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BUS INTERFACE LOGIC FOR COMPUTER 
SYSTEM HAVING DUAL BUS ARCHITECTURE 

RELATED APPLICATIONS 
The following U.S. patent applications are incorpo 

rated herein by reference as if they had been fully set 
Out: 
Application Ser. No. 815992 Filed Jan. 2, 1992 Entitled 
"BUS CONTROL LOGIC FOR COMPUTER 
SYSTEM HAVING DUAL BUS ARCHITEC 
TURE" (Further identified as Attorney Docket BC9 
91-089) 

Application Ser. No. 816116 Filed Jan. 2, 1992 Entitled 
"ARBITRATION MECHANISM” (Further identi 
fied as Attorney Docket BC9-91-090) 

Application Ser. No. 816184 Filed Jan. 2, 1992 Entitled 
"PARTY ERROR DETECTION AND RECOV 
ERY" (Further identified as Attorney Docket BC9 
91-091) 

Application Ser. No. 816204 Filed Jan. 2, 1992 Entitled 
"CACHESNOOPING AND DATA INVALIDA 
TION TECHNIQUE" (Further identified as Attor 
ney Docket BC9-91-092) 

Application Ser. No. 816691 Filed Jan. 2, 1992 Entitled 
“BIDIRECTIONAL DATA STORAGE FACIL 
ITY FOR BUS INTERFACE UNIT" (Further 
identified as Attorney Docket BC9-91-105) 

Application Ser. No. 816693 Filed Jan. 2, 1992 Entitled 
"BUS INTERFACE FOR CONTROLLING 
SPEED OF BUS OPERATION" (Further identified 
as Attorney Docket BC9-9-106) 

Application Ser. No. 816698 Filed Jan. 2, 1992 Entitled 
METHOD AND APPARATUS FOR DETER 
MINING ADDRESS LOCATION AT BUS TO 
BUS INTERFACE" (Further identified as Attorney 
Docket BC9-91-107) 
BACKGROUND OF THE INVENTION 

The present invention relates to bus to bus interfaces 
in computer systems, and more particularly to a bus to 
bus interface for synchronizing operation of buses in the 
system to compensate for devices which communicate 
to each other at different rates and over different data 
transfer bandwidths. 

Generally in computer systems and especially in per 
sonal computer systems, data is transferred between 
various system devices such as a central processing unit 
(CPU), memory devices, and direct memory access 
(DMA) controllers. In addition, data is transferred be 
tween expansion elements such as input/output (I/O) 
devices, and between these I/O devices and the various 
system devices. The I/O devices and the system devices 
communicate with and amongst each other over com 
puter buses, which comprise a series of conductors 
along which information is transmitted from any of 
several sources to any of several destinations. Many of 
the systern devices and the I/O devices are capable of 
serving as bus controllers (i.e., devices which can con 
trol the computer system) and bus slaves (i.e., elements 
which are controlled by bus controllers). 

Personal computer systems having more than one bus 
are known. Typically, a local bus is provided over 
which the CPU communicates with cache memory or a 
memory controller, and a system I/O bus is provided 
over which systern bus devices such as the DMA con 
troller, or the IAO devices, communicate with the sys 
term memory via the memory controller. The system 
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2 
I/O bus comprises a system bus and an IAO bus con 
nected by a bus interface unit. The I/O devices commu 
nicate with one another over the I/O bus. The I/O 
devices are also typically required to communicate with 
system bus devices such as system memory. Such com 
munications must travel over both the I/O bus and the 
system bus through the bus interface unit. 

System devices and I/O devices in dual bus architec 
ture computer systems often communicate with each 
other at different rates and over different data transfer 
bandwidths. For example, whereas system devices may 
communicate over the system bus at a 32-bit data bus 
width, I/O devices may communicate over the I/O bus 
at 8-bit, 16-bit, or 32-bit data bus widths. Hence, overall 
system performance suffers when a system device, in 
control of both the system and I/O buses, either reads 
from or writes to a slower I/O device. This is com 
pounded by 16-bit transactions to 8-bit I/O slaves and 
32-bit transactions to 16-bit and 8-bit I/O slaves. In the 
case of write cycles, a system device must retain control 
of the system bus, for a time greater than that necessary 
to write data over the system bus, while the data is 
being written to the slower I/O device. In the case of 
read cycles, the slower I/O device cannot provide data 
to the system device over the I/O bus as fast as it can be 
read from the I/O device by the system device. 

It is an object of the present invention, then, to pro 
vide a bus interface unit in a dual bus architecture com 
puter system which provides the translation logic re 
quired for synchronizing operation of the system bus 
and the I/O bus to compensate for devices which com 
municate to each other at different rates and over differ 
ent data transfer bandwidths. 

SUMMARY OF THE INVENTION 

The present invention provides translation logic for a 
bus interface unit in a dual architecture computer sys 
tem. The translation logic is implemented by algorithms 
which are built into the hardware of the bus interface 
unit, which resides intermediate a system bus and an 
I/O bus in the computer system. The translation logic in 
the bus interface unit improves the performance of the 
computer system by synchronizing operation of the 
system bus and the IAO bus. Synchronization of the 
buses compensates for system bus devices and input 
/output devices which communicate to each other at 
different rates and over different data transfer band 
widths. 
The translation logic operates under two conditions. 

The first condition occurs when a fast system device is 
writing data to a slower I/O device. Because system 
devices write data over the system bus at faster rates 
than most I/O devices, the slower I/O devices cannot 
accept the data as fast as the system device writes it to 
them. Thus, the present invention provides a buffer 
wherein data written from the faster system device to 
the slower I/O device may be temporarily stored. In 
this manner, write data which has been stored (or 
posted) in the buffer frees the system bus for subsequent 
operations even though all of the write data has not yet 
been written to the IAO device over the IAO bus. 
The second condition under which the translation 

logic operates occurs when a system device in control 
of the systern bus desires to initiate a read or write cycle 
destined for an I/O device acting as a slave on the /O 
bus, and the data bus width of the system device is 
greater than the data bus width of the IAO device. Typi 
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cally, the data bus width of the systern device is 32-bits, 
which is supported on both the system bus side and the 
I/O bus side of the bus interface unit, and the data bus 
width of the I/O device is 8-bits, 16-bits, or 32-bits. A 
system device communicating over the system bus to an 
8-bit or 16-bit I/O device on the I/O bus must wait for 
the I/O device to receive a complete read or write 
request before the system device may relinquish control 
of the system bus. Hence, data from a 32-bit data bus 
width system device which is destined to be read by or 
written to a 8-bit I/O device is temporarily stored in a 
buffer in the translation logic. The buffer in the pre 
ferred embodiment has the capacity to hold thirty-two 
bits of data and address. The translation logic provides 
the means to convert single 32-bit read and write cycles 
initiated on the system bus to four 8-bit or two 16-bit 
cycles or single 16-bit reads and write cycles to two 
8-bit cycles and allows posted write cycles to occur 
without impeding time critical bus activity, such as 
refresh. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic block diagram of a computer 
system incorporating a bus interface unit constructed 
according to the principles of the present invention; 

FIG. 2 is a schematic block diagram of the bus inter 
face unit of the computer system of FIG. 1; 
FIG. 3 is a schematic block diagram of the FIFO 

buffer of the bus interface unit of FIG. 2; 
FIG. 4 is a timing diagram illustrating the operational 

cycles of the CACP circuit of FIG. 1; 
FIGS. 5 and 6 are timing diagrams resulting from the 

operation of the translation logic of FIG. 2; 
FIG. 7 is a table listing the conditions under which to 

post cycles. 
DETAILED DESCRIPTION OF THE 

PREFERRED EMBODIMENT 
Referring first to FIG. 1, a computer system shown 

generally at 10 comprises system board 12 and proces 
sor complex 14. Processor complex includes processor 
portion 16 and base portion 18 connected at processor 
local bus 20 via local bus connector 22. Processor por 
tion 16 operates at 50 MHz and base portion 18 operates 
at 40 MHz. 

System board 12 includes interleaved system memo 
ries 24 and 26 and input/output (I/O) devices 28. Com 
munications between memories 24 and 26 and processor 
complex 14 are handled by memory bus 30, and commu 
nications between I/O devices 28 and processor com 
plex 14 are carried by I/O bus 32. Communications 
between I/O devices and memories 24 and 26 are han 
dled by I/O bus 32, system bus 76 and memory bus 30. 
I/O bus 32 may conform to MICRO CHANNEL (R) 
computer architecture. Memory bus 30 and I/O bus 32 
are connected to processor complex base portion 18 via 
processor complex connector 34, I/O devices such as 
memory expansion devices may be connected to the 
computer system 10 via I/O bus 32. System board 12 
may also include conventional video circuitry, timing 
circuitry, keyboard control circuitry and interrupt cir 
cuitry (none of which are shown) which may be used by 
computer system 10 during normal operation. 

Processor portion 16 of processor complex 14 in 
cludes central processing unit (CPU) 38 which, in the 
preferred embodiment, is a 32-bit microprocessor avail 
able from Intel, Inc. under the trade designation i486. 
Processor portion 16 also includes static random access 
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memory (SRAM) 40, cache control module 42, fre 
quency control module 44, address buffer 46 and data 
buffer 48. Local bus 20 comprises data information path 
50, address information path 52 and control information 
path 54. Data information paths 50 are provided be 
tween CPU 38, SRAM 40 and data buffer 48. Address 
information paths 52 are provided between CPU 38, 
cache control module 42 and address buffer 46. Control 
information paths 54 are provided between CPU 38, 
cache control module 42 and frequency control module 
44. Additionally, address and control information paths 
are provided between cache control module 42 and 
SRAM 40. 
SRAM 40 provides a cache function by storing in 

short term memory information from either system 
memories 24 or 26 or from expansion memory which is 
located on an 1/O device 28. Cache control module 42 
incorporates random access memory (RAM) 56 which 
stores address locations of memories 24 and 26. CPU 38 
may access information cached in SRAM 40 directly 
over the local bus 20. Frequency control module 44 
synchronizes operation of the 50 Mhz processor portion 
16 with the 40 Mhz base portion 18 and also controls 
the operation of buffers 46 and 48. Accordingly, fre 
quency control module 44 determines the times at 
which information is captured by buffers 46 and 48 or 
the times at which information that is stored in these 
buffers is overwritten. Buffers 46 and 48 are configured 
to allow two writes from memories 24 and 26 to be 
stored simultaneously therein. Buffers 46 and 48 are 
bi-directional, i.e., they are capable of latching informa 
tion which is provided by the CPU 38 and information 
which is provided to the CPU. Because buffers 46 and 
48 are bi-directional, processor portion 16 of the proces 
sor complex 14 may be replaced or upgraded while 
maintaining a standard base portion 18. 

Base portion 18 includes memory controller 58, di 
rect memory access (DMA) controller 60, central arbi 
tration control point (CACP) circuit 62, bus interface 
unit 64 and buffer/error correction code (ECC) circuit 
66. Base portion 18 also includes driver circuit 68, read 
only memory (ROM) 70, self test circuit 72 and buffer 
74. System bus 76 comprises a data information path 78, 
and address information path 80 and a control informa 
tion path 82. The data information path connects buffer 
74 with bus interface unit 64; bus interface unit 64 with 
DMA controller 60 and buffer/ECC circuit 66; and 
buffer/ECC circuit 66 with system memories 24 and 26. 
The address information path and the control informa 
tion path each connect memory controller 58 with 
DMA controller 60 and bus interface unit 64; and bus 
interface unit 64 with buffer 74. 
Memory controller 58 resides on both CPU local bus 

20 and system bus 76, and provides the CPU 38, the 
DMA controller 60 or bus interface unit 64 (on behalf of 
an I/O device 28) with access to system memories 24 
and 26 via memory bus 30. The memory controller 58 
initiates system memory cycles to system memories 24 
and 26 over the memory bus 30. During a system mem 
ory cycle, either the CPU 38, the DMA controller 60 or 
bus interface unit 64 (on behalf of an IAO device 28) has 
access to system memories 24 and 26 via memory con 
troller 58. The CPU 38 communicates to system mem 
ory via local bus 20, memory controller 58 and memory 
bus 30, while the DMA controller 60 or bus interface 
unit 64 (on behalf of an IAO device 28) access system 
memory via system bus 76, memory controller 58 and 
memory bus 30. 
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For CPU 38 to I/O bus 32 read or write cycles, ad 
dress information is checked against system memory 
address boundaries. If the address information corre 
sponds to an I/O expansion memory address or I/O 
port address, then memory controller 58 initiates an I/O 
memory cycle or I/O port cycle with an IAO device 28 
(via bus interface unit 64) over the I/O bus 32. During 
a CPU to I/O memory cycle or I/O port cycle, the 
address which is provided to memory controller 58 is 
transmitted from system bus 76 to I/O bus 32 via bus 
interface unit 64 which resides intermediate these two 
buses. The I/O device 28 which includes the expansion 
memory to which the address corresponds receives the 
memory address from I/O bus 32. DMA controller 60 
and the bus interface unit 64 control the interchange of 
information between system memories 24 and 26 and 
expansion memory which is incorporated into an I/O 
device 28, DMA controller 60 also provides three func 
tions on behalf of processor complex 14. First, the 
DMA controller 60 utilizes a small computer subsystem 
control block (SCB) architecture to configure DMA 
channels, thus avoiding the necessity of using pro 
grammed I/O to configure the DMA channels. Second, 
DMA controller provides a buffering function to opti 
nize transfers between slow memory expansion devices 
and the typically faster system memory. Third, DMA 
controller 60 provides an eight channel, 32-bit, direct 
system memory access function. When providing the 
direct system memory access function, DMA controller 
60 may function in either of two modes. In a first mode, 
DMA controller 60 functions in a programmed I/O 
mode in which the DMA controller is functionally a 
slave to the CPU 38. In a second mode, DMA control 
ler 60 itself functions as a system bus master, in which 
DMA controller 60 arbitrates for and controls I/O bus 
32. During this second mode, DMA controller 60 uses a 
first in, first out (FIFO) register circuit. 
CACP circuit 62 functions as the arbiter for the 

DMA controller, I/O device bus controllers and the 
CPU (if accessing I/O devices). CACP circuit 62 re 
ceives arbitration control signals from DMA controller 
60, memory controller 58 as well as from I/O devices, 
and determines which devices may control the I/O bus 
32 and the length of time during which the particular 
device will retain control of the I/O bus. 

Driver circuit 68 provides control information and 
address information from memory controller 58 to sys 
ten memories 24 and 26. Driver circuit 68 drives this 
information based upon the number of single in-line 
memory modules (SIMMs) which are used to construct 
system memories 24 and 26. Thus, driver circuit 68 
varifs the signal intensity of the control and address 
information which is provided to system memories 24 
and 26 based upon the size of these memories. 

Buffer circuit 74 provides amplification and isolation 
between processor complex base portion 18 and system 
board 12. Buffer circuit 74 utilizes buffers which permit 
the capture of boundary information between I/O bus 
32 and bus interface unit 64 in real time. Accordingly, if 
computer system 10 experiences a failure condition, 
buffer circuit 74 may be accessed by a computer repair 
person to determine the information which was present 
at connector 34 upon failure of the system. 
ROM 70 configures the system 10 upon power-up by 

initially placing in system memory data from expansion 
memory. Self test circuit 72, which is connected to a 
plurality of locations within base portion 18, provides a 
plurality of self test features. Self test circuit 72 accesses 
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6 
buffer circuit 74 to determine if failure conditions exist, 
and also tests the other major components of base por 
tion 18 upon power-up of the system 10 to determine 
whether the system is ready for operation. 

Referring to FIG. 2, a schematic block diagram of the 
bus interface unit 64 of the system of FIG. 1 is shown. 
Bus interface unit 64 provides the basis for implementa 
tion of the present invention by providing a bi-direc 
tional high speed interface between system bus 76 and 
IAO bus 32. 

Bus interface unit 64 includes system bus driver/- 
receiver circuit 102, IAO bus driver/receiver circuit 104 
and control logic circuits electrically connected there 
between. Driver/receiver circuit 102 includes steering 
logic which directs signals received from the system bus 
76 to the appropriate bus interface unit control logic 
circuit and receives signals from the bus interface unit 
control logic circuits and directs the signals to the sys 
ten bus 76. AO bus driver/receiver circuit 104 includes 
steering logic which directs signals received from the 
I/O bus 32 to the appropriate bus interface unit control 
logic circuit and receives signals from the bus interface 
unit control logic circuits and directs the signals to the 
AO bus 32. 
The bus interface unit control logic circuits include 

system bus to I/O bus translation logic 106, I/O bus to 
system bus translation logic 108, memory address com 
pare logic 110, error recovery support logic 112, and 
cache snooping logic 114. Programmed I/O circuit 116 
is also electrically coupled to system driver/receiver 
circuit 102. 
The system bus to I/O bus translation logic 106 pro 

vides the means required for the DMA controller 60 or 
the memory controller 58 (on behalf of CPU 38) to act 
as a system bus controller to access the I/O bus 32 and 
thereby communicate with I/O devices 28 acting as 
slave devices on the I/O bus. Translation logic 106 
translates the control, address and data lines of the sys 
ten bus 76 into similar lines on the I/O bus 32. Most 
control signals and all address signals flow from the 
system bus 76 to the I/O bus 32 while data information 
flow is bi-directional. The logic which acts as system 
bus slave monitors the system bus 76 and detects cycles 
which are intended for the IAO bus 32. Upon detection 
of such a cycle, the system bus slave translates the tim 
ing of signals on the system bus to I/O bus timing, initi 
ates the cycle on the IAO bus 32, waits for the cycle to 
be completed, and terminates the cycle on the system 
bus 76. 
The IAO bus to system bus translation logic 108 com 

prises system bus address generation circuit 118, I/O 
bus expected address generation circuit 120, system bus 
controller interface 122, FIFO buffer 124, I/O bus slave 
interface 126 and bus to bus pacing control logic 128. 
System bus controller interface 122 supports a high 
performance 32 bit (4 byte) i486 burst protocol operat 
ing at 40 MHZ. Data transfers of four, eight and sixteen 
bytes in burst mode and one to four bytes in no-burst 
mode are provided. I/O bus slave interface 126 moni 
tors the I/O bus 32 for operations destined for slave 
devices on the system bus 76 and ignores those opera 
tions destined for the I/O bus 32. All cycles picked up 
by the IAO bus slave interface 126 are passed on to the 
FIFO buffer 124 and the system bus controller interface 
122. 
The IAO bus to system bus translation logic 108 pro 

vides the means required for an I/O device 28 to act as 
an I/O bus controller to access system bus 76 and 
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thereby read or write to system memories 24 and 26. In 
either of these operations, an I/O device controls the 
I/O bus. The asynchronous 1/O bus interface 126, oper 
ating at the speed of the I/O device, permits the bus 
interface unit 64 to act as a slave to the IAO device 
controller on the I/O bus 32 to decode the memory 
address and determine that the read or write cycle is 
destined for system memories 24 or 26. Simultaneously, 
the system bus controller interface 122 permits the bus 
interface unit 64 to act as a controller on the system bus 
74. The memory controller 58 (FIG. 2) acts as a slave to 
the bus interface unit 64, and either provides the inter 
face 64 with data read from system memory or writes 
data to system memory. The reads and writes to system 
memory are accomplished through the FIFO buffer 
124, a block diagram of which is illustrated in FIG, 3. 
As shown in FIG. 3, FIFO buffer 124 is a dual ported, 

asynchronous, bi-directional storage unit which pro 
vides temporary storage of data information between 
the system and I/O buses 76, 32. FIFO buffer 124 com 
prises four sixteen-byte buffers 125A-125D and FIFO 
control circuit 123. The four buffers 125A-125D buffer 
data to and from I/O bus controllers and system bus 
slaves, thereby allowing simultaneous operation of the 
I/O bus 32 and the system bus 76. The FIFO buffer 124 
is physically organized as two thirty-two byte buffers 
(125A/125B and 125C/125D). The system bus control 
ler interface 122 and the I/O bus slave interface 126 
each control one thirty-two byte buffer while the other 
thirty-two byte buffer operates transparent to them. 
Both of the thirty-two byte buffers are utilized for read 
and write operations. 

Each FIFO 124A, 125B, 125C, 125D has an address 
register section either physically associated with the 
respective FIFO, or logically associated therewith. As 
data is transferred from the IAO bus 32 to FIFO 125A, 
the data will be accumulated until the 16 byte buffer is 
filled with 16 bytes of data, provided that the addresses 
are contiguous. If a non-contiguous address is detected 
by the address action, the FIFO 125A will transfer the 
stored data to FIFO 125C, and at the same time FIFO 
125B will start to receive this data from the new non 
contiguous address. FIFO 125B will continue just as 
FIFO 125A did until it is filled with 16 bytes of data, or 
another non-contiguous address is detected. FIFO 125B 
will then transfer the stored data to FIFO 125D, and 
FIFO 125A again starts to store data; thus, it is possible 
to store up to four 16 byte blocks of non-contiguous 
address data. 

Further, by having two 32 byte buffers in parallel the 
reading and writing of data can be toggled between 
then thus giving an essentially continuous read or write 
function. 
Move over, by splitting the 32 byte buffers into two 

16 bytes buffer sections which are coupled to other I/O 
bus 32 or system bus 26, the number of storage buffers 
can be increased with minimal impact on the perfor 
mance of the FIFO as related to the capacitive loading 
on signals clocking data in or out of the storage regis 
ters. This is accomplished because for every two buffers 
added (in parallel) only half the capacitive loading is 
added to the loading of clock signals on each bus. 

Additionally, by having two 16 byte buffers in series 
in each leg. once one of the 16 byte buffers is filled with 
data, such as in a read operation, the data can be trans 
ferred to the other 16 byte buffers in series therewith, 
while the other parallel leg is accumulating data. Hence, 
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8 
there is no time lost in either accumulating data, or 
transferring the data from one bus to the other. 
The logic for controlling the operation of the FIFO 

124 is supplied by FIFO Control Circuit 123. 
A particular I/O device 28 may write to system mem 

ories 24 or 26 via I/O bus in bandwidths of either 1, 2 or 
4 bytes (i.e., 8, 16 or 32 bits). During writes to system 
memory by an IAO device 28, the first transfer of write 
data is initially stored in the FIFO buffer 125A or 125B. 
The IAO bus expected address generation circuit 120 
calculates the next expected, or contiguous, address. 
The next contiguous address is checked against the 
subsequent I/O address to verify if the subsequent trans 
fers are contiguous or not. If contiguous, the second 
byte or bytes of write data is sent to the same FIFO 
buffer 125A or 125B. The FIFO receives data at asyn 
chronous speeds of up to 40 megabytes per second from 
the IAO bus 32. 

This process continues until either buffer 125A or 
125B is full with a 16-byte packet of information or a 
non-contiguous address is detected. On the next clock 
cycle, assuming that buffer 125A is full, the data in 
buffer 125A is transferred to buffer 125C. Similarly, 
when buffer 125B is full, all of its contents are trans 
ferred to buffer 125D in a single clock cycle. The data 
stored in the buffers 125C and 125D is then written to 
system memory via an i486 burst transfer at the system 
bus operational speed. The operation of FIFO buffer 
124 during a write to system memory by an I/O device 
is thus continuous, alternating between buffers 125A 
and 125B, with each emptying into adjacent buffer 
125C or 125D, respectively, while the other is receiving 
data to be written to system memory. The FIFO buffer 
124, then, optimizes the speed of data writes to system 
memory by (i) anticipating the address of the next likely 
byte of data to be written into memory and (ii) accom 
modating the maximum speed of write data from the 
FIFO buffer to system memory via the system bus 76. 
During reads of data from system memory to an I/O 

device 28, FIFO buffer 124 operates differently. The 
system bus address generation circuit 118 uses the initial 
read address to generate subsequent read addresses of 
read data and accumulate data in buffer 125C or 125D. 
Because the system bus supports transfers in band 
widths of 16 bytes wide, the system bus controller inter 
face 122 may prefetch 16-byte packets of contiguous 
data and store it in buffers 125C or 125D without the 
I/O bus 32 actually providing subsequent addresses, 
thus reducing latency between transfers. When buffer 
125C is full of prefetched data, it transfers its contents to 
buffer 125A in one clock cycle. Buffer 125D similarly 
empties into buffer 125B when full. The data in buffers 
125A and 125B may then be read by a particular I/O 
device controller in bandwidths of 1, 2 or 4 bytes. In 
this way, system bus address generation circuit 118 
functions as an increment counter until instructed to by 
the I/O controller device to stop prefetching data. 

Bus to bus pacing control logic 128 creates a faster 
access to system memory for high speed I/O devices. 
The bus to bus pacing control logic 128 overrides the 
normal memory controller arbitration scheme of system 
10 by allowing an I/O device in control of the I/O bus 
32 uninterrupted access to system memory during trans 
fers of data by faster devices which require multiple 
cycles, rather than alternating access to the memory 
controller 58 between the I/O device and the CPU, 
Thus, even if a local device such as the CPU has a 
pending request for control of the memory bus during a 



5,255,374 
multiple cycle transmission by an IAO device, the bus to 
bus pacing control logic 128 will grant the I/O device 
continued control of the memory bus. 
The programmed I/O circuit 116 is the portion of the 

bus interface unit 64 which contains all of the registers 
which are programmable within the bus interface unit 
64. The registers have bits associated therewith to de 
termine whether a particular register is active or inac 
tive. These registers define, inter alia, the system mem 
ory and expansion memory address ranges to which the 
bus interface unit 64 will respond, the expansion mem 
ory addresses which are either cacheable or noncachea 
ble, the system memory or cache address ranges, and 
whether or not parity or error checking is supported by 
the bus interface unit. Accordingly, programmed I/O 
circuit 116 identifies for the bus interface unit 64 the 
environment in which it resides, and the options to 
which it is configured. The registers in programmed 
I/O circuit 116 cannot be programmed directly over 
the I/O bus 32. Hence, in order to program the system 
10, the user must have access to an I/O device which 
may communicate over the system bus to the pro 
grammed I/O circuit 116 at the CPU level. 
Memory address compare logic 110 determines if a 

memory address corresponds to system memory or 
corresponds to expansion memory which is located on 
I/O device 28 coupled to the I/O bus 32. Because the 
system memory as well as the expansion memory may 
be in non-contiguous blocks of addresses, memory ad 
dress compare logic 110 includes a plurality of compar 
ators which are loaded with boundary information from 
registers in the programmed I/O circuit 116 to indicate 
which boundaries correspond to which memory. After 
a particular memory address is compared with the 
boundary information by the memory address compare 
logic, the bus interface unit is prepared to react accord 
ingly. For example, if an I/O device controlling the I/O 
bus 32 is reading or writing to expansion memory, the 
bus interface circuit need not pass that address to the 
memory controller 58, thereby saving time and memory 
bandwidth. 

Error recovery support logic 112 permits the system 
10 to continue operations even if a data parity error is 
detected. On any read or write access by an I/O device 
28 to system memories 24 or 26, parity of the data is 
checked. Support logic 112 interacts with a register in 
the programmed I/O circuit 116 for capturing the ad 
dress and the time of the detected parity error. The 
contents of this register may then be acted upon by 
appropriate system software. For example, the CPU 38 
may be programmed for a high level interrupt to pull 
the address out of the register at any time a parity error 
is detected. The CPU may then decide, based on the 
system software instructions, whether to continue sys 
ten operations or merely terminate operation of the 
identified source of the parity error. 
Cache snooping logic 114 permits the bus interface 

unit 64 to monitor the IAO bus 32 for any writes to 
expansion memory by an I/O device taking place over 
the I/O bus 32. The snooping logic first determines if 
the write to expansion memory occurred in expansion 
memory which is cacheable in SRAM 40. If it is not 
cacheable expansion memory, there is no danger of 
corrupt data being cached. If, however, a positive con 
pare indicates that the write occurred in cacheable ex 
pansion memory, a cache invalidation cycle is initiated 
over the system bus 76. The CPU is thus instructed to 
invalidate the corresponding address in SRAM 40. 
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10 
Cache snooping logic 114 provides means to store the 
address of a positive compare so that snooping of the 
I/O bus may continue immediately after detection of 
the first positive compare, thereby permitting continu 
ous monitoring of the I/O bus 32. 
The present invention relates generally to the bus 

interface unit 64 described above and more particularly 
to the system bus to 1/O bus translation logic 106 which 
is contained within the bus interface unit 64 residing 
intermediate the system bus 76 and the input/output bus 
32 in the computer system 10. The translation logic 106 
is implemented by algorithms which are built into the 
hardware of the bus interface unit 64. The translation 
logic 106 in the bus interface unit 64 synchronizes oper 
ation of the system bus 76 and the I/O bus 32. Synchro 
nization of the buses 32, 76 compensates for system bus 
devices and input/output devices which communicate 
to each other at different rates and over different data 
transfer bandwidths. 
The translation logic 106 improves the performance 

of system bus 76 to I/O bus 32 transfers by optimizing 
and combining two cycle conditions without impeding 
system critical processes. The first condition occurs 
when a fast system device is writing data to a slower 
I/O device 28. System devices such as the memory 
controller 58 (on behalf of the CPU 38) write data over 
the system bus 76 at faster rates than I/O devices can 
accept the data. Thus, the present invention provides a 
buffer wherein data written from the faster system de 
vice to the slower I/O device may be temporarily 
stored, as well as logic to terminate the system bus 
cycle. In this manner, write data which has been posted 
in the buffer frees the system bus 76 for subsequent 
operations even though all of the write data has not yet 
been written to the I/O device 28. This operation of the 
translation logic 106 in response to the first condition is 
hereinafter referred to as a posted write cycle. 
The second condition under which the translation 

logic 106 operates occurs when a system device such as 
the memory controller 58 (on behalf of the CPU 38) has 
control of the system bus 76 and desires to initiate a read 
or write cycle destined for an IAO device 28 acting as a 
slave on the I/O bus 32, and the data bus width of the 
system device is greater than the data bus width of the 
I/O device 28. (Typically, the data bus width of the 
system device is 32-bits, which is supported on both the 
system bus side and the IAO bus side of the bus interface 
unit 64, and the data bus width of the I/O device is 
8-bits, 16-bits, or 32-bits.) In the case of a l6-bit access to 
an 8-bit slave, or a 32-bit access to an 8-bit or 16-bit I/O 
slave, as a result of the mismatched data bus widths, the 
memory controller 58 communicating over the system 
bus 76 to an 8-bit or 16-bit AO device 32 on the IAO bus 
must wait for the I/O device to receive a complete read 
or write request before the memory controller 58 may 
relinquish control of the system bus 76. Because the 
CPU can transfer data over the system bus 76 in a 32-bit 
data bus width, if the data is destined to be read by or 
written to a 8-bit I/O device, the 32-bit read or write is 
temporarily stored in a buffer (not shown) in translation 
logic 106. The buffer in the preferred embodiment has 
the capacity to hold thirty-two bits of data and address. 
The translation logic 106 provides means to convert 
single 32-bit read and write cycles initiated on the sys 
tem bus 76 to four 8-bit or two 16-bit cycles which may 
be handled by an I/O device 28. This operation of the 
translation logic 106 in response to the second condition 
is hereinafter referred to as a conversion cycle. 
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The translation logic 106 affects the operation of the 
CACP circuit 62 which alternates between arbitration 
cycles TARB and grant cycles TGNT (see FIG. 4). Dur 
ing arbitration cycles TARB, CACP circuit 62 arbitrates 
between I/O devices 28 and the CPU 38 to determine 
which of the IAO devices 28 or the CPU 38 should be 
granted control of the I/O bus 32. During grant cycles 
TCNT, CACP circuit 62 grants control of the I/O bus 
32, and extends control of said system bus 28, to one of 
the I/O devices 28 or the CPU 38. The buffering of data 
in both posted write and conversion cycles precludes 
the CACP circuit 62 from granting I/O bus 32 to a new 
I/O device intermediate successive I/O cycles. 
The operation of the conversion cycles and posted 

write cycles will now be explained in greater detail. 
FIG. 5 shows a timing diagram resulting from the im 
plementation of conversion cycles by translation logic 
106 in the bus interface unit 64. The timing diagram of 
FIG. 5 relates to a 32-bit read or write transfer by the 
memory controller 58 (on behalf of the CPU) to an 8-bit 
I/O device 28. Of course, the principles of the present 
invention also apply to 16-bit IAC devices. As shown in 
the top line of FIG. 5, the entire transfer proceeds as 
follows. In the computer system 10, when the CPU 38 
initiates a read or write cycle to an I/O device, the CPU 
must communicate through the frequency control mod 
ule 44, the memory controller 58 and the bus interface 
unit 64. The frequency control module 44 and the mem 
ory controller 58 each cause a delay of at least one clock 
cycle (TFCM and TMC, respectively, in FIG. 5) in the 
read or write cycle. These delays also occur at the end 
of the cycle, along with the end-of-transfer delay TEOT 
which adds an additional one or two clock periods to 
the cycle. Intermediate these delays at the beginning 
and the end of the read or write cycle, the translation 
logic 106 of the bus interface unit 64 converts the 32-bit 
read or write data from the memory controller 58 into 
four back-to-back I/O read or write cycles (TI/O). 
The translation logic 106 of the bus interface unit 64 

thereby performs conversion cycles on behalf of the 
CPU 38. In this manner, the CPU 38 need not perform 
four 8-bit data transfer cycles each having the TFCM and 
TMC delays associated there with. As a result, as shown 
in the bottom line of FIG. 5, the time during which the 
CACP circuit 62 is in a grant mode and during which 
no other activities may occur on the I/O bus 32 (TGNT) 
is decreased. If the CPU 38 were required to perform its 
own conversion cycles, there would be TFCM and TMC 
delays after each Tiyo period, thereby increasing the 
time that the CPU must control the bus. 

In I/O bus specifications, I/O slaves are limited in the 
amont of time they are allowed to delay an I/O cycle. 
This is so as not to impede timing critical processes on 
the IAO bus or system bus such as refresh of dynamic 
system memory. Typically, in the preferred embodi 
ment, 3.5 usec is the maximum time allowed for an I/O 
slave to delay a read or write cycle (TI/o). Buffering 
four of these cycles back-to-back will require at most 14 
usec to complete. Arbitration by the CACP circuit 
occurs during the delay periods TFCM and TMC. During 
arbitration, the DMA controller 60 can refresh system 
memories 24 and 26. In the preferred embodiment, sys 
tem memories 24 and 26 have refresh intervals of 15.6 
usec. If a refresh does not occur within 3 refresh inter 
vals (46.3 usec) of the previous refresh, system timeout 
and dynamic RAM memory loss will occur. However, 
a device may safely own the I/O bus 32 for a maximum 
of 2 refresh intervals (31.2 usec) since it is not known 
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12 
when the previous refresh occurred. Therefore, the 
maximum 14 usec period intermediate subsequent arbi 
tration periods due to conversion cycles will not ad 
versely affect refresh operations. 

Regarding posted write cycles, the buffer in transla 
tion logic 106 also provides the means to buffer 32-bit 
write data prior to its being written to an I/O device 28. 
Such operation frees the system bus for activity not 
related to the I/O bus 32, such as CPU memory cycles 
or cache cycles. Posted write cycles, however, even 
provide a time savings if the next CPU operation is 
another write to an I/O device 28. FIG. 6 shows a 
timing diagram resulting from successive write opera 
tions by the CPU 38 to an I/O device 28. As shown by 
the top line of FIG. 6, the write transfer begins with 
delays TFCM and TMC caused by the delay introduced 
by the frequency control module 44 (TFCM) and the 
memory controller 58 (TMC). Tto represents the first 
write cycle of data from the CPU 38 to an I/O device 
28 over the I/O bus 32 which is posted (buffered) in the 
translation logic 106. Ti?o represents the second write 
cycle of write data over the I/O bus 32. TR is a ready 
signal provided to the CPU upon completion of the 
write activity on the I/O bus 32. 

Because the first write cycle data is posted, a TR 
ready signal may be provided to the CPU immediately 
upon posting. Thus, the delays TFCM and TMC inherent 
with CPU communications through the frequency con 
trol module 44 and the memory controller 58 may occur 
over the system bus 76 simultaneously as the write cycle 
is completed over the I/O bus 32. The second write 
cycle Ti/o may proceed over the I/O bus immediately 
following the first write cycle Tivol. If the first write 
cycle data were not posted, the time required for the 
ready signal Tr and the delays TFCM and TMC would 
have to occur intermediate the first and second write 
cycles T/O and Ti/O2. This time would not be masked 
under the first write cycle Tivol as shown in the top line 
of FIG. 6, and would result in longer completion times 
to complete subsequent CPU to I/O device write cy 
cles. Additionally, Tyo and TI/O can be conversion 
cycles as defined by the conditions of FIG. 7. 

Posted write cycles and conversion cycles may occur 
simultaneously in the preferred embodiment of the pres 
ent invention. The translation logic 106 is used as a 
buffer for both conversion and posted write operations. 
However, the conditions listed in FIG. 7 must be in 
posed on the number of buffered cycles so as not to 
cause a system timeout. Refresh cycles occur only dur 
ing a CACP arbitration mode, therefore, due to system 
memory requirements, and because a I/O devices 28 or 
CPU 38 may gain control of the bus just before the 
CACP is required to run a refresh cycle, the time be 
tween successive arbitration modes must not exceed 
31.2 usec. As shown in FIGS. 5 and 6, the CACP cir 
cuit 62 does not enter arbitration mode intermediate 
subsequent I/O cycles of buffered data because the I/O 
bus activity is continuous and not interrupted by the 
handshaking delays TFCM and TMC. Hence, the number 
of buffered 3.5 usec I/O cycles must be limited to en 
sure that 31.2 usec does not elapse intermediate succes 
sive arbitration cycles. 
The handshaking delays occurring at the beginning of 

a posted write/conversion cycle (TFCM, TMC) account 
for approximately 0.2 usec. By buffering a maximum of 
six I/O cycles, under the conditions shown in FIG. 7, 
CACP arbitration cycles will occur at least every 
(6x3.5 usec) + (0.2 usec) = 21.2 usec.). Such a limit of 
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six buffered I/O cycles allows for a minimum of 10.0 
usec (31.2 sec-21.2 usec) between the end of the last 
I/O cycle and the time at which a system timeout 
would occur due to failure to refresh system memory. 
This 10.0 usec minimum provides ample time for the 
DMA controller to enter arbitration mode, gain control 
of the system bus, and begin a refresh cycle. 

Accordingly, the preferred embodiment of a bus 
control logic system for computers having dual bus 
architecture has been described. With the foregoing 
description in mind, however, it is understood this de 
scription is made only by way of example, that the 
invention is not limited to the particular embodiments 
described herein, and that various rearrangements, 
modifications, and substitutions may be implemented 
without departing from the true spirit of the invention 
as hereinafter claimed. 
We claim: 
1. A computer system, comprising: 
system memory and a memory controller for control 

ling access thereto, said system memory and said 
memory controller connected by a memory bus; 

a central processing unit electrically connected with 
said memory controller; 

a bus interface unit electrically connected to said 
memory controller by a system bus and electrically 
connected to a plurality of I/O devices by an IAO 
bus, said I/O devices and said central processing 
unit operating at different speeds and transferring 
data at different bandwidths over said I/O bus and 
said system bus, respectively, said bus interface unit 
including a buffer circuit wherein data read from 
an I/O device or written to an I/O device by said 
central processing unit over said system bus and 
said I/O bus via said bus interface unit is temporar 
ily stored; 

a central arbitration control point residing on said 
system bus for serially performing (i) arbitration 
cycles wherein said central arbitration control 
point arbitrates, between I/O devices having re 
quests pending for access to said I/O bus, to deter 
mine which of said I/O devices should be granted 
control of said I/O bus and (ii) grant cycles 
wherein said central arbitration control point 
grants control of said I/O bus to one of said I/O 
devices; 

said bus interface unit also including posting logic for 
(i) temporarily storing in said buffer circuit during 
one system bus cycle write data in excess of that 
which may be written to an I/O device over said 
I/O bus in one IAO bus cycle, (ii) completing trans 
fer of write data from said buffer circuit to a first 
/O device over said I/O bus in at least two 1/O 
bus cycles while releasing control of said system 
bus for further data processing during the first of 
said at least two I/O bus cycles, and iii) preventing 
said central arbitration control point from granting 
control of said I/O bus to a second I/O device 
during said transfer of write data over said I/O bus 
to said first I/O device. 

2. The computer system of claim 1, wherein said 
posting logic is implemented by algorithms which are 
built into hardware in said bus interface unit. 

3. The system of claim 1, wherein said transfer of 
write data is completed in four I/O bus cycles. 

4. The system of claim 1, wherein said system bus 
transfers data at a bandwidth of 32 bits and said I/O 
devices transfer data over said I/O bus at bandwidths 
up to 16 bits. 
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5. The system of claim 1, wherein said bus interface 

unit further includes conversion logic for (i) temporar 
ily storing in said buffer circuit during at least two IAO 
bus cycles read data to be read by a system device resid 
ing on said system bus from one of said I/O devices, (ii) 
converting said stored read data into a contiguous string 
of read data, which may be read by said system device 
in a single system bus cycle, and (iii) completing transfer 
of said read data from said buffer circuit to said system 
device in said single system bus cycle while releasing 
control of said I/O bus by said one of said I/O devices. 

6. The system of claim 5, wherein said read data is 
temporarily stored for four I/O bus cycles. 

7. The system of claim 5, wherein said system device 
transfers data at a bandwidth of 32 bits over said system 
bus and said one of said I/O devices transfer data over 
said I/O bus at bandwidths up to 16 bits. 

8. The computer system of claim 5, wherein said 
system bus supports burst transfers of read or write data 
between said bus interface unit and said system memory 
in data transfers of up to sixteen bytes, and wherein said 
I/O bus supports transfers of read or write data between 
said I/O device and said bus interface unit in data bus 
widths of one, two or four bytes. 

9. A method of transferring data over a system bus 
and an I/O bus in a dual bus computer system, said 
system comprising at least one system device attached 
to said system bus and at least one I/O device attached 
to said I/O bus, said system bus and said I/O bus con 
nected by a bus interface unit including a buffer circuit, 
said method comprising the steps of: 

storing in said buffer circuit during one system bus 
cycle write data in excess of that which may be 
written to an I/O device in one I/O bus cycle, (ii) 
completing transfer of write data from said buffer 
circuit to a first IAO device over said I/O bus in at 
least two I/O bus cycles while releasing control of 
said system bus for further data processing during 
the first of said at least two I/O bus cycles, and (iii) 
preventing a second I/O device from obtaining 
control of said I/O bus during said transfer of write 
data over said I/O bus to said first I/O device, by 
inhibiting a central arbitration control point from 
granting access to said I/O bus to said second I/O 
device. 

10. The method of claim 9, wherein said transfer of 
write data is completed in four 1/O bus cycles. 

11. The method of claim 9, wherein said system bus 
transfers data at a bandwidth of 32 bits over said system 
bus and said I/O devices transfer data over said I/O bus 
at bandwidths up to 16 bits. 

12. The method of claim 9, further comprising the 
steps of: (i) temporarily storing in said buffer circuit 
during at least two I/O bus cycles read data to be read 
by a first system device from one of said I/O devices, 
(ii) converting said stored read data into a contiguous 
string of data which may be read by said first system 
device in a single system bus cycle, and (iii) completing 
transfer of said read data from said buffer circuit to said 
first system device in said single system bus cycle while 
simultaneously releasing control of said I/O bus by said 
one of said I/O devices. 

13. The method of claim 12, wherein said read data is 
temporarily stored for four I/O bus cycles. 

14. The method of claim 12, wherein said system 
device transfers data at a bandwidth of 32 bits over said 
system bus and said one of said I/O devices transfer 
data over said I/O bus at bandwidths up to 16 bits. 
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