
||||||||||||III

PRO
CESSOR

422
424

48

USOO5307482A
United States Patent 19) 11) Patent Number: 5,307,482
Bealkowski et al. 45 Date of Patent: Apr. 26, 1994

54 COMPUTER, NON-MASKABLE INTERRUPT 5,179,690 l/1993 Ishikawa 395/500
TRACE ROUTINE OVERRIDE OTHER PUBLICATIONS

"SEE, IBM Technical Disclosure Bulletinyol.39,Ng5, Oct. B I As urner, both o 1987, "Diagnostic Status for Non-Maskable Interrupt
Oca Katon, all of ta. Arbitration", pp. 67-68.

73) Assignee: International Business Machines IBM Technical Disclosure Bulletin, vol. 32, No. 5A,
Corp., Armonk, N.Y. Oct. 1989, “Enhanced Hardware Error Recovery for

21 Appl. No.: 826,733 Microprocessor", pp. 441-442.
a. Primary Examiner-Robert W. Beausoliel, Jr.

(22) Filed: Jan. 28, 1992 Assistant Examiner-Albert Decady
Sll int. Cli.. G06F 11/08 Attorney, Agent, or Firm-Robert S. Babayi
52 U.S.C. 395/575; 395/500
58 Field of Search 395/575, 700, 500; (57) ABSTRACT

371/19 System non-maskable interrupts are detected by an
o override controller which initiates an NMI routine

(56) References Cited override operation. During override, address requests
U.S. PATENT DOCUMENTS for an standard NMI routine are intercepted, and in

stead a predetermined memory space is addressed that
E. 13 Egil was a w & 8 a w s: contains a system specific NMI trace routine. The pro

4,485.380 i2/1984 Carey et al... 360 cessor is unaware that the override controller has in
4,593,391 6/1986 Mizushima et al. .. 371/15 serted the system specific NMI routines. The processor
4,695,946 9/1987 Andreasen et al. 364/200 executes the system specific NMI routines, and when
4,701,845 10/1987 Andreasen et al.... ... 364/200 the specific routines are completed, the override con
4,726,024 2/1988 Guziak et al. 371/16 troller generates a termination signal which returns
4,799,145 l/1989 Gosset al. 395/700 program control back to the standard NMI routine. The
3. y E. SE et ". ov :2: system specific NMI routine is designed to trace errors
4,862.349 A3 E. a - :2: created by new system functions or hardware or to
4.850,284 12/1989 Murphy et al. .31 /9.1 enhance the error tracing capability for existing system
5,012,409 5/1991 Fletcher et al. .. 364/200 functions.
5,138,706 8/1992 Melo et al. 395/500
5,155,838 10/1992 Kishi................................... 395/500 20 Claims, 7 Drawing Sheets

I6 242

ROM FIRMWARE
----JSUBSYSTEM

NMI ROMADDR

OWERRIDE LOGIC a
OWERRDE

CROSS OVER 8
MCROCHANNEL

BUFFERS

INTERRUPTS

MEMORY
CONTROL
UNT

256

U.S. Patent Apr. 26, 1994 Sheet 1 of 7 5,307,482

DMA CONTROL 22O
2O7 UNIT 242

FRMWARE - SESS 204 SC

T coPEssor 3.18
l A CONTROL

418 N

2O2 32O

DATA

NN
PROCESSOR l

31 6-N 351
4241
420

2O6

CACHE BUFFER MEMORY cofficier HBUFFERH 5.

PARTY
GEN/CHK

40 1- PARTY GEF’ek 5:54,
330 404

F.G. 1

U.S. Patent Apr. 26, 1994 Sheet 2 of 7 5,307,482

is a e s is a a s a a e s - - - a e a s a e - e s a s s a e s a e s a to e o e s s n e s w w a n a e s is v e a n e s e s a * * * * ' ' ' ' ' ' ' ' '

PROCESSOR INPUT/ouTPUT
infice BUS
CONNECTOR CONNECTORS

3.18
CONTROL 232
BUS / N

DATA NTERRUPTS
BUS

KEYBOARD/ouse"
CONTROLLER 244 N

282
DISKETTE CONTROLLER

274 N.
246

F 319-(i. 238
CLOCK/ 240 H-53%-25" 27

E NVRAM n-248
344

: 308A 308B :
MEMORY SIMM(MEMORY SIMMT: MEMORY SIMMMEMORY SIMM laama- a-ree O

6 MUX ADDRESS A 2. 30
MEMORY DATA BUS A F.
RAS A 328 an

U.S. Patent Apr. 26, 1994 Sheet 3 of 7 5,307,482

6 242

2 R ADDR

NMI ROM ADDR
OVERRIDE LOGIC

OVERRIDE
2O2

PRO
CESSOR

42O

422
424

ROM FIRMWARE
----JSUBSYSTEM

CROSS OVER 8
MCROCHANNEL

BUFFERS DATA

lar NMI LBA

48 ten is 3
CONTROL

TS ADDRESS NTERRUP

DATA 4O8 TERM
BUFFER

3O
MEMORY
CONTROL

FIG 3. UNIT
256

U.S. Patent Apr. 26, 1994 Sheet 4 of 7 5,307,482

CLK 2O

SYS NMI (51)
NM

s SYNC

22

NMI
D SYNC2

35 CPU NMI

5,307,482 Sheet 5 of 7 Apr. 26, 1994 U.S. Patent

OG ‘AJNA O LW SCIV IT IwN ndo (OT LOV) . (JBAO i 20NASIWN | ONAS IWN

U.S. Patent Apr. 26, 1994 Sheet 6 of 7 5,307,482

c-O S-9
C <

N

&11 D. H-1
TT.I

T

TT O O

CD

4. 1. 3 :
5 5 3b, 5

III || O II.
g

C
m

2 na
4.
g
O

U.S. Patent Apr. 26, 1994 Sheet 7 of 7 5,307,482

READ MEMORY
CONTROL UNIT
ERROR REGISTER ALIGNMENT

NOP's

SAVE
REGISTERS

FAULT
TRACE

WRITE MEMORY
ERROR DATA
TO NVRAM

READ BUS
CONTROL

ERROR REGISTER ROUTINES

WRITE BUS
ERROR DATA
TO NVRAM

READ CACHE
CONTROLLER
ERROR REGISTER

WRITE CACHE
ERROR DATA
TO NVRAM

FIG.8.

5,307,482
1.

COMPUTER, NON-MASKABLE INTERRUPT
TRACE ROUTINE OVERRIDE

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed to computers and particu

larly families of related computer products that are
rapidly evolving and adding new function. In particular
the invention relates to a method and apparatus for
handling non-maskable interrupts in rapidly evolving
related computer products. Personal computers are
such a family of products. Many of these personal com
puters are programmed to invoke generalized error
trace routines when a non-maskable interrupt (NMI)
occurs in the system. The present invention is directed
to adding new error trace routines specific to new func
tions in new computing systems.

2. Description of Prior Art
The IBM Personal System/2 (PS/2) family of com

puters typically utilizes either the Disk Operating Sys
tem (DOS) program or the Operating System/2 (OS/2)
program as its system program. Application programs
to perform word-processing functions, spreadsheet

5

10

15

20

functions, database functions, etc., run on top of one of 25
these operating system programs. In other words the
application programs are written to interface with the
operating system program.
The operating system program contains within it a

non-maskable interrupt (NMI) trace routine that is use
able across the family of PS/2 computers. When an
error or fault occurs that generates an NMI, the inter
rupt controller notifies the system processor and in
vokes a generalized NMI trace routine provided by the
operating system program. These NMI routines are
designed to trace errors or faults in system features
known as of the most recent version of the operating
system program.
A problem exists in keeping the NMI routines in the

operating system up to date with the rapidly evolving
set of system features offered by the PS/2 computer
family. New features in devices that attach to the PS/2
computers are added daily, and the PS/2 computer
family itself adds models or model enhancements every
few months. When an error or fault occurs during the
operation of one of these new features or functions, the
operating system will look to invoke an NMI routine.
However if the NMI trace routine cannot recognize or
take advantage of these new features, it will not be able
to properly diagnose the source of the problem.
One skilled in the computing system arts will realize

it is not practical to add a new NMI trace routine to the
operating system on a daily or even monthly basis. The
problem is thus how to deal with the need for rapidly
evolving NMI routines which can keep pace with rap
idly evolving computing systems.

Prior teachings do not offer a solution to this prob
lem. The generation of non-maskable interrupts and the
invoking of NMI routines is of course well known and
a few examples include: (1) M. E. Dean et al, "Diagnos
tic Status for Non-Maskable Interrupt Arbitration,"
IBM Technical Disclosure Bulletin, Vol. 30, No 5, Octo
ber 1987, pp. 67-68; and (2) B. O. Anthony et al., "En
hanced Hardware Error Recovery for Microproces
sor,' IBM Technical Disclosure Bulletin, Vol. 32, No.
5A, October 1989, pp. 441-442. The Dean et al publica
tion teaches a program technique for initiating a diag
nostic routine when an NMI occurs. The Anthony et al.

30

35

45

50

55

65

2
publication teaches a timeout sequence for forcing an
NMI routine.

In addition, the invoking of error trace routines when
faults occur is well-known. Some examples include: (1)
K. Shiozaki et al, "Logic Tracing Apparatus," U.S. Pat.
No. 4,423,508; and (2) D. R. Bourgeois et al, "Data
Processing System With Self Testing and Configuration
Mapping Capability," U.S. Pat. No. 4,334,307. The
Shiozaki et al patent teaches hardware failure tracing
apparatus that both stops memory writing in order to
store data at time of error and puts a hold on memory
writing so that other test programs will not inadver
tently overwrite the stored error data. The Bourgeois et
al patent teaches a particular power-on self-test routine
for a computing system. The routine involves succes
sively testing sections of memory and then using tested
sections of memory to store test results from tests on
other sections of memory and tests on I/O devices in the
computing system.
None of these publications or patents address or pro

vide a solution to the problem of how to provide new
NMI routines in an environment where computing sys
tems are changing rapidly.

SUMMARY OF THE INVENTION
It is an object of this invention to update NMI rou

tines in a new system or a system with added new func
tions without changing the operating system.

It is a further object to invoke new NMI routines in a
manner such that their operation is transparent to the
computing system and the operating system.

It is also an object of this invention to provide for the
addition of hardware and software to implement new
added NMI functions in a manner that is independent of
pre-existing operations by the computing system and
operating system.

In accordance with this invention, the above problem
is solved, and the above objects are accomplished, by
overriding the NMI operation of the general or stan
dard NMI routines in the operating system with system
specific NMI routines. Non-maskable interrupts are
detected by an override controller which initiates the
override operation. During override, address requests
from the processor for the general or standard NMI
routine are intercepted, and memory controls and ad
dresses are generated by the override controller. A
predetermined memory space is addressed that contains
the system specific NMI trace routine. The processor is
unaware that the override controller has inserted the
system specific NMI routines.
The processor executes the system specific NMI rou

tines and when the specific routines are completed, the
override controller generates a termination signal
which returns program control back to the NMI routine
in the operating system. Thus, the processor works with
both the system specific NMI routine and the existing
operating system NMI routines.
The system specific NMI routine is designed to trace

errors created by functions or hardware in one or more
new systems or to enhance the error tracing capability
for existing system functions. The routines store data
conditions as they existed at the time of the error. The
specific NMI routines are stored in read only memory
(ROM) outside normal working memory space. Since
the NMI routines are specific to the system, the updated
NMI routines need not be in the operating system but
are better stored in ROM of their new system.

5,307,482
3

Other objects, advantages and features of the inven
tion will be understood by those of ordinary skill in the
art after referring to the complete written description of
the preferred embodiments in conjunction with the
following drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 and 2 show a processor card and planar

board, respectively, of a personal computer in which
the preferred embodiment of the invention would be
implemented.

FIG. 3 is a system diagram of a preferred embodi
ment of the invention working in combination with the
system of FIGS. 1 and 2.
FIG. 4 is a logic block diagram of the override con

troller in F.G. 3.
FIG. 5 is a signal timing chart for the signals in FIGS.

4 and 6.
FIG. 6 is a block diagram of the override address

logic in FIG. 3. .
FIG. 7 is a flow diagram of the system specific NMI

routine.
FIG. 8 is a flow diagram of one example of a trace

routine in the system specific NMI routine of FIG. 7.
DESCRIPTION OF THE PREFERRED

EMBODIMENTS

The computing system in which the present invention
is used is illustrated in FIGS. 1 and 2. These Figures
show a processor card (FIG. 1) and a planar board
(FIG. 2). The processor card and planar board in these
Figures are illustrative of the IBM Personal System/2
Models 90 and 95 computers. FIGS. 1 and 2 are repro
ductions of FIGS. 4 and 3, respectively, in copending,
commonly assigned patent application Ser. No.
07/799486, filed Nov. 27, 1991. The processor card and
planar board are described in that copending applica
tion, which is incorporated herein by reference, and are
only described herein as necessary to understand how
they are modified in the present invention.

In Figure processor 202 and math coprocessor 204
are connected to a cache memory 208 and cache con
troller 206 through a high speed local bus 418. For
operations beyond the local bus the processors are con
nected to the planar board (FIG. 2) via MICRO
CHANNEL bus 312 and memory bus 310. The connec
tions to the memory bus and MICRO CHANNEL bus
are buffered through buffers 408, 410, 412 and 414.
Control and coordination of these various buses is han
died by the bus control 214 in cooperation with the
processors 202 and 204, the memory control unit 256
and the DMA control unit 220. System interrupts are
communicated over bidirectional bus 316 between pro
cessors 202 and 204 and interrupt controller 254 (FIG.
2).

Firmware subsystem 242 contains read only memory
(ROM) in which various microcode programs reside
including BIOS, and POST. BIOS (Basic Input Output
System) provides an interface between the hardware
and the operating system software. POST is the power
on self-test routine performed by the system each time it
is turned on.

In its preferred embodiment, the present invention
modifies the system of FIGS. 1 and 2 as shown in FIG.
3 so that the manner in which the system handles system
non-maskable interrupts can be tailored to the specific
computing system. In FIG. 3, the override controller 10
responds to System NMI on the interrupt bus 316. The

5

10

15

20

25

30

35

45

50

55

65

4.
interrupt bus 316 is bidirectional and connects to the
interrupt controller 254 (FIG. 2). Interrupt controller
254 collects all the non-maskable interrupts and signals
the SYS NMI to the processor 202. Processor 202 exe
cutes the system specific NMI routine through the over
ride controller 10 followed by the generalized NMI
routine through the memory control unit 256 (FIG. 1).

Normally, the standard or existing NMI routine is
supplied by the operating system and is stored in mem
ory 308 (FIG. 2). The system specific NMI routine is
stored in read only memory (ROM) 16 inside firmware
subsystem 242. When there is a System NMI, override
controller 10 intercepts memory requests from proces
sor 202 and addresses ROM 16.
The switching of memory fetches from processor 202

so that the address goes to ROM 16 in firmware subsys
tem 242 is transparent to the processor. Override con
troller 10 sends a NM LBA (NMI Local Bus Access)
signal to memory control unit 256 and an override sig
nal to NMI ROM address override logic 12. The NMI
LBA signals the memory control unit 256 to ignore
address and control signals from processor 202. The
override signal tells address override logic 12 to set the
start address of the system NMI routine. Override con
troller 10 also sends an NMI ROM signal to NMI ROM
address override logic 12. Address override 12 inter
cepts the address signal from the processor via buffer
410 and inserts ROM address of the specific NMI rou
tine. This address from the address override is passed by
address bus 14 to ROM 16 in firmware subsystem 242.
The NMI ROM signal is also sent via OR 18 to ROM 16
in firmware subsystem 242 to enable the reading of the .
address location in the ROM.

Override controller 10 monitors the control bus 424
to detect when processor 202 has issued a memory code
read cycle or code fetch. In response to this code fetch,
controller 10 generates an NMI ADR signal and passes
it to the address override 12. The NMI ADR signal
increments the ROM address for the system specific
NMI routine in ROM 16. Processor 202 then receives
data or instruction from ROM 16 over the data bus via
buffers 414 and 408. In this manner processor 202 works
with override controller 10, override logic 12 and ROM
16 to perform the system specific NMI routine.
The last step of the system specific routine is to set a

TERM bit to signal the override controller 10 that the
system NMI routine is finished. The TERM bit might
be set in any register as a flag to the processor. In the
preferred embodiment, the TERM bit is set in the mem
ory control unit 256 via buffer 410. Memory control
unit 256 generates the TERM (termination) signal for
override controller 10. Override controller 10 drops the
OVERRIDE signal to the address override logic 12 and
regenerates a CPUNMI signal that is sent to processor
202. Processor 202 then executes the normal NMI rou
tine in memory 308 (FIG. 2) via memory control unit
256.

FIG. 4 is a logic block diagram for the override con
troller 10. The controller can be implemented either
with logic devices or with programmable array logic.
The functions of the controller are most easily under
stood by reference to the logic block diagram in FIG. 4
and the signal timing chart in FIG. 5,
When the SYS NMI (System NMI) signal is received

latches 20 and 22 are set by successive mid-cycle transi
tions of the clock signal. In effect the SYS NMI gener
ates an NMI SYNC2 signal delayed two clock cycles
from the SYS NMI transition. The purpose is to sync

5,307,482
5

the override controller with cycles in processor 202.
The transition of SYS NMI from low to high also ena
bles AND gates 24 and 26. Since the TERM signal is
high, CPU NMI signal goes high via AND 24 and OR
28. CPU NMI signal is passed back to processor 202
which calls the NMI routine by generating a memory
code fetch (memory code read cycle).
A memory code fetch consists of the presence of four

signals from processor 202 on local control bus 424
(FIG.1). The four signals are MIO (memory input/out
put), ADS (Address Strobe), WR (Write/Read), and
DC (data/code). These are standard signals specified
and defined in the Intel 486 DX Microprocessor Data
Book, June 1991, (Intel Order 240440-004) for Intel 486
processor chips manufactured by Intel Corporation.
The memory fetch code condition is used to trigger

the override, the NMI LBA, and the NMI ROM signals
by setting latches 30, 32 and 34, respectively. The latch
30 is set by AND 36 via OR 38. AND 36 is satisfied by
override being high (override is active when override
signal is low due to inverter 31), SYS NMI being high,
NMI SYNC2 being high, the ADS strobe pulsing low
(due to inverter 40) while MIO, inverted WR, inverted
DC are high. In effect, AND 36 will generate a pulse
indicating a memory read request from processor 202
when an override does not already exist and a SYSNMI
has occurred. Once the override latch 30 is set, the low
OVERRIDE signal is fed back from inverter 31 to
AND 36 to inhibit the AND during the override opera
tion. The high OVERRIDE signal is fed back to AND
42 and effective holds override latch 30 high until the
TERM signal goes low. The TERM signal goes low
when the system specific NMI routine is completed.

Latch 32 generates both the NMI LBA signal (in
verted latch output) and the NMI ADR signal. Latch
32 is set by AND 44 which is satisfied by the memory
read or fetch code occurring after the override latch 30
is set. Latch 32 is reset during the next clock cycle when
the read fetch code is absent (the output of AND 44 is
low). The NMI ADR signal occurring once each mem
ory read code is used to increment the address for the
NMI error trace routine as will be described below in
reference to FIG. 6.
The NMI ROM latch 34 is set by AND 44 via OR 46.

However, latch 34 is not reset during the next clock
cycle since AND 48 is held high by the ADS signal
being ANDed with TERM and the set condition on
override latch 30. Ultimately, when the TERM signal
drops at completion of the system specific NMI routine,
AND 48 goes low and latch 34 is set low. The NMI
ROM signal, which is active low during override, then
goes high.

In FIG. 6, the NMI ROM address override logic 12
(FIG. 3) is shown in detail. It comprises four address
buffer registers and a counter. Buffer registers 50 and 52
are the address registers for the override operation; i.e.,
the system specific NMI routine address registers. Their
output enabled or inhibited by NMI ROM signal. As
shown in FIG. 5, NMI ROM signal is low during over
ride. When NMI ROM is low, buffer registers 50 and 52
are enabled and will provide the address on address bus
14. When NMI ROM is high, buffer registers 50 and 52
are inhibited.

Buffer registers 54 and 56 provide the ROM address
when there is no override; i.e., during normal opera
tions with ROM 16 such as POST (power-on self-test).
The inverted NMI ROM signal enables registers 54 and
56 during non-override conditions and inhibits them

O

15

20

25

30

35

45

50

55

6
during override conditions. Registers 54 and 56 buffer
the addresses supplied on address bus 15.
The NMI routine addresses are generated at registers

50 and 52. Register 50 is preset to a start address for the
routine. Register 52 receives its contents from counter
58. Counter 58 is held at zero during normal or non
override conditions by the inverted OVERRIDE signal
from inverter 60. During override, the inverted OVER
RIDE signal enables the counter to be incremented by
each pulse of the NMI ADR signal. There is an NMI
ADR pulse signal for each memory read or fetch code
from processor 202.
FIG. 7 is a flow diagram of the preferred embodiment

of the system specific NMI tracer routine stored in
ROM 16. In step 62 the tracer routine provides align
ment NOP (No Operation) commands back to proces
sor 202. This is necessary to align address requests from
processor 202 with the start address of the system spe
cific NMI routine. The commands from the tracer rou
tine are returned from ROM 16 to processor 202 for
execution over the data bus 420 via buffers 414 and 408.
Normally, the width of this data bus is a multiple of an
addressable unit of storage (usually one byte). However
for higher performance, processor 202 in the preferred
embodiment uses a four or more byte wide local data
bus 420. When this occurs, the low order address bits
are used for byte addressing internally, and the low
order address lines are not present on the local address
bus 422. This introduces the concept of a transferable
unit where a memory fetch will result in a return of four
or more bytes (a transferable unit) rather than one byte.
When the processor 202 requests stored program

commands or instructions from the memory control
unit 256, the processor 202 optimizes the request. This
request will be for a transferable unit. One way to ad
dress this transferable unit is to truncate the two low
order address bits when the local.data bus 420 is four
bytes wide.
To illustrate the need for alignment of requests with

commands, assume a programmer places a program at
location 3 (see TABLE 1 below) in processor memory
308 (FIG. 2). When the processor 202 requests the in
structions at that address, it computes the local address
bus 422 address of location 3. The local address bus 422
address for location 3 is 0 (TABLE 2). What the proces
sor receives is the data for locations 0 through 3 in
TABLE 1. In effect, processor 202 sees the bytes ad
dressed as shown in TABLE 2 below.

TABLE 1.
O
l
2
3. START OF PROGRAM 999
4. PROGRAM
5 PROGRAM
6 END OF PROGRAM 999
7
8
9
A
B

TABLE 2
PROCESSOR'S VIEW OF MEMORY LOCATIONS

0 THROUGHB

O CONTAINS BYTES 3, 2, 1, 0
4 CONTAINS BYTES 7, 6, 5, 4

5,307,482
7

TABLE 2-continued
PROCESSOR'S VIEW OF MEMORY LOCATIONS

O THROUGH B

8 CONTAINS BYTES B, A, 9, 8 .

Without prior knowledge of every programmers
code, it is not possible to determine which of the four
bytes transferred is the starting address of the program.
However, based on the actions of the processor when
transferring control to the program, a transferable unit
address can be determined. Therefore, a method to
align program address with requests from the processor
202 is required. The solution is to make all four bytes of
data in the first request for instructions a one byte NOP
instruction that does nothing. -

Referring to TABLE 3 below, assume that the pro
gram 999 in TABLE 1 is the existing operating system
NMI routine. When the hardware logic is triggered by
a system NMI event, the processor 202 attempts to start
executing the program 999 at location 3 in memory 308
(FIG. 2). However, when the processor requests mem
ory 308 location 0, the override controller 10 and over
ride logic 12 convert that request to an address in ROM
16 in firmware subsystem 242. The address 3 is NOT
transmitted on the local address bus 422; only the trans
ferable unit address 0 is available. The firmware returns
the four bytes of NOPs. Correct execution occurs as a
NOP is a valid instruction. The processor 202 continues
to fetch program instructions or commands sequen
tially, and the system NMI specific routine in ROM 16
begins execution.

TABLE 3
NOP
NOP
NOP
NOP
START OF NMI ROUTINE
NMI TRACER ROUTINE
END OF NMI ROUTINE

In FIG. 7 after the alignment NOP's, step 64 of the
NMI tracer routine saves the contents of the general
working registers of the system to a stack reserved for
processor 202. (A stack is a reserved area in memory
that is used by certain processor 202 operations.) The
contents of the general registers must be saved in order
to restore the system after the NMI routine is com
pleted. The NMI tracer routine will use the general
registers during execution of the tracer routines. Step 66
of the NMI routine, after completion of the tracer rou
tines, reads the saved contents of general registers from
the stack and restores those contents back to the general
registers.

Step 68 in FIG. 7 comprises multiple fault tracing
routines. The fault tracing routines would be designed
to trace faults in functions where the functions are new
to the system or where the functions are old but new
error recording capability has been added to assist diag
nosing errors in the old function. These new fault trace
routines would not be in the standard NMI routine and
could have applicability to one or more systems. In
other words, the routines in step 68, and therefore the

10

15

20

25

30

35

45

50

55

65

8
system specific NMI routine, may be designed for one
specific system or multiple specific systems.
The function of the fault trace routines is to retrieve

error data from the device or devices generating an
NMI and storing that error data in NVRAM 248 (FIG.
2). Each of the fault tracing routines is similar in struc
ture; a portion of the fault trace routine illustrating three
examples of error data retrieval is shown in FIG. 8.

In step 72 of FIG. 8, the trace routine reads the error
register in memory control unit 256. If memory control
unit 256 had generated the NMI, it will have written
error data to its error register. The error data would
contain information about the error or fault that oc
curred in the memory system. In step 74 the memory
error data read in step 72 is written into NVRAM 248
(FIG. 2). The memory error data is held in NVRAM
for later use by a diagnostic routine.

Steps 76 and 78, and steps 80 and 82 operate in the
same manner as steps 72 and 74 just described. Steps 76
an 78 transfer bus error data from the error register in
bus control 214 to NVRAM 248. Steps 80 and 82 trans
fer cache error data from the error register in cache
controller 206 to NVRAM 248. Any number of other
device error registers could be similarly read and have
their error data transferred to NVRAM by the system
specific fault trace routines.

After the fault trace routines have been completed
and step 66 has restored the general registers in the
system, step 70 sets the term bit. Processor 202 in exe
cuting step 70 sends the term bit over the data bus 420
through buffer 408 to memory control unit 256. The
term bit sets a predetermined bit position in a register in
the memory control unit. When this bit position is set,
memory control unit 256 generates the termination
(TERM) signal which is sent to the override controller
10. Override controller drops the OVERRIDE signal
and sends the CPU NMI signal back to processor 202.
Processor 202 then fetches the generalized NMI routine
in memory 308 through memory control unit 256. Thus,
the system specific NMI routine has been executed and
the operation has been transparent to the processor and
in addition to the generalized NMI routine provided by
the operating system.
While a preferred embodiment of the invention has

been shown and described, it will be appreciated by one
skilled in the art, that a number of further variations or
modifications may be made without departing from the
spirit and scope of my invention.
What is claimed is:
1. In a computing system having a processor, means

for generating non-maskable interrupts (NMI's), the
processor responsive to an NMI for generating a fetch
code for fetching an existing NMI fault tracing routine
for use by the processor, apparatus responsive to NMI's
for adding system specific NMI routines to the system
wherein the system specific NMI routines are fault
tracing routines for new function or new hardware in
the system or for enhancement of the fault tracing capa
bility of the existing fault tracing routine, said apparatus
comprising:

first means for storing the existing NMI routine;
second means for storing the system specific NMI

routine;
address logic means for generating addresses to fetch

the system specific NMI routine from said second
storing means;

override control means responsive to an NMI for
controlling said first storing means to ignore fetch

5,307,482
codes from the processor and for invoking said
address logic means;

said address logic means responsive to said override
control means and to fetch codes from said proces
sor for generating the address in said second stor
ing means for fetching and passing the system spe
cific NMI routine to the processor whereby the
processor executes the system specific NMI rou
tine. m

2. The apparatus of claim 1 wherein the processor
sets a terminations signal when completing the system
specific NMI routine and in addition:

said override control means responsive to the termi
nation signal for terminating control of said first
storing means; and

said processor addressing and executing the existing
NMI routine in said first storing means.

3. The apparatus of claim 1 wherein said override
control means comprises:
means responsive to an NMI for generating an over

ride signal;
means responsive to the override signal for setting a
predetermined start address for the system specific
NMI routine and for incrementing the address each
time a fetch code is received from the processor.

4. The apparatus of claim 3 and in addition:
executing means in the processor traces system spe

cific faults during execution of the system specific
NMI routine.

5. The apparatus of claim 4 wherein said executing
means further comprises:
means for aligning memory fetch requests from the

processor with stored instructions of the NMI rou
tine.

6. The apparatus of claim 5 wherein the computing
system has general registers and said executing means
further comprises:
means for saving the contents of system general regis

ters before execution of the fault tracing instruc
tions; and

means for restoring the contents of the system general
registers after execution of the fault tracing instruc
tions.

7. The apparatus of claim 5 wherein the processor
sets a termination signal when completing the system
specific NMI routine and in addition:

said override control means responsive to the termi
nation signal for terminating control of said first
storing means; and

said processor addressing and executing the existing
NMI routine in said first storing means.

8. In a computing system a method for inserting a
new non-maskable interrupt (NMI) routine in existing
NMI routines without altering the existing NMI rou
tines, said existing NMI routine for tracing faults in
existing features in the computing system and said new
NMI routine for tracing faults in added or enhanced
features in the computing system, said method compris
ing the steps of:

detecting a system NMI indicating a fault in the sys
tem including added or enhanced features in the
system;

inhibiting addressing of the existing NMI routine;
generating an address to fetch the new NMI routine

in place of the existing NMI routine;
executing the new NMI routine to trace a fault in the
added or enhanced features;

10

15

20

25

30

35

45

50

55

60

10
setting a termination signal indicating the termination

of the new NMI routine;
in response to the termination signal stopping said

inhibiting and generating steps and thereby fetch
ing the existing NMI routine; and

executing the existing NMI routine to trace a fault in
the system features other than the added or en
hanced features,

9. The method of claim 8 wherein said executing step
issues fetch requests for steps in the NMI routines and
said generating step comprises:

selecting a preset address for the first address of the
new NMI routine;

incrementing the new NMI routine address in re
sponse to each fetch request by said executing step
during execution of the new NMI routine.

10. The method of claim 9 wherein said generating
step further comprises the step of:

aligning the executing step fetch requests to the
stored location of instructions in the new NMI
routine.

11. The method of claim 9 wherein said executing
step, when executing new NMI routines, comprises:

executing fault tracing routines associated with the
added or enhanced feature;

each fault tracing routine transferring error data from
error registers, associated with the added or en
hanced feature, to non-volatile storage.

12. The method of claim 11 wherein said executing
step further comprises the steps of:

saving the state of general registers in the computing
system prior to execution of the fault trace rou
tines;

restoring the state of the system general registers
after the execution of the fault trace routines.

13. The method of claim 8 wherein said executing
step comprises:

executing fault tracing routines;
each fault tracing routine transferring error data from

error registers, to non-volatile storage.
14. The method of claim 13 wherein said executing

step further comprises the steps of:
saving the state of general registers in the computing

system prior to execution of the fault trace rou
tines;

restoring the state of the system general registers
after the execution of the fault trace routines.

15. Apparatus for adding a system specific NMI rou
tine to an operating system NMI routine in a computing
system, said computing system having a processor,
memory, input/output devices, and an operating sys
tem, said operating system NMI routine being provided
by the operating system and being used to trace faults in
existing features of the computing system, said system
specific NMI routine for tracing faults in features added
to the computing system, and said computing system
generating system NMI's in response to faults in existing
or added features of the computing system, said appara
tus comprising:
means for detecting a system NMI;
memory control means for controlling storage and

retrieval of the operating system NMI routine in
memory;

firmware subsystem means for storing the system
specific NMI routine in non-volatile storage;

override control means responsive to the detected
system NMI for generating a memory control sig
nal and an override control signal;

5,307,482
11

said memory control means in response to said mem
ory control signal ignoring requests from the pro
cessor for commands from the operating system
NMI routine;

address logic means responsive to the override con
trol signal and to requests from the processor for
commands from the operating system NMI routine
for generating an address to retrieve commands
from the system specific NMI routine from said
firmware subsystem means;

means including said processor for executing said
system specific NMI routine command and for
fetching the next command from the system spe
cific NMI routine through said address logic
means;

means in response to a last command from the system
specific NMI routine for terminating the override
control signal and the memory control signal
whereby said address logic means no longer gener
ates addresses for the system specific NMI routine
and said memory control means in response to
requests from the processor retrieves commands in
the operating system NMI routine from memory.

16. The apparatus of claim 15 wherein:
said override control means responsive to the over

ride control signal and requests for NMI com
mands from said processor for converting a first
request to a start system specific NMI signal and
for converting subsequent requests to an NME ad
dress increment signal;

said address logic means responsive to the override
control signal and the start signal from said over
ride control means for setting the generated ad
dress to the start address of the system specific
NMI routine in the firmware subsystem means;

5

O

5

20

25

30

35

40

45

50

55

65

12
said address logic means responsive to override con

trol signal and the increment signal for increment
ing addresses of the system specific NMI routine in
the firmware subsystem means.

17. The apparatus of claim 16 wherein said means for
executing comprises:
means for executing fault tracing routines;
means for storing the results of the fault tracing rou

tines.
18. The apparatus of claim 17 wherein said comput

ing system has system registers and said means for exe
cuting further comprises:
means for saving the contents of system registers in
memory prior to the execution of the fault tracing
routines;

means for reading the saved contents of system regis
ters from memory and restoring such contents to
the system registers after execution of the fault
tracing routines.

19. The apparatus of claim 18 wherein said means for
executing further comprises:
means for aligning address requests from the proces

sor with addresses of the NMI routines.
20. The apparatus of claim 18 wherein said terminat

ing means comprises:
means responsive to a last command in the system

specific NMI routine for generating a termination
signal;

said override control means in response to said termi
nation signal terminates the override control signal
and the memory control signal, and generates a
CPUNMI signal, said processor in response to the
CPU NMI signal requests commands from the
operating system NMI routine in memory.

