US005325492A
*
United States Patent [[11] Patent Number: 5,325,492
Bonevento et al. [4s] Date of Patent: . Jun. 28, 1994
[54] SYSTEM FOR ASYNCHRONOUSLY 5,155,807 10/1992 Blevins et al. ..ccoeeervecencnnnee 3957200
DELIVERING SELF-DESCRIBING Primary Examiner—Dale M. Shaw
CONTROL ELEMENTS WITH A PIPE Assistant Examiner—Lance Leonard B
INTERFACE HAVING DISTRIBUTED, Attorney, Agent, or Firm Calfeenall:lalt;'rg’ Griswold
SHARED MEMORY P, £gent e
[75] Inventors: Francis M. Bonevento; Joseph P. 57 AB cT .
McGovern; Eugene M. Thomas, all of A microprocessor system includes a processor unit, one
Boca Raton, Fla. or more subsystem adapter units, optional 1/0 devices
. which may attach to the adapters, and a bus interface.
[73] Assignee: g’tern::nt;)::] B! “5‘235 I;;I:«(:hmes Memory in the processor and. memory in the adapters
Tpo * Pe are used by the system as a shared memory which is
[21] Appl No.: 76,081 configured as a distributed First In First Out (FIFO)
[22] Filed: Jun, 11, 1993 circular queue (a pipe). Unit to unit asynchronous com-
munication is accomplished by placing self-describing
Related U.S. Application Data cont.rol elements on the pipF which represent requests,
o replies, and status information. The units send and re-
[63] Continuation of Ser. No. 411,145, Sep. 22, 1989, aban- cejve self-describing control elements independent of
doned. - the other units which allows free flowing asynchronous
[51] Int.ClL5 GOG6F 13/38 delivery of control information and data between units.
[52] US.ClL .rvreeveviiriennns 395/325; 364/DIG. 1; The distributed, shares memory can be organized as
364/440; 364/443; 364/281 pipe pairs between each pair of units to allow full du-
[58] Field of Searchccccovcne... 395/200, 325,250 plex operation by using one pipe for outbound control
56 Ref . elements and the other pipe for inbound control ele-
[56] eferences Cited ments. The control elements have standard fixed header
U.S. PATENT DOCUMENTS fields with variable fields following the fixed header.
4,212,057 7/1980 Devlin et al. .eveerircrenecn. 395/425 The fixed header allows a common interface protocol to
4,392,200 7/1983 Arulpragasam et al. 395/425 be used by different hardware adapters. The combina-
:,Zg‘;gg lgj iggi 8}1%‘?10 e ggggg‘; tion of the pipe and the common interface protocol
,475, ishi et al. .oocvecircniinnsnnennens :
4,523,274 6/1985 Fukunaga et al. oo 395/325 au°w; many ld‘ffer ent types of ha;rqwa.reh?dﬁpters to
4,809,217 2/1989 FIOTO €t al. weovvvrrsssesrrrersrnns 395,275 ~ 2synchronously communicate, resulting in higher over-
4,876,644 3/1989 Nuechterlein et al. 395,800 @l throughput due to lower interrupt overhead.
4,951,193 8/1990 Muramatsu et al. 395/650
5,003,463 6/1988 Coyle et al. «ccevvrrereceerecnnne 395/275 32 Claims, 13 Drawing Sheets
502
A (SYSTEM UNIT) |
a0 4 505 43 508 4 Vid
CLENT| fcLieNT! [CLIENT | {CLIENT
ENTITY| |ENTITY| [enTiTy | [eNTiTY
5?8
r..'. L
DELNERY
e sme(s) /
T i i |
: 1) "4‘, || !
T s T
1 1 vl M) ‘
%, < 7, =
536~
| S e d b -t = - - -
\ \ 36 -‘\’ 536
530 -
SERVER | [SERVER| [CLIENT SERVER| |SERVER | [SERVER
ENTITY] |ENTITY | {ENTITY ENTITY] [ENTITY] [ENTITY
$16 || 518 || 320 S22 || so4 || %26
Bi 82 83] c2 c3
8 (ADAPTER) / C (ADAPTER) [
512 514

U.S. Patent June 28, 1994 Sheet10f13 5,325,492

SENDING UNIT
102

DATA I CLiENT |
ENTITY |
R
: E
110 Q
BUFFER g
] S
118 3
DELIVERY ¢
-V ___ _-106 _——d L 112
SUPPORT ' ~srep ~ [~ SHARED +°
114 | MEMORY I=—PIPE—=' MEMORY |
| L = | mee—
BUS | |CONTROL|] 1 | [CONTROL | | |
| 1 | ELEMENT ELEMENT] |
L — __J 104 ll"""]r‘""; 116
R
E
P
L
Y
108
CONTROL - SERVER
— ENTITY

RECEIVING UNIT

FIG. 1

U.S. Patent

210

J

LOCAL -
ENQUEUE
STATE

212

[

SURROGATE
ENQUEUE

June 28, 1994 Sheet 2 of 13 5,325,492
/ 202
SEND |
INTERFACE 216
204 [
SURROGATE
ENQUEUE ENQUEUE
[[
S S
| P |
G ; g
N
A E) e
L
220 214
206 | [
! / LOCAL
- DEQUEUE j=——={ DEQUEUE
STATE
2/08
RECEIVE
INTERFACE

Fl6. 2

Sheet 3 of 13 5,325,492

June 28, 1994

U.S. Patent

31V1S
an3nd3aa
301

— — e . G— G wv— W —

21V1S
3an3n03g
31V9044NS

...
.
.

.

SIN3W3T3 30 ON3

A lINN Sng

3344 40 LYVIS|: 31viS

SIN3IW3T3 40 LY¥V1S

SNLVLS 303030

: 3N3NON3
SNLV1S ININONI|: 31voouuns

uuuuuuuuuuuuuuuuuuuuuuuuuuuu — _ TINNVHD .

|||||||||||||||||||||||||||||| 0YIIN
3344 40 1¥V1S
3344 40 ON3
SINIW313 40 LUVIS IN3WIT3 dVHM|: 31V1S
. : 3n3ANON3
SNLyLlS 3n3and3a SNLVLS IN3NON3 |: 901
X LINN Sng

U.S. Patent June 28, 1994 Sheet 4 of 13 5,325,492

[_l
' UNIT A'S UNIT Y'S UNIT 2' '
l REASON REASON REASON |
N |
|
' I
-~ \ /
I \\\ \\) // l
| T~ N Ve
~ o \ / |
l ~ \ yZ .
RECEIVE |
| UNIT X INTERRUPT
| LOGIC |
| !
| INTERRUPT
RELATED '
| HARDWARE |
L e e - - - e - == J
FROM A FROM Z
TO A — T0 2
g I e :
| INTERRUPT ,
: RELATED
I HARDWARE '
| I
| I
SEND
I ouNIT Y INTERRUPT '
| LOGIC l
| |
| |

F16. 4

U.S. Patent June 28, 1994 Sheet 5 of 13 5,325,492
502
A (SYSTEM uNIT)
A1 5{0 4 A2 5;06 A3 5g0 8 A4 5/10
CLIENT CLIENT CLIENT CLIENT
ENTITY| |ENTITY] [ENTITY | [ENTITY
5?8
Y L 534
/////
DELIVERY
/ PIPE /
A~B SPACE(S)
“ : / L L L d
| i ul ;
{ | i i
| Iy 114 1 |
[L 5 il i
: HEZ 534 | 1| .
. |t] / M !
% 5= ~ A= c=
5364
| I oy [— - — b om |- - — -—
536 536
530
SERVER | [SERVER | | CLIENT SERVER| |SERVER} | SERVER
CENTITY] |ENTITY | |ENTITY ENTITY| |ENTITY] {ENTITY
516 || 518 || 220 922 224 926
Bi B2 B3 Ct c2 C3
B (ADAPTER) / C (ADAPTER) [/
512 514

FIG. 5

U.S. Patent June 28, 1994 Sheet 6 of 13 5,325,492
622
SYSTEM UNIT (S) |
S1 ~ §2 636 Sn-1,~638 San ,—640
RESOURCE] [RESOURCE RESOURCE | [RESOURCE.
634 A B X Y
\{ SYSTEM SYSTEM | **" SYSTEM SYSTEM
END END END END
ENTITY ENTITY ENTITY ENTITY

626 \

632

606 DELIVERY 612 614 [DELIVERY |
§ SEND 5 (RECEIVE = ;20
602 _ 604
STATE STATE| [STATE STATE
INFO INFO | | INFO INFO
J |
| MICROCHANNEL _ | |
ADAPTER () ' 650~/
CIRCULAR CIRCULAR
608 QUEUE 5}0 QUEUE 5{73
y
STATE STATE] [STATE STATE
INFO INFO | | INFO INFO
628] 7
N 616 630
DELIVERY DELIVERY
| RECEIVE =1~ SEND
TSNS\ ¥
| =T 644
RESOURCE RESOURCE | / = |RESOURCE RESOURCE
A X B d oy
ADAPTER ADAPTER ADAPTER ADAPTER
END END END END
ENTITY ENTITY. |646-7] ENTITY ENTITY
A2 . An-1 An

A1l
624J

FIG. 6

U.S. Patent June 28, 1994 Sheet 7 of 13 5,325,492

TYPE FIELD LENGTH FIELD
SOURCE FIELD - DESTINATION FIELD
CORRELATION FIELD

VALUE FIELD

Fl16. 7

IMMEDIATE SCB COMMAND

3322222222221111111111
109876543210987654324109876543210
REQ |—|-{-|~|-1-|SCB IMMEDIATE ELEMENT LENGTH=28

SOURCE DESTINATION
CORRELATION IDENTIFIER

{IMMEDIATE COMMAND VALUE
UNUSED

RESERVED FOR STATUS DWORD 1
RESERVED FOR STATUS DWORD 2

Fl6.8

U.S. Patent June 28, 1994 Sheet 8 of 13 5,325,492

BASE SCB
3322222222221111111111
10987654321098765432109876543210
REQ {-|-|I|-|-|- SCB ELEMENT LENGTH=28
SOURCE DESTINATION

CORRELATION IDENTIFIER
SCB ADDRESS
SCB LENGTH IN BYTES
RESERVED FOR STATUS DWORD 1

RESERVED FOR STATUS DWORD 2

FIG. 9

U.S. Patent June 28, 1994 Sheet 9 of 13 5,325,492

CONTROL ELEMENT LIST

CONTROL ELEMENTS [[T-TTi=2 | |
—Tc=1
| =] TL=16
| : . |
EX|—| |L=24 | LIST
— —[Jr=12 | size
ELIST'%IZE =
— T L=12
1 : f

F16. 10

U.S. Patent June 28, 1994 Sheet 10 of 13 5,325,492

CHAINED CONTROL

ELEMENTS
) ' -— =1
NON-CHAINED CONTROL L =12
ELEMENTS o st ELEMENT
—| |L=16 Bl TL=16 |
: st ELEMENT : 2nd ELEMENT :
| i N 1st OF CHAIN |
- |L=32 | MC| |L=32
- } CHAIN
' : 3rd ELEMENT
2nd ELEMENT i 2nd OF CHAIN
— = EC| |[L=12
- 4th ELEMENT :

{ END OF CHAIN | |

3rd ELEMENT J

—| |L=24

. 5th ELEMENT i
|

Fl6. 11

U.S. Patent June 28, 1994 Sheet 11 of 13 5,325,492

3322222222221111111111
10987654321098765432109876543210
REQ|S (:2 [INIWIE| READ LIST ELEMENT LENGTH
SOURCE DESTINATION
CORRELATION IDENTIFIER

BYTE COUNT
DATA ADDRESS
OPTIONAL PARAMETERS

BYTE COUNT
DATA ADDRESS
OPTIONAL PARAMETERS

Fl6. 12

U.S. Patent June 28, 1994 Sheet 12 of 13 5,325,492

3322222222221111114111
109867654321098765432109876543210
REQ|S (;I I [NIW|E] READ LIST ELEMENT LENGTH

. SOURCE DESTINATION

CORRELATION IDENTIFIER
LENGTH OF INDIRECT LIST

ADDRESS OF INDIRECT LIST -I

L BYTE COUNT

DATA ADDRESS
OPTIONAL PARAMETERS

BYTE COUNT
DATA ADDRESS
OPTIONAL PARAMETERS

FIG. 13

Sheet 13 of 13 5,325,492

June 28, 1994

U.S. Patent

"J04N0S 3HL NOY4 INIWNINI IN3AD

INNSIY V 30 1di303Y 3HL ONIONId NOLY
~NILS30 SIHL 01 30UN0S SIHL NOYd SIN3W3T3
ININD3SENS TV ANV ININTT3 INIHRND

JHL 40 INISSIO0Ud ON3JSNS ONV 3JUN0S
~3HL 0L IN3A3 NOLVIULON V NunL3d

"304N0S SIHL NOY¥d SIN3N3T3
IN3ND3ISANS TIV ANV INIWITI 1S3N03Y
SIHL SS300dd OL 3NNIINOD ONvV 3J¥N0S

JHL 0L IN3AT NOLVIIIION vV Nani3y

"304N0S 3HL NO¥4
INIWITI IN3A3 INNS3Y V 40 1dI303Y 3HL
ONION3d NOILYNILS3O SIHL OL 30¥N0S SIHL

NO¥4 SINIWITI 1S3NDIY IN3NDISEANS TV ANV

ININTT3 INJHHND 3HL 40 ONISSIO0Ud AN3dSNS

"SININITI 1S3N03Y
9NISSIO0¥d INNIINOD — NOLVHIJO0—ON

NOLLOV

LIvM

HLON3T ININIT 1SN 3LM |3|MIN | “w Ve
o—mn¢mmhwmopum¢mwnmmo_Nn¢mm\.wmo._
I O O O O A T U A A A A AR A AR AR AN AR

vl 914

5,325,492

1

SYSTEM FOR ASYNCHRONOUSLY DELIVERING
SELF-DESCRIBING CONTROL ELEMENTS WITH
A PIPE INTERFACE HAVING DISTRIBUTED,
SHARED MEMORY

This is 2 continuation of copending application(s) Ser.
No. 07/411,145 filed on Sep. 22, 1989, now abandoned.

BACKGROUND OF THE INVENTION

Technical Field

The invention is in the field of computing systems,
and in particular is directed to a command delivery
mechanism. Specifically, the invention is directed to
asynchronously delivering commands, replies, and sta-
tus information between a personal computer class ma-
chine and a plurality of intelligent subsystems which
may have attached devices.

CROSS REFERENCE TO RELATED
APPLICATIONS

Reference is made to U.S. patent application Ser. No.
07/367,391 filed on Jun. 16, 1989, which is entitled
“Interrupt Handling for a Computing System”, which
application is assigned to the assignee of this patent
application, which describes an interrupt handing
mechanism which may be utilized in the distributed pipe
queueing system of the instant invention, and which is
hereby incorporated by reference.

Reference is made to U.S. Pat. No. 5,131,082 which is
entitled “Command Delivery for a Computing Sys-
tem”, for Transfers Between a Host and Subsystem
Including Providing Direct Commands or Indirect
Commands Indicating the Address of the Subsystem
control Block, which application is assigned to the as-
signee of this patent application, which describes a com-
puting system in which may be utilized the distributed
pipe queueing system of the instant invention, and
which is hereby incorporated by reference.

In a data processing or computing system comprised
of a host system and at least one subsystem, there is a
need to communicate direct and indirect commands to
an individual subsystem, usually over an Input/Output
(I/0) channel.

The direct command is one which can be directly
sent to a subsystem in one operation, is completely and
totally self-contained, and totally specifies an operation
to be executed by the subsystem. On the other hand, an
indirect command is one which requires more data to
specify the operation than can be provided within one
channel I/0 cycle. The indirect command is itself a
pointer to a block of system memory which contains all
the parameters necessary to specify an operation to be
performed by the subsystem. This block of memory is
often referred to as a “control block”.

In a typical prior art computer system, the interface
bus overhead involved with the transfer of control
blocks limited the throughput capacity of subsystems
and their respective I/0. The limitation is caused by the
inability of the processor and the subsystem to form a
synchronous connection on the bus due to other com-
peting subsystems or processor tasks. Processor perfor-
mance was impaired due to the inability of the proces-
sor to obtain service from adapters and I/0, and the
performance of the adapters and I/O was impaired by
the ability of the processor to send and receive data as
quickly as the adapters and 1/0 were capable of pro-
cessing it. As a result, there was a need to eliminate the

10

20

25

30

35

45

50

55

65

2

bottleneck at the interface bus which allowed neither
the processor nor the adapters and their respective I/0
to perform as well as their hardware would allow.

According to the present invention, this need is met
by creating a distributed pipe at the bus interface. The
pipe allows the processor to asynchronously send and
receive control blocks (for the purposes of this disclo-
sure, the control blocks will hereinafter be referred to as
control elements) for direct and indirect commands
without requiring intervention by an adapter or 1/0
device. Likewise, the adapters and 1/0 can asynchro-
nously send and receive control elements to the pipe
without intervention by the processor. In addition, the
pipe allows subsystem to subsystem control element
transfer independent of processor intervention.

SUMMARY OF THE INVENTION

An object of this invention is to transfer control infor-
mation and data between a processor and attached sub-
systems in an improved manner.

An object of this invention is to transfer control infor-
mation and data between a processor and an attached
subsystem independent of the availability of the at-
tached subsystem.

An object of this invention is to transfer control infor-
mation and data between a subsystem and a processor
independent of the availability of the processor.

An object of this invention is to transfer control infor-
mation and data between a processor and attached sub-
systems in full duplex mode.

An object of this invention is to asynchronously
transfer control information and data between a proces-
sor and attached subsystems.

An object of this invention is to transfer control infor-
mation and data between subsystems of a computer
system without intervention of the processor.

An object of this invention is to transfer control infor-
mation and data between a processor and a multiplicity
of different subsystems on a common interface.

An object of this invention is to selectively transfer
control information and data between a processor and
subsystems on an asynchronous or synchronous basis.

The foregoing and other objects, features and advan-
tages of the invention are achieved by using distributed
shared memory, which is located in the processor and
the subsystems, to form a distributed pipe organized as
a First In First Out (FIFO) circular queue. Control
elements are asynchronously placed on the pipe by the
processor and by the subsystems. Each control element
contains a fixed field carrying self describing informa-
tion including the source and destination. A variable
field follows the fixed field, and may contain data or a
pointer to a buffer external to the pipe which can con-
tain data or a list of commands to be executed (i.e.,
indirect commands). The fixed field also contains con-
trol bits which allow the subsystem and the processor to
synchronously execute a repetitive list of control ele-
ments when necessary. The sending and receiving of
control elements asynchronously to and from the pipe
allow the processor and the subsystems to be free run-
ning, thereby avoiding interrupt delays. In addition, a
common interface is achieved by the control element
structure which allows different subsystem types to use
the same pipe.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified diagram of the invention using
a single sending unit and a single receiving unit.

5,325,492

3

FIG. 2 is an overview diagram of the signalling
mechanism used to notify units of the system.

FIG. 3 is a block diagram of the state information
used by the signalling mechanism in FIG. 2.

FIG. 4 is a diagram of the interrupt logic used by the
" system.

FIG. 5 is a diagram of the invention using multipie
subsystems and entities.

FIG. 6 is another diagram of the invention using
multiple subsystems and entities, which also shows the
delivery send mechanism and the delivery receive
mechanism.

FIG. 7 is a diagram of a control element.

FIG. 8 is a diagram of an immediate Subsystem Con-
trol Block (SCB) command.

FIG. 9 is a diagram of a base SCB.

FIG. 10 is a diagram of an execute list.

FIG. 11 is a diagram of the control elements used for
command chaining.

FIG. 12 is a diagram showing the format of a read list
request.)

FIG. 13 is a diagram showing the format of control
blocks used for indirect data chaining.

FIG. 14 is a diagram showing the location of the
notify and wait bits.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

By way of general overview, the invention allows a
processor and a subsystem to asynchronously transfer
data and control information and thereby avoid inter-
rupt delays which degrade performance of the proces-
sor and the subsystem. In addition, the data and control
information can also be asynchronously transferred
between subsystems without processor intervention.
The microprocessor system which includes a processor
unit with system memory and a separate buffer mem-
ory, one or more subsystem adapter units with memory,
optional 1/0 devices which may attach to the adapters,
and a bus interface (which can interchangeably be
called a micro channel). The memory in the processor
and the memory in the adapters are used by the system
as a shared memory which is configured as a distributed
FIFO circular queue (a pipe). Unit to unit asynchronous
communication is accomplished by placing control
elements on the pipe which represent requests, replies,
and status information. The units send and receive con-
trol elements independent of the other units which al-
lows free flowing asynchronous delivery of control
information and data between units. The shared mem-
ory can be organized as pipe pairs between each pair of
units to allow full duplex operation by using one pipe
for outbound control elements and the other pipe for
inbound control elements. The control elements have
standard fixed header fields with variable fields follow-
ing the fixed header. The fixed header allows a common
interface protocol to be used by different hardware
adapters. The combination of the pipe and the common
interface protocol allows many different types of hard-
ware adapters to asynchronously communicate, result-
ing in higher overall throughput due to lower interrupt
overhead.

An important feature of the invention is the use of a
shared memory to hold the contro! information. The
shared memory used to hold the control information is
physically distributed between the processor and the
subsystems and will hereafter be interchangeably re-
ferred to as a distributed pipe or a pipe. A unit of the

15

20

25

40

45

60

65

4

system, such as a processor or subsystem adapter, can
send self-describing control elements to the distributed
pipe for later retrieval by another unit. The control
elements carry commands, data, or addresses of data
stored in a buffer which is external to the pipe. The unit
of the system which is intended to receive the control
element will rettieve it from the pipe as soon as it can,
but does not require the sending unit to wait for the
receiving unit to act. The sending unit can, therefore,
place the control element in the distributed pipe and
proceed to other work rather than waiting for a re-
sponse from the other unit.

FIG. 1, used for illustrative purposes, is a simplified
diagram of the invention which uses a single sending
and receiving unit and a single pipe. In addition, the
sending unit has a single client entity, which can be an
application program or the like, and a single server
entity, which, for example, may be an 1/0 device at-
tached to a subsystem. It should be understood by those
skilled in the art that, in practice, multiple sending and
receiving units would be used, as well as multiple pipes,
clients and servers. FIG. 1 shows the general flow of
data and contro! information in the invention. The send-
ing and receiving units 102, 108 comprise a unit pair
which may be a processor unit and a subsystem unit, or
both may be subsystem units. A sending unit 102, will
request that a receiving unit 108 perform some work by
placing a control element 104 into shared memory 106
(the distributed pipe). Commands and control informa-
tion are contained in the control element 104. If data is
to be transferred from the sending unit 102 to the re-
ceiving unit 108, it can be transferred in one of two
ways. First, it can be directly transferred within a vari-
able length field of the control element 104. The control
element, including the placement of data within the
control element, will be discussed in more detail below.
Second, it can be placed in the buffer 110 by the sending
unit 102, The sending unit 102 will then place the ad-
dress and length of the data contained in the buffer 110
into the control element 104 prior to sending the control
element 104 to the distributed pipe 106. It should be
understood that the actual movement of data into and
out of the buffer, as well as the pipe, can be accom-
plished by a number of conventional methods, well
known in the art, such as through the use of DMA
logic. As a general rule, it is preferable to use the exter-
nal buffer 110 to transfer data since the distributed pipe
106 has a finite size and could be rapidly filled by the
large data transfers used in many applications. At this
point, the sending unit 102 does not have to wait for the
receiving unit 108 to respond. The sending unit 102 can
proceed with other tasks including the placement of
other work requests in the distributed pipe 106 in the
form of control elements 104.

The receiving unit 108 will retrieve control elements
104 from the pipe 106, execute the work request con-
tained therein, and reply to the sending unit 102. If the
control element 104 addresses data in the buffer 110, the
receiving unit 108 will read or write the data from the
buffer 110. When the work request is complete, the
receiving unit will reply to the sending unit 102 by
placing a control element 116 on the pipe 112. (Control
elements 104 and 116 are functionally identical, as are
pipes 106 and 112. They are identified separately to
denote that the pipe is physically located in different
units of the system. In addition, the preferred embodi-
ment uses logically separate pipes for sending and re-
ceiving control elements.) As was the case with the

5,325,492

5

sending unit 102, the receiving unit 108 does not wait
for a response from the sending unit 102. It can proceed
immediately to other work, including the retrieval of
more control elements 104 from the pipe 106.

When the sending unit retrieves the control element
116 from the pipe 112 which contains the reply to the
sending unit’s 102 request, it can take the appropriate
action based on the reply.

The logical steps discussed above are supported by
the delivery support 118 (which includes a delivery
send mechanism and a delivery receive mechanism) and
the bus 114. The delivery support mechanism in the
preferred embodiment is state logic well known in the
art. Control information and data are physically moved
to and from the sending and receiving units to the buffer
110 and the pipe 106, 112 by way of the bus 114. Fur-
ther, the delivery support mechanism 118 includes the
enqueue/dequeue logic (not shown) to control place-
ment of control elements on the FIFO queue in pipe
106, 112.

FIGS. 2, 3, and 4 show the basic mechanism used by
the invention for signalling, state logic, and interrupt
handling. The basic flow of control elements, shown in
FIG. 2, operates using the send interface 202 and enqu-
eue logic 204 to place control elements into a pipe 220.
It then uses dequeue logic 206 and receive interface
logic 208 to remove the control element from the pipe
220. The enqueue and dequeue logic use the state infor-
mation shown in FIG. 3. There is also logic 210, 214 to
recognize certain state changes in the pipe and to signal
the other side. The signalling is done by pushing state
change surrogate state information to the surrogate
enqueue logic 212, 216, then pushing reason codes to
the reason area (shown in FIG. 4) for this unit. Once the
surrogate information and reason information is pushed,
a hardware level primitive causes an interrupt (shown in
FIG. 4). The hardware primitive may be either inter-
rupt controller hardware or may be done by writing
1/0 ports or mapped memory locations which cause
hardware interrupts.

FIG. 5 shows a structure which is more representa-
tive of the invention in actval use than FIG. 1. How-
ever, as in the discussion of FIG. 1, the actual number of
entities is not limited to the number of entities shown,
but is instead a function of the hardware capacity of the
particular system components in question. FIG. 5 shows
a processor unit 502 which includes multiple client
entities 504, 506, 508, 510. Each entity may be a pro-
gram or some other system task which requires interac-
tion with subsystem units. The subsystems are repre-
sented in the figure as they would typically appear in
practice, as adapter cards 512, 514. Each adapter 512,
514 in turn has multiple server entities 516, 518, 520,
§22, 524, 526 which may be I/0 devices such as com-
munication lines, printers, terminals, or the like. FIG. §
also illustrates the use of muitiple distributed pipes 528,
530, 532 within a shared memory 534. As shown, pipes
for unit pairs can be used by processor/subsystem unit
pairs 502/512 and §02/514, or by subsystem/subsystem
unit pairs 512/514. Each of the pipes would move con-
trol elements 536 on the bus 114, as discussed above in
the description of FIG. 1.

FIG. 6 is a diagram showing the general arrangement
of the invention which is designed to show the relation-
ship between the circular pipe and the system. There
are a pair of circular pipes 602, 604 which deliver con-
trol elements in opposite directions. The basic operation
of each is the same. There is state information 606, 608,

10

20

25

30

45

60

65

6

610, 612, 614, 616, 618, 620 needed for the enqueueing
and dequeueing of control elements (not shown). The
state information is distributed between the two units
622, 624. The delivery support 626, 628, 630, 632 is
shared between multiple entity to entity pairs 634, 636,
638, 640, 642, 644, 646, 648. Portions of the delivery
support communicate with each other over the micro
channel 650.

FIG. 7 shows the arrangement of fields in a control
element. A general discussion of how the invention uses
the control elements follows.

Work Orders:

Requests and the replies to those requests, are ex-
changed between clients (entities) in a system unit or
adapter, and servers (entities) in an adapter or system
unit using the delivery services of the SCB architecture.
These requests, as well as their corresponding replies,
are referred to as work orders. Each work order con-
sists of a control element used to describe the unit of
work being requested, and one or more control ele-
ments used to indicate the completion or current state of
the requested unit of work. Error conditions or changes
in the processing state of a unit of work are reported in
error and event control elements respectively. Using
this definition, each of the following would be a valid
work order:

a single request element with no reply element;

a single request element with a single reply element;

a single request element with multiple reply elements;

. a single request element with an error element;

a single request element with an event element;

a single request element with both event and error

elements;

a single request element with event, reply, and error

elements.
When request elements are chained together, each re-
quest element in the chain is treated as one part of a
single work order.
Elements:

Elements, or more precisely control elements, are
used to exchange control information and, in some
cases, data between a client and a server. They are like
an envelope with a see through window; allowing the
delivery service to use information in the window to
deliver the control elements without having to know or
understand what is contained within the remainder of
the control element. Typically, a control element con-
tains the following:

a 16 bit type field

a 16 bit length field

a 16 bit source field

a 16 bit destination field

a 32 bit correlation field

a variable length value field

The first five fields are used by the delivery service as
well as the client and server. It constitutes the informa-
tion visible through the window in the envelope. The
remaining field, the value field, contains the contents of
the envelope. It contains information meaningful only
to the client and the server.

The following sections describe in more detail, the
format and content of each of these fields as it pertains
to the delivery service.

Type Field:

The type field of an element is a 16 bit word used to
identify an element and indicate how to interpret the
remaining fields within the element. The type field con-
sists of the following sub-elements:

7

EID element identifier—a (2) bit sub-field used to iden-

tify the element type. There are four element types:

1—request (00)—An element sent by a client to a
server asking it to perform a unit of work on its
behalf. It requires the transfer of data and control
information between a client and the server. ~

2—reply (01)—An element sent by a server in re-
sponse to certain request elements. Not all request
elements are answered by replies, only those that
request information.

3—event (10)—An element containing information
about the progress of a request, about the side-ef-
fects of a previous request or about the status of an
entity. Events may be sent by either a server or a
client.

4—error (11)—An element that provides error infor-
mation about a previous request, or about the
health and welfare of a server or delivery agent.

suppress reply flag—indicates whether or not the

client wants the server to return a reply element
when the processing of this request element has been
completed successfully. When set to one, the reply is
suppressed and no reply element will be returned.

When set to zero, whether or not a reply is returned

is determined by the entity to entity protocol.
O chaining flags—indicate whether or not command
chaining is in effect. When chaining is in effect and all
elements in the chain represent a single unit of work,
to be processed in the order in which they appear.
The following table indicates how the chain bits are
to be interpreted: 00—indicates no chaining (first and
last)
01—indicates the start of a command chain (first
element)

11—indicates an element within the chain (intermedi-
ate element)

10-—indicates the end of chain (last element)

I indirect flag—indicates whether the value field of the
element contains the parameters for the specified
function or just the length of, and a pointer to, a data
area where the actual parameters are stored. When
set to one, the value field contains a pointer to the
parameter value.

N notification flag—indicates whether or not the client
is requesting notification by the server when process-
ing of this element begins. When set to one, a notifica-
tion is to be returned to the client using a notification
event element.

W wait flag—indicates whether or not the client is
requesting the server to wait before processing this
request element, or any other request elements from
this client, until it is told to do so with a subsequent
resume event element from the client. When set to
one, processing is to be suspended.

E expedite flag—identifies a control element that the
client wants the server to process as expeditiously as
possible, i.e. before any other control elements.that
may be waiting to be processed. When set to one, the
control element is to be expedited.)

FC function code—a seven (7) bit sub-field used to
identify the function to be performed and indicate
how to interpret the contents of the value field.

Length Field

The length field of an element is a 16 bit word used to
specify the total length of the element in bytes. This
includes 2 bytes for the type field, 2 bytes for the length
field, 2 bytes for the source field, 2 bytes for the destina-

10

15

20

25

30

35

45

50

55

65

5,325,492

tion field, 4 bytes for the correlation field, and n bytes
for the variable length value field.

Source Field -

The source field is a 16 bit word used to identify the
originator or source of an element. It is a structured
field containing a unit identifier and an entity identifier.
For the Micro Channel, the unit id is the bus unit with
an allowable range of 0 to 15, and the entity id is one of
256 possible sources. Entity id zero (0) is reserved for
management purposes. Together, they provide suffi-
cient information to unambiguously identify a bus unit
as well as the entity within the bus unit responsible for
originating the element.

Destination Field

The destination is a 16 bit word used to identify the
target or destination of an element. Like the source
field, it to is a structured field containing a unit identifier
and an entity identifier For the Micro Channel, the unit
id is the bus unit with an allowable range of O to 15, and
the entity id is one of 256 possible destinations. Entity id
zero (0) is reserved for management purposes. To-
gether, they provide sufficient information to unambig-
vously identify the bus unit and the entity within the bus
unit who is the recipient of the element.

Correlation Field

The correlation field is a 32 bit doubleword used to
provide an identifier for associating or correlating a
response with a previous request. The format and con-
tent of the correlation identifier is determined by the
entity who is the originator of the request. It may be a
sequence number, the address of a control block or
request packet, or the address of a data buffer. The
correlation identifier is returned to the originator of the
request in a reply, error, or event element.

Value Field

The value field of an element is a variable length field
used to hold additional arguments, parameters, or data
required by the operation identified by the function
code in the type field. The type, length, and format of
this information will vary depending on the function
specified.

Function Codes

Within an element, a function code is used to identify
the operation to be performed and to indicate how the
contents of the value field should be interpreted. The
High order bit of the function code is used to distinguish
between common usage function codes and implemen-
tation defined function codes. When bit 6 is set to one
(1), it indicates that the remaining bits (0-5) contain a
non-architected function code. When set to zero (0), bit
6 indicates that the remaining bits (0-5) contain one of
the following common usage function codes:

Immediate SCB Command (FC=1)

Initialize (FC=2)

Base SCB Command (FC=3)

Read (FC=4)

Read List (FC=5)

Read Immediate (FC=6)

Write (FC=17)

Write List (FC=8)

Write Immediate (FC=9)

Execute List (FC=10)

Mark (FC=11)

5,325,492

Cancel (FC=12)

Reset (FC=13)

Read Configuration (FC=14)

Diagnose (FC=15)

Suspend (FC=16)

Resume (FC=17)

Notify (FC=18)

Inform (FC=19)

Wrap (FC=31)

Function codes 0, 20 through 30, and 32 through 63 are
reserved and should be treated as an error condition if
found in a control element.

The suspend, resume, notify, inform, and wrap func-
tion codes are used exclusively with the event element.
All other function codes are used with request, reply,
and error elements.

The following sections describe in detail the format,
content and usage of the above functions in the various
element types of the extended Subsystem Control Block
(SCB) architecture support.

Immediate SCB

The Immediate SCB elements provide a path for
certain forms of adapter migration. They allow the
delivery service to be used with the existing SCB’s. The
format and content of this element is shown in FIG. 8.

Initialize

The Initialize function is found in request, reply, and
error elements. In a request element, it invokes the
initialization function of the server. The source and
destination, a correlation identifier, and the value field
containing any additional parameters required by the
server initialization function are passed to the server in
the request element. The initialization parameters
passed in the value field of the request element are
server dependent and will need to be defined on a server
by server basis.

If the indirect flag is set in the type field of the initial-
ization request element, the value field does not contain
the actual initialization parameters, but instead contains
the location and the length of a data area where the
actual parameters themselves are stored.

A server reports the successful completion of an ini-
tialization request by returning a reply element to the
requestor. The source and destination, the correlation
identifier from the initialization request element, and
any return values are placed in the value field of the
reply element.

The return parameters passed in the value field of the
reply element are server dependent and will need to be
defined on a server by server basis.

A client may choose to suppress the returning of a
reply element by setting the suppress flag in the Type
Field of the initialization request element.

If unsuccessful, the source and destination, the corre-
lation identifier from the initialization request element,
and status information identifying the cause of ‘the fail-
ure are returned to the requestor in the value field of an
error element.

Base SCB

The base SCB elements provide a path for certain
forms of adapter migration. They allow the delivery
service to be used with the existing SCB’s. The format
and content of these elements is shown in FIG. 9.

10

20

25

30

35

45

50

60

65

10

Read

The Read function is found in request, reply, and
error elements. In a request element, it is used to setup
and initiate the transfer of data and control information
from the server to a client. The source and destination,
a correlation identifier, and the value field containing
the parameters required by the server read function are
passed to the server in the request element.

1t should be noted that the parameters contained in
the value field of a request element are not limited to
those identified above. Additional parameters may be
supplied to meet the requirements of each client/server
relationship.

If the indirect flag is set in the type field of the read
request element, the value field does not contain the
byte count, data address and optional parameters, but
instead contains the location and the length of a data
area where they are stored. When the server has suc-
cessfully completed the transfer, it returns a reply ele-
ment with the source and destination, the correlation
identifier from the read request element, and the actual
number of bytes transferred in the value field of the
reply element.

A client may choose to suppress the returning of a
reply element by setting the suppress flag in the Type
Field of the read request element.

If unsuccessful, an error element containing the
source and destination, the correlation identifier from
the read request element, and status information identi-
fying the cause of the failure, are returned to the re-
questor in the value field of the error element.

Read List

The Read List function is found in request, reply, and
error elements. It is used to setup and initiate the trans-
fer of data and control information from a server into
several possibly non-contiguous areas of memory. This
is often referred to as data chaining. The source and
destination, a correlation identifier, and the value field
containing the list of byte count/data address pairs
required by the read list function are passed to the
server in the request element.

If the indirect flag is set in the type field of the read
list request element, the value field does not contain the
list of byte counts and data address, but instead contains
the location and the length of an area where the actual
list is stored.

When the server has successfully completed the
transfer, it returns a reply element with the source and
destination, the correlation identifier from the read list
request element, and residual byte count in the value
field of the reply element. The format and content of the
read list reply element is the same as the read reply.

A client may choose to suppress the returning of a
reply element by setting the suppress flag in the Type
Field of the read list request element.

If unsuccessful, an error element containing the
source and destination, the correlation identifier from
the read list request element, and status information
identifying the cause of the failure, are returned to the
requestor in the value field of the error element. The
format and content of the read list error element is the
same as the read error.

Read Immediate

The Read Immediate function is found in request,
reply, and error elements. It is used to request the trans-

5,325,492

11

fer of data and/or control information from a server to
a client. It differs from the read request in that the data
is to be returned in the value field of the reply element
where it will be immediately available to the client. The
source and destination, a correlation identifier, and the
value field containing the parameters required by the
read immediate function, are all passed to the server in
the request element.

The amount of data that can be returned using the
read immediate request element is configuration depen-
dent. That is, it is directly related to the size of the
delivery queue. Therefore, care should be exercised
when using this request element.

When the server has successfully completed the
transfer, it returns a reply element with the source and
destination, the correlation identifier from the read
immediate request element and, in the value field, the
actual number of bytes transferred followed immedi-
ately by the data itself.

The read immediate function ignores the suppress
flag if set in the Type Field of the read immediate re-
quest element since it always returns a reply element.

If unsuccessful, an error element containing the
source and destination, the correlation identifier from
the read immediate request element, and status informa-
tion identifying the cause of the failure, are returned to
the requestor in the value field of the error element.

Write

The Write function is found in request, reply, and
error elements. It is used to setup and initiate the trans-
fer of data and control information from a client to a
server. The source and destination, a correlation identi-
fier, and the value field containing the amount and loca-
tion of the data to be transferred by the write function,
are all passed to the server in the request element.

It should be noted that the parameters contained in
the value field of a request element are not limited to
those identified above. Additional parameters may be
supplied to meet the requirements of each client/server
relationship.

If the indirect flag is set in the type field of the write
request element, the value field does not contain the
byte count, data address and optional parameters, but
instead contains the location and the length of a data
area where they are stored.

When the server has successfully completed the
transfer, it returns a reply element with the source and
destination, the correlation identifier from the write
request element, and the actual number of bytes trans-
ferred in the value field of the reply element.

A client may choose to suppress the returning of a
reply element by setting the suppress flag in the Type
Field of the write request element.

If unsuccessful, an error element containing the
source and destination, the correlation identifier from
the write request element, and status information identi-
fying the cause of the failure, are returned to the re-
questor in the value field of the error element.

Write List

The Write List function is found in request, reply, and
error elements. It is used to setup and initiate the trans-
fer of data and control information to a server from
several possibly non-contiguous areas of memory. This
is often referred to as data chaining. The source and
destination, a correlation identifier, and the value field
containing the list of byte count/data address pairs

20

25

30

40

45

50

55

65

12
required by the write list function, are all passed to the
server in the request element.

If the indirect flag is set in the type field of the write
list request element, the value field does not contain the
byte counts and data address, but instead contains the
location and the length of an area where the actual list
is stored.

When the server has successfully completed the
transfer, it returns a reply element with the source and
destination, the correlation identifier from the write list
request element, and residual byte count in the value
field of the reply element. The format and content of the
write list reply element is the same as the write reply.

A client may choose to suppress the returning of a
reply element by setting the suppress flag in the Type
Field of the write list request element.

If unsuccessful, an error element containing the
source and destination, the correlation identifier from
the write list request element, and status information
identifying the cause of the failure, are returned to the
requestor in the value field of the error element. The
format and content of the write list error element is the
same as the write error.

Write Immediate

The Write Immediate function is found in request,
reply, and error elements. It is used to carry data and/or
control information from a client to a server. It differs
from the write request in that the data is present in the
value field of the request element and is immediately
available to the server. The source, destination, and
correlation identifier, as well as the data itself, are all
passed to the server in the request element.

The format as well as the meaning of the data con-
tained in the value field of the request element are
client/server dependent and as such are not defined
here.

The amount of data that can be transferred using the
write immediate request element is configuration de-
pendent. That is, it is directly related to the size of the
delivery queue. Therefore, care should be exercised
when using this request element.

When the server has successfully received the data, it
returns a reply element with the source and destination,
the correlation identifier from the write immediate re-
quest element and, in the value field, a count of the
actual number of bytes received.

A client may choose to suppress the returning of a
reply element by setting the suppress flag in the Type
Field of the write immediate request element.

If unsuccessful, an error element containing the
source and destination, the correlation identifier from
the write immediate request element, and status infor-
mation identifying the cause of the failure, are returned
to the requestor in the value field of the error element.

Execute List

FIG. 10 shows an example of an execute list. The
Execute List function is indicated in the type field of
request and reply elements. It is used to setup a repeti-
tive loop for executing a list of request elements pointed
to by this element one or more times. The source and
destination, a correlation identifier, and the value field
containing the location, length, and count required by
the execute list function, are all passed to the server in
the request element.

A list of requests to be executed may consist of one or
more request elements which must be contiguous in

