabyte address location. Expanded memory
bank switching provides real mode applications with
the ability to address more physical memory than the
real mode address space directly allows. Expanded

5,446,898
9

memory operation requires an available address space
or window to be present in the real mode address space.
Expanded memory operation also requires an expanded
memory program to manage the bank switching. A
common location for the expanded memory window is
in the feature space 506 as well as the system firmware
space 508. Maximizing the amount of available space for
expanded memory windows is a competitive require
ment for personal computer systems.

Referring to FIG. 5B, a firmware image includes an
ABIOS portion 554, a CBIOS portion 552, and a POST
portion 550. For an adapter card firmware such as the
IBM SCSI adapter card, the size of the ABIOS portion
is approximately 11K bytes. For the system firmware
such as the IBM PS/2 Model 95 XP 486, the size of the
ABIOS portion is approximately 32K bytes. With both
the adapter card firmware and the system firmware,
ABIOS uses substantial portion of the overall address
space. In the system firmware case, an ABIOS size of
approximately 32K bytes occupies 25% of the system
firmware space 508. For a computer system with eight
feature slots, an equal distribution of feature firmware
space results in 16K bytes of feature space 506 per slot
or adapter. An ABIOS size of 11K bytes uses approxi
mately 70% of the 16K byte range. Additionally, some
adapters exceed the 16K byte range.

Referring now to FIG. 6, a flow diagram of an oper
ating system bootstrap and initialization process is
shown. After the computer system is powered on and
the POST completes, the operating system begins to
bootstrap, step 600. The operating system then begins
some of its preliminary initialization, step 602. The type
and scope of operating system preliminary initialization
is well known. The operating system then loads the
ABIOS patch modules or files, step 604. These patch
files, normally resident on the operating system boot
device, provide functional corrections and enhance
ments to existing resident ABIOS program code. The
ABIOS program modules can be listed in a control file
such as an ABIOS.SYS. This ABIOS.SYS list can be a
text file containing the names of the ABIOS modules
such as MODULE 1.BIO, MODULE2.BIO, etc. The
naming convention chosen is a matter of design choice.
After the operating system has loaded the ABIOS patch
module or modules, step 604, the operating system can
then initialize ABIOS, step 606. ABIOS is initialized by
issuing CBIOS function calls. Once ABIOS is initial
ized, step 606, the operating system can continue further
initialization, step 608.
CBIOS provides two function calls to support the

initialization of ABIOS. These calls are accessed
through a CBIOS system services interface defined as
software interrupt 15 hex (INT 15H). The first function
call is a build system parameter table function which is
indicated by the value of 04 being placed in the AH
register (a shorthand notation for this function call is
AH=04). The entry requirements of the AH=04 call
are a pointer to a memory buffer where the caller wants
the system parameters table to be built (this pointer is
indicated by the notation ES:DI) and a segment with an
assumed offset of zero which indicates the ABIOS ex
tension area (this segment is indicated by the notation
DS and the corresponding pointer would be DS:0). The
second function call is a build initialization table func
tion which is indicated by the value of 05 being placed
in the AH register (AH=05). The entry requirements
for the AH=05 call are a pointer to a memory buffer
where the caller wants the initialization table to be built

10
(ES:DI) and a segment with an assumed offset of zero
which indicates the ABIOS extension area (DS).
ABIOS initialization is more clearly defined in the IBM
Personal System/2 and Personal Computer BIOS Inter

5 face Technical Reference Manual.

15

25

30

35

45

50

55

65

Referring to FIG. 7, in an enhanced delivery mecha
nism for ABIOS, the ABIOS 554 is physically separated
from the remaining firmware, and packaged as a file on
diskette 700 or other media. By being physically sepa
rated from the remaining firmware, the space occupied
by ABIOS in firmware address space 506, 508 is freed.
Moving ABIOS 554 applies to both the system firm
ware ABIOS as well as feature space ABIOS. Accord
ingly, the space normally Occupied by ABIOS in sys
tem firmware space 506 is freed and the space normally
occupied by ABIOS in feature space 508 is freed.

Referring to FIG. 8, a flow diagram of ABIOS initial
ization is shown. The INT 15H ABIOS initialization
calls AH=04 and AH=05 are to be done sequentially,
AH=04 then AH=05. An operating system, or other
software program, accesses ABIOS initialization
through the CBIOS system services calls AH=04 and
AH=05, step 800. The AH=04 and AH=05 calls have
similar control sequences. Step 802 is the redirection of
control. The CBIOS system services call must redirect
control to the ABIOS initialization program now pres
ent in the RAM extension area. Once CBIOS system
services to begin ABIOS initialization has been in
voked, step 800, the CBIOS system services code resi
dent in the system firmware first must locate and trans
fer control to the now RAM resident ABIOS initializa
tion program. This is done through the previously de
scribed “DS” register which specifies the segment ad
dress as to where the RAM ABIOS area begins. The
CBIOS system services program, present in the system
firmware, obtains the system services call from step 800
and must redirect this call to the ABIOS initialization
code now in RAM. This redirection is performed
through an indirect call through an entry in the ABIOS
header which begins at offset zero of the segment speci
fied by the “DS' register. This ABIOS header is de
scribed in more detail in conjunction with FIG. 9. A far
call is performed to the address specified by DS:ABI
OSINIT), step 802, thus transferring the ABIOS initial
ization operation to the ABIOS program now in system
RAM. ABIOSINIT is discussed in greater detail in
conjunction with FIG. 9. A far jump can be used in
place of the far call and the selection of call or jump is
a matter of well known design choice. ABIOS initializa
tion then performs a set of near call operations designed
to initialize ABIOS, step 804. ABIOS initialization then
performs a ROM scan operation designed to locate and
initialize ABIOS present in the adapter firmware ad
dress space, step 806. A ROM scan is performed by
searching for a specific header pattern in the feature
space or adapter firmware space (see FIG. 5A). ABIOS
initialization then performs a RAM scan designed to
locate and initialize ABIOS present as a RAM loaded
extension or patch, step 808. The current ABIOS mod
ule, the one containing the ABIOS initialization pro
gram, need not be searched for in RAM scan thus RAM
scan begins after the current module. Once RAM scan
has completed, step 808, the system services call to
initialize ABIOS is complete, step 810 and control re
turns to the caller.

Referring now to FIG. 9, an ABIOS module header
is shown. The field at offset -- 14H (an offset of 14 hex
bytes or 20 decimal bytes), which prior to the present

5,446,898
11

invention was a reserved field, stores an offset of the
ABIOS initialization programs. The table entry at
--14H can be termed ABIOSINIT. These ABIOS ini
tialization programs are accessed through the CBIOS
system services functions AH=04 and AH=05. Of 5
course, other means to extend a header and provide an
entry point field are possible and matters of well known
design choice. Other table entries are set forth in the
ABIOS section of the IBM Personal System/2 and Per
sonal Computer BIOS Interface Technical Reference
Manual.
ABIOS Configuration and Installation

Referring to FIG. 10A, a diagram of NVRAM 248
which includes a location for storing a loadable ABIOS
request byte (LARB) 1000 of the present invention is
shown. NVRAM 248 is read from and written to
through standard I/O commands in a conventional
manner. The LARB 1000 indicates whether the load
able ABIOS is required by the system. The LARB 1000
initialization is described below with reference to FIG.
10B. A program (e.g., an operating system) installation
which uses the LARB 1000 is described below with
reference to FIG. 11.

Referring to FIG. 10B, a flow diagram of an adapter
description program (ADP) operation is shown. The
ADP works in conjunction with the Set Configuration
program to initialize the NVRAM 248 to indicate that
the loadable ABIOS is required by the system. While
the Set Configuration program is executing, Set Config
uration may execute one or more ADPs. An Adapter
Description File (ADF) contains a keyword, e.g. Exec,
which is used to invoke the execution of an ADP. A
thorough description of the Set Configuration program,
the ADFs and the ADPs is set forth in the Setup section
of the IBM Personal System/2 Hardware Interface Tech
nical Reference-Architectures, October 1990. Adapter
description files are required, for example, for every
adapter installed in the system unit such as those that are
installed in I/O slots 232. There can also be an ADF for
the system 100. The flow diagram of FIG. 10B is incor
porated into only those ADPs which support a subsys
tem (e.g., an adapter or a system) which requires a
loadable ABIOS.

In operation, the Set Configuration program initiates
the execution of an ADP, step 1002. The ADP checks
the LARB value against a predetermined signature
value, such as hex A1, step 1004. The LARB is obtained
by reading the LARB value from NVRAM 248. The
LARB can be read directly from NVRAM or through
a CBIOS interface. If the LARB does not equal the
signature value then the ADP sets the LARB to the
signature value, step 1006. Once the LARB is set to the
signature value in step 1006, the ADP continues, step
1008. If the LARB does equal the signature value in
step 1004 then no LARB update is required and control
proceeds to step 1008. When a signature value is stored
in the LARB, the signature value indicates that the
system supports a loadable ABIOS. When a value
which is not the signature value is stored in the LARB,
this value indicates that the system does not support a
loadable ABIOS.

Referring to FIG. 11, a flow diagram of a program
(e.g. operating system) installation procedure as it re
lates to ABIOS and the LARB 1000 is shown. The
installation of the operating system begins at step 1100
with preliminary loading and initialization of the oper
ating system installation program. The installation pro
gram then reads the LARB 1000 from NVRAM 248,

10

15

20

25

30

35

45

50

55

65

12
step 1102. The LARB is compared to a predetermined
signature value (e.g. hex A1), step 1104. If the LARB is
equal to the signature value, then the installation pro
gram must prompt for one or more support diskettes,
step 1106. These support diskettes contain all the
ABIOS necessary to operate the program (e.g. operat
ing system) which is being installed. The required
ABIOS support modules (programs) are then loaded
onto the media which is the target of the installation
(e.g. hardfile 106), step 1108. Once the ABIOS loading
step is complete, the installation procedure continues,
step 1110. If the LARB does not equal the signature
value at step 1104 then no ABIOS support diskettes are
required and the initialization program proceeds to step
1110.
A loadable ABIOS frees up address space in both the

system firmware space 508 and the feature space 506.
Increasing the amount of available space in the system
firmware space 508 and the feature space 506 allows
and enhances the operation of expanded memory man
ger programs. Also, increasing the amount of available
space in the system firmware space 508 and feature
space 506 allows for larger POST and CBIOS programs
to be resident in the respective spaces. Development,
test, distribution and maintenance of ABIOS becomes
simplified since ABIOS is a single entity rather than
part of a POST CBIOS ABIOS bundle.
A LARB supports a variety of computer system con

figurations. Computer systems previous to the invention
are supported since the LARB will not equal a signature
value thus producing no additional action on the part of
an installation program. New systems (which require
loadable ABIOS) are supported by those installation
programs which recognize the LARB. Previous sys
tems with new feature adapters (which require loadable
ABIOS) are supported since during their configuration
phase the LARB is set.
While the present invention was described above, it

will be understood by those skilled in the art that vari
ous changes in detail may be made without departing
from the spirit, scope, and teaching of the invention.
For example, while the preferred embodiment uses Intel
processors and an IBM PS/2 MICRO CHANNEL bus
for illustrative purposes, this invention can be imple
mented on other processors and/or bus types. Likewise,
those skilled in the art will recognize that many ele
ments of the invention can be implemented either in
hardware or software. Accordingly, the invention
should be limited only as specified by the appended
claims.
What is claimed is:
1. A personal computer system for making use of a

logical memory space containing plural regions, each
region containing multiple logical address locations;
said regions including at least a low region having dis
crete lower and upper address boundary limits, a high
region having a lower address boundary limit, and an
intermediate region located between said low and high
regions; said intermediate region being traditionally
used for storing firmware information for controlling
said system; said firmware information including sepa
rate first and second portions of operating system mi
crocode; said first portion being required by said system
for completing a preliminary initialization enabling said
system to handle application programs incapable of
addressing said high region; said second portion being
conditionally used by said system, after completion of
said preliminary initialization, for enabling said system

5,446,898
13

to handle application programs capable of addressing
any of said regions; said personal computer system com
prising:

a data bus;
a microprocessor electrically coupled to said data

bus; said microprocessor operating in different first
and second modes; said first mode restricting said
microprocessor to address only said low and inter
mediate regions, and said second mode permitting
said microprocessor to address any of Said regions;

non-volatile memory electrically coupled to the data
bus, said non-volatile memory being accessible to
said microprocessor via said data bus;
said non-volatile memory storing said first portion
of operating system microcode,

said non-volatile memory storing request informa
tion indicating whether said system does or does
not support loading into said computer system of
a said second portion of operating system micro
code from storage media not normally contained
in said system; said request information being
used only when the configuration of said system
is initially established or altered to prompt a user
of said system to provide access to said second
portion of microcode on said storage media not
normally contained in said system;

volatile memory electrically coupled to the data bus,
said volatile memory being accessible to said mi
croprocessor via said data bus; said volatile men
ory being used to store linking information en
abling said system to retrieve said second portion
of operating system microcode while running
under control of said first portion of operating
system microcode;

a memory controller electrically coupled to said data
bus, said microprocessor, said volatile memory and
said non-volatile memory, said memory controller
regulating communications between said volatile
memory, said non-volatile memory and said micro
processor; said memory controller translating logi
cal addresses into physical addresses of storage
locations in said volatile and non-volatile memo
ries; and,

a direct access storage device electrically coupled to
said data bus, said direct access storage device
storing an image of said second portion of operat
ing system microcode when said second portion of
operating system microcode has been obtained
from said media not contained in said system based
upon said request information.

2. The computer system of claim 1 wherein
said first portion of operating system microcode in

cludes compatibility operating system microcode
used only for controlling operations of said micro
processor in said first mode; and

said second portion of operating system microcode
includes advanced operating system microcode
useful for controlling operations of said micro
processor in said second mode.

3. The computer system of claim 1 wherein
said direct access storage device is remote from said

microprocessor and is accessed by said micro
processor via a network.

4. An apparatus for loading an operational interface
used in the operation of a personal computer system
containing a system processor, a non-volatile memory, a
volatile memory, and a direct access storage device;
said operational interface comprising first and second

10

15

25

35

45

55

60

65

14
portions of microcode having different memory ad
dressing capabilities; said first portion being used exclu
sively by said system during its initialization; both said
first and second portions being useful for enabling said
system to handle application programs; said first portion
comprising a first information part and a second infor
mation part; said first information part and a request
indicator being stored in said non-volatile memory; said
second portion containing a plurality of modular sub
portions; said request indicator indicating whether said
system is or is not configured to support loading of at
least some of said modular sub-portions of said second
portion of the operational interface into said system
from external storage media not normally contained in
said system; said direct access storage device being
conditionally loaded with said at least some of said
modular sub-portions of said second portion of the op
erational interface, from said external media, depending
upon the value of said request indicator, said apparatus
comprising:
means formed by said system processor while using

said first information part of said first portion for
initializing said personal computer system, and
storing a copy of said second information part of
said first portion in a part of said volatile memory
allocated for storing an operating system; said sec
ond information part of said first portion being
required by said system for managing selective
transferral of said at least some of said modular
sub-portions of said second portion from said direct
access storage device to said volatile memory;

means formed by said system processor under control
of said first portion, when the configuration of said
system is initially established or altered, for access
ing the request indicator to determine whether the
computer system does or does not support loading
of said at least some of said modular sub-portions of
said second portion from said media not contained
in said system, and upon determining that such
loading is supported prompting said user to pro
vide said system with access to said media not
normally contained in said system;

means operative upon said system obtaining said ac
cess to said media not normally contained in said
system, for retrieving said at least some of said
modular sub-portions of said second portion of said
operational interface from said media and storing a
copy of said retrieved second portion on said direct
access storage device; and

means operative during subsequent initializations of
said system for loading the at least some of said
modular sub-portions of said second portion of the
operational interface from said direct access stor
age device into a remaining portion of said volatile
memory when the computer system requires said at
least some of said modular sub-portions of said
second portion of the operational interface.

5. The computer system of claim 4 wherein said sys
ten processor is operable in different first and second
modes, said second mode providing said system proces
Sor with a larger memory addressing range than said
first mode; and

the first portion of the operational interface includes
compatibility operating system microcode used by
said system processor only in said first mode for
compatibly handling program applications written
exclusively for said first mode; and

5,446,898
15

the second portion of the operational interface in
cludes advanced operating system microcode
which can be used by said system processor in
either of said first and second modes to handle
program applications written for either mode.

6. The computer system of claim 4 wherein
said direct access storage device is remote from said

system processor and is accessed by said system
processor via a network.

7. A personal computer system compatible with ap
plication programs and operating system software, the
personal computer system comprising:

a data bus;
a microprocessor electrically coupled to said data

bus; said microprocessor operating in different first
and second modes having different first and second
memory addressing ranges; said second memory
addressing range being larger than said first mem
ory addressing range; said microprocessor using a
first portion of operating system microcode for
operating in said first mode and a second portion of
operating system microcode for operating in either
of said first and second modes; said microprocessor
invariably operating in said first mode, and using
said first portion of microcode, during startup and
initialization of said personal computer system,

a direct access storage device coupled to said data
bus, and accessible to said microprocessor via said
data bus;

non-volatile memory electrically coupled to the data
bus, and accessible to said microprocessor via said
bus,
said non-volatile memory storing said first portion

of operating system microcode,
said non-volatile memory also storing request in

formation inspected by said microprocessor
when the configuration of said personal com
puter system is established or altered for indicat
ing whether said system does or does not require
loading of said second portion of operating sys
tem microcode from support storage media not
normally contained in said personal computer
system; said microprocessor acting upon inspec
tion of said request information, if said informa
tion indicates the system does support loading of
said second portion from said support storage
media, to obtain access to said support storage
media, retrieve said second portion therefrom,
and store a copy of said second portion in said

5

10

15

20

25

30

35

45

50

55

65

16
direct access storage device; said copy being
transferred from said direct access storage de
vice to said volatile memory during subsequent
initializations of said system;

volatile memory electrically coupled to the data bus,
said volatile memory including linking information
used by the operating system during said subse
quent initializations of said system for directing
said microprocessor, while under the control of
said first portion of the operating system micro
code, to load said copy of said second portion of
said microcode into a designated part of said vola
tile memory and to retain an indication of the loca
tion of said designated part;

a memory controller electrically coupled to said mi
croprocessor, said volatile memory and said non
volatile memory, said memory controller regulat
ing communications between said volatile memory,
said non-volatile memory and said microprocessor;
said memory controller translating logical ad
dresses within said first and second memory ad
dressing ranges into physical addresses in said vola
tile and non-volatile memories;

linking means responsive to said request information
and said linking information for indicating to said
memory controller the location of said second
portion of the operating system microcode in said
designated part of said volatile memory; said link
ing means thereby enabling said microprocessor to
access said copy of said second portion of the oper
ating system microcode in said non-volatile mem
ory. -

8. The computer system of claim 7 wherein
said first portion of operating system microcode in

cludes compatibility operating system microcode
restricting operations of said system to said first
memory addressing range, in compatibility with
application programs directed only to said first
addressing range; and

said second portion of operating system microcode
includes advanced operating system microcode
sustaining operations of said system in either of said
first and second memory addressing ranges.

9. The computer system of claim 7 wherein
said direct access storage device is remote from said

microprocessor, and is accessed by said micro
processor via a network.

ck re sk :k k

