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57 ABSTRACT 
A Micro Channel integrated circuit design capable of 
controlling high speed data and control transfers be 
tween a Micro Channel bus, a local processor, and a 
dedicated local data bus. The interface controller uti 
lizes enhanced features of the Micro Channel and data 
buffering to achieve high speed data communications 
with various bit size Micro Channel devices. Queued 
commands are handled by flexibly programming the 
interface control operations. Interface control hard 
ware increases the processing speed of data transfers by 
implementing performance critical functions of queuing 
in hardware. Extensive error checking and reporting 
and self-test give the interface controller advance func 
tions as an input/output processor. 

7 Claims, 48 Drawing Sheets 
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FIG. 14 

SysReset Startup NxtSt 1b 
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StartUp = Erin & Erin D1 & TokOut 
NxtSt 1b = ShutDwn1 & TokDet & THT Exp 
TokRe = TokOut & Shut Wn2 & 2nd Tok 

TokDet = Tokin & ShutDwn1& THT Exp 
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FIG. 15A 

MIC DB interface 

e-e- RARBI(L) 
RARBO(L) 

Tokin(L)-C 

Take Token(H)- 

in Token(L)-> 

TokOut(L)-K 
Robin(L)-C C 

Activate ROB(L) 
LDB ROB(L) 

> REG 

Errin D2(L)-C K 

| LDB Err(L) Erin D1 (L)-z 
Errin(L)-C wwn 

> REG Activate Err(L) 

REC = Receiver, REG = Register, OC = Open Collector Driver, DRV = Driver 
in Token(L) = State0& Ring Master & Errin & Errin D1 & TokOut + 

State2 & Tokln & RelOwn) 

Take Token(H) = State1 & Req8us & TokDet+State1 & TRT Expl+ 
State2+ State3+ SysReset + 
State08 (Errin + Errin D1+Errin D2) 

Activate ROB(L)= Reqbus & (State1 & Tokin) + (State2 & TokOut)) 
Activate Err(L) = State3+ (State1 & TRT Exp)+(State2 & 2ndTok) 
RelOwn = Release Ownership = State2 & TokOut & (THT Exp + Req8us) 

RelOwn = Release Ownershhip 
RPE = Ring Participate Enable 
Reqbus = Internal chip request to use bus 
Ring Master = initialization register that tells device to 

start ring if it was down. 
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FIG, 17 
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FIG. 21 
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FIG. 22 
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FIG.23 

msb lsb 
ibn 0 1 2 3 4 5 - 6 7 8 9 10 11 12 3 4 5 
Wen 15 14 13 12 11 10 9 8 7 6 5 4 3 2 O 

Word 0 Return Q D Reference D lsb 

Word 1 MIC Control Block Address msb 

Word Bits Name: Description 

Return Queue identification (RQID) number: 
indicates the Queue number which the MIC will return the 
MSW to at the end of the COmmand Transfer. 

Reference identification (RID) number 
Software pointerto reference the MCW with the MSW & MPC. 
Note: This field has no relevance to MIC Operations and 

can be redefined and used by Software. 

Device identification (DiD) number. 
Software pointer or device referencefield. 
Note: This field has no relevance to MIC Operations and 

can be redefined and used by Software. 

MIC Control Block Address (MCB Addr): 
The upper 16-bits of the PB memory address where 
the MCB or first MCB in a chain can be found. The 
starting MCB Address is generated by the following; 
MCB LPB Address = MCB Address:0000 
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FG, 24 

msb lsb 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
15 4 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

OPE PCJMPCHNNOPFMTBUFPSTWAT 00 0 ABM 
McDevice Queue control VOAddress O MPCQueue ID 

command status Flags oooooooo 
Target Address (MSB) 
Target Address (LSB) 
Block Length 

ibm 
Ven 

Word O 

Word 

Word 2 

Word 3 

Word 4 

Word 5 

Word 6 

Word 7 

lsb 

msb 

Word Bits Name: Description 

Operation (OPE): 
This field defines the data movement during the 
Commanded Transfer. 
000 = DB to Micro Channel I/O Address space. 
001 = LDB to Micro Channel Memory Address space. 
010 = Micro Channel I/O Address space to LDB. 
011 = Micro Channel Memory Address space to LDB. 
1XX= LDB to DB, wrap operation. 
Note: The CEN field in POS register 2 MUST be disabled 

when OPE=XX, LDB to LDB wrap operation. 
CEN MUST be enabled When OPE='OXX. 

Program Controlled interrupt (PCI): 
O=The MIC will NOT posta MSW to a Queue at the end of 

the Commanded Transfer unless there was an error. 
1 = The MIC will build and posta MSW to the Queue number 

defined in the RQD at the end of the COmmanded Xfer. 
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FIG.25 

Word Bits Name: Description 

Jump (JMP): 
0 = No jump. 
1 = The MIC will use the least significant 16-bits of the 

Source Address field informing the address of the 
next MCB. 

Chain (CHN): 
O = No chaining. 
1 = The address of the next MCB is equal to the Current 

starting MCB address plus 16 bytes. 

No Operation (NOP): 
0 = No no-op. 
1 = MIC will only process the PC flag. No actual data or 

COmmanded Transfer will OCCUr. 

Format (FMT): 
This bit indicates whether data movement during the 
COmmanded Transfer will OCCUr. 
O = Data Block Move operation and Status Posting 

Operations enabled. 
1 = Status Posting Operations Only. 

Free Block Request (BUF): 
O = During a Data Block Move Operation the destination 

address is specified by the TargetAddress. 
1 = During a Data Block Move operation the destination 

address is read from the Free Block list pointed to 
by the MC Device Queue Control Address. 

Post Command I Status Request (PST): 
O = No MPC will be sent to a MC device after 

the completion of the Commanded Transfer. 
1 = AMPC Will be built and Sent to the Queue defined in 

MPC Queue ID field to the address defined by the 
MC Device Queue Control Address after the completion 
of the Commanded Transfer. 
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FIG 26 

Word Bits Name: Description 

Wait (WAT): 
O = The MIC will process the MCB immediately and will 

Continue to read the remaining Words of the MCB. 
1 = The MIC will not process the MCB and will continue 

to reread MCB Word 0 until WAT=0. 
Note: The MIC will reread MCB Word Oapproximately 

every 256 clock cycles (10.24useC), automatically. 

11 - 13 i Reserved at a value of 'O'. 
4 - 2 V 

14-15 i Address Burst Management (ABM) 
- 0 V This field defines the ABM size used for the Commanded 

0 - 11 i 
15 - 4 V 

Transfer Writes. These bits Override the ABM field defined 
in the MCPOS Register 4. Sub-Address 0000. 

12-15 i 
3 - 0 V 

r 

OO = ABM defined in the POS Register (default) 
01 = 16 byte address boundary. 
10 = 32 byte address boundary. 
11 = 64 byte address boundary. 
Note: This field is only valid when OPE=00X. 

MC Device Queue Control /O Address: 
This field defines the starting MCI/O Address location 
where the MIC can access control registers necessary to 
Complete a Queue or Free Block Fetch Operation. These 
control register should have the same format as the MIC's 
I/O Control Registers (QRC, QWC, QD, and FB registers) 
and should be located at the following address offsets; 
QRCR = 0000, QWCR = 0100, QDR = 1000, FBR = 1100. 

Micro Channel Post Command Queue ID (MPCQID): 
This field defines the Queue number On another MC device 
where the MPC can be posted to. The receiving Queue's 
Byte Count is 8 bytes. 

Source Address (MSB): 
The high Order address bits used to Source data which 
will be moved during the Commanded Transfer. 
FMT MUST equal 'O', to use this field. 
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FIG. 27 

Word Bits Name: Description 

Source Address (LSB): 
The low Order address bits used to SOUrce data which will 
be moved during the Commanded Transfer. Also, these bits 
define the MCB LPB Address When JMP='1'. 

Command I Status Flags: 
Flags used for Command I Status transfers. This word 
specifies no MIC function and can be used for software 
defined functions and flags. 

8- 15 i Reserved at a value of '0'. 
7- 0 V 

- 15 9 (MSB) O i TargetAddress (MSB): 
15-0 V The high Order address bits used to target data which will 

be moved during the Commanded Transfer. Note: the MPC 
does not use the 8msb Of this field. 

TargetAddress (LSB): 
The low order address bits used to target data which will 
be moved during the Commanded Transfer. 

Block Length: 
The number of bytes which will be moved during the 
Commanded Transfer. 
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FIG.29 
msb lsb 

ibm 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 15 
Wen 15 14 3 12 11 10 9 8 7 6 5 4 3 2 1 0 

Word 100 O MXSMState o O O FBR MXSMRC 
Word 2 OOOOOOOOOOOOOOOO 
Word 3 MC COntrol Block Address mSb 

Word Bits Name: Description 

0-3 i These bits define the source Queue number of the MSW, 
15-12 v which for the MIC is Queue # D (1101") 
4-7 i Reference identification (RID) number: 

- 8 V Software pointer to reference the MCW with the MSW. 
8- 15 i Device ldentification (DID) number: 
7- 0 V Software pointer to reference the MCW with the MSW. 
0-2 i Reserved at a value of '0'. 

15 - 13 V 

3-7 i Master Execution State Machine State: 
12-8 V This field defines the state which the Master Execution 

Unit was in at the end of the Commanded Transfer. 
if no error OCCurred then MXSM State='00000'. 

8-10 i Reserved at a value of 'O' 
7-5 V 

(FBR) 1 i Free Block Return (FBR): 
4 V This indicates that an error has occurred which required 

the MC to return a Fetched Free Block from another MC 
device. if MCB field BUFs'O' then this field is invalid. 
O = The MIC was unsuccessful in returning the FB to the 

MC device it was fetched from. 
1 = The MIC was successful in returning the FB to the 

MC device it was fetched from. 

1 12-15 i Master Execution State Machine Return Code: 
3 - 0 W This field indicates the Completion status of the 

Commanded Transfer Operation. * 
0-15 i Reserved at a value of 'O'. 
15-0 V 

0-15 i MCB Address: 
15 - 0 V The upper 16-bits of the LPS memory address where 

the MCB Or last MCB was used for the COmmanded Transfer. 
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FIG. 30 
msb lsb 

ibm 3. s 3 : 3| | | | | | | | |'' Wen 15 4 3 12 11 10 9 8 7 6 5 4 3 2 1 0 

Word OMC Source ID Reference ID | Device ID isb 
Word 1 Command status Flags TargetAddress (MSB) 
Word 2 Target Address (LSB) 
Word 3 Block Length msb 

Word Bits Name: Description 

MCSOurce ID/Device Address: 
These bits define the MICS Micro Channel Device Address. 
These bits are equal to the POS Reg2 Device Addrfield. 

Software pointer to reference the MCW with the MSW. 

Device identification (DID) number: 
Software definable. 

9 Command Status Flags: 
Flags used for Command I Status transfers. This word 
specifies no MIC function and can be used for software 
defined functions and flags. 

Target Address: 
These bits define the lower 24bits of MC Men Addr Where 
the MIC moved datato. This address field is either the 
target address defined in the MCB or the FB Address 
fetched from the MC device, depending on the MCB BUF field 

FreeBlock Error (FER): 
This field defines whether the target address was really 
used as the target address. Only valid if BF='1'. 
O = Target Address valid. 
1 = Target Address being returned, unused address. 

Commanded Transfer Contained an error and the 
FreeBlock is being returned. 

i Block Length: 
V The number of bytes which were moved during a completed 

CT or were supposed to be moved for the CT. 
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FIG. 33 

0 1 2 3 4 5 6 7 ibn 
LPB Memory Address 7 6 5 4 3 2 1 0 Ven 
--- 

> 0000 : 00000000 : 00000000 

0000 : 00000000 : 0000000 
IR byte QIR Seg Q Q "l 

XXXX: 0000001 : 00000000 Queue 0 
initialization 

XXXX: 000000 : 00000011 Register 

XXXX: 000000 : 0000000 Queue 1 < 
initialization 4 Bytes 

XXXX: 000000 : 00000111 Register | 
1Mbytes ; 64 Bytes 

XXXX: 0001000 : 0011000 Queue E 
initialization 

XXXX: 0001000 : 0011011 Register 

XXXX: 0001000 : 0011100 Queue F 
Initialization 

XXXX: 0000001 : 00111111 Register | 
- 

don't Care 

11 : 11111 : 11111110 

11 : 1111111: 11111111 
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FIG. 34 
msb lsb 

ibn 0 1 2 3 4 5 - 6 7 8 9 0 1 2 13 14 15 
Wen 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Word OO 0 QBC Queue Read Pointer (QRP) QRPs 
Word Queue Write Pointer (QWP) QWPS 

Word Bits Name: Description 
0-1 i Reserved at a '0' level. 

15 - 14 V 

2-3 i Queue Byte Count (QBC): 
Defines the number of bytes for a Queue entry. 
00-4bytes (1 KQEntries) 10 - undefined 
O1-8bytes (512Q Entries) 11-16 bytes (256 Q entries) 

Queue Read Pointer (QRP): 
Defines the Current value of the Queue ReadPointer. 
For 4 byte Queues all 10-bits are valid, for 8 byte 
Queues only the upper 9-bits are valid, and for 16 
byte Queues Only the upper 8-bits are valid. 
Non-valid bits must be set to 'O'. 

Queue Read Pointer Status (QRPS): 
Defines the current status for the ReadPointer. 

00 = Pointer is available and Valid. 
01 = Pointer is temp. being used by another PB device. 
10 = The Queue is empty. 
11 = The Queue is not enabled, Pointeris invalid. 

Queue interrupt (Q): 
Defines the interrupt used to indicate that a Queue 
Contains a Queue Entry. 
0000 - Disabled 1000-MCIRQ(O) 
0001 - Reserved 1001 - MCIRQ(1) 
000 - Reserved 1010-MCIRQ(2) 
001 - Reserved 1011 - MC1RQ(3) 
01.00-LPBINT(0) 1100-Reserved 
01.01-LPBINT(1) 1101 - Reserved 
011O-LPBINT(2) 1110- Reserved 
O111 - LPBINT(3) 

Queue Write Pointer (QWP): 
Defines the Current value of the Queue Write Pointer. 
For 4 byte Queues all 10-bits are valid, for 8 byte Queues 
Only the upper 9-bits are valid, and for 16 byte Queues 
Only the upper 8-bits are valid. 
Non-valid bits must be set to '0'. 

Queue Write Pointer Status (QWPS): 
Defines the Current status for the Write Pointer. 
00 = Pointer is available and valid. 
01 = Pointer is temp. being used by another PB device 
10 = The Queue is full. r 
11 = The Queue is not enabled, Pointeris invalid. 

1111 - Reserved 
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FIG. 35 

O 2 3 4 5 6 7 ibn 
PBO. Address 7 6 5 4 3 2 1 0 Ven 
-- 

> 00000000 : 00000000 

00000000 : 0000000 
QPR Byte 

QPR Seg Q# h 
- - - - 
000000 : 00000000 Queue 0 

Pointer 0000001 : 0000001 Registers 

0000001 : 00000100 Queue 1 g 
Pointer 

0000001 : 000001 Registers 

64Kbytes 

0001000 : 00111000 Queue E 
Pointer 

000000 : 00111011 Registers 

O001000 : 00111100 Queue F 
Pointer 

000000 : 00111111 Registers g 

11111111 : 111110 

11111111 : 11111111 
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FIG. 36 
msb lsb 

ibn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Wen 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Word 0 Queue Read Pointer (QRP) QRPS 
Word 1 Queue Write Pointer (QWP) Q WPS 

Word BitS Name: Description 
0-3 i Reserved. 

15 - 12 W 

4-13 i Queue Read Pointer (QRP): 
11 - 2 V Defines the Current value of the Queue Read Pointer. 

For 4 byte Queues all 10-bits are valid, for 8 byte 
Queues Only the upper 9-bits are valid, and for 16 
byte Queues Only the upper 8-bits are valid. 
Non-Valid bits must be Setto 'O'. 

10 = The Queue is empty. 

14-15 i 
1 - 0 V 

11 = The Queue is not enabled, Pointer is invalid. 

0-3 i Reserved. 
15 - 12 W 

Queue Write Pointer (QWP): 
Defines the Current Value of the Queue Write Pointer. 
For 4 byte Queues all 10-bits are valid, for 8 byte Queues 
Only the upper 9-bits are valid, and for 16 byte Queues 
Only the upper 8-bits are valid. 
Non-valid bits must be set to 'O'. 

Queue Read Pointer Status (QRPS): 
Defines the Current status for the Read Pointer. 
00 = Pointer is available and valid. 
01 = Pointer is temp. being used by another LPB device. 

Queue Write Pointer Status (QWPS): 
Defines the Current status for the Write Pointer. 
00 = Pointer is available and valid. 
O1 = Pointer is temp. being used by another LPB device. 
10 = The Queue is full. 
1 = The Queue is not enabled, Pointer is invalid. 
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FIG. 37 

LPB Memory Address 
-- A 0 1 2 3 4 5 6 7 ibn 320NQSeg 324N-Q Pointer 9 : Ver 
- -- 

> RRRR: 00000000 : 00000000 
T- T 
N byte : 322N-QNum 326QE yte 

4. Kbytes 

RRRR:0011111:11111111 Queue 1 - 
64Kbytes 

RRRR: 1100000 : 00000000 

RRRR: 00001111 : 1111111 

RRRR: 0001 0000 : 00000000 

RRRR:1101111 : 1111111 

RRRR: 1110000:00000000 

> RRRR:1111111: 111111 

  

  



U.S. Patent Jan. 3, 1995 Sheet 41 of 48 5,379,386 

FIG 38 

Read Queue Read Pointer 
from MICLPBI/O Space 340 

342 Verify Pointer Status (Being Used 
by Another 

(Queue Disabled or Empty) Unavailable LPB Device) 

Available (Becomes Unavailable 
for Other LPB 

Construct LPB Physical 
Memory Address Devices) 

LPB Mem Addr= 
QSEG:QNUM:QPointer:00 

Read Data 
4,8, or 16 bytes 

PBMem Addr= 
QSEG:QNUM:QPointer:00 

Queue Error Reported 
to LOCal PrOCeSSOr 

by MIC 

346 

Write Queue Read Pointer 
to MICLPB I/O Space 

Return New QPointerValue 

New QPointer = 
QPointer:00+ QBC 

MCVerifies QPointer 350 

Queue ReadPointer 
Updated & Maintained 

by MIC 
Queue Error Reported 

to LP by MIC, 
QP restored 

  

  

  

  

    

    

  

  

  

  

  

  

  

    

  

  

  

  



U.S. Patent Jan. 3, 1995 Sheet 42 of 48 5,379,386 

FIG. 39 

Read Queue Write Pointer 
360-1 from MICLPB I/O Space 

8 . A (Being Used 362 Verify Pointer Status by Another 
(Queue Disabled Or Full) Unavailable LPB Device) 

to LOCal PrOCeSSOr 
by MIC 

372 

Queue Error Reported 

Queue Write Pointer 
Updated & Maintained 

366 

368 

370 

by MIC 

Construct LPB Physical 
Memory Address 

364 

Write Data 
4,8, or 16 bytes 

Write Queue Write Pointer 
to MICLPB I/O Space 

Return New QPointerValue 

MC Verifies QPointer 

Available (Becomes Unavailable 

LPB Mem. Addr 

for other PB 
Devices) 

QSEG:QNUM:QPointer:00 

LPB Mem. Addr 
QSEG:QNUM:OPointer:00 

New QPointer = 
QPointer:00 + QBC 

Queue Error 
to LP by 
QP restored 

where QBC = 4.8, or 16 
bVtes 374 yt 

Reported 
MIC, 
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FIG. 40 

0 1 2 3 4 5 6 7 ibm. 
MCIO Address 7 6 5 4 3 2 1 0 Ven 

00000000 : 00000000 g 

00000000 : 00000001 
64KBytes 

CRMC/O Base Address 
-- 
RRRRRRRR: RRR00000 < 

QRC Register ; : - 4 Bytes 
RRRRRRRR:RRR00011 

RRRRRRRR: RRR00100 C 
QWC Register ; 4 Bytes 

RRRRRRRR: RRR001 C 

RRRRRRRR: RRRO1000 
QD Register 4 Bytes 

< RRRRRRRR:RRROO 

1111111 : 1111110 

11111111 : 1111111 
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MCIO Address 

MIC CRMCIOBA + 00000-> 

MCCRMCIOBA + 00001 --> 

MIC CRMCIOBA + 0000-> 

MIC CR MCIOBA + 0001-> 

LOCation 

CRMCIOBA 
'00000 

Bits 0-3 i 
7- 4 V 

CRMCIOBA 
00000 

Bits 4-5 i 
3-2 V 

CRMCIOBA 
'00000 

Bits 6 i 
1 V 

CRMCIOBA 
00000' 

BitS 7 i 
0 V 

CRMCIOBA 
"00001" 
through 
'00011 
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FIG. 41 

msb lsb 

9| | | | | | | | I 
U t 

2 

Status ACKAVL 
Oooooooo. 

Name: Description 
Queue #: (ReadWrite) 
The number of the Queue being requested for a Queue Read 
Operation. Values of "0000'through "1111" are valid. 

Status: (Read Only) 
Return status On the Queue Read operation. 
00- Queue Read Data Ready 
01 - Queue Read Data Not Ready 
1X- Queue Read Data Error 

Acknowledge (ACK): (ReadWrite) 
Used to clear the QRC register semaphore and make the 
MIC available for another Queue Read Operation. 
O = no effect (Write) O = valid (Read) 
1 = clear semaphore (Write) 1 = invalid (Read) 

Available (AVL): (Read Only) 
This is the QRC Register Semaphore which indicates the 
availability of performing a Queue Read Operation. 
0 = Operation temporarily unavailable, control of 

Operation has already been obtained by another user. 
1 = Operation available. 

Reserved at a '0' value. 
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MCIO Address 

MIC CRMCIOBA + 00100-> 

MIC CRMCIOBA + 00101 -> 

MIC CR MCIOBA+ 00110-> 

MIC CRMCIOBA + 00111-> 

LOcation 

CRMCIOBA 
"00100' 

Bits O-3 i 
7- 4 V 

CRMCIOBA 
'00100' 

Bits 4-5 i 
3-2 V 

CRMCIOBA 
'00100' 

BitS 6 i 
W 

CRMCIOBA 
'00100' 

Bits 7 i 
0 V 

CRMCIOBA+ 
"00101" 
through 
'001 
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FIG 42 

msb lsb 
O | 1 || 2 || 3 || 4 || 5 6 7 ibn 
7 6 5 4 || 3 || 2 || 1 || 0 | Ven 

Queue QBCACKAVL 
Oooooooo 
oooooooo 
OOOOOOOO 

Name: Description 
Queue #: (Read/Write) 
The number of the Queue being requested for a Queue Write 
Operation. Values of "0000'through "1111" are valid. 

Queue Byte Count (QBC): (ReadWrite) 
The Queue Byte Count for Queue Write operations. 
00 = 4 bytes 10 = reserved 
01 = 8 bytes 11 = 16 bytes 

Acknowledge (ACK): (ReadWrite) 
Used to clear the QWC register semaphore and make the 
MIC available for another Queue Write Operation. 
O = no effect (Write) O = valid (Read) 
1 = clear semaphore (Write) 1 = invalid (Read) 

Available (AVL): (Read Only) 
This is the QWC Register Semaphore which indicates the 
availability of performing a Queue Write Operation. 
0 = Operation temporarily unavailable, Control of 

Operation has already been obtained by another user. 
1 = Operation available. 

Reserved at a '0' value. 
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FIG 43 

Read QRead Semaphore 
from QRCR 

in MIC MC I/O Space 

Verify AVL bit 

Available Unavailable (AVL=0) 
(AVL=1) 

Write QNum 
to QRCR 

in MICMC/O Space 

Read Status 
from QRCR 

in MICMC I/O Space 
STAT-'0' 

(Q Read Error) 
STAT-'0' 

STAT-'00' (Ready) 
(Not Ready) 

MIC Reports Read Queue Data 
Queue Read Error O999aa Reg step 4 
to LOCal PrOCeSSOr in MICMCIO Space p 4. 

(4, 8, Or 16 bytes) 

Y AVL=1 (Becomes Available) 

Abort/Clear Out Read Operation 
Write ACK=1 
to QRCR Step 5. 

in MIC MC I/O Space 

MICReports Possible 
Queue Errors 

to Ocal PrOCeSSOr 
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FIG, 44 

Read QWrite Semaphore 
from QWCR 

in MICMC I/O Space 

Verify AVL bit 
(Becomes Available Unavailable (AVL=0) 
Unavailable) (AVL=1) 

Write QNum & QBC 
to QWCR Step 2. 

in MICMC I/O Space 

Write Queue Data 
to Queue Data Register Step 3. 
in MICMC I/O Space 

(4, 8, or 16 bytes) 

Y AVL=1 (Becomes Available) 

Abort/Clear Queue Write Operation 

Write ACK-1 
to QWCR Step 4. 

in MICMC I/O Space 

MIC Reports Possible 
Queue Errors 

to LOCal PrOCeSSOr 
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FIG 45 

O 2 3 4 5 - 6 7 ibn 
MCIO Address 7 6 5 4 3 2 1 0 Ven 
-- 

00000000 : 0000000 

CRMC/O Base Address 
-- 
RRRRRRRR: RRR00000 QRC Register 

QWC Register 

QDRegister 

FBLRegister 

RRRRRRRR: RRR00100 

RRRRRRRR:RRRO1000 
RRRRRRRR: RRR01100 

RRRRRRRR: RRRO1111 

RRRRRRRR:RRR10000 Job 
Pending 

RRRRRRRR: RRR1000 Register 

1111111 : 1111110 

111111 : 111111 
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MCRO CHANNEL INTERFACE CONTROLLER 

This Application is a continuation of application Ser. 
No. 07/755,477, filed Sep. 5, 1991. 5 

BACKGROUND OF THE INVENTION 
1. Technical Field 
This invention relates to an apparatus for transferring 

data between digital data processing systems. In partic- 10 
ular, this invention relates to an integrated controller 
capable of controlling high speed data and control 
transfers between a Micro Channel, a local processor 
and a data bus. 

2. Background Art 
Communication of data between data processing 

systems which are separated in physical location is a 
common requirement. Central processing units (CPUs) 
of one computer need to communicate with CPUs of 
other computers. Likewise, peripheral equipment needs 20 
to communicate with a host computer 

In data communications technology, typically data is 
communicated in frames having various layers or levels 
governed by protocols. The data typically consists of a 
command layer which may include addresses and in- 25 
structions followed by data. Relatively large blocks of 
data can be transmitted by data communications tech 
nology at a very high rate. What slows down data com 
munications is processor time needed to process the 
data into frames and handle the protocols of the various 
layers. 

15 

30 

OBJECTS OF THE INVENTION 

It is therefore an object of the invention to provide a 
high speed data interface between data processing sys 
tems on a Micro Channel bus. 

It is another object of the invention to provide a 
separate local processor and data processing bus to 
common digital communications bus connecting digital 
data processing systems. 

It is another object of the invention to provide a 
programmable Micro Channel interface controller for 
flexibly transferring data at high speeds. 

SUMMARY OF THE INVENTION 
These and other objects, features and advantages are 

accomplished by the Micro Channel interface control 
ler. The present invention includes a Micro Channel 
interface means for implementing the proper timing 
control and data interfacing requirements to connect to 
a Micro Channel or similar asynchronous bus. Con 
tained within the Micro Channel interface controller 
(MIC) is a local processor bus interface having the 
proper timing and control data interface requirement to 
connect the Micro Channel to a local processor bus for 
decoding transfer commands. A local data bus is con 
tained within the MIC for interfacing the data to proper 
locations within a memory array. A master execution 
unit responsible for controlling and coordinating all 
command transfer activities between other units within 
the MIC is built within the MIC. An error controller 
monitors the MIC internal activities for possible error 
conditions to detect and correct such situations. Con 
tained within the MIC is a queue pointer manager re 
sponsible for controlling hardware pointers indicating 
the current locations of pending command words. The 
MIC contains six internal buffers to speed match and 
coordinate data transfers between the Micro Channel, 
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2 
the local processor bus, or local data bus. Three address 
generators are provided within the MIC to provide for 
the addressing requirements of data transfers between 
the Micro Channel and local data bus interfaces. The 
MIC of the present invention contains self-test features 
for diagnostic and debug operations of the MIC chip. 
The Micro Channel interface controller provides for 

high speed data transfers between a Micro Channel or 
other related bus by processing the command and ad 
dress features via the local processor bus and routing 
the data at very high speeds through the local data bus. 
The MIC itself appears transparent to the bus and does 
not impede the transfer of data. The controller is de 
signed in very large scale integration to be implemented 
in a single integrated circuit chip. 
BRIEF DESCRIPTION OF THE DRAWINGS 
These and other objects, features and advantages of 

the invention will be more fully appreciated with refer 
ence to the accompanying figures. 

FIG. 1 is a representation of a local area network of 
personal computers, workstations and main frames. 
FIG. 2 is a block diagram of an interface according to 

the present invention which links a Micro Channel bus 
to an external fiber optic bus through a local data bus 
and a local processor bus. 

FIG. 3 is a block diagram of the Micro Channel inter 
face chip. 

FIG. 4 is a diagram of the external I/O pins to the 
Micro Channel interface chip in a preferred embodi 
ment of the present invention. 

FIG. 5 is a block diagram of the Micro Channel inter 
face according to the present invention. 
FIGS. 6A-6E depict the logic in the control and data 

signal capturing and synchronizing block in the Micro 
Channel interface of the present invention. 

FIG. 7 is a representation of a state machine in the 
Micro Channel interface of the present invention. 

FIG. 8 depicts a timing diagram where two words are 
written on the local processor bus. 
FIG.9 depicts atiming diagram where two words are 

read from the local processor bus. 
FIG. 10 depicts a timing diagram where a read opera 

tion takes place in the Micro Channel interface chip 
while it is in a slave timing mode with two 25 MHz wait 
States. 

FIG. 11 depicts a timing diagram where a write oper 
ation takes place on the Micro Channel interface chip 
while it is in a slave timing mode with two 25 MHz wait 
States. 
FIG. 12 is a block diagram of the protocol signal 

connections for a two chip ring. 
FIG. 13 is a block diagram of the protocol signal 

connections for a multi-chip ring. 
FIG. 14 is a block diagram of the local data bus ring 

state machine. 
FIG. 15A is a block diagram of the local data bus 

protocol boundary logic. 
FIG. 15B is a block diagram of the TRT and THT 

logic timers on the local data bus. 
FIG. 16 is a timing diagram of the local data bus 

start-up with immediate access to the Micro Channel 
interface chip. 

FIG. 17 is a timing diagram for driving the local data 
bus signals. 

FIG. 18 is a timing diagram of the local data bus 
depicting a Micro Channel interface chip read of five 
words with no wait states. 
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FIG. 19 is a timing diagram of the local data bus 
depicting a Micro Channel interface chip write of five 
words. 
FIG. 20 is a timing diagram of the local data bus 

depicting a Micro Channel interface chip read of two 
words, write of two words and read of one word. 
FIG. 21 is a flow diagram of the master execution 

process. 
FIG.22 is a block diagram depicting the relationship 

between the command word, the control block, the 
status word and the post command for the Micro Chan 
nel interface chip. 
FIG. 23 depicts the fields within the Micro Channel 

interface chip command word. 
FIGS. 24-27 depict the fields within the Micro Chan 

nel interface chip control block. 
FIG. 28 depicts the valid combinations of Micro 

Channel interface chip control block flags in a preferred 
embodiment. 
FIG. 29 depicts the fields of the Micro Channel inter 

face chip status word. 
FIG. 30 shows the fields of the Micro Channel inter 

face chip post command. 
FIG. 31 depicts the Micro Channel versus local data 

bus access memory map. 
FIG. 32 depicts the local processor bus to local data 

bus access memory map. 
FIG.33 depicts the local processor bus memory map 

showing the queue initialization registers. 
FIG. 34 shows the fields in a queue initialization 

register according to the present invention. 
FIG. 35 depicts the local processor bus I/O map 

showing the queue pointer registers. 
FIG. 36 shows a preferred layout of a queue pointer 

register. 
FIG. 37 depicts the relative addresses of queues 

within the local process bus. 
FIG. 38 is a flow diagram of the local processor bus 

queue read operation protocol flow. 
FIG. 39 is a flow diagram of the local processor bus 

queue write operation protocol flow. 
FIG. 40 depicts the queue read control register, the 

queue write control register and the queue data register 
mapped against their Micro Channel I/O addresses. 
FIG. 41 depicts the queue read control register. 
FIG. 42 depicts the queue write control register. 
FIG. 43 is a flow diagram of the Micro Channel 

queue read operation protocol flow. 
FIG. 44 is a flow diagram of the Micro Channel 

queue write operation protocol flow. 
FIG. 45 depicts the free block list and job pending 

register mapped against the Micro Channel I/O map. 
DETAILED DESCRIPTION OF THE 

INVENTION 

The following definitions will be helpful to the reader 
in understanding the following description. 

Term Definition 

Byte A group of eight signal lines contained 
within a bus. 

Bus Participants Any device engaging in a data transfer or 
request of a bus. 

Central Steering A group of system logic responsible for 
Logic assisting devices in maintaining and 

controlling Micro Channel data bus width 
compatibility. 

Device A block of logic which drives or receives 

O 
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4. 
-continued 

Definition Ten 

information onto or from a bus, interprets 
the information and/or performs 
a specified function. 
A slave device which is addressable 
within the I/O address space of the bus. 
A device which gains control of a 
bus with the intent of causing a data 
transfer to/from a slave. 
A slave device which contains 
memory within the bus addressable space. 

I/O Slave 

Master 

Memory Slave 

Node A device. 
Queue A sequence of stored data or Queue 

Entries awaiting processing. 
Queue Entry 4, 8, or 16 bytes of stored data which 

together define a task, control, or 
informational data to be processed at a 
later time. 

Queue Read Pointer A pointer to the current sequential 
(QRP) location of the next Queue Entry to be 

processed. 
Queue Write Pointer A pointer to the current sequential 
(QWP) location where a Queue Entry can be 

appended to a Queue. 
Resource A block of logic or device which makes 

itself acessible to a device for an 
information exchange. 

Semaphore A flag or indication of current status. 
Slave A device which provides or receives data 

during an operation under the control of a 
master. 

Steering Directing the bytes contained in a bus to 
another byte within the bus. 
A group of system logic responsible for 
Micro Channel arbitration, device 
selection, system memory refresh, unique 
functions, and interfacing with the system 

System Controller 

processor. 
Transfer An exchange of information between two 

devices. 
Word A group of 16 signals contained in a bus, 

two bytes. 

FIG. 1 depicts a mainframe 100 such as an IBM main 
frame following the 370 architecture connected to 
workstations 101 and 102 and personal computers 103 
and 104 by means of a serial bus 106. In the preferred 
embodiment, the mainframe is an IBM mainframe fol 
lowing the 370 architecture such as the 3093, or 
ES/9000 TM, the workstations 101 and 102 are IBM 
RISC System/6000's TM and the personal computers 
are in the IBM PS/2 TM family. The workstations 101, 
102 and personal computers comprise well known com 
ponents such as a system processor unit, ROM, RAM, 
one or more system buses, a keyboard, a mouse and a 
display. Further information can be found on the RISC 
System/6000 in IBM RISC System/6000 POWERsta 
tion and POWERserver Hardware Technical Referen 
ce-General Information Manual (SA23-2643), IBM 
RISC System/6000 POWERstation and POWER 
server Hardware Technical Reference-Options and 
Devices (SA23-2646), IBM RISC System/6000 Hard 
ware Technical Reference-7012 POWERstation and 
POWERserver (SA23-2660), IBM RISC System/6000 
Hardware Technical Reference-7013 and 7016 
POWERstation and POWERserver (SA23-2644) and 
IBM RISC System/6000 Hardware Technical Referen 
ce-7015 POWERserver (SA23-2645). Information on 
the PS/2 family can be found in Technical Reference 
Manual Personal System Model 50,60 Systems, Part 
No. 68X2224, Order No. S68X-2224 and Technical 
Reference Manual Personal Systems (Model 80), Part 
No. 68X2256, Order No. S68X-2256. A description of 
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the serial bus architecture can be found in Serial I/O 
Architecture: PKD081102, Feb. 29, 1989. Both the 
RISC System/6000 and the PS/2 incorporate the Micro 
Channel Bus as their systems bus. The Micro Channel 
contains a 32-bit address bus, a 32-bit data bus, an arbi 
tration bus and a variety of control signals. Further 
information can be found in the Micro Channel on 
Low-End Parallel Bus Architecture, Family 2: LEPB 
ADS-0002-00-4-U7 and Personal System/2-Hardware 
Interface Technical Reference Architectures, Part No. 
84F9808, Order No. X84F-9808-00. All the above refer 
ences are available from the IBM Corporation. 

All of the workstations and personal computers 
101-104 interface with serial bus 106 by means of a 
Micro Channel to Serial Bus Adapter (MCSB) card 108. 
FIG. 2 shows a functional block diagram of the various 
components of the MCSB card 108. Serial bus 106 and 
Micro Channel Bus 110 are coupled to the serial inter 
face 113 and the Micro Channel Interface controller 
(MIC) 112 respectively. The MIC chip 112 is a high 
performance interface between three buses: the Micro 
Channel, a general purpose microprocessor bus called 
the Local Processor Bus 115, and a dedicated data bus 
called the Local Data Bus 117. The purpose of the MIC 
112 is to translate the protocol on these three buses and 
allow for quick and efficient data and control transfers 
between them. The MIC 112 is intended to be used on 
high speed I/O or processing adapters which require 
preprocessing, additional processing or data manage 
ment functions before/after data can be moved to or 
sent by a device on the Micro Channel. 

Serial interface 113 represents the serial input/output 
circuitry which includes optical digital signal conver 
sion, clock recovery synchronization, serial to parallel 
conversion, optic decoding and coding and clock con 
version. The MIC 112 and the serial interface 113 are 
joined by the Local Processor Bus 115 and local data 
bus 117. The Local Processor 119 is preferably an 
INTEL 80960 TM processor which provides the pro 
cessing power for the Micro Channel to serial bus inter 
face 108. The Local Processor 119 also includes pro 
grammable read only memory 120 (same or different 
chip). A Local Processor Store 121 is also coupled to 
the Local Processor Bus 115 and provides storage for 
the INTEL 80960 programs as well as storage for the 
MIC 112 logic. PROM 120 contains diagnostics and 
initialization code for the devices coupled the Local 
Processor Bus 115. Other devices 122 such as printers, 
modems or video monitors can be coupled to the Local 
Processor Bus 115. The local data bus 117 is used for the 
data as opposed to processing functions between the 
MIC chip 112 and serial interface 113. The MIC 112 and 
serial interface 113 share the local data store 123 which 
provides a buffer for data which initially comes from 
either the serial or Micro Channel Busses 106, 110. For 
example, some data might initially come in from the 
Micro Channel 110, the MIC 112 would initially store 
the data in local data storage 123. The MIC 112 would 
then notify the Local Processor 119 that data is present 
and the Local Processor 119 would start the serial inter 
face 113 to move the Micro Channel data from the local 
data store 123 to the serial bus 106. 
One preferred embodiment of the Micro Channel to 

Serial Adapter Card is described in commonly assigned 
copending application Ser. No. 07/693,834, and is enti 
tled “Serial Channel Adapter” filed Apr. 30, 1991, 
which is hereby incorporated by reference. Other com 
monly assigned, copending applications related to the 
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present invention include: "Micro Channel Interface 
State Machine and Logic" by J. L. Swarts, filed Sep. 5, 
1991, which describes the functions of the MIC 112, 
"Queue Pointer Manager” by J. L. Swarts, et al., filed 
Sep. 5, 1991, which describes the functions of the Queue 
Manager 143, and "1-Bit Token Ring Arbitration Ar 
chitecture' by G. L. Guthrie, et al., filed Sep. 5, 1991. 
Below is a summary of highlighted features/functions 

which the MIC 112 supports. 
Micro Channel Interface Features 
Master and Slave capability 
10 MHz Streaming Data transfer rate 
16/32/64-bit Streaming Data transfer widths 
Bus Steering 
Burst capability 
Programmable Memory and I/O space utilization 
Memory Address capability of 4G bytes 
I/O Address capability of 64K bytes 
Peer to peer capability 
Fairness 
Address and Data Parity 
Up to 8 Interrupts 
Access to Vital Product Data 
Local Processor Bus Interface Features 
Intel 80C186/80960KB compatible bus. Some exter 

nal MSI logic may be required depending on the 
specific implementation to guarantee proper inter 
facing with the microprocessor. 

Master and Slave capability. 
Hardware Queue Management capability 
Memory Address capability of 1 Mbyte 
Address and Data Parity 
Local Data Bus Interface Features 
100 M bytes/sec burst transfer rate 
Master capability 
Address capability of 1 Mbyte 
Programmable Read Wait States 
Time shared bus arbitration 
Address and Data Parity 
Extensive error detection and logging 
Self-Test capability 
Internal Wrap capability 
64 byte Data Buffering 

Micro Channel Interface Controller (MIC) Overview 
The MIC 112 allows data transfers to occur between 

the MC110, LDB 117, and LPB 115. To accommodate 
the high speeds of the MC 110, the MIC 112 provides 
buffers 145 which improve overall throughput perfor 
2C6. 

In FIG. 3, the MIC 112 is partitioned into several 
functional units. Each of these functional units are dedi 
cated to perform a special operation or task which will 
in some way interact with one or more of the other 
functional units. Each of the units contains a lower level 
of control and/or data logic specifically designed for 
performing its operation Together, these units provide 
the MIC 112 with its interconnections between the MC 
110, LDB 117, and LPB 115. 
The MC Interface 130 is responsible for implement 

ing the proper timing, control, and data interfacing 
required to connect the MIC 112 to the Micro Channel 
110. The MC Interface 130 contains logic to synchro 
nize, to interpret, and to control address, data, arbitra 
tion, parity, interrupt, and control handshaking signals 
with the other units within the MIC 112. The MCInter 
face 130 allows the operation of two MC modes, the 
Basic Transfer mode and the Stream Data Mode. 
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The Basic Transfer mode defines the default protocol 
of the MC 110. Most MC compatible devices have the 
ability to perform operations in this mode. While oper 
ating in this mode the MIC 112 can be defined by the 
following MC bus device types: 

Intelligent Bus Controller 
/O Slave 
Memory Slave 
Setup Slave 
When operating as an Intelligent Bus Controller the 

MIC 112 is considered to be a MC master. The MIC 112 
only becomes a MC Master when a commanded trans 
fer has been initiated. While operating as an I/O, Mem 
ory or Setup Slave the MIC 112 is considered to be a 
MC slave. The MIC 112 only becomes a MC slave 
when initiated by another device acting as a MC Mas 
ter. 
The Stream Data mode allows the MIC 112 to partic 

ipate in high speed data transfers with other Stream 
Data mode MC devices. Stream Data mode provides 
significant performance enhancements for transfers of 
large blocks of data and automatic speed matching for 
clock synchronous data transfers. While in Stream Data 
mode the MIC 112 will operate as one of the following 
MC types: 

Streaming Data Master 
Streaming Data Slave 
The MIC 112 operates as a Streaming Data Master 

only when initiated by a commanded transfer and oper 
ates as a Streaming Data Slave when initiated by an 
other device acting as a Streaming Data Master. MC 
Data Interface 131 and MC Address Interface 132 are 
part of the MC interface and control the data and ad 
dress information respectively. The Micro Channel 
Interface 130 also includes control code 134 which 
includes code used for capturing command and strobe 
signals of the Micro Channel, the synchronous state 
machine and data validation code. 
The LPB Interface 133 is responsible for implement 

ing the proper timing, control, and data interfacing 
required to connect the MIC 112 to the Local Processor 
Bus 115. The LPB Interface 133 contains logic to con 
trol the address, data, arbitration, interrupt, parity, er 
ror, and control handshaking signals. The MIC 112 can 
operate as a master or as a slave on the LPB 115. LPB 
Master operations can be initiated by tasks necessary to 
execute and complete a commanded transfer, a MC 
device, a reportable error, or maintenance of the Pre 
fetch Free Block Buffer. Slave operations are con 
trolled by devices on the LPB 115 requesting access to 
the LDB 117, the MIC's Queue Management function, 
or error and internal MIC 112 control and initialization 
registers. 
The LDB Interface 135 is responsible for implement 

ing the proper timing, control, and data interfacing 
required to connect the MIC 112 to the Local Data Bus 
117. The LDB Interface 135 contains logic to control 
the address, data, arbitration, parity, error, and control 
signals. In the preferred embodiment, unlike the LPB 
117 and MC 110 on the LDB 117, the MIC 112 only 
operates as a LDB Master. LDB Master operations are 
initiated by a commanded transfer, a MC device, or by 
a LPB device. However, when not a Master, the MIC 
112 can monitor the LDB 117 and check for possible 
protocol or parity errors. The LDB Interface 135 can 
be divided in the LDB Data Interface 136 and LDB 
Address which can handle the data and address signals 
respectively. 
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The Master Execution Unit 139 is responsible for 

controlling and coordinating all commanded transfer 
activities between other units within the MIC 112. A list 
of detailed operations and tasks which the Master Exe 
cution Unit is capable of performing is shown below: 
Monitors the Queue Manager 143 for pending com 
manded transfers. 

Coordinates fetching of MIC Command Words 
(MCW) and MIC Control Blocks (MCB) with the 
LPB Interface 133. 

Controls the initialization and loading of the Micro 
Channel Address Generator (MAG) 155, the Local 
Address Generator, and the Output Data Buffer 
(ODB) 149. 

Controls when the MC Interface 130 fetches Free 
Blocks from other MC devices. 

Coordinates the data transfer between the MC Inter 
face 130 and LDB Interface 135. 

Coordinates with the MC Interface 130 Queue write 
operations for posting completion status to other 
MC devices. 

Controls the posting of MIC Status Words (MSW), 
which indicate completion status of the com 
manded transfer and possible errors which may 
have occurred. 

The Error Controller (EC) 141 monitors MIC inter 
nal activities for possible error situations or conditions. 
If an error occurs, the EC 141 is responsible for coordi 
nating with the LPB Interface 133 posting of an Unso 
licited Status Word (USW). 
The Queue Manager 143 (QM) is responsible for 

controlling hardware pointers indicating the current 
locations of pending Command Words, Status Words, 
or Free Blocks and current locations where new Com 
mand Words, Status Words, or Free Blocks can be 
entered. In maintaining these pointers, queues of Com 
mand Words, Status Words, or Free Blocks can be 
stored in a FIFO like manner for later retrieval. The 
QM 143 is also responsible for indicating to either the 
MIC 112 or a LPB 119, 122 device whether a Queue 
contains pending data. The QM 143 has the ability to 
maintain pointers for 16 Queues located in the LPB 
Memory space 121 and controlling an assignable inter 
rupt to each Queue. Also, the QM monitors pointer 
activity for possible errors and reports them to the LPB 
Interface 133 for later retrieval. 
The MIC 112 contains a group of six internal buffers 

145. These buffers are used to speed match and coordi 
nate data transfers between the MC, LPB, and LDB 
Interfaces 130, 133, 135. 
The Output Data Buffer (ODB) 149 is a 16x36-bit, 

1-port FIFO capable of holding 64 bytes of data and 
byte parity. The purpose of the ODB 149 is to buffer 
MC Master data from the MIC LDB Interface 137 to 
the MC Interface 133 or to the IDB for LDB wrap 
operations. The loading and unloading of the ODB 149 
is controlled by the MIC LDB and MC Interface 135, 
130 under the guidance of the Master Execution unit. 
The Input Data Buffer (IDB) 150 is a 16x36-bit, 

2-port FIFO, capable of holding 64 bytes of data and 
byte data parity. The purpose of the IDB 150 is to buffer 
data transfers during all MC Slave operations and MC 
Master read operations to and/or from the MIC LDB 
Interface 135 unit, as well as LDB wrap operations. 
The Input Address Buffer (IAB) 151 is a 16x23-bit, 

2-port FIFO. The purpose of the IAB 151 is to buffer 
addresses and control signals related to data stored in 
the IDB 150. Addresses buffered in the IAB 151 can be 
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loaded from either the Slave Address Generator (SAG) 
154 or the Local Address Generator (LAG) 156. 
The Queue Read Buffer (QRB) 146 is a 8x 18-bit, 

2-port FIFO. The purpose of the QRB 146 is to buffer 
up to 16 bytes of Queue data and parity requested by a 
MC device. The LPB Interface 133 controls the writing 
of the QRB 146 under the management of the QM 143 
when a request from the MC 110 is made. The QRB 146 
can only be read when the MIC 112 is a MC Slave. 
Read access to the QRB 146 is controlled by the MIC 
MC Interface 130 using a semaphore and control regis 
ter 

The Prefetched Free Block Buffer (FBB) 147 is an 
8x8-bit, 2-port FIFO. The purpose of the FBB 147 is to 
maintain four four byte Free Block entries for quick 
access by a MC device. These Free Block entries con 
tain the starting physical MC Memory address needed 
to access an available block of memory on the LDB 117. 
When a MC device has removed a Free Block entry 
from the FBB 147, the MIC 112 can fetch another FB 
entry from the MICLPB Interface 133. In the preferred 
embodiment, the FBB 147 can only be read when the 
MIC 112 is a MC Slave. 
The Queue Write Buffer (QWB) 148 is a 16x25-bit, 

2-port FIFO. The purpose of the QWB 148 is to buffer 
data, parity, and control, which is designed for a Queue 
on the LPB 1.15 managed by the QM 143. Up to 32 bytes 
of Queue data can be buffered. In the preferred embodi 
ment, the QWB 148 can only be written to when the 
MIC 112 is a MC Slave. Write access to the QWB 148 
is controlled by the MC Interface 130 using a sema 
phore and control register. Read access to the QWB 148 
is controlled by the MIC LPB Interface 133 and QM 
143. 
The MIC 112 contains three Address Generators 153 

which provide most of the addressing requirements for 
data transfer between the MC and LDB Interfaces 130, 
135. 
The Slave Address Generator (SAG) 154 is used 

during MC Streaming Data Slave and LDB wrap oper 
ations. Its purpose is to provide addresses to the IAB 
151 which correlate to the data being received by the 
MC Interface 130. These addresses are then used by the 
MIC LDB Interface 135. The SAG 154 can address up 
to 1 Mbyte of data. 
The Micro Channel Address Generator (MAG) 155 

is used during commanded transfer operations. The 
MAG 155 provides the MC Interface 130 with ad 
dresses needed for MC Master operations. While the 
MAG 155 is capable of accessing 4G bytes of data, the 
MAG 155 can only increment addresses within a 64 
Kbyte address range during a single commanded trans 
fer. The MAG 155 also provides the SAG 154 with 
initial addresses during a LDB wrap operation. 
The Local Address Generator (LAG) 156 is used 

during commanded transfers to address data destined to 
or sourced from the LDB Interface 135. While the 
LAG 156 can access 1 Mbyte of data, the LAG 156 can 
only increment addresses within a 64 Kbyte address 
range during a single commanded transfer. 
The Self Test Interface (STD 157 provides a serial 

interface for diagnostic and debug operations. The STI 
157 provides control and access to scan strings, regis 
ters, and clock controls within the MIC 112. The STI 
157 can be accessed either directly via external I/O 
signals. 
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10 
The definitions, protocols, electrical characteristics, 

and physical requirements of the external signal I/O, 
power, and ground pins are described in this section. 
Positive logic is used to describe the logic levels used in 
this document. All of the logic signal lines are TTL 
compatible. The functions of the external I/O pins of 
the MIC 112 are defined in this section. FIG. 4 illus 
trates a summary of the external signals which interface 
with the MIC 112. 
MC Interface 
This section defines the signal I/O used to interface 

the MIC 112 with the MC 110. All references to master 
and slave are for Micro Channel operations. 
A(0:31)i 

--Address Bus Bits 0 through 31: These signal lines 
are used to address memory and I/O slaves attached to 
the MC 110 as well as select the MIC 112 for slave 
operations. The 32 address lines allow access of up to 4 
G bytes of memory. Only the lower 16 address bits are 
used for I/O operations and all 16 lines must be decoded 
by the I/O slave. 
--APAR(0:3)i 
--Address Parity Bits 0 through 3: These lines repre 

sent the odd byte parity of all address bits on the MC 
110 during read and write operations. A master gener 
ates a parity bit for each address byte and the receiving 
slave performs the parity checking to ensure the integ 
rity of the address. --APAR(0)i represents parity on 
+A(0:7)i, + APAR(1)irepresents parity on +A(8:15)i, 
--APAR(2)i represents parity on --A(16:23)i, and 
--APAR(3)i represents parity on --A(24:31)i. These 
signals are also used during a 64-bit Streaming Data 
transfer and represent odd byte parity for data on the 
address bus. 
-APAREN 
-Address Parity Enable: This signal is generated by 

a master to indicate to a slave that the address parity 
signal lines are valid. This signal is driven active by a 
master when it places an address on the MC 110. Dur 
ing the 64-bit Streaming Data mode this signal is 
sourced by the device which is sourcing the data. 
--D(0:31)i 

--Data Bus Bits 0 through 31: These lines are used to 
transmit and receive data to and from a master and 
slave. During a Read cycle, data becomes valid on these 
lines after the leading edge of -CMD but before the 
trailing edge of -CMD and must remain valid until 
after the trailing edge of -CMD. However, during a 
Write cycle, data is valid before and throughout the 
period when the -CMD signal is active. 
+DPAR(0:3)i 
+Data Parity Bits 0 through 3: These signals repre 

sent odd byte parity on the Data Bus, --D(0:31)i. A 
parity bit is generated for each Data Bus byte. 
+DPAR(0)irepresents parity on +D(0:7)i, +DPAR(- 
1)i represents parity on --D(8:15)i, +DPAR(2)irepre 
sents parity on --D(16:23)i, and --DPAR(3)irepresents 
parity on --D(24:31)i. 
-DPAREN 
-Data Parity Enable: This signal is generated by the 

device sourcing the data to indicate that the data parity 
signal lines are valid. 
-ADL 
-Address Decode Latch: This signal is driven by the 

master as a convenient mechanism for a slave to latch 
valid address and status bits. Slaves can latch informa 
tion with the trailing edge of -ADL. 
-CD SFDBK 
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-Card Selected Feedback: This signal is driven by 
the MIC 112 as a positive acknowledgement of its selec 
tion by a master. This signal is not driven when the MIC 
112 has been selected as a setup slave. This signal can be 
used to generate the -CD DS16 and -CD DS32 sig 
nal as well. 
SFDBKRTN 
-Selected Feedback Return: This signal is driven by 

the system logic to return the positive acknowledge 
ment from a slave to the master of its presence at the 
address specified by the master. 
-DS 1.6 RTN 
-Data Size 16 Return: This signal is driven by the 

system logic to indicate to a master the presence of a 16 
bit data port at the location addressed. 
-IDS 32 RTN 
-Data Size 32 Return: This signal is driven by the 

system logic to indicate to a master the presence of a 32 
bit data port at the location addressed. 
-BE(0:3)i 
-Byte Enable Bits 0 through 3: These lines are used 

during data transfers to indicate which data bytes will 
be valid on the MC 110. -BE(0)i enables --D(0:7)i, 
-BE(1)i enables --D(8:15)i, -BE(2)i enables 
--D(16:23)i, and -BE(3)i enables +D(24:31)i. These 
signals are not valid for 8-bit or 16-bit Micro Channel 
Basic Transfer operations. 
--MADE 24 
--Memory Address Decode Enable 24: This signal 

provides an indication of usage of an unextended (24 
bit) address on the MC 110. When active (high), in 
combination with an address, indicates that an unex 
tended address space less than or equal to 16 MB is on 
the MC 110. When inactive (low), in combination with 
an address, indicates that an extended address space 
greater than 16 MB is on the MC 110. This signal is 
driven by all masters and decoded by all memory slaves, 
regardless of their address space size. 
When the MIC 112 is a MC Master this signal is 

determined by the upper byte of the MAG 155. If the 
upper byte is equal to "00000000 then --MADE24 is 
active high. 
- SBHE 
-System Byte High Enable: This signal indicates 

whether the high byte of data is enabled when commu 
nicating with a 16-bit MC Slave. 
--M/-IO 
--Memory/-I/O Cycle: This signal distinguishes a 

MC Memory cycle from a MC I/O cycle. 
-SO,-S1 
-Status Bits 0 and 1: These signals provide the indi 

cation of the start and define the type of MC cycle. 
- CMD 
-Command: This signal is used to define when data 

is valid on the MC 110. The trailing edge of this signal 
indicates the end of a MC cycle. 
--CD CHRDY 
--Card Channel Ready: This signal allows a slave 

additional time to complete a bus operations. When 
activating this signal during a read operation, a slave 
promises that data will be valid on the bus within a time 
specified. A slave may also use this signal during a write 
operation if more time is needed to store the data from 
the bus. 
--CHRDYRTN 
Channel Ready Return: This signal is driven by the 

system logic to return the --CD CHRDY signal re 
ceived from the slave to the master. 
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-SIDEN 
-Streaming Data Enable: This signal is used to en 

able the external MSI drivers when the MIC 112 has 
been selected as a MC Slave with Streaming Data capa 
bility. 
--MSDR 
-Multiplexed Streaming Data Request: This signal 

indicates whether a MC Slave, or the MIC 112 when 
selected as a MC Slave, has the capability to perform an 
8-byte Streaming Data transfer. 
-SDR(0:1) 
-Streaming Data Request Bits 0 through 1: These 

signals provide information about the performance 
characteristics during Streaming Data mode. This infor 
mation is used by the MIC 112 as a master to determine 
the maximum clocking rate of the slave device during a 
Streaming Data transfer. 
-SD STB 
-Streaming Data Strobe: This signal determines 

when data is valid during a Streaming Data transfer. 
The maximum clock rate of this signal is determined by 
the -SDR(0:1) lines and the Streaming Data Clock 
input signals. 
--ARBI(0:3)i 

+Arbitration Input bits 0 through 3: These signal 
lines are used to receive the arbitration level presented 
on the MC Arbitration Bus. The lowest priority ARB 
bus level has a hexadecimal value of F and the highest 
priority ARB bus level has a hexadecimal value of '0'. 
ARB level of F should be used for the default MC 
Master. 
--ARBO(0:3)i 

+Arbitration Output bits 0 through 3: These signal 
lines are used when the MIC 112 arbitrates for use of the 
MC 110. 
--ARB/-GNT 
+Arbitration/-Grant: This signal defines when an 

arbitration cycle begins and ends on the MC 110. 
-BURST 

-Burst: This signal is driven by an arbitrating Bus 
Participant to indicate to the System Controller the 
extended use of the MC 110 when transferring a block 
of data. This type of data transfer is referred to as a 
burst cycle. The signal is shared by all Bus Participants 
and can only be activated by the participant granted the 
MC 110. 
-PREEMPT 
-Preempt: This signal is driven by arbitrating Bus 

Participants to request usage of the MC 110 via arbitra 
tion. Any Bus Participant with a bus request will acti 
vate -PREEMPT and cause an arbitration cycle to 
occur. A requesting Bus Participant will remove its 
preempt upon being granted the MC 110. -IRQ(0:3) 

-Interrupt Request bits 0 through 3: These signals 
are used to indicate to the System Processor that an I/O 
Slave requires attention. 
+IRQ SEL/SS1 OUT 

--Interrupt Request Select/Scan String 1 Output: 
This signal can be used by external logic to control 
which set of four MC Interrupt Request signals can be 
active. This signal can then effectively give the MIC 
112 access to eight MC Interrupt Requests. This signal 
is set in a POS Register field. In addition, this signal is 
defined as the output to scan string 1 during LSSD test 
mode. 
-CD SETUP 
-Card Setup: This signal is used to individually se 

lect devices during a system configuration. When this 
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signal is active, configuration data and the Device ID 
may be accessed. 
- CHCK 
-Channel Check: This signal is used to indicate a 

high priority interrupt to the System Controller that an 
exception condition, i.e. parity error, etc., has occurred 
on the MC 110. A field in a POS register defines 
whether this signal is synchronous or asynchronous. 
--M/-S 
+Master operation/-Slave operation: This signal 

gives an indication of the current Micro Channel opera 
tion that the MIC 112 is participating in. This signal can 
be used to control the direction and enabling of external 
Micro channel drivers and receivers. 
--DO/-I 
--Data Output Operation/-Input operation: This 

signal is used to indicate the direction of --D(0:31)i and 
--DPAR(0:3)i. 
--AO/-I 
--Address Output Operation/-Input operation: 

This signal is used to indicate the direction of --A(0:31)i 
and --APAR(0:3)i. 
-DLOE 
-Data Low Output Enable: This signal is used to 

indicate whether the lower two bytes of the MC data 
bus are active. 
Local Processor Bus Interface 
This section defines the signal I/O used to interface 

the MIC 112 with the LPB 115. All references to master 
and slave are for Local Processor Bus operations. 
+ADDR/DATA(0:19)i 
+Address/Data bus bits 0 through 19: This bus is 

used to address, read from, and write to Local Proces 
sor Store 121. This bus provides for addressing of up to 
1 Mbyte. 
+A/D PAR(0:2)i 

-- Address/Data Parity bits 0 through 2: These lines 
provide odd parity for --ADDR/DATA(0:19)i. 
--A/D PAR(0)i provide odd parity for the most signifi 
cant 4-bits when address is present. --A/D PAR(1)i 
provide odd parity for --ADDR/DATA(4:11)i. 
--A/D PAR(2)i provide odd parity for ADDR 
/DATA(12:19)i. 
- ALE 
- Address Latch Enable: This signal is be used exter 

nally latch the address on the --ADDR/DATA(0:19). 
--R/W 
--Read/Write: This signal is used to indicate the 

operation and direction of data on the LPB 115. 
-DAV & --RDY 
-Data Valid and --Ready: These two signals supply 

the MIC 112 with the necessary handshaking to deter 
mine whether data on the --ADDR/DATA(0:19)ibus 
is valid and/or has been accepted. 
--M/-IO 
--Memory/-Input/Output: This signal is used to 

determine access to Memory or I/O space on the LPB 
115. 
-BHE 
-Byte High Enable: This signal determines when the 

high byte of a two byte word is active. 
-LPB ERR 
-Local Processor Bus Error: This signal indicates to 

the MIC 12 that an error condition has occurred on the 
Local Processor Bus 115. This signal is a receive only 
signal and its purpose is to end a MIC LPB Master 
access, which may be in a dead-lock state, i.e., a not 
ready condition. psi-LPM/SS4 IN 
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Local Processor Master/Scan String 4 Input: This 

signal indicates whether the current user is a micro 
processor or another LPB device 122. The purpose of 
this signal is to assist the MIC 112 in determining the 
correct timing and handshaking required during LPB 
slave operations. In addition this signal is defined as the 
input for scan string 4 during LSSD test mode. 
31 BUS REQ/SS3 OUT 
-Bus Request/Scan String 3 Output: This signal 

indicates when the MIC 112 needs to use the LPB 115 
for a LPB Master operation. In addition this signal is 
defined as the output for scan string 3 during LSSD test 
mode. 
-BUS GNT/SS3. IN 
-Bus Grant/Scan String 3 Input: This signal indi 

cates when the MIC 112 has acquired ownership of the 
LPB 115 and can perform LPB Master operations. In 
addition this signal is defined as the input for scan string 
3 during LSSD test mode. 
-CSEL 
-Chip Select: This signal is used to enable the MIC 

112 for controlled LPB memory slave operations in 
volving initialization register and accesses to LDB 117. 
-INT(0:3) 

-Interrupt Bits 0 through 3: These signals are used 
by the EC 141 and/or QM 143 to request service or 
attention by a LPB device. 
Local Data Bus Interface 
This section defines the signal I/O used to interface 

the MIC 112 with the LDB 117. As mentioned previ 
ously, in the preferred embodiment, the MIC 112 con 
ducts only master operations on the LDB 117. 
+ADDR(0.9)i 

-- Address bits 0 through 9: This bus is used to ad 
dress LDB and is capable of accessing 1 Mbyte of data. 
This bus is a multiplexed address bus providing the 
ability to present an 8-bit high address and a 10-bit low 
address. Together the high and low address create a 256 
4. Kbyte paging address scheme. The -HALE signal is 
used to indicate when address is defined as the high 
address. 
--APAR(0:1)i 
--Address Parity bits 0 through 1: These signals indi 

cate odd parity on --ADDR(0:9)i. --APAR(0)i indi 
cates odd parity on --ADDR(0:1)i, and --APAR(1)i 
indicates odd parity on --ADDR(2:9)i. 
--DATA(0:31)i 
--Data bits 0 through 31: This bus is used to read 

from or write to data on the LDB 117. 
--DPAR(0:3)i 
--Data Parity bits 0 through 3: These signals indicate 

odd parity on each byte of the --DATA(0:31)i bus. 
--R/-W 
--Read/-Write: This signal indicates whether data 

is written to or read from the LDB 117. This signal is 
valid when either the high or the low address are valid. 
-BE(0:3)i 
-Byte Enable Bits 0 through 3: These signals indi 

cate which bytes of the --DATA(0:31)i contain valid 
data. -BE(0)i enables --D(0:7)i, -BE(1)i enables 
+D(8:15)i, -BE(2)ienables --D(16:23)i, and -BE(3)i 
enables +D(24:31)i. These signals also indicate that 
--ADDR(0.9)i contain the least significant 10-bits of 
the LDB address. 
-RARBO/SS2OUT 
-Ring Arbitration Out/Scan String 2 Output: This 

signal is used to pass the LDB arbitration token to the 
next device on the LDB 117. In addition, this signal is 
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defined as the output for scan string 2 during LSSD test 
mode. 
-RARBI/SS2 IN 
Ring Arbitration In/Scan String 2 Input: This signal 

is used to receive the LDB arbitration token. In addi 
tion, this signal is defined as the input for scan string 2 
during LSSD test mode. 
-LDB ERR 
-Local Data Bus Error: This signal indicates 

whether an error has occurred on the LDB 117. The 
current owner of the Ring Arbitration Token must 
terminate any transfer on the LDB 17 and cancel the 
Token when -LPB Error is active for more than 1 
cycle. When this signal is active for only 1 cycle, a 
parity error has been detected and the ring remains 
operational. 
-HALE 
-High Address Latch Enable: This signal is used to 

validate --ADDR(2:9)i as the most significant 8-bits of 
a 1 Mbyte LDB access. 
-ROB 
Request On Bus: This signal is used to inform the 

owner of the LDB token that another LDB device 122 
wishes to use the bus 117. This signal enables the THT 
and TRT timers described below. 
Self Test Interface 
The STI 157 provides access to the MIC's self test 

capabilities controlled by an external diagnostic device. 
--A/B CLK 
--A and B Clocks: These two clocks shall be used by 

the MIC's STI 157. The operating frequency of these 
two clocks will be a maximum of 6.25 MHz. These 
signals also define the Scan A and System B clocks for 
LSSD test mode. 
30 DN/SS1 IN 

--Data In/Scan String 1 Input: This signal provides 
the MIC STI with serial input information. In addition, 
this signal defines the input for scan string 1 during 
LSSD test mode. 
--MODE 
--Mode: This signal determines whether the STI is 

operating in an Instruction/Status mode or Scan mode. 
-SEL 

-Select: This signal is used to enable STI operations. 
--DOUT/SS4OUT 

--Data Out/Scan String 4 Output: The signal pro 
vides serial output information from the STI. In addi 
tion, this signal defines the output for scan string 4 dur 
ing LSSD test mode. 
Miscellaneous 
--SYS CLK 

--System Clocks: These two lines provide the system 
clocks needed for the MIC 112. The operating fre 
quency of these clocks is 25 MHz. Both signals receive 
equivalent clocks. These signals also define the LSSDB 
and C clocks during LSSD test mode. 
--SD CLK 

--Streaming Data Clocks: These two lines provide 
the clocks needed for MIC Streaming Data Master 
transfers. Both signals receive equivalent clocks. These 
signals also define the LSSD B and C clocks during 
LSSD test mode. 
-DI 
-Drive Inhibit: This signals forces all MIC signal 

drivers to a tri-stated condition. This signal should only 
be used for LSSD test mode. During operational mode 
this signal should be pulled up to a '1' level. 
--TI 
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--Test Inhibit: This signal sets the MIC 112 into 

LSSD test mode. All internal MIC registers receive 
system clocks during LSSD test mode. During opera 
tional mode this signal should be a '0' level. 
--CI 

--Clock Isolate: This signal defines whether the STI 
A Clock signal is to be used as a scan clock or opera 
tional clock. During operational mode this signal should 
be a '0' level. 
--SG 

--Scan Gate: This signal defines the component state, 
either shift or component, during LSSD test mode. 
During operational mode this signal should be a '0' 
level. 
--SYS RESET 
--System Reset: This signal can be driven by the 

System Controller to reset or initialize MC devices, also 
referred to as the MC --CHRESET. During a power 
up sequence, this signal must be active for a specified 
minimum time of 1 usec. This signal may be logically 
OR with an adapter level reset. 
Micro Channel Interface 
The protocol for Arbitration, Basic Transfer, Stream 

ing Data, System Configuration and Steering for the 
MC are described below, 
Arbitration 

Arbitration is the resolution of multiple bus requests, 
awarding use of the bus to the highest priority re 
questor. The Micro Channel arbitration scheme oper 
ates as a multi-drop (dot-OR) mechanism. This type of 
arbitration scheme allows for up to 16 participants, in an 
arbitration cycle, while only using four signal lines. 
--ARBI(0:3)i and --ARBO(0:3)ii with assistance from 
some external drivers comprise the four signals needed 
for arbitration on the MC 110. 
The MIC 112 requests service by activating the 

-PREEMPT signal. The system responds by raising 
the --ARB/GNT when the current bus owner com 
pletes its bus activity. The current bus owner must 
release control of the MC 110 no more than 7.5 usec 
after activation of the -PREEMPT signal. When the 
system activates --ARB/GNT the device with the 
highest priority gains control of the MC 110. A bus 
owner may use the -BURST signal to maintain control 
of the MC 110 for extended periods of time. If Fairness 
is enabled, the MIC 112 can re-request the MC 110 only 
when all other MC devices have had their first requests 
serviced. 
Basic Transfers 

Basic Transfer mode is the default mode for exchange 
of information between MC devices. A Basic Transfer 
begins when a MC master, usually the bus owner, as 
serts the status lines (-S0 and -Sl) and --M/IO sig 
nals, indicating the type of operation to be performed 
on the MC. The MC master also asserts --A(0:3)i, 
--APAR(0:3)i, APAREN, MADE24, TR32, SBHE, 
and -BE(0:3)iifrequired for the type of transfer. Once 
the address bus is stable, the -ADL is asserted. 

All devices on the MC monitor the signals which 
have been asserted by the MC master. When a device 
detects addresses within a predefined range, the device 
becomes the MC slave. The MC slave then asserts the 
-DS16, DS32, and -CD SFDBK signals as positive 
acknowledgement of its selection. These acknowledge 
ment signals are received by the MC master as -DS16 
RTN, DS32 RTN, and -SFDBKRTN and signify the 
type of MCslave and the readiness of the MC slave for 
the transfer. 
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During a write operation the +D(0:31)i and 
--DPAR(0:3)i are asserted with the -CMD signal. 
During a read operation, data on the +D(0:31)i does 
not become valid until the MC slave is ready, 
--CHRDY active, to send the data to the MC master. 
A MC Slave can extend a Basic Transfer cycle be 

yond 200 ns by asserting the --CD CHRDY signal. A 
MC master can also maintain ownership of the MC by 
asserting the -BURST signal. Termination of the Basic 
Transfer mode and ownership of the MC 110 by the 
MC master occurs when the -BURST and -CMD are 
inactive. 
Streaming Data 

Streaming Data mode begins as Basic Transfer mode 
does. The MC master supplies a single address, usually 
the starting address, in a range for which a MC slave 
will respond to. Addresses for 16, or 32-bit are aligned 
on four byte address boundaries. Addresses for 64-bit 
transfer are aligned on eight byte address boundaries. 
When the selected MC slave sends its positive ac 

knowledgement to the MC master, three additional 
signals are sent to the MC master to indicate the MC 
slaves ability of Streaming Data mode. Two of these 
signals, -SDR(0:1), determine the maximum rate at 
which the MC slave can operate in Streaming Data 
mode. The third signal, -MSDR, indicates the MC 
slaves ability to transfer data in the 64-bit Streaming 
Data mode. The -CMD signal is then asserted and 
held active until termination of the Streaming Data 
mode. The -SD STB and --CD CHRDY are used to 
indicate when data is valid during the Streaming Data 
transfer. 
The Streaming Data mode transfer can be terminated 

by either the Streaming Data master or Streaming Data 
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Configuration protocol is similar to the Basic Transfer 
mode except for the following modifications: 
The MC device is selected using the -CD SETUP 

signal not by decoding of the address bus or arbi 
tration. 

Only the three least significant address bits are used 
or decoded. 

Only I/O Read/Write operations are performed. 
The selected device does not assert the -CD 
SFDBK as positive acknowledgement. 

All transfers are single byte (8-bit) transfers, which 
occur only on the least significant byte of the data 
bus. 

A single configuration cycle is 300 ns. 
Parity is not supported. 

MC Steering 
To maintain bus width compatibility and flexibility 

the MIC 112 is able to operate in several bus width 
configurations. Transfers which involve moving data 
between the LDB 117 and the MC110 have the capabil 
ity of 64, 32, 16, and/or 8-bits depending on the other 
MC device involved in the transfer. Transfers which 
involve writing to or reading from Queues located in 
Local Processor Store 121 have the capability of 32, 16, 
and/or 8-bits. POS register transfers are on byte bound 
aries only. Transfers between MC devices utilize their 
maximum bus width capability whenever possible. The 
MIC 112 controls steering when operating as a master. 
The MIC 112 controls steering when operating as a 
Streaming Data slave with a Streaming Data master of 
lesser width. Once a Streaming Data transfer has begun, 
a new steering configuration is not possible until termi 
nation of the current Streaming Data transfer. Table 1 
illustrates the MIC's steering responsibilities during 

slave. A Streaming Data master can begin termination 35 valid MC Master transfers. 
TABLE 1. 

Master Signals Slave Signals 
MIC --A -BE( DS16 DS32 
SBHE 29:31)i 0:3)i RTN RTN MSDR Transfer Type/Description 

O 000 11 0 O O 8 byte transfer to 64 bit slavei 
0 X00 1110 X X X 1 byte transfer to all slaves 
O X00 0000 1 1 1 byte transfer to 8 bit slave 
0 X00 0000 0 1 1. 2 byte transfer to 16 bit slave" 
O X00 0000 O O X 4 byte transfer to 32/64bit slave 
0. XO1 101 X X X 1 byte transfer to all slaves 

X10 1011 X X X 1 byte transfer to all slaves 
O X10 001 O X X 2 byte transfer to 64/32/64 slave 
O X11 011 X X X 1 byte transfer to all slaves 

Note: 
All above transfers are executed in the Basic Transfer node, except noted. 
#Capable of Streaming Data Operations only. 
"Capable of both Basic Transfer and Streaming Data operations 

of the transfer by deactivating the - S0, - S1 signals, 
the Streaming Data slave. responds with deactivating 
the-SDR(0:1)/-MSDR signals. The termination will 
be complete when the Streaming Data master deacti 
vates-CMD. A Streaming Data slave can begin termi 
nation of the transfer by deactivating the 
-SDR(0:1)/-MSDR signals. The termination will be 
complete when the Streaming Data master deactivates 
- S0, -S1, and -CMD. - SDR(0:1) will become tri 
stated after -CMD deactivates. 
System Configuration 
A System Configuration protocol is used to initialize 

and read the POS registers with the MIC 112 or any 
other MC device. During a System Configuration, the 
selected MC device becomes a Setup slave. The System 

55 

65 

Interrupts 
The MIC 112 has the ability to source four program 

mable MC interrupts, with expansion capabilities of up 
to eight. These interrupts are used to inform the System 
Processor that a Queue contains job(s) or command/- 
status words for a device on the MC 110 or for use by 
the System Processor or an error has occurred. Each 
Interrupt may be shared by up to four Queues. When 
Queues share an Interrupt a readable register is avail 
able to assist other MC devices and/or the System Pro 
cessor in determining the Queue which caused the In 
terrupt. An Interrupt may also be assigned to only one 
Queue. 
Errors 
The MIC 112 provides a Micro Channel Check capa 

bility. A Channel Check becomes active when the MIC 
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112 detects a parity error on MC Slave writes. The 
Channel Check can either be synchronous or asynchro 
nous to the detection of the error. The MIC default is 
synchronous. 
The synchronous Channel Check allows the current 

MC Master to receive immediate notice of a parity 
error detected by the MIC 112. Once the MC Master 
completes the transfer in progress the Channel Check 
signal becomes inactive. 
The asynchronous Channel Check is similar to a 

synchronous Channel Check except that once the MC 
Master has completed the current cycle the Channel 
Check signal remains active. 

In either case, the Channel Check bit within POS 
register remains active until the system has reset it. 
Resetting of a Channel Check condition is performed 
using the system configuration protocol. 
Micro Channel Interface State Machine 
To simplify chip designs, a synchronous method of 

capturing and validating data on the MC 110 can be 
used with minimal asynchronous clocking. By minimiz 
ing the use of asynchronous logic, the risks involved in 
an asynchronous design are reduced. Once the MC 
control signals and buses are synchronized, a state ma 
chine interface can determine the state of data and when 
data is valid on the MC 110. This task can be accom 
plished using three areas of logic design described in the 
following sections: Control and Data Signal Capturing 
and Synchronization, Interface State Machine, and 
Data Validation Decode logic. 

In FIG. 5, a somewhat more detailed block diagram 
of the Micro Channel Interface 130 is depicted. As 
mentioned previously, the interface 130 includes the 
Micro Channel Data Interface 131, the Micro Channel 
Address Interface 132, and the Micro Channel Interface 
Control Logic 134. The Control and Data Signal Cap 
turing and Synchronizing Logic 170 is largely located 
in the control section 134, but the logic devoted to 
capturing the data and address signals from the Micro 
Channel 110 are located in the data interface 131 and 
address interface 132 respectively. The Interface State 
Machine 172 is also part of the interface control section 
134 and uses the synchronized signals from the capture 
logic 170 to derive a synchronous means of evaluating 
the state of the Micro Channel 110. Finally, the Data 
Validation Decode Logic 174 takes signals from the 
capture logic 170 and the state machine 172 to deter 
mine whether the asynchronously latched data and 
address signals captured from the Micro Channel 110 
represent valid data in a synchronous manner. 
To capture the asynchronous MC data and control, 

techniques consistent with the LSSD guidelines are 
employed. These techniques include the capturing of 
narrow bus strobes, sampling, and synchronizing. 
LSSD circuits follow the rules generally described in 
U.S. Pat. Nos. 3,761,695, 3,783,254 and 4,580,137. In 
addition, U.S. Pat. No. 4,580,137 which claims a latch 
circuit for synchronous and asynchronous clocking also 
contains an exceptionally complete review of the vari 
ous aspects of LSSD latch design. While other LSSD 
compatible circuits may be employed to capture the 
MC control and data signals, the figures on the follow 
ing pages illustrate the best logic known to the inventor 
for capturing the MC control and data signals. 
For quick reference to FIGS. 6A through 6E, Table 

2 contains the definitions of the signals portrayed in 
these figures. 
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Referring to FIG. 6A, the logic for capturing the 

asynchronous data valid signal, -CMD, which is the 
Micro Channel signal which indicates when data is 
valid on the Micro Channel is shown. Two synchro 
nous internal signals are generated by this logic: 
--CMDA, which indicates when an active high level 
signal was present on the -CMD signal, and --CMDB, 
which indicates when an active low level signal was 
present on the -CMD signal. Both the -CMDA and 
--CMDB signals are used in the state machine signals 
from the Micro Channel 110. 
The circuit elements in the upper half of the diagram 

180 which produce the -CMDA signal are essentially 
equivalent to those in the lower half 182 which produce 
the -CMDB signal with the exception that the -CMD 
signal from the Micro Channel 110 is inverted before 
being received by block 182. The circuit shown is useful 
for capturing a signal which is narrower than one sys 
term clock cycle of the internal clocks of the MIC 112. 

In FIG. 6A, the registers 183, 184, 185, 186 are two 
latches in series, the first latch receiving the asynchro 
nous signal and the first clock signal and the second 
latch receiving the output of the first latch and the 
second clock signal. In this way, the asynchronous 
signal is sampled in the first latch, waiting for any meta 
stability to settle out, and then setting the value from the 
first latch into the second latch. The second latch con 
tains the synchronized signal which can be used in the 
LSSD chip. If the -CMD signal were wider than the 
internal clock signals +C, --B of the MIC 112, only 
registers 184 and 186 would be necessary to provide 
synchronized signals --CMDA, -i-CMDB. However, it 
is more likely that the -CMD signal will be narrower, 
so registers 183 and 185 which are clocked by internal 
test clocks --T1, --T2 and their attendant AND, OR 
and feedback loops are necessary to capture the 
-CMD signal and its inverted signal and hold them 
until they can be synchronized by registers 184 and 186. 

Referring to FIG. 68, the logic for capturing the 
asynchronous streaming data signal, -SD-STB, from 
the Micro Channel 110 which is used to clock data 
during a streaming data transfer to the MIC 112. Two 
synchronous signals are produced: --STRA, the inter 
nal chip signal which indicates when an active high 
level has been captured in the -SD STB signal, and 
--STRB which indicates when an active low level has 
been captured on the -SD-STB signal. --STRA and 
--STRB are produced by registers 193 and 194in block 
190 and registers 195 and 196 in block 192 respectively. 
The logic is essentially equivalent as that depicted in 
FIG. 6A for the -CMD signal. 

In FIG. 6C, the logic for producing the internal sig 
nals for the Micro Channel bus status, -SO/-S1. I and 
that indicating the MIC 112 has been selected as a 
Micro Channel Slave, MC SLAVE. Both of these sig 
nals use the -ADL signal from the MC 110 via multi 
plexor 200 as the second "clock” signal in register 202 
which results in the signals being asynchronously 
latched. This technique is used because there is not time 
to synchronize the -SDL and -SO/-S1 signals, Reg 
ister 202 represents a simplification of the actual logic in 
that two separate registers are used to capture the 
-S0/-S1 and slave decodesignals both of which com 
prise two latches, the first of which uses a test clock to 
sample the data waiting for any metastability to settle 
out, the second of which using the asynchronous 
-ADL signal as the "clock” signal. The slave decode 
logic 204 uses the MC address bus, M/IO, and status 
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signals to determine whether the device is being se 
lected by the current MC Master. The --LSSD-TES 
T EN and --B clock signals are used for LSSD test 
operations on the logic. 
The logic for capturing the asynchronous data, ad 

dress and --RDY--RTN signals from the Micro 
Channel 110 is portrayed in FIG. 6D. The -SD STB 
and -CMD signals are passed through the multiplexor 
210 to register 212 which produces asynchronously 
latched data, address and --RDY RDY RTN signals 
usable in the MIC 112. Similar to register 202 in FIG. 
6C, register 212 is a simplification of three separate 
registers used for the three asynchronous signals from 
the MC 110. The logic also produces a synchronized 
signal corresponding to --RDY RTN with register 
214 using internal clocks --C, --B. Internal clock sig 
nals --C, B and the --LSSD-TEST-EN signal are 
connected to inputs of multiplexor 210 to test the logic 
according to LSSD operations. 
FIG. 6E depicts the logic for capturing data and 

address buses from MIC 112 to the Micro Channel 110. 
Data and address are captured in register 230, clocked 
by the remaining clock decode logic shown in FIG. 6E. 
Multiplexors 220, 224, and 226 provide selectability 
between operational clocking and LSSD test clocking 
for registers 222, 228, and 230. Registers 222 and 228 
clocked operationally by SD-STB together with the 
three attendantXOR gates, provide the proper clocking 
control and timing necessary to ultimately clock data 
and address into register 230 and onto the Micro Chan 
nel 110. During idle times on the Micro Channel 110, 
-CMD provides a reset to registers 222 and 228 so that 
the control logic is set in a known state awaiting the 
next data transfer. The attending OR gate with --64 S 
D EN and --RDY RTN, provide additional clocking 
control during a 64-bit Streaming Data Transfer and 
data pacing during a 16- or 32-bit Streaming Data 
Transfer. These transfer types are described in more 
detail in the low-end parallel bus architecture and Per 
sonal System/2. Hardward Interface Reference Archi 
tecture documents cited above. Finally, the AND/OR 
gates providing input to multiplexor 220 allow selection 
by +MC MASTER of separate ready controls during 
MC Master (--MASTER - RDY) and MC slave 
(--SLAVE RDY) operations completing the clock 
decode necessary to capture data and address into regis 
ter 230. 

TABLE 2 
Signal Definition 
The MC signal used to indicate 
when data is valid on the MC. 
The internal chip signal which indicates 
when an active high level has been 
captured on -CMD signal. 
The internal chip signal which indicates 
when an active low lwwwl has been 
captured on -CMD signal. 
Internal system and LSSD clocks. --C 
control the L1 portion of the register and 
--B controls the L2 portion 
of the register. 
Internal LSSD clocks. These clocks are 
held active suring non-LSSD operations. 
+T1 controls Ll portion of the 
register and +B controls the 
L2 portion of the register. 
The MC signal used to clock data 
during a Streaming Data (SD) transfer. 
This signal is sent by the MC Master and 
is received by the selected MC 
Slave device. 

Signal Name 
-CMD 

--CMDA 

--CMDB 

SOSTB 
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TABLE 2-continued 

Signal Name Signal Definition 
--STRA The internal chip signal which indicates 

when an active high level has been 
captured on the -SD-STB signal. 

--STRB The internal chip signal which indicates 
when an active low level has been 
captured on the -SD-STB signal. 

S0/-S1 The MC signals used to indicate 
bus status. 

-SO/-S1. I The internal and asynchronously latched 
input status, 

-ADL The MC signal used to latch and 
valid MC address. 

--LSSD-TEST-EN This signal indicates when 
LSSD operations 
are active and selects the proper 
clocks for the data registers. 

+D(0:31)/P The MC 32-bit Data Bus plus byte parity. 
+D(0:31)/PI The internal and asynchronously latched 

input data bus plus byte parity. 
--D(0:31)/PO The internal synchronous output data 

bus plus byte parity. 
--A(0:31)/P The MC 32-bit Address Bus plus 

byte parity. 
+A(0:31)/PI The internal and asynchronously latched 

input Address Bus plus byte parity. 
This bus is only valid for Streaming 
Data operations. 

--MASTERRDY This signal indicates when the chip acting 
as a MC Master is ready to begin writing 
data words onto the MC. 

--SLAVERDY This signal indicates when the chip acting 
as a MC Slave is ready to begin placing 
read data words onto the MC. 
This signal indicates when the chip 
is a MC Master. 

--MC MASTER 

--MC-SLAVE This signal indicates when the chip 
has been selected as a MC Slave. 

--RDY RTN This signal is received by 
the MC Master and indicates the ready 
condition of the selected MC Slave. 

-RDYRTN A The asynchronously latched 
--RDY-RTN signal, used 
internally to validate the data bus. 
The synchronously sampled and latched 
--RDYRTN signal, used internally 
to determine the ready condition. 
This signal indicates when a 64-bit 
Streaming data transfer is in progress. 

--RDYRTNS 

--64-SDEN 

Once the proper Micro Channel 110 and internal 
signals have been generated, the current state of the 
Micro Channel 110 can then be determined using a 
synchronous state machine design. FIG.7 illustrates the 
MC Interface State Machine 172. For quick reference 
to the state machine 172, Table 3 contains the State 
transition equations. The definitions of the states are 
contained in Table 4. 
The state machine 172 begins in State-O which 

means that the MIC 112 is not active on the Micro 
Channel 110. 

If equation bin Table 3 is satisfied, the state machines 
goes from State 0 to State 1, which means that the 
-CMD signal on the Micro Channel 110 has gone 
active low and the chip will be receiving data from the 
Micro Channel 110 using either a basic or streaming 
data transfer. The -CMD signal is used to indicate 
when data is valid on the Micro Channel 110. If, on the 
other hand, equation c in Table 3 is satisfied, the state 
machine goes to State 3, which means that both the 
-CMD and the -SD-STB signals have gone active 
low and that MIC 112 will be receiving data from the 
Micro Channel 110 using a streaming data transfer. The 
-ST STB signal is a Micro Channel 110 signal used to 
clock data during a streaming data transfer. The signal 
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is sent by the master on the Micro Channel 110 and 
received by the slave device on the Micro Channel 110. 
If on the other hand, equation d is satisfied, the state 
machine goes from State 0 to State 5 which means 
that -CMD has gone active low and the chip will be 5 
presenting or has already presented valid data on to the 
Micro Channel 110. Also, the --RDYRTN signal is in 
active low indicating that the Micro Channel is in a not 
ready condition. 

If equatione in Table 3 is satisfied, state machine goes 10 
from State. Oto State 6 which means that the -CMD 
signal has gone active low and the chip will be present 
ing or has already presented valid data on to the Micro 
Channel 110 and the --RDYRTN signal is active high 
indicating that the Micro Channel 110 is ready for data 15 
transfer. The state machine will go from State 0 to 
State 7 if equation f is satisfied. In State 7, the 
-CMD and -ST-STB signals have gone active low 
and data is presented by the MIC 112 on to the Micro 
Channel 110 for a streaming data transfer. 20 

State-4 is reached from State 3 if equation k in 
Table 3 is satisfied. In State-4, the -ST-STB signal 
has gone active high and the chip is waiting for valid 
data to be latched in. State-8 is reached from State-7 
when equation win Table 3 is satisfied. In State-8 the 
-ST STB signal has gone in active high and the chip 
is waiting for the next valid to be clocked out on to the 
Micro Channel 110. Other transitions and points of 
stability are described by the equations in Table 3 in 
conjunction with FIG. 7. For example, as long as equa- 30 
tion a is satisfied, the state machine will remain in Sta 
te-O which means that the MIC 112 is not active on the 
Micro Channel 110. The state machine is used with 
standard components such as a register and associated 
logic for each of the eight states in the state machine. In 35 
the state machine, States 1,3 and 4 define data states in 
which the MIC 112 will be receiving data from the 
Micro Channel 110 and States-5, 6, 7 and 8 define data 
states in which the MIC 112 will be transmitting data on 
the Micro Channel 110. 40 

TABLE 3 
State Machine State Equations 
G = Reset - a- - - - 
a = State 0 & b & c & d & e & f 45 

b = State 0 & --CMDB & STRB & 
(--MC. SLAVE & -SO-I) / (--MC MASTER & -S1 D) 

c = State 0 & --CMDB & STRB & 
(+MC. SLAVE & -SOI) / (--MC-MASTER & -S1. I) 

d = State 0 & --CMDB & --RDYRTN-S & 50 
(--MC-SLAVE & -S1-I) / (--MC MASTER & -SOD) 

e - State. O & --CMDB & --STRB & RDYRTNS & 
(+MC. SLAVE & -Si-I) / (--MC-MASTER & -SOI)) 

f = State O & CMDB & --STRB & --RDYRTNS & 
(+MC SLAVE & -S1. I) / (+MC MASTER & -SOD) 55 

g = State-ll & --CMDA & +STRB 
a = State 1 & --CMDA & STRB 

i = State & CMDA & --STRB 

j = State 3 & +STRA 60 
k = State-3 & STRA 

is State 4 & CMDA. & STRB 

m - State 4 & --CMDA & --STRB 
m guita 65 

n = State 4 & --CMDA. & STRB 
o State 5 & --CMDA 

p = State 5 & +RDY RTN-S & --CMDA 
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TABLE 3-continued 

State Machine State Equations 

q = State-5& CMDA & STRB& --RDYRTNS 
r = State-5& CMDA & +STRB & +RDYRTN is 
s = State-6&--CMDA & STRB 
t = State 6 & CMDA& STRB 
u = State-6&-CMDA&--STRB 
v = State 7 & --STRA 
w = State 7 & --STRA 

x = State 8 & --CMDA & --STRB 

y = State 8 & --CMDA & --STRB 

z is State 8 & CMDA & STRB 
& denotes a logical ANd operation 
A denotes a logical OR operation 
Note: 
An inactive -CMD and an active -SD-STB combination is not valid per Micro 
Channel architecture. This means that the equation --CMDA & SRB is not 
possible. 

TABLE 4 

State Definitions 
State-0=The chip is currently not active on the MC. 
State-l=The MC-CMD has gone active low and 

the chip will be receiving data from the MC using either 
a Basic or Streaming Data transfer. 

State. 3=The MC -CMD and -SD STB have 
gone active low and the chip will receive data from the 
MC using a Streaming Data transfer. 

State 4=The MC -SD-STB has gone inactive 
high and the chip is waiting for valid data to be latched 
1. 

State 5=The MC-CMD has gone active low and 
the chip will be presenting or has already presented 
valid data onto the MC. The MC --RDYRTN signal 
is inactive low indicating a not ready condition. 

State 6=The MC -CMD has gone active low and 
the chip will be presenting or has already presented 
valid data onto the MC. The MC --RDYRTN signal 
is active high indicating a ready condition. 
State-7s-The MC -CMD and SD STB have 

gone active low and valid data is presented onto the MC 
for a Streaming Data transfer. 

State 8-The -SD-STB has gone inactive high 
and the chip is waiting for the next valid data to be 
clocked out. 

Finally, decoding the state machine, data validation 
can be achieved in a synchronous manner. This will 
then allow processing of data without the use of any 
further asynchronous logic of timing. The decoding 
equations and definitions are listed below. 
BTDAV =g & --RDY RTNA 
SDDAV = m/1 & --RDY RTN A/-64 S 
D EN 

SDGND=f/r/u/y & (--RDY RTN A/-64 S 
D EN) 

The BTDAV signal indicates that the chip has re 
ceived and latched valid data during a MC Basic Trans 
fer cycle. The --D(0:31)/P I bus is now valid. The 
SDDAV signal indicates that the chip has received and 
latched valid data during a Streaming Data cycle. The 
--D(0:31)/PI and --A(0:31)/P I are now valid. The 
SDGND signal indicates that valid data has been trans 
ferred and taken on the MC during a Streaming Data 
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transfer. New data can be fetched and presented on the 
+D(0:31)/P-O and --A(0:31)/P-O buses on the fol 
lowing clock cycle. 
As shown above, the capturing logic, state machine, 

and decode logic together can provide a reliable 
method for interfacing with and determining the state of 
the Micro Channel as well as satisfying LSSD rules and 
requirements. In addition, internal chip designs are sim 
plified by the minimal use of asynchronous logic and 
control within the chip. 
Micro Channel Timing 
Timing diagrams for Micro Channel Basic Transfer, 

Streaming Data, arbitration and parity timing functions 
can De found in Personal System/2-Hardware Inter 
face Technical Reference-Architecture, Order No. 
84F9808, Form No., S84F-9808-00, by the IBM Corpo 
ration and is hereby incorporated by reference. 
Local Processor Bus Interface 
The MIC 112 arbitrates for the LPB 115 by activating 

the -BUS REQ signal. Once the MIC 112 detects that 
the -BUS GNT signal has gone active (low), the MIC 
112 will become the master and continue to assert 
-BUS REQ active. 
Once the master, the MIC 112 will not release owner 

ship until it detects: either -BUS GNT has gone inac 
tive OR the MIC 112 no longer needs the bus. When the 
MIC 112 detects that it should give up ownership of the 
bus, -BUS REQ will become inactive (high). This 
indicates that the MIC 112 is currently performing its 
last access. 
Once the MIC 112 has made its -BUS REQ inactive, 

the MIC 112 will not request the LPB 115 back until it 
detects that -BUSGNT has gone inactive. This allows 
no time restrictions on the external LPB arbitration 
logic to make-BUS GNT inactive relative to the MIC 
making -BUS REQ inactive. 
Master Operations 
When the MIC 112 gains ownership of the LPB 115 

the MIC 112 becomes a LPB master. As a master, the 
MIC 112 is able to read/write data to and from the LPS. 
The MIC 112 as a LPB Master will always perform 
word (2 byte accesses. 
The MIC 112 begins master operations by supplying 

an address on the --ADDR/DATA(0:19)i. This ad 
dress is then latched by the -ALE signal. Once the 
address is latched, the --ADDR/DATAO:19)ibus can 
be used for the transfer of data. The --M/-IO signal 
determines whether the address is in the memory space 
or I/O space of the LPB 115. The --R/W signal deter 
mines the direction the data will flow on --ADD 
/DATA(0:19)i. Data transfers only utilize the lower 
16-bits of ADDR/DATA(0:19)i. Odd parity for 
--ADDR/DATA(0:19)i is generated/received on 
+A/D PAR(0:2)i. 
The -DAV and --RDY signals are used for hand 

shaking and validation during the data transfer. 
-DAV, sourced by the LPB Master, becomes active 
when valid data exists on --ADDR/DATA(0:19)ibus. 
--RDY, sourced by the LPB Slave, is used to inform 
the MIC that a LP device is ready/not ready to receive 
data during a write or send data during a read. 
LPB Slave Operations 
The MIC 112 becomes a LPB slave when - CSEL is 

active and/or a predefined address has been decoded. 
When the MIC 112 is a slave, a LPB device 119, 122 has 
the ability to access additional resources, such as initial 
ization registers, direct access to the LDB 117, and the 
Queue Printers. -ALE and --R/W become inputs 
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controlled by the LPB device. -DAV becomes an 
input representing when valid data is to be written or 
when the master is ready to accept read data. --RDY 
becomes an output from the MIC 112 validating a write 
or read data to the LPB device. MIC Slave accesses to 
the Initialization and Control register must be on a 
word (2 byte) boundary. LDB window accesses may be 
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on 1 or 2 byte boundaries. 
Interrupts 
The MIC 112 supplies four programmable interrupts, 

-INT(:3). These interrupts inform a LPB 119, 122 
device that a queue which the MIC 112 is managing 
contains a job(s) or an error has occurred. The MIC 112 
provides a readable register to indicate the status of jobs 
within the Queues. An interrupt is cleared by either 
removing all jobs from a Queue or clearing the error 
condition. 
Errors 
All errors detected by the MIC 112 on the LPB 115 

are indicated by an interrupt. An error interrupt can be 
generated by a USW being posted to a Queue or if a 
Queue error occurs via the Queue error register. 
The LPB Error signal is used to clear the MIC 112 of 

a hang condition. If the MIC 112 is a LPB Master and 
the slave device does not respond with a ready condi 
tion, then the LPB error should be used to allow the 
MIC 112 to terminate the current transfer. If the LPB 
Error signal becomes active then a USW is posted. The 
MIC 112 only receives the LPB Error signal, the MIC 
112 never drives it. 
Local Processor Bus Timing 
FIGS. 8 through 11 illustrate LPB timing for slave 

and master operations. The following conventions were 
used in FIGS. 8 through 11, depicting the LPB Timing 
diagrams: 

First, data was skewed in relation to the rising edge of 
the system clock to illustrate which edge the MIC 112 
uses to send and receive data. When the MIC 112 drives 
the signal, the data is shown to change slightly after the 
rising edge of the clock. When the MIC 112 is receiving 
the signal, that data is drawn such that it is stable around 
the rising edge the MIC 112 will clock it on. Second, 
the right hand column of each timing diagram lists who 
is controlling the signal (M=master, S=slave, A=arbi 
tration logic, and m-not driven by MIC 112 when 
master, controlled externally). Third, the dashed line 
represents a pull-up holding the signal high while it is 
not being driven. Fourth, with the exception of the 
-ALE which is always valid, any signals sent to the 
MIC 112 during an access is in a don't care state in those 
cycles where the dashed line appears. Any signal the 
MIC 112 controls during that access may require the 
pull-up to hold it active (i.e. --RDY). Fifth,": at the top 
of the diagrams represents the clocking edge for the 
MIC 112. 
Local Data Bus Interface 
Referring to FIGS. 12 and 13, the LDB interface 137 

is a 100 MB interface that is designed to handle high 
speed data transfers between LDS memory 123 and any 
device connected to the LDB 117. The data bus shall 
consists of 32 bits of data with 4 bits of oddbyte parity. 
The address bus shall consist of 10 bits of address and 2 
bits of odd parity. The address bus 137 allows for the 
access to an address range of 1 MB by using a page 
address scheme that consists of an 8 bit high address 
(HA) followed by a 10 bit low address along with four 
byte enables. 
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Arbitration on LDB 117 is accomplished by the use 
of a one-bit token ring protocol. This protocol allows 
for multiple LDB devices, programmable time sharing 
among the LDB devices, minimal latency during pass 
ing of bus ownership, parity and protocol error detec 
tion, and error recovery. Also included is an error sig 
nal called LDB Err and a request signal called LDB 
ROB. 
Referring to FIGS. 12 and 13, several signals are used 

for the 1-bit token ring protocol used on the LDB 117. 
In FIG. 12, a two-chip ring is depicted. Chips 1 and 2, 
240 and 242, depicted generally in the figure, are the 
MIC 112 and the Serial Interface 113 respectively. As 
shown in FIG. 13, the protocol connections can be 

10 

extended for a multi-chip ring with the same number of 15 
I/O signal connections which allows other devices 124, 
125 coupled to the LDB 117 to act as the LDB master. 
To accommodate multiple users on the LDB bus 117, 

the protocol signals are coupled such that the RARBI 
and RARBO form a ring 244 for the token to rotate on 
while the LDB ROB 248 and LDB Err 246 signals 
are hooked to form a hardwired dot OR function. Un 
like typical token rings, the ring 244 of the present in 
vention is used for arbitration only. The lines dedicated 
to the LDB 117 are separate from those used for the 
ring 244 and ROB 248 and error 246 signals. 

Positive logic is used to define the active levels of the 
I/O signals. The RARBIOL) signal, or Ring Arbitration 
In signal, is an input to the chip which is used to receive 
the token when passed from another user on the ring. 
The RARBO(L) signal, or Ring Arbitration Out signal, 
is an output from the chip which is used to send the 
token to the next device on the ring. Both the RARBI 
and RARBO signals are passed on the ring 244. In the 
preferred embodiment, the token appears as a 1 cycle 
active low pulse. The LDB ERR(L) signal 246 is a 
bidirectional signal which indicates that there is an 
error on the LDB 117. In the preferred embodiment, 
the driver type is open collector with a pull-up resistor 
external to the chip. This signal is to indicate to all ring 
participants that an error has been detected on the ring. 
The severity of the error is preferably indicated by the 
number of cycles the Bus Error signal 246 is held active. 
The Bus Error signal is active low. 
The ROBOL) signal, or Request to Own the Bus sig 

nal, 248 is also bidirectional. In the preferred embodi 
ment, the driver type is an open collector with a pull-up 
resistor external to the chip. The purpose of this signal 
is to notify the current device holding the token that 
another device is waiting to use the bus. The current 
holder of the token uses the ROB signal to enable its 
internal counter which indicates how long it can hold 
the token. All other devices use the ROB line on the 
LDB 117 to enable an internal counter which indicates 
how long it should take for the token to rotate around 
the ring. 

Each ring member 240, 242 may contain two timers. 
These two timers allow for programmable bus arbitra 
tion latencies. The rate and implementation of these 
timers may be determined by the designer, system envi 
ronment, and/or chip clock rate. The Token Hold 
Timer (THT) defines the maximum time that a device 
may hold onto the arbitration token. The Token Rota 
tion Timer (TRT) defines the maximum time between 
the release of the token to receiving the token back. 
The TRT may be defined as illustrated in the equa 

tion below: 
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TRTCX)x =q+2N-THTCX)---THT(1) + . . . 
THT(N), where Na = 1 

Q=Time delay constant determined by the environ 
ment. 

2N=N is the number of chips in the 1-bit Token 
Ring. The multiplication factor of 2 represents the 
two registers in the token path per device, namely 
TokIn and TokOut, 

X=The chip being designed. 
With the use of the LDB ROB line, each chip can 

provide an enable for incrementing its THT and TRT 
timers. If the LDB ROB signal does not become ac 
tive, the token can be held by a chip accessing the bus 
for as long as it needs it because the THT timer is not 
enabled. Once the LDB-ROB line becomes active, the 
chip holding the token has until its THT timer expires 
before it must release the token. 
Only those bus participants with a high potential 

demand for the shared bus resource need the Token 
Hold Times. The timer is not needed for the chips 
which will only hold onto the local data bus 117 for a 
short period of time. Also, only one ring member needs 
the Token Rotation Timer to detect the lost token con 
dition in the ring 244. 
As all bus members participate in the arbitration of 

access to the LDB 117, fairness is inherently provided. 
Further, the ROB signal 248 helps improve the effi 
ciency of the LDB 117 as a processor need not relin 
quish control unless another processor requires the 
resource as well as providing bus monopolization. 
The Ring state machine consists of 4 basic states: 

Ring Down (RD), Idle (Id), Token Master (TM), and 
the Error Detected (ED) state. Each LDBring device 
should follow the state transitions shown in FIG. 14. 
The LDB ring state machine controls initial start-up, 
arbitration, and error recovery. FIG. 15A also shows 
the boundary logic the MIC 112 uses to interface the 
ring state machine to the LDB control signals. All ring 
devices should have a two cycle delay from their 
RARBI to RARBO to ensure proper removal of the 
token when the ring goes down. Active levels of signals 
in the following figures are represented by a "(H) or 
"(L)' suffix. Active and inactive states of signals are 
represented by the lack of an overscore (active) or the 
presence of an overscore (inactive). 
FIG. 15B illustrates the implementation of the logic 

for the two timers, the Token Hold Timer (THT) and 
the Token Rotation Timer (TRT). Every high demand 
bus member must have the THT to determine how long 
after the ROB signal is received it can maintain control 
of the bus. At least one bus member must have the TRT 
to detect a lost token condition on the ring. The Current 
signal is loaded with the inverse the THT or the TRT. 
When enabled, it counts up until it contains all 1's and 
generates a carry out. As shown, the signals to the mul 
tiplexer are controlled by the states and other signals 
generated by the state machine and associated logic in 
FIGS. 14 and 15A. 
System reset is required to initialize all devices into 

the Ring Down state. Prior to the ring start up, each 
device should have its TRT and THT values initialized. 
Once all members of the LDB 117 have been initialized, 
one chip on the ring must be made the Ring Master. The 
Ring Master is responsible for initiating a new token 
when the ring is down and all LDB 117 error conditions 
have cleared. Once the token is initiated onto the ring, 
it will be received and passed by each device until it 
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makes one full revolution. This initial revolution will 
bring all chips into a Idle State. There should never be 
more than one token rotating around the LDB ring. In 
one preferred embodiment, the MIC 112 is the Ring 
Master. 
Once in the Idle State, a device is free to activate the 

LDB ROB line in an effort to gain ownership of the 
LDB 117 by capturing the token. Once a device detects 
the token, the device should transition to the Token 
Master State. If, while waiting in the Idle State the TRT 
expires, that device should activate the error signal and 
transition to the Error Detect State. 
Once a device enters the Token Master State, it can 

either pass the token on to the next device or hold onto 
it. If the device holds onto the token, it is free to access 
LDS 123. While in the Token Master State, the device 
should increment its THT whenever it detects the 
LDB ROB signal is active. Once this timer expires, the 
Token Master must finish its access, release the token, 
and go back to the Idle State. 
An LDB ring device enters the Error Detect state 

whenever that device detects that there has been an 
error in the LDB protocol. The two basic conditions 
that will cause this transition are a lost token, i.e., TRT 
expires, or the detection of a second token on the ring. 
If either of these conditions exist, that device should 
activate the LDB Err signal for at least two consecu 
tive cycles which will send all the LDB devices into the 
Ring Down State. 

All ring devices will enter a Ring Down state upon 
detecting that the LDB Err signal has gone active for 
at least two consecutive cycles. In this state, each de 
vice will discard any tokens that they receive while the 
Bus Error line is still active. Once the Bus Error line 
goes inactive, the device enabled as the Ring Master 
should re-initiate the token to start the ring back up. 
The local processor that is handling error recovery 

has the capability of controlling the restart of the ring 
after it goes down. If the processor wants the ring to 
automatically restart once the error has cleared, it 
should leave one device in the ring initialized as the 
Ring Master. If the processor wants to prevent the 
automatic restart, it should first activate one device as 
the Ring Master for initial start up, and then deactivate 
that device as the Ring Master. 
Upon detecting an error, a device can notify the other 

ring devices that an error has occurred by activating the 
Bus Error line. Any device not activating the LDB 
Err signal can determine the severity of the error by 
detecting the number of consecutive cycles the Bus 
Error signal is active. There are are two categories of 
errors defined on the LDB: 1) non-recoverable, 2) re 
coverable. 

Non-recoverable errors are errors that require the 
ring to be brought down and restarted due to protocol 
errors such as a lost token or the detection of two tokens 
on the ring. The non-recoverable error conditions are 
detected when the Bus Error line is active for at least 
two consecutive cycles. A few examples of non-recov 
erable errors include a lost token. Once the token has 
been passed to the next device on the ring, the TRT 
value is loaded into a counter. This counter should be 
enabled when the LDB ROB signal is active. If the 
token does not return by the time the TRT counter has 
expired, the device should activate the LDB-Err signal 
for at least 2 cycles signifying a non-recoverable error. 
Another non-recoverable error is when a device finds 
two tokens: If a second token is detected while a device 
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is holding the token, the device should activate the 
LDB-Err signal for at least two cycles signifying a 
non-recoverable error. 

Recoverable errors are errors which have not dam 
aged the protocol on the ring, thereby not requiring the 
bus to be brought down and restarted. Recoverable 
errors should be detected by a device that is in the Idle 
State and is monitoring the LDB data transfer of the 
current Token Master. 
The MIC 112 will monitor other devices for two 

types of recoverable errors: Address parity errors on a 
read operations, and byte enables (BE(0:3)) being active 
while HALE is active. The MIC 112 will activate the 
LDB-Err signal while in the Idle State for each recov 
erable error it detects from the Token Master. This may 
cause the the MIC 112 to activate the LDB Err signal 
for at least two consecutive cycles should the Token 
Master continue to perform accesses that have either of 
these errors. 
Upon detecting the LDB-Err(L) active for one 

cycle the Token Master has the option of continuing or 
releasing the token to the next device. If the Token 
Master detects the LDB-Err active for 2 consecutive 
cycles, it must finish its LDB access and enter the Ring 
Down State. 
The purpose of the LDB ROB signal is to give the 

current Token Master an indication as to whether a 
second ring device is waiting for access to the LDB 117 
or LDS 123. This signal should be used by the Token 
Master to enable its THT and by the devices in the Idle 
State to enable their TRT signal. 
There is no restriction on what cycle a device acti 

vates and deactivate the LDB ROB line as it transi 
tions through the ring state machine and in fact the 
signal can be permanently tied to ground. This of course 
would not provide the most efficient use of the bus, 
since a device may be forced to give up the token when 
no other devices needed the bus. 
The following guidelines can be used for activating 

LDB ROB which will make the most efficient use of 
LDS. These are also the rules the MIC 112 uses in its 
preferred embodiment. Once a device determines it 
needs the LDB 117 and the token is not currently in its 
boundary in register (TokIn(L)), it should drive the the 
LDB-ROB signal active in the following cycle. If the 
token was currently in the boundary in register then the 
device should capture the token and not drive the 
LDB-ROB signal active. Once a device which is cur 
rently activating the LDB-ROB signal receives the 
token in its boundary in register (TokIn(L)), it should 
stop driving the LDB ROB signal in the following 
cycle. The LDB ROB signal may remain active due to 
a second device. Once a device in the Token Master 
state is forced to release the token due to its THT expir 
ing, it may cause the LDB ROB signal to go active the 
cycle after the token was in its boundary out register 
(RARBO active) if it wants to gain the token back. 
FIG. 16 shows the timing of the MIC 112 starting up 

the ring on the LDB 117 with another device from the 
Ring Down state. In this example, the MIC 112 is the 
Ring Master and also performs an LDB access as soon 
as the bus is up. Note that the token should rotate once 
around the ring before any device should capture it in 
order to gain access to the LDB 117. 
Whenever the LDB Err line goes active for at least 

two consecutive cycles, it is the responsibility of each 
device to detect the old token and discard it once in the 
Ring Down State. This window of time in which each 
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device discards the old token must be followed by each 
device so that each device can determine the difference 
between the old token that was stripped and the new 
token which brings the ring back up. The window for 
stripping the token while in the Ring Down state is 
defined in the equation for Take Token in FIG. 15A. 
The earliest point in which the Ring Master can inject 

the new token on the ring is included in the equation for 
the Inj Token(L) signal in FIG. 15A. It is preferred 
that one device have the capability of becoming the 
Ring Master. If multiple devices have the capability of 
issuing a token, then two tokens could be put on the bus 
if software mistakenly initialized the ring 244 to have 
two Ring Masters. This condition would be detected 
but possibly after two devices both tried to drive the 
LDB 117. 
LDB Data Transfers 
Once a LDB device has gain ownership of the LDB 

117 by becoming the Token Master, it is free to transfer 
data to and from the LDS 123 until it gives up its own 
ership. Each device on the LDB 117 can access the 
Local Data Store 123 using the following signals: 
ADDR(0:9), APAR(0:1), DATA(0:31), DPAR(0:3), 
-HALE,--R/W, and -BE(0:3). 
Addressing on the LDB 117 uses a paging scheme 

that involves an 8-bit high address (HA) and a 10-bit 
low address (LA) sent across the ADDR(0:9) bus 
which allows for addressing of up to 1 Mega Bytes. The 
HA only needs to be sent when a new 4 MB segment is 
to be accessed. 
Whenever a device puts out a HA on the ADDR(0.9) 

bus, the HALE(L) should be active, the R/-W should 
be valid, the byte enables BE(0:3)(L) should be inactive, 
the data bus should be tri-stated, and all 10 bits of ad 
dress should be driven with good parity even though 
only the least significant 8 bit of the HA are used. 
LDB Start Up FIG. 16 shows the timing of the MIC 

112 starting up the ring on the LDB 117 with another 
device from the Ring Down state. In this example, the 
MIC 112 is the Ring Master and also performs an LDB 
access as soon as the bus is up. Note that the token 
should rotate once around the ring before any device 
should capture it in order to gain access to the LDB 
117. 
Whenever the LDB Err line goes active for at least 

2 consecutive cycles it is the responsibility of each de 
vice to detect the old token and discard it once in the 
Ring Down State. This window of time in which each 
device discards the old token must be followed by each 
device so that each device can determine the difference 
between the old token that was stripped and the new 
token which brings the ring back up. The window for 
stripping the token while in the Ring Down state is 
defined in the equation for Take Token in FIG. 15A. 
The earliest pointin which the Ring Master can inject 

the new token on the ring is included in the equation for 
the Inj Token(L) signal in FIG. 15A. It is preferred 
that one device have the capability of becoming the 
Ring Master. If multiple devices have the capability of 
issuing a token, then two tokens could be put on the bus 
if software mistakenly initialized the ring 244 to have 
two Ring Masters. This condition would be detected 
but possibly after two devices both tried to drive the 
LDB 17. 
LDB Data Transfers 
Once a LDB device has gain ownership of the LDB 

117 by becoming the Token Master, it is free to transfer 
data to and from the LDS 123 until it gives up its own 
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ership. Each device on the LDB 117 can access the 
Local Data Store using the following signals: 
ADDR(0.9), APAR(0:1), DATA(0:31), DPAR(0:3), 
-HALE,--R/W, and -BE(0:3). 
Addressing on the LDB 117 uses a paging scheme 

that involves an 8-bit high address (HA) and a 10-bit 
low address (LA) sent across the ADDR(0:9) bus 
which allows for addressing of up to 1 Mega Bytes. The 
HA only needs to be sent when a new 4 MB segment is 
to be accessed. 
Whenever a device puts out a HA on the ADDR(0.9) 

bus, the HALECL) should be active, the R/-W should 
be valid, the byte enables BE(0:3)(L) should be inactive, 
the data bus should be tri-stated, and all 10 bits of ad 
dress should be driven with good parity even though 
only the least significant 8 bit of the HA are used. 
Whenever a device puts out a LA on the interface, 

the HALE(L) should be inactive, the R/-W should be 
valid, at least one of the BE(0:3)(L) should be active, 
the DATA(0:31) should contain the write data with 
good parity if it a write, and all 10 bits of address should 
be driven with good parity. 
To enable LDB devices to exchange ownership of 

the LDS without interfering with each others accesses, 
the following relationship should exist between the 
cycle the token is captured and released, and the cycle 
in which the LDB address, data and control signals are 
driven and released as shown in FIG. 17. This relation 
ship will provide for one dead cycle on the LDB 117 
during the exchange of ownership. 
The MIC 112 shall maintain maximum LDB band 

width by making efficient use of LDB 117 as the LDB 
master and minimizing the bus latency during the ex 
change of ownership with another device. It is recom 
mended that all devices on the LDB 117 follow the 
timing relationship of the MIC 112 to preserve the max 
imum bandwidth of the LDB 117. The timing specified 
together with the rule for putting out the HA relative to 
detecting the token will ensure that the latency in pass 
ing the ownership of LDB 117 is minimized while al 
ways keeping one dead cycle on all shared LDB 117 
signals during the exchange. The MIC 112 determines 
its last access by checking the state of the THT and 
LDB-ROB when it is preparing to put a LA on the 
interface the following cycle. 
The MIC 112 shall not stop the token from propagat 

ing onto the next device unless it has an immedi 
ately need for LDS 123. 

If the MIC 112 needs to take the token in order to 
access LDS 123, the MIC 112 shall drive its HA on 
the interface the cycle after it detects the token in. 

When the MIC 112 is the LDB master, it shall release 
the token relative to its last bus operation in such a 
manner that it minimizes bus latency when passing 
the ownership to the next device. 

When the MIC 112 is a master and the last operation 
is a write, the MIC 112 will have the token on the 
interface in the same cycle the last write LA is on 
the interface as shown in FIG. 19. 

When the MIC 112 is a master and the last operation 
is a read and the MIC112 is programmed for 0 wait 
States, the MIC 112 will have the token out on the 
interface one cycle after the last read LA is on the 
interface as shown in FIG. 16. 

When the MIC 112 is a master and the last operation 
is a read and the MIC 112 is programmed for 1 wait 
states, the MIC 112 will have the token out on the 
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interface one cycle after the last read LA is on the 
interface. 

When the MIC 112 is the LDB master, it preferably 
drives HALE(L) and the BE(0:3)(L) inactive (high) 
before tri-stating them. This means that the pull-ups on 
the module are not required to pull these signals back 
inactive in one cycle but just for holding then inactive 
once the MIC releases them. 

After a HA has been driven with the R/-W signal 
high, an LDB master read access is triggered when an 
LA is sent with at least one BE(0:3) active and the 
R/-W line high. The master can pipeline its reads by 
sending a series of read LA. 
The MIC 112 was designed to perform LDB 117 

reads with either 0 or 1 wait state. This enables the MIC 
112 to be used in various applications that use RAMs 
with different access times. The number of wait states 
the MIC 112 will perform should be set during initial 
ization by writing MIC LPB memory register x1006 
(DBW, bit 13). If the MIC 112 is programmed for 0 wait 
states, then it will put its LA on the interface for one 25 
MHz cycle and expect the read data to be on the LDB 
interface 133 two cycles later. If the MIC 112 is pro 
grammed for 1 wait states, then it will put the same LA 
on the interface for two 25 MHz cycles and expect the 
read data to be on the LDB 133 interface three cycles 
after that read access' first LA appeared on the inter 
face. For both 0 or 1 wait state reads, the MIC 112 will 
pipeline read operations. FIG. 16 shows the MIC 112 
timing for an LDB read operations with 0 wait state. 
When MIC 112 performs LDB Reads no wait states: 
An initial HA will be put out the cycle after the MIC 

112 clocks in the token (RARBICL)=L) when 
starting an access. 

A series of one or more LAs will always follow start 
ing the cycle after a HA. 

One HA may be inserted in between a series of LAs 
each time the MIC 112 needs to access a different 4 
KB segment. 

The MIC 112 will release the token whenever its 
Token Hold Timer expires or it no longer needs to 
access LDS 123. 

For reads, the MIC 112 will release the token to the 
next device (RARBO(L)=L) one cycle after it 
drives its last address. 

The MIC 112 will always drive HALE(L) and 
BE(0:3)(L) inactive before tri-stating these signals. 
This enables a slow pull-up to be used on the mod 
ule to hold these signals inactive. 

Once an HA has been driven with the R/-W signal 
low, an LDB master write access is triggered when a 
LA is sent with at least one BE(0:3) active and the 
R/-W line low. The write data and the LA should 
both be on the interface at the same time. The 0 and 1 
wait state feature mentioned above for reads does not 
effect the timing for writes. As in the case of reads, the 
master can pipeline a series of write LAs along with the 
write data. 
FIG. 18 shows the MIC timing for LDB write opera 

tions. As shown, when MIC 112 performs LDB Writes: 
An initial HA will be put out the cycle after the MIC 

clocks in the token (RARBIOL)=L) when starting 
at aCCCSS. 

A series of one or more LAs will always follow the 
cycle after an HA. 

One HA may be inserted in between a series of LAs 
each time the MIC 112 needs to access a different 4 
KB segment. 
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The MIC 112 will release the token whenever its 
Token Hold Timer expires or it no longer needs to 
access LDS 123. 

For writes, the MIC 112 will release the token to the 
next device (RARBO(L)=L) the cycle it drives its 
last address. 

The MIC 112 will drive HALE(L) and BE(0:3)(L) 
inactive before tri-stating these signals. This ena 
bles a slow pull-up to be used on the module to 
hold these signals inactive. 

The LDB master during its ownership can switch 
from a read to a write access. To switch, the master's 
write LA must be on the interface at least 4 cycles after 
the last read LA appears as shown in FIG. 19. This will 
allow enough time for the read data to be received 
before the master drives its write data. Also shown in 
FIG. 19, a new HA was sent before the first write LA. 
The sending of this new HA is optional but does not 
cause any added latency since the master needed to wait 
for the read data to be received. 
A master during a single token holding period can 

follow a write access with a read access. As the write 
LA and the corresponding write data are on the bus at 
the same time, the master could put out a read LA in the 
following cycle. In some alternative LDS memory de 
signs, following a write LA with a read LA may cause 
the memories and the MSI write register pipeline to 
both drive momentarily while switching directions. For 
this reason, the MIC 112 preferably follows a write LA 
with a new read HA and LA when switching from a 
read to a write even if the new HA is the same as the old 
HA. This sending of the new HA will only cost one 
cycle when the old HA matches the new HA. 
FIG. 19 shows the LDB timing when the MIC 112 

switches from a read to a write and from a write to a 
read on LDB bus. When MIC 112 switches from a Read 
to a Write or Write to a Read on LDB 117: 
One HA will always be inserted when the MIC 112 

switches the direction of the access even though 
the new HA may be the same as the previous one. 

Before switching from a write to a read, the MIC 112 
will check the token hold timer to make sure it has 
time to reverse the bus. When switching from a 
read to a write the token hold timer is checked as 
normal since no added latency is added when 
switching in this direction. 

The MIC 112 will release the token (RARBO(L)=L) 
based on the last access it performs either a read or 
a write. 

The MIC 112 will always drive HALE(L) and 
BE(0:3)(L) inactive before tri-stating these signals. 
This enables a slow pull-up to be used on the mod 
ule to hold these signals inactive. 

The LDB master during its ownership can switch 
from a read to a write access. To switch, the master's 
write LA must be on the interface at least 4 cycles after 
the last read LA appears as shown in FIG. 19. This will 
allow enough time for the read data to be received 
before the master drives its write data. Also shown in 
FIG. 19, a new HA was sent before the first write LA. 
The sending of this new HA is optional but does not 
cause any added latency since the master needed to wait 
for the read data to be received. 
A master during a single token holding period can 

follow a write access with a read access. As the write 
LA and the corresponding write data are on the bus at 
the same time, the master could put out a read LA in the 
following cycle. In some alternative LDS memory de 
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signs, following a write LA with a read LA may cause 
the memories and the MSI write register pipeline to 
both drive momentarily while switching directions. For 
this reason, the MIC 112 preferably follows a write LA 
with a new read HA and LA when switching from a 
read to a write even if the new HA is the same as the old 
HA. This sending of the new HA will only cost one 
cycle when the old HA matches the new HA. 
FIG. 19 shows the LDB timing when the MIC 112 

switches from a read to a write and from a write to a 
read on LDB bus. When MIC 112 switches from a Read 
to a Write or Write to a Read on LDB 117: 
One HA will always be inserted when the MIC 112 

switches the direction of the access even though 
the new HA may be the same as the previous one. 

Before switching from a write to a read, the MIC 112 
will check the token hold timer to make sure it has 
time to reverse the bus. When switching from a 
read to a write the token hold timer is checked as 
normal since no added latency is added when 
switching in this direction. 

The MIC 112 will release the token (RARBO(L)=L) 
based on the last access it performs either a read or 
a write. 

The MIC 112 will always drive HALE(L) and 
BE(0:3)(L) inactive before tri-stating these signals. 
This enables a slow pull-up to be used on the mod 
ule to hold these signals inactive. 

The LDB bus 117 architecture supports an error line 
that can be used to notify all the devices on the ring that 
an error has been detected. This line should be activated 
when either of two types of error occur: 1) non-recov 
erable, detected when the LDB Err line is active for at 
least 2 cycles; 2) recoverable errors, detected when the 
LDB Err line is active for just 1 cycle. 
The MIC 112, when master of the LDB 117 checks 

for the condition of two tokens being present by deter 
mining if a second token is detected once it has captured 
the original token. Upon detecting this condition, the 
MIC 112 will activate the LDB Err line (for at least 2 
cycle) until it has put a USW onto the error queue. 
The MIC 112 as master of the LDB 117 also has a 

programmable bit accessible from the LPB 115 which 
enables or disables the MIC 112 to check recoverable 
errors. As a master, this programmable bit will cause 
the MIC 112 to check parity on its write data when the 
data is in the MIC's boundary register. On reads, the 
MIC 112 will check parity on the read data it receives 
along with the state of the error line. If the MIC 112 
detects that the LDB ERR line was active on the in 
terface the same cycle the read data was on the inter 
face, an error was detected on the read address that was 
associated with this read data. 

If the MIC 112 has been set up to LDB reads with one 
wait state, the MIC 112 will detect that an address error 
has occurred when either the LDB Err line was active 
in the cycle read data was valid or if in the previous 
cycle, the LDB Err line was active. This is possible as 
the read low address was on the bus for two cycles. 
The MIC 112, when not the Bus Master will be in bus 

monitor mode when. In this mode, the MIC 112 checks 
for a lost token condition. This condition, which is 
detected when the TRT timer expires, will cause the 
MIC 112 to take down the LDB 117 by activating the 
LDB Err line for at least 2 cycles until it puts a USW 
on the error queue. The MIC 112 uses the same pro 
grammable bit used to check recoverable errors as a 
master. In Table 5, a description of the recoverable 
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errors detected by the MIC 112 when in bus monitor 
mode and the resulting actions taken are listed. 

TABLE 5 
Recoverable errors the 
MIC checks for as bus 
monitor (Idle State) MIC action 
Read and APE on LA -activate error line for 1 cycle such 

that it is active 2 cycles after 
address was on interface 
-put USW on error queue 

Read and APE on HA -activate error line as described in 
previous case for each LA that 
follows HA until a new HA is detected 
or all BEs are inactive (master 
finished) 
-put USW on error queue 

Read and DPE -error line is NOT activated 
Write and APE -error line is NOT activated 
on LA or HA -put USW on error queue 
Write and DPE -error line is NOT activated 

-put USW on error queue 
Read and at least -activate error line for one cycle 
one BE(0:3) active such that it lines up with first 
while -HALE active 
Write and at least 
one BEO:3) active 
while -HALE active 

HA - high address, detected by monitor when HALE is active 
LA - low address, detected by monitor when any of -BE0:3) are active 
APE - address parity error 
DPE - data parity error 

LAS read data 
-error line is NOT activated 
-put USW on error queue 

The software and programming interfaces to the 
MIC 212 are listed in Table 6 and 7. Table 6 illustrates 
bus master operations which can be programmed, con 
trolled and/or performed by the MIC 112. Table 7 
illustrates slave operations on the MC 110 and LPB 117 
which allow accesses to the programming interfaces of 
the MIC 112. 

TABLE 6 
MIC Operation Bus Operation Transfer Path 
Writing LDB Data MC Men Write MCOBLOB 
Reading LDB Data MC Mem Read LDB IDBMC 
Writing QRC Reg MC/O Write MC QRC Reg 
Reading QRC Reg MC/O Read QRC Reg MC 
Writing QWC Reg MCI/O Write MC QWC Reg 
Reading QWC Reg MC/O Read QWC Reg MC 
Writing QD Reg MC I/O Write MC QWB LPB 
Reading QD Reg MC I/O Read LPB QRB MC 
Reading FBL MCIMO Read FBB MC 
Reading JP Reg MC I/O Read JP Reg MC 
Writing POS Reg MCAO Write MC POS Reg 
Reading POS Reg MC I/O Read POS Reg MC 
Reading Cntl Reg LPB Mem Read Cntrl Reg LPB 
Writing Cnti Reg LPB Mem Write LPB Cntrl Reg 
Reading Queue Init LPB Mem Read QM LPB 
Writing Queue Init LPB Men Write LPB QM 
Reading Queue Cntl LPB I/O Read QM LPB 
Writing Queue Cnt. LPB I/O Write LPB QM 
Reading LDB Data LPB Men Read LDB LPB 
Writing LDB Data LPB Men Write LPBLOB 
Reading STI/Scan STI Read STI Ext dev 
Writing STI/Scan STI Write ... Exit Dev STI 

TABLE 7 
MIC Operation Bus Operation Transfer Path 
Write Memory Data MC Men Write ODBMC 
Read Memory Data MC Mem Read MCIDB LDB 
Write I/O Data MCIAO Write ODBMC 
Read I/O Data MC I/O Read MCOBLOB 
Writing QWC Reg MCAO Write Master Exe MC 
Reading QWC Reg MCAO Read MC Master Exe 
Writing QD Reg MCAO Write Master Exe MC 
FBL Fetch MCAO Read MC Master Exe 
Write Memory Data LPB Men Write MIC LPB 
Read Memory Data LPB Mem Read LPB MIC 
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TABLE 7-continued 
MIC Operation Bus Operation Transfer Path 
Write Memory Data LDB Write MIC LDB 
Read Memory Data LDB Read LDBMIC 

Commanded Transfers 
Commanded transfers are master operations per 

formed on either the MC, LPB, or LDB. This section 
describes in more detail, operations described in Table 
7. The MIC contains sufficient intelligence to control 
the data transfers without CPU intervention. 
MC Commanded Transfer 
Commanded Transfers on the MC are initiated via a 

MIC Command Word (MCW). MCWs are located in 
one of the Queues which the MIC is managing. Queue 
#D is defined as the MIC's Command Queue (MCQ) 
dedicated to MCWs. As shown in FIG. 21, when the 
MCQ contains an entry, the QM unit within the MiC 
interrupts the Master Execution unit to fetch a MCW in 
step 300. The MCW defines the source LPB device step 
301 initiating the Commanded Transfer and the LPB 
Memory Address where the MIC Control Block 
(MCB) can be found. The MCB defines flags step 302, 
source address step 303, and target address information 
step 304 for the Commanded Transfer. Once the Com 
manded Transfer, defined by the MCB, has been com 
pleted, status of the transfer can be posted to a Queue 
existing on the LPB step 306 and/or to a Queue existing 
on another MC device step 305. The status posted to a 
Queue existing on the LPB is called the MIC Status 
Word (MSW). The MSW defines any errors which may 
have occurred in step 307 during the Commanded 
Transfer and the MCB used for the transfer. The status 
posted to a Queue existing on another MC device is 
called the Micro Channel Post Command (MPC). The 
MPC defines the source device, flags, and target ad 
dress of the transfer. 

Table 7 illustrates a high level flow diagram of a 
Master Execution or Commanded Transfer operation 
described above. Flags, described in more detail in MIC 
Control Block below, define the direction of the dia 
gram. Commanded Transfers (FIG. 22) illustrates the 
relationship between the MCW 310, MCB 312, MSW 
318, MPC 316 and remote MIC free block register 314 
during a MC Commanded Transfer. 
MIC Command Word 
The MCW consists of four bytes of information 

which exist in the MCQ. The MCQ is define as Queue 
#D and can hold up to 1KMCWs. FIG. 23 illustrates 
the fields within a MCW. The following section de 
scribes each field and its function. 
MIC Control Block 
The MIC supports a fixed length MIC Control Block 

(MCB) of 16 bytes. The MCB must exist in the LPB 
Memory Address space defined by the MCW. FIGS. 24 
through 27 illustrate the MCB in detail. In general, the 
execution of the MCB is governed by the flags con 
tained in the first word of the MCB. FIG. 28 illustrates 
the valid combinations of MCB flags. 
MCB Notes 
Below lists some notes on utilization of the MCB 

fields. 
1. The Source and Target Address fields MUST be 
defined on a 4 byte boundary, except when 
NOP=1 or FMT=2'. A 4 byte boundary means 
that the least significant two bits of the Source and 
Target Address fields MUST equal '00'. 
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2. The Byte Count field MUST be equal to 1, 2, 3, or 

4'n, where n=0 to 16K. 
3. A byte count value equal to 0, indicates a transfer 
of 64K bytes. 

4. A byte count value MUST be chosen so that the 
Source and Target Address plus the Byte Count 
field does not exceed or cross a 64 Kbyte address 
boundary. Only the lower 16-bits of address are 
allowed to increment, if a byte count causes the 
16-bits of address to produce a ripple carry then the 
upper bits are not modified and the address will 
wrap. 

5. The MPC QID should not be equal to ‘D’ if the 
MC device receiving the MPC is another MIC. 

MIC Status Word 
The MIC has the ability to build status after the com 

pletion of a Commanded Transfer. If the PCI bit in the 
MCB is set or an error occurs during the Command 
Transfer, the MIC will post the Queue indicated by the 
MCW RQID field with an eight byte MSW. The re 
ceiving Queue must have a byte count. defined as eight 
bytes. The MSW provides a report of any errors which 
may have occurred during the command operation. If 
an error occurs during a chained operation then the 
chain is terminated with status being built indicating the 
address of the errored MCB. FIG. 29 illustrates the 
fields of the MSW. 
Micro Channel Post Command 
The MIC has the ability to build status and Post a MC 

device after the completion of a Commanded Transfer. 
If the PST bit in the MCB is set the MIC will post status 
to a Queue which exists on another MC device. This 
other MC device may be another MIC or MC device 
which can receive, understand, and/or translate the 
MPC message and protocol. The Queue being posted is 
determined by the MPC QID field in the MCB. The 
posted status is called the Micro Channel Post Com 
mand (MPC). The MPC contains eight bytes of data 
indicating the source ID, target address, and byte count 
related to the data which was moved during the Com 
manded Transfer. FIG. 30 illustrates the MPC and de 
fines its fields. 
LPB Commanded Transfers 
Commanded Transfer on the LPB can be initiated 

from the Master Execution unit, the QRB, the QWB, 
the FBB, or from a reportable error within the MIC. 
The Master Execution unit uses the LPB to fetch 
MCWs and MCBs, or to postMSWs. The QRB uses the 
LPB to fetch Queue entries which a MC device is re 
questing as part of a Queue Read Operation. The QWB 
uses the LPB to write entries to a Queue loaded from 
the MC via a Queue Write operation. The FBB uses the 
LPB to fill FB entries which have been removed by 
devices on the MC. The LPB also allows the MIC to 
post unsolicited errors to a Queue managed by the MIC. 
LDB Commanded Transfers 

All MIC operations on the LDB are commanded 
transfers. These transfers can be initiated by the Master 
Execution unit, the IDB, or the LPB Interface. All 
operations on the LDB are simple reads and writes. The 
MIC does not have any programmable registers on the 
LDB. 
Device Initiated Transfers 
Device initiated transfers are slave operations per 

formed on either the MC or LPB. This section describes 
in more detail, operations described in Table 6. 
The MIC allows access from the MC or LPB to the 

LDB, Queues and Control Registers. These accesses are 
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performed in the Memory or I/O address spaces that 
exist on the MC and LPB. The MIC decodes the MC or 
LPB address and performs the slave operation related 
to the selected address. 
LDB Access 
The MIC supports direct access to the LDB from 

either the MC or the LPB. In both cases, the MIC al 
lows access to the LDB by monitoring the MC and/or 
LPB for addresses which are within a predefined range. 
For simplicity, figures which illustrate a LDB address 
indicate a full byte address. The MIC does not imple 
ment byte addressability in this way. Instead, the lower 
two address bits are not driven and are replaced by 
using four byte enables, BEO:3), to allow for full byte 
addressability during LDB accesses. Since the MIC 
only allows up to 10-bits of the LDB address to be 
driven at once, the LDB address is split or multiplexed 
into two parts; a high address and a low address. The 
high address contains the upper 8-bits of the full LDB 
address. The low address contains the next 10-bits of 
address. The byte enables, BE(0:3), provide the remain 
ing byte controls necessary for a complete 1 Mbyte 
LDB address. 
Access from MC 

For the MC to access LDB, a predefined address 
range is assigned within the MC Memory space. This 
range of addresses is defined by a base address plus an 
offset. The LDB MC base address is defined by the 
LDB MC Memory Base Address register. The LDB 
MC Memory Base Address register can be found in 
POS 3 and 4. Sub-Address 001. The LDB MC Mem 
ory BaseAddress together with an offset allow any MC 
device direct memory access to the LDB memory 
space. The amount of memory space accessible from the 
MC is determined by the LDB Size field in POS Reg 3 
Sub-Address "0000. The LDB Size field limits the offset 
the MIC will decode. LDB memory space can be de 
fined as 128K, 256K, 512K, or 1 Mbyte. See “MIC 
Programmable Option Select (POS) Registers” for 
more details about the LDBMC Memory BaseAddress 
registers and LDB Size fields. FIG. 31 illustrates the 
MC Memory map for LDB accesses and the byte ad 
dress relationship between the MC and LDB. Note: 
The MC --M/-IO signal must be equal to '1' for LDB 
2CCSSS 

LDB Access from LPB 
For the LPB, accessing the LDB requires a paging 

type method. The paging method requires the LPB 
device to load a segment register which defines one of 
2564 Kbyte windows within LDB to be accessed. The 
LPB to LDB Access Segment Register is defined at 
LPB Memory Address, X1000. Once the segment has 
been initialized, an offset address within the LPB Men 
ory Address space X0000 through XOFFF defines.a 
point within the 4K window. FIG. 32 illustrates the 
LPB Memory map for LDB Accesses and the byte 
address relationship between the LPB and LDB. 
Queues 
The MIC provides hardware support for managing 

164KByte Queues stored within a 64 Kbyte segment of 
LPS. MIC Queue management includes maintenance of 
the Queue Read and Queue write Pointers, Queue sta 
tus, Queue Entry size, and assigned interrupt levels for 
each enabled Queue. All Queue maintenance informa 
tion and control is contained within the MIC's Queue 
Manager (QM). Access to this Queue maintenance in 
formation can be achieved in two different ways; direct 
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or controlled. Access to the Queue themselves can be 
achieved from either the LPB or MC. 
Direct QM Access 

Direct access to all Queue maintenance information is 
achieved only from the LPB Memory space. Direct 
access allows the LP to initialize and manipulate the 
Queue maintenance information. Each of the 16 Queues 
requires a 4-byte register, within the MIC, to hold the 
Queue maintenance information. These registers are 
called the Queue Initialization Registers (QIR). The 
LPB address location of the QIRs is determined Dy the 
following; 
QIR LPB Memory Address=XXXX;QIR Segment 
;Queue Number;QIRByte 
where XXXX=don't care. See note. 
where QIR Segment='0001000100 
where Queue Number="0000 through 1111 
where QIRByte='00 through 11 

FIG.33 illustrates the relative LPB memory location 
of the QIRs, accessible via a direct access. FIG. 34 
illustrates and describes in detail the 4-byte generic 
layout the QIR accessible via a direct access. 
Controlled QM Access 

Controlled access to Queue maintenance information 
is achieved only from the LPB I/O space. Controlled 
access is used during operational modes to allow any 
LPB device access to some of the Queue maintenance 
information contained within the QIR. With this data a 
LPB device can determine the location and status of 
any Queue or current active Queue entry and can add or 
remove a Queue entry from any Queue. In addition, the 
MIC uses a controlled access to update Queue mainte 
nance information, such as pointer and interrupt status. 
The Queue maintenance information accessible via a 
controlled access is a subset of the same information 
available in the QIR. This subset of information is con 
tained within two 2 byte registers called the Queue 
PointerRegisters (QPR). The LPB device only needs to 
access one of these 2 byte registers depending on 
whether a Queue entry is to be added or removed from 
a Queue. FIG. 35 illustrates the relative LPB I/O space 
location of the QPR available to any LPB device via a 
controlled access. FIG. 36 illustrates the generic layout 
of one of the QPR available via a controlled access. 
Queue Access from the LPB 
From the LPB, the Queues within the LPB Memory 

space can be indirectly accessed by using the QPR 
within the LPB I/O space. ALPB device directly ac 
cesses the Queues by obtaining one of the two Queue 
Pointers from the MIC for the requested Queue. The 
QRP is read from the MIC if a Queue Entry is to be 
removed from a Queue. The QWP is read from the MIC 
if a Queue Entry is to be added to a Queue. The Queue 
Pointers contain part of the physical LPB Memory 
address of the Queue to be accessed. The remaining part 
of the physical address can be obtained from the Queue 
number and from a LPB Queue Segment. FIG. 37 illus 
trates the Queues and their relative address within LPS 
and the LPB Memory address. The LPB memory ad 
dress is composed of Q seg 320, QNum322, Q Pointer 
324 and QE byte 326 which forms a 20-bit word. The 
two least significant bits are used as the status bits. 
LPB Queue Access Protocols 
FIGS. 38 and 39 describe the control protocol flows 

for a LPB Queue Read and Queue Write accesses. 
These flows illustrate the steps required by all LPB 
devices which utilize the MIC Queue management sup 
port. Also, the MIC being a LPB device as well, is 
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designed to implement these required steps to access a 
Queue. 
A queue read operation is shown in FIG.38 where a 

read queue pointer is received from the MCI LPB I/O 
space at the first step in start of a read operation as 
depicted by block 340. The next step shown by block 
342 is to verify the pointer status. The pointer status is 
determined by looking at the two least significant bits of 
LPB memory address. If an erroris indicated, the queue 
erroris reported to the local processor by the MIC 343. 
If the queue is not available, that is being used by an 
other LPB device, a retry is instigated. If the queue is 
available, the LPB physical memory address is con 
structed as shown by block 344. The LPB memory 
address is equal to the queue segment concatenated 
with the queue pointer followed by the status bits. Once 
the address is known, the data is read either in incre 
ments of 4, 8 or 16 bytes depending upon how the queue 
was initially set up. Once the data is read, a new read 
pointer is written to the MIC in block 348 and the new 
queue pointer value is returned. The MIC verifies the 
queue pointer with a CPU reading to see if the queue 
read pointer is okay, as shown in block 352 where the 
queue read pointer is updated and maintained by the 
MIC. If an error is determined as shown in block 354, 
the queue erroris reported to the local processor by the 
MIC and the queue pointer is restored to its original 
value. 

In a like manner, a queue write is performed as shown 
in FIG. 39 wherein the queue write pointer is read from 
the MIC local processor bus as depicted by block 360. 
Checking the status bits verifies that the pointer is avail 
able as shown in block 362. When an error is detected, 
a queue error report is sent to a local processor by the 
MIC as depicted by step 363. Once the queue is avail 
able, the LPB physical memory address is constructed 
in step 364. The memory address is equal to the queue 
segment plus the queue number plus the queue pointer 
concatenated with the status bits. The data is written as 
shown in step 366 in increments of 4, 6 or 8 bytes wide. 
Once the queue is written, the write pointer is updated 
and returned to the MIC with the new queue pointer 
value as shown in 368. The MIC verifies the pointer 
value 370 and if okay, updates and maintains the pointer 
value in step 372. If not okay, an error signal is reported 
in step 372 to the local processor by the MIC. 
What is shown is a queue pointer manager facility 

architected to efficiently optimize queue operation per 
formance by implementing the performance critical 
functions in hardware and the rest of the facility in 
software. The hardware functions include a read 
pointer register having a status field for each queue 
wherein the status field specifies the availability of the 
queue. A write pointer register having a status field is 
set up for each queue. An interrupt field for each queue 
denotes which interrupt signal is activated when the 
queue goes non-empty. A queue byte count field for 
each queue is used to define a queue entry length which 
allows flexibility in the queue byte entries. 
The above resources are implemented in fast access 

registers. The pointers contain memory addresses to a 
general purpose, random access memory which acts as 
a FIFO in which the physical queue elements actually 
reside. The queue pointer manager is mapped into the 
CPU memory and also into the I/O spaces. 
The software function involves reading either the 

queue write pointer or the queue read pointer to per 
form a queue read or write operation. The software 
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42 
checks the status of the queue either writing or reading 
the queue entry data as a normal memory FIFO access 
and then returns the queue read/write pointer to the 
queue pointer hardware function. 
The queue pointer manager in the present invention 

has the following advantages over a totally hardware 
managed queue structure in that the queue pointer man 
ager is less expensive than a pure hardware solution 
because it eliminates memory address bus and data bus 
multiplexing logic. The queue pointer manager does not 
require memory access. It passes pointers to the CPU 
over the data bus after which a CPU performs memory 
accesses to either send or receive the queue elements. A 
total hardware solution requires that the queue manager 
have memory access capability in order to physically 
transfer the queue element data. Negligible perfor 
mance degradation results from having queue data 
transfers performed by the CPU. The queue pointer 
manager reduces the complexity of the memory timing 
and control logic since the queue pointer manager does 
not require memory access. The queue pointer in the 
present invention minimizes access latency for other 
shared memory bus users since the queue data entry 
transfers are performed with indivisible interruptible 
memory operations. Contrastly, a purely hardware so 
lution performs queue entry data transfers with indivisi 
ble memory operations increasing the memory access 
latency for other bus users. 
The present invention has the following advantages 

over a totally software managed queue structure in that 
the queue pointer manager increases performance per 
queue operations because it eliminates the need for soft 
ware to update and verify the queue write and queue 
read pointers. It also eliminates the need for software 
for determining queue overflow, underflow and other 
error conditions. It eliminates the need for software to 
set/clear queue interrupts. These three functions are the 
most critical with respect to degradation of perfor 
mance within a queue manager. Additionally, the queue 
pointer manager alleviates internal CPU or external 
memory resource usage since the present invention uses 
hardware to provide the necessary pointer array. Very 
little software code storage is needed, thereby reducing 
the pointer processing overhead. The queue pointer 
manager provides a built-in public queue capability 
where a given queue may be written or read by more 
than one processing entity. A public queue capability in 
a pure software solution requires a pointer array to be 
resident in a shared memory with a test and set function 
so that pointers can be accessed by multiple users in 
noninterfering fashion. This requires significant soft 
ware processing and decreases queue operation perfor 
2CS. 

Queue Access from the MC 
All MC devices, as well as the MIC have access to 

the Queues which reside in LPS 123. For the MC, 
Queues are accessed indirectly via two control registers 
and a data register which reside within the MC I/O 
Address space. These registers are defined beginning at 
the address specified in the Control Register MC I/O 
Base Address. See “MIC Programmable Option Select 
(POS) Registers' for more details about the Control 
Register MC I/O Base Address register. The two con 
trol registers are defined as a Queue Read Control 
(QRC) Register and a Queue Write Control (QWC) 
Register. The data register is defined as the Queue Data 
(QD) Register. FIG. 40 illustrates these registers in the 
MC I/O Address space. 
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Queue Read Control Register 
The QRC register is used to inform the MIC which 

Queue a MC device wishes to read. The QRC register 
also informs the MC device of the current status of the 
Queue Read request and the status of the Queue Read 
Buffer (QRB). The QRB is used to buffer the data re 
ceived from the requested queue in LPS. FIG. 41 illus 
trates the QRC Register in more detail and defines the 
QRC Register fields. 
Queue Write Control Register 
The QwC register is used to inform the MIC which 

Queue a MC device wishes to write, as well as the 
Queue byte count. The QWC register is also used to 
indicate status of the Queue Write Buffer (QWB). The 
QWB is used to hold the data received from the MC 
destined for the requested Queue in LPS. FIG. 42 illus 
trates the QWC Register in more detail and defines the 
QWC Register fields. 
Queue Data Register 
The QD register is used to access the QRB and the 

QWB. When the QD register is read, data from the 
QRB is be removed. When the QD register is written, 
data from the MC is added to the QWB. The Queue 
Data Register is defined at MCI/O Address starting at 
MIC CRMC I/O Base Address--"01000 and ending at 
MIC CRMC I/O Base Address--01011. Byte Counts 
of 4, 8, or 16 bytes are valid for the QD Register. Since 
the actual I/O Address space is only four bytes, writing 
and/or reading of eight or 16 bytes in the MC Basic 
Transfer mode can be accomplished by performing two 
or four 4 byte transfers. The use of the MC Streaming 
Data mode can accomplish this task in one transfer 
operation. 
MC Queue Access Protocol 
FIGS. 43 and 44 describe the control protocol flows 

for a MC Queue Read and Queue write accesses. These 
flows illustrate the basic steps required by all MC de 
vices which utilize the MIC Queue management sup 
port. The MIC being, a MC device as well, is designed 
to implement these required steps to access a Queue 
when performing a MPC post operation. 
MC/Queue Access Procedures and Restrictions 
This section describes in more detail the MC Queue 

Access procedure. In addition, variations to the basic 
steps in performing a MC Queue Access are described 
as well as specific notes. 
MC Queue Read Operation Protocol, Method “A” 

Below, describes the recommended Queue Read pro 
cedure for all systems. 
Step 1. 

RD QRCR. 
If AVL=0 then goto Step 1. 
If AVL='1' then the MIC automatically sets 
AVL="O AND (go to Step 2, to continue OR 
goto Step 5, to cancel) 

Step 2. WR QRCR (Q#="Valid Queue Number, 
STAT=XX,ACK="O'AVL=X) MIC automati 
cally begins fetching Queue Data AND (go to Step 3, 
to continue OR goto Step 5, to cancel) 

Step 3. 
RD QRCR 
If STAT="00 (Queue Read Data Ready) then (go 

to Step 4, to continue OR goto Step 5, to cancel) 
If STAT='01 (Queue Read Data Not Ready) then 
(go to Step 3, to continue OR goto Step 5, to 
cancel) 

If STAT='10 (Queue Read Error) then goto Step 
5, to cancel Note: STAT="11 is not possible. 
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Step 4. 

RD QDR (Data is read from the Qindicated by the 
Q# in the QRCR) 

When all required bytes have been read then the 
MIC will automatically set AVL = 1 AND 
goto Step 1. OR If all bytes have not been read 
then (goto Step 4, to continue OR goto Step 5, to 
cancel). 

Step 5. 
WR QRCR (Q# =X,STAT=XX.ACK-1- 
'AVL=X) then AVL='1' AND goto Step 1. 

Note: When STAT='00', the MIC will allow the 
MC Master to read the requested Queue data WITH 
OUT inserting a NOT READY condition on the Micro 
Channel. 

Note: The MC Master should never read more bytes 
than is indicated for the Queue being read. Exceeding 
the indicated byte count will cause an USW and/or a 
NOT READY condition on the Micro Channel. 
MC Queue Read Operation Protocol, Method “B” 

Below, describes the recommended procedure for 
completing a Queue Read in systems which only allow 
ONE bus master to perform a Queue Read operation. 
Step 2. 

WR QRCR (Q#="Valid Queue Number, 
STAT=XX,ACK='0'AVL=x) 

MIC automatically begins fetching Queue Data 
AND (goto Step 3, to continue OR goto Step 5, 
to cancel) 

Step 3. 
RD QRCR If STAT='00' (Queue Read Data 
Ready) then (goto Step 4, to continue OR goto 
Step 5, to cancel) 

If STAT="01" (Queue Read Data Not Ready) then 
(goto Step 3, to continue OR goto Step 5, to 
cancel) 

If STAT='10 (Queue Read Error) then goto Step 
5, to cancel 

Note: STAT="11" is not possible. 
Step 4. 

RDQDR (Data is read from the Qindicated by the 
Q# in the QRCR) 

When all required bytes have been read then the 
MIC will automatically set AVL = 1 AND 
goto Step 2. OR 

If all bytes have not been read then (goto Step 4, to 
continue OR goto Step 5, to cancel). 

Step 5. 
WR QRCR (Q# =X,STAT=XXACK-1- 
'AVL=X) then AVL='1' AND goto Step 2. 

MC Queue Read Operation Protocol, Method “C 
Below, describes the procedure for completing a 

Queue Read without the use of the Queue Read sema 
phore or status flags. 

Note: Method "C" is not the recommended proce 
dure for Queue Reads. This method should NOT be 
used if one of the following is true; 

1. The system contains multiple masters which can 
perform Queue Read operations. 

2. The system Micro Channel NOT READY timeout 
of 3.5 usec must not be violated. 

3. The system can not recover from a Micro Channel 
NOT READY timeout error without severe impli 
cations. 

4. The system/adapter can not mask out the USW 
which occurred due to error condition “d)' de 
scribed in the next section. 
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Note: Estimating the NOT READY time when using 
Method “C” can only be determined by a detailed anal 
ysis of the MIC, adapter, and system hardware and 
software environments. If any of this information is 
unavailable or indeterminate then Method 'C' is not 5 
recommended. 
Step 2. 

WR QRCR (Q#="Valid Queue 
STAT=XX,ACK='0',AVL=X) 

Number, 

MIC automatically begins fetching Queue Data 10 
AND (goto Step 4, to continue OR goto Step 5, 
to cancel) 

Step 4. 
RD QDR (Data is read from the Qindicated by the 
Q# in the QRCR) 15 

When all required bytes have been read, goto Step 
2 OR 

If all bytes have not been read then (goto Step 4, to 
continue OR goto Step 5, to cancel). 20 

Step 5. 
WR QRCR (Q#='X',STAT=XX,ACK=1- 
,AVL=X) then AVL='1' AND goto Step 2. 

MC Queue Read Operation Error Conditions/Cautions 
The MIC will generate a USW if one of the following 25 

conditions occur; 
1. Step 2 is performed anytime after the completion of 
Step 2 and before the completion of either Step 4 
OR Step 5. 

Note: The QRCR does not get updated if this error 30 
OCCS, 

2. The number of bytes read in Step 4 are greater than 
the number of byte fetched for the Queue. 

3. Step 4 is performed before Step 2. 
4. Step 4 is performed when STAT='01, OR 
STAT-10. 

5. Step 5 is performed anytime after Step 2, except 
when STAT='10'. 

Note: The MIC does NOT generate a Channel Check 
condition if one of the above errors occurs. Instead, 
posting the USW to the Error Queue causes a LPB 
Interrupt to become active. It is then up to the adapter 
and/or system to determine the error recovery proce 
dure. 

Note: Performing Step 4 before Step 2 WILL cause a 
NOT READY condition on the Micro Channel, which 
can only be cleared by the master aborting the cycle. 
This may cause either a Micro Channel Timeout or 
Channel Check condition. 

Note: Performing Step 4 after Step 2 without com 
pleting Step 3 may cause a NOT READY condition, 
(STAT="01), on the Micro Channel, followed by one 
of the following conditions to occur; 

a) Step 4 will complete normally, if STAT='00'. OR 
b) the NOT READY condition will continue, if 55 
STAT='10, until cleared by the master aborting 
the cycle. This may cause either a Micro Channel 
Timeout or Channel Check condition. 

Note: Method “A”, Method 'B', and Method 'C' 
should NOT be used together in a system. 

Note: See the Queue Error Register defined on the 
LPB for additional errors which may be reported. Er 
rors which cause STAT='10' are defined in the Queue 
Error Register. 
Queue Write Operation Protocol, Method “A” 

Below, describes the recommended Queue Write 
Procedure for all systems. 
Step 1. 
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RD QWCR If AVL='O' then goto Step 1. If 
AVL='1' then the MIC will automatically set 
AVL='0' AND (goto Step 2, to continue and 
modify the QWCR OR 

goto Step 3, to continue and do not modify the 
QWCR OR 

goto Step 4, to cancel). 
Step 2. 

WR QWCR (Q# =*Valid Q#,GBC=*Valid Q 
Byte Count, ACK='0, AVL=X) Goto Step 3, 
to continue OR goto Step 4, to cancel. 

Step 3. 
WR QDR (Data is written to the Q indicated by 

the Q# in the QWCR with the number of bytes 
indicated by the QBC in the QWCR) 

When all valid bytes have been written then the 
MIC automatically sets AVL='1' when space 
becomes available for another QW operation 
AND goto step 1. OR 

If all valid bytes have not been written then (goto 
Step 3, to continue OR goto Step 4, to cancel). 

Step 4. 
WR QWCR (Q#=X,QBC=X.ACK=1- 
,AVL=X) then the MIC automatically ends 
the Q operation and sets AVL='1' when space 
becomes available for another QW operation 
AND goto Step 1. 

Note: AVL='1' indicates that the MIC is capable of 
performing either a 4, 8, or 16 byte Queue Write opera 
tion WITHOUT inserting a NOT READY condition 
on the Micro Channel. 

Note: When Method 'A' is used, a MC Master 
should never write more bytes than is indicated by the 
QBC field in the QWCR. Exceeding the indicated byte 
count may cause an USW and/or a NOT READY 
condition on the Micro Channel. 
MC Queue Write Operation Protocol, Method “B” 

Below, describes the procedure for completing a 
Queue Write without the use of the Queue Write sema 
phore. 

Note: Method “B” is not the recommended proce 
dure Queue Writes. This method should NOT be used if 
one of the following is true; 

1. The system contains multiple masters which can 
perform Queue Write operations. 

2. The system Micro Channel NOT READY timeout 
of 3.5 usec must not be violated. 

3. The system can not recover from a Micro Channel 
NOT READY timeout error without severe impli 
cations. 

Note: Estimating the NOT READY time when using 
Method “B” can only be determined by a detailed anal 
ysis of the MIC, adapter, and system hardware and 
software environments. If any of this information is 
unavailable or indeterminate then. Method 'B' is not 
recommended. 
Step 0. 

If the QWCR needs modification then goto Step 2 
OR If the QWCR does not need modification 
then goto Step 3. 

Step 2. 
WR QWCR (Q#="Valid Q#,GBC=*Valid Q 

Byte Count, ACK='0, AVL =X) Goto Step 3, 
continue OR goto Step 4, to cancel. 

Step 3. 
WR QDR (Data is written to the Q indicated by 

the Q# in the QWCR) 
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When all valid bytes have been written then goto 
Step 0 OR 

If all valid bytes have not been written then (goto 
Step 3, to continue OR goto Step 4, to cancel). 

Step 4. 
WR QWCR (Q# =X,QBC=X,ACK='1- 
,AVL=X) then the MIC automatically ends 
the current Q operation AND goto Step 0. 

Queue write operation Error Conditions/Cautions 
The MIC will generate a USW if one of the following 

conditions occur; 
1. Step 2 is performed anytime (after the completion 
of Step 2, or after the start of Step 3) AND (before 
the completion of either Step 3 or Step 4). 

Note: The QWCR does not get updated if this error 
OCCTS. 

2. The number of bytes written in Step 3 is greater 
than the QBC AND Step 1 was performed before 
Step 3. 

Note: This error is only valid for method “A” and 
may not occur if performed in the MC Basic Transfer 
mode. 

3. The Queue Write Buffer experienced a Queue 
overflow condition. 

Note: This error should not be possible. 
Note: The MIC does NOT generate a Channel Check 

condition if one of the above errors occurs. Instead, 
posting the USW to the Error Queue causes a LPB 
Interrupt to become active. It is then up to the adapter 
and/or system to determine the error recovery proce 
dure. 

Note: Performing Step 3 without performing Step 1 
may cause a NOT READY condition on the Micro 
Channel, which may extend greater than 3.5 usec. This 
may then cause either a Micro Channel Timeout or 
Channel Check condition. 

Note: Performing Step 4 after Step 3 has started and 
before Step 3 has completed will cause the MIC to 
terminate the Queue Write operation and a Queue Error 
for the Qi defined in the QWCR will be indicated to 
the Local Processor. 

Note: Method “A” and Method 'B' should NOT be 
used together in a system. 

Note: See the Queue Error Register defined on the 
LPB for additional errors which may be reported. 
Queue Access from the MIC 
The MIC has direct access to the Queue Manager 

function. This allows the MIC access to the Queues 
without arbitrating for the MC or LPB. A priority 
scheme within the MIC resolves contention for the 
Queue Pointers requested by the LPB or MC. 
Specialized Queues and Registers 

Besides the QM function the MIC supports three 
specialized Queues and a specialized register. The three 
Queues are as follows; 
Queue “D” 

MIC Command Queue. This Queue stores MCWs 
which are used to initiate MIC Commanded 
Transfers. 

Queue “E” 
Unsolicited Status Word Queue. This Queue stores 
USWs which have been generated by the MIC as 
a result of an error. 

Queue “F” 
Free Block List Queue. This Queue stores starting 
pointers for available blocks of memory within 
the LDB. 
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The specialized register is called the Job Pending 

Register (JPR). This register is used by either a LPB or 
MC device to determine which of the 16 available 
Queues contains a pending Queue entry or job. 
MIC Command Queue 
The MIC automatically monitors the status of the 

MIC Command Queue (MCQ), Queue “D.” If a Queue 
entry is appended to this Queue then the MIC initiates a 
Commanded Transfer. See 'Commanded Transfers' 
for more details of a Commanded Transfer. The MCQ 
can hold up to 1KMCWs. 
Free Block List 
The MIC manages a special Queue defined as the 

LDS Free Block List. This Queue contains 4 byte 
entries which represent the starting address of a range 
or block within the LDB. Up to 1KLDS Blocks can be 
defined for use. The size of these blocks is dependent on 
the addresses defined in the FBL Queue and the avail 
able memory space. 

Note: Since only 1 Mbytes of data is accessible within 
LDB, only the 20 least significant bits of the 4 byte Free 
Block entry are valid. 
The FBL is controlled in the same manner as the 

other Queues. The FBL can be loaded during initializa 
tion with 4-byte Queue entries equivalent to the starting 
physical address of the Block in LDS. An interrupt does 
not need to be assigned for the FBL. 
A free block can be removed from the FBL by either 

a LPB Queue Read operation, a MC Queue Read opera 
tion, or reading of the MC Free Block Register. Once 
removed it is the responsibility of the removing device 
to utilize and manage this block. 
When use of the block is no longer required, the 

block can be added back into the FBL, by either a LPB 
Queue write or MC Queue Write operation. This then 
makes the block available for use by another device. 

Note: The MIC does not automatically return a block 
to the FBL. It is the responsibility of the Local Proces 
sor or System Processor to initiate a block return to the 
FBL. 
MC Free Block List Register 
To improve performance of MC devices which need 

access to this Queue, the MIC prefetches four 4-byte 
entries from the FBL. This allows a MC device quick 
access to Free Blocks in the MC I/O Address space. 
The four 4-byte entries are temporarily stored within 
the Prefetch Free Block Buffer until read by a MC 
device. A 4-byte Prefetched Free Block can be read 
from the MC Free Block List Register starting at a MC 
I/O Address of MIC CR MC I/O Base Ad 
dress--'01100. FIG. 45 illustrates this register relative 
to the MC I/O Address space. 
The MC FBL Register provides access to the FBL 

for any MC device. The FBL Register provides a 4 
byte address which represents the starting MCMemory 
address to a block within the LDB. Reading this regis 
ter removes one of the 4-byte Free Block entries from 
the Prefetched Free Block Buffer, causing the MIC to 
begin prefetching another, automatically. 

Since only 20 bits are valid from the Free Block List, 
the MIC must construct a valid 32-bit MC Memory 
Address. The upper 12 bits are taken from the LDBMC 
Memory Base Address Register in POS3 and 4, Subad 
dress 01.01. The lower 20 bits are taken from the Free 
Block List. 

In addition, the MIC provides a status bit for the MC 
device. This status bit indicates whether the Free Block 
Entry is valid or not. The Status can also be used to 
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determine whether a FB fetch retry is necessary or 
termination of the transfer is required. 

Note: The least significant 2 bits of the FBL Entry 
has been used to represent the FB Status. In doing so, 
this forces all Free Blocks read from the MC via the 
FBR to be on 4 byte address boundaries. Note: The MC 
FBR is a READ ONLY register. 

Job Pending Register 
The Job Pending Register (JPR) is used to indicate 

whether a Queue contains a Queue entry or not. When 
Queues share a hardware interrupt, the JPR can be used 
to determine which Queue is causing the interrupt. The 
JPR is 16 bits wide and contains a bit for each Queue. 
The JPR is accessible from either the LPB or the MC. 
The JPR is located at LPB I/O address="1140 and at 
MC I/O address="CRMC I/O Base Address:10000. 
Note: The JPR can only be written from the LPB when 
LPM-O. 
Control, Status, and Initialization Registers 
The MIC allows devices on the LPB and the MC to 

access necessary initialization, control, and status regis 
ters. Registers related to LPB operations are contained 
within the LPB Memory and I/O address space. Regis 
ters related to MC operations are contained within the 
MC POS Registers. 
LPB 
A LPB device can have access to some of the MIC 

control registers as well as status and initialization regis 
ters. The control registers are defined in the LPB mem 
ory space and reside within addresses "1002 through 
“100F and addresses 1100 through 1146. Note: To 
access these control registers, -CSEL MUST be ac 
tive. 
A status register is available to a LPB device via the 

LPB I/O space which indicates possible Queue errors 
which may have occurred. This register is called the 
Queue Error Register (QER) and can be found at LPB 
I/O address 1142. The QER can only be written when. 
LPM-'0'. 
MIC Programmable Option Select (POS) Registers 
The MIC provides software programmable system 

configuration registers which replace hardware 
switches and jumpers. These registers are referred to as 
Programmable Option Select (POS) registers. The POS 
registers provide configuration and identification data 
for the MIC and system processor. These registers are 
loaded with configuration information immediately 
after system power on reset (POR). The System Config 
uration protocol is used to access the POS registers. 
The POS registers consist of eight bytes located at POS 
I/O addresses XXX0 through XXX7. Several of the 
POS registers contain required information. 
The POS registers also support the use of the Sub 

Address feature. The Sub-Address feature allows access 
to additional registers. These additional registers in 
clude programmable LDS size, MC memory slave ad 
dresses for accesses to LDS, Interrupt assignments, 
timers, and MC I/O slave addresses for accesses to the 
Queues and status. Sub-Addressing is also used to access 
the Vital Products Data (VPD), necessary for proper 
MC identification. 
An adapter ADF file provides the initial values of all 

POS registers. The system setup procedure is responsi 
ble for loading the values from the ADF file to nonvola 
tile system memory. The system is also responsible for 
conflict checking of keywords. During the system. POR 
setup procedure, the values for an adapter's POS regis 
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ters are read from the nonvolatile RAM and written to 
the adapter. 

Note: 
1. Current PS/2 setup software is not capable of ac 
cessing or utilizing the POS sub-address feature. 
Instead, the adapter programmer must either incor 
porate the loading of these registers in either the 
device driver or as a separate executable program. 

2. The GO bit MUST be set by the LP before the 
MIC can respond to any MC activity, this IN 
CLUDES POS registers. The GObitMUST be set 
within lmsec from system POS or the MIC will 
indicate a NOT READY condition on the MC. 

3. A System Reset or STI Reset Instruction to the 
MIC will cause the contents of all POS Registers 
which contain a default state, to return to their 
default states. 

POS 0/1 and VPD Initialization 
Information required for POS registers 0 and 1, as 

well as the VPD is located in LPS. The VPD LPB Base 
Address register, defines the starting address where the 
values for POS reg 0/1 and VPD can be found. This 
base address register MUST be initialized before the 
system setup software accesses these registers. 
When the system setup procedure reads either POS 

register 0, 1 or the VPD registers, the MIC will fetch 
the required data from LPS using the VPD base ad 
dress. This operation requires that the MIC arbitrate for 
the LPB and become a LPB Master. The adapter de 
signer must guarantee that the MIC can access this data 
within lmsec, per MC specifications. 
Testability Interface 
The STI is used as a serial test interface to the MIC. 

The STI allows access to the MIC's Self Test and Scan 
control logic. Having access and control to registers 
and functions allows for improved test and debug of the 
MIC. The STI allows for two different operations to be 
performed; 

1. Instruction/Status Operation 
2. Scan Operation 
These modes allow the capability for self-testing to be 

performed. Self-test can be used to determine the state 
or health of the MIC chip itself. 
Self-test 

Self-test verifies a large percentage of the MIC's 
internal logic by using internal scan strings, clock con 
trol logic, a Random Pattern Generator (RPG) and a 
Multiple Input Signature Register (MISR). Using a 
known starting value within the RPG, a signature can 
be generated in the MISR which reflects the state or 
health of the MIC chip itself. 
What has been described is a queue pointer manager 

providing a queue management facility partially imple 
mented in hardware, resulting in a relatively inexpen 
sive queuing mechanism with increased performance 
over a software managed queue structure. 
Although a specific embodiment of the invention has 

been disclosed, it will be understood by those having 
skill in the art that changes can be made to that specific 
embodiment without departing from the spirit and the 
scope of the invention. 
What is claimed is: 
1. A controller for high speed communication of 

information between a Micro Channel bus, a general 
purpose local processor bus and a dedicated local data 
bus comprising: 

a first interface means for transceiving information 
between said Micro Channel bus and said control 
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ler said interface means transceiving data and men 
ory address information from said Micro Channel 
bus; 

a second interface means for transceiving memory 
address information between a local processor bus 
and said first interface means; 

a third interface means for transceiving data informa 
tion between a local data bus and said first interface 
means; 

an output buffer connected between said third inter 
face means and said first interface means for han 
dling data exchanges between the dedicated data 
bus and the Micro Channel bus; and 

an input buffer connected between said second inter 
face means and said first interface means for han 
dling control information between the Micro 
Channel bus and the local processor bus; 

and means for operating the controller as a master 
device for bilateral movement of data between the 
Micro Channel bus and the dedicated local data 
bus; 

whereby said controller processes multiple master 
and/or slave packets of information concurrently. 

2. A data communications interface controller for 
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address generation means for providing address gen 

eration during transfers of data between the exter 
nal bus and the local data bus; 

a Self-test means for diagnostic and debug operations 
within the interface controller; and 

means for operating the controller independently for 
movement of data between the external bus and the 
local data bus whereby the controller processes 
multiple packets of information concurrently. 

3. The interface controller of claim 2 having pro 
grammable memory and I/O space wherein registers 
configurable via software replace switches and wire 
jumpers to reconfigure the interface controller. 

4. The interface controller of claim 2 wherein control 
of data transfers is taken over by one of the buses, the 
interface controller acting as a slave device. 

5. The interface controller of claim 2 wherein the 
data is streamed in or out at a high rate by direct mem 
ory storage of the transceived data. 

6. The interface controller of claim 2 having error 
detection/correction to report error messages and insti 
gate protocols to maintain performance during the pres 
ence of an error. 

7. In a data processing system having a plurality of 
communication buses, apparatus for high speed trans 
ferring of packets of information comprising: 

controlling communication of information between an 
external bus, a local processor bus and a local data bus 
comprising: 

local processor means for receiving and interpreting 30 
data commands from an external bus and transceiv 
ing data commands to a local processor bus; 

local data means for receiving and storing data off of 
the external bus and transceiving said data to a 
local bus; 

master execution means responsible for controlling 
and coordinating all command and transfers be 
tween and within the interface controller; 

error detection and control means for monitoring and 40 
correcting error conditions; 

queue management means responsible for controlling 
hardware pointers indicating the locations of pend 
ing read/write operations; 

internal buffer means including a first set of buffers 45 
connected between the external bus and the local 
processorbus and a second set of buffers connected 
between the external bus and the local data bus, the 
first set of buffers handling the exchanges of data 
control information between the external bus and 
the local processor bus, the second set of buffers 
handling data exchanges between the external bus 
and the local data bus to speed match and coordi 
nate concurrent master and/or slave data transfers 55 
between the external bus, the local processor and 
the local data bus; 

35 

50 

65 

means including a Micro Channel data interface, a 
Micro Channel address interface, and Micro Chan 
nel control means for interfacing with a Micro 
Channel bus to transceive information therebe 
tween, the information containing command in 
structions and data blocks; 

means including an address/data interface for direct 
ing information containing command instructions 
for transceiving in a local processor bus; 

means including a data interface, an address interface, 
a local data bus interface, and a pre-fetch buffer for 
routing information containing only data blocks for 
transceiving in a local data bus, the pre-fetch buffer 
providing quick Micro Channel access to an avail 
able block of memory in another controller; 

a first buffer means connected between the address 
/data interface and the Micro Channel data inter 
face and including a read buffer and a write buffer 
for buffering command instruction information to 
or from said local processor bus; 

a second buffer means connected between the local 
data bus interface and the Micro Channel data 
interface and including an input data buffer and an 
output data buffer for buffering data blocks to or 
from said local data bus; and means for indepen 
dently operating the controller as a master device 
for the movement of data between the Micro Chan 
nel bus and the local data bus; 

whereby the apparatus transceives packets of infor 
mation simultaneously. 

k . . . . 


