
United States Patent (19)
Swarts et al.

(54)

(75)

(73)

21
22

(63)

(51)
(52)

(58

(56)

MICRO CHANNELINTERFACE
CONTROLLER

Inventors: Jeffery L. Swarts, Falls Church;
James S. Fields, Jr., Centreville; Guy
L. Guthrie; Denis A. Smetana, Jr.,
both of Manassas, all of Va.

Assignee: International Business Machines
Corp., Armonk, N.Y.

Appl. No.: 101,793
Fed: Aug. 2, 1993

Related U.S. Application Data
Continuation of Ser. No. 755,477, Sep. 5, 1991, aban
doned.

Int, Cl'.. G06F 3/00
U.S. C. 395/325; 395/725;

364/232.8; 364/239;364/228.3; 364/241.9;
364/240.8; 364/240.9; 364/DIG. 1

Field of Search 395/200, 275,325, 800,
395/725

References Cited
U.S. PATENT DOCUMENTS

4,328,543 5/1982 Brickman et al. 364/200
4,549,263 10/1985 Calder 364/200
4,654,778 3/1987 Chiesa et al. 364/200
4,665,483 5/1987 Ciacci et al. 364/200
4,800,523 1/1989 Gerety et al. 395/325

LOcal Data
Store (LDS)
DSIF

Micro
Channel Local DataBus (LDB)
interface
Controller Local Processor Bus (LPB) Or
(MIC)

Local
ProceSSOr
Store (LPS)

USOO5379386A

11 Patent Number: 5,379,386
45 Date of Patent: Jan. 3, 1995

4,821,180 4/1989 Gerety et al........................ 364/200
4,837,189 6/1989 Burrus, Jr. et al. 364/200
4,935,868 6/1990 Dulac 364/200
4,975,828 12/1990 Wishneusky et al. 364/200
5,063,494 11/1991 Davidowski et al. 395/800
5,070,449 10/1991 Dawson et al. 395/325
5,088,022 2/1992 Iwata 395/325
5,121,390 6/1992 Farrell et al. 395/275
5,247,616 9/1993 Berggren............................. 395/200

Primary Examiner-Allen R. MacDonald
Assistant Examiner-Tariq Hafiz
Attorney, Agent, or Firm-Joseph C. Redmond; Mark A.
Wurm

57 ABSTRACT
A Micro Channel integrated circuit design capable of
controlling high speed data and control transfers be
tween a Micro Channel bus, a local processor, and a
dedicated local data bus. The interface controller uti
lizes enhanced features of the Micro Channel and data
buffering to achieve high speed data communications
with various bit size Micro Channel devices. Queued
commands are handled by flexibly programming the
interface control operations. Interface control hard
ware increases the processing speed of data transfers by
implementing performance critical functions of queuing
in hardware. Extensive error checking and reporting
and self-test give the interface controller advance func
tions as an input/output processor.

7 Claims, 48 Drawing Sheets

External
interface

113

IO
interface

ProcessOr

Micro Other
PrOCeSSOr Devices
(80C186,

108

U.S. Patent Jan. 3, 1995 Sheet 1 of 48 5,379,386

FIG. 1

MAINFRAME

100

O6

Sheet 3 of 48 5,379,386 Jan. 3, 1995 U.S. Patent

§§)- - - - --

OW

U.S. Patent Jan. 3, 1995 Sheet 5 of 48 5,379,386

FIG. 5

MC Micro Channel Data
6. Interface

70 13

Micro Channel Address
Interface

70 132

Capturing
Synchronizing

Logic
70

State
Machine C

172

Data
Walidation

174

Micro Channel interface
Control
134

Micro Channel interface
130

U.S. Patent Jan. 3, 1995 Sheet 6 of 48 5,379,386

+CMDB

--STRA

+STRB

U.S. Patent Jan. 3, 1995 Sheet 8 of 48 5,379,386

FIG. 6E

+D(0:31)|POx (36 Ea 136->+D(0:31)(to MC)
+A(0:31)/P Ox (36 dat 136->+A(0:31) (to MC)

ck
MUX 230

+LSSD TEST EN Sel
+C a0
+B a1 dO
+MASTER RD d

+MC MASTER- A La S-20
+SLAVERDY

XOR tralian XNOR -CMD St o-dat
REG

St
clk

(from MC) Clk

LSSD TEST EN
+C>
+B)
SD STB >
(from MC)

226
LSSD TEST EN
+C>

-SD STB
(from MC)

U.S. Patent Jan. 3, 1995 Sheet 9 of 48 5,379,386

5,379,386 Sheet 10 of 48 Jan. 3, 1995 U.S. Patent

- - - - - - - - - -> = ? ? = - - *** -I-T-T) –_ IN?Snº W_-)_ DHusna.
W

VIVG|HOGV

5,379,386 Sheet 11 of 48 Jan. 3, 1995 U.S. Patent

siw—[ET?] [757] [????] [??WH-VIVOJEGOV

5,379,386

S/W|00|00||—|||||Dy]–VIyalagay
Sheet 12 of 48 Jan. 3, 1995

TESO

U.S. Patent

Sheet 13 of 48 5,379,386 Jan. 3, 1995 U.S. Patent

W —??äTOG????????]—vivaladav
as a s is is

LI '?H

U.S. Patent Jan. 3, 1995 Sheet 14 of 48 5,379,386

FIG. 12

+5V

RARBI(L) b RARBO(L) RARBI
X >

ROB(L)

244

Sheet 15 of 48 5,379,386 Jan. 3, 1995 U.S. Patent

NG+
AG+

AG+

U.S. Patent Jan. 3, 1995 Sheet 16 of 48 5,379,386

FIG. 14

SysReset Startup NxtSt 1b
from any
State

-
Shut)Wnt

Shut)Wn2

States
Error Detect

(ED)

State2
Token Master

(TM)
2nd Tok

TokRel

StatRpt > NxtSt 2b

ShutDwn1 = Errin & Errin D1 & TRT Exp
ShutDwn2 = Errin & Errin D1 & 2nd Tok
Errrpt = Error Reported
StartUp = Erin & Erin D1 & TokOut
NxtSt 1b = ShutDwn1 & TokDet & THT Exp
TokRe = TokOut & Shut Wn2 & 2nd Tok

TokDet = Tokin & ShutDwn1& THT Exp
NxtSt 2b = ShutDwn2 & TokRel& 2nd Tok
TRT Exp = Token Hold Timer Expired
2nd Tok = Tokn

U.S. Patent Jan. 3, 1995 Sheet 17 of 48 5,379,386

FIG. 15A

MIC DB interface

e-e- RARBI(L)
RARBO(L)

Tokin(L)-C

Take Token(H)-

in Token(L)->

TokOut(L)-K
Robin(L)-C C

Activate ROB(L)
LDB ROB(L)

> REG

Errin D2(L)-C K

| LDB Err(L) Erin D1 (L)-z
Errin(L)-C wwn

> REG Activate Err(L)

REC = Receiver, REG = Register, OC = Open Collector Driver, DRV = Driver
in Token(L) = State0& Ring Master & Errin & Errin D1 & TokOut +

State2 & Tokln & RelOwn)

Take Token(H) = State1 & Req8us & TokDet+State1 & TRT Expl+
State2+ State3+ SysReset +
State08 (Errin + Errin D1+Errin D2)

Activate ROB(L)= Reqbus & (State1 & Tokin) + (State2 & TokOut))
Activate Err(L) = State3+ (State1 & TRT Exp)+(State2 & 2ndTok)
RelOwn = Release Ownership = State2 & TokOut & (THT Exp + Req8us)

RelOwn = Release Ownershhip
RPE = Ring Participate Enable
Reqbus = Internal chip request to use bus
Ring Master = initialization register that tells device to

start ring if it was down.

5,379,386 Sheet 18 of 48 Jan. 3, 1995 U.S. Patent

U.S. Patent Jan. 3, 1995 Sheet 20 of 48 5,379,386

FIG, 17

25 MHz
Ref ' ' n n a O B.

Dev 1 RARBI(L) - Tokensent to Dev
Dev2 RARBO(L) Token sent to Dev2-el

------ ge ommanmawr

+RD-WR Z Device F. Device 2
L a 0

HALE(L) Device Device 2
BE(0:3)(L) T Device D Device 2

LDB Addr(0.9) - Device HDevice2
DBData(0:31) - Device H Device 2

- c1 (cycle 1)
- defined by Device 1 passing the token on to the next device
- last cycle Device 1 can drive HALE,R-W, and ADDR(0.9)

(Note: HALE is driven inactive to prepare for release)
- C2 (cycle 2)

- last cycle Device 1 can drive or have LDS drive DATA(0:31)
- C3 (cycle 3)

- 1st cycle Device 2 can drive ADDR(0:9), HALE, and R-W
- C4 (cycle 4)

- 1st cycle Device 2 can drive DATA(0:31) and BE(0:3)

5,379,386 Sheet 22 of 48 Jan. 3, 1995 U.S. Patent

: ::: : : : :: : : :?0}}

| Tl |ZHW G?

6), "50|-||

U.S. Patent Jan. 3, 1995 Sheet 24 of 48 5,379,386

FIG. 21

Queue Entry (Job) Pending in Q#D

Fetch MCW in QD

Fetch MCB in LPB Memory

4 bytes
300

16 bytes
301

WAT
V

Flag Checks 302
NOP
BUF Read FB from

MCIO Addr FBS
Fetch Free Block 4 bytes

FMT 303
LDB <-> MC

E. se max) Defined by OPE Flag
304

8 bytes
Q# = MPC CD in MCB

305

PST

PoSt MPC to Remote MIC
MC Queue Write Operation

PC

PostMSW to LPB Queue
LPB Queue Write Operation

Chain or Jump?

NO

MCW Complete

8 bytes
Qi = SD in MCW

306

307

U.S. Patent Jan. 3, 1995 Sheet 25 of 48 5,379,386

FIG. 22

MCWPB Addr= QSEG: 1101: QPPointer: 00
V

MIC Command Word (MCW)

ROID RD | Device D value
30

MCBPB Addrs MCPB Address: 0000
V

MIC Control Block (MCB)

MC Dev Ctrl O. Addr o MPC QID

Source Address (MSB) MCFBLIO Addr=
MCDev Ctrl IO Addr: 01100

V

Remote MICFB Reg
314

Source Address (LSB)

case illele allele TargetAddress (MSB)

Target Address (LSB)
Block Length

—
Y - MPCMCIO Addr=

MSWPB Addre OSEG: SD: QPointer: 00 MCDev QACCIO Addr: 01000
MPC Renote Device Q Nuns MPC QD

V

Micro Channel Post Command(MPC) V

38 MIC Status Word (MSW)

to RD Device ID
oloo MXSMSTATololo FIMxSMRC
oooooooooooooooo

36

Dev Adr RID Device ID
Cmd/Stat Flag TargetAddr CSB
TargetAddress (LSB)

Block length

>

U.S. Patent Jan. 3, 1995 Sheet 26 of 48 5,379,386

FIG.23

msb lsb
ibn 0 1 2 3 4 5 - 6 7 8 9 10 11 12 3 4 5
Wen 15 14 13 12 11 10 9 8 7 6 5 4 3 2 O

Word 0 Return Q D Reference D lsb

Word 1 MIC Control Block Address msb

Word Bits Name: Description

Return Queue identification (RQID) number:
indicates the Queue number which the MIC will return the
MSW to at the end of the COmmand Transfer.

Reference identification (RID) number
Software pointerto reference the MCW with the MSW & MPC.
Note: This field has no relevance to MIC Operations and

can be redefined and used by Software.

Device identification (DiD) number.
Software pointer or device referencefield.
Note: This field has no relevance to MIC Operations and

can be redefined and used by Software.

MIC Control Block Address (MCB Addr):
The upper 16-bits of the PB memory address where
the MCB or first MCB in a chain can be found. The
starting MCB Address is generated by the following;
MCB LPB Address = MCB Address:0000

U.S. Patent Jan. 3, 1995 Sheet 27 of 48 5,379,386

FG, 24

msb lsb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 4 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPE PCJMPCHNNOPFMTBUFPSTWAT 00 0 ABM
McDevice Queue control VOAddress O MPCQueue ID

command status Flags oooooooo
Target Address (MSB)
Target Address (LSB)
Block Length

ibm
Ven

Word O

Word

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

lsb

msb

Word Bits Name: Description

Operation (OPE):
This field defines the data movement during the
Commanded Transfer.
000 = DB to Micro Channel I/O Address space.
001 = LDB to Micro Channel Memory Address space.
010 = Micro Channel I/O Address space to LDB.
011 = Micro Channel Memory Address space to LDB.
1XX= LDB to DB, wrap operation.
Note: The CEN field in POS register 2 MUST be disabled

when OPE=XX, LDB to LDB wrap operation.
CEN MUST be enabled When OPE='OXX.

Program Controlled interrupt (PCI):
O=The MIC will NOT posta MSW to a Queue at the end of

the Commanded Transfer unless there was an error.
1 = The MIC will build and posta MSW to the Queue number

defined in the RQD at the end of the COmmanded Xfer.

U.S. Patent Jan. 3, 1995 Sheet 28 of 48 5,379,386

FIG.25

Word Bits Name: Description

Jump (JMP):
0 = No jump.
1 = The MIC will use the least significant 16-bits of the

Source Address field informing the address of the
next MCB.

Chain (CHN):
O = No chaining.
1 = The address of the next MCB is equal to the Current

starting MCB address plus 16 bytes.

No Operation (NOP):
0 = No no-op.
1 = MIC will only process the PC flag. No actual data or

COmmanded Transfer will OCCUr.

Format (FMT):
This bit indicates whether data movement during the
COmmanded Transfer will OCCUr.
O = Data Block Move operation and Status Posting

Operations enabled.
1 = Status Posting Operations Only.

Free Block Request (BUF):
O = During a Data Block Move Operation the destination

address is specified by the TargetAddress.
1 = During a Data Block Move operation the destination

address is read from the Free Block list pointed to
by the MC Device Queue Control Address.

Post Command I Status Request (PST):
O = No MPC will be sent to a MC device after

the completion of the Commanded Transfer.
1 = AMPC Will be built and Sent to the Queue defined in

MPC Queue ID field to the address defined by the
MC Device Queue Control Address after the completion
of the Commanded Transfer.

U.S. Patent Jan. 3, 1995 Sheet 29 of 48 5,379,386

FIG 26

Word Bits Name: Description

Wait (WAT):
O = The MIC will process the MCB immediately and will

Continue to read the remaining Words of the MCB.
1 = The MIC will not process the MCB and will continue

to reread MCB Word 0 until WAT=0.
Note: The MIC will reread MCB Word Oapproximately

every 256 clock cycles (10.24useC), automatically.

11 - 13 i Reserved at a value of 'O'.
4 - 2 V

14-15 i Address Burst Management (ABM)
- 0 V This field defines the ABM size used for the Commanded

0 - 11 i
15 - 4 V

Transfer Writes. These bits Override the ABM field defined
in the MCPOS Register 4. Sub-Address 0000.

12-15 i
3 - 0 V

r

OO = ABM defined in the POS Register (default)
01 = 16 byte address boundary.
10 = 32 byte address boundary.
11 = 64 byte address boundary.
Note: This field is only valid when OPE=00X.

MC Device Queue Control /O Address:
This field defines the starting MCI/O Address location
where the MIC can access control registers necessary to
Complete a Queue or Free Block Fetch Operation. These
control register should have the same format as the MIC's
I/O Control Registers (QRC, QWC, QD, and FB registers)
and should be located at the following address offsets;
QRCR = 0000, QWCR = 0100, QDR = 1000, FBR = 1100.

Micro Channel Post Command Queue ID (MPCQID):
This field defines the Queue number On another MC device
where the MPC can be posted to. The receiving Queue's
Byte Count is 8 bytes.

Source Address (MSB):
The high Order address bits used to Source data which
will be moved during the Commanded Transfer.
FMT MUST equal 'O', to use this field.

U.S. Patent Jan. 3, 1995 Sheet 30 of 48 5,379,386

FIG. 27

Word Bits Name: Description

Source Address (LSB):
The low Order address bits used to SOUrce data which will
be moved during the Commanded Transfer. Also, these bits
define the MCB LPB Address When JMP='1'.

Command I Status Flags:
Flags used for Command I Status transfers. This word
specifies no MIC function and can be used for software
defined functions and flags.

8- 15 i Reserved at a value of '0'.
7- 0 V

- 15 9 (MSB) O i TargetAddress (MSB):
15-0 V The high Order address bits used to target data which will

be moved during the Commanded Transfer. Note: the MPC
does not use the 8msb Of this field.

TargetAddress (LSB):
The low order address bits used to target data which will
be moved during the Commanded Transfer.

Block Length:
The number of bytes which will be moved during the
Commanded Transfer.

5,379,386 Sheet 31 of 48 Jan. 3, 1995 U.S. Patent

8

X

ve
O

H

l

xxx xxx..

IWM || 1Sd six X x X x > X >

U.S. Patent Jan. 3, 1995 Sheet 32 of 48 5,379,386

FIG.29
msb lsb

ibm 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 15
Wen 15 14 3 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 100 O MXSMState o O O FBR MXSMRC
Word 2 OOOOOOOOOOOOOOOO
Word 3 MC COntrol Block Address mSb

Word Bits Name: Description

0-3 i These bits define the source Queue number of the MSW,
15-12 v which for the MIC is Queue # D (1101")
4-7 i Reference identification (RID) number:

- 8 V Software pointer to reference the MCW with the MSW.
8- 15 i Device ldentification (DID) number:
7- 0 V Software pointer to reference the MCW with the MSW.
0-2 i Reserved at a value of '0'.

15 - 13 V

3-7 i Master Execution State Machine State:
12-8 V This field defines the state which the Master Execution

Unit was in at the end of the Commanded Transfer.
if no error OCCurred then MXSM State='00000'.

8-10 i Reserved at a value of 'O'
7-5 V

(FBR) 1 i Free Block Return (FBR):
4 V This indicates that an error has occurred which required

the MC to return a Fetched Free Block from another MC
device. if MCB field BUFs'O' then this field is invalid.
O = The MIC was unsuccessful in returning the FB to the

MC device it was fetched from.
1 = The MIC was successful in returning the FB to the

MC device it was fetched from.

1 12-15 i Master Execution State Machine Return Code:
3 - 0 W This field indicates the Completion status of the

Commanded Transfer Operation. *
0-15 i Reserved at a value of 'O'.
15-0 V

0-15 i MCB Address:
15 - 0 V The upper 16-bits of the LPS memory address where

the MCB Or last MCB was used for the COmmanded Transfer.

U.S. Patent Jan. 3, 1995 Sheet 33 of 48 5,379,386

FIG. 30
msb lsb

ibm 3. s 3 : 3| | | | | | | | |'' Wen 15 4 3 12 11 10 9 8 7 6 5 4 3 2 1 0

Word OMC Source ID Reference ID | Device ID isb
Word 1 Command status Flags TargetAddress (MSB)
Word 2 Target Address (LSB)
Word 3 Block Length msb

Word Bits Name: Description

MCSOurce ID/Device Address:
These bits define the MICS Micro Channel Device Address.
These bits are equal to the POS Reg2 Device Addrfield.

Software pointer to reference the MCW with the MSW.

Device identification (DID) number:
Software definable.

9 Command Status Flags:
Flags used for Command I Status transfers. This word
specifies no MIC function and can be used for software
defined functions and flags.

Target Address:
These bits define the lower 24bits of MC Men Addr Where
the MIC moved datato. This address field is either the
target address defined in the MCB or the FB Address
fetched from the MC device, depending on the MCB BUF field

FreeBlock Error (FER):
This field defines whether the target address was really
used as the target address. Only valid if BF='1'.
O = Target Address valid.
1 = Target Address being returned, unused address.

Commanded Transfer Contained an error and the
FreeBlock is being returned.

i Block Length:
V The number of bytes which were moved during a completed

CT or were supposed to be moved for the CT.

5,379,386 Sheet 34 of 48 Jan. 3, 1995 U.S. Patent

SS0/ppW 80T
(Xeu) sº?Áq W! > 00000000: 00000000 : 0000

SOIT SOIT SOT

!!!!!!!! : ! !! !! !!! : ! ! !! !! !! !! !! !! !! !! <
0??????? : | | | | | | | | | | | | | | | | | : | !! !! !! !

???????? : ! ! ! ! ! ! ! ! ! ! ! ! |}}}}}}}|: }}}}}}}}}}}}}}}} |-----|—| 00000000:00000000:0000HHHH : HHHHHHHH L—— 60H SS0/ppW 9SegÁJOuJ0W OW GOT 10000000:00000000: 00000000 : 00000000 00000000 : 00000000 : 00000000:00000000 <

5,379,386

!!!!!!!! : ! !! !! !! ! ! ! ! !! <

0? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? : ! ! ! !

!3SS0/ppW 80T60H 60S 00W GQT00000000 : 0000?000 : XXXX 00000000 : 0000HHHH : HHHHM0pu?NA SOIT00000000 : 00000000 : XXXX

510000000:00000000 : 0000 00000000:00000000 : 0000 < L—t?

U.S. Patent

U.S. Patent Jan. 3, 1995 Sheet 36 of 48 5,379,386

FIG. 33

0 1 2 3 4 5 6 7 ibn
LPB Memory Address 7 6 5 4 3 2 1 0 Ven

> 0000 : 00000000 : 00000000

0000 : 00000000 : 0000000
IR byte QIR Seg Q Q "l

XXXX: 0000001 : 00000000 Queue 0
initialization

XXXX: 000000 : 00000011 Register

XXXX: 000000 : 0000000 Queue 1 <
initialization 4 Bytes

XXXX: 000000 : 00000111 Register |
1Mbytes ; 64 Bytes

XXXX: 0001000 : 0011000 Queue E
initialization

XXXX: 0001000 : 0011011 Register

XXXX: 0001000 : 0011100 Queue F
Initialization

XXXX: 0000001 : 00111111 Register |
-

don't Care

11 : 11111 : 11111110

11 : 1111111: 11111111

U.S. Patent Jan. 3, 1995 Sheet 37 of 48 5,379,386

FIG. 34
msb lsb

ibn 0 1 2 3 4 5 - 6 7 8 9 0 1 2 13 14 15
Wen 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word OO 0 QBC Queue Read Pointer (QRP) QRPs
Word Queue Write Pointer (QWP) QWPS

Word Bits Name: Description
0-1 i Reserved at a '0' level.

15 - 14 V

2-3 i Queue Byte Count (QBC):
Defines the number of bytes for a Queue entry.
00-4bytes (1 KQEntries) 10 - undefined
O1-8bytes (512Q Entries) 11-16 bytes (256 Q entries)

Queue Read Pointer (QRP):
Defines the Current value of the Queue ReadPointer.
For 4 byte Queues all 10-bits are valid, for 8 byte
Queues only the upper 9-bits are valid, and for 16
byte Queues Only the upper 8-bits are valid.
Non-valid bits must be set to 'O'.

Queue Read Pointer Status (QRPS):
Defines the current status for the ReadPointer.

00 = Pointer is available and Valid.
01 = Pointer is temp. being used by another PB device.
10 = The Queue is empty.
11 = The Queue is not enabled, Pointeris invalid.

Queue interrupt (Q):
Defines the interrupt used to indicate that a Queue
Contains a Queue Entry.
0000 - Disabled 1000-MCIRQ(O)
0001 - Reserved 1001 - MCIRQ(1)
000 - Reserved 1010-MCIRQ(2)
001 - Reserved 1011 - MC1RQ(3)
01.00-LPBINT(0) 1100-Reserved
01.01-LPBINT(1) 1101 - Reserved
011O-LPBINT(2) 1110- Reserved
O111 - LPBINT(3)

Queue Write Pointer (QWP):
Defines the Current value of the Queue Write Pointer.
For 4 byte Queues all 10-bits are valid, for 8 byte Queues
Only the upper 9-bits are valid, and for 16 byte Queues
Only the upper 8-bits are valid.
Non-valid bits must be set to '0'.

Queue Write Pointer Status (QWPS):
Defines the Current status for the Write Pointer.
00 = Pointer is available and valid.
01 = Pointer is temp. being used by another PB device
10 = The Queue is full. r
11 = The Queue is not enabled, Pointeris invalid.

1111 - Reserved

U.S. Patent Jan. 3, 1995 Sheet 38 of 48 5,379,386

FIG. 35

O 2 3 4 5 6 7 ibn
PBO. Address 7 6 5 4 3 2 1 0 Ven
--

> 00000000 : 00000000

00000000 : 0000000
QPR Byte

QPR Seg Q# h
- - - -
000000 : 00000000 Queue 0

Pointer 0000001 : 0000001 Registers

0000001 : 00000100 Queue 1 g
Pointer

0000001 : 000001 Registers

64Kbytes

0001000 : 00111000 Queue E
Pointer

000000 : 00111011 Registers

O001000 : 00111100 Queue F
Pointer

000000 : 00111111 Registers g

11111111 : 111110

11111111 : 11111111

U.S. Patent Jan. 3, 1995 Sheet 39 of 48 5,379,386

FIG. 36
msb lsb

ibn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Wen 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 0 Queue Read Pointer (QRP) QRPS
Word 1 Queue Write Pointer (QWP) Q WPS

Word BitS Name: Description
0-3 i Reserved.

15 - 12 W

4-13 i Queue Read Pointer (QRP):
11 - 2 V Defines the Current value of the Queue Read Pointer.

For 4 byte Queues all 10-bits are valid, for 8 byte
Queues Only the upper 9-bits are valid, and for 16
byte Queues Only the upper 8-bits are valid.
Non-Valid bits must be Setto 'O'.

10 = The Queue is empty.

14-15 i
1 - 0 V

11 = The Queue is not enabled, Pointer is invalid.

0-3 i Reserved.
15 - 12 W

Queue Write Pointer (QWP):
Defines the Current Value of the Queue Write Pointer.
For 4 byte Queues all 10-bits are valid, for 8 byte Queues
Only the upper 9-bits are valid, and for 16 byte Queues
Only the upper 8-bits are valid.
Non-valid bits must be set to 'O'.

Queue Read Pointer Status (QRPS):
Defines the Current status for the Read Pointer.
00 = Pointer is available and valid.
01 = Pointer is temp. being used by another LPB device.

Queue Write Pointer Status (QWPS):
Defines the Current status for the Write Pointer.
00 = Pointer is available and valid.
O1 = Pointer is temp. being used by another LPB device.
10 = The Queue is full.
1 = The Queue is not enabled, Pointer is invalid.

U.S. Patent Jan. 3, 1995 Sheet 40 of 48 5,379,386

FIG. 37

LPB Memory Address
-- A 0 1 2 3 4 5 6 7 ibn 320NQSeg 324N-Q Pointer 9 : Ver
- --

> RRRR: 00000000 : 00000000
T- T
N byte : 322N-QNum 326QE yte

4. Kbytes

RRRR:0011111:11111111 Queue 1 -
64Kbytes

RRRR: 1100000 : 00000000

RRRR: 00001111 : 1111111

RRRR: 0001 0000 : 00000000

RRRR:1101111 : 1111111

RRRR: 1110000:00000000

> RRRR:1111111: 111111

U.S. Patent Jan. 3, 1995 Sheet 41 of 48 5,379,386

FIG 38

Read Queue Read Pointer
from MICLPBI/O Space 340

342 Verify Pointer Status (Being Used
by Another

(Queue Disabled or Empty) Unavailable LPB Device)

Available (Becomes Unavailable
for Other LPB

Construct LPB Physical
Memory Address Devices)

LPB Mem Addr=
QSEG:QNUM:QPointer:00

Read Data
4,8, or 16 bytes

PBMem Addr=
QSEG:QNUM:QPointer:00

Queue Error Reported
to LOCal PrOCeSSOr

by MIC

346

Write Queue Read Pointer
to MICLPB I/O Space

Return New QPointerValue

New QPointer =
QPointer:00+ QBC

MCVerifies QPointer 350

Queue ReadPointer
Updated & Maintained

by MIC
Queue Error Reported

to LP by MIC,
QP restored

U.S. Patent Jan. 3, 1995 Sheet 42 of 48 5,379,386

FIG. 39

Read Queue Write Pointer
360-1 from MICLPB I/O Space

8 . A (Being Used 362 Verify Pointer Status by Another
(Queue Disabled Or Full) Unavailable LPB Device)

to LOCal PrOCeSSOr
by MIC

372

Queue Error Reported

Queue Write Pointer
Updated & Maintained

366

368

370

by MIC

Construct LPB Physical
Memory Address

364

Write Data
4,8, or 16 bytes

Write Queue Write Pointer
to MICLPB I/O Space

Return New QPointerValue

MC Verifies QPointer

Available (Becomes Unavailable

LPB Mem. Addr

for other PB
Devices)

QSEG:QNUM:QPointer:00

LPB Mem. Addr
QSEG:QNUM:OPointer:00

New QPointer =
QPointer:00 + QBC

Queue Error
to LP by
QP restored

where QBC = 4.8, or 16
bVtes 374 yt

Reported
MIC,

U.S. Patent Jan. 3, 1995 Sheet 43 of 48 5,379,386

FIG. 40

0 1 2 3 4 5 6 7 ibm.
MCIO Address 7 6 5 4 3 2 1 0 Ven

00000000 : 00000000 g

00000000 : 00000001
64KBytes

CRMC/O Base Address
--
RRRRRRRR: RRR00000 <

QRC Register ; : - 4 Bytes
RRRRRRRR:RRR00011

RRRRRRRR: RRR00100 C
QWC Register ; 4 Bytes

RRRRRRRR: RRR001 C

RRRRRRRR: RRRO1000
QD Register 4 Bytes

< RRRRRRRR:RRROO

1111111 : 1111110

11111111 : 1111111

U.S. Patent

MCIO Address

MIC CRMCIOBA + 00000->

MCCRMCIOBA + 00001 -->

MIC CRMCIOBA + 0000->

MIC CR MCIOBA + 0001->

LOCation

CRMCIOBA
'00000

Bits 0-3 i
7- 4 V

CRMCIOBA
00000

Bits 4-5 i
3-2 V

CRMCIOBA
'00000

Bits 6 i
1 V

CRMCIOBA
00000'

BitS 7 i
0 V

CRMCIOBA
"00001"
through
'00011

Jan. 3, 1995 Sheet 44 of 48 5,379,386

FIG. 41

msb lsb

9| | | | | | | | I
U t

2

Status ACKAVL
Oooooooo.

Name: Description
Queue #: (ReadWrite)
The number of the Queue being requested for a Queue Read
Operation. Values of "0000'through "1111" are valid.

Status: (Read Only)
Return status On the Queue Read operation.
00- Queue Read Data Ready
01 - Queue Read Data Not Ready
1X- Queue Read Data Error

Acknowledge (ACK): (ReadWrite)
Used to clear the QRC register semaphore and make the
MIC available for another Queue Read Operation.
O = no effect (Write) O = valid (Read)
1 = clear semaphore (Write) 1 = invalid (Read)

Available (AVL): (Read Only)
This is the QRC Register Semaphore which indicates the
availability of performing a Queue Read Operation.
0 = Operation temporarily unavailable, control of

Operation has already been obtained by another user.
1 = Operation available.

Reserved at a '0' value.

U.S. Patent

MCIO Address

MIC CRMCIOBA + 00100->

MIC CRMCIOBA + 00101 ->

MIC CR MCIOBA+ 00110->

MIC CRMCIOBA + 00111->

LOcation

CRMCIOBA
"00100'

Bits O-3 i
7- 4 V

CRMCIOBA
'00100'

Bits 4-5 i
3-2 V

CRMCIOBA
'00100'

BitS 6 i
W

CRMCIOBA
'00100'

Bits 7 i
0 V

CRMCIOBA+
"00101"
through
'001

Jan. 3, 1995 Sheet 45 of 48 5,379,386

FIG 42

msb lsb
O | 1 || 2 || 3 || 4 || 5 6 7 ibn
7 6 5 4 || 3 || 2 || 1 || 0 | Ven

Queue QBCACKAVL
Oooooooo
oooooooo
OOOOOOOO

Name: Description
Queue #: (Read/Write)
The number of the Queue being requested for a Queue Write
Operation. Values of "0000'through "1111" are valid.

Queue Byte Count (QBC): (ReadWrite)
The Queue Byte Count for Queue Write operations.
00 = 4 bytes 10 = reserved
01 = 8 bytes 11 = 16 bytes

Acknowledge (ACK): (ReadWrite)
Used to clear the QWC register semaphore and make the
MIC available for another Queue Write Operation.
O = no effect (Write) O = valid (Read)
1 = clear semaphore (Write) 1 = invalid (Read)

Available (AVL): (Read Only)
This is the QWC Register Semaphore which indicates the
availability of performing a Queue Write Operation.
0 = Operation temporarily unavailable, Control of

Operation has already been obtained by another user.
1 = Operation available.

Reserved at a '0' value.

U.S. Patent Jan. 3, 1995 Sheet 46 of 48 5,379,386

FIG 43

Read QRead Semaphore
from QRCR

in MIC MC I/O Space

Verify AVL bit

Available Unavailable (AVL=0)
(AVL=1)

Write QNum
to QRCR

in MICMC/O Space

Read Status
from QRCR

in MICMC I/O Space
STAT-'0'

(Q Read Error)
STAT-'0'

STAT-'00' (Ready)
(Not Ready)

MIC Reports Read Queue Data
Queue Read Error O999aa Reg step 4
to LOCal PrOCeSSOr in MICMCIO Space p 4.

(4, 8, Or 16 bytes)

Y AVL=1 (Becomes Available)

Abort/Clear Out Read Operation
Write ACK=1
to QRCR Step 5.

in MIC MC I/O Space

MICReports Possible
Queue Errors

to Ocal PrOCeSSOr

U.S. Patent Jan. 3, 1995 Sheet 47 of 48 5,379,386

FIG, 44

Read QWrite Semaphore
from QWCR

in MICMC I/O Space

Verify AVL bit
(Becomes Available Unavailable (AVL=0)
Unavailable) (AVL=1)

Write QNum & QBC
to QWCR Step 2.

in MICMC I/O Space

Write Queue Data
to Queue Data Register Step 3.
in MICMC I/O Space

(4, 8, or 16 bytes)

Y AVL=1 (Becomes Available)

Abort/Clear Queue Write Operation

Write ACK-1
to QWCR Step 4.

in MICMC I/O Space

MIC Reports Possible
Queue Errors

to LOCal PrOCeSSOr

U.S. Patent Jan. 3, 1995 Sheet 48 of 48 5,379,386

FIG 45

O 2 3 4 5 - 6 7 ibn
MCIO Address 7 6 5 4 3 2 1 0 Ven
--

00000000 : 0000000

CRMC/O Base Address
--
RRRRRRRR: RRR00000 QRC Register

QWC Register

QDRegister

FBLRegister

RRRRRRRR: RRR00100

RRRRRRRR:RRRO1000
RRRRRRRR: RRR01100

RRRRRRRR: RRRO1111

RRRRRRRR:RRR10000 Job
Pending

RRRRRRRR: RRR1000 Register

1111111 : 1111110

111111 : 111111

5,379,386
1.

MCRO CHANNEL INTERFACE CONTROLLER

This Application is a continuation of application Ser.
No. 07/755,477, filed Sep. 5, 1991. 5

BACKGROUND OF THE INVENTION
1. Technical Field
This invention relates to an apparatus for transferring

data between digital data processing systems. In partic- 10
ular, this invention relates to an integrated controller
capable of controlling high speed data and control
transfers between a Micro Channel, a local processor
and a data bus.

2. Background Art
Communication of data between data processing

systems which are separated in physical location is a
common requirement. Central processing units (CPUs)
of one computer need to communicate with CPUs of
other computers. Likewise, peripheral equipment needs 20
to communicate with a host computer

In data communications technology, typically data is
communicated in frames having various layers or levels
governed by protocols. The data typically consists of a
command layer which may include addresses and in- 25
structions followed by data. Relatively large blocks of
data can be transmitted by data communications tech
nology at a very high rate. What slows down data com
munications is processor time needed to process the
data into frames and handle the protocols of the various
layers.

15

30

OBJECTS OF THE INVENTION

It is therefore an object of the invention to provide a
high speed data interface between data processing sys
tems on a Micro Channel bus.

It is another object of the invention to provide a
separate local processor and data processing bus to
common digital communications bus connecting digital
data processing systems.

It is another object of the invention to provide a
programmable Micro Channel interface controller for
flexibly transferring data at high speeds.

SUMMARY OF THE INVENTION
These and other objects, features and advantages are

accomplished by the Micro Channel interface control
ler. The present invention includes a Micro Channel
interface means for implementing the proper timing
control and data interfacing requirements to connect to
a Micro Channel or similar asynchronous bus. Con
tained within the Micro Channel interface controller
(MIC) is a local processor bus interface having the
proper timing and control data interface requirement to
connect the Micro Channel to a local processor bus for
decoding transfer commands. A local data bus is con
tained within the MIC for interfacing the data to proper
locations within a memory array. A master execution
unit responsible for controlling and coordinating all
command transfer activities between other units within
the MIC is built within the MIC. An error controller
monitors the MIC internal activities for possible error
conditions to detect and correct such situations. Con
tained within the MIC is a queue pointer manager re
sponsible for controlling hardware pointers indicating
the current locations of pending command words. The
MIC contains six internal buffers to speed match and
coordinate data transfers between the Micro Channel,

35

45

50

55

65

2
the local processor bus, or local data bus. Three address
generators are provided within the MIC to provide for
the addressing requirements of data transfers between
the Micro Channel and local data bus interfaces. The
MIC of the present invention contains self-test features
for diagnostic and debug operations of the MIC chip.
The Micro Channel interface controller provides for

high speed data transfers between a Micro Channel or
other related bus by processing the command and ad
dress features via the local processor bus and routing
the data at very high speeds through the local data bus.
The MIC itself appears transparent to the bus and does
not impede the transfer of data. The controller is de
signed in very large scale integration to be implemented
in a single integrated circuit chip.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other objects, features and advantages of

the invention will be more fully appreciated with refer
ence to the accompanying figures.

FIG. 1 is a representation of a local area network of
personal computers, workstations and main frames.
FIG. 2 is a block diagram of an interface according to

the present invention which links a Micro Channel bus
to an external fiber optic bus through a local data bus
and a local processor bus.

FIG. 3 is a block diagram of the Micro Channel inter
face chip.

FIG. 4 is a diagram of the external I/O pins to the
Micro Channel interface chip in a preferred embodi
ment of the present invention.

FIG. 5 is a block diagram of the Micro Channel inter
face according to the present invention.
FIGS. 6A-6E depict the logic in the control and data

signal capturing and synchronizing block in the Micro
Channel interface of the present invention.

FIG. 7 is a representation of a state machine in the
Micro Channel interface of the present invention.

FIG. 8 depicts a timing diagram where two words are
written on the local processor bus.
FIG.9 depicts atiming diagram where two words are

read from the local processor bus.
FIG. 10 depicts a timing diagram where a read opera

tion takes place in the Micro Channel interface chip
while it is in a slave timing mode with two 25 MHz wait
States.

FIG. 11 depicts a timing diagram where a write oper
ation takes place on the Micro Channel interface chip
while it is in a slave timing mode with two 25 MHz wait
States.
FIG. 12 is a block diagram of the protocol signal

connections for a two chip ring.
FIG. 13 is a block diagram of the protocol signal

connections for a multi-chip ring.
FIG. 14 is a block diagram of the local data bus ring

state machine.
FIG. 15A is a block diagram of the local data bus

protocol boundary logic.
FIG. 15B is a block diagram of the TRT and THT

logic timers on the local data bus.
FIG. 16 is a timing diagram of the local data bus

start-up with immediate access to the Micro Channel
interface chip.

FIG. 17 is a timing diagram for driving the local data
bus signals.

FIG. 18 is a timing diagram of the local data bus
depicting a Micro Channel interface chip read of five
words with no wait states.

5,379,386
3

FIG. 19 is a timing diagram of the local data bus
depicting a Micro Channel interface chip write of five
words.
FIG. 20 is a timing diagram of the local data bus

depicting a Micro Channel interface chip read of two
words, write of two words and read of one word.
FIG. 21 is a flow diagram of the master execution

process.
FIG.22 is a block diagram depicting the relationship

between the command word, the control block, the
status word and the post command for the Micro Chan
nel interface chip.
FIG. 23 depicts the fields within the Micro Channel

interface chip command word.
FIGS. 24-27 depict the fields within the Micro Chan

nel interface chip control block.
FIG. 28 depicts the valid combinations of Micro

Channel interface chip control block flags in a preferred
embodiment.
FIG. 29 depicts the fields of the Micro Channel inter

face chip status word.
FIG. 30 shows the fields of the Micro Channel inter

face chip post command.
FIG. 31 depicts the Micro Channel versus local data

bus access memory map.
FIG. 32 depicts the local processor bus to local data

bus access memory map.
FIG.33 depicts the local processor bus memory map

showing the queue initialization registers.
FIG. 34 shows the fields in a queue initialization

register according to the present invention.
FIG. 35 depicts the local processor bus I/O map

showing the queue pointer registers.
FIG. 36 shows a preferred layout of a queue pointer

register.
FIG. 37 depicts the relative addresses of queues

within the local process bus.
FIG. 38 is a flow diagram of the local processor bus

queue read operation protocol flow.
FIG. 39 is a flow diagram of the local processor bus

queue write operation protocol flow.
FIG. 40 depicts the queue read control register, the

queue write control register and the queue data register
mapped against their Micro Channel I/O addresses.
FIG. 41 depicts the queue read control register.
FIG. 42 depicts the queue write control register.
FIG. 43 is a flow diagram of the Micro Channel

queue read operation protocol flow.
FIG. 44 is a flow diagram of the Micro Channel

queue write operation protocol flow.
FIG. 45 depicts the free block list and job pending

register mapped against the Micro Channel I/O map.
DETAILED DESCRIPTION OF THE

INVENTION

The following definitions will be helpful to the reader
in understanding the following description.

Term Definition

Byte A group of eight signal lines contained
within a bus.

Bus Participants Any device engaging in a data transfer or
request of a bus.

Central Steering A group of system logic responsible for
Logic assisting devices in maintaining and

controlling Micro Channel data bus width
compatibility.

Device A block of logic which drives or receives

O

15

20

25

30

35

45

50

55

65

4.
-continued

Definition Ten

information onto or from a bus, interprets
the information and/or performs
a specified function.
A slave device which is addressable
within the I/O address space of the bus.
A device which gains control of a
bus with the intent of causing a data
transfer to/from a slave.
A slave device which contains
memory within the bus addressable space.

I/O Slave

Master

Memory Slave

Node A device.
Queue A sequence of stored data or Queue

Entries awaiting processing.
Queue Entry 4, 8, or 16 bytes of stored data which

together define a task, control, or
informational data to be processed at a
later time.

Queue Read Pointer A pointer to the current sequential
(QRP) location of the next Queue Entry to be

processed.
Queue Write Pointer A pointer to the current sequential
(QWP) location where a Queue Entry can be

appended to a Queue.
Resource A block of logic or device which makes

itself acessible to a device for an
information exchange.

Semaphore A flag or indication of current status.
Slave A device which provides or receives data

during an operation under the control of a
master.

Steering Directing the bytes contained in a bus to
another byte within the bus.
A group of system logic responsible for
Micro Channel arbitration, device
selection, system memory refresh, unique
functions, and interfacing with the system

System Controller

processor.
Transfer An exchange of information between two

devices.
Word A group of 16 signals contained in a bus,

two bytes.

FIG. 1 depicts a mainframe 100 such as an IBM main
frame following the 370 architecture connected to
workstations 101 and 102 and personal computers 103
and 104 by means of a serial bus 106. In the preferred
embodiment, the mainframe is an IBM mainframe fol
lowing the 370 architecture such as the 3093, or
ES/9000 TM, the workstations 101 and 102 are IBM
RISC System/6000's TM and the personal computers
are in the IBM PS/2 TM family. The workstations 101,
102 and personal computers comprise well known com
ponents such as a system processor unit, ROM, RAM,
one or more system buses, a keyboard, a mouse and a
display. Further information can be found on the RISC
System/6000 in IBM RISC System/6000 POWERsta
tion and POWERserver Hardware Technical Referen
ce-General Information Manual (SA23-2643), IBM
RISC System/6000 POWERstation and POWER
server Hardware Technical Reference-Options and
Devices (SA23-2646), IBM RISC System/6000 Hard
ware Technical Reference-7012 POWERstation and
POWERserver (SA23-2660), IBM RISC System/6000
Hardware Technical Reference-7013 and 7016
POWERstation and POWERserver (SA23-2644) and
IBM RISC System/6000 Hardware Technical Referen
ce-7015 POWERserver (SA23-2645). Information on
the PS/2 family can be found in Technical Reference
Manual Personal System Model 50,60 Systems, Part
No. 68X2224, Order No. S68X-2224 and Technical
Reference Manual Personal Systems (Model 80), Part
No. 68X2256, Order No. S68X-2256. A description of

5,379,386
5

the serial bus architecture can be found in Serial I/O
Architecture: PKD081102, Feb. 29, 1989. Both the
RISC System/6000 and the PS/2 incorporate the Micro
Channel Bus as their systems bus. The Micro Channel
contains a 32-bit address bus, a 32-bit data bus, an arbi
tration bus and a variety of control signals. Further
information can be found in the Micro Channel on
Low-End Parallel Bus Architecture, Family 2: LEPB
ADS-0002-00-4-U7 and Personal System/2-Hardware
Interface Technical Reference Architectures, Part No.
84F9808, Order No. X84F-9808-00. All the above refer
ences are available from the IBM Corporation.

All of the workstations and personal computers
101-104 interface with serial bus 106 by means of a
Micro Channel to Serial Bus Adapter (MCSB) card 108.
FIG. 2 shows a functional block diagram of the various
components of the MCSB card 108. Serial bus 106 and
Micro Channel Bus 110 are coupled to the serial inter
face 113 and the Micro Channel Interface controller
(MIC) 112 respectively. The MIC chip 112 is a high
performance interface between three buses: the Micro
Channel, a general purpose microprocessor bus called
the Local Processor Bus 115, and a dedicated data bus
called the Local Data Bus 117. The purpose of the MIC
112 is to translate the protocol on these three buses and
allow for quick and efficient data and control transfers
between them. The MIC 112 is intended to be used on
high speed I/O or processing adapters which require
preprocessing, additional processing or data manage
ment functions before/after data can be moved to or
sent by a device on the Micro Channel.

Serial interface 113 represents the serial input/output
circuitry which includes optical digital signal conver
sion, clock recovery synchronization, serial to parallel
conversion, optic decoding and coding and clock con
version. The MIC 112 and the serial interface 113 are
joined by the Local Processor Bus 115 and local data
bus 117. The Local Processor 119 is preferably an
INTEL 80960 TM processor which provides the pro
cessing power for the Micro Channel to serial bus inter
face 108. The Local Processor 119 also includes pro
grammable read only memory 120 (same or different
chip). A Local Processor Store 121 is also coupled to
the Local Processor Bus 115 and provides storage for
the INTEL 80960 programs as well as storage for the
MIC 112 logic. PROM 120 contains diagnostics and
initialization code for the devices coupled the Local
Processor Bus 115. Other devices 122 such as printers,
modems or video monitors can be coupled to the Local
Processor Bus 115. The local data bus 117 is used for the
data as opposed to processing functions between the
MIC chip 112 and serial interface 113. The MIC 112 and
serial interface 113 share the local data store 123 which
provides a buffer for data which initially comes from
either the serial or Micro Channel Busses 106, 110. For
example, some data might initially come in from the
Micro Channel 110, the MIC 112 would initially store
the data in local data storage 123. The MIC 112 would
then notify the Local Processor 119 that data is present
and the Local Processor 119 would start the serial inter
face 113 to move the Micro Channel data from the local
data store 123 to the serial bus 106.
One preferred embodiment of the Micro Channel to

Serial Adapter Card is described in commonly assigned
copending application Ser. No. 07/693,834, and is enti
tled “Serial Channel Adapter” filed Apr. 30, 1991,
which is hereby incorporated by reference. Other com
monly assigned, copending applications related to the

O

5

20

25

30

35

45

50

55

6
present invention include: "Micro Channel Interface
State Machine and Logic" by J. L. Swarts, filed Sep. 5,
1991, which describes the functions of the MIC 112,
"Queue Pointer Manager” by J. L. Swarts, et al., filed
Sep. 5, 1991, which describes the functions of the Queue
Manager 143, and "1-Bit Token Ring Arbitration Ar
chitecture' by G. L. Guthrie, et al., filed Sep. 5, 1991.
Below is a summary of highlighted features/functions

which the MIC 112 supports.
Micro Channel Interface Features
Master and Slave capability
10 MHz Streaming Data transfer rate
16/32/64-bit Streaming Data transfer widths
Bus Steering
Burst capability
Programmable Memory and I/O space utilization
Memory Address capability of 4G bytes
I/O Address capability of 64K bytes
Peer to peer capability
Fairness
Address and Data Parity
Up to 8 Interrupts
Access to Vital Product Data
Local Processor Bus Interface Features
Intel 80C186/80960KB compatible bus. Some exter

nal MSI logic may be required depending on the
specific implementation to guarantee proper inter
facing with the microprocessor.

Master and Slave capability.
Hardware Queue Management capability
Memory Address capability of 1 Mbyte
Address and Data Parity
Local Data Bus Interface Features
100 M bytes/sec burst transfer rate
Master capability
Address capability of 1 Mbyte
Programmable Read Wait States
Time shared bus arbitration
Address and Data Parity
Extensive error detection and logging
Self-Test capability
Internal Wrap capability
64 byte Data Buffering

Micro Channel Interface Controller (MIC) Overview
The MIC 112 allows data transfers to occur between

the MC110, LDB 117, and LPB 115. To accommodate
the high speeds of the MC 110, the MIC 112 provides
buffers 145 which improve overall throughput perfor
2C6.

In FIG. 3, the MIC 112 is partitioned into several
functional units. Each of these functional units are dedi
cated to perform a special operation or task which will
in some way interact with one or more of the other
functional units. Each of the units contains a lower level
of control and/or data logic specifically designed for
performing its operation Together, these units provide
the MIC 112 with its interconnections between the MC
110, LDB 117, and LPB 115.
The MC Interface 130 is responsible for implement

ing the proper timing, control, and data interfacing
required to connect the MIC 112 to the Micro Channel
110. The MC Interface 130 contains logic to synchro
nize, to interpret, and to control address, data, arbitra
tion, parity, interrupt, and control handshaking signals
with the other units within the MIC 112. The MCInter
face 130 allows the operation of two MC modes, the
Basic Transfer mode and the Stream Data Mode.

5,379,386
7

The Basic Transfer mode defines the default protocol
of the MC 110. Most MC compatible devices have the
ability to perform operations in this mode. While oper
ating in this mode the MIC 112 can be defined by the
following MC bus device types:

Intelligent Bus Controller
/O Slave
Memory Slave
Setup Slave
When operating as an Intelligent Bus Controller the

MIC 112 is considered to be a MC master. The MIC 112
only becomes a MC Master when a commanded trans
fer has been initiated. While operating as an I/O, Mem
ory or Setup Slave the MIC 112 is considered to be a
MC slave. The MIC 112 only becomes a MC slave
when initiated by another device acting as a MC Mas
ter.
The Stream Data mode allows the MIC 112 to partic

ipate in high speed data transfers with other Stream
Data mode MC devices. Stream Data mode provides
significant performance enhancements for transfers of
large blocks of data and automatic speed matching for
clock synchronous data transfers. While in Stream Data
mode the MIC 112 will operate as one of the following
MC types:

Streaming Data Master
Streaming Data Slave
The MIC 112 operates as a Streaming Data Master

only when initiated by a commanded transfer and oper
ates as a Streaming Data Slave when initiated by an
other device acting as a Streaming Data Master. MC
Data Interface 131 and MC Address Interface 132 are
part of the MC interface and control the data and ad
dress information respectively. The Micro Channel
Interface 130 also includes control code 134 which
includes code used for capturing command and strobe
signals of the Micro Channel, the synchronous state
machine and data validation code.
The LPB Interface 133 is responsible for implement

ing the proper timing, control, and data interfacing
required to connect the MIC 112 to the Local Processor
Bus 115. The LPB Interface 133 contains logic to con
trol the address, data, arbitration, interrupt, parity, er
ror, and control handshaking signals. The MIC 112 can
operate as a master or as a slave on the LPB 115. LPB
Master operations can be initiated by tasks necessary to
execute and complete a commanded transfer, a MC
device, a reportable error, or maintenance of the Pre
fetch Free Block Buffer. Slave operations are con
trolled by devices on the LPB 115 requesting access to
the LDB 117, the MIC's Queue Management function,
or error and internal MIC 112 control and initialization
registers.
The LDB Interface 135 is responsible for implement

ing the proper timing, control, and data interfacing
required to connect the MIC 112 to the Local Data Bus
117. The LDB Interface 135 contains logic to control
the address, data, arbitration, parity, error, and control
signals. In the preferred embodiment, unlike the LPB
117 and MC 110 on the LDB 117, the MIC 112 only
operates as a LDB Master. LDB Master operations are
initiated by a commanded transfer, a MC device, or by
a LPB device. However, when not a Master, the MIC
112 can monitor the LDB 117 and check for possible
protocol or parity errors. The LDB Interface 135 can
be divided in the LDB Data Interface 136 and LDB
Address which can handle the data and address signals
respectively.

5

10

15

20

25

30

35

50

55

65

8
The Master Execution Unit 139 is responsible for

controlling and coordinating all commanded transfer
activities between other units within the MIC 112. A list
of detailed operations and tasks which the Master Exe
cution Unit is capable of performing is shown below:
Monitors the Queue Manager 143 for pending com
manded transfers.

Coordinates fetching of MIC Command Words
(MCW) and MIC Control Blocks (MCB) with the
LPB Interface 133.

Controls the initialization and loading of the Micro
Channel Address Generator (MAG) 155, the Local
Address Generator, and the Output Data Buffer
(ODB) 149.

Controls when the MC Interface 130 fetches Free
Blocks from other MC devices.

Coordinates the data transfer between the MC Inter
face 130 and LDB Interface 135.

Coordinates with the MC Interface 130 Queue write
operations for posting completion status to other
MC devices.

Controls the posting of MIC Status Words (MSW),
which indicate completion status of the com
manded transfer and possible errors which may
have occurred.

The Error Controller (EC) 141 monitors MIC inter
nal activities for possible error situations or conditions.
If an error occurs, the EC 141 is responsible for coordi
nating with the LPB Interface 133 posting of an Unso
licited Status Word (USW).
The Queue Manager 143 (QM) is responsible for

controlling hardware pointers indicating the current
locations of pending Command Words, Status Words,
or Free Blocks and current locations where new Com
mand Words, Status Words, or Free Blocks can be
entered. In maintaining these pointers, queues of Com
mand Words, Status Words, or Free Blocks can be
stored in a FIFO like manner for later retrieval. The
QM 143 is also responsible for indicating to either the
MIC 112 or a LPB 119, 122 device whether a Queue
contains pending data. The QM 143 has the ability to
maintain pointers for 16 Queues located in the LPB
Memory space 121 and controlling an assignable inter
rupt to each Queue. Also, the QM monitors pointer
activity for possible errors and reports them to the LPB
Interface 133 for later retrieval.
The MIC 112 contains a group of six internal buffers

145. These buffers are used to speed match and coordi
nate data transfers between the MC, LPB, and LDB
Interfaces 130, 133, 135.
The Output Data Buffer (ODB) 149 is a 16x36-bit,

1-port FIFO capable of holding 64 bytes of data and
byte parity. The purpose of the ODB 149 is to buffer
MC Master data from the MIC LDB Interface 137 to
the MC Interface 133 or to the IDB for LDB wrap
operations. The loading and unloading of the ODB 149
is controlled by the MIC LDB and MC Interface 135,
130 under the guidance of the Master Execution unit.
The Input Data Buffer (IDB) 150 is a 16x36-bit,

2-port FIFO, capable of holding 64 bytes of data and
byte data parity. The purpose of the IDB 150 is to buffer
data transfers during all MC Slave operations and MC
Master read operations to and/or from the MIC LDB
Interface 135 unit, as well as LDB wrap operations.
The Input Address Buffer (IAB) 151 is a 16x23-bit,

2-port FIFO. The purpose of the IAB 151 is to buffer
addresses and control signals related to data stored in
the IDB 150. Addresses buffered in the IAB 151 can be

5,379,386
9

loaded from either the Slave Address Generator (SAG)
154 or the Local Address Generator (LAG) 156.
The Queue Read Buffer (QRB) 146 is a 8x 18-bit,

2-port FIFO. The purpose of the QRB 146 is to buffer
up to 16 bytes of Queue data and parity requested by a
MC device. The LPB Interface 133 controls the writing
of the QRB 146 under the management of the QM 143
when a request from the MC 110 is made. The QRB 146
can only be read when the MIC 112 is a MC Slave.
Read access to the QRB 146 is controlled by the MIC
MC Interface 130 using a semaphore and control regis
ter

The Prefetched Free Block Buffer (FBB) 147 is an
8x8-bit, 2-port FIFO. The purpose of the FBB 147 is to
maintain four four byte Free Block entries for quick
access by a MC device. These Free Block entries con
tain the starting physical MC Memory address needed
to access an available block of memory on the LDB 117.
When a MC device has removed a Free Block entry
from the FBB 147, the MIC 112 can fetch another FB
entry from the MICLPB Interface 133. In the preferred
embodiment, the FBB 147 can only be read when the
MIC 112 is a MC Slave.
The Queue Write Buffer (QWB) 148 is a 16x25-bit,

2-port FIFO. The purpose of the QWB 148 is to buffer
data, parity, and control, which is designed for a Queue
on the LPB 1.15 managed by the QM 143. Up to 32 bytes
of Queue data can be buffered. In the preferred embodi
ment, the QWB 148 can only be written to when the
MIC 112 is a MC Slave. Write access to the QWB 148
is controlled by the MC Interface 130 using a sema
phore and control register. Read access to the QWB 148
is controlled by the MIC LPB Interface 133 and QM
143.
The MIC 112 contains three Address Generators 153

which provide most of the addressing requirements for
data transfer between the MC and LDB Interfaces 130,
135.
The Slave Address Generator (SAG) 154 is used

during MC Streaming Data Slave and LDB wrap oper
ations. Its purpose is to provide addresses to the IAB
151 which correlate to the data being received by the
MC Interface 130. These addresses are then used by the
MIC LDB Interface 135. The SAG 154 can address up
to 1 Mbyte of data.
The Micro Channel Address Generator (MAG) 155

is used during commanded transfer operations. The
MAG 155 provides the MC Interface 130 with ad
dresses needed for MC Master operations. While the
MAG 155 is capable of accessing 4G bytes of data, the
MAG 155 can only increment addresses within a 64
Kbyte address range during a single commanded trans
fer. The MAG 155 also provides the SAG 154 with
initial addresses during a LDB wrap operation.
The Local Address Generator (LAG) 156 is used

during commanded transfers to address data destined to
or sourced from the LDB Interface 135. While the
LAG 156 can access 1 Mbyte of data, the LAG 156 can
only increment addresses within a 64 Kbyte address
range during a single commanded transfer.
The Self Test Interface (STD 157 provides a serial

interface for diagnostic and debug operations. The STI
157 provides control and access to scan strings, regis
ters, and clock controls within the MIC 112. The STI
157 can be accessed either directly via external I/O
signals.

10

15

20

25

30

35

45

50

55

65

10
The definitions, protocols, electrical characteristics,

and physical requirements of the external signal I/O,
power, and ground pins are described in this section.
Positive logic is used to describe the logic levels used in
this document. All of the logic signal lines are TTL
compatible. The functions of the external I/O pins of
the MIC 112 are defined in this section. FIG. 4 illus
trates a summary of the external signals which interface
with the MIC 112.
MC Interface
This section defines the signal I/O used to interface

the MIC 112 with the MC 110. All references to master
and slave are for Micro Channel operations.
A(0:31)i

--Address Bus Bits 0 through 31: These signal lines
are used to address memory and I/O slaves attached to
the MC 110 as well as select the MIC 112 for slave
operations. The 32 address lines allow access of up to 4
G bytes of memory. Only the lower 16 address bits are
used for I/O operations and all 16 lines must be decoded
by the I/O slave.
--APAR(0:3)i
--Address Parity Bits 0 through 3: These lines repre

sent the odd byte parity of all address bits on the MC
110 during read and write operations. A master gener
ates a parity bit for each address byte and the receiving
slave performs the parity checking to ensure the integ
rity of the address. --APAR(0)i represents parity on
+A(0:7)i, + APAR(1)irepresents parity on +A(8:15)i,
--APAR(2)i represents parity on --A(16:23)i, and
--APAR(3)i represents parity on --A(24:31)i. These
signals are also used during a 64-bit Streaming Data
transfer and represent odd byte parity for data on the
address bus.
-APAREN
-Address Parity Enable: This signal is generated by

a master to indicate to a slave that the address parity
signal lines are valid. This signal is driven active by a
master when it places an address on the MC 110. Dur
ing the 64-bit Streaming Data mode this signal is
sourced by the device which is sourcing the data.
--D(0:31)i

--Data Bus Bits 0 through 31: These lines are used to
transmit and receive data to and from a master and
slave. During a Read cycle, data becomes valid on these
lines after the leading edge of -CMD but before the
trailing edge of -CMD and must remain valid until
after the trailing edge of -CMD. However, during a
Write cycle, data is valid before and throughout the
period when the -CMD signal is active.
+DPAR(0:3)i
+Data Parity Bits 0 through 3: These signals repre

sent odd byte parity on the Data Bus, --D(0:31)i. A
parity bit is generated for each Data Bus byte.
+DPAR(0)irepresents parity on +D(0:7)i, +DPAR(-
1)i represents parity on --D(8:15)i, +DPAR(2)irepre
sents parity on --D(16:23)i, and --DPAR(3)irepresents
parity on --D(24:31)i.
-DPAREN
-Data Parity Enable: This signal is generated by the

device sourcing the data to indicate that the data parity
signal lines are valid.
-ADL
-Address Decode Latch: This signal is driven by the

master as a convenient mechanism for a slave to latch
valid address and status bits. Slaves can latch informa
tion with the trailing edge of -ADL.
-CD SFDBK

5,379,386
11

-Card Selected Feedback: This signal is driven by
the MIC 112 as a positive acknowledgement of its selec
tion by a master. This signal is not driven when the MIC
112 has been selected as a setup slave. This signal can be
used to generate the -CD DS16 and -CD DS32 sig
nal as well.
SFDBKRTN
-Selected Feedback Return: This signal is driven by

the system logic to return the positive acknowledge
ment from a slave to the master of its presence at the
address specified by the master.
-DS 1.6 RTN
-Data Size 16 Return: This signal is driven by the

system logic to indicate to a master the presence of a 16
bit data port at the location addressed.
-IDS 32 RTN
-Data Size 32 Return: This signal is driven by the

system logic to indicate to a master the presence of a 32
bit data port at the location addressed.
-BE(0:3)i
-Byte Enable Bits 0 through 3: These lines are used

during data transfers to indicate which data bytes will
be valid on the MC 110. -BE(0)i enables --D(0:7)i,
-BE(1)i enables --D(8:15)i, -BE(2)i enables
--D(16:23)i, and -BE(3)i enables +D(24:31)i. These
signals are not valid for 8-bit or 16-bit Micro Channel
Basic Transfer operations.
--MADE 24
--Memory Address Decode Enable 24: This signal

provides an indication of usage of an unextended (24
bit) address on the MC 110. When active (high), in
combination with an address, indicates that an unex
tended address space less than or equal to 16 MB is on
the MC 110. When inactive (low), in combination with
an address, indicates that an extended address space
greater than 16 MB is on the MC 110. This signal is
driven by all masters and decoded by all memory slaves,
regardless of their address space size.
When the MIC 112 is a MC Master this signal is

determined by the upper byte of the MAG 155. If the
upper byte is equal to "00000000 then --MADE24 is
active high.
- SBHE
-System Byte High Enable: This signal indicates

whether the high byte of data is enabled when commu
nicating with a 16-bit MC Slave.
--M/-IO
--Memory/-I/O Cycle: This signal distinguishes a

MC Memory cycle from a MC I/O cycle.
-SO,-S1
-Status Bits 0 and 1: These signals provide the indi

cation of the start and define the type of MC cycle.
- CMD
-Command: This signal is used to define when data

is valid on the MC 110. The trailing edge of this signal
indicates the end of a MC cycle.
--CD CHRDY
--Card Channel Ready: This signal allows a slave

additional time to complete a bus operations. When
activating this signal during a read operation, a slave
promises that data will be valid on the bus within a time
specified. A slave may also use this signal during a write
operation if more time is needed to store the data from
the bus.
--CHRDYRTN
Channel Ready Return: This signal is driven by the

system logic to return the --CD CHRDY signal re
ceived from the slave to the master.

10

15

20

25

30

35

45

SO

55

65

12
-SIDEN
-Streaming Data Enable: This signal is used to en

able the external MSI drivers when the MIC 112 has
been selected as a MC Slave with Streaming Data capa
bility.
--MSDR
-Multiplexed Streaming Data Request: This signal

indicates whether a MC Slave, or the MIC 112 when
selected as a MC Slave, has the capability to perform an
8-byte Streaming Data transfer.
-SDR(0:1)
-Streaming Data Request Bits 0 through 1: These

signals provide information about the performance
characteristics during Streaming Data mode. This infor
mation is used by the MIC 112 as a master to determine
the maximum clocking rate of the slave device during a
Streaming Data transfer.
-SD STB
-Streaming Data Strobe: This signal determines

when data is valid during a Streaming Data transfer.
The maximum clock rate of this signal is determined by
the -SDR(0:1) lines and the Streaming Data Clock
input signals.
--ARBI(0:3)i

+Arbitration Input bits 0 through 3: These signal
lines are used to receive the arbitration level presented
on the MC Arbitration Bus. The lowest priority ARB
bus level has a hexadecimal value of F and the highest
priority ARB bus level has a hexadecimal value of '0'.
ARB level of F should be used for the default MC
Master.
--ARBO(0:3)i

+Arbitration Output bits 0 through 3: These signal
lines are used when the MIC 112 arbitrates for use of the
MC 110.
--ARB/-GNT
+Arbitration/-Grant: This signal defines when an

arbitration cycle begins and ends on the MC 110.
-BURST

-Burst: This signal is driven by an arbitrating Bus
Participant to indicate to the System Controller the
extended use of the MC 110 when transferring a block
of data. This type of data transfer is referred to as a
burst cycle. The signal is shared by all Bus Participants
and can only be activated by the participant granted the
MC 110.
-PREEMPT
-Preempt: This signal is driven by arbitrating Bus

Participants to request usage of the MC 110 via arbitra
tion. Any Bus Participant with a bus request will acti
vate -PREEMPT and cause an arbitration cycle to
occur. A requesting Bus Participant will remove its
preempt upon being granted the MC 110. -IRQ(0:3)

-Interrupt Request bits 0 through 3: These signals
are used to indicate to the System Processor that an I/O
Slave requires attention.
+IRQ SEL/SS1 OUT

--Interrupt Request Select/Scan String 1 Output:
This signal can be used by external logic to control
which set of four MC Interrupt Request signals can be
active. This signal can then effectively give the MIC
112 access to eight MC Interrupt Requests. This signal
is set in a POS Register field. In addition, this signal is
defined as the output to scan string 1 during LSSD test
mode.
-CD SETUP
-Card Setup: This signal is used to individually se

lect devices during a system configuration. When this

5,379,386
13

signal is active, configuration data and the Device ID
may be accessed.
- CHCK
-Channel Check: This signal is used to indicate a

high priority interrupt to the System Controller that an
exception condition, i.e. parity error, etc., has occurred
on the MC 110. A field in a POS register defines
whether this signal is synchronous or asynchronous.
--M/-S
+Master operation/-Slave operation: This signal

gives an indication of the current Micro Channel opera
tion that the MIC 112 is participating in. This signal can
be used to control the direction and enabling of external
Micro channel drivers and receivers.
--DO/-I
--Data Output Operation/-Input operation: This

signal is used to indicate the direction of --D(0:31)i and
--DPAR(0:3)i.
--AO/-I
--Address Output Operation/-Input operation:

This signal is used to indicate the direction of --A(0:31)i
and --APAR(0:3)i.
-DLOE
-Data Low Output Enable: This signal is used to

indicate whether the lower two bytes of the MC data
bus are active.
Local Processor Bus Interface
This section defines the signal I/O used to interface

the MIC 112 with the LPB 115. All references to master
and slave are for Local Processor Bus operations.
+ADDR/DATA(0:19)i
+Address/Data bus bits 0 through 19: This bus is

used to address, read from, and write to Local Proces
sor Store 121. This bus provides for addressing of up to
1 Mbyte.
+A/D PAR(0:2)i

-- Address/Data Parity bits 0 through 2: These lines
provide odd parity for --ADDR/DATA(0:19)i.
--A/D PAR(0)i provide odd parity for the most signifi
cant 4-bits when address is present. --A/D PAR(1)i
provide odd parity for --ADDR/DATA(4:11)i.
--A/D PAR(2)i provide odd parity for ADDR
/DATA(12:19)i.
- ALE
- Address Latch Enable: This signal is be used exter

nally latch the address on the --ADDR/DATA(0:19).
--R/W
--Read/Write: This signal is used to indicate the

operation and direction of data on the LPB 115.
-DAV & --RDY
-Data Valid and --Ready: These two signals supply

the MIC 112 with the necessary handshaking to deter
mine whether data on the --ADDR/DATA(0:19)ibus
is valid and/or has been accepted.
--M/-IO
--Memory/-Input/Output: This signal is used to

determine access to Memory or I/O space on the LPB
115.
-BHE
-Byte High Enable: This signal determines when the

high byte of a two byte word is active.
-LPB ERR
-Local Processor Bus Error: This signal indicates to

the MIC 12 that an error condition has occurred on the
Local Processor Bus 115. This signal is a receive only
signal and its purpose is to end a MIC LPB Master
access, which may be in a dead-lock state, i.e., a not
ready condition. psi-LPM/SS4 IN

10

15

20

30

35

45

50

55

14
Local Processor Master/Scan String 4 Input: This

signal indicates whether the current user is a micro
processor or another LPB device 122. The purpose of
this signal is to assist the MIC 112 in determining the
correct timing and handshaking required during LPB
slave operations. In addition this signal is defined as the
input for scan string 4 during LSSD test mode.
31 BUS REQ/SS3 OUT
-Bus Request/Scan String 3 Output: This signal

indicates when the MIC 112 needs to use the LPB 115
for a LPB Master operation. In addition this signal is
defined as the output for scan string 3 during LSSD test
mode.
-BUS GNT/SS3. IN
-Bus Grant/Scan String 3 Input: This signal indi

cates when the MIC 112 has acquired ownership of the
LPB 115 and can perform LPB Master operations. In
addition this signal is defined as the input for scan string
3 during LSSD test mode.
-CSEL
-Chip Select: This signal is used to enable the MIC

112 for controlled LPB memory slave operations in
volving initialization register and accesses to LDB 117.
-INT(0:3)

-Interrupt Bits 0 through 3: These signals are used
by the EC 141 and/or QM 143 to request service or
attention by a LPB device.
Local Data Bus Interface
This section defines the signal I/O used to interface

the MIC 112 with the LDB 117. As mentioned previ
ously, in the preferred embodiment, the MIC 112 con
ducts only master operations on the LDB 117.
+ADDR(0.9)i

-- Address bits 0 through 9: This bus is used to ad
dress LDB and is capable of accessing 1 Mbyte of data.
This bus is a multiplexed address bus providing the
ability to present an 8-bit high address and a 10-bit low
address. Together the high and low address create a 256
4. Kbyte paging address scheme. The -HALE signal is
used to indicate when address is defined as the high
address.
--APAR(0:1)i
--Address Parity bits 0 through 1: These signals indi

cate odd parity on --ADDR(0:9)i. --APAR(0)i indi
cates odd parity on --ADDR(0:1)i, and --APAR(1)i
indicates odd parity on --ADDR(2:9)i.
--DATA(0:31)i
--Data bits 0 through 31: This bus is used to read

from or write to data on the LDB 117.
--DPAR(0:3)i
--Data Parity bits 0 through 3: These signals indicate

odd parity on each byte of the --DATA(0:31)i bus.
--R/-W
--Read/-Write: This signal indicates whether data

is written to or read from the LDB 117. This signal is
valid when either the high or the low address are valid.
-BE(0:3)i
-Byte Enable Bits 0 through 3: These signals indi

cate which bytes of the --DATA(0:31)i contain valid
data. -BE(0)i enables --D(0:7)i, -BE(1)i enables
+D(8:15)i, -BE(2)ienables --D(16:23)i, and -BE(3)i
enables +D(24:31)i. These signals also indicate that
--ADDR(0.9)i contain the least significant 10-bits of
the LDB address.
-RARBO/SS2OUT
-Ring Arbitration Out/Scan String 2 Output: This

signal is used to pass the LDB arbitration token to the
next device on the LDB 117. In addition, this signal is

5,379,386
15

defined as the output for scan string 2 during LSSD test
mode.
-RARBI/SS2 IN
Ring Arbitration In/Scan String 2 Input: This signal

is used to receive the LDB arbitration token. In addi
tion, this signal is defined as the input for scan string 2
during LSSD test mode.
-LDB ERR
-Local Data Bus Error: This signal indicates

whether an error has occurred on the LDB 117. The
current owner of the Ring Arbitration Token must
terminate any transfer on the LDB 17 and cancel the
Token when -LPB Error is active for more than 1
cycle. When this signal is active for only 1 cycle, a
parity error has been detected and the ring remains
operational.
-HALE
-High Address Latch Enable: This signal is used to

validate --ADDR(2:9)i as the most significant 8-bits of
a 1 Mbyte LDB access.
-ROB
Request On Bus: This signal is used to inform the

owner of the LDB token that another LDB device 122
wishes to use the bus 117. This signal enables the THT
and TRT timers described below.
Self Test Interface
The STI 157 provides access to the MIC's self test

capabilities controlled by an external diagnostic device.
--A/B CLK
--A and B Clocks: These two clocks shall be used by

the MIC's STI 157. The operating frequency of these
two clocks will be a maximum of 6.25 MHz. These
signals also define the Scan A and System B clocks for
LSSD test mode.
30 DN/SS1 IN

--Data In/Scan String 1 Input: This signal provides
the MIC STI with serial input information. In addition,
this signal defines the input for scan string 1 during
LSSD test mode.
--MODE
--Mode: This signal determines whether the STI is

operating in an Instruction/Status mode or Scan mode.
-SEL

-Select: This signal is used to enable STI operations.
--DOUT/SS4OUT

--Data Out/Scan String 4 Output: The signal pro
vides serial output information from the STI. In addi
tion, this signal defines the output for scan string 4 dur
ing LSSD test mode.
Miscellaneous
--SYS CLK

--System Clocks: These two lines provide the system
clocks needed for the MIC 112. The operating fre
quency of these clocks is 25 MHz. Both signals receive
equivalent clocks. These signals also define the LSSDB
and C clocks during LSSD test mode.
--SD CLK

--Streaming Data Clocks: These two lines provide
the clocks needed for MIC Streaming Data Master
transfers. Both signals receive equivalent clocks. These
signals also define the LSSD B and C clocks during
LSSD test mode.
-DI
-Drive Inhibit: This signals forces all MIC signal

drivers to a tri-stated condition. This signal should only
be used for LSSD test mode. During operational mode
this signal should be pulled up to a '1' level.
--TI

O

15

20

25

30

35

45

50

55

65

16
--Test Inhibit: This signal sets the MIC 112 into

LSSD test mode. All internal MIC registers receive
system clocks during LSSD test mode. During opera
tional mode this signal should be a '0' level.
--CI

--Clock Isolate: This signal defines whether the STI
A Clock signal is to be used as a scan clock or opera
tional clock. During operational mode this signal should
be a '0' level.
--SG

--Scan Gate: This signal defines the component state,
either shift or component, during LSSD test mode.
During operational mode this signal should be a '0'
level.
--SYS RESET
--System Reset: This signal can be driven by the

System Controller to reset or initialize MC devices, also
referred to as the MC --CHRESET. During a power
up sequence, this signal must be active for a specified
minimum time of 1 usec. This signal may be logically
OR with an adapter level reset.
Micro Channel Interface
The protocol for Arbitration, Basic Transfer, Stream

ing Data, System Configuration and Steering for the
MC are described below,
Arbitration

Arbitration is the resolution of multiple bus requests,
awarding use of the bus to the highest priority re
questor. The Micro Channel arbitration scheme oper
ates as a multi-drop (dot-OR) mechanism. This type of
arbitration scheme allows for up to 16 participants, in an
arbitration cycle, while only using four signal lines.
--ARBI(0:3)i and --ARBO(0:3)ii with assistance from
some external drivers comprise the four signals needed
for arbitration on the MC 110.
The MIC 112 requests service by activating the

-PREEMPT signal. The system responds by raising
the --ARB/GNT when the current bus owner com
pletes its bus activity. The current bus owner must
release control of the MC 110 no more than 7.5 usec
after activation of the -PREEMPT signal. When the
system activates --ARB/GNT the device with the
highest priority gains control of the MC 110. A bus
owner may use the -BURST signal to maintain control
of the MC 110 for extended periods of time. If Fairness
is enabled, the MIC 112 can re-request the MC 110 only
when all other MC devices have had their first requests
serviced.
Basic Transfers

Basic Transfer mode is the default mode for exchange
of information between MC devices. A Basic Transfer
begins when a MC master, usually the bus owner, as
serts the status lines (-S0 and -Sl) and --M/IO sig
nals, indicating the type of operation to be performed
on the MC. The MC master also asserts --A(0:3)i,
--APAR(0:3)i, APAREN, MADE24, TR32, SBHE,
and -BE(0:3)iifrequired for the type of transfer. Once
the address bus is stable, the -ADL is asserted.

All devices on the MC monitor the signals which
have been asserted by the MC master. When a device
detects addresses within a predefined range, the device
becomes the MC slave. The MC slave then asserts the
-DS16, DS32, and -CD SFDBK signals as positive
acknowledgement of its selection. These acknowledge
ment signals are received by the MC master as -DS16
RTN, DS32 RTN, and -SFDBKRTN and signify the
type of MCslave and the readiness of the MC slave for
the transfer.

5,379,386
17

During a write operation the +D(0:31)i and
--DPAR(0:3)i are asserted with the -CMD signal.
During a read operation, data on the +D(0:31)i does
not become valid until the MC slave is ready,
--CHRDY active, to send the data to the MC master.
A MC Slave can extend a Basic Transfer cycle be

yond 200 ns by asserting the --CD CHRDY signal. A
MC master can also maintain ownership of the MC by
asserting the -BURST signal. Termination of the Basic
Transfer mode and ownership of the MC 110 by the
MC master occurs when the -BURST and -CMD are
inactive.
Streaming Data

Streaming Data mode begins as Basic Transfer mode
does. The MC master supplies a single address, usually
the starting address, in a range for which a MC slave
will respond to. Addresses for 16, or 32-bit are aligned
on four byte address boundaries. Addresses for 64-bit
transfer are aligned on eight byte address boundaries.
When the selected MC slave sends its positive ac

knowledgement to the MC master, three additional
signals are sent to the MC master to indicate the MC
slaves ability of Streaming Data mode. Two of these
signals, -SDR(0:1), determine the maximum rate at
which the MC slave can operate in Streaming Data
mode. The third signal, -MSDR, indicates the MC
slaves ability to transfer data in the 64-bit Streaming
Data mode. The -CMD signal is then asserted and
held active until termination of the Streaming Data
mode. The -SD STB and --CD CHRDY are used to
indicate when data is valid during the Streaming Data
transfer.
The Streaming Data mode transfer can be terminated

by either the Streaming Data master or Streaming Data

5

10

15

20

25

30

18
Configuration protocol is similar to the Basic Transfer
mode except for the following modifications:
The MC device is selected using the -CD SETUP

signal not by decoding of the address bus or arbi
tration.

Only the three least significant address bits are used
or decoded.

Only I/O Read/Write operations are performed.
The selected device does not assert the -CD
SFDBK as positive acknowledgement.

All transfers are single byte (8-bit) transfers, which
occur only on the least significant byte of the data
bus.

A single configuration cycle is 300 ns.
Parity is not supported.

MC Steering
To maintain bus width compatibility and flexibility

the MIC 112 is able to operate in several bus width
configurations. Transfers which involve moving data
between the LDB 117 and the MC110 have the capabil
ity of 64, 32, 16, and/or 8-bits depending on the other
MC device involved in the transfer. Transfers which
involve writing to or reading from Queues located in
Local Processor Store 121 have the capability of 32, 16,
and/or 8-bits. POS register transfers are on byte bound
aries only. Transfers between MC devices utilize their
maximum bus width capability whenever possible. The
MIC 112 controls steering when operating as a master.
The MIC 112 controls steering when operating as a
Streaming Data slave with a Streaming Data master of
lesser width. Once a Streaming Data transfer has begun,
a new steering configuration is not possible until termi
nation of the current Streaming Data transfer. Table 1
illustrates the MIC's steering responsibilities during

slave. A Streaming Data master can begin termination 35 valid MC Master transfers.
TABLE 1.

Master Signals Slave Signals
MIC --A -BE(DS16 DS32
SBHE 29:31)i 0:3)i RTN RTN MSDR Transfer Type/Description

O 000 11 0 O O 8 byte transfer to 64 bit slavei
0 X00 1110 X X X 1 byte transfer to all slaves
O X00 0000 1 1 1 byte transfer to 8 bit slave
0 X00 0000 0 1 1. 2 byte transfer to 16 bit slave"
O X00 0000 O O X 4 byte transfer to 32/64bit slave
0. XO1 101 X X X 1 byte transfer to all slaves

X10 1011 X X X 1 byte transfer to all slaves
O X10 001 O X X 2 byte transfer to 64/32/64 slave
O X11 011 X X X 1 byte transfer to all slaves

Note:
All above transfers are executed in the Basic Transfer node, except noted.
#Capable of Streaming Data Operations only.
"Capable of both Basic Transfer and Streaming Data operations

of the transfer by deactivating the - S0, - S1 signals,
the Streaming Data slave. responds with deactivating
the-SDR(0:1)/-MSDR signals. The termination will
be complete when the Streaming Data master deacti
vates-CMD. A Streaming Data slave can begin termi
nation of the transfer by deactivating the
-SDR(0:1)/-MSDR signals. The termination will be
complete when the Streaming Data master deactivates
- S0, -S1, and -CMD. - SDR(0:1) will become tri
stated after -CMD deactivates.
System Configuration
A System Configuration protocol is used to initialize

and read the POS registers with the MIC 112 or any
other MC device. During a System Configuration, the
selected MC device becomes a Setup slave. The System

55

65

Interrupts
The MIC 112 has the ability to source four program

mable MC interrupts, with expansion capabilities of up
to eight. These interrupts are used to inform the System
Processor that a Queue contains job(s) or command/-
status words for a device on the MC 110 or for use by
the System Processor or an error has occurred. Each
Interrupt may be shared by up to four Queues. When
Queues share an Interrupt a readable register is avail
able to assist other MC devices and/or the System Pro
cessor in determining the Queue which caused the In
terrupt. An Interrupt may also be assigned to only one
Queue.
Errors
The MIC 112 provides a Micro Channel Check capa

bility. A Channel Check becomes active when the MIC

5,379,386
19

112 detects a parity error on MC Slave writes. The
Channel Check can either be synchronous or asynchro
nous to the detection of the error. The MIC default is
synchronous.
The synchronous Channel Check allows the current

MC Master to receive immediate notice of a parity
error detected by the MIC 112. Once the MC Master
completes the transfer in progress the Channel Check
signal becomes inactive.
The asynchronous Channel Check is similar to a

synchronous Channel Check except that once the MC
Master has completed the current cycle the Channel
Check signal remains active.

In either case, the Channel Check bit within POS
register remains active until the system has reset it.
Resetting of a Channel Check condition is performed
using the system configuration protocol.
Micro Channel Interface State Machine
To simplify chip designs, a synchronous method of

capturing and validating data on the MC 110 can be
used with minimal asynchronous clocking. By minimiz
ing the use of asynchronous logic, the risks involved in
an asynchronous design are reduced. Once the MC
control signals and buses are synchronized, a state ma
chine interface can determine the state of data and when
data is valid on the MC 110. This task can be accom
plished using three areas of logic design described in the
following sections: Control and Data Signal Capturing
and Synchronization, Interface State Machine, and
Data Validation Decode logic.

In FIG. 5, a somewhat more detailed block diagram
of the Micro Channel Interface 130 is depicted. As
mentioned previously, the interface 130 includes the
Micro Channel Data Interface 131, the Micro Channel
Address Interface 132, and the Micro Channel Interface
Control Logic 134. The Control and Data Signal Cap
turing and Synchronizing Logic 170 is largely located
in the control section 134, but the logic devoted to
capturing the data and address signals from the Micro
Channel 110 are located in the data interface 131 and
address interface 132 respectively. The Interface State
Machine 172 is also part of the interface control section
134 and uses the synchronized signals from the capture
logic 170 to derive a synchronous means of evaluating
the state of the Micro Channel 110. Finally, the Data
Validation Decode Logic 174 takes signals from the
capture logic 170 and the state machine 172 to deter
mine whether the asynchronously latched data and
address signals captured from the Micro Channel 110
represent valid data in a synchronous manner.
To capture the asynchronous MC data and control,

techniques consistent with the LSSD guidelines are
employed. These techniques include the capturing of
narrow bus strobes, sampling, and synchronizing.
LSSD circuits follow the rules generally described in
U.S. Pat. Nos. 3,761,695, 3,783,254 and 4,580,137. In
addition, U.S. Pat. No. 4,580,137 which claims a latch
circuit for synchronous and asynchronous clocking also
contains an exceptionally complete review of the vari
ous aspects of LSSD latch design. While other LSSD
compatible circuits may be employed to capture the
MC control and data signals, the figures on the follow
ing pages illustrate the best logic known to the inventor
for capturing the MC control and data signals.
For quick reference to FIGS. 6A through 6E, Table

2 contains the definitions of the signals portrayed in
these figures.

10

5

20

25

30

35

45

50

55

20
Referring to FIG. 6A, the logic for capturing the

asynchronous data valid signal, -CMD, which is the
Micro Channel signal which indicates when data is
valid on the Micro Channel is shown. Two synchro
nous internal signals are generated by this logic:
--CMDA, which indicates when an active high level
signal was present on the -CMD signal, and --CMDB,
which indicates when an active low level signal was
present on the -CMD signal. Both the -CMDA and
--CMDB signals are used in the state machine signals
from the Micro Channel 110.
The circuit elements in the upper half of the diagram

180 which produce the -CMDA signal are essentially
equivalent to those in the lower half 182 which produce
the -CMDB signal with the exception that the -CMD
signal from the Micro Channel 110 is inverted before
being received by block 182. The circuit shown is useful
for capturing a signal which is narrower than one sys
term clock cycle of the internal clocks of the MIC 112.

In FIG. 6A, the registers 183, 184, 185, 186 are two
latches in series, the first latch receiving the asynchro
nous signal and the first clock signal and the second
latch receiving the output of the first latch and the
second clock signal. In this way, the asynchronous
signal is sampled in the first latch, waiting for any meta
stability to settle out, and then setting the value from the
first latch into the second latch. The second latch con
tains the synchronized signal which can be used in the
LSSD chip. If the -CMD signal were wider than the
internal clock signals +C, --B of the MIC 112, only
registers 184 and 186 would be necessary to provide
synchronized signals --CMDA, -i-CMDB. However, it
is more likely that the -CMD signal will be narrower,
so registers 183 and 185 which are clocked by internal
test clocks --T1, --T2 and their attendant AND, OR
and feedback loops are necessary to capture the
-CMD signal and its inverted signal and hold them
until they can be synchronized by registers 184 and 186.

Referring to FIG. 68, the logic for capturing the
asynchronous streaming data signal, -SD-STB, from
the Micro Channel 110 which is used to clock data
during a streaming data transfer to the MIC 112. Two
synchronous signals are produced: --STRA, the inter
nal chip signal which indicates when an active high
level has been captured in the -SD STB signal, and
--STRB which indicates when an active low level has
been captured on the -SD-STB signal. --STRA and
--STRB are produced by registers 193 and 194in block
190 and registers 195 and 196 in block 192 respectively.
The logic is essentially equivalent as that depicted in
FIG. 6A for the -CMD signal.

In FIG. 6C, the logic for producing the internal sig
nals for the Micro Channel bus status, -SO/-S1. I and
that indicating the MIC 112 has been selected as a
Micro Channel Slave, MC SLAVE. Both of these sig
nals use the -ADL signal from the MC 110 via multi
plexor 200 as the second "clock” signal in register 202
which results in the signals being asynchronously
latched. This technique is used because there is not time
to synchronize the -SDL and -SO/-S1 signals, Reg
ister 202 represents a simplification of the actual logic in
that two separate registers are used to capture the
-S0/-S1 and slave decodesignals both of which com
prise two latches, the first of which uses a test clock to
sample the data waiting for any metastability to settle
out, the second of which using the asynchronous
-ADL signal as the "clock” signal. The slave decode
logic 204 uses the MC address bus, M/IO, and status

5,379,386
21

signals to determine whether the device is being se
lected by the current MC Master. The --LSSD-TES
T EN and --B clock signals are used for LSSD test
operations on the logic.
The logic for capturing the asynchronous data, ad

dress and --RDY--RTN signals from the Micro
Channel 110 is portrayed in FIG. 6D. The -SD STB
and -CMD signals are passed through the multiplexor
210 to register 212 which produces asynchronously
latched data, address and --RDY RDY RTN signals
usable in the MIC 112. Similar to register 202 in FIG.
6C, register 212 is a simplification of three separate
registers used for the three asynchronous signals from
the MC 110. The logic also produces a synchronized
signal corresponding to --RDY RTN with register
214 using internal clocks --C, --B. Internal clock sig
nals --C, B and the --LSSD-TEST-EN signal are
connected to inputs of multiplexor 210 to test the logic
according to LSSD operations.
FIG. 6E depicts the logic for capturing data and

address buses from MIC 112 to the Micro Channel 110.
Data and address are captured in register 230, clocked
by the remaining clock decode logic shown in FIG. 6E.
Multiplexors 220, 224, and 226 provide selectability
between operational clocking and LSSD test clocking
for registers 222, 228, and 230. Registers 222 and 228
clocked operationally by SD-STB together with the
three attendantXOR gates, provide the proper clocking
control and timing necessary to ultimately clock data
and address into register 230 and onto the Micro Chan
nel 110. During idle times on the Micro Channel 110,
-CMD provides a reset to registers 222 and 228 so that
the control logic is set in a known state awaiting the
next data transfer. The attending OR gate with --64 S
D EN and --RDY RTN, provide additional clocking
control during a 64-bit Streaming Data Transfer and
data pacing during a 16- or 32-bit Streaming Data
Transfer. These transfer types are described in more
detail in the low-end parallel bus architecture and Per
sonal System/2. Hardward Interface Reference Archi
tecture documents cited above. Finally, the AND/OR
gates providing input to multiplexor 220 allow selection
by +MC MASTER of separate ready controls during
MC Master (--MASTER - RDY) and MC slave
(--SLAVE RDY) operations completing the clock
decode necessary to capture data and address into regis
ter 230.

TABLE 2
Signal Definition
The MC signal used to indicate
when data is valid on the MC.
The internal chip signal which indicates
when an active high level has been
captured on -CMD signal.
The internal chip signal which indicates
when an active low lwwwl has been
captured on -CMD signal.
Internal system and LSSD clocks. --C
control the L1 portion of the register and
--B controls the L2 portion
of the register.
Internal LSSD clocks. These clocks are
held active suring non-LSSD operations.
+T1 controls Ll portion of the
register and +B controls the
L2 portion of the register.
The MC signal used to clock data
during a Streaming Data (SD) transfer.
This signal is sent by the MC Master and
is received by the selected MC
Slave device.

Signal Name
-CMD

--CMDA

--CMDB

SOSTB

10

15

20

25

30

35

45

50

55

65

22
TABLE 2-continued

Signal Name Signal Definition
--STRA The internal chip signal which indicates

when an active high level has been
captured on the -SD-STB signal.

--STRB The internal chip signal which indicates
when an active low level has been
captured on the -SD-STB signal.

S0/-S1 The MC signals used to indicate
bus status.

-SO/-S1. I The internal and asynchronously latched
input status,

-ADL The MC signal used to latch and
valid MC address.

--LSSD-TEST-EN This signal indicates when
LSSD operations
are active and selects the proper
clocks for the data registers.

+D(0:31)/P The MC 32-bit Data Bus plus byte parity.
+D(0:31)/PI The internal and asynchronously latched

input data bus plus byte parity.
--D(0:31)/PO The internal synchronous output data

bus plus byte parity.
--A(0:31)/P The MC 32-bit Address Bus plus

byte parity.
+A(0:31)/PI The internal and asynchronously latched

input Address Bus plus byte parity.
This bus is only valid for Streaming
Data operations.

--MASTERRDY This signal indicates when the chip acting
as a MC Master is ready to begin writing
data words onto the MC.

--SLAVERDY This signal indicates when the chip acting
as a MC Slave is ready to begin placing
read data words onto the MC.
This signal indicates when the chip
is a MC Master.

--MC MASTER

--MC-SLAVE This signal indicates when the chip
has been selected as a MC Slave.

--RDY RTN This signal is received by
the MC Master and indicates the ready
condition of the selected MC Slave.

-RDYRTN A The asynchronously latched
--RDY-RTN signal, used
internally to validate the data bus.
The synchronously sampled and latched
--RDYRTN signal, used internally
to determine the ready condition.
This signal indicates when a 64-bit
Streaming data transfer is in progress.

--RDYRTNS

--64-SDEN

Once the proper Micro Channel 110 and internal
signals have been generated, the current state of the
Micro Channel 110 can then be determined using a
synchronous state machine design. FIG.7 illustrates the
MC Interface State Machine 172. For quick reference
to the state machine 172, Table 3 contains the State
transition equations. The definitions of the states are
contained in Table 4.
The state machine 172 begins in State-O which

means that the MIC 112 is not active on the Micro
Channel 110.

If equation bin Table 3 is satisfied, the state machines
goes from State 0 to State 1, which means that the
-CMD signal on the Micro Channel 110 has gone
active low and the chip will be receiving data from the
Micro Channel 110 using either a basic or streaming
data transfer. The -CMD signal is used to indicate
when data is valid on the Micro Channel 110. If, on the
other hand, equation c in Table 3 is satisfied, the state
machine goes to State 3, which means that both the
-CMD and the -SD-STB signals have gone active
low and that MIC 112 will be receiving data from the
Micro Channel 110 using a streaming data transfer. The
-ST STB signal is a Micro Channel 110 signal used to
clock data during a streaming data transfer. The signal

5,379,386
23

is sent by the master on the Micro Channel 110 and
received by the slave device on the Micro Channel 110.
If on the other hand, equation d is satisfied, the state
machine goes from State 0 to State 5 which means
that -CMD has gone active low and the chip will be 5
presenting or has already presented valid data on to the
Micro Channel 110. Also, the --RDYRTN signal is in
active low indicating that the Micro Channel is in a not
ready condition.

If equatione in Table 3 is satisfied, state machine goes 10
from State. Oto State 6 which means that the -CMD
signal has gone active low and the chip will be present
ing or has already presented valid data on to the Micro
Channel 110 and the --RDYRTN signal is active high
indicating that the Micro Channel 110 is ready for data 15
transfer. The state machine will go from State 0 to
State 7 if equation f is satisfied. In State 7, the
-CMD and -ST-STB signals have gone active low
and data is presented by the MIC 112 on to the Micro
Channel 110 for a streaming data transfer. 20

State-4 is reached from State 3 if equation k in
Table 3 is satisfied. In State-4, the -ST-STB signal
has gone active high and the chip is waiting for valid
data to be latched in. State-8 is reached from State-7
when equation win Table 3 is satisfied. In State-8 the
-ST STB signal has gone in active high and the chip
is waiting for the next valid to be clocked out on to the
Micro Channel 110. Other transitions and points of
stability are described by the equations in Table 3 in
conjunction with FIG. 7. For example, as long as equa- 30
tion a is satisfied, the state machine will remain in Sta
te-O which means that the MIC 112 is not active on the
Micro Channel 110. The state machine is used with
standard components such as a register and associated
logic for each of the eight states in the state machine. In 35
the state machine, States 1,3 and 4 define data states in
which the MIC 112 will be receiving data from the
Micro Channel 110 and States-5, 6, 7 and 8 define data
states in which the MIC 112 will be transmitting data on
the Micro Channel 110. 40

TABLE 3
State Machine State Equations
G = Reset - a- - - -
a = State 0 & b & c & d & e & f 45

b = State 0 & --CMDB & STRB &
(--MC. SLAVE & -SO-I) / (--MC MASTER & -S1 D)

c = State 0 & --CMDB & STRB &
(+MC. SLAVE & -SOI) / (--MC-MASTER & -S1. I)

d = State 0 & --CMDB & --RDYRTN-S & 50
(--MC-SLAVE & -S1-I) / (--MC MASTER & -SOD)

e - State. O & --CMDB & --STRB & RDYRTNS &
(+MC. SLAVE & -Si-I) / (--MC-MASTER & -SOI))

f = State O & CMDB & --STRB & --RDYRTNS &
(+MC SLAVE & -S1. I) / (+MC MASTER & -SOD) 55

g = State-ll & --CMDA & +STRB
a = State 1 & --CMDA & STRB

i = State & CMDA & --STRB

j = State 3 & +STRA 60
k = State-3 & STRA

is State 4 & CMDA. & STRB

m - State 4 & --CMDA & --STRB
m guita 65

n = State 4 & --CMDA. & STRB
o State 5 & --CMDA

p = State 5 & +RDY RTN-S & --CMDA

24
TABLE 3-continued

State Machine State Equations

q = State-5& CMDA & STRB& --RDYRTNS
r = State-5& CMDA & +STRB & +RDYRTN is
s = State-6&--CMDA & STRB
t = State 6 & CMDA& STRB
u = State-6&-CMDA&--STRB
v = State 7 & --STRA
w = State 7 & --STRA

x = State 8 & --CMDA & --STRB

y = State 8 & --CMDA & --STRB

z is State 8 & CMDA & STRB
& denotes a logical ANd operation
A denotes a logical OR operation
Note:
An inactive -CMD and an active -SD-STB combination is not valid per Micro
Channel architecture. This means that the equation --CMDA & SRB is not
possible.

TABLE 4

State Definitions
State-0=The chip is currently not active on the MC.
State-l=The MC-CMD has gone active low and

the chip will be receiving data from the MC using either
a Basic or Streaming Data transfer.

State. 3=The MC -CMD and -SD STB have
gone active low and the chip will receive data from the
MC using a Streaming Data transfer.

State 4=The MC -SD-STB has gone inactive
high and the chip is waiting for valid data to be latched
1.

State 5=The MC-CMD has gone active low and
the chip will be presenting or has already presented
valid data onto the MC. The MC --RDYRTN signal
is inactive low indicating a not ready condition.

State 6=The MC -CMD has gone active low and
the chip will be presenting or has already presented
valid data onto the MC. The MC --RDYRTN signal
is active high indicating a ready condition.
State-7s-The MC -CMD and SD STB have

gone active low and valid data is presented onto the MC
for a Streaming Data transfer.

State 8-The -SD-STB has gone inactive high
and the chip is waiting for the next valid data to be
clocked out.

Finally, decoding the state machine, data validation
can be achieved in a synchronous manner. This will
then allow processing of data without the use of any
further asynchronous logic of timing. The decoding
equations and definitions are listed below.
BTDAV =g & --RDY RTNA
SDDAV = m/1 & --RDY RTN A/-64 S
D EN

SDGND=f/r/u/y & (--RDY RTN A/-64 S
D EN)

The BTDAV signal indicates that the chip has re
ceived and latched valid data during a MC Basic Trans
fer cycle. The --D(0:31)/P I bus is now valid. The
SDDAV signal indicates that the chip has received and
latched valid data during a Streaming Data cycle. The
--D(0:31)/PI and --A(0:31)/P I are now valid. The
SDGND signal indicates that valid data has been trans
ferred and taken on the MC during a Streaming Data

5,379,386
25

transfer. New data can be fetched and presented on the
+D(0:31)/P-O and --A(0:31)/P-O buses on the fol
lowing clock cycle.
As shown above, the capturing logic, state machine,

and decode logic together can provide a reliable
method for interfacing with and determining the state of
the Micro Channel as well as satisfying LSSD rules and
requirements. In addition, internal chip designs are sim
plified by the minimal use of asynchronous logic and
control within the chip.
Micro Channel Timing
Timing diagrams for Micro Channel Basic Transfer,

Streaming Data, arbitration and parity timing functions
can De found in Personal System/2-Hardware Inter
face Technical Reference-Architecture, Order No.
84F9808, Form No., S84F-9808-00, by the IBM Corpo
ration and is hereby incorporated by reference.
Local Processor Bus Interface
The MIC 112 arbitrates for the LPB 115 by activating

the -BUS REQ signal. Once the MIC 112 detects that
the -BUS GNT signal has gone active (low), the MIC
112 will become the master and continue to assert
-BUS REQ active.
Once the master, the MIC 112 will not release owner

ship until it detects: either -BUS GNT has gone inac
tive OR the MIC 112 no longer needs the bus. When the
MIC 112 detects that it should give up ownership of the
bus, -BUS REQ will become inactive (high). This
indicates that the MIC 112 is currently performing its
last access.
Once the MIC 112 has made its -BUS REQ inactive,

the MIC 112 will not request the LPB 115 back until it
detects that -BUSGNT has gone inactive. This allows
no time restrictions on the external LPB arbitration
logic to make-BUS GNT inactive relative to the MIC
making -BUS REQ inactive.
Master Operations
When the MIC 112 gains ownership of the LPB 115

the MIC 112 becomes a LPB master. As a master, the
MIC 112 is able to read/write data to and from the LPS.
The MIC 112 as a LPB Master will always perform
word (2 byte accesses.
The MIC 112 begins master operations by supplying

an address on the --ADDR/DATA(0:19)i. This ad
dress is then latched by the -ALE signal. Once the
address is latched, the --ADDR/DATAO:19)ibus can
be used for the transfer of data. The --M/-IO signal
determines whether the address is in the memory space
or I/O space of the LPB 115. The --R/W signal deter
mines the direction the data will flow on --ADD
/DATA(0:19)i. Data transfers only utilize the lower
16-bits of ADDR/DATA(0:19)i. Odd parity for
--ADDR/DATA(0:19)i is generated/received on
+A/D PAR(0:2)i.
The -DAV and --RDY signals are used for hand

shaking and validation during the data transfer.
-DAV, sourced by the LPB Master, becomes active
when valid data exists on --ADDR/DATA(0:19)ibus.
--RDY, sourced by the LPB Slave, is used to inform
the MIC that a LP device is ready/not ready to receive
data during a write or send data during a read.
LPB Slave Operations
The MIC 112 becomes a LPB slave when - CSEL is

active and/or a predefined address has been decoded.
When the MIC 112 is a slave, a LPB device 119, 122 has
the ability to access additional resources, such as initial
ization registers, direct access to the LDB 117, and the
Queue Printers. -ALE and --R/W become inputs

5

26
controlled by the LPB device. -DAV becomes an
input representing when valid data is to be written or
when the master is ready to accept read data. --RDY
becomes an output from the MIC 112 validating a write
or read data to the LPB device. MIC Slave accesses to
the Initialization and Control register must be on a
word (2 byte) boundary. LDB window accesses may be

10

15

20

25

30

35

45

50

55

on 1 or 2 byte boundaries.
Interrupts
The MIC 112 supplies four programmable interrupts,

-INT(:3). These interrupts inform a LPB 119, 122
device that a queue which the MIC 112 is managing
contains a job(s) or an error has occurred. The MIC 112
provides a readable register to indicate the status of jobs
within the Queues. An interrupt is cleared by either
removing all jobs from a Queue or clearing the error
condition.
Errors
All errors detected by the MIC 112 on the LPB 115

are indicated by an interrupt. An error interrupt can be
generated by a USW being posted to a Queue or if a
Queue error occurs via the Queue error register.
The LPB Error signal is used to clear the MIC 112 of

a hang condition. If the MIC 112 is a LPB Master and
the slave device does not respond with a ready condi
tion, then the LPB error should be used to allow the
MIC 112 to terminate the current transfer. If the LPB
Error signal becomes active then a USW is posted. The
MIC 112 only receives the LPB Error signal, the MIC
112 never drives it.
Local Processor Bus Timing
FIGS. 8 through 11 illustrate LPB timing for slave

and master operations. The following conventions were
used in FIGS. 8 through 11, depicting the LPB Timing
diagrams:

First, data was skewed in relation to the rising edge of
the system clock to illustrate which edge the MIC 112
uses to send and receive data. When the MIC 112 drives
the signal, the data is shown to change slightly after the
rising edge of the clock. When the MIC 112 is receiving
the signal, that data is drawn such that it is stable around
the rising edge the MIC 112 will clock it on. Second,
the right hand column of each timing diagram lists who
is controlling the signal (M=master, S=slave, A=arbi
tration logic, and m-not driven by MIC 112 when
master, controlled externally). Third, the dashed line
represents a pull-up holding the signal high while it is
not being driven. Fourth, with the exception of the
-ALE which is always valid, any signals sent to the
MIC 112 during an access is in a don't care state in those
cycles where the dashed line appears. Any signal the
MIC 112 controls during that access may require the
pull-up to hold it active (i.e. --RDY). Fifth,": at the top
of the diagrams represents the clocking edge for the
MIC 112.
Local Data Bus Interface
Referring to FIGS. 12 and 13, the LDB interface 137

is a 100 MB interface that is designed to handle high
speed data transfers between LDS memory 123 and any
device connected to the LDB 117. The data bus shall
consists of 32 bits of data with 4 bits of oddbyte parity.
The address bus shall consist of 10 bits of address and 2
bits of odd parity. The address bus 137 allows for the
access to an address range of 1 MB by using a page
address scheme that consists of an 8 bit high address
(HA) followed by a 10 bit low address along with four
byte enables.

5,379,386
27

Arbitration on LDB 117 is accomplished by the use
of a one-bit token ring protocol. This protocol allows
for multiple LDB devices, programmable time sharing
among the LDB devices, minimal latency during pass
ing of bus ownership, parity and protocol error detec
tion, and error recovery. Also included is an error sig
nal called LDB Err and a request signal called LDB
ROB.
Referring to FIGS. 12 and 13, several signals are used

for the 1-bit token ring protocol used on the LDB 117.
In FIG. 12, a two-chip ring is depicted. Chips 1 and 2,
240 and 242, depicted generally in the figure, are the
MIC 112 and the Serial Interface 113 respectively. As
shown in FIG. 13, the protocol connections can be

10

extended for a multi-chip ring with the same number of 15
I/O signal connections which allows other devices 124,
125 coupled to the LDB 117 to act as the LDB master.
To accommodate multiple users on the LDB bus 117,

the protocol signals are coupled such that the RARBI
and RARBO form a ring 244 for the token to rotate on
while the LDB ROB 248 and LDB Err 246 signals
are hooked to form a hardwired dot OR function. Un
like typical token rings, the ring 244 of the present in
vention is used for arbitration only. The lines dedicated
to the LDB 117 are separate from those used for the
ring 244 and ROB 248 and error 246 signals.

Positive logic is used to define the active levels of the
I/O signals. The RARBIOL) signal, or Ring Arbitration
In signal, is an input to the chip which is used to receive
the token when passed from another user on the ring.
The RARBO(L) signal, or Ring Arbitration Out signal,
is an output from the chip which is used to send the
token to the next device on the ring. Both the RARBI
and RARBO signals are passed on the ring 244. In the
preferred embodiment, the token appears as a 1 cycle
active low pulse. The LDB ERR(L) signal 246 is a
bidirectional signal which indicates that there is an
error on the LDB 117. In the preferred embodiment,
the driver type is open collector with a pull-up resistor
external to the chip. This signal is to indicate to all ring
participants that an error has been detected on the ring.
The severity of the error is preferably indicated by the
number of cycles the Bus Error signal 246 is held active.
The Bus Error signal is active low.
The ROBOL) signal, or Request to Own the Bus sig

nal, 248 is also bidirectional. In the preferred embodi
ment, the driver type is an open collector with a pull-up
resistor external to the chip. The purpose of this signal
is to notify the current device holding the token that
another device is waiting to use the bus. The current
holder of the token uses the ROB signal to enable its
internal counter which indicates how long it can hold
the token. All other devices use the ROB line on the
LDB 117 to enable an internal counter which indicates
how long it should take for the token to rotate around
the ring.

Each ring member 240, 242 may contain two timers.
These two timers allow for programmable bus arbitra
tion latencies. The rate and implementation of these
timers may be determined by the designer, system envi
ronment, and/or chip clock rate. The Token Hold
Timer (THT) defines the maximum time that a device
may hold onto the arbitration token. The Token Rota
tion Timer (TRT) defines the maximum time between
the release of the token to receiving the token back.
The TRT may be defined as illustrated in the equa

tion below:

20

25

30

35

50

55

65

28
TRTCX)x =q+2N-THTCX)---THT(1) + . . .
THT(N), where Na = 1

Q=Time delay constant determined by the environ
ment.

2N=N is the number of chips in the 1-bit Token
Ring. The multiplication factor of 2 represents the
two registers in the token path per device, namely
TokIn and TokOut,

X=The chip being designed.
With the use of the LDB ROB line, each chip can

provide an enable for incrementing its THT and TRT
timers. If the LDB ROB signal does not become ac
tive, the token can be held by a chip accessing the bus
for as long as it needs it because the THT timer is not
enabled. Once the LDB-ROB line becomes active, the
chip holding the token has until its THT timer expires
before it must release the token.
Only those bus participants with a high potential

demand for the shared bus resource need the Token
Hold Times. The timer is not needed for the chips
which will only hold onto the local data bus 117 for a
short period of time. Also, only one ring member needs
the Token Rotation Timer to detect the lost token con
dition in the ring 244.
As all bus members participate in the arbitration of

access to the LDB 117, fairness is inherently provided.
Further, the ROB signal 248 helps improve the effi
ciency of the LDB 117 as a processor need not relin
quish control unless another processor requires the
resource as well as providing bus monopolization.
The Ring state machine consists of 4 basic states:

Ring Down (RD), Idle (Id), Token Master (TM), and
the Error Detected (ED) state. Each LDBring device
should follow the state transitions shown in FIG. 14.
The LDB ring state machine controls initial start-up,
arbitration, and error recovery. FIG. 15A also shows
the boundary logic the MIC 112 uses to interface the
ring state machine to the LDB control signals. All ring
devices should have a two cycle delay from their
RARBI to RARBO to ensure proper removal of the
token when the ring goes down. Active levels of signals
in the following figures are represented by a "(H) or
"(L)' suffix. Active and inactive states of signals are
represented by the lack of an overscore (active) or the
presence of an overscore (inactive).
FIG. 15B illustrates the implementation of the logic

for the two timers, the Token Hold Timer (THT) and
the Token Rotation Timer (TRT). Every high demand
bus member must have the THT to determine how long
after the ROB signal is received it can maintain control
of the bus. At least one bus member must have the TRT
to detect a lost token condition on the ring. The Current
signal is loaded with the inverse the THT or the TRT.
When enabled, it counts up until it contains all 1's and
generates a carry out. As shown, the signals to the mul
tiplexer are controlled by the states and other signals
generated by the state machine and associated logic in
FIGS. 14 and 15A.
System reset is required to initialize all devices into

the Ring Down state. Prior to the ring start up, each
device should have its TRT and THT values initialized.
Once all members of the LDB 117 have been initialized,
one chip on the ring must be made the Ring Master. The
Ring Master is responsible for initiating a new token
when the ring is down and all LDB 117 error conditions
have cleared. Once the token is initiated onto the ring,
it will be received and passed by each device until it

5,379,386
29

makes one full revolution. This initial revolution will
bring all chips into a Idle State. There should never be
more than one token rotating around the LDB ring. In
one preferred embodiment, the MIC 112 is the Ring
Master.
Once in the Idle State, a device is free to activate the

LDB ROB line in an effort to gain ownership of the
LDB 117 by capturing the token. Once a device detects
the token, the device should transition to the Token
Master State. If, while waiting in the Idle State the TRT
expires, that device should activate the error signal and
transition to the Error Detect State.
Once a device enters the Token Master State, it can

either pass the token on to the next device or hold onto
it. If the device holds onto the token, it is free to access
LDS 123. While in the Token Master State, the device
should increment its THT whenever it detects the
LDB ROB signal is active. Once this timer expires, the
Token Master must finish its access, release the token,
and go back to the Idle State.
An LDB ring device enters the Error Detect state

whenever that device detects that there has been an
error in the LDB protocol. The two basic conditions
that will cause this transition are a lost token, i.e., TRT
expires, or the detection of a second token on the ring.
If either of these conditions exist, that device should
activate the LDB Err signal for at least two consecu
tive cycles which will send all the LDB devices into the
Ring Down State.

All ring devices will enter a Ring Down state upon
detecting that the LDB Err signal has gone active for
at least two consecutive cycles. In this state, each de
vice will discard any tokens that they receive while the
Bus Error line is still active. Once the Bus Error line
goes inactive, the device enabled as the Ring Master
should re-initiate the token to start the ring back up.
The local processor that is handling error recovery

has the capability of controlling the restart of the ring
after it goes down. If the processor wants the ring to
automatically restart once the error has cleared, it
should leave one device in the ring initialized as the
Ring Master. If the processor wants to prevent the
automatic restart, it should first activate one device as
the Ring Master for initial start up, and then deactivate
that device as the Ring Master.
Upon detecting an error, a device can notify the other

ring devices that an error has occurred by activating the
Bus Error line. Any device not activating the LDB
Err signal can determine the severity of the error by
detecting the number of consecutive cycles the Bus
Error signal is active. There are are two categories of
errors defined on the LDB: 1) non-recoverable, 2) re
coverable.

Non-recoverable errors are errors that require the
ring to be brought down and restarted due to protocol
errors such as a lost token or the detection of two tokens
on the ring. The non-recoverable error conditions are
detected when the Bus Error line is active for at least
two consecutive cycles. A few examples of non-recov
erable errors include a lost token. Once the token has
been passed to the next device on the ring, the TRT
value is loaded into a counter. This counter should be
enabled when the LDB ROB signal is active. If the
token does not return by the time the TRT counter has
expired, the device should activate the LDB-Err signal
for at least 2 cycles signifying a non-recoverable error.
Another non-recoverable error is when a device finds
two tokens: If a second token is detected while a device

O

15

20

25

30

35

45

50

55

30
is holding the token, the device should activate the
LDB-Err signal for at least two cycles signifying a
non-recoverable error.

Recoverable errors are errors which have not dam
aged the protocol on the ring, thereby not requiring the
bus to be brought down and restarted. Recoverable
errors should be detected by a device that is in the Idle
State and is monitoring the LDB data transfer of the
current Token Master.
The MIC 112 will monitor other devices for two

types of recoverable errors: Address parity errors on a
read operations, and byte enables (BE(0:3)) being active
while HALE is active. The MIC 112 will activate the
LDB-Err signal while in the Idle State for each recov
erable error it detects from the Token Master. This may
cause the the MIC 112 to activate the LDB Err signal
for at least two consecutive cycles should the Token
Master continue to perform accesses that have either of
these errors.
Upon detecting the LDB-Err(L) active for one

cycle the Token Master has the option of continuing or
releasing the token to the next device. If the Token
Master detects the LDB-Err active for 2 consecutive
cycles, it must finish its LDB access and enter the Ring
Down State.
The purpose of the LDB ROB signal is to give the

current Token Master an indication as to whether a
second ring device is waiting for access to the LDB 117
or LDS 123. This signal should be used by the Token
Master to enable its THT and by the devices in the Idle
State to enable their TRT signal.
There is no restriction on what cycle a device acti

vates and deactivate the LDB ROB line as it transi
tions through the ring state machine and in fact the
signal can be permanently tied to ground. This of course
would not provide the most efficient use of the bus,
since a device may be forced to give up the token when
no other devices needed the bus.
The following guidelines can be used for activating

LDB ROB which will make the most efficient use of
LDS. These are also the rules the MIC 112 uses in its
preferred embodiment. Once a device determines it
needs the LDB 117 and the token is not currently in its
boundary in register (TokIn(L)), it should drive the the
LDB-ROB signal active in the following cycle. If the
token was currently in the boundary in register then the
device should capture the token and not drive the
LDB-ROB signal active. Once a device which is cur
rently activating the LDB-ROB signal receives the
token in its boundary in register (TokIn(L)), it should
stop driving the LDB ROB signal in the following
cycle. The LDB ROB signal may remain active due to
a second device. Once a device in the Token Master
state is forced to release the token due to its THT expir
ing, it may cause the LDB ROB signal to go active the
cycle after the token was in its boundary out register
(RARBO active) if it wants to gain the token back.
FIG. 16 shows the timing of the MIC 112 starting up

the ring on the LDB 117 with another device from the
Ring Down state. In this example, the MIC 112 is the
Ring Master and also performs an LDB access as soon
as the bus is up. Note that the token should rotate once
around the ring before any device should capture it in
order to gain access to the LDB 117.
Whenever the LDB Err line goes active for at least

two consecutive cycles, it is the responsibility of each
device to detect the old token and discard it once in the
Ring Down State. This window of time in which each

5,379,386
31

device discards the old token must be followed by each
device so that each device can determine the difference
between the old token that was stripped and the new
token which brings the ring back up. The window for
stripping the token while in the Ring Down state is
defined in the equation for Take Token in FIG. 15A.
The earliest point in which the Ring Master can inject

the new token on the ring is included in the equation for
the Inj Token(L) signal in FIG. 15A. It is preferred
that one device have the capability of becoming the
Ring Master. If multiple devices have the capability of
issuing a token, then two tokens could be put on the bus
if software mistakenly initialized the ring 244 to have
two Ring Masters. This condition would be detected
but possibly after two devices both tried to drive the
LDB 117.
LDB Data Transfers
Once a LDB device has gain ownership of the LDB

117 by becoming the Token Master, it is free to transfer
data to and from the LDS 123 until it gives up its own
ership. Each device on the LDB 117 can access the
Local Data Store 123 using the following signals:
ADDR(0:9), APAR(0:1), DATA(0:31), DPAR(0:3),
-HALE,--R/W, and -BE(0:3).
Addressing on the LDB 117 uses a paging scheme

that involves an 8-bit high address (HA) and a 10-bit
low address (LA) sent across the ADDR(0:9) bus
which allows for addressing of up to 1 Mega Bytes. The
HA only needs to be sent when a new 4 MB segment is
to be accessed.
Whenever a device puts out a HA on the ADDR(0.9)

bus, the HALE(L) should be active, the R/-W should
be valid, the byte enables BE(0:3)(L) should be inactive,
the data bus should be tri-stated, and all 10 bits of ad
dress should be driven with good parity even though
only the least significant 8 bit of the HA are used.
LDB Start Up FIG. 16 shows the timing of the MIC

112 starting up the ring on the LDB 117 with another
device from the Ring Down state. In this example, the
MIC 112 is the Ring Master and also performs an LDB
access as soon as the bus is up. Note that the token
should rotate once around the ring before any device
should capture it in order to gain access to the LDB
117.
Whenever the LDB Err line goes active for at least

2 consecutive cycles it is the responsibility of each de
vice to detect the old token and discard it once in the
Ring Down State. This window of time in which each
device discards the old token must be followed by each
device so that each device can determine the difference
between the old token that was stripped and the new
token which brings the ring back up. The window for
stripping the token while in the Ring Down state is
defined in the equation for Take Token in FIG. 15A.
The earliest pointin which the Ring Master can inject

the new token on the ring is included in the equation for
the Inj Token(L) signal in FIG. 15A. It is preferred
that one device have the capability of becoming the
Ring Master. If multiple devices have the capability of
issuing a token, then two tokens could be put on the bus
if software mistakenly initialized the ring 244 to have
two Ring Masters. This condition would be detected
but possibly after two devices both tried to drive the
LDB 17.
LDB Data Transfers
Once a LDB device has gain ownership of the LDB

117 by becoming the Token Master, it is free to transfer
data to and from the LDS 123 until it gives up its own

10

15

20

25

30

35

45

50

55

60

65

32
ership. Each device on the LDB 117 can access the
Local Data Store using the following signals:
ADDR(0.9), APAR(0:1), DATA(0:31), DPAR(0:3),
-HALE,--R/W, and -BE(0:3).
Addressing on the LDB 117 uses a paging scheme

that involves an 8-bit high address (HA) and a 10-bit
low address (LA) sent across the ADDR(0:9) bus
which allows for addressing of up to 1 Mega Bytes. The
HA only needs to be sent when a new 4 MB segment is
to be accessed.
Whenever a device puts out a HA on the ADDR(0.9)

bus, the HALECL) should be active, the R/-W should
be valid, the byte enables BE(0:3)(L) should be inactive,
the data bus should be tri-stated, and all 10 bits of ad
dress should be driven with good parity even though
only the least significant 8 bit of the HA are used.
Whenever a device puts out a LA on the interface,

the HALE(L) should be inactive, the R/-W should be
valid, at least one of the BE(0:3)(L) should be active,
the DATA(0:31) should contain the write data with
good parity if it a write, and all 10 bits of address should
be driven with good parity.
To enable LDB devices to exchange ownership of

the LDS without interfering with each others accesses,
the following relationship should exist between the
cycle the token is captured and released, and the cycle
in which the LDB address, data and control signals are
driven and released as shown in FIG. 17. This relation
ship will provide for one dead cycle on the LDB 117
during the exchange of ownership.
The MIC 112 shall maintain maximum LDB band

width by making efficient use of LDB 117 as the LDB
master and minimizing the bus latency during the ex
change of ownership with another device. It is recom
mended that all devices on the LDB 117 follow the
timing relationship of the MIC 112 to preserve the max
imum bandwidth of the LDB 117. The timing specified
together with the rule for putting out the HA relative to
detecting the token will ensure that the latency in pass
ing the ownership of LDB 117 is minimized while al
ways keeping one dead cycle on all shared LDB 117
signals during the exchange. The MIC 112 determines
its last access by checking the state of the THT and
LDB-ROB when it is preparing to put a LA on the
interface the following cycle.
The MIC 112 shall not stop the token from propagat

ing onto the next device unless it has an immedi
ately need for LDS 123.

If the MIC 112 needs to take the token in order to
access LDS 123, the MIC 112 shall drive its HA on
the interface the cycle after it detects the token in.

When the MIC 112 is the LDB master, it shall release
the token relative to its last bus operation in such a
manner that it minimizes bus latency when passing
the ownership to the next device.

When the MIC 112 is a master and the last operation
is a write, the MIC 112 will have the token on the
interface in the same cycle the last write LA is on
the interface as shown in FIG. 19.

When the MIC 112 is a master and the last operation
is a read and the MIC112 is programmed for 0 wait
States, the MIC 112 will have the token out on the
interface one cycle after the last read LA is on the
interface as shown in FIG. 16.

When the MIC 112 is a master and the last operation
is a read and the MIC 112 is programmed for 1 wait
states, the MIC 112 will have the token out on the

5,379,386
33

interface one cycle after the last read LA is on the
interface.

When the MIC 112 is the LDB master, it preferably
drives HALE(L) and the BE(0:3)(L) inactive (high)
before tri-stating them. This means that the pull-ups on
the module are not required to pull these signals back
inactive in one cycle but just for holding then inactive
once the MIC releases them.

After a HA has been driven with the R/-W signal
high, an LDB master read access is triggered when an
LA is sent with at least one BE(0:3) active and the
R/-W line high. The master can pipeline its reads by
sending a series of read LA.
The MIC 112 was designed to perform LDB 117

reads with either 0 or 1 wait state. This enables the MIC
112 to be used in various applications that use RAMs
with different access times. The number of wait states
the MIC 112 will perform should be set during initial
ization by writing MIC LPB memory register x1006
(DBW, bit 13). If the MIC 112 is programmed for 0 wait
states, then it will put its LA on the interface for one 25
MHz cycle and expect the read data to be on the LDB
interface 133 two cycles later. If the MIC 112 is pro
grammed for 1 wait states, then it will put the same LA
on the interface for two 25 MHz cycles and expect the
read data to be on the LDB 133 interface three cycles
after that read access' first LA appeared on the inter
face. For both 0 or 1 wait state reads, the MIC 112 will
pipeline read operations. FIG. 16 shows the MIC 112
timing for an LDB read operations with 0 wait state.
When MIC 112 performs LDB Reads no wait states:
An initial HA will be put out the cycle after the MIC

112 clocks in the token (RARBICL)=L) when
starting an access.

A series of one or more LAs will always follow start
ing the cycle after a HA.

One HA may be inserted in between a series of LAs
each time the MIC 112 needs to access a different 4
KB segment.

The MIC 112 will release the token whenever its
Token Hold Timer expires or it no longer needs to
access LDS 123.

For reads, the MIC 112 will release the token to the
next device (RARBO(L)=L) one cycle after it
drives its last address.

The MIC 112 will always drive HALE(L) and
BE(0:3)(L) inactive before tri-stating these signals.
This enables a slow pull-up to be used on the mod
ule to hold these signals inactive.

Once an HA has been driven with the R/-W signal
low, an LDB master write access is triggered when a
LA is sent with at least one BE(0:3) active and the
R/-W line low. The write data and the LA should
both be on the interface at the same time. The 0 and 1
wait state feature mentioned above for reads does not
effect the timing for writes. As in the case of reads, the
master can pipeline a series of write LAs along with the
write data.
FIG. 18 shows the MIC timing for LDB write opera

tions. As shown, when MIC 112 performs LDB Writes:
An initial HA will be put out the cycle after the MIC

clocks in the token (RARBIOL)=L) when starting
at aCCCSS.

A series of one or more LAs will always follow the
cycle after an HA.

One HA may be inserted in between a series of LAs
each time the MIC 112 needs to access a different 4
KB segment.

5

O

15

20

25

30

35

45

SO

55

65

34
The MIC 112 will release the token whenever its
Token Hold Timer expires or it no longer needs to
access LDS 123.

For writes, the MIC 112 will release the token to the
next device (RARBO(L)=L) the cycle it drives its
last address.

The MIC 112 will drive HALE(L) and BE(0:3)(L)
inactive before tri-stating these signals. This ena
bles a slow pull-up to be used on the module to
hold these signals inactive.

The LDB master during its ownership can switch
from a read to a write access. To switch, the master's
write LA must be on the interface at least 4 cycles after
the last read LA appears as shown in FIG. 19. This will
allow enough time for the read data to be received
before the master drives its write data. Also shown in
FIG. 19, a new HA was sent before the first write LA.
The sending of this new HA is optional but does not
cause any added latency since the master needed to wait
for the read data to be received.
A master during a single token holding period can

follow a write access with a read access. As the write
LA and the corresponding write data are on the bus at
the same time, the master could put out a read LA in the
following cycle. In some alternative LDS memory de
signs, following a write LA with a read LA may cause
the memories and the MSI write register pipeline to
both drive momentarily while switching directions. For
this reason, the MIC 112 preferably follows a write LA
with a new read HA and LA when switching from a
read to a write even if the new HA is the same as the old
HA. This sending of the new HA will only cost one
cycle when the old HA matches the new HA.
FIG. 19 shows the LDB timing when the MIC 112

switches from a read to a write and from a write to a
read on LDB bus. When MIC 112 switches from a Read
to a Write or Write to a Read on LDB 117:
One HA will always be inserted when the MIC 112

switches the direction of the access even though
the new HA may be the same as the previous one.

Before switching from a write to a read, the MIC 112
will check the token hold timer to make sure it has
time to reverse the bus. When switching from a
read to a write the token hold timer is checked as
normal since no added latency is added when
switching in this direction.

The MIC 112 will release the token (RARBO(L)=L)
based on the last access it performs either a read or
a write.

The MIC 112 will always drive HALE(L) and
BE(0:3)(L) inactive before tri-stating these signals.
This enables a slow pull-up to be used on the mod
ule to hold these signals inactive.

The LDB master during its ownership can switch
from a read to a write access. To switch, the master's
write LA must be on the interface at least 4 cycles after
the last read LA appears as shown in FIG. 19. This will
allow enough time for the read data to be received
before the master drives its write data. Also shown in
FIG. 19, a new HA was sent before the first write LA.
The sending of this new HA is optional but does not
cause any added latency since the master needed to wait
for the read data to be received.
A master during a single token holding period can

follow a write access with a read access. As the write
LA and the corresponding write data are on the bus at
the same time, the master could put out a read LA in the
following cycle. In some alternative LDS memory de

5,379,386
35

signs, following a write LA with a read LA may cause
the memories and the MSI write register pipeline to
both drive momentarily while switching directions. For
this reason, the MIC 112 preferably follows a write LA
with a new read HA and LA when switching from a
read to a write even if the new HA is the same as the old
HA. This sending of the new HA will only cost one
cycle when the old HA matches the new HA.
FIG. 19 shows the LDB timing when the MIC 112

switches from a read to a write and from a write to a
read on LDB bus. When MIC 112 switches from a Read
to a Write or Write to a Read on LDB 117:
One HA will always be inserted when the MIC 112

switches the direction of the access even though
the new HA may be the same as the previous one.

Before switching from a write to a read, the MIC 112
will check the token hold timer to make sure it has
time to reverse the bus. When switching from a
read to a write the token hold timer is checked as
normal since no added latency is added when
switching in this direction.

The MIC 112 will release the token (RARBO(L)=L)
based on the last access it performs either a read or
a write.

The MIC 112 will always drive HALE(L) and
BE(0:3)(L) inactive before tri-stating these signals.
This enables a slow pull-up to be used on the mod
ule to hold these signals inactive.

The LDB bus 117 architecture supports an error line
that can be used to notify all the devices on the ring that
an error has been detected. This line should be activated
when either of two types of error occur: 1) non-recov
erable, detected when the LDB Err line is active for at
least 2 cycles; 2) recoverable errors, detected when the
LDB Err line is active for just 1 cycle.
The MIC 112, when master of the LDB 117 checks

for the condition of two tokens being present by deter
mining if a second token is detected once it has captured
the original token. Upon detecting this condition, the
MIC 112 will activate the LDB Err line (for at least 2
cycle) until it has put a USW onto the error queue.
The MIC 112 as master of the LDB 117 also has a

programmable bit accessible from the LPB 115 which
enables or disables the MIC 112 to check recoverable
errors. As a master, this programmable bit will cause
the MIC 112 to check parity on its write data when the
data is in the MIC's boundary register. On reads, the
MIC 112 will check parity on the read data it receives
along with the state of the error line. If the MIC 112
detects that the LDB ERR line was active on the in
terface the same cycle the read data was on the inter
face, an error was detected on the read address that was
associated with this read data.

If the MIC 112 has been set up to LDB reads with one
wait state, the MIC 112 will detect that an address error
has occurred when either the LDB Err line was active
in the cycle read data was valid or if in the previous
cycle, the LDB Err line was active. This is possible as
the read low address was on the bus for two cycles.
The MIC 112, when not the Bus Master will be in bus

monitor mode when. In this mode, the MIC 112 checks
for a lost token condition. This condition, which is
detected when the TRT timer expires, will cause the
MIC 112 to take down the LDB 117 by activating the
LDB Err line for at least 2 cycles until it puts a USW
on the error queue. The MIC 112 uses the same pro
grammable bit used to check recoverable errors as a
master. In Table 5, a description of the recoverable

10

5

20

25

30

35

45

50

55

65

36
errors detected by the MIC 112 when in bus monitor
mode and the resulting actions taken are listed.

TABLE 5
Recoverable errors the
MIC checks for as bus
monitor (Idle State) MIC action
Read and APE on LA -activate error line for 1 cycle such

that it is active 2 cycles after
address was on interface
-put USW on error queue

Read and APE on HA -activate error line as described in
previous case for each LA that
follows HA until a new HA is detected
or all BEs are inactive (master
finished)
-put USW on error queue

Read and DPE -error line is NOT activated
Write and APE -error line is NOT activated
on LA or HA -put USW on error queue
Write and DPE -error line is NOT activated

-put USW on error queue
Read and at least -activate error line for one cycle
one BE(0:3) active such that it lines up with first
while -HALE active
Write and at least
one BEO:3) active
while -HALE active

HA - high address, detected by monitor when HALE is active
LA - low address, detected by monitor when any of -BE0:3) are active
APE - address parity error
DPE - data parity error

LAS read data
-error line is NOT activated
-put USW on error queue

The software and programming interfaces to the
MIC 212 are listed in Table 6 and 7. Table 6 illustrates
bus master operations which can be programmed, con
trolled and/or performed by the MIC 112. Table 7
illustrates slave operations on the MC 110 and LPB 117
which allow accesses to the programming interfaces of
the MIC 112.

TABLE 6
MIC Operation Bus Operation Transfer Path
Writing LDB Data MC Men Write MCOBLOB
Reading LDB Data MC Mem Read LDB IDBMC
Writing QRC Reg MC/O Write MC QRC Reg
Reading QRC Reg MC/O Read QRC Reg MC
Writing QWC Reg MCI/O Write MC QWC Reg
Reading QWC Reg MC/O Read QWC Reg MC
Writing QD Reg MC I/O Write MC QWB LPB
Reading QD Reg MC I/O Read LPB QRB MC
Reading FBL MCIMO Read FBB MC
Reading JP Reg MC I/O Read JP Reg MC
Writing POS Reg MCAO Write MC POS Reg
Reading POS Reg MC I/O Read POS Reg MC
Reading Cntl Reg LPB Mem Read Cntrl Reg LPB
Writing Cnti Reg LPB Mem Write LPB Cntrl Reg
Reading Queue Init LPB Mem Read QM LPB
Writing Queue Init LPB Men Write LPB QM
Reading Queue Cntl LPB I/O Read QM LPB
Writing Queue Cnt. LPB I/O Write LPB QM
Reading LDB Data LPB Men Read LDB LPB
Writing LDB Data LPB Men Write LPBLOB
Reading STI/Scan STI Read STI Ext dev
Writing STI/Scan STI Write ... Exit Dev STI

TABLE 7
MIC Operation Bus Operation Transfer Path
Write Memory Data MC Men Write ODBMC
Read Memory Data MC Mem Read MCIDB LDB
Write I/O Data MCIAO Write ODBMC
Read I/O Data MC I/O Read MCOBLOB
Writing QWC Reg MCAO Write Master Exe MC
Reading QWC Reg MCAO Read MC Master Exe
Writing QD Reg MCAO Write Master Exe MC
FBL Fetch MCAO Read MC Master Exe
Write Memory Data LPB Men Write MIC LPB
Read Memory Data LPB Mem Read LPB MIC

5,379,386
37

TABLE 7-continued
MIC Operation Bus Operation Transfer Path
Write Memory Data LDB Write MIC LDB
Read Memory Data LDB Read LDBMIC

Commanded Transfers
Commanded transfers are master operations per

formed on either the MC, LPB, or LDB. This section
describes in more detail, operations described in Table
7. The MIC contains sufficient intelligence to control
the data transfers without CPU intervention.
MC Commanded Transfer
Commanded Transfers on the MC are initiated via a

MIC Command Word (MCW). MCWs are located in
one of the Queues which the MIC is managing. Queue
#D is defined as the MIC's Command Queue (MCQ)
dedicated to MCWs. As shown in FIG. 21, when the
MCQ contains an entry, the QM unit within the MiC
interrupts the Master Execution unit to fetch a MCW in
step 300. The MCW defines the source LPB device step
301 initiating the Commanded Transfer and the LPB
Memory Address where the MIC Control Block
(MCB) can be found. The MCB defines flags step 302,
source address step 303, and target address information
step 304 for the Commanded Transfer. Once the Com
manded Transfer, defined by the MCB, has been com
pleted, status of the transfer can be posted to a Queue
existing on the LPB step 306 and/or to a Queue existing
on another MC device step 305. The status posted to a
Queue existing on the LPB is called the MIC Status
Word (MSW). The MSW defines any errors which may
have occurred in step 307 during the Commanded
Transfer and the MCB used for the transfer. The status
posted to a Queue existing on another MC device is
called the Micro Channel Post Command (MPC). The
MPC defines the source device, flags, and target ad
dress of the transfer.

Table 7 illustrates a high level flow diagram of a
Master Execution or Commanded Transfer operation
described above. Flags, described in more detail in MIC
Control Block below, define the direction of the dia
gram. Commanded Transfers (FIG. 22) illustrates the
relationship between the MCW 310, MCB 312, MSW
318, MPC 316 and remote MIC free block register 314
during a MC Commanded Transfer.
MIC Command Word
The MCW consists of four bytes of information

which exist in the MCQ. The MCQ is define as Queue
#D and can hold up to 1KMCWs. FIG. 23 illustrates
the fields within a MCW. The following section de
scribes each field and its function.
MIC Control Block
The MIC supports a fixed length MIC Control Block

(MCB) of 16 bytes. The MCB must exist in the LPB
Memory Address space defined by the MCW. FIGS. 24
through 27 illustrate the MCB in detail. In general, the
execution of the MCB is governed by the flags con
tained in the first word of the MCB. FIG. 28 illustrates
the valid combinations of MCB flags.
MCB Notes
Below lists some notes on utilization of the MCB

fields.
1. The Source and Target Address fields MUST be
defined on a 4 byte boundary, except when
NOP=1 or FMT=2'. A 4 byte boundary means
that the least significant two bits of the Source and
Target Address fields MUST equal '00'.

5

15

25

30

35

45

50

55

65

38
2. The Byte Count field MUST be equal to 1, 2, 3, or

4'n, where n=0 to 16K.
3. A byte count value equal to 0, indicates a transfer
of 64K bytes.

4. A byte count value MUST be chosen so that the
Source and Target Address plus the Byte Count
field does not exceed or cross a 64 Kbyte address
boundary. Only the lower 16-bits of address are
allowed to increment, if a byte count causes the
16-bits of address to produce a ripple carry then the
upper bits are not modified and the address will
wrap.

5. The MPC QID should not be equal to ‘D’ if the
MC device receiving the MPC is another MIC.

MIC Status Word
The MIC has the ability to build status after the com

pletion of a Commanded Transfer. If the PCI bit in the
MCB is set or an error occurs during the Command
Transfer, the MIC will post the Queue indicated by the
MCW RQID field with an eight byte MSW. The re
ceiving Queue must have a byte count. defined as eight
bytes. The MSW provides a report of any errors which
may have occurred during the command operation. If
an error occurs during a chained operation then the
chain is terminated with status being built indicating the
address of the errored MCB. FIG. 29 illustrates the
fields of the MSW.
Micro Channel Post Command
The MIC has the ability to build status and Post a MC

device after the completion of a Commanded Transfer.
If the PST bit in the MCB is set the MIC will post status
to a Queue which exists on another MC device. This
other MC device may be another MIC or MC device
which can receive, understand, and/or translate the
MPC message and protocol. The Queue being posted is
determined by the MPC QID field in the MCB. The
posted status is called the Micro Channel Post Com
mand (MPC). The MPC contains eight bytes of data
indicating the source ID, target address, and byte count
related to the data which was moved during the Com
manded Transfer. FIG. 30 illustrates the MPC and de
fines its fields.
LPB Commanded Transfers
Commanded Transfer on the LPB can be initiated

from the Master Execution unit, the QRB, the QWB,
the FBB, or from a reportable error within the MIC.
The Master Execution unit uses the LPB to fetch
MCWs and MCBs, or to postMSWs. The QRB uses the
LPB to fetch Queue entries which a MC device is re
questing as part of a Queue Read Operation. The QWB
uses the LPB to write entries to a Queue loaded from
the MC via a Queue Write operation. The FBB uses the
LPB to fill FB entries which have been removed by
devices on the MC. The LPB also allows the MIC to
post unsolicited errors to a Queue managed by the MIC.
LDB Commanded Transfers

All MIC operations on the LDB are commanded
transfers. These transfers can be initiated by the Master
Execution unit, the IDB, or the LPB Interface. All
operations on the LDB are simple reads and writes. The
MIC does not have any programmable registers on the
LDB.
Device Initiated Transfers
Device initiated transfers are slave operations per

formed on either the MC or LPB. This section describes
in more detail, operations described in Table 6.
The MIC allows access from the MC or LPB to the

LDB, Queues and Control Registers. These accesses are

5,379,386
39

performed in the Memory or I/O address spaces that
exist on the MC and LPB. The MIC decodes the MC or
LPB address and performs the slave operation related
to the selected address.
LDB Access
The MIC supports direct access to the LDB from

either the MC or the LPB. In both cases, the MIC al
lows access to the LDB by monitoring the MC and/or
LPB for addresses which are within a predefined range.
For simplicity, figures which illustrate a LDB address
indicate a full byte address. The MIC does not imple
ment byte addressability in this way. Instead, the lower
two address bits are not driven and are replaced by
using four byte enables, BEO:3), to allow for full byte
addressability during LDB accesses. Since the MIC
only allows up to 10-bits of the LDB address to be
driven at once, the LDB address is split or multiplexed
into two parts; a high address and a low address. The
high address contains the upper 8-bits of the full LDB
address. The low address contains the next 10-bits of
address. The byte enables, BE(0:3), provide the remain
ing byte controls necessary for a complete 1 Mbyte
LDB address.
Access from MC

For the MC to access LDB, a predefined address
range is assigned within the MC Memory space. This
range of addresses is defined by a base address plus an
offset. The LDB MC base address is defined by the
LDB MC Memory Base Address register. The LDB
MC Memory Base Address register can be found in
POS 3 and 4. Sub-Address 001. The LDB MC Mem
ory BaseAddress together with an offset allow any MC
device direct memory access to the LDB memory
space. The amount of memory space accessible from the
MC is determined by the LDB Size field in POS Reg 3
Sub-Address "0000. The LDB Size field limits the offset
the MIC will decode. LDB memory space can be de
fined as 128K, 256K, 512K, or 1 Mbyte. See “MIC
Programmable Option Select (POS) Registers” for
more details about the LDBMC Memory BaseAddress
registers and LDB Size fields. FIG. 31 illustrates the
MC Memory map for LDB accesses and the byte ad
dress relationship between the MC and LDB. Note:
The MC --M/-IO signal must be equal to '1' for LDB
2CCSSS

LDB Access from LPB
For the LPB, accessing the LDB requires a paging

type method. The paging method requires the LPB
device to load a segment register which defines one of
2564 Kbyte windows within LDB to be accessed. The
LPB to LDB Access Segment Register is defined at
LPB Memory Address, X1000. Once the segment has
been initialized, an offset address within the LPB Men
ory Address space X0000 through XOFFF defines.a
point within the 4K window. FIG. 32 illustrates the
LPB Memory map for LDB Accesses and the byte
address relationship between the LPB and LDB.
Queues
The MIC provides hardware support for managing

164KByte Queues stored within a 64 Kbyte segment of
LPS. MIC Queue management includes maintenance of
the Queue Read and Queue write Pointers, Queue sta
tus, Queue Entry size, and assigned interrupt levels for
each enabled Queue. All Queue maintenance informa
tion and control is contained within the MIC's Queue
Manager (QM). Access to this Queue maintenance in
formation can be achieved in two different ways; direct

O

15

20

25

30

35

45

SO

55

60

65

40
or controlled. Access to the Queue themselves can be
achieved from either the LPB or MC.
Direct QM Access

Direct access to all Queue maintenance information is
achieved only from the LPB Memory space. Direct
access allows the LP to initialize and manipulate the
Queue maintenance information. Each of the 16 Queues
requires a 4-byte register, within the MIC, to hold the
Queue maintenance information. These registers are
called the Queue Initialization Registers (QIR). The
LPB address location of the QIRs is determined Dy the
following;
QIR LPB Memory Address=XXXX;QIR Segment
;Queue Number;QIRByte
where XXXX=don't care. See note.
where QIR Segment='0001000100
where Queue Number="0000 through 1111
where QIRByte='00 through 11

FIG.33 illustrates the relative LPB memory location
of the QIRs, accessible via a direct access. FIG. 34
illustrates and describes in detail the 4-byte generic
layout the QIR accessible via a direct access.
Controlled QM Access

Controlled access to Queue maintenance information
is achieved only from the LPB I/O space. Controlled
access is used during operational modes to allow any
LPB device access to some of the Queue maintenance
information contained within the QIR. With this data a
LPB device can determine the location and status of
any Queue or current active Queue entry and can add or
remove a Queue entry from any Queue. In addition, the
MIC uses a controlled access to update Queue mainte
nance information, such as pointer and interrupt status.
The Queue maintenance information accessible via a
controlled access is a subset of the same information
available in the QIR. This subset of information is con
tained within two 2 byte registers called the Queue
PointerRegisters (QPR). The LPB device only needs to
access one of these 2 byte registers depending on
whether a Queue entry is to be added or removed from
a Queue. FIG. 35 illustrates the relative LPB I/O space
location of the QPR available to any LPB device via a
controlled access. FIG. 36 illustrates the generic layout
of one of the QPR available via a controlled access.
Queue Access from the LPB
From the LPB, the Queues within the LPB Memory

space can be indirectly accessed by using the QPR
within the LPB I/O space. ALPB device directly ac
cesses the Queues by obtaining one of the two Queue
Pointers from the MIC for the requested Queue. The
QRP is read from the MIC if a Queue Entry is to be
removed from a Queue. The QWP is read from the MIC
if a Queue Entry is to be added to a Queue. The Queue
Pointers contain part of the physical LPB Memory
address of the Queue to be accessed. The remaining part
of the physical address can be obtained from the Queue
number and from a LPB Queue Segment. FIG. 37 illus
trates the Queues and their relative address within LPS
and the LPB Memory address. The LPB memory ad
dress is composed of Q seg 320, QNum322, Q Pointer
324 and QE byte 326 which forms a 20-bit word. The
two least significant bits are used as the status bits.
LPB Queue Access Protocols
FIGS. 38 and 39 describe the control protocol flows

for a LPB Queue Read and Queue Write accesses.
These flows illustrate the steps required by all LPB
devices which utilize the MIC Queue management sup
port. Also, the MIC being a LPB device as well, is

5,379,386
41

designed to implement these required steps to access a
Queue.
A queue read operation is shown in FIG.38 where a

read queue pointer is received from the MCI LPB I/O
space at the first step in start of a read operation as
depicted by block 340. The next step shown by block
342 is to verify the pointer status. The pointer status is
determined by looking at the two least significant bits of
LPB memory address. If an erroris indicated, the queue
erroris reported to the local processor by the MIC 343.
If the queue is not available, that is being used by an
other LPB device, a retry is instigated. If the queue is
available, the LPB physical memory address is con
structed as shown by block 344. The LPB memory
address is equal to the queue segment concatenated
with the queue pointer followed by the status bits. Once
the address is known, the data is read either in incre
ments of 4, 8 or 16 bytes depending upon how the queue
was initially set up. Once the data is read, a new read
pointer is written to the MIC in block 348 and the new
queue pointer value is returned. The MIC verifies the
queue pointer with a CPU reading to see if the queue
read pointer is okay, as shown in block 352 where the
queue read pointer is updated and maintained by the
MIC. If an error is determined as shown in block 354,
the queue erroris reported to the local processor by the
MIC and the queue pointer is restored to its original
value.

In a like manner, a queue write is performed as shown
in FIG. 39 wherein the queue write pointer is read from
the MIC local processor bus as depicted by block 360.
Checking the status bits verifies that the pointer is avail
able as shown in block 362. When an error is detected,
a queue error report is sent to a local processor by the
MIC as depicted by step 363. Once the queue is avail
able, the LPB physical memory address is constructed
in step 364. The memory address is equal to the queue
segment plus the queue number plus the queue pointer
concatenated with the status bits. The data is written as
shown in step 366 in increments of 4, 6 or 8 bytes wide.
Once the queue is written, the write pointer is updated
and returned to the MIC with the new queue pointer
value as shown in 368. The MIC verifies the pointer
value 370 and if okay, updates and maintains the pointer
value in step 372. If not okay, an error signal is reported
in step 372 to the local processor by the MIC.
What is shown is a queue pointer manager facility

architected to efficiently optimize queue operation per
formance by implementing the performance critical
functions in hardware and the rest of the facility in
software. The hardware functions include a read
pointer register having a status field for each queue
wherein the status field specifies the availability of the
queue. A write pointer register having a status field is
set up for each queue. An interrupt field for each queue
denotes which interrupt signal is activated when the
queue goes non-empty. A queue byte count field for
each queue is used to define a queue entry length which
allows flexibility in the queue byte entries.
The above resources are implemented in fast access

registers. The pointers contain memory addresses to a
general purpose, random access memory which acts as
a FIFO in which the physical queue elements actually
reside. The queue pointer manager is mapped into the
CPU memory and also into the I/O spaces.
The software function involves reading either the

queue write pointer or the queue read pointer to per
form a queue read or write operation. The software

10

5

20

25

30

35

45

50

55

65

42
checks the status of the queue either writing or reading
the queue entry data as a normal memory FIFO access
and then returns the queue read/write pointer to the
queue pointer hardware function.
The queue pointer manager in the present invention

has the following advantages over a totally hardware
managed queue structure in that the queue pointer man
ager is less expensive than a pure hardware solution
because it eliminates memory address bus and data bus
multiplexing logic. The queue pointer manager does not
require memory access. It passes pointers to the CPU
over the data bus after which a CPU performs memory
accesses to either send or receive the queue elements. A
total hardware solution requires that the queue manager
have memory access capability in order to physically
transfer the queue element data. Negligible perfor
mance degradation results from having queue data
transfers performed by the CPU. The queue pointer
manager reduces the complexity of the memory timing
and control logic since the queue pointer manager does
not require memory access. The queue pointer in the
present invention minimizes access latency for other
shared memory bus users since the queue data entry
transfers are performed with indivisible interruptible
memory operations. Contrastly, a purely hardware so
lution performs queue entry data transfers with indivisi
ble memory operations increasing the memory access
latency for other bus users.
The present invention has the following advantages

over a totally software managed queue structure in that
the queue pointer manager increases performance per
queue operations because it eliminates the need for soft
ware to update and verify the queue write and queue
read pointers. It also eliminates the need for software
for determining queue overflow, underflow and other
error conditions. It eliminates the need for software to
set/clear queue interrupts. These three functions are the
most critical with respect to degradation of perfor
mance within a queue manager. Additionally, the queue
pointer manager alleviates internal CPU or external
memory resource usage since the present invention uses
hardware to provide the necessary pointer array. Very
little software code storage is needed, thereby reducing
the pointer processing overhead. The queue pointer
manager provides a built-in public queue capability
where a given queue may be written or read by more
than one processing entity. A public queue capability in
a pure software solution requires a pointer array to be
resident in a shared memory with a test and set function
so that pointers can be accessed by multiple users in
noninterfering fashion. This requires significant soft
ware processing and decreases queue operation perfor
2CS.

Queue Access from the MC
All MC devices, as well as the MIC have access to

the Queues which reside in LPS 123. For the MC,
Queues are accessed indirectly via two control registers
and a data register which reside within the MC I/O
Address space. These registers are defined beginning at
the address specified in the Control Register MC I/O
Base Address. See “MIC Programmable Option Select
(POS) Registers' for more details about the Control
Register MC I/O Base Address register. The two con
trol registers are defined as a Queue Read Control
(QRC) Register and a Queue Write Control (QWC)
Register. The data register is defined as the Queue Data
(QD) Register. FIG. 40 illustrates these registers in the
MC I/O Address space.

5,379,386
43

Queue Read Control Register
The QRC register is used to inform the MIC which

Queue a MC device wishes to read. The QRC register
also informs the MC device of the current status of the
Queue Read request and the status of the Queue Read
Buffer (QRB). The QRB is used to buffer the data re
ceived from the requested queue in LPS. FIG. 41 illus
trates the QRC Register in more detail and defines the
QRC Register fields.
Queue Write Control Register
The QwC register is used to inform the MIC which

Queue a MC device wishes to write, as well as the
Queue byte count. The QWC register is also used to
indicate status of the Queue Write Buffer (QWB). The
QWB is used to hold the data received from the MC
destined for the requested Queue in LPS. FIG. 42 illus
trates the QWC Register in more detail and defines the
QWC Register fields.
Queue Data Register
The QD register is used to access the QRB and the

QWB. When the QD register is read, data from the
QRB is be removed. When the QD register is written,
data from the MC is added to the QWB. The Queue
Data Register is defined at MCI/O Address starting at
MIC CRMC I/O Base Address--"01000 and ending at
MIC CRMC I/O Base Address--01011. Byte Counts
of 4, 8, or 16 bytes are valid for the QD Register. Since
the actual I/O Address space is only four bytes, writing
and/or reading of eight or 16 bytes in the MC Basic
Transfer mode can be accomplished by performing two
or four 4 byte transfers. The use of the MC Streaming
Data mode can accomplish this task in one transfer
operation.
MC Queue Access Protocol
FIGS. 43 and 44 describe the control protocol flows

for a MC Queue Read and Queue write accesses. These
flows illustrate the basic steps required by all MC de
vices which utilize the MIC Queue management sup
port. The MIC being, a MC device as well, is designed
to implement these required steps to access a Queue
when performing a MPC post operation.
MC/Queue Access Procedures and Restrictions
This section describes in more detail the MC Queue

Access procedure. In addition, variations to the basic
steps in performing a MC Queue Access are described
as well as specific notes.
MC Queue Read Operation Protocol, Method “A”

Below, describes the recommended Queue Read pro
cedure for all systems.
Step 1.

RD QRCR.
If AVL=0 then goto Step 1.
If AVL='1' then the MIC automatically sets
AVL="O AND (go to Step 2, to continue OR
goto Step 5, to cancel)

Step 2. WR QRCR (Q#="Valid Queue Number,
STAT=XX,ACK="O'AVL=X) MIC automati
cally begins fetching Queue Data AND (go to Step 3,
to continue OR goto Step 5, to cancel)

Step 3.
RD QRCR
If STAT="00 (Queue Read Data Ready) then (go

to Step 4, to continue OR goto Step 5, to cancel)
If STAT='01 (Queue Read Data Not Ready) then
(go to Step 3, to continue OR goto Step 5, to
cancel)

If STAT='10 (Queue Read Error) then goto Step
5, to cancel Note: STAT="11 is not possible.

5

O

15

20

25

30

35

45

50

55

60

65

44
Step 4.

RD QDR (Data is read from the Qindicated by the
Q# in the QRCR)

When all required bytes have been read then the
MIC will automatically set AVL = 1 AND
goto Step 1. OR If all bytes have not been read
then (goto Step 4, to continue OR goto Step 5, to
cancel).

Step 5.
WR QRCR (Q# =X,STAT=XX.ACK-1-
'AVL=X) then AVL='1' AND goto Step 1.

Note: When STAT='00', the MIC will allow the
MC Master to read the requested Queue data WITH
OUT inserting a NOT READY condition on the Micro
Channel.

Note: The MC Master should never read more bytes
than is indicated for the Queue being read. Exceeding
the indicated byte count will cause an USW and/or a
NOT READY condition on the Micro Channel.
MC Queue Read Operation Protocol, Method “B”

Below, describes the recommended procedure for
completing a Queue Read in systems which only allow
ONE bus master to perform a Queue Read operation.
Step 2.

WR QRCR (Q#="Valid Queue Number,
STAT=XX,ACK='0'AVL=x)

MIC automatically begins fetching Queue Data
AND (goto Step 3, to continue OR goto Step 5,
to cancel)

Step 3.
RD QRCR If STAT='00' (Queue Read Data
Ready) then (goto Step 4, to continue OR goto
Step 5, to cancel)

If STAT="01" (Queue Read Data Not Ready) then
(goto Step 3, to continue OR goto Step 5, to
cancel)

If STAT='10 (Queue Read Error) then goto Step
5, to cancel

Note: STAT="11" is not possible.
Step 4.

RDQDR (Data is read from the Qindicated by the
Q# in the QRCR)

When all required bytes have been read then the
MIC will automatically set AVL = 1 AND
goto Step 2. OR

If all bytes have not been read then (goto Step 4, to
continue OR goto Step 5, to cancel).

Step 5.
WR QRCR (Q# =X,STAT=XXACK-1-
'AVL=X) then AVL='1' AND goto Step 2.

MC Queue Read Operation Protocol, Method “C
Below, describes the procedure for completing a

Queue Read without the use of the Queue Read sema
phore or status flags.

Note: Method "C" is not the recommended proce
dure for Queue Reads. This method should NOT be
used if one of the following is true;

1. The system contains multiple masters which can
perform Queue Read operations.

2. The system Micro Channel NOT READY timeout
of 3.5 usec must not be violated.

3. The system can not recover from a Micro Channel
NOT READY timeout error without severe impli
cations.

4. The system/adapter can not mask out the USW
which occurred due to error condition “d)' de
scribed in the next section.

5,379,386
45

Note: Estimating the NOT READY time when using
Method “C” can only be determined by a detailed anal
ysis of the MIC, adapter, and system hardware and
software environments. If any of this information is
unavailable or indeterminate then Method 'C' is not 5
recommended.
Step 2.

WR QRCR (Q#="Valid Queue
STAT=XX,ACK='0',AVL=X)

Number,

MIC automatically begins fetching Queue Data 10
AND (goto Step 4, to continue OR goto Step 5,
to cancel)

Step 4.
RD QDR (Data is read from the Qindicated by the
Q# in the QRCR) 15

When all required bytes have been read, goto Step
2 OR

If all bytes have not been read then (goto Step 4, to
continue OR goto Step 5, to cancel). 20

Step 5.
WR QRCR (Q#='X',STAT=XX,ACK=1-
,AVL=X) then AVL='1' AND goto Step 2.

MC Queue Read Operation Error Conditions/Cautions
The MIC will generate a USW if one of the following 25

conditions occur;
1. Step 2 is performed anytime after the completion of
Step 2 and before the completion of either Step 4
OR Step 5.

Note: The QRCR does not get updated if this error 30
OCCS,

2. The number of bytes read in Step 4 are greater than
the number of byte fetched for the Queue.

3. Step 4 is performed before Step 2.
4. Step 4 is performed when STAT='01, OR
STAT-10.

5. Step 5 is performed anytime after Step 2, except
when STAT='10'.

Note: The MIC does NOT generate a Channel Check
condition if one of the above errors occurs. Instead,
posting the USW to the Error Queue causes a LPB
Interrupt to become active. It is then up to the adapter
and/or system to determine the error recovery proce
dure.

Note: Performing Step 4 before Step 2 WILL cause a
NOT READY condition on the Micro Channel, which
can only be cleared by the master aborting the cycle.
This may cause either a Micro Channel Timeout or
Channel Check condition.

Note: Performing Step 4 after Step 2 without com
pleting Step 3 may cause a NOT READY condition,
(STAT="01), on the Micro Channel, followed by one
of the following conditions to occur;

a) Step 4 will complete normally, if STAT='00'. OR
b) the NOT READY condition will continue, if 55
STAT='10, until cleared by the master aborting
the cycle. This may cause either a Micro Channel
Timeout or Channel Check condition.

Note: Method “A”, Method 'B', and Method 'C'
should NOT be used together in a system.

Note: See the Queue Error Register defined on the
LPB for additional errors which may be reported. Er
rors which cause STAT='10' are defined in the Queue
Error Register.
Queue Write Operation Protocol, Method “A”

Below, describes the recommended Queue Write
Procedure for all systems.
Step 1.

35

45

50

60

65

46
RD QWCR If AVL='O' then goto Step 1. If
AVL='1' then the MIC will automatically set
AVL='0' AND (goto Step 2, to continue and
modify the QWCR OR

goto Step 3, to continue and do not modify the
QWCR OR

goto Step 4, to cancel).
Step 2.

WR QWCR (Q# =*Valid Q#,GBC=*Valid Q
Byte Count, ACK='0, AVL=X) Goto Step 3,
to continue OR goto Step 4, to cancel.

Step 3.
WR QDR (Data is written to the Q indicated by

the Q# in the QWCR with the number of bytes
indicated by the QBC in the QWCR)

When all valid bytes have been written then the
MIC automatically sets AVL='1' when space
becomes available for another QW operation
AND goto step 1. OR

If all valid bytes have not been written then (goto
Step 3, to continue OR goto Step 4, to cancel).

Step 4.
WR QWCR (Q#=X,QBC=X.ACK=1-
,AVL=X) then the MIC automatically ends
the Q operation and sets AVL='1' when space
becomes available for another QW operation
AND goto Step 1.

Note: AVL='1' indicates that the MIC is capable of
performing either a 4, 8, or 16 byte Queue Write opera
tion WITHOUT inserting a NOT READY condition
on the Micro Channel.

Note: When Method 'A' is used, a MC Master
should never write more bytes than is indicated by the
QBC field in the QWCR. Exceeding the indicated byte
count may cause an USW and/or a NOT READY
condition on the Micro Channel.
MC Queue Write Operation Protocol, Method “B”

Below, describes the procedure for completing a
Queue Write without the use of the Queue Write sema
phore.

Note: Method “B” is not the recommended proce
dure Queue Writes. This method should NOT be used if
one of the following is true;

1. The system contains multiple masters which can
perform Queue Write operations.

2. The system Micro Channel NOT READY timeout
of 3.5 usec must not be violated.

3. The system can not recover from a Micro Channel
NOT READY timeout error without severe impli
cations.

Note: Estimating the NOT READY time when using
Method “B” can only be determined by a detailed anal
ysis of the MIC, adapter, and system hardware and
software environments. If any of this information is
unavailable or indeterminate then. Method 'B' is not
recommended.
Step 0.

If the QWCR needs modification then goto Step 2
OR If the QWCR does not need modification
then goto Step 3.

Step 2.
WR QWCR (Q#="Valid Q#,GBC=*Valid Q

Byte Count, ACK='0, AVL =X) Goto Step 3,
continue OR goto Step 4, to cancel.

Step 3.
WR QDR (Data is written to the Q indicated by

the Q# in the QWCR)

5,379,386
47

When all valid bytes have been written then goto
Step 0 OR

If all valid bytes have not been written then (goto
Step 3, to continue OR goto Step 4, to cancel).

Step 4.
WR QWCR (Q# =X,QBC=X,ACK='1-
,AVL=X) then the MIC automatically ends
the current Q operation AND goto Step 0.

Queue write operation Error Conditions/Cautions
The MIC will generate a USW if one of the following

conditions occur;
1. Step 2 is performed anytime (after the completion
of Step 2, or after the start of Step 3) AND (before
the completion of either Step 3 or Step 4).

Note: The QWCR does not get updated if this error
OCCTS.

2. The number of bytes written in Step 3 is greater
than the QBC AND Step 1 was performed before
Step 3.

Note: This error is only valid for method “A” and
may not occur if performed in the MC Basic Transfer
mode.

3. The Queue Write Buffer experienced a Queue
overflow condition.

Note: This error should not be possible.
Note: The MIC does NOT generate a Channel Check

condition if one of the above errors occurs. Instead,
posting the USW to the Error Queue causes a LPB
Interrupt to become active. It is then up to the adapter
and/or system to determine the error recovery proce
dure.

Note: Performing Step 3 without performing Step 1
may cause a NOT READY condition on the Micro
Channel, which may extend greater than 3.5 usec. This
may then cause either a Micro Channel Timeout or
Channel Check condition.

Note: Performing Step 4 after Step 3 has started and
before Step 3 has completed will cause the MIC to
terminate the Queue Write operation and a Queue Error
for the Qi defined in the QWCR will be indicated to
the Local Processor.

Note: Method “A” and Method 'B' should NOT be
used together in a system.

Note: See the Queue Error Register defined on the
LPB for additional errors which may be reported.
Queue Access from the MIC
The MIC has direct access to the Queue Manager

function. This allows the MIC access to the Queues
without arbitrating for the MC or LPB. A priority
scheme within the MIC resolves contention for the
Queue Pointers requested by the LPB or MC.
Specialized Queues and Registers

Besides the QM function the MIC supports three
specialized Queues and a specialized register. The three
Queues are as follows;
Queue “D”

MIC Command Queue. This Queue stores MCWs
which are used to initiate MIC Commanded
Transfers.

Queue “E”
Unsolicited Status Word Queue. This Queue stores
USWs which have been generated by the MIC as
a result of an error.

Queue “F”
Free Block List Queue. This Queue stores starting
pointers for available blocks of memory within
the LDB.

10

15

20

25

30

35

45

50

55

65

48
The specialized register is called the Job Pending

Register (JPR). This register is used by either a LPB or
MC device to determine which of the 16 available
Queues contains a pending Queue entry or job.
MIC Command Queue
The MIC automatically monitors the status of the

MIC Command Queue (MCQ), Queue “D.” If a Queue
entry is appended to this Queue then the MIC initiates a
Commanded Transfer. See 'Commanded Transfers'
for more details of a Commanded Transfer. The MCQ
can hold up to 1KMCWs.
Free Block List
The MIC manages a special Queue defined as the

LDS Free Block List. This Queue contains 4 byte
entries which represent the starting address of a range
or block within the LDB. Up to 1KLDS Blocks can be
defined for use. The size of these blocks is dependent on
the addresses defined in the FBL Queue and the avail
able memory space.

Note: Since only 1 Mbytes of data is accessible within
LDB, only the 20 least significant bits of the 4 byte Free
Block entry are valid.
The FBL is controlled in the same manner as the

other Queues. The FBL can be loaded during initializa
tion with 4-byte Queue entries equivalent to the starting
physical address of the Block in LDS. An interrupt does
not need to be assigned for the FBL.
A free block can be removed from the FBL by either

a LPB Queue Read operation, a MC Queue Read opera
tion, or reading of the MC Free Block Register. Once
removed it is the responsibility of the removing device
to utilize and manage this block.
When use of the block is no longer required, the

block can be added back into the FBL, by either a LPB
Queue write or MC Queue Write operation. This then
makes the block available for use by another device.

Note: The MIC does not automatically return a block
to the FBL. It is the responsibility of the Local Proces
sor or System Processor to initiate a block return to the
FBL.
MC Free Block List Register
To improve performance of MC devices which need

access to this Queue, the MIC prefetches four 4-byte
entries from the FBL. This allows a MC device quick
access to Free Blocks in the MC I/O Address space.
The four 4-byte entries are temporarily stored within
the Prefetch Free Block Buffer until read by a MC
device. A 4-byte Prefetched Free Block can be read
from the MC Free Block List Register starting at a MC
I/O Address of MIC CR MC I/O Base Ad
dress--'01100. FIG. 45 illustrates this register relative
to the MC I/O Address space.
The MC FBL Register provides access to the FBL

for any MC device. The FBL Register provides a 4
byte address which represents the starting MCMemory
address to a block within the LDB. Reading this regis
ter removes one of the 4-byte Free Block entries from
the Prefetched Free Block Buffer, causing the MIC to
begin prefetching another, automatically.

Since only 20 bits are valid from the Free Block List,
the MIC must construct a valid 32-bit MC Memory
Address. The upper 12 bits are taken from the LDBMC
Memory Base Address Register in POS3 and 4, Subad
dress 01.01. The lower 20 bits are taken from the Free
Block List.

In addition, the MIC provides a status bit for the MC
device. This status bit indicates whether the Free Block
Entry is valid or not. The Status can also be used to

5,379,386 49
determine whether a FB fetch retry is necessary or
termination of the transfer is required.

Note: The least significant 2 bits of the FBL Entry
has been used to represent the FB Status. In doing so,
this forces all Free Blocks read from the MC via the
FBR to be on 4 byte address boundaries. Note: The MC
FBR is a READ ONLY register.

Job Pending Register
The Job Pending Register (JPR) is used to indicate

whether a Queue contains a Queue entry or not. When
Queues share a hardware interrupt, the JPR can be used
to determine which Queue is causing the interrupt. The
JPR is 16 bits wide and contains a bit for each Queue.
The JPR is accessible from either the LPB or the MC.
The JPR is located at LPB I/O address="1140 and at
MC I/O address="CRMC I/O Base Address:10000.
Note: The JPR can only be written from the LPB when
LPM-O.
Control, Status, and Initialization Registers
The MIC allows devices on the LPB and the MC to

access necessary initialization, control, and status regis
ters. Registers related to LPB operations are contained
within the LPB Memory and I/O address space. Regis
ters related to MC operations are contained within the
MC POS Registers.
LPB
A LPB device can have access to some of the MIC

control registers as well as status and initialization regis
ters. The control registers are defined in the LPB mem
ory space and reside within addresses "1002 through
“100F and addresses 1100 through 1146. Note: To
access these control registers, -CSEL MUST be ac
tive.
A status register is available to a LPB device via the

LPB I/O space which indicates possible Queue errors
which may have occurred. This register is called the
Queue Error Register (QER) and can be found at LPB
I/O address 1142. The QER can only be written when.
LPM-'0'.
MIC Programmable Option Select (POS) Registers
The MIC provides software programmable system

configuration registers which replace hardware
switches and jumpers. These registers are referred to as
Programmable Option Select (POS) registers. The POS
registers provide configuration and identification data
for the MIC and system processor. These registers are
loaded with configuration information immediately
after system power on reset (POR). The System Config
uration protocol is used to access the POS registers.
The POS registers consist of eight bytes located at POS
I/O addresses XXX0 through XXX7. Several of the
POS registers contain required information.
The POS registers also support the use of the Sub

Address feature. The Sub-Address feature allows access
to additional registers. These additional registers in
clude programmable LDS size, MC memory slave ad
dresses for accesses to LDS, Interrupt assignments,
timers, and MC I/O slave addresses for accesses to the
Queues and status. Sub-Addressing is also used to access
the Vital Products Data (VPD), necessary for proper
MC identification.
An adapter ADF file provides the initial values of all

POS registers. The system setup procedure is responsi
ble for loading the values from the ADF file to nonvola
tile system memory. The system is also responsible for
conflict checking of keywords. During the system. POR
setup procedure, the values for an adapter's POS regis

O

15

20

25

30

35

45

50

55

65

50
ters are read from the nonvolatile RAM and written to
the adapter.

Note:
1. Current PS/2 setup software is not capable of ac
cessing or utilizing the POS sub-address feature.
Instead, the adapter programmer must either incor
porate the loading of these registers in either the
device driver or as a separate executable program.

2. The GO bit MUST be set by the LP before the
MIC can respond to any MC activity, this IN
CLUDES POS registers. The GObitMUST be set
within lmsec from system POS or the MIC will
indicate a NOT READY condition on the MC.

3. A System Reset or STI Reset Instruction to the
MIC will cause the contents of all POS Registers
which contain a default state, to return to their
default states.

POS 0/1 and VPD Initialization
Information required for POS registers 0 and 1, as

well as the VPD is located in LPS. The VPD LPB Base
Address register, defines the starting address where the
values for POS reg 0/1 and VPD can be found. This
base address register MUST be initialized before the
system setup software accesses these registers.
When the system setup procedure reads either POS

register 0, 1 or the VPD registers, the MIC will fetch
the required data from LPS using the VPD base ad
dress. This operation requires that the MIC arbitrate for
the LPB and become a LPB Master. The adapter de
signer must guarantee that the MIC can access this data
within lmsec, per MC specifications.
Testability Interface
The STI is used as a serial test interface to the MIC.

The STI allows access to the MIC's Self Test and Scan
control logic. Having access and control to registers
and functions allows for improved test and debug of the
MIC. The STI allows for two different operations to be
performed;

1. Instruction/Status Operation
2. Scan Operation
These modes allow the capability for self-testing to be

performed. Self-test can be used to determine the state
or health of the MIC chip itself.
Self-test

Self-test verifies a large percentage of the MIC's
internal logic by using internal scan strings, clock con
trol logic, a Random Pattern Generator (RPG) and a
Multiple Input Signature Register (MISR). Using a
known starting value within the RPG, a signature can
be generated in the MISR which reflects the state or
health of the MIC chip itself.
What has been described is a queue pointer manager

providing a queue management facility partially imple
mented in hardware, resulting in a relatively inexpen
sive queuing mechanism with increased performance
over a software managed queue structure.
Although a specific embodiment of the invention has

been disclosed, it will be understood by those having
skill in the art that changes can be made to that specific
embodiment without departing from the spirit and the
scope of the invention.
What is claimed is:
1. A controller for high speed communication of

information between a Micro Channel bus, a general
purpose local processor bus and a dedicated local data
bus comprising:

a first interface means for transceiving information
between said Micro Channel bus and said control

5,379,386
51

ler said interface means transceiving data and men
ory address information from said Micro Channel
bus;

a second interface means for transceiving memory
address information between a local processor bus
and said first interface means;

a third interface means for transceiving data informa
tion between a local data bus and said first interface
means;

an output buffer connected between said third inter
face means and said first interface means for han
dling data exchanges between the dedicated data
bus and the Micro Channel bus; and

an input buffer connected between said second inter
face means and said first interface means for han
dling control information between the Micro
Channel bus and the local processor bus;

and means for operating the controller as a master
device for bilateral movement of data between the
Micro Channel bus and the dedicated local data
bus;

whereby said controller processes multiple master
and/or slave packets of information concurrently.

2. A data communications interface controller for

5

10

15

20

25

S2
address generation means for providing address gen

eration during transfers of data between the exter
nal bus and the local data bus;

a Self-test means for diagnostic and debug operations
within the interface controller; and

means for operating the controller independently for
movement of data between the external bus and the
local data bus whereby the controller processes
multiple packets of information concurrently.

3. The interface controller of claim 2 having pro
grammable memory and I/O space wherein registers
configurable via software replace switches and wire
jumpers to reconfigure the interface controller.

4. The interface controller of claim 2 wherein control
of data transfers is taken over by one of the buses, the
interface controller acting as a slave device.

5. The interface controller of claim 2 wherein the
data is streamed in or out at a high rate by direct mem
ory storage of the transceived data.

6. The interface controller of claim 2 having error
detection/correction to report error messages and insti
gate protocols to maintain performance during the pres
ence of an error.

7. In a data processing system having a plurality of
communication buses, apparatus for high speed trans
ferring of packets of information comprising:

controlling communication of information between an
external bus, a local processor bus and a local data bus
comprising:

local processor means for receiving and interpreting 30
data commands from an external bus and transceiv
ing data commands to a local processor bus;

local data means for receiving and storing data off of
the external bus and transceiving said data to a
local bus;

master execution means responsible for controlling
and coordinating all command and transfers be
tween and within the interface controller;

error detection and control means for monitoring and 40
correcting error conditions;

queue management means responsible for controlling
hardware pointers indicating the locations of pend
ing read/write operations;

internal buffer means including a first set of buffers 45
connected between the external bus and the local
processorbus and a second set of buffers connected
between the external bus and the local data bus, the
first set of buffers handling the exchanges of data
control information between the external bus and
the local processor bus, the second set of buffers
handling data exchanges between the external bus
and the local data bus to speed match and coordi
nate concurrent master and/or slave data transfers 55
between the external bus, the local processor and
the local data bus;

35

50

65

means including a Micro Channel data interface, a
Micro Channel address interface, and Micro Chan
nel control means for interfacing with a Micro
Channel bus to transceive information therebe
tween, the information containing command in
structions and data blocks;

means including an address/data interface for direct
ing information containing command instructions
for transceiving in a local processor bus;

means including a data interface, an address interface,
a local data bus interface, and a pre-fetch buffer for
routing information containing only data blocks for
transceiving in a local data bus, the pre-fetch buffer
providing quick Micro Channel access to an avail
able block of memory in another controller;

a first buffer means connected between the address
/data interface and the Micro Channel data inter
face and including a read buffer and a write buffer
for buffering command instruction information to
or from said local processor bus;

a second buffer means connected between the local
data bus interface and the Micro Channel data
interface and including an input data buffer and an
output data buffer for buffering data blocks to or
from said local data bus; and means for indepen
dently operating the controller as a master device
for the movement of data between the Micro Chan
nel bus and the local data bus;

whereby the apparatus transceives packets of infor
mation simultaneously.

k

