
IHIIIHIIIHIIIHIII
U USOO52553.74A
nited States Patent (19) 11 Patent Number: 5,255,374

Aldereguia et al. 45 Date of Patent: Oct. 19, 1993

(54) BUS INTERFACE LOGIC FOR COMPUTER 5,148,539 9/1992 Enomoto et al. 395/425
SYSTEM HAVING DUAL BUS Primary Examiner-Debra A. Chun
ARCHITECTURE Attorney, Agent, or Firm-Stephen A. Terrile; John A.

75) Inventors: Alfredo Aldereguia; Nader Amini, Kastelic
both of Boca Raton; Richard L.
Horne, Boynton Beach; Terence J. (57) ABSTRACT
Lohman; Cang N. Tran, both of Boca A computer system is provided, comprising system
Raton, all of Fla. memory and a memory controller for controlling access

to system memory, a central processing unit electrically
73) Assignee: International Business Machines connected with the memory controller, and a bus inter Corporation, Armonk, N.Y. face unit electrically connected to the memory control
21 Appl. No.: 816,203 ler by a system bus and electrically connected to an
(22 Filed: Jan. 2, 1992 input/output device by an input/output bus. The bus

interface unit includes translation logic for temporarily
(51) int. Cl. .. G06F 13/14 storing, in response to a predetermined set of operating
52) U.S. C. 395/325; 364/DIG. l; conditions, data transferred between the system bus and

364/239. 1; 364/239,7; 364/240.2; 364/240.3; the input/output bus through the bus interface unit. The
a 364/242.92 predetermined set of operating conditions occur when

58) Field of Search 395/275, 325,725, 250 (i) the memory controller on behalf of the central pro
56) References Cited cessing unit writes data to the input/output device, or

U.S. PATENT DOCUMENTS (ii) the memory controller on behalf of the central pro
- Y - cessing unit initiates a read or write cycle destined for

: 33 B. e - - - - - - - - - - - - - a - - - i the input/output device acting as a slave on the input
ww- etjen et al. Y- ti r

4,703,420 O987 Irwin 36.700 El bus, and the al bus width A. E"
4,766,538 8/1988 Miyoshi............ is controller is greater than a corresponding data bus
4,831.520 5/1989 Rubinfeld et al. .gs is width of the input/output device.
5,003,463 3/1991 Coyle et al. 395/275
5,003,465 3/99) Chisholm et al. 395/275 14 Claims, 6 Drawing Sheets

42 56 54 4.
- - 10

: CACHE - A CONTRC SRay CP
-- 52 54 - 52

44 ---

3.gif| is 3. CONTRO Bue FP
-22 45 Y-48 - 4

'cos or gas.

vior
CONTROLLER

U.S. Patent Oct. 19, 1993 Sheet 1 of 6 5,255,374

5 42

CACHE
CONTROL FIG.

FREQUENCY
CONTROL

CONT

12

O

FCON MEMORY ADDR cosicer DRIVERHS
58 68 3

66

DATA BUFFER
82 ECC
80

- BUS PA INTERACE ADDR Buf UNIT CONT
/ 74

76 64
DEVICES

CONT

CONTROLLER

62-CACP

U.S. Patent Oct. 19, 1993 Sheet 2 of 6 5,255,374

SYSTEM BUS
TO I/O BUS
TRANSLATION

LOGIC
DRIVER /
RECEIVER

DRIVER /
RECEIVER

- SYSTEM / MEMORY ADDRESS I/O -
COMPARE LOGIC BUS n BUS
ERROR RECOVER

SUPPORT LOGIC a
CACHE

SNOOPNG 08
LOGIC 4

- -
118 SYSTEM BUS 120

ADDRESS EXPECTED ADDR.
GENERATION GENERATION

CIRCUIT CIRCUIT

10 BUS
SLAVE

INTERFACE

SYSTEM BUS
CONTROLLER
INTERFACE

BUS TO BUS
PACING

CONTROL LOGIC

5,255,374 Sheet 3 of 6 Oct. 19, 1993 U.S. Patent

U.S. Patent Oct. 19, 1993 Sheet 5 of 6 5,255,374

TFCM
TFCM TFCM TEOT s TMC
L II I I I II s

TARB ARB
TGNT

FIG. 5

TR / TfcM TMC
TGNT

tes l TGNT

FIG. 6

U.S. Patent Oct. 19, 1993 Sheet 6 of 6 5,255,374

TRANSFER SIZE SLAVE DEVICE SIZE
NUMBER OF BYTE(S) 8-Bit 16-Bit 32-BIT

s-BIE I C B B
4-BYTE I C B B

A. CYCLE IS POSTED
B. CYCLE IS POSTED IF SLAVE DEVICE

HAS A 16 OR 32 BIT DATA BUS WITH.
C. CYCLE IS NOT POSTED

FIG.7

5,255,374
1

BUS INTERFACE LOGIC FOR COMPUTER
SYSTEM HAVING DUAL BUS ARCHITECTURE

RELATED APPLICATIONS
The following U.S. patent applications are incorpo

rated herein by reference as if they had been fully set
Out:
Application Ser. No. 815992 Filed Jan. 2, 1992 Entitled
"BUS CONTROL LOGIC FOR COMPUTER
SYSTEM HAVING DUAL BUS ARCHITEC
TURE" (Further identified as Attorney Docket BC9
91-089)

Application Ser. No. 816116 Filed Jan. 2, 1992 Entitled
"ARBITRATION MECHANISM” (Further identi
fied as Attorney Docket BC9-91-090)

Application Ser. No. 816184 Filed Jan. 2, 1992 Entitled
"PARTY ERROR DETECTION AND RECOV
ERY" (Further identified as Attorney Docket BC9
91-091)

Application Ser. No. 816204 Filed Jan. 2, 1992 Entitled
"CACHESNOOPING AND DATA INVALIDA
TION TECHNIQUE" (Further identified as Attor
ney Docket BC9-91-092)

Application Ser. No. 816691 Filed Jan. 2, 1992 Entitled
“BIDIRECTIONAL DATA STORAGE FACIL
ITY FOR BUS INTERFACE UNIT" (Further
identified as Attorney Docket BC9-91-105)

Application Ser. No. 816693 Filed Jan. 2, 1992 Entitled
"BUS INTERFACE FOR CONTROLLING
SPEED OF BUS OPERATION" (Further identified
as Attorney Docket BC9-9-106)

Application Ser. No. 816698 Filed Jan. 2, 1992 Entitled
METHOD AND APPARATUS FOR DETER
MINING ADDRESS LOCATION AT BUS TO
BUS INTERFACE" (Further identified as Attorney
Docket BC9-91-107)
BACKGROUND OF THE INVENTION

The present invention relates to bus to bus interfaces
in computer systems, and more particularly to a bus to
bus interface for synchronizing operation of buses in the
system to compensate for devices which communicate
to each other at different rates and over different data
transfer bandwidths.

Generally in computer systems and especially in per
sonal computer systems, data is transferred between
various system devices such as a central processing unit
(CPU), memory devices, and direct memory access
(DMA) controllers. In addition, data is transferred be
tween expansion elements such as input/output (I/O)
devices, and between these I/O devices and the various
system devices. The I/O devices and the system devices
communicate with and amongst each other over com
puter buses, which comprise a series of conductors
along which information is transmitted from any of
several sources to any of several destinations. Many of
the systern devices and the I/O devices are capable of
serving as bus controllers (i.e., devices which can con
trol the computer system) and bus slaves (i.e., elements
which are controlled by bus controllers).

Personal computer systems having more than one bus
are known. Typically, a local bus is provided over
which the CPU communicates with cache memory or a
memory controller, and a system I/O bus is provided
over which systern bus devices such as the DMA con
troller, or the IAO devices, communicate with the sys
term memory via the memory controller. The system

10

15

20

25

30

35

40

45

50

55

50

65

2
I/O bus comprises a system bus and an IAO bus con
nected by a bus interface unit. The I/O devices commu
nicate with one another over the I/O bus. The I/O
devices are also typically required to communicate with
system bus devices such as system memory. Such com
munications must travel over both the I/O bus and the
system bus through the bus interface unit.

System devices and I/O devices in dual bus architec
ture computer systems often communicate with each
other at different rates and over different data transfer
bandwidths. For example, whereas system devices may
communicate over the system bus at a 32-bit data bus
width, I/O devices may communicate over the I/O bus
at 8-bit, 16-bit, or 32-bit data bus widths. Hence, overall
system performance suffers when a system device, in
control of both the system and I/O buses, either reads
from or writes to a slower I/O device. This is com
pounded by 16-bit transactions to 8-bit I/O slaves and
32-bit transactions to 16-bit and 8-bit I/O slaves. In the
case of write cycles, a system device must retain control
of the system bus, for a time greater than that necessary
to write data over the system bus, while the data is
being written to the slower I/O device. In the case of
read cycles, the slower I/O device cannot provide data
to the system device over the I/O bus as fast as it can be
read from the I/O device by the system device.

It is an object of the present invention, then, to pro
vide a bus interface unit in a dual bus architecture com
puter system which provides the translation logic re
quired for synchronizing operation of the system bus
and the I/O bus to compensate for devices which com
municate to each other at different rates and over differ
ent data transfer bandwidths.

SUMMARY OF THE INVENTION

The present invention provides translation logic for a
bus interface unit in a dual architecture computer sys
tem. The translation logic is implemented by algorithms
which are built into the hardware of the bus interface
unit, which resides intermediate a system bus and an
I/O bus in the computer system. The translation logic in
the bus interface unit improves the performance of the
computer system by synchronizing operation of the
system bus and the IAO bus. Synchronization of the
buses compensates for system bus devices and input
/output devices which communicate to each other at
different rates and over different data transfer band
widths.
The translation logic operates under two conditions.

The first condition occurs when a fast system device is
writing data to a slower I/O device. Because system
devices write data over the system bus at faster rates
than most I/O devices, the slower I/O devices cannot
accept the data as fast as the system device writes it to
them. Thus, the present invention provides a buffer
wherein data written from the faster system device to
the slower I/O device may be temporarily stored. In
this manner, write data which has been stored (or
posted) in the buffer frees the system bus for subsequent
operations even though all of the write data has not yet
been written to the IAO device over the IAO bus.
The second condition under which the translation

logic operates occurs when a system device in control
of the systern bus desires to initiate a read or write cycle
destined for an I/O device acting as a slave on the /O
bus, and the data bus width of the system device is
greater than the data bus width of the IAO device. Typi

5,255,374
3

cally, the data bus width of the systern device is 32-bits,
which is supported on both the system bus side and the
I/O bus side of the bus interface unit, and the data bus
width of the I/O device is 8-bits, 16-bits, or 32-bits. A
system device communicating over the system bus to an
8-bit or 16-bit I/O device on the I/O bus must wait for
the I/O device to receive a complete read or write
request before the system device may relinquish control
of the system bus. Hence, data from a 32-bit data bus
width system device which is destined to be read by or
written to a 8-bit I/O device is temporarily stored in a
buffer in the translation logic. The buffer in the pre
ferred embodiment has the capacity to hold thirty-two
bits of data and address. The translation logic provides
the means to convert single 32-bit read and write cycles
initiated on the system bus to four 8-bit or two 16-bit
cycles or single 16-bit reads and write cycles to two
8-bit cycles and allows posted write cycles to occur
without impeding time critical bus activity, such as
refresh.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer
system incorporating a bus interface unit constructed
according to the principles of the present invention;

FIG. 2 is a schematic block diagram of the bus inter
face unit of the computer system of FIG. 1;
FIG. 3 is a schematic block diagram of the FIFO

buffer of the bus interface unit of FIG. 2;
FIG. 4 is a timing diagram illustrating the operational

cycles of the CACP circuit of FIG. 1;
FIGS. 5 and 6 are timing diagrams resulting from the

operation of the translation logic of FIG. 2;
FIG. 7 is a table listing the conditions under which to

post cycles.
DETAILED DESCRIPTION OF THE

PREFERRED EMBODIMENT
Referring first to FIG. 1, a computer system shown

generally at 10 comprises system board 12 and proces
sor complex 14. Processor complex includes processor
portion 16 and base portion 18 connected at processor
local bus 20 via local bus connector 22. Processor por
tion 16 operates at 50 MHz and base portion 18 operates
at 40 MHz.

System board 12 includes interleaved system memo
ries 24 and 26 and input/output (I/O) devices 28. Com
munications between memories 24 and 26 and processor
complex 14 are handled by memory bus 30, and commu
nications between I/O devices 28 and processor com
plex 14 are carried by I/O bus 32. Communications
between I/O devices and memories 24 and 26 are han
dled by I/O bus 32, system bus 76 and memory bus 30.
I/O bus 32 may conform to MICRO CHANNEL (R)
computer architecture. Memory bus 30 and I/O bus 32
are connected to processor complex base portion 18 via
processor complex connector 34, I/O devices such as
memory expansion devices may be connected to the
computer system 10 via I/O bus 32. System board 12
may also include conventional video circuitry, timing
circuitry, keyboard control circuitry and interrupt cir
cuitry (none of which are shown) which may be used by
computer system 10 during normal operation.

Processor portion 16 of processor complex 14 in
cludes central processing unit (CPU) 38 which, in the
preferred embodiment, is a 32-bit microprocessor avail
able from Intel, Inc. under the trade designation i486.
Processor portion 16 also includes static random access

5

10

15

25

30

35

45

50

55

4.
memory (SRAM) 40, cache control module 42, fre
quency control module 44, address buffer 46 and data
buffer 48. Local bus 20 comprises data information path
50, address information path 52 and control information
path 54. Data information paths 50 are provided be
tween CPU 38, SRAM 40 and data buffer 48. Address
information paths 52 are provided between CPU 38,
cache control module 42 and address buffer 46. Control
information paths 54 are provided between CPU 38,
cache control module 42 and frequency control module
44. Additionally, address and control information paths
are provided between cache control module 42 and
SRAM 40.
SRAM 40 provides a cache function by storing in

short term memory information from either system
memories 24 or 26 or from expansion memory which is
located on an 1/O device 28. Cache control module 42
incorporates random access memory (RAM) 56 which
stores address locations of memories 24 and 26. CPU 38
may access information cached in SRAM 40 directly
over the local bus 20. Frequency control module 44
synchronizes operation of the 50 Mhz processor portion
16 with the 40 Mhz base portion 18 and also controls
the operation of buffers 46 and 48. Accordingly, fre
quency control module 44 determines the times at
which information is captured by buffers 46 and 48 or
the times at which information that is stored in these
buffers is overwritten. Buffers 46 and 48 are configured
to allow two writes from memories 24 and 26 to be
stored simultaneously therein. Buffers 46 and 48 are
bi-directional, i.e., they are capable of latching informa
tion which is provided by the CPU 38 and information
which is provided to the CPU. Because buffers 46 and
48 are bi-directional, processor portion 16 of the proces
sor complex 14 may be replaced or upgraded while
maintaining a standard base portion 18.

Base portion 18 includes memory controller 58, di
rect memory access (DMA) controller 60, central arbi
tration control point (CACP) circuit 62, bus interface
unit 64 and buffer/error correction code (ECC) circuit
66. Base portion 18 also includes driver circuit 68, read
only memory (ROM) 70, self test circuit 72 and buffer
74. System bus 76 comprises a data information path 78,
and address information path 80 and a control informa
tion path 82. The data information path connects buffer
74 with bus interface unit 64; bus interface unit 64 with
DMA controller 60 and buffer/ECC circuit 66; and
buffer/ECC circuit 66 with system memories 24 and 26.
The address information path and the control informa
tion path each connect memory controller 58 with
DMA controller 60 and bus interface unit 64; and bus
interface unit 64 with buffer 74.
Memory controller 58 resides on both CPU local bus

20 and system bus 76, and provides the CPU 38, the
DMA controller 60 or bus interface unit 64 (on behalf of
an I/O device 28) with access to system memories 24
and 26 via memory bus 30. The memory controller 58
initiates system memory cycles to system memories 24
and 26 over the memory bus 30. During a system mem
ory cycle, either the CPU 38, the DMA controller 60 or
bus interface unit 64 (on behalf of an IAO device 28) has
access to system memories 24 and 26 via memory con
troller 58. The CPU 38 communicates to system mem
ory via local bus 20, memory controller 58 and memory
bus 30, while the DMA controller 60 or bus interface
unit 64 (on behalf of an IAO device 28) access system
memory via system bus 76, memory controller 58 and
memory bus 30.

5,255,374
5

For CPU 38 to I/O bus 32 read or write cycles, ad
dress information is checked against system memory
address boundaries. If the address information corre
sponds to an I/O expansion memory address or I/O
port address, then memory controller 58 initiates an I/O
memory cycle or I/O port cycle with an IAO device 28
(via bus interface unit 64) over the I/O bus 32. During
a CPU to I/O memory cycle or I/O port cycle, the
address which is provided to memory controller 58 is
transmitted from system bus 76 to I/O bus 32 via bus
interface unit 64 which resides intermediate these two
buses. The I/O device 28 which includes the expansion
memory to which the address corresponds receives the
memory address from I/O bus 32. DMA controller 60
and the bus interface unit 64 control the interchange of
information between system memories 24 and 26 and
expansion memory which is incorporated into an I/O
device 28, DMA controller 60 also provides three func
tions on behalf of processor complex 14. First, the
DMA controller 60 utilizes a small computer subsystem
control block (SCB) architecture to configure DMA
channels, thus avoiding the necessity of using pro
grammed I/O to configure the DMA channels. Second,
DMA controller provides a buffering function to opti
nize transfers between slow memory expansion devices
and the typically faster system memory. Third, DMA
controller 60 provides an eight channel, 32-bit, direct
system memory access function. When providing the
direct system memory access function, DMA controller
60 may function in either of two modes. In a first mode,
DMA controller 60 functions in a programmed I/O
mode in which the DMA controller is functionally a
slave to the CPU 38. In a second mode, DMA control
ler 60 itself functions as a system bus master, in which
DMA controller 60 arbitrates for and controls I/O bus
32. During this second mode, DMA controller 60 uses a
first in, first out (FIFO) register circuit.
CACP circuit 62 functions as the arbiter for the

DMA controller, I/O device bus controllers and the
CPU (if accessing I/O devices). CACP circuit 62 re
ceives arbitration control signals from DMA controller
60, memory controller 58 as well as from I/O devices,
and determines which devices may control the I/O bus
32 and the length of time during which the particular
device will retain control of the I/O bus.

Driver circuit 68 provides control information and
address information from memory controller 58 to sys
ten memories 24 and 26. Driver circuit 68 drives this
information based upon the number of single in-line
memory modules (SIMMs) which are used to construct
system memories 24 and 26. Thus, driver circuit 68
varifs the signal intensity of the control and address
information which is provided to system memories 24
and 26 based upon the size of these memories.

Buffer circuit 74 provides amplification and isolation
between processor complex base portion 18 and system
board 12. Buffer circuit 74 utilizes buffers which permit
the capture of boundary information between I/O bus
32 and bus interface unit 64 in real time. Accordingly, if
computer system 10 experiences a failure condition,
buffer circuit 74 may be accessed by a computer repair
person to determine the information which was present
at connector 34 upon failure of the system.
ROM 70 configures the system 10 upon power-up by

initially placing in system memory data from expansion
memory. Self test circuit 72, which is connected to a
plurality of locations within base portion 18, provides a
plurality of self test features. Self test circuit 72 accesses

5

10

15

30

35

45

50

55

60

65

6
buffer circuit 74 to determine if failure conditions exist,
and also tests the other major components of base por
tion 18 upon power-up of the system 10 to determine
whether the system is ready for operation.

Referring to FIG. 2, a schematic block diagram of the
bus interface unit 64 of the system of FIG. 1 is shown.
Bus interface unit 64 provides the basis for implementa
tion of the present invention by providing a bi-direc
tional high speed interface between system bus 76 and
IAO bus 32.

Bus interface unit 64 includes system bus driver/-
receiver circuit 102, IAO bus driver/receiver circuit 104
and control logic circuits electrically connected there
between. Driver/receiver circuit 102 includes steering
logic which directs signals received from the system bus
76 to the appropriate bus interface unit control logic
circuit and receives signals from the bus interface unit
control logic circuits and directs the signals to the sys
ten bus 76. AO bus driver/receiver circuit 104 includes
steering logic which directs signals received from the
I/O bus 32 to the appropriate bus interface unit control
logic circuit and receives signals from the bus interface
unit control logic circuits and directs the signals to the
AO bus 32.
The bus interface unit control logic circuits include

system bus to I/O bus translation logic 106, I/O bus to
system bus translation logic 108, memory address com
pare logic 110, error recovery support logic 112, and
cache snooping logic 114. Programmed I/O circuit 116
is also electrically coupled to system driver/receiver
circuit 102.
The system bus to I/O bus translation logic 106 pro

vides the means required for the DMA controller 60 or
the memory controller 58 (on behalf of CPU 38) to act
as a system bus controller to access the I/O bus 32 and
thereby communicate with I/O devices 28 acting as
slave devices on the I/O bus. Translation logic 106
translates the control, address and data lines of the sys
ten bus 76 into similar lines on the I/O bus 32. Most
control signals and all address signals flow from the
system bus 76 to the I/O bus 32 while data information
flow is bi-directional. The logic which acts as system
bus slave monitors the system bus 76 and detects cycles
which are intended for the IAO bus 32. Upon detection
of such a cycle, the system bus slave translates the tim
ing of signals on the system bus to I/O bus timing, initi
ates the cycle on the IAO bus 32, waits for the cycle to
be completed, and terminates the cycle on the system
bus 76.
The IAO bus to system bus translation logic 108 com

prises system bus address generation circuit 118, I/O
bus expected address generation circuit 120, system bus
controller interface 122, FIFO buffer 124, I/O bus slave
interface 126 and bus to bus pacing control logic 128.
System bus controller interface 122 supports a high
performance 32 bit (4 byte) i486 burst protocol operat
ing at 40 MHZ. Data transfers of four, eight and sixteen
bytes in burst mode and one to four bytes in no-burst
mode are provided. I/O bus slave interface 126 moni
tors the I/O bus 32 for operations destined for slave
devices on the system bus 76 and ignores those opera
tions destined for the I/O bus 32. All cycles picked up
by the IAO bus slave interface 126 are passed on to the
FIFO buffer 124 and the system bus controller interface
122.
The IAO bus to system bus translation logic 108 pro

vides the means required for an I/O device 28 to act as
an I/O bus controller to access system bus 76 and

5,255,374
7

thereby read or write to system memories 24 and 26. In
either of these operations, an I/O device controls the
I/O bus. The asynchronous 1/O bus interface 126, oper
ating at the speed of the I/O device, permits the bus
interface unit 64 to act as a slave to the IAO device
controller on the I/O bus 32 to decode the memory
address and determine that the read or write cycle is
destined for system memories 24 or 26. Simultaneously,
the system bus controller interface 122 permits the bus
interface unit 64 to act as a controller on the system bus
74. The memory controller 58 (FIG. 2) acts as a slave to
the bus interface unit 64, and either provides the inter
face 64 with data read from system memory or writes
data to system memory. The reads and writes to system
memory are accomplished through the FIFO buffer
124, a block diagram of which is illustrated in FIG, 3.
As shown in FIG. 3, FIFO buffer 124 is a dual ported,

asynchronous, bi-directional storage unit which pro
vides temporary storage of data information between
the system and I/O buses 76, 32. FIFO buffer 124 com
prises four sixteen-byte buffers 125A-125D and FIFO
control circuit 123. The four buffers 125A-125D buffer
data to and from I/O bus controllers and system bus
slaves, thereby allowing simultaneous operation of the
I/O bus 32 and the system bus 76. The FIFO buffer 124
is physically organized as two thirty-two byte buffers
(125A/125B and 125C/125D). The system bus control
ler interface 122 and the I/O bus slave interface 126
each control one thirty-two byte buffer while the other
thirty-two byte buffer operates transparent to them.
Both of the thirty-two byte buffers are utilized for read
and write operations.

Each FIFO 124A, 125B, 125C, 125D has an address
register section either physically associated with the
respective FIFO, or logically associated therewith. As
data is transferred from the IAO bus 32 to FIFO 125A,
the data will be accumulated until the 16 byte buffer is
filled with 16 bytes of data, provided that the addresses
are contiguous. If a non-contiguous address is detected
by the address action, the FIFO 125A will transfer the
stored data to FIFO 125C, and at the same time FIFO
125B will start to receive this data from the new non
contiguous address. FIFO 125B will continue just as
FIFO 125A did until it is filled with 16 bytes of data, or
another non-contiguous address is detected. FIFO 125B
will then transfer the stored data to FIFO 125D, and
FIFO 125A again starts to store data; thus, it is possible
to store up to four 16 byte blocks of non-contiguous
address data.

Further, by having two 32 byte buffers in parallel the
reading and writing of data can be toggled between
then thus giving an essentially continuous read or write
function.
Move over, by splitting the 32 byte buffers into two

16 bytes buffer sections which are coupled to other I/O
bus 32 or system bus 26, the number of storage buffers
can be increased with minimal impact on the perfor
mance of the FIFO as related to the capacitive loading
on signals clocking data in or out of the storage regis
ters. This is accomplished because for every two buffers
added (in parallel) only half the capacitive loading is
added to the loading of clock signals on each bus.

Additionally, by having two 16 byte buffers in series
in each leg. once one of the 16 byte buffers is filled with
data, such as in a read operation, the data can be trans
ferred to the other 16 byte buffers in series therewith,
while the other parallel leg is accumulating data. Hence,

10

15

20

25

30

40

45

50

55

65

8
there is no time lost in either accumulating data, or
transferring the data from one bus to the other.
The logic for controlling the operation of the FIFO

124 is supplied by FIFO Control Circuit 123.
A particular I/O device 28 may write to system mem

ories 24 or 26 via I/O bus in bandwidths of either 1, 2 or
4 bytes (i.e., 8, 16 or 32 bits). During writes to system
memory by an IAO device 28, the first transfer of write
data is initially stored in the FIFO buffer 125A or 125B.
The IAO bus expected address generation circuit 120
calculates the next expected, or contiguous, address.
The next contiguous address is checked against the
subsequent I/O address to verify if the subsequent trans
fers are contiguous or not. If contiguous, the second
byte or bytes of write data is sent to the same FIFO
buffer 125A or 125B. The FIFO receives data at asyn
chronous speeds of up to 40 megabytes per second from
the IAO bus 32.

This process continues until either buffer 125A or
125B is full with a 16-byte packet of information or a
non-contiguous address is detected. On the next clock
cycle, assuming that buffer 125A is full, the data in
buffer 125A is transferred to buffer 125C. Similarly,
when buffer 125B is full, all of its contents are trans
ferred to buffer 125D in a single clock cycle. The data
stored in the buffers 125C and 125D is then written to
system memory via an i486 burst transfer at the system
bus operational speed. The operation of FIFO buffer
124 during a write to system memory by an I/O device
is thus continuous, alternating between buffers 125A
and 125B, with each emptying into adjacent buffer
125C or 125D, respectively, while the other is receiving
data to be written to system memory. The FIFO buffer
124, then, optimizes the speed of data writes to system
memory by (i) anticipating the address of the next likely
byte of data to be written into memory and (ii) accom
modating the maximum speed of write data from the
FIFO buffer to system memory via the system bus 76.
During reads of data from system memory to an I/O

device 28, FIFO buffer 124 operates differently. The
system bus address generation circuit 118 uses the initial
read address to generate subsequent read addresses of
read data and accumulate data in buffer 125C or 125D.
Because the system bus supports transfers in band
widths of 16 bytes wide, the system bus controller inter
face 122 may prefetch 16-byte packets of contiguous
data and store it in buffers 125C or 125D without the
I/O bus 32 actually providing subsequent addresses,
thus reducing latency between transfers. When buffer
125C is full of prefetched data, it transfers its contents to
buffer 125A in one clock cycle. Buffer 125D similarly
empties into buffer 125B when full. The data in buffers
125A and 125B may then be read by a particular I/O
device controller in bandwidths of 1, 2 or 4 bytes. In
this way, system bus address generation circuit 118
functions as an increment counter until instructed to by
the I/O controller device to stop prefetching data.

Bus to bus pacing control logic 128 creates a faster
access to system memory for high speed I/O devices.
The bus to bus pacing control logic 128 overrides the
normal memory controller arbitration scheme of system
10 by allowing an I/O device in control of the I/O bus
32 uninterrupted access to system memory during trans
fers of data by faster devices which require multiple
cycles, rather than alternating access to the memory
controller 58 between the I/O device and the CPU,
Thus, even if a local device such as the CPU has a
pending request for control of the memory bus during a

5,255,374
multiple cycle transmission by an IAO device, the bus to
bus pacing control logic 128 will grant the I/O device
continued control of the memory bus.
The programmed I/O circuit 116 is the portion of the

bus interface unit 64 which contains all of the registers
which are programmable within the bus interface unit
64. The registers have bits associated therewith to de
termine whether a particular register is active or inac
tive. These registers define, inter alia, the system mem
ory and expansion memory address ranges to which the
bus interface unit 64 will respond, the expansion mem
ory addresses which are either cacheable or noncachea
ble, the system memory or cache address ranges, and
whether or not parity or error checking is supported by
the bus interface unit. Accordingly, programmed I/O
circuit 116 identifies for the bus interface unit 64 the
environment in which it resides, and the options to
which it is configured. The registers in programmed
I/O circuit 116 cannot be programmed directly over
the I/O bus 32. Hence, in order to program the system
10, the user must have access to an I/O device which
may communicate over the system bus to the pro
grammed I/O circuit 116 at the CPU level.
Memory address compare logic 110 determines if a

memory address corresponds to system memory or
corresponds to expansion memory which is located on
I/O device 28 coupled to the I/O bus 32. Because the
system memory as well as the expansion memory may
be in non-contiguous blocks of addresses, memory ad
dress compare logic 110 includes a plurality of compar
ators which are loaded with boundary information from
registers in the programmed I/O circuit 116 to indicate
which boundaries correspond to which memory. After
a particular memory address is compared with the
boundary information by the memory address compare
logic, the bus interface unit is prepared to react accord
ingly. For example, if an I/O device controlling the I/O
bus 32 is reading or writing to expansion memory, the
bus interface circuit need not pass that address to the
memory controller 58, thereby saving time and memory
bandwidth.

Error recovery support logic 112 permits the system
10 to continue operations even if a data parity error is
detected. On any read or write access by an I/O device
28 to system memories 24 or 26, parity of the data is
checked. Support logic 112 interacts with a register in
the programmed I/O circuit 116 for capturing the ad
dress and the time of the detected parity error. The
contents of this register may then be acted upon by
appropriate system software. For example, the CPU 38
may be programmed for a high level interrupt to pull
the address out of the register at any time a parity error
is detected. The CPU may then decide, based on the
system software instructions, whether to continue sys
ten operations or merely terminate operation of the
identified source of the parity error.
Cache snooping logic 114 permits the bus interface

unit 64 to monitor the IAO bus 32 for any writes to
expansion memory by an I/O device taking place over
the I/O bus 32. The snooping logic first determines if
the write to expansion memory occurred in expansion
memory which is cacheable in SRAM 40. If it is not
cacheable expansion memory, there is no danger of
corrupt data being cached. If, however, a positive con
pare indicates that the write occurred in cacheable ex
pansion memory, a cache invalidation cycle is initiated
over the system bus 76. The CPU is thus instructed to
invalidate the corresponding address in SRAM 40.

10

15

20

25

35

45

50

55

60

65

10
Cache snooping logic 114 provides means to store the
address of a positive compare so that snooping of the
I/O bus may continue immediately after detection of
the first positive compare, thereby permitting continu
ous monitoring of the I/O bus 32.
The present invention relates generally to the bus

interface unit 64 described above and more particularly
to the system bus to 1/O bus translation logic 106 which
is contained within the bus interface unit 64 residing
intermediate the system bus 76 and the input/output bus
32 in the computer system 10. The translation logic 106
is implemented by algorithms which are built into the
hardware of the bus interface unit 64. The translation
logic 106 in the bus interface unit 64 synchronizes oper
ation of the system bus 76 and the I/O bus 32. Synchro
nization of the buses 32, 76 compensates for system bus
devices and input/output devices which communicate
to each other at different rates and over different data
transfer bandwidths.
The translation logic 106 improves the performance

of system bus 76 to I/O bus 32 transfers by optimizing
and combining two cycle conditions without impeding
system critical processes. The first condition occurs
when a fast system device is writing data to a slower
I/O device 28. System devices such as the memory
controller 58 (on behalf of the CPU 38) write data over
the system bus 76 at faster rates than I/O devices can
accept the data. Thus, the present invention provides a
buffer wherein data written from the faster system de
vice to the slower I/O device may be temporarily
stored, as well as logic to terminate the system bus
cycle. In this manner, write data which has been posted
in the buffer frees the system bus 76 for subsequent
operations even though all of the write data has not yet
been written to the I/O device 28. This operation of the
translation logic 106 in response to the first condition is
hereinafter referred to as a posted write cycle.
The second condition under which the translation

logic 106 operates occurs when a system device such as
the memory controller 58 (on behalf of the CPU 38) has
control of the system bus 76 and desires to initiate a read
or write cycle destined for an IAO device 28 acting as a
slave on the I/O bus 32, and the data bus width of the
system device is greater than the data bus width of the
I/O device 28. (Typically, the data bus width of the
system device is 32-bits, which is supported on both the
system bus side and the IAO bus side of the bus interface
unit 64, and the data bus width of the I/O device is
8-bits, 16-bits, or 32-bits.) In the case of a l6-bit access to
an 8-bit slave, or a 32-bit access to an 8-bit or 16-bit I/O
slave, as a result of the mismatched data bus widths, the
memory controller 58 communicating over the system
bus 76 to an 8-bit or 16-bit AO device 32 on the IAO bus
must wait for the I/O device to receive a complete read
or write request before the memory controller 58 may
relinquish control of the system bus 76. Because the
CPU can transfer data over the system bus 76 in a 32-bit
data bus width, if the data is destined to be read by or
written to a 8-bit I/O device, the 32-bit read or write is
temporarily stored in a buffer (not shown) in translation
logic 106. The buffer in the preferred embodiment has
the capacity to hold thirty-two bits of data and address.
The translation logic 106 provides means to convert
single 32-bit read and write cycles initiated on the sys
tem bus 76 to four 8-bit or two 16-bit cycles which may
be handled by an I/O device 28. This operation of the
translation logic 106 in response to the second condition
is hereinafter referred to as a conversion cycle.

5,255,374
11

The translation logic 106 affects the operation of the
CACP circuit 62 which alternates between arbitration
cycles TARB and grant cycles TGNT (see FIG. 4). Dur
ing arbitration cycles TARB, CACP circuit 62 arbitrates
between I/O devices 28 and the CPU 38 to determine
which of the IAO devices 28 or the CPU 38 should be
granted control of the I/O bus 32. During grant cycles
TCNT, CACP circuit 62 grants control of the I/O bus
32, and extends control of said system bus 28, to one of
the I/O devices 28 or the CPU 38. The buffering of data
in both posted write and conversion cycles precludes
the CACP circuit 62 from granting I/O bus 32 to a new
I/O device intermediate successive I/O cycles.
The operation of the conversion cycles and posted

write cycles will now be explained in greater detail.
FIG. 5 shows a timing diagram resulting from the im
plementation of conversion cycles by translation logic
106 in the bus interface unit 64. The timing diagram of
FIG. 5 relates to a 32-bit read or write transfer by the
memory controller 58 (on behalf of the CPU) to an 8-bit
I/O device 28. Of course, the principles of the present
invention also apply to 16-bit IAC devices. As shown in
the top line of FIG. 5, the entire transfer proceeds as
follows. In the computer system 10, when the CPU 38
initiates a read or write cycle to an I/O device, the CPU
must communicate through the frequency control mod
ule 44, the memory controller 58 and the bus interface
unit 64. The frequency control module 44 and the mem
ory controller 58 each cause a delay of at least one clock
cycle (TFCM and TMC, respectively, in FIG. 5) in the
read or write cycle. These delays also occur at the end
of the cycle, along with the end-of-transfer delay TEOT
which adds an additional one or two clock periods to
the cycle. Intermediate these delays at the beginning
and the end of the read or write cycle, the translation
logic 106 of the bus interface unit 64 converts the 32-bit
read or write data from the memory controller 58 into
four back-to-back I/O read or write cycles (TI/O).
The translation logic 106 of the bus interface unit 64

thereby performs conversion cycles on behalf of the
CPU 38. In this manner, the CPU 38 need not perform
four 8-bit data transfer cycles each having the TFCM and
TMC delays associated there with. As a result, as shown
in the bottom line of FIG. 5, the time during which the
CACP circuit 62 is in a grant mode and during which
no other activities may occur on the I/O bus 32 (TGNT)
is decreased. If the CPU 38 were required to perform its
own conversion cycles, there would be TFCM and TMC
delays after each Tiyo period, thereby increasing the
time that the CPU must control the bus.

In I/O bus specifications, I/O slaves are limited in the
amont of time they are allowed to delay an I/O cycle.
This is so as not to impede timing critical processes on
the IAO bus or system bus such as refresh of dynamic
system memory. Typically, in the preferred embodi
ment, 3.5 usec is the maximum time allowed for an I/O
slave to delay a read or write cycle (TI/o). Buffering
four of these cycles back-to-back will require at most 14
usec to complete. Arbitration by the CACP circuit
occurs during the delay periods TFCM and TMC. During
arbitration, the DMA controller 60 can refresh system
memories 24 and 26. In the preferred embodiment, sys
tem memories 24 and 26 have refresh intervals of 15.6
usec. If a refresh does not occur within 3 refresh inter
vals (46.3 usec) of the previous refresh, system timeout
and dynamic RAM memory loss will occur. However,
a device may safely own the I/O bus 32 for a maximum
of 2 refresh intervals (31.2 usec) since it is not known

O

5

30

35

40

45

SO

55

65

12
when the previous refresh occurred. Therefore, the
maximum 14 usec period intermediate subsequent arbi
tration periods due to conversion cycles will not ad
versely affect refresh operations.

Regarding posted write cycles, the buffer in transla
tion logic 106 also provides the means to buffer 32-bit
write data prior to its being written to an I/O device 28.
Such operation frees the system bus for activity not
related to the I/O bus 32, such as CPU memory cycles
or cache cycles. Posted write cycles, however, even
provide a time savings if the next CPU operation is
another write to an I/O device 28. FIG. 6 shows a
timing diagram resulting from successive write opera
tions by the CPU 38 to an I/O device 28. As shown by
the top line of FIG. 6, the write transfer begins with
delays TFCM and TMC caused by the delay introduced
by the frequency control module 44 (TFCM) and the
memory controller 58 (TMC). Tto represents the first
write cycle of data from the CPU 38 to an I/O device
28 over the I/O bus 32 which is posted (buffered) in the
translation logic 106. Ti?o represents the second write
cycle of write data over the I/O bus 32. TR is a ready
signal provided to the CPU upon completion of the
write activity on the I/O bus 32.

Because the first write cycle data is posted, a TR
ready signal may be provided to the CPU immediately
upon posting. Thus, the delays TFCM and TMC inherent
with CPU communications through the frequency con
trol module 44 and the memory controller 58 may occur
over the system bus 76 simultaneously as the write cycle
is completed over the I/O bus 32. The second write
cycle Ti/o may proceed over the I/O bus immediately
following the first write cycle Tivol. If the first write
cycle data were not posted, the time required for the
ready signal Tr and the delays TFCM and TMC would
have to occur intermediate the first and second write
cycles T/O and Ti/O2. This time would not be masked
under the first write cycle Tivol as shown in the top line
of FIG. 6, and would result in longer completion times
to complete subsequent CPU to I/O device write cy
cles. Additionally, Tyo and TI/O can be conversion
cycles as defined by the conditions of FIG. 7.

Posted write cycles and conversion cycles may occur
simultaneously in the preferred embodiment of the pres
ent invention. The translation logic 106 is used as a
buffer for both conversion and posted write operations.
However, the conditions listed in FIG. 7 must be in
posed on the number of buffered cycles so as not to
cause a system timeout. Refresh cycles occur only dur
ing a CACP arbitration mode, therefore, due to system
memory requirements, and because a I/O devices 28 or
CPU 38 may gain control of the bus just before the
CACP is required to run a refresh cycle, the time be
tween successive arbitration modes must not exceed
31.2 usec. As shown in FIGS. 5 and 6, the CACP cir
cuit 62 does not enter arbitration mode intermediate
subsequent I/O cycles of buffered data because the I/O
bus activity is continuous and not interrupted by the
handshaking delays TFCM and TMC. Hence, the number
of buffered 3.5 usec I/O cycles must be limited to en
sure that 31.2 usec does not elapse intermediate succes
sive arbitration cycles.
The handshaking delays occurring at the beginning of

a posted write/conversion cycle (TFCM, TMC) account
for approximately 0.2 usec. By buffering a maximum of
six I/O cycles, under the conditions shown in FIG. 7,
CACP arbitration cycles will occur at least every
(6x3.5 usec) + (0.2 usec) = 21.2 usec.). Such a limit of

5,255,374
13

six buffered I/O cycles allows for a minimum of 10.0
usec (31.2 sec-21.2 usec) between the end of the last
I/O cycle and the time at which a system timeout
would occur due to failure to refresh system memory.
This 10.0 usec minimum provides ample time for the
DMA controller to enter arbitration mode, gain control
of the system bus, and begin a refresh cycle.

Accordingly, the preferred embodiment of a bus
control logic system for computers having dual bus
architecture has been described. With the foregoing
description in mind, however, it is understood this de
scription is made only by way of example, that the
invention is not limited to the particular embodiments
described herein, and that various rearrangements,
modifications, and substitutions may be implemented
without departing from the true spirit of the invention
as hereinafter claimed.
We claim:
1. A computer system, comprising:
system memory and a memory controller for control

ling access thereto, said system memory and said
memory controller connected by a memory bus;

a central processing unit electrically connected with
said memory controller;

a bus interface unit electrically connected to said
memory controller by a system bus and electrically
connected to a plurality of I/O devices by an IAO
bus, said I/O devices and said central processing
unit operating at different speeds and transferring
data at different bandwidths over said I/O bus and
said system bus, respectively, said bus interface unit
including a buffer circuit wherein data read from
an I/O device or written to an I/O device by said
central processing unit over said system bus and
said I/O bus via said bus interface unit is temporar
ily stored;

a central arbitration control point residing on said
system bus for serially performing (i) arbitration
cycles wherein said central arbitration control
point arbitrates, between I/O devices having re
quests pending for access to said I/O bus, to deter
mine which of said I/O devices should be granted
control of said I/O bus and (ii) grant cycles
wherein said central arbitration control point
grants control of said I/O bus to one of said I/O
devices;

said bus interface unit also including posting logic for
(i) temporarily storing in said buffer circuit during
one system bus cycle write data in excess of that
which may be written to an I/O device over said
I/O bus in one IAO bus cycle, (ii) completing trans
fer of write data from said buffer circuit to a first
/O device over said I/O bus in at least two 1/O
bus cycles while releasing control of said system
bus for further data processing during the first of
said at least two I/O bus cycles, and iii) preventing
said central arbitration control point from granting
control of said I/O bus to a second I/O device
during said transfer of write data over said I/O bus
to said first I/O device.

2. The computer system of claim 1, wherein said
posting logic is implemented by algorithms which are
built into hardware in said bus interface unit.

3. The system of claim 1, wherein said transfer of
write data is completed in four I/O bus cycles.

4. The system of claim 1, wherein said system bus
transfers data at a bandwidth of 32 bits and said I/O
devices transfer data over said I/O bus at bandwidths
up to 16 bits.

10

15

20

25

30

35

40

45

50

55

60

65

14
5. The system of claim 1, wherein said bus interface

unit further includes conversion logic for (i) temporar
ily storing in said buffer circuit during at least two IAO
bus cycles read data to be read by a system device resid
ing on said system bus from one of said I/O devices, (ii)
converting said stored read data into a contiguous string
of read data, which may be read by said system device
in a single system bus cycle, and (iii) completing transfer
of said read data from said buffer circuit to said system
device in said single system bus cycle while releasing
control of said I/O bus by said one of said I/O devices.

6. The system of claim 5, wherein said read data is
temporarily stored for four I/O bus cycles.

7. The system of claim 5, wherein said system device
transfers data at a bandwidth of 32 bits over said system
bus and said one of said I/O devices transfer data over
said I/O bus at bandwidths up to 16 bits.

8. The computer system of claim 5, wherein said
system bus supports burst transfers of read or write data
between said bus interface unit and said system memory
in data transfers of up to sixteen bytes, and wherein said
I/O bus supports transfers of read or write data between
said I/O device and said bus interface unit in data bus
widths of one, two or four bytes.

9. A method of transferring data over a system bus
and an I/O bus in a dual bus computer system, said
system comprising at least one system device attached
to said system bus and at least one I/O device attached
to said I/O bus, said system bus and said I/O bus con
nected by a bus interface unit including a buffer circuit,
said method comprising the steps of:

storing in said buffer circuit during one system bus
cycle write data in excess of that which may be
written to an I/O device in one I/O bus cycle, (ii)
completing transfer of write data from said buffer
circuit to a first IAO device over said I/O bus in at
least two I/O bus cycles while releasing control of
said system bus for further data processing during
the first of said at least two I/O bus cycles, and (iii)
preventing a second I/O device from obtaining
control of said I/O bus during said transfer of write
data over said I/O bus to said first I/O device, by
inhibiting a central arbitration control point from
granting access to said I/O bus to said second I/O
device.

10. The method of claim 9, wherein said transfer of
write data is completed in four 1/O bus cycles.

11. The method of claim 9, wherein said system bus
transfers data at a bandwidth of 32 bits over said system
bus and said I/O devices transfer data over said I/O bus
at bandwidths up to 16 bits.

12. The method of claim 9, further comprising the
steps of: (i) temporarily storing in said buffer circuit
during at least two I/O bus cycles read data to be read
by a first system device from one of said I/O devices,
(ii) converting said stored read data into a contiguous
string of data which may be read by said first system
device in a single system bus cycle, and (iii) completing
transfer of said read data from said buffer circuit to said
first system device in said single system bus cycle while
simultaneously releasing control of said I/O bus by said
one of said I/O devices.

13. The method of claim 12, wherein said read data is
temporarily stored for four I/O bus cycles.

14. The method of claim 12, wherein said system
device transfers data at a bandwidth of 32 bits over said
system bus and said one of said I/O devices transfer
data over said I/O bus at bandwidths up to 16 bits.

s K k st

