
United States Patent (19) 
Bonevento et al. 

|||||||||||||III 
USOOS325492A 

11 Patent Number: 5,325,492 
45) Date of Patent: Jun. 28, 1994 

54 

(75) 

73 

(21) 
22 

(63) 

51 
(52) 

(58) 
(56) 

SYSTEM FOR ASYNCHRONOUSLY 
DELVERING SELF-DESCRBNG 
CONTROL ELEMENTS WITH APPE 
INTERFACE HAVING DISTRIBUTED, 
SHARED MEMORY 

Inventors: Francis M. Bonevento; Joseph P. 
McGovern; Eugene M. Thomas, all of 
Boca Raton, Fla. 

Assignee: International Business Machines 
Corporation, Armonk, N.Y. 

Appl. No.: 76,081 
Filed: Jun. 11, 1993 

Related U.S. Application Data 
Continuation of Ser. No. 411,145, Sep. 22, 1989, aban 
doned. u 

Int. Cl. .............................................. G06F 13/38 
U.S. C. ............................. 395/325; 364/DIG. 1; 

364/440, 364/443; 364/281 
Field of Search ........................ 395/200, 325, 250 

References Cited 

U.S. PATENT DOCUMENTS 

4,212,057 7/1980 Devlin et al. ....................... 395/425 
4,392,200 7/1983 Arulpragasam et al. ........... 395/425 
4,404,628 9/1983 Angelo ................................ 395/200 
4,475,155 0/1984 Oishi et al. .......................... 395/275 
4,523,274 6/1985 Fukunaga et al. .................. 395/325 
4,809,217 2/1989 Floro et al. ......................... 395/275 
4,876,644 3/1989 Nuechterlein et al. ............. 395/800 
4,951,193 8/1990 Muramatsu et al. ... . 395/650 
5,003,463 6/1988 Coyle et al. ......................... 395/275 

502 
A (SYSTEM UNIT) 

CENT 
ENTTY 

PPE 

5,155,807 10/1992 Blevins et al. ...................... 395/200 

Primary Examiner-Dale M. Shaw 
Assistant Examiner-Lance Leonard Barry 
Attorney, Agent, or Firm-Calfee, Halter & Griswold 
57 ABSTRACT 
A microprocessor system includes a processor unit, one 
or more subsystem adapter units, optional I/O devices 
which may attach to the adapters, and a bus interface. 
Memory in the processor and memory in the adapters 
are used by the system as a shared memory which is 
configured as a distributed First In First Out (FIFO) 
circular queue (a pipe). Unit to unit asynchronous com 
munication is accomplished by placing self-describing 
control elements on the pipe which represent requests, 
replies, and status information. The units send and re 
ceive self-describing control elements independent of 
the other units which allows free flowing asynchronous 
delivery of control information and data between units. 
The distributed, shares memory can be organized as 
pipe pairs between each pair of units to allow full du 
plex operation by using one pipe for outbound control 
elements and the other pipe for inbound control ele 
ments. The control elements have standard fixed header 
fields with variable fields following the fixed header. 
The fixed header allows a common interface protocol to 
be used by different hardware adapters. The combina 
tion of the pipe and the common interface protocol 
allows many different types of hardware adapters to 
asynchronously communicate, resulting in higher over 
all throughput due to lower interrupt overhead. 

32 Claims, 13 Drawing Sheets 

CLIENT CENT 
ENTITY ENTITY 

unscar 

2622,762 

5 3. 

SERVER CENT 
ENTTY ENTY 

529 
3 

8 (ADAPTER) 
572 

2536 

SERVER 
ENTY 
522 

C (ADAPTER) 
544 

  



U.S. Patent June 28, 1994 sheet 1 of 13 5,325,492 

SENDING UNIT 102 
CLIENT 
ENTITY 

DELIVERY 
a as no -106 - - - - - - - -2 SUPPORT st TsARED-1 

114 MEMORY - PIPE - MEMORY 
R BUS control controll 

- - - - - - - - - - - - - - - - 

SERVER 
DATA ENTITY 

RECEIVING UNIT 

FIG. 1 

  

  

  

  

  

  

  



U.S. Patent June 28, 1994 sheet 2 of 13 5,325,492 

202 

SEND 
INTERFACE 

LOCAL 
ENQUEUE 
STATE 

216 

SURROGATE 
ENQUEUE 

214 

SURROGATE LOCAL 
ENQUEUE DEQUEUE 

STATE 

208 

RECEIVE 
NTERFACE 

FIG 2 

  

  

  

  

  

  

  

  

    

  

  





U.S. Patent June 28, 1994 Sheet 4 of 13 5,325,492 

UNIT A'S UNITY'S UNT Z'S 
REASON REASON REASON 

N M 

s Y ". 1 
N W / 

RECEIVE 
NTERRUPT 
LOGC 

UNT X 

INTERRUPT 
RELATED 

N 
N 

N 
s 

HARDWARE 
- - - - - - - - - - - - - - - - - - - - - - - 

FROM A FROM Z 

TO A TO Z 
- - - - - - - - - - - - - - - - - - - - - 

NTERRUPT 
RELATED 
HARDWARE 

SEND 
NTERRUPT 
LOGIC 

UNIT Y 

FIG. 4 

    

  

      

    

    

  

  

  

  



U.S. Patent June 28, 1994 Sheet 5 of 13 5,325,492 

502 
A (SYSTEM UNIT) 

2. 22; 25%3 2 % Y2 

/ 2.É 2.É. 
% 41X1/2) 

a/- at - V - XNN 
SERVER SERVER CLENT 
ENTITY ENTITY ENTTY 
516 548 520 

B3 B2 

/1 

B (ADAPTER) C (ADAPTER) 
512 544 

FIG. 5 

  



U.S. Patent June 28, 1994 Sheet 6 of 13 5,325,492 

SYSTEM UNIT (S) 

REsquRCE REs RCE RESOURCE REs RCE X 
SYSTEM SYSTEM SYSTEM SYSTEM 
END END END END 

ENTITY ENTITY ENTTY ENTITY 

N22s 26 22 
DELIVERY DELIVERY 
SEND RECEIVE 

INFO %. NFO INFO /2\ 
MicrochANNEL 

6 

6 

CIRCULAR CIRCULAR 
QUEUE QUEUE 

RESOURCE RESOURCE RESOURCE RESOURCE 
A X B Y 

ADAPTER ADAPTER ADAPTER ADAPTER 
END END END END 

ENTITY ENTITY ENTITY ENTITY 

F.G. 6 

  



U.S. Patent June 28, 1994 Sheet 7 of 13 5,325,492 

6 5 O 

TYPE FIELD LENGTH FELD 

SOURCE FIELD DESTINATION FIELD 
CORRELATION FELD 

: VALUE FIELD 

FIG 7 

MMEDIATE SCB COMMAND 

3 222 22 222 22 
O 9 8 7 6 5 4 3 2 O 9 8 7 6 5 4 3 2 4 O 9 8 7 6 5 4 3 2 4 O 

REQ ------scs IMMEDIATE ELEMENT LENGTH-28 
DESTINATION 

unused 

FIG. 8 

3 
4 

  

  

    

    

    

    

    

  



U.S. Patent June 28, 1994 Sheet 8 of 13 5,325,492 

BASE SCB 
3 3 22 22 22 22 
1 O 9 8 7 6 5 4 3 2 

REQ ----- SCB ELEMENT LENGTH=28 

RESERVED FOR STATUS DWORD 1 

RESERVED FOR STATUS DWORD 2 

FIG. 9 

    

  

  

  

  

  

  

  



U.S. Patent June 28, 1994 Sheet 9 of 13 5,325,492 

CONTROL ELEMENT LIST 

CONTROL ELEMENTS - L = 12 

- L=16 

L=12 
i LIST 

SR, DST SIZE 
LIST SIZE : : 

Ris - L =24 
- L=12 : 

FIG. O 

  



U.S. Patent June 28, 1994 Sheet 10 of 13 5,325,492 

CHANED CONTROL 
ELEMENTS 

NON-CHAINED CONTROL - L = 12 
ELEMENTS : 1st ELEMENT : 

-L = 16 BCL-16) 
- t 1st OF CHAN i 

-L=32 McIl-32 can 
: 3rd ELEMENT 

2nd ELEMENT : 2nd OF CHAN 

- L=12 ECL = 2 
: 4th ELEMENT : 

: : END OF CHAIN 
3rd ELEMENT 3rd ELEMENT - L= 24 

5th ELEMENT : 
- 

FIG 11 



U.S. Patent June 28, 1994 Sheet 11 of 13 5,325,492 

REGs NWE READ LIST 
CORRELATION IDENTFER 

BYTE COUNT 

DATA ADDRESS 

OPTIONAL PARAMETERS 

BYTE COUNT 

DATA ADDRESS 

: OPTIONAL PARAMETERS i 

FIG. 12 

      

    

  

  

    

  

  

  



U.S. Patent June 28, 1994 Sheet 12 of 13 5,325,492 

w READ LIST 
SOURCE 

  





5,325,492 
1. 

SYSTEM FOR ASYNCHRONOUSLY DELIVERING 
SELFDESCRIBING CONTROL ELEMENTS WITH 
A PIPE INTERFACE HAVING DISTRIBUTED, 

SHARED MEMORY 

This is a continuation of copending application(s) Ser. 
No. 07/411,145 filed on Sep. 22, 1989, now abandoned. 

BACKGROUND OF THE INVENTION 
Technical Field 
The invention is in the field of computing systems, 

and in particular is directed to a command delivery 
mechanism. Specifically, the invention is directed to 
asynchronously delivering commands, replies, and sta 
tus information between a personal computer class ma 
chine and a plurality of intelligent subsystems which 
may have attached devices. 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

Reference is made to U.S. patent application Ser. No. 
07/367,391 filed on Jun. 16, 1989, which is entitled 
"Interrupt Handling for a Computing System', which 
application is assigned to the assignee of this patent 
application, which describes an interrupt handing 
mechanism which may be utilized in the distributed pipe 
queueing system of the instant invention, and which is 
hereby incorporated by reference. 

Reference is made to U.S. Pat. No. 5,131,082 which is 
entitled "Command Delivery for a Computing Sys 
tem', for Transfers Between a Host and Subsystem 
Including Providing Direct Commands or Indirect 
Commands Indicating the Address of the Subsystem 
control Block, which application is assigned to the as 
signee of this patent application, which describes a com 
puting system in which may be utilized the distributed 
pipe queueing system of the instant invention, and 
which is hereby incorporated by reference. 

In a data processing or computing system comprised 
of a host system and at least one subsystem, there is a 
need to communicate direct and indirect commands to 
an individual subsystem, usually over an Input/Output 
(I/O) channel. 
The direct command is one which can be directly 

sent to a subsystem in one operation, is completely and 
totally self-contained, and totally specifies an operation 
to be executed by the subsystem. On the other hand, an 
indirect command is one which requires more data to 
specify the operation than can be provided within one 
channel I/O cycle. The indirect command is itself a 
pointer to a block of system memory which contains all 
the parameters necessary to specify an operation to be 
performed by the subsystem. This block of memory is 
often referred to as a "control block'. 

In a typical prior art computer system, the interface 
bus overhead involved with the transfer of control 
blocks limited the throughput capacity of subsystems 
and their respective I/O. The limitation is caused by the 
inability of the processor and the subsystem to form a 
synchronous connection on the bus due to other com 
peting subsystems or processor tasks. Processor perfor 
mance was impaired due to the inability of the proces 
sor to obtain service from adapters and I/O, and the 
performance of the adapters and I/O was impaired by 
the ability of the processor to send and receive data as 
quickly as the adapters and I/O were capable of pro 
cessing it. As a result, there was a need to eliminate the 

O 

15 

20 

25 

30 

35 

45 

50 

55 

60 

65 

2 
bottleneck at the interface bus which allowed neither 
the processor nor the adapters and their respective I/O 
to perform as well as their hardware would allow. 
According to the present invention, this need is met 

by creating a distributed pipe at the bus interface. The 
pipe allows the processor to asynchronously send and 
receive control blocks (for the purposes of this disclo 
sure, the control blocks will hereinafter be referred to as 
control elements) for direct and indirect commands 
without requiring intervention by an adapter or I/O 
device. Likewise, the adapters and I/O can asynchro 
nously send and receive control elements to the pipe 
without intervention by the processor. In addition, the 
pipe allows subsystem to subsystem control element 
transfer independent of processor intervention. 

SUMMARY OF THE INVENTION 

An object of this invention is to transfer control infor 
mation and data between a processor and attached sub 
systems in an improved manner. 
An object of this invention is to transfer control infor 

mation and data between a processor and an attached 
subsystem independent of the availability of the at 
tached subsystem. 
An object of this invention is to transfer control infor 

mation and data between a subsystem and a processor 
independent of the availability of the processor. 
An object of this invention is to transfer control infor 

nation and data between a processor and attached sub 
systems in full duplex mode. 
An object of this invention is to asynchronously 

transfer control information and data between a proces 
sor and attached subsystems. 
An object of this invention is to transfer control infor 

mation and data between subsystems of a computer 
system without intervention of the processor. 
An object of this invention is to transfer control infor 

mation and data between a processor and a multiplicity 
of different subsystems on a common interface. 
An object of this invention is to selectively transfer 

control information and data between a processor and 
subsystems on an asynchronous or synchronous basis. 
The foregoing and other objects, features and advan 

tages of the invention are achieved by using distributed 
shared memory, which is located in the processor and 
the subsystems, to form a distributed pipe organized as 
a First In First Out (FIFO) circular queue. Control 
elements are asynchronously placed on the pipe by the 
processor and by the subsystems. Each control element 
contains a fixed field carrying self describing informa 
tion including the source and destination. A variable 
field follows the fixed field, and may contain data or a 
pointer to a buffer external to the pipe which can con 
tain data or a list of commands to be executed (i.e., 
indirect commands). The fixed field also contains con 
trol bits which allow the subsystem and the processor to 
synchronously execute a repetitive list of control ele 
ments when necessary. The sending and receiving of 
control elements asynchronously to and from the pipe 
allow the processor and the subsystems to be free run 
ning, thereby avoiding interrupt delays. In addition, a 
common interface is achieved by the control element 
structure which allows different subsystem types to use 
the same pipe. 
BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a simplified diagram of the invention using 

a single sending unit and a single receiving unit. 



5,325,492 
3 

FIG. 2 is an overview diagram of the signalling 
mechanism used to notify units of the system. 
FIG. 3 is a block diagram of the state information 

used by the signalling mechanism in FIG. 2. 
FIG. 4 is a diagram of the interrupt logic used by the 

system. 
FIG. 5 is a diagram of the invention using multiple 

subsystems and entities. 
FIG. 6 is another diagram of the invention using 

multiple subsystems and entities, which also shows the 
delivery send mechanism and the delivery receive 
mechanism. 
FIG. 7 is a diagram of a control element. 
FIG. 8 is a diagram of an immediate Subsystem Con 

trol Block (SCB) command. 
FIG. 9 is a diagram of a base SCB. 
FIG. 10 is a diagram of an execute list. 
FIG. 11 is a diagram of the control elements used for 

command chaining. 
FIG. 12 is a diagram showing the format of a read list 

request. - 

FIG. 13 is a diagram showing the format of control 
blocks used for indirect data chaining. 
FIG. 14 is a diagram showing the location of the 

notify and wait bits. 
DESCRIPTION OF THE PREFERRED 

EMBODIMENT 

By way of general overview, the invention allows a 
processor and a subsystem to asynchronously transfer 
data and control information and thereby avoid inter 
rupt delays which degrade performance of the proces 
sor and the subsystem. In addition, the data and control 
information can also be asynchronously transferred 
between subsystems without processor intervention. 
The microprocessor system which includes a processor 
unit with system memory and a separate buffer mem 
ory, one or more subsystem adapter units with memory, 
optional I/O devices which may attach to the adapters, 
and a bus interface (which can interchangeably be 
called a micro channel). The memory in the processor 
and the memory in the adapters are used by the system 
as a shared memory which is configured as a distributed 
FIFO circular queue (a pipe). Unit to unit asynchronous 
communication is accomplished by placing control 
elements on the pipe which represent requests, replies, 
and status information. The units send and receive con 
trol elements independent of the other units which al 
lows free flowing asynchronous delivery of control 
information and data between units. The shared mem 
ory can be organized as pipe pairs between each pair of 
units to allow full duplex operation by using one pipe 
for outbound control elements and the other pipe for 
inbound control elements. The control elements have 
standard fixed header fields with variable fields follow 
ing the fixed header. The fixed header allows a common 
interface protocol to be used by different hardware 
adapters. The combination of the pipe and the common 
interface protocol allows many different types of hard 
ware adapters to asynchronously communicate, result 
ing in higher overall throughput due to lower interrupt 
Overhead. 
An important feature of the invention is the use of a 

shared memory to hold the control information. The 
shared memory used to hold the control information is 
physically distributed between the processor and the 
subsystems and will hereafter be interchangeably re 
ferred to as a distributed pipe or a pipe. A unit of the 

10 

15 

20 

25 

30 

35 

45 

50 

55 

4 
system, such as a processor or subsystem adapter, can 
send self-describing control elements to the distributed 
pipe for later retrieval by another unit. The control 
elements carry commands, data, or addresses of data 
stored in a buffer which is external to the pipe. The unit 
of the system which is intended to receive the control 
element will retrieve it from the pipe as soon as it can, 
but does not require the sending unit to wait for the 
receiving unit to act. The sending unit can, therefore, 
place the control element in the distributed pipe and 
proceed to other work rather than waiting for a re 
sponse from the other unit. 
FIG. 1, used for illustrative purposes, is a simplified 

diagram of the invention which uses a single sending 
and receiving unit and a single pipe. In addition, the 
sending unit has a single client entity, which can be an 
application program or the like, and a single server 
entity, which, for example, may be an I/O device at 
tached to a subsystem. It should be understood by those 
skilled in the art that, in practice, multiple sending and 
receiving units would be used, as well as multiple pipes, 
clients and servers. FIG. 1 shows the general flow of 
data and control information in the invention. The send 
ing and receiving units 102, 108 comprise a unit pair 
which may be a processor unit and a subsystem unit, or 
both may be subsystem units. A sending unit 102, will 
request that a receiving unit 108 perform some work by 
placing a control element 104 into shared memory 106 
(the distributed pipe). Commands and control informa 
tion are contained in the control element 104. If data is 
to be transferred from the sending unit 102 to the re 
ceiving unit 108, it can be transferred in one of two 
ways. First, it can be directly transferred within a vari 
able length field of the control element 104. The control 
element, including the placement of data within the 
control element, will be discussed in more detail below. 
Second, it can be placed in the buffer 110 by the sending 
unit 102. The sending unit 102 will then place the ad 
dress and length of the data contained in the buffer 110 
into the control element 104 prior to sending the control 
element 104 to the distributed pipe 106. It should be 
understood that the actual movement of data into and 
out of the buffer, as well as the pipe, can be accom 
plished by a number of conventional methods, well 
known in the art, such as through the use of DMA 
logic. As a general rule, it is preferable to use the exter 
nal buffer 110 to transfer data since the distributed pipe 
106 has a finite size and could be rapidly filled by the 
large data transfers used in many applications. At this 
point, the sending unit 102 does not have to wait for the 
receiving unit 108 to respond. The sending unit 102 can 
proceed with other tasks including the placement of 
other work requests in the distributed pipe 106 in the 
form of control elements 104. 
The receiving unit 108 will retrieve control elements 

104 from the pipe 106, execute the work request con 
tained therein, and reply to the sending unit 102. If the 
control element 104 addresses data in the buffer 110, the 
receiving unit 108 will read or write the data from the 
buffer 110. When the work request is complete, the 
receiving unit will reply to the sending unit 102 by 
placing a control element 116 on the pipe 112. (Control 
elements 104 and 116 are functionally identical, as are 
pipes 106 and 112. They are identified separately to 
denote that the pipe is physically located in different 
units of the system. In addition, the preferred embodi 
ment uses logically separate pipes for sending and re 
ceiving control elements.) As was the case with the 



5,325,492 
5 

sending unit 102, the receiving unit 108 does not wait 
for a response from the sending unit 102. It can proceed 
immediately to other work, including the retrieval of 
more control elements 104 from the pipe 106. 
When the sending unit retrieves the control element 

116 from the pipe 112 which contains the reply to the 
sending unit's 102 request, it can take the appropriate 
action based on the reply. 
The logical steps discussed above are supported by 

the delivery support 118 (which includes a delivery 
send mechanism and a delivery receive mechanism) and 
the bus 114. The delivery support mechanism in the 
preferred embodiment is state logic well known in the 
art. Control information and data are physically moved 
to and from the sending and receiving units to the buffer 
110 and the pipe 106, 112 by way of the bus 114. Fur 
ther, the delivery support mechanism 118 includes the 
enqueue/dequeue logic (not shown) to control place 
ment of control elements on the FIFO queue in pipe 
106, 112. 
FIGS. 2, 3, and 4 show the basic mechanism used by 

the invention for signalling, state logic, and interrupt 
handling. The basic flow of control elements, shown in 
FIG. 2, operates using the send interface 202 and enqu 
eue logic 204 to place control elements into a pipe 220. 
It then uses dequeue logic 206 and receive interface 
logic 208 to remove the control element from the pipe 
220. The enqueue and dequeue logic use the state infor 
mation shown in FIG. 3. There is also logic 210, 214 to 
recognize certain state changes in the pipe and to signal 
the other side. The signalling is done by pushing state 
change surrogate state information to the surrogate 
enqueue logic 212, 216, then pushing reason codes to 
the reason area (shown in FIG. 4) for this unit. Once the 
surrogate information and reason information is pushed, 
a hardware level primitive causes an interrupt (shown in 
FIG. 4). The hardware primitive may be either inter 
rupt controller hardware or may be done by writing 
I/O ports or mapped memory locations which cause 
hardware interrupts. 

FIG. 5 shows a structure which is more representa 
tive of the invention in actual use than FIG. I. How 
ever, as in the discussion of FIG. 1, the actual number of 
entities is not limited to the number of entities shown, 
but is instead a function of the hardware capacity of the 
particular system components in question. FIG. 5 shows 
a processor unit 502 which includes multiple client 
entities 504, 506, 508, 510. Each entity may be a pro 
gram or some other system task which requires interac 
tion with subsystem units. The subsystems are repre 
sented in the figure as they would typically appear in 
practice, as adapter cards 512, 514. Each adapter 512, 
514 in turn has multiple server entities 516, 518, 520, 
522, 524,526 which may be I/O devices such as com 
munication lines, printers, terminals, or the like. FIG. 5 
also illustrates the use of multiple distributed pipes 528, 
530, 532 within a shared memory 534. As shown, pipes 
for unit pairs can be used by processor/subsystem unit 
pairs 502/512 and 502/514, or by subsystem/subsystem 
unit pairs 512/514. Each of the pipes would move con 
trol elements 536 on the bus 114, as discussed above in 
the description of FIG. 1. 

FIG. 6 is a diagram showing the general arrangement 
of the invention which is designed to show the relation 
ship between the circular pipe and the system. There 
are a pair of circular pipes 602, 604 which deliver con 
trol elements in opposite directions. The basic operation 
of each is the same. There is state information 606, 608, 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
610, 612, 614, 616, 618, 620 needed for the enqueueing 
and dequeueing of control elements (not shown). The 
state information is distributed between the two units 
622, 624. The delivery support 626, 628,630, 632 is 
shared between multiple entity to entity pairs 634, 636, 
638, 640, 642, 644, 646, 648. Portions of the delivery 
support communicate with each other over the micro 
channel 650. 
FIG. 7 shows the arrangement of fields in a control 

element. A general discussion of how the invention uses 
the control elements follows. 
Work Orders: 

Requests and the replies to those requests, are ex 
changed between clients (entities) in a system unit or 
adapter, and servers (entities) in an adapter or system 
unit using the delivery services of the SCB architecture. 
These requests, as well as their corresponding replies, 
are referred to as work orders. Each work order con 
sists of a control element used to describe the unit of 
work being requested, and one or more control ele 
ments used to indicate the completion or current state of 
the requested unit of work. Error conditions or changes 
in the processing state of a unit of work are reported in 
error and event control elements respectively. Using 
this definition, each of the following would be a valid 
work order: 
a single request element with no reply element; 
a single request element with a single reply element; 
a single request element with multiple reply elements; 
a single request element with an error element; 
a single request element with an event element; 
a single request element with both event and error 

elements; 
a single request element with event, reply, and error 

elements. 
When request elements are chained together, each re 
quest element in the chain is treated as one part of a 
single work order. 
Elements: 

Elements, or more precisely control elements, are 
used to exchange control information and, in some 
cases, data between a client and a server. They are like 
an envelope with a see through window; allowing the 
delivery service to use information in the window to 
deliver the control elements without having to know or 
understand what is contained within the remainder of 
the control element. Typically, a control element con 
tains the following: 

a 16 bit type field 
a 16 bit length field 
a 16 bit source field 
a 16 bit destination field 
a 32 bit correlation field 
a variable length value field 
The first five fields are used by the delivery service as 

well as the client and server. It constitutes the informa 
tion visible through the window in the envelope. The 
remaining field, the value field, contains the contents of 
the envelope. It contains information meaningful only 
to the client and the server. 
The following sections describe in more detail, the 

format and content of each of these fields as it pertains 
to the delivery service. 
Type Field: 
The type field of an element is a 16 bit word used to 

identify an element and indicate how to interpret the 
remaining fields within the element. The type field con 
sists of the following sub-elements: 



5,325,492 
7 

EID element identifier-a (2) bit sub-field used to iden 
tify the element type. There are four element types: 
l-request (00)-An element sent by a client to a 
server asking it to perform a unit of work on its 
behalf. It requires the transfer of data and control 
information between a client and the server. 

2-reply (01)-An element sent by a server in re 
sponse to certain request elements. Not all request 
elements are answered by replies, only those that 
request information. 

3-event (10)-An element containing information 
about the progress of a request, about the side-ef. 
fects of a previous request or about the status of an 
entity. Events may be sent by either a server or a 
client. 

4-error (11)-An element that provides error infor 
mation about a previous request, or about the 
health and welfare of a server or delivery agent. 

S suppress reply flag-indicates whether or not the 
client wants the server to return a reply element 
when the processing of this request element has been 
completed successfully. When set to one, the reply is 
suppressed and no reply element will be returned. 
When set to zero, whether or not a reply is returned 
is determined by the entity to entity protocol. 

O chaining flags-indicate whether or not command 
chaining is in effect. When chaining is in effect and all 
elements in the chain represent a single unit of work, 
to be processed in the order in which they appear. 
The following table indicates how the chain bits are 
to be interpreted: 00-indicates no chaining (first and 
last) 
01-indicates the start of a command chain (first 

element) 
11-indicates an element within the chain (intermedi 

ate element) 
10-indicates the end of chain (last element) 

I indirect flag-indicates whether the value field of the 
element contains the parameters for the specified 
function or just the length of, and a pointer to, a data 
area where the actual parameters are stored. When 
set to one, the value field contains a pointer to the 
parameter value. 

N notification flag-indicates whether or not the client 
is requesting notification by the server when process 
ing of this element begins. When set to one, a notifica 
tion is to be returned to the client using a notification 
event element. 
W wait flag-indicates whether or not the client is 

requesting the server to wait before processing this 
request element, or any other request elements from 
this client, until it is told to do so with a subsequent 
resume event element from the client. When set to 
one, processing is to be suspended. 

E expedite flag-identifies a control element that the 
client wants the server to process as expeditiously as 
possible, i.e. before any other control elements. that 
may be waiting to be processed. When set to one, the 
control element is to be expedited. 

FC function code-a seven (7) bit sub-field used to 
identify the function to be performed and indicate 
how to interpret the contents of the value field. 

Length Field 
The length field of an element is a 16 bit word used to 

specify the total length of the element in bytes. This 
includes 2 bytes for the type field, 2 bytes for the length 
field, 2 bytes for the source field, 2 bytes for the destina 

10 

15 

20 

25 

30 

35 

45 

SO 

55 

65 

8 
tion field, 4 bytes for the correlation field, and n bytes 
for the variable length value field. 

Source Field 
The source field is a 16 bit word used to identify the 

originator or source of an element. It is a structured 
field containing a unit identifier and an entity identifier. 
For the Micro Channel, the unit id is the bus unit with 
an allowable range of 0 to 15, and the entity id is one of 
256 possible sources. Entity id zero (0) is reserved for 
management purposes. Together, they provide suffi 
cient information to unambiguously identify a bus unit 
as well as the entity within the bus unit responsible for 
originating the element. 

Destination Field 

The destination is a 16 bit word used to identify the 
target or destination of an element. Like the source 
field, it to is a structured field containing a unit identifier 
and an entity identifier For the Micro Channel, the unit 
id is the bus unit with an allowable range of 0 to 15, and 
the entity id is one of 256 possible destinations. Entity id 
zero (0) is reserved for management purposes. To 
gether, they provide sufficient information to unambig 
uously identify the bus unit and the entity within the bus 
unit who is the recipient of the element. 

Correlation Field 

The correlation field is a 32 bit doubleword used to 
provide an identifier for associating or correlating a 
response with a previous request. The format and con 
tent of the correlation identifier is determined by the 
entity who is the originator of the request. It may be a 
sequence number, the address of a control block or 
request packet, or the address of a data buffer. The 
correlation identifier is returned to the originator of the 
request in a reply, error, or event element. 

Value Field 

The value field of an element is a variable length field 
used to hold additional arguments, parameters, or data 
required by the operation identified by the function 
code in the type field. The type, length, and format of 
this information will vary depending on the function 
specified. 

Function Codes 

Within an element, a function code is used to identify 
the operation to be performed and to indicate how the 
contents of the value field should be interpreted. The 
High order bit of the function code is used to distinguish 
between common usage function codes and implemen 
tation defined function codes. When bit 6 is set to one 
(1), it indicates that the remaining bits (0-5) contain a 
non-architected function code. When set to zero (0), bit 
6 indicates that the remaining bits (0-5) contain one of 
the following common usage function codes: 

Immediate SCB Command (FC=1) 
Initialize (FC=2) 
Base SCB Command (FC=3) 
Read (FC=4) 
Read List (FC=5) 
Read Immediate (FCs-6) 
Write (FC=7) 
Write List (FC=8) 
Write Immediate (FC=9) 
Execute List (FC=10) 
Mark (FC=11) 



5,325,492 

Cancel (FC=12) 
Reset (FC=13) 
Read Configuration (FC=14) 
Diagnose (FC=15) 
Suspend (FC=16) 
Resume (FC=17) 
Notify (FC=18) 
Inform (FC-19) 
Wrap (FC=31) 

Function codes 0, 20 through 30, and 32 through 63 are 
reserved and should be treated as an error condition if 
found in a control element. 
The suspend, resume, notify, inform, and wrap func 

tion codes are used exclusively with the event element. 
All other function codes are used with request, reply, 
and error elements. 
The following sections describe in detail the format, 

content and usage of the above functions in the various 
element types of the extended Subsystem Control Block 
(SCB) architecture support. 

Immediate SCB 

The Immediate SCB elements provide a path for 
certain forms of adapter migration. They allow the 
delivery service to be used with the existing SCB's. The 
format and content of this element is shown in FIG. 8. 

Initialize 

The Initialize function is found in request, reply, and 
error elements. In a request element, it invokes the 
initialization function of the server. The source and 
destination, a correlation identifier, and the value field 
containing any additional parameters required by the 
server initialization function are passed to the server in 
the request element. The initialization parameters 
passed in the value field of the request element are 
server dependent and will need to be defined on a server 
by server basis. 

If the indirect flag is set in the type field of the initial 
ization request element, the value field does not contain 
the actual initialization parameters, but instead contains 
the location and the length of a data area where the 
actual parameters themselves are stored. 
A server reports the successful completion of an ini 

tialization request by returning a reply element to the 
requestor. The source and destination, the correlation 
identifier from the initialization request element, and 
any return values are placed in the value field of the 
reply element. 
The return parameters passed in the value field of the 

reply element are server dependent and will need to be 
defined on a server by server basis. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the initialization request element. 

If unsuccessful, the source and destination, the corre 
lation identifier from the initialization request element, 
and status information identifying the cause of the fail 
ure are returned to the requestor in the value field of an 
error element. 

Base SCB 

The base SCB elements provide a path for certain 
forms of adapter migration. They allow the delivery 
service to be used with the existing SCB's. The format 
and content of these elements is shown in FIG. 9. 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

65 

10 
Read 

The Read function is found in request, reply, and 
error elements. In a request element, it is used to setup 
and initiate the transfer of data and control information 
from the server to a client. The source and destination, 
a correlation identifier, and the value field containing 
the parameters required by the server read function are 
passed to the server in the request element. 

It should be noted that the parameters contained in 
the value field of a request element are not limited to 
those identified above. Additional parameters may be 
supplied to meet the requirements of each client/server 
relationship. 

If the indirect flag is set in the type field of the read 
request element, the value field does not contain the 
byte count, data address and optional parameters, but 
instead contains the location and the length of a data 
area where they are stored. When the server has suc 
cessfully completed the transfer, it returns a reply ele 
ment with the source and destination, the correlation 
identifier from the read request element, and the actual 
number of bytes transferred in the value field of the 
reply element. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the read request element. 

If unsuccessful, an error element containing the 
source and destination, the correlation identifier from 
the read request element, and status information identi 
fying the cause of the failure, are returned to the re 
questor in the value field of the error element. 

Read List 

The Read List function is found in request, reply, and 
error elements. It is used to setup and initiate the trans 
fer of data and control information from a server into 
several possibly non-contiguous areas of memory. This 
is often referred to as data chaining. The source and 
destination, a correlation identifier, and the value field 
containing the list of byte count/data address pairs 
required by the read list function are passed to the 
server in the request element. 

If the indirect flag is set in the type field of the read 
list request element, the value field does not contain the 
list of byte counts and data address, but instead contains 
the location and the length of an area where the actual 
list is stored. 
When the server has successfully completed the 

transfer, it returns a reply element with the source and 
destination, the correlation identifier from the read list 
request element, and residual byte count in the value 
field of the reply element. The format and content of the 
read list reply element is the same as the read reply. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the read list request element. 

If unsuccessful, an error element containing the 
source and destination, the correlation identifier from 
the read list request element, and status information 
identifying the cause of the failure, are returned to the 
requestor in the value field of the error element. The 
format and content of the read list error element is the 
same as the read error. 

Read Immediate 

The Read Immediate function is found in request, 
reply, and error elements. It is used to request the trans 



5,325,492 
11 

fer of data and/or control information from a server to 
a client. It differs from the read request in that the data 
is to be returned in the value field of the reply element 
where it will be immediately available to the client. The 
source and destination, a correlation identifier, and the 
value field containing the parameters required by the 
read immediate function, are all passed to the server in 
the request element. 
The amount of data that can be returned using the 

read immediate request element is configuration depen 
dent. That is, it is directly related to the size of the 
delivery queue. Therefore, care should be exercised 
when using this request element. 
When the server has successfully completed the 

transfer, it returns a reply element with the source and 
destination, the correlation identifier from the read 
immediate request element and, in the value field, the 
actual number of bytes transferred followed immedi 
ately by the data itself. 
The read immediate function ignores the suppress 

flag if set in the Type Field of the read immediate re 
quest element since it always returns a reply element. 

If unsuccessful, an error element containing the 
source and destination, the correlation identifier from 
the read immediate request element, and status informa 
tion identifying the cause of the failure, are returned to 
the requestor in the value field of the error element. 

Write 

The Write function is found in request, reply, and 
error elements. It is used to setup and initiate the trans 
fer of data and control information from a client to a 
server. The source and destination, a correlation identi 
fier, and the value field containing the amount and loca 
tion of the data to be transferred by the write function, 
are all passed to the server in the request element. 

It should be noted that the parameters contained in 
the value field of a request element are not limited to 
those identified above. Additional parameters may be 
supplied to meet the requirements of each client/server 
relationship. 

If the indirect flag is set in the type field of the write 
request element, the value field does not contain the 
byte count, data address and optional parameters, but 
instead contains the location and the length of a data 
area where they are stored. 
When the server has successfully completed the 

transfer, it returns a reply element with the source and 
destination, the correlation identifier from the write 
request element, and the actual number of bytes trans 
ferred in the value field of the reply element. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the write request element. 

If unsuccessful, an error element containing the 
source and destination, the correlation identifier from 
the write request element, and status information identi 
fying the cause of the failure, are returned to the re 
questor in the value field of the error element. 

Write List 

The Write List function is found in request, reply, and 
error elements. It is used to setup and initiate the trans 
fer of data and control information to a server from 
several possibly non-contiguous areas of memory. This 
is often referred to as data chaining. The source and 
destination, a correlation identifier, and the value field 
containing the list of byte count/data address pairs 

O 

15 

25 

30 

35 

45 

SO 

55 

65 

12 
required by the write list function, are all passed to the 
server in the request element. 

If the indirect flag is set in the type field of the write 
list request element, the value field does not contain the 
byte counts and data address, but instead contains the 
location and the length of an area where the actual list 
is stored. 
When the server has successfully completed the 

transfer, it returns a reply element with the source and 
destination, the correlation identifier from the write list 
request element, and residual byte count in the value 
field of the reply element. The format and content of the 
write list reply element is the same as the write reply. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the write list request element. 

If unsuccessful, an error element containing the 
source and destination, the correlation identifier from 
the write list request element, and status information 
identifying the cause of the failure, are returned to the 
requestor in the value field of the error element. The 
format and content of the write list error element is the 
same as the write error. 

Write Immediate 

The Write Immediate function is found in request, 
reply, and error elements. It is used to carry data and/or 
control information from a client to a server. It differs 
from the write request in that the data is present in the 
value field of the request element and is immediately 
available to the server. The source, destination, and 
correlation identifier, as well as the data itself, are all 
passed to the server in the request element. 
The format as well as the meaning of the data con 

tained in the value field of the request element are 
client/server dependent and as such are not defined 
here. 
The amount of data that can be transferred using the 

write immediate request element is configuration de 
pendent. That is, it is directly related to the size of the 
delivery queue. Therefore, care should be exercised 
when using this request element. 
When the server has successfully received the data, it 

returns a reply element with the source and destination, 
the correlation identifier from the write immediate re 
quest element and, in the value field, a count of the 
actual number of bytes received. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the write immediate request element. 

If unsuccessful, an error element containing the 
source and destination, the correlation identifier from 
the write immediate request element, and status infor 
mation identifying the cause of the failure, are returned 
to the requestor in the value field of the error element. 

Execute List 

FIG. 10 shows an example of an execute list. The 
Execute List function is indicated in the type field of 
request and reply elements. It is used to setup a repeti 
tive loop for executing a list of request elements pointed 
to by this element one or more times. The source and 
destination, a correlation identifier, and the value field 
containing the location, length, and count required by 
the execute list function, are all passed to the server in 
the request element. 
A list of requests to be executed may consist of one or 

more request elements which must be contiguous in 



5,325,492 
13 

memory. Each element in the list contains its own 
length field so that the start of the next element can 
easily be determined. The "length of list" field deter 
mines where the list ends. On each pass through the list, 
the repetition count is decremented by one, and if not 
Zero, the list is executed again. If the initial repetition 
count is negative or zero the request terminates with no 
execution. 
The request elements that make up the list can con 

tain any of the function codes defined in this section and 
use any of the optional flags available to them. 
When the repetition count goes to zero, the list is 

terminated and the server returns a reply element with 
the source, destination, and correlation identifier from 
the original execute list request element. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the execute list request element. 
Should an error occur while processing any element 

within the list, the list will be terminated. The error 
element returned, however, will be that of the offending 
request element. 

Mark 

The Mark function is used only in a request element 
to provide a means of marking or indicating a point of 
possible synchronization between a client and a server. 
It performs no other function other than the passing of 
a correlation identifier to the server. 
The power of this function is in the way it can utilize 

the Notify and Wait flags to inform a client of the cur 
rent processing state of the server. 
The Mark function ignores the indirect, suppress, and 

expedite flags if set in a mark request element. 
Cancel 

The Cancel function is used in request, reply, and 
error elements. In a request element, it is used to request 
the cancellation of one or more outstanding request 
elements. The source and destination, a correlation 
identifier, and the value field containing the cancella 
tion qualifier and an optional list of request element 
correlation identifiers are all passed to the server in the 
request element. 
The cancellation qualifier bits define which request 

elements are to be cancelled: 
all outstanding requests - (bit 0=1) 
requests that match the source ID - (bit 1 =1) 
first request matching the cancellation list value(s) - 

(bit 2=1) 
all requests matching the cancellation list values(s) - 

(bit 3=1) 
A cancellation list is present whenever bits 2 or 3 of the 
cancellation qualifier are set to one. If bit 1 is set, then 
bit 2 or 3 must also be set. 

If the indirect flag is set in the type field of the cancel 
request element, the value field does not contain the 
cancellation list, but instead contains the location and 
the length of a data area where the actual list is stored. 
When the server has successfully completed the can 

cel function, it returns a reply element to the requestor. 
The source and destination, as well as the correlation 
identifier from the cancel request element are returned 
in the reply element. 
The server will attempt to cancel all requests whose 

correlation identifiers are in the value field of the cancel 
request. If for any reason the server is unable to do so, 
it will return an error element with status and a list of 

5 

10 

15 

20 

25 

30 

35 

45 

55 

65 

14 
correlation identifiers for those it was able to cancel. An 
empty list indicates that it was unable to perform the 
cancel. 

However, a cancel request element with the all out 
standing elements qualifier will not return an error ele 
ment with the list of cancelled elements. 

Reset 

The Reset function is used in request, reply, and error 
elements. In a request element, it is used to request the 
server be placed into a known state. The source and 
destination, a correlation identifier, and the value field 
containing the desired state, are all passed to the server 
in the request element. 
When the server has successfully completed the reset, 

it returns a reply element with the source and destina 
tion, the correlation identifier from the reset request 
element to the requestor. 
The reset function ignores the suppress and indirect 

flags if set in a reset request element. 
If unsuccessful, an error element containing the 

source and destination, the correlation identifier from 
the reset request element, and status information identi 
fying the cause of the failure, are returned to the re 
questor in the value field of the error element. 

Read Configuration 
The Read Configuration function is used in request, 

reply, and error elements. When used in a request, it 
causes the server to return configuration information to 
the client. The source and destination, a correlation 
identifier, and the value field containing the byte count, 
data address, and optionally the specific configuration 
information to be returned, are passed to the server in 
the request element. 

It should be noted that the parameters contained in 
the value field of a request element are not limited to 
those identified above. Additional parameters may be 
supplied to meet the requirements of each client/server 
relationship. 

If the indirect flag is set in the type field of the read 
configuration request element, the value field does not 
contain the optional parameters, but instead contains 
the location and the length of a data area where the 
actual parameters themselves are stored. 
A server reports the successful completion of a read 

configuration request by returning a reply element to 
the requestor. The source, destination, and correlation 
identifier from the read configuration request element 
are returned in the value field of the reply element. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the read configuration request element. 

If the server is unable to report back configuration 
information, an error element with the source and desti 
nation, the correlation identifier from the read configu 
ration request element, and the reason are returned to 
the requestor in the value field of the error element. 

Diagnose 
The Diagnose function is used in request, reply, and 

error elements. In a request, it is used to initiate the 
running of diagnostic routines by a server. The source 
and destination, a correlation identifier, and the value 
field containing the specific diagnostic tests to be run as 
well as any operational parameters, are passed to the 
server in the request element. 



5,325,492 
15 

If the indirect flag is set in the type field of the diag 
nose request element, the value field does not contain 
the optional parameters, but instead contains the loca 
tion and the length of a data area where the actual pa 
rameters themselves are stored. 5 
A server reports the results of running the diagnostic 

tests by returning a reply element to the requestor. The 
source and destination, correlation identifier from the 
diagnose request element, and the value field containing 
the test results are returned in the reply element. 
A client may choose to suppress the returning of a 

reply element by setting the suppress flag in the Type 
Field of the diagnose request element. 

If a server is unable to run the requested diagnostic 
test, an error element with the source and destination, 
the correlation identifier from the diagnose request 
element, and the value field containing the reason are 
returned to the requestor in the error element. 

10 

15 

Events 

In addition to request, reply, and error elements, the 
delivery service provides an element for conveying 
information about the progress of a request, or about the 
side-effects of a previous request, or about the state of 2 
an entity-the event element. The event element differs 
from the other elements in that it reports a change in 
state of one of the communicating entities (client or 
server). Because of the impact of these state changes, 
the peer-entity must be informed of the change as expe 
ditiously as possible. The following sections describe 
the format, content and usage of the function code of an 
event element. 

20 

5 

30 

Suspend 
35 

A suspended event is used to notify a client of a 
change in processing state at the server. A server 
changes state whenever it receives a request element 
from a client in which the wait flag of the type field is 
set to one. The server suspends the processing of the 
request and all subsequent requests from the specified 
source. This change of state is communicated to the 
client by means of a suspend event element. The source 
and destination, as well as the correlation identifier of 
the request element causing the suspension, are returned 45 
to the client in the value field of the event element. 

Resume 

A resume event is used to notify a server of a change 
in a clients processing state. A client uses this event to 
notify a server that the client is now in a state where the 
processing of request elements can now be resumed. 
The source and destination, as well as the correlation 
identifier of the original request element causing the 
suspension, are returned to the server in the value field 
of the resume event. 
A resume event received from a source other than the 

one responsible for the suspended state or the receipt of 
a resume for a destination that is not in the suspended 
state, will be ignored. 

50 

55 

60 

Notification 

A notification event is used to confirm the receipt of 
a request element from a client in which the notification 
flag of the type field is set to one. The server communi- 65 
cates this to the client by means of a notification event 
element. The source and destination, as well as the 
correlation identifier of the request element containing 

16 
the notification flag, are returned to the client in the 
value field of the event element. 

inform 

An inform event is used to provide a means of con 
veying information regarding the processing state of 
either a client or a server from one to other. 

Wrap 
A wrap event is a management and control initiated 

event used internally by the delivery system. It is used 
to synchronize the operations associated with the in 
bound or out-bound delivery pipes (queues). 
A wrap event element can be sent only by a delivery 

agent. The wrap event informs the destination delivery 
agent that the associated delivery queue has wrapped 
and that the next element should be dequeued from the 
top of the delivery queue. 

Command Chaining 
The processing of request elements by a server may 

take place either synchronously or asynchronously de 
pending on whether or not command chaining is in 
effect. Normally a server may process requests in any 
order that makes sense to the server (asynchronously). 
However, there are also times when a client wishes to 
have the server process the requests in the order in 
which they have been submitted (synchronously). Com 
mand chaining is used for this purpose. Whenever the 
command chaining field is set in a request, it means that 
the processing of the next element in a chain cannot 
begin until the server and/or device has completed 
processing the current request element and has returned 
the appropriate reply to the client. Chaining is indicated 
by setting the chain indicators in an element to the 
values BC=Beginning of chain, MCs-Middle of chain, 
and EC=End of chain. This is illustrated in FIG. 11. 
Processing of requests then resumes with the next re 
quest element in the chain. This action continues until 
all elements in a chain have been processed, or an error 
condition is encountered. When an error condition is 
encountered, an error element is returned and the re 
maining request elements within the chain are dis 
carded. 

Data Chaining 
Often it is necessary to gather data from several non 

contiguous areas of memory and transfer it to a single 
destination (a write) or, conversely, to transfer data 
from a single source and scatter it into several non-con 
tiguous areas of memory (a read). This is commonly 
referred to as data chaining. The SCB architecture 
supports two methods of data chaining; direct and indi 
rect. 

Direct Data Chaining 
In direct data chaining, each non-contiguous data 

area is described by an entry in a chaining list. The entry 
contains a byte count and an address pointer to a data 
area. After each data area described by an entry is trans 
ferred, the next entry in the list is processed. This action 
continues, until all the entries in the list have been pro 
cessed, or no more data exits. Direct data chaining is 
invoked through the use of the Read List and Write List 
function codes. The format of a read list element for 
direct data chaining is shown in FIG. 12. 



5,325,492 
17 

Indirect Data Chaining 
Indirect data chaining is similar to direct data chain 

ing except for the location of the chaining list. The list 
is not part of the request element. Instead the list is kept 
separate and is referenced by means of an indirect list 
pointer in the value field of the request element. Indi 
rect data chaining is invoked by setting the indirect flag 
in a Read or Write List request element. The format of 
a read list element for indirect data chaining is shown in 
FIG. 13. 

Using Notification and Wait 
A client can request notification when an element is 

about to be processed by setting the notification flag in 
the type field of the appropriate request element. This 
causes the server to return an event notification element 
with the source, destination, and correlation identifier 
of the element containing the notification flag in its 
value field to the client. 
A client can suspend the processing of a set of request 

elements at a particular point in the list by setting the 
wait flag in the type field of the appropriate request 
element prior to submitting it to the Delivery Service. 
This causes the server to suspend further processing of 
request elements, to return an event notification element 
with the correlation identifier of the element containing 
the suspend flag in its value field, and to wait for a 
resume event from the originating client before continu 
ing. The original request element containing the wait 
flag is not processed until the resume event is received 
from the client. FIG. 14 shows the various combina 
tions of usage for notification and wait. 
While the invention has been particularly shown and 

described with reference to preferred embodiments, it 
will be understood by those skilled in the art that vari 
ous changes in detail may be made therein without 
departing from the spirit, scope, and teaching of the 
invention. For example, there are many queueing tech 
niques known in the art, at least some of which could be 
substituted for the FIFO circular queue used in the 
preferred embodiment. Likewise, the format of the 
control element could be varied. Accordingly, the in 
vention herein disclosed is to be limited only as speci 
fied in the following claims. 
We claim: 
1. An apparatus within a system for asynchronous 

transfer of self-describing control elements representing 
requests, replies, or asynchronous notification between 
entities located in different units or the system and for 
asynchronous transfer of data between said entities, said 
system comprising: 

first type unit, said first type unit further comprising 
at least one processor; 

a second type unit, said second type unit further con 
prising at least one subsystem, which may have 
attached devices; 

an interface bus, interconnecting said first and second 
type units; 

a distributed pipe between said first type unit and said 
second type unit, said distributed pipe further com 
prising shared memory distributed among each of 
said units; 

buffer means to store data from said shared memory 
relating to said control elements independent of 
said pipes and to transfer said stored data to and 
from said units, 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

65 

18 
each of said first and second type units further com 

prising: 
at lest one entity; 
a delivery send mechanism for asynchronous en 

queuing and sending one of said control elements 
and said stored date; and 

a delivery receive mechanism for asynchronous 
dequeuing and receiving one of said control 
elements and said stored date. 

2. An apparatus, as in claim 1, wherein said pipe is a 
circular queue. w 

3. An apparatus, as in claim 1, wherein said pipe is a 
FIFO (first-in/first-out) queue. 

4. An apparatus, as in claim 1, wherein said pipe con 
tains control elements for a plurality of entity pairs. 

5. An apparatus, as in claim, 1 wherein said delivery 
send mechanism further includes means to signal the 
state of said distributed pipe to said delivery receive 
mechanism in a different one of said unit types when 
there are state changes in said distributed pipe. 

6. An apparatus, as in claim 1, wherein said delivery 
send mechanism further includes means to signal the 
state of said distributed pipe to said delivery receive 
mechanism in a different one of said unit types to exam 
ine the state of the distributed pipe at predetermined 
time intervals. 

7. An apparatus, as in claim 1, wherein said control 
elements further comprise a fixed length portion and a 
variable length portion, said fixed length potion further 
comprising a type field for describing the type of infor 
mation in said control element, a length field containing 
the length of said control element, a source field de 
scribing the source of said control element, a destination 
field describing the destination of said control element, 
and a correlation field for correlating requests with 
replies. 

8. An apparatus, as in claim 7, wherein said variable 
length portion contains data. 

9. An apparatus, as in claim 7, wherein: 
said variable length portion further comprises a field 

having a command for immediate execution by an 
attached device; and 

said type field further comprises an immediate com 
mand identifier; 

whereby said entity sending said immediate command 
can encapsulate commands within a control element 
and pass said immediate command through said dis 
tributed pipe. 
10. An apparatus, as in claim 7, wherein said unit 

containing the entity sending the control element fur 
ther comprises buffer storage for holding data external 
to said distributed pipe, and said control elements fur 
ther having fields to identify the location of data in said 
buffer which is associated with said control element. 

11. An apparatus, as in claim 10, wherein: 
said variable length portion further comprises a field 
having an address of a buffer location containing a 
command for immediate execution by an attached 
device; and 

said type field further comprises an immediate com 
mand identifier; 

whereby said entity sending said immediate command 
can encapsulate commands within a control element 
and pass said immediate command through said dis 
tributed pipe. 
12. An apparatus, as in claim 7, wherein: 

said variable length portion further comprises a field 
indicating the length of an execute list containing a 



5,325,492 
19 

series of requests to an entity, a field indicating the 
address of said execute list, and a repetition count 
indicating the number of times said execute list is to 
be repeated; and 

said type field further comprises an execute list identi- 5 
fier. 
13. An apparatus, as in claim 12, wherein said type 

field further comprises notify and wait bits for indicat 
ing to the receiving entity synchronization status for the 
sending entity; 
whereby said sending entity is synchronized with said 

receiving entity. 
14. An apparatus, as in claimi, wherein said delivery 

send mechanism further comprises means to detect 
when said distributed pipe is full. 

15. An apparatus, as in claim 1, wherein said delivery 
send mechanism further comprises means to detect 
when available space in said distributed pipe is insuffi 
cient to hold another control element. 

16. An apparatus, as in claim 15, wherein said deliv 
ery send mechanism further comprises means to place a 
wrap element at the end of said distributed pipe to indi 
cate the next element should be dequeued. 

17. An apparatus as, in claim 1, wherein said delivery 
receive mechanism further comprises means to detect 
when said distributed pipe is empty. 

18. An apparatus, as in claim 1, wherein said delivery 
receive mechanism further comprises means to detect 
when said distributed pipe changes from the empty state 
to the not empty state. 

19. An apparatus, as in claim 1, wherein there are a 
plurality of distributed pipes. 

20. An apparatus, as in claim 19, wherein each first 
type unit and a second type unit constitute a unit pair, 
and each unit pair has a pair of distributed pipes associ 
ated with said unit pair, said pair of distributed pipes 
further comprising a first distributed pipe for control 
elements sent from a first unit of said unit pair to a 
second unit of said unit pair, and a second distributed 
pipe for control elements sent from said second unit of 40 
said unit pair to said first unit of said unit pair; 
whereby each of said unit pairs operate in full duplex 

mode. 
21. The apparatus as defined in claim 1, wherein there 

is a plurality of second type units, and wherein there is 
a distributed pipe between two of said second type 
units. 

22. An apparatus within a system for asynchronous 
transfer of self-describing control elements representing 
requests, replies or asynchronous notification between 
entities located in different units of the system and for 
asynchronous transfer of data between said entities, said 
system comprising: 
a first type unit, said first type unit further comprising 

at lest one processor; 
more than one second type unit, each said second 

type unit further comprising at least one subsystem, 
which may have attached devices; 

an interface bus interconnecting said units; , 
at least one distributed pipe, each distributed pipe 

being distributed between two of said units, each 
said distributed pipe further comprising shared 
memory distributed among each of said units: 

buffer means to store data from said shared memory 
relating to said control elements independent of 65 
said distributed pipes and to transfer said stored 
data to and from said units, 

each of said second type units further comprising; 

10 

15 

20 

25 

30 

35 

45 

50 

55 

20 
at least one entity; 
a delivery send mechanism for sending one of said 

control elements and said stored data; and 
a delivery receive mechanism for receiving one of 

said control elements and said stored data; 
wherein said entity sending said control element is 

in a subsystem, and said entity receiving said 
control element is in a subsystem. 

23. A method for asynchronously transferring self 
describing control elements representing requests, re 
plies, or asynchronous notification between units in a 
system, comprising the steps of: 

interconnecting units, comprising at least one proces 
sor and at least one subsystem, with an interface 
bus; 

sharing memory physically distributed between said 
units as a distributed pipe; 

providing a buffer separate from said pipe to store 
data from distributed memory relating to said con 
trol elements independent of said pipe; 

asynchronously enqueuing and sending said control 
elements and the stored data from a sending unit, 
said control elements addressed to a receiving unit, 
to said distributed pipe; and 

asynchronously dequeuing receiving said control 
elements and the stored data by said receiving unit, 
said control elements being addressed by said send 
ing unit, from said distributed pipe. 

24. A method, as in claim 23, wherein said control 
elements are written to and read from said distributed 
pipe as a circular queue. 

25. A method, as in claim 23, wherein said control 
elements are written to and read from said distributed 
pipe as a FIFO queue. 

26. A method, as in claim 23, including the further 
step of signalling with state logic said receiving mecha 
nism in a different one of said unit types with said send 
ing mechanism when a control element is placed on said 
distributed pipe. 

27. A method, as in claim 23, including the further 
step of signalling said delivery receive mechanism with 
said delivery send mechanism to examine the state of 
the distributed pipe at predetermined time intervals. 

28. A method for asynchronously transferring self 
describing control elements representing requests, re 
plies, or asynchronous notification between units in a 
system, comprising the steps of: 

interconnecting subsystem units with an interface 
bus; 

sharing memory physically distributed between said 
units as a distributed pipe; 

providing a buffer separate from said pipe to store 
data from said stored memory relating to said con 
trol elements independent of said pipe, 

asynchronously sending said control elements and 
said data from a sending unit, said control elements 
addressed to a receiving unit, to said distributed 
pipe; and 

asynchronously receiving said control elements and 
said data by said receiving unit, said control ele 
ments addressed by said sending unit, from said 
distributed pipe. 

29. A method, as in claim 28, wherein said control 
elements are written to and read from said distributed 
pipe as a circular queue. 

30. A method, as in claim 28, wherein said control 
elements are written to and read from said distributed 
pipe as a FIFO queue. 



5,325,492 
21 22 

31. Amethod, as in claim 28, including the further step of signalling with state logic said delivery receive 
step of signalling with state logic said receiving mecha mechanism in a different one of said unit types with said 
nism in a different one of said unit types with said send- o ing mechanism. Winters changs in said delivery send mechanism to examine the state of the 
distributed pipe. 5 distributed pipe at predetermined time intervals. 

32. A method, as in claim 28, including the further 

10 

15 

20 

25 

30 

35 

45 

SO 

55 

65 



Col. 

Col. 

Col. 

Col. 

Co. 

Col. 

UNITED STATES PATENT ANDTRADEMARK OFFICE 
CERTIFICATE OF CORRECTION 

PATENT NO. : 5,325, 492 
DATED : June 28, 1994 
INVENTOR(S) : Bonevento, et al. 

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby 
Corrected as shown below: 

17, line 51: Change or to --on 

17, line 54: Please add -a- before "first type" 

18, line 3: Ilest should be -least 

18 line 9: Please change date to --data.-- 

- 18 line 16: "claim, 1" should read --claim 1,-- 

19, line 55: Please change lest to -least 

Signed and Sealed this 
Seventh Day of February, 1995 

BRUCELEHMAN 

Attesting Officer Commissioner of Patents and Trademarks 

  


