
United States Patent (19)
Arnold et al.

(54)

(75)

(73)

(21)

22

(51)
52)

58)

APPARATUS AND METHOD FOR LOADING
A SYSTEM REFERENCE DISKETTE IMAGE
FROM A SYSTEM PARTITION IN A
PERSONAL COMPUTER SYSTEM

Inventors: Lisa R. Arnold, Boynton Beach;
Richard Bealkowski, Delray Beach;
John W. Blackledge, Jr., Boca Raton;
Doyle S. Cronk, Boca Raton; Richard
A. Dayan, Boca Raton; Douglas R.
Geisler, Boca Raton; Matthew T.
Mittelstedt, Delray Beach, all of Fla.;
Matthew S. Palka, Jr., Raleigh, N.C.;
John D. Paul, Boynton Beach, Fla.;
Robert Sachsenmaier, Boca Raton,
Fla.; Kenneth D. Smeltzer, Delray
Beach, Fla.: Peter A. Woytovech,
Boynton Beach, Fla.; Kevin M.
Zyvoloski, Raleigh, N.C.

Assignee: International Business Machines
Corp., Arnonk, N.Y.

Appl. No.: 557,334

Filed: Jul. 23, 1990

Int. Cl. ... H04L 9/00
U.S. C. .. 380/4; 380/23;

380/25; 380/50; 364/265.6; 364/976.4
Field of Search 380/4, 23, 25, 50:

364/976.4, 975.2,976, 265.6, 268.5; 371/11.32

DOES THE PATHEAG INDICATE

HHHHHHHHHHHHHIIII
US005128995A

11) Patent Number: 5,128,995
(45) Date of Patent: Jul. 7, 1992

56) References Cited
U.S. PATENT DOCUMENTS

4,757,533 7/1988 Allen et al. 380/25
4,839,895 6/1989 Makita 371/11.3
4,937,861 6/1990 Cummins 380A4X
4,951,249 8/1990 McClung et al. 380/25 X
5,022,077 6/1991 Bealkowski et al. 380/4

OTHER PUBLICATIONS
"A Method for Evaluating & Selecting Desk Top Com
puter Security Products"; M. Brothers, Computer Se
curity Journal vol. 5, No. 2, pp. 90-97.
Primary Examiner-Tod R. Swann
Attorney, Agent, or Firm-Winfield J. Brown, Jr.
(57) ABSTRACT
A personal computer system according to the present
invention comprises a system processor, a random ac
cess memory, a read only memory, and at least one
direct access storage device. A direct access storage
device controller coupled between the system proces
sor and direct access storage device includes a protec
tion mechanism for protecting a region of the storage
device. The protected region of the storage device in
cludes a master boot record, a BIOS image and a system
reference diskette image. The BIOS image includes a
section known as Power on Self Test (POST). POST is
used to test and initialize a system. Upon detecting any
configuration error, system utilities from the system
reference diskette image, such as set configuration pro
grams, diagnostic programs and utility programs can be
automatically activated from the direct access storage
device.

3 Claims, 16 Drawing Sheets

OBTAN SYSTE PARTION TYPE OSTAN SSE PARTION TYPE
GE AS BOCK ADDRESS ON FED DSK

500

SO2

AST ACORESS TO AKE ROO FOR THE SO4
SYSTE PARiiON

SAME THE ADDRESS AS A PONER TO HE OS
SYSTE PARTON

Sheet 1 of 16 5,128,995 July 7, 1992 U.S. Patent

\\

FIG.

U.S. Patent July 7, 1992 Sheet 3 of 16

70

POST STAGE

NITAL BOS LOAD
ROUTINE

DSKETTE

HARD FILE

VIDEO

DAGNOSTC
PANEL

HARDWARE
COMPATIBILITY

DATA

72

74

76

78

82

ROM - BOS

F. G. 3

5,128,995

U.S. Patent July 7, 1992 Sheet 4 of 16 5,128,995

BL OVERVEW
1 OO

POST COLD START ENTRY POINT

STAGE 1 POST (ROM BASED)
NTIALIZES AND TESTS

SYSTEM FUNCTIONS NEEDED
FOR BL FROM MEDIA

1 O2

BL ROM ROUTINE
READS BOOT RECORD FROM 1 O4
SELECTED MEDIA TO RAM
AND TRANSFERS CONTROL

BL BOOT RECORD
READS STAGE POST/BIOS
128K MAGE FROM MEDIA TO
RAM AND TRANSFERS CONTROL

106

1 O8
POST WARM START ENTRY POINT

STAGE POST (RAMBASED)
NTALIZES AND TESTS

REST OF SYSTEM NEEDED
FOR PL SEOUENCE

11 O

NITIAL PROGRAM LOAD
LOADS OPERATING SYSTEM
BOOT RECORD FROM MEDIA
AND TRANSFERS CONTROL

112

1 14

OPERATING SYSTEM
FG. 4

U.S. Patent July 7, 1992 Sheet 5 of 16 5,128,995

122
MBR DENT FER

"ABC"

MASTER BOOT
RECORD CODE SEGMENT

MODEL & SUBMODEL BYTES

FIRST BLOCK POINTER
FIRST BLOCK LENGTH

SECOND BLOCK POINTER
SECOND BLOCK LENGTH

LAST BLOCK POINTER
LAST BLOCK LENGTH

12O

138

F.G. 5

U.S. Patent July 7, 1992

15 O
NTALZE HARD FLE

NVALD DISK MASTER
BOOT RECORD

ERROR
DSKETTE

RECOVERY PREVENTED

F.G. 6A

Sheet 6 of 16

NCOMPATIBLE MASTER
BOOT RECORD

ERROR
NVALID DISKETTE

MASTER BOOT RECORD

5,128,995

U.S. Patent July 7, 1992 Sheet 7 of 16 5,128,995

OO 2
GET DRIVE PARAMETERS

2O2
BL LOAD LOCATION E

LAST 3 SECTORS ON MEDIA

204
LOAD COUNT E 1

2O6 2

READ THREE SECTORS AT BL LOAD LOCATION =
BL LOAD OACTION BL LOAD LOCATION - 1

2O8 21 O

MEDIA LOAD Y ERROR (AH=2)
ERROR2 DRIVE C BL LOAD FAILURE

NO
21 6 -

NCREMENT LOAD
COUNT BY 1

26

B D & NO
CHECKSUM
VALID

ERROR (AH=1)
BAD DRIVE C BL MEDIA

21

CLEAR CARRY FLAG SET CARRY FLAG

214
RETURN F.G. 6B

2

U.S. Patent July 7, 1992 Sheet 8 of 16 5,128,995

230
GET DRIVE PARAMETERS

B LOAD LOCATION E
LAST 3 SECTORS ON MEDIA

READ THREE SECTORS AT
BL LOAD LOCATION

w 236
EDA LOAD YES
ERROR 2

NO
244

B D & NO
CHECKSUM
VALID 2

232

238

ERROR (AL=2)
DRIVE A BL LOAD FAILURE

246

ERROR (AL= 1)
BAD DRIVE A BL RECORD

24O

CLEAR CARRY FLAG SET CARRY FLAG

RETURN

F.G. 6C

U.S. Patent July 7, 1992 Sheet 10 of 16 5,128,995

3OO 302
NO ERROR

NO PATTERN N ROM

306
ERROR

NCOMPATIBLE BL
BOOT RECORD

GNIQUE
PATTERN
N ROM 2

COMPATBLE BL

LOAD POST/BIOS
MEDIA MAGE
NTO RAM

31 O 312

MEDIA LOAD ERROR
POST/BIOS LOAD ERROR ERROR2

3.18

NO
3

COMPUTE
CHECKSUM

ERROR
BAD POST/BIOS CHECKSUM

316

305
HALT

YES 32O 322

SAVE SYSTEM
PARTITION TYPE TRANSFE. STAGE
& POINTER

FIG. 7

14

U.S. Patent July 7, 1992 Sheet 11 of 16 5,128,995

350

DATA/
NSTRUCTION

FG. 8

U.S. Patent July 7, 1992 Sheet 12 of 16 5,128,995

O 40
RECEIVE

INSTRUCTION

4 O2 RECEIVE

<Dis DATA N RBA
FORMAT

NO
WRITE DATA
TO DISK iN

RECEIVE
READ

ES REOUEST
N RBA
FORMAT

NO CONVERT
RBA-o-CHS

416

Y

NO

42 8
SET Y

Max RBA

OTHER
NSTRUCTIONS

READ DATA
FROM DISK
AT CHS

MAX RBA
12 4

RETURN

FG. 9

U.S. Patent July 7, 1992 Sheet 13 of 16 5,128,995

450 462

COLD START WARM
POWER-ON START

452 464

RESET RESET SIGNAL
SGNAL SENT SENT

454

EFFECT
BL LOAD -

456

POST STAGE

458

SET MAX RBA
BELOW BL

MEDIA

460

BOOT
OPERATING
SYSTEM

F.G. 1 O

5,128,995
1

APPARATUS AND METHOD FOR LOADING A
SYSTEM REFERENCE DISKETTE IMAGE FROM

A SYSTEM PARTITION N A PERSONAL
COMPUTER SYSTEM

CROSS REFERENCE TO RELATED PATENT
APPLICATIONS

The present patent application is one of a group of
copending applications which concern the same overall
personal computer system but which individually claim
different inventive concepts embodied in such personal
computer system. These related patent applications
were filed on the same date, namely Aug. 25, 1989, are
specifically incorporated by reference herein, and are
more particularly described as follows:

(1) Application Ser. No. 609,043 which is a continua
tion of application Ser. No. 07/399,631, which is aban
doned, entitled "An Apparatus and Method for Load
ing BIOS from a Diskette in a Personal Computer Sys
tem', the inventors being Bealkowski et al;

(2) Application Ser. No. 07/398,865, entitled "Initial
BIOS Load for a Personal Computer System", the in
ventors being Bealkowski et al; and

(3) Application Ser. No. 07/398,860, entitled "An
Apparatus and Method for Decreasing the Memory
Requirements for BIOS in a Personal Computer Sys
tem', the inventors being Bealkowski et al.

2
Beginning with the earliest personal computer system

of the family I models, such as the IBM Personal Com
puter, it was recognized that software compatibility
would be of utmost importance. In order to achieve this
goal, an insulation layer of system resident code, also
known as "firmware', was established between the
hardware and software. This firmware provided an
operational interface between a user's application pro
gram/operating system and the device to relieve the

0 user of the concern about the characteristics of hard

15

20

25

ware devices. Eventually, the code developed into a
BASIC input/output system (BIOS), for allowing new
devices to be added to the system, while insulating the
application program from the peculiarities of the hard
ware. The importance of BIOS was immediately evi
dent because it freed a device driver from depending on
specific device hardware characteristics while provid
ing the device driver with an intermediate interface to
the device. Since BIOS was an integral part of the sys
tem and controlled the movement of data in and out of
the system processor, it was resident on the system
planar and was shipped to the user in a read only mem
ory (ROM). For example, BIOS in the original IBM
Personal Computer occupied 8K of ROM resident on
the planar board.
As new models of the personal computer family were

introduced, BIOS had to be updated and expanded to

(4) Application Ser. No. 07/398,820, which is now
U.S. Pat. No. 5,022,077 entitled "An Apparatus and
Method for Preventing Unauthorized Access to BIOS
in a Personal Computer System", the inventors being
Bealkowski et al.

FIELD OF THE INVENTION

This invention relates to personal computer systems
and in particular to a method and device for protecting
and storing system utilities in a protected partition on a
mass storage device in a personal computer system.

BACKGROUND DISCUSSION

Personal computer systems in general and IBM per
sonal computers in particular have attained widespread

35

40

use for providing computer power to many segments of 45
today's modern society. Personal computer systems can
usually be defined as a desk top, floor standing, or por
table microcomputer that consists of a system unit hav
ing a single system processor, a display monitor, a key
board, one or more diskette drives, a fixed disk storage,
and an optional printer. One of the distinguishing char
acteristics of these systems is the use of a motherboard
or system planar to electrically connect these compo
nents together. These systems are designed primarily to
give independent computing power to a single user and
are inexpensively priced for purchase by individuals or
small businesses. Examples of such personal computer
systems are IBM's PERSONAL COMPUTER AT and
IBM's PERSONAL SYSTEM/2 Models 25, 30, 50,
50Z, 55SX, 60, 65SX, 70 and 80.
These systems can be classified into two general fami

lies. The first family, usually referred to as Family I
Models, use a bus architecture exemplified by the IBM
PERSONAL COMPUTER AT and other "BM con
patible" machines. The second family, referred to as
Family II Models, use IBM's Micro Channel bus archi
tecture exemplified by IBM's PERSONAL SYS
TEM/2 Models 50 through 80.

SO

55

65

include new hardware and I/O devices. As could be
expected, BIOS started to increase in memory size. For
example, with the introduction of the IBM PER
SONAL COMPUTER AT, BIOS grew to require 32K
bytes of ROM.
Today, with the development of new technology,

personal computer systems of the Family II models are
growing even more sophisticated and are being made
available to consumers more frequently. Since the tech
nology is rapidly changing and new I/O devices are
being added to the personal computer systems, modifi
cation to the BIOS has become a significant problem in
the development cycle of the personal computer sys
ten.
For instance, with the introduction of the IBM Per

sonal System/2 with Micro Channel architecture, a
significantly new BIOS, known as advanced BIOS, or
ABIOS, was developed. However, to maintain software
compatibility, BIOS from the Family I models had to be
included in the Family II models. The Family I BIOS
became known as Compatibility BIOS or CBIOS.
However, as previously explained with respect to the
IBM PERSONAL COMPUTER AT, only 32K bytes
of ROM were resident on the planar board. Fortu
nately, the system could be expanded to 96K bytes of
ROM. Unfortunately, because of system constraints,
this turned out to be the maximum capacity available
for BIOS. Luckily, even with the addition of ABIOS,
ABIOS and CBIOS could still squeeze into 96K of
ROM. However, only a small percentage of the 96K
ROM area remained available for expansion. With the
addition of future I/O devices, CBIOS and ABIOS will
eventually run out of ROM space. Thus, new I/O tech
nology will not be able to be easily integrated within
CBIOS and ABIOS. -
Due to these problems, plus the desire to make modi

fications in Family II BIOS as late as possible in the
development cycle, it became necessary to offload por
tions of BIOS from the ROM. This was accomplished
by storing portions of BIOS on a mass storage device
such as a fixed disk. Since a disk provides writing as

5,128,995
3

well as reading capabilities, it became feasible to modify
the actual BIOS code on the disk. The disk, while pro
viding a fast and efficient way to store BIOS code,
nevertheless greatly increased the probability of the
BIOS code being corrupted. Since BIOS is an integral
part of the operating system, a corrupt BIOS could lead
to devastating results and in many cases to complete
failure and non-operation of the system. Thus, it became
quite apparent that a means for preventing unauthorized
modification of the BIOS code on the fixed disk was
highly desireable, this was the subject matter of U.S.
application Ser. No. 07/398,820, filed Aug. 25, 1989.

In addition to the storing of BIOS on a mass storage
device, storing of system utilities normally contained on
a system reference diskette became highly desirable.
The elimination of the system diskette not only reduces
the price of the system, but provides a more user
friendly environment.

It is appropriate at this time to briefly explain the
purpose of the system utilities previously stored on the
reference diskette. With the introduction of IBM's PS/2
Micro Channel Systems came the removal of switches
and jumpers from I/O adapter cards and planar. Micro
Channel Architecture provided for programmable reg
isters to replace them. Utilities to configure these pro
grammable registers or programmable option select
(POS) registers were required. In addition, other utili
ties to improve system usability characteristics along
with system diagnostics were shipped with each system
on this system reference diskette.

Prior to initial use, each Micro Channel System re
quired its POS registers to be initialized. For example, if
the system is booted with a new I/O card, or a slot
change for an I/O card, a configuration error is gener
ated and the system boot up procedure halts. The user is
then prompted to load the system reference diskette and
press the F1 key. A "Set Configuration Utility" can
then be booted from the system reference diskette to
configure the system. The Set Configuration Utility will
prompt the user for the desired action. If the appropri
ate I/O card's descriptor files are loaded on the system
reference diskette, the Set Configuration Utility will
generate the correct POS or configuration data in non
volatile storage. The descriptor file contains configura
tion information to interface the card to the system.
Although this procedure is fairly easy to perform, the

system reference diskette must be handy or conve
niently stored nearby. It has occurred, after some per
iod of time has elapsed, that the system reference dis
kette has become misplaced. Therefore it has become
highly desireable to store a copy of the system reference
diskette on the mass storage device, along with BIOS,
to improve the usability of the System.

SUMMARY OF THE INVENTION

The present invention has been developed for the
purpose of solving the above mentioned problems. Ac
cordingly, the invention has as one of its objects a
means for storing an image of the system reference
diskette on a direct access storage device in a personal
computer system.
Another objective of the present invention is to im

prove the usability of these systems by providing each
system its own personalized copy of the system refer
ence diskette and configuration files.

Broadly considered, a personal computer system
according to the present invention comprises a system
processor, a random access memory, a read only mem

O

5

25

30

35

45

65

4
ory, and at least one direct access storage device. A
direct access storage device controller coupled between
the system processor and direct access storage device
includes a means for protecting a region of the storage
device. The protected region of the storage device in
cludes a master boot record, a BIOS image and the
system reference diskette image. The BIOS image in
cludes a section known as Power on Self Test (POST).
POST is used to test and initialize a system. Upon de
tecting any configuration error, system utilities from the
system reference diskette image, such as set configura
tion programs, diagnostic programs and utility pro
grams can be automatically activated.

In particular, in response to a reset signal to boot up
the system, the protection means permits access to the
protected region to allow the master boot record to be
loaded into random access memory. In operation, the
master boot record further loads the BIOS image into
random access memory. BIOS, now in random access
memory, is executed and boots up the operating system
to begin operation of the system and BIOS then gener
ates a second signal which activates the protection
means to prevent access to the region on the disk con
taining the master boot record and the BIOS image. If
BIOS (POST) detects an error, BIOS generates a third
signal to disable the protection means and then tries to
boot up a system reference diskette found in a bootable
diskette drive. If there is no system reference diskette
then BIOS boots up the system utilities in the system
partition region.

In particular, the read only memory includes a first
portion of BIOS. The first portion of BIOS initializes
the system processor, the direct access storage device
and resets the protection means to read the master boot
record from the protected region or partition on the
direct access storage device into the randon access
memory. The master boot record includes a data seg
ment and an executable code segment. The data seg
ment includes data representing system hardware and a
system configuration which is supported by the master
boot record. The first BIOS portion confirms the master
boot record is compatible with the system hardware by
verifying the data from the data segment of the master
boot record agrees with data included within the first
BIOS portion representing the system processor, sys
tem planar, and planar I/O configuration.

If the master boot record is compatible with the sys
tem hardware, the first BIOS portion vectors the sys
tem processor to execute the executable code segment
of the master boot record. The executable code segment
confirms that the system configuration has not changed
and loads in the remaining BIOS portion from the direct
access storage device into random access memory. The
executable code segment then verifies the authenticity
of the remaining BIOS portion, vectors the system pro
cessor to begin executing the BIOS now in random
access memory. BIOS, executing in random access
memory, generates the second signal for protecting the
disk partition having the remaining BIOS and then
boots up the operating system to begin operation of the
personal computer system. The partition holding the
remaining BIOS is protected to prevent access to the
BIOS code on disk in order to protect the integrity of
the BIOS code.
However, if either an error or a user initiated diag

nostic boot key sequence is detected by BIOS prior to
booting the operating system, the system reference dis
kette image, if present, will be booted from the system

5,128,995
5

partition. In addition, if a system reference diskette is
detected in diskette drive A, the system reference dis
kette will take precedence over the image in the system
partition and will be booted instead. In these situations,
BIOS will ensure that the protection means are inactive
prior to the Bootstrap Loader turning control over the
the boot record. Thus, the protection means to prevent
access to the region on the disk containing the master
boot record, the BIOS image and the system reference
diskette image will not be active. BIOS then will boot
up the system reference diskette image or the system
reference diskette with the region on the disk open to
access by software.
BRIEF DESCRIPTION OF THE DRAWINGS

The foreground aspects and other features of the
present invention are explained in the following written
description, taken in connection with the accompanying
drawings, wherein:
FIG. 1 illustrates a cut away view of a personal con

puter system showing a system planar board connected
to a plurality of direct access storage devices;
FIG.2 shows a system block diagram for the personal

computer system of FIG. 1;
FIG.3 is a memory map for the ROM BIOS included

on the planar board;
FIG. 4 is a flowchart describing the overall process

for loading a BIOS image from a direct access storage
device;

FIG. 5 illustrates the record format for the master
boot record;
FIG. 6A is a flowchart describing the operation of

the IBL routine;
FIG. 6B is a flowchart showing the steps for loading

a BIOS image from a fixed disk;
FIG. 6C is a flowchart showing the steps for loading

the BIOS image from a diskette;
FIG. 6D is a flowchart showing greater detail in

checking the compatibility between the master boot
record and the planar/processor;

FIG. 7 is a detailed flowchart showing the operation
of the executable code segment of the master boot re
cord;

FIG. 8 is a block diagram for the controller of the
direct access storage device;
FIG. 9 is a flow diagram showing the operation of a

disk controller to protect the IBL media stored on a
disk drive;

FIG. 10 is a flowchart showing a method for protect
ing the BIOS image;

FIG. 11 is a flowchart describing the process for
deciding when to load the system reference diskette
image from a direct access storage device;
FIG. 12 is a flow diagram showing the Bootstrap

Loader booting the correct media including the system
reference diskette image from a direct access storage
device; and

FIG. 13 is a flow diagram showing the modification
to BIOS to enable the treatment of the system partition
as the active partition on a fixed disk.

DESCRIPTION OF A PREFERRED
EMBODIMENT

The following detailed description is of the best pres
ently contemplated mode for carrying out the inven
tion. This description is not to be taken in a limiting
sense but is made merely for the purpose of illustrating

10

15

20

25

30

35

45

55

65

6
the general principles of the invention since the scope of
the invention is best defined by the appending claims.

Referring now to the drawings, and in particular to
FIG. 1, there is shown a cutaway version of a personal
computer system 10, having a plurality of DASD (Di
rect Access Storage Devices) 12-16 connected to a
system or planar board 24 through a plurality of I/O
slots 18. A power supply 22 provides electrical power
to the system 10 in a manner well known. The planar
board 24 includes a system processor which operates
under the control of computer instructions to input,
process, and output information.

In use, the personal computer system 10 is designed
primarily to give independent computing power to a
small group of users or a single user and is inexpensively
priced for purchase by individuals or small businesses.
In operation, the system processor operates under an
operating system, such as IBM's OS/2 Operating Sys
tem or DOS. This type of operating system includes a
BIOS interface between the DASD 12-16 and the Op
erating System. A portion of BIOS divided into mod
ules by function is stored in ROM on the planar 24 and
hereinafter will be referred to as ROM-BIOS. BIOS
provides an interface between the hardware and the
operating system software to enable a programmer or
user to program their machines without an indepth
operating knowledge of a particular device. For exam
ple, a BIOS diskette module permits a programmer to
program the diskette drive without an indepth knowl
edge of the diskette drive hardware. Thus, a number of
diskette drives designed and manufactured by different
companies can be used in the system. This not only
lowers the cost of the system 10, but permits a user to
choose from a number of diskette drives.

Prior to relating the above structure to the present
invention, a summary of the operation in general of the
personal computer system 10 may merit review. Refer
ring to FIG. 2, there is shown a block diagram of the
personal computer system 10. FIG. 2 illustrates compo
nents of the planar 24 and the connection of the planar
24 to the I/O slots 18 and other hardware of the per
sonal computer system. Located on the planar 24 is the
system processor 26 comprised of a microprocessor
which is connected by a local bus 28 to a memory con
troller 30 which is further connected to a random access
memory (RAM) 32. While any appropriate micro
processor can be used, one suitable microprocessor is
the 80386 which is sold by Intel.
While the present invention is described hereinafter

with particular reference to the system block diagram
of FIG. 2, it is to be understood at the outset of the
description which follows, it is contemplated that the
apparatus and methods in accordance with the present
invention may be used with other hardware configura
tions of the planar board. For example, the system pro
cessor could be an Intel 80286 or 80486 microprocessor.

Accessible by the processor is a planar identification
number (planar ID). The planar ID is unique to the
planar and identifies the type of planar being used. For
example, the planar ID can be hardwired to be read
through an I/O port of the system processor 26 or by
using switches. Additionally, another I/O port of the
system processor 26 can be used to generate a reset
signal using planar logic circuitry to the disk controller.
For instance, the reset signal can be initiated by soft
ware addressing the I/O port and activating planar
logic to generate the reset signal.

5,128,995
7

The local bus 28 is further connected through a bus
controller 34 to a read only memory (ROM) 36 on the
planar 24. An additional nonvolatile memory
(NVRAM) 58 is connected to the microprocessor 26
through a serial/parallel port interface 40 which is fur
ther connected to bus controller 34. The nonvolatile
memory can be CMOS with battery backup to retain
information whenever power is removed from the sys
tem. Since the ROM is normally resident on the planar,
model and submodel values stored in ROM are used to
identify the system processor and the system planar I/O
configuration respectively. Thus these values will phys
ically identify the processor and planar I/O configura
to.

The NVRAM is used to store system configuration
data. That is, the NVRAM will contain values which
describe the present configuration of the system. For
example, NVRAM contains information describing the
capacity of a fixed disk or diskette, the type of display,
the amount of memory, time, date, etc. Additionally,
the model and submodel values stored in ROM are
copied to NVRAM whenever a special configuration
program, such as SET Configuration, is executed. The
purpose of the SET Configuration program is to store
values characterizing the configuration of the system in
NVRAM. Thus for a system that is configured prop
erly, the model and submodel values in NVRAM will
be equal respectively to the model and submodel values
stored in ROM. If these values are not equal, this indi
cates that the configuration of the system has been mod
ified. Reference is made to FIG. 6D, where this feature
in combination with loading BIOS is explained in
greater detail.

Continuing, our discussion with reference to FIG.2,
the bus controller 34 is further coupled to I/O slots 18,
the serial/parallel interface 40 and peripheral controller
42 by an I/O planar bus 43. The peripheral controller 42
is further connected to a keyboard 44, mouse 46, diag
nostic panel 47, and diskette controller 64. Beside the
NVRAM 58, the serial/parallel interface 40 is further
connected to a serial port 48 and parallel port 50 to
input/output information to a printer, hard copy device,
etc. As is well known in the art, the local bus 28 can also
be connected to a cache controller 52, a cache memory
68, a co-processor 54, and a DMA controller 56. w
The system processor 26 controls its internal opera

tion as well as interfacing with other elements of the
personal computer system 10. For example, system
processor 26 is shown connected to a small computer
system interface (SCSI) I/O card 60 which is further
connected to a DASD, such as a fixed disk drive 62. It
is to be understood that other than a SCSI disk drive
can be used as a fixed disk in accordance with the pres
ent invention. In addition to the fixed disk 62, the sys
ten processor 26 can be interfaced to the diskette con
troller 64 which controls a diskette drive 66. With re
spect to terminology, it is also to be understood that the
term "hard file' describes fixed disk drive 62 while the
term "floppy" also describes diskette drive 66.

Previous to the present invention, ROM 36 could
include all of the BIOS code which interfaced the oper
ating system to the hardware peripherals. According to
one aspect of the present invention, however, ROM 36
is adapted to store only a portion of BIOS. This portion,
when executed by the system processor 26, inputs from
either the fixed disk 62 or diskette 66 a second or re
maining portion of BIOS, hereinafter also referred to as
a BIOS image. This BIOS image supersedes the first

O

15

20

8
BIOS portion and being an integral part of the system is
resident in main memory such as RAM. 32. The first
portion of BIOS (ROM-BIOS) as stored in ROM 36
will be explained generally with respect to FIGS. 3-4
and in detail with respect to FIGS. 6A-D. The second
portion of BIOS (BIOS image) will be explained with
respect to FIG. 5, and the loading of the BIOS image
with respect to FIG. 7. Another benefit from loading a
BIOS image from a DASD is the ability to load BIOS
directly into the system processor's RAM 32. Since
accessing RAM is much faster than accessing ROM, a
significant improvement in the processing speed of the
computer system is achieved. An additional advantage
is also gained by storing system utilities on the DASD.
When a condition for the usage of the system utilities is
required, the system utility can automatically be refer
enced on the DASD.
The explanation will now proceed to the operation of

the BIOS in ROM 36 and to the operation of loading the
BIOS image and system reference diskette image from
either the fixed disk or diskette. In general, a first pro
gram such as ROM-BIOS prechecks the system and

25

30

35

40

45

60

65

loads a BIOS master boot record into RAM. The master
boot record includes a data segment having validation
information and, being a loading means, a code segment
having executable code. The executable code uses the
data information to validate hardware compatibility and
system configuration. After testing for hardware com
patibility and proper system configuration, the execut
able code loads the BIOS image into RAM producing a
main memory resident program. The BIOS image suc
ceeds ROM-BIOS and loads the operating system to
begin operation of the machine. For purposes of clarity,
the executable code segment of the master boot record
will be referred to as MBR code while the data segment
will be referred to as MBR data.

Referring to FIG.3 there is a memory map showing
the different code modules which comprise ROM
BIOS. ROM-BIOS includes a power on self test
(POST) stage I module 70, an Initial BIOS Load (IBL)
Routine module 72, a Diskette module 74, a hard file
module 76, a video module 78, a diagnostic-panel mod
ule 80, and hardware compatibility data 82. Briefly,
POST Stage 70 performs system pre-initialization and
tests. The IBL routine 72 determines whether the BIOS
image is to be loaded from disk or diskette, checks com
patibility and loads the master boot record. Diskette
module 74 provides input/output functions for a dis
kette drive. Hardfile module 76 controls I/O to a fixed
disk or the like. Video module 78 controls output func
tions to a video I/O controller which is further con
nected to a video display. Diagnostic panel module 80
provides control to a diagnostic display device for the
system. The hardware compatibility data 82 includes
such values as a system model and submodel values
which are described later with respect to FIG. 5.

Referring now to FIG. 4, there is shown a process
overview for loading a BIOS image into the system
from either the fixed disk or the diskette. When the
system is powered up, the system processor is vectored
to the entry point of POST Stage I, step 100. POST
Stage initializes the system and tests only those system
functions needed to load BIOS image from the selected
DASD, step 102. In particular, POST Stage I initializes
the processor/planar functions, diagnostic panel, mem
ory subsystem, interrupt controllers, timers, DMA sub
system, fixed disk BIOS routine (Hardfile module 76),

5,128,995
9

and diskette BIOS routine (Diskette module 74), if nec
essary.

After POST Stage I pre-initializes the system, POST
Stage I vectors the system processor to the Initial BIOS
Load (IBL) routine included in the Initial BIOS Load
module 72. The IBL routine first, determines whether
the BIOS image is stored on fixed disk or can be loaded
from diskette; and second, loads the master boot record
from the selected media (either disk or diskette) into
RAM, step 104. The master boot record includes the
MBR data and the MBR code. The MBR data is used
for verification purposes and the MBR code is executed
to load in the BIOS image. A detailed description of the
operation of the IBL routine is presented with respect
to FIGS. 6A-D.
With continuing reference to FIG. 4, after the IBL

routine loads the master boot record into RAM, the
system processor is vectored to the starting address of
the MBR code to begin execution, step 106. The MBR
code performs a series of validity tests to determine the
authenticity of the BIOS image and to verify the config
uration of the system. For a better understanding of the
operation of the MBR code, attention is directed to
FIG. 7 of the drawings wherein the MBR code is de
scribed in greater detail. On the basis of these validity
tests, the MBR code loads the BIOS image into RAM
and transfers control to the newly loaded BIOS image
in main memory, step 108. In particular, the BIOS
image is loaded into the address space previously occu
pied by ROM-BIOS. That is if ROM-BIOS is addressed
from E0000H through FFFFFH, then the BIOS image
is loaded into this RAM address space thus superseding
ROM-BIOS. Control is then transferred to POST Stage
II which is included in the newly loaded BIOS image
thus abandoning ROM-BIOS. POST Stage II, now in
RAM, initializes and tests the remaining system in order
to load the operating system boot, steps 110-114. Before
Stage II POST transfers control to the operating sys
tem, Stage II POST sets a protection means for prevent
ing access to the disk partition holding the BIOS image.
However, if an error is detected, Stage II POST can
disable the protection means and invoke the system
utilities in the system reference diskette image on the
disk. Reference is made to FIGS. 8-10 for a detailed
discussion of this protection process. It is noted that
during a warm start, the processor is vectored to step
108, bypassing steps 100-106.

For clarity, it is appropriate at this point to illustrate
a representation for the format of the master boot re
cord. Referring to FIG. 5, there is shown the master
boot record. The boot record includes the executable
code segment 120 and data segments 122-138. The
MBR code 120 includes DASD dependent code respon
sible for verifying the identity of the ROM-BIOS,
checking that the IBL boot record is compatible with
the system, verifying the system configuration, and
loading the BIOS image from the selected DASD (disk
or diskette). The data segments 122-138 include infor
mation used to define the media, identify and verify the
master boot record, locate the BIOS image, and load
the BIOS image.
The master boot record is identified by a boot record

signature 122. The boot record signature 122 can be a
unique bit pattern, such as a character string "ABC", in
the first three bytes of the record. The integrity of the
master boot record is tested by a checksum value 132
which is compared to a computed checksum value
when the boot record is loaded. The data segments

O

5

20

25

30

35

45

SO

55

65

10
further include at least one compatible planar ID value
134, compatible model and submodel values 136. The
master boot record's planar ID value defines which
planar that the master boot record is valid for. Sini
larly, the master boot record's model and submodel
values define the processor and planar I/O configura
tion respectively that the master boot record is valid
for. It is noted that the boot record's signature and
checksum identify a valid master boot record, while the
boot record's planar ID, boot record's model and boot
record's submodel comparisons are used to identify a
boot record compatible with the system and to deter
mine if the system configuration is valid. Another value,
boot record pattern 124 is used to determine the validity
of the ROM-BIOS. The boot record pattern 124 is com
pared to a corresponding pattern value stored in ROM.
If the values match this indicates that a valid ROM
BIOS has initiated the load of a BIOS image from the
selected media.
The following description further describes in greater

detail each of the values in the master boot record and
their functions: MBR Identifier (122): The first three
bytes of the IBL boot record can consist of characters,
such as "ABC". This signature is used to identify a boot
record.
MBR Code Segment (120): This code verifies the

compatibility of the boot record with the planar and
processor by comparing corresponding planar id and
model/submodel values. If these values match, it will
load the BIOS image from the chosen media to system
RAM. If the system image (BIOS image loaded into
memory) checksum is valid and no media load errors
occur, the MBR code will transfer control to the POST
Stage II routine of the system image.
MBR Pattern (124): The first field of the IBL boot

record data segment contains a pattern, such as a char
acter string "ROM-BIOS 1990". This string is used to
validate the ROM-BIOS by comparing the Boot Pat
tern value to the corresponding value stored in ROM
(ROM-Pattern).
MBR Version Date (126): The master boot record

includes a version date for use by an update utility. .
System Partition Pointer (128): The data segment

contains a media pointer to the beginning of the media
system partition area for use by Stage II POST. On an
IBL diskette, the pointer is in track-head-sector format;
on disk the pointer is in Relative Block Address (RBA)
format.
System Partition Type (130): The system partition

type indicates the structure of the media system parti
tion. There are three types of system partition struc
tures-full, minimal and not present. The full system
partition contains the setup utility and diagnostics in
addition to the BIOS image and master boot record.
The minimal system partition contains just the BIOS
image and master boot record. It may occur where a
system does not have access to a hardfile having an IBL
image, in this circumstance the system partition type
indicates not present. In this instance, IBL will occur
from the diskette. These three system partition types
allow flexibility in how much space the system partition
takes up on the media.
Checksum value (132): The checksum value of the

data segment is initialized to generate a valid checksum
for the record length value (1.5k bytes) of the master
boot record code.
MBR Planar ID Value (134): The data segment in

cludes a value, such as a string of words defining com

5,128,995
11

patible planar IDs. Each word is made up of a 16 bit
planar ID and the string is terminated by word value of
zero. If a system's planar ID matches the planar ID
value in the master boot record, such as one of the
words in the string, the IBL media image is compatible
with the system planar. If the system's planar ID does
not match any word in the string, the IBL media image
is not compatible with the system planar.
MBR model and submodel values (136): The data

segment includes values, such as a string of words defin
ing compatible processors. Each word is made up of a
model and submodel value and the string is terminated
by a word value of zero. If a system's model and sub
model value (stored in ROM) match one of the words in
the string, the IBL media image is compatible with the
system processor. If the ROM model and ROM sub
model values do not match any word in the string, the
IBL media image is not compatible with the system
processor.
MBR Map length (138): The IBL map length is ini

tialized to the number of media image blocks. In other
words, if the BIOS image is broken into four blocks, the
map length will be four indicating four block pointer/-
length fields. Usually this length is set to one, since the
media image is one contiguous 128k block. MBR Media
Sector Size (138): This word value is initialized to the
media sector size in bytes per sector.
Media image block pointer (138): The media image

block pointer locates a system image block on the me
dia. Normally, there is only one pointer since the media
image is stored as one contiguous block. On an IBL
diskette, the pointers are in track-head-sector format; on
disk the pointers are relative block address format.
Media image block length (138): The media image

block length indicates the size (in sectors) of the block.
located at the corresponding image block pointer. In the
case of a 128k contiguous media image, which includes
space for BASIC, this field is set to 256, indicating that
the BIOS image block takes up 256 sectors (512 bytes/-
sector) starting at the media image block pointer loca
tion.

Referring now to FIGS. 6A-D, there is shown a
detailed flow chart of the operation of the IBL routine.
Under normal circumstances, the IBL routine loads the
master boot record from the system fixed disk into
RAM at a specific address and then vectors the system
processor to begin executing the code segment of the
master boot record. The IBL routine also contains pro
visions for a diskette default mode in which the master
boot record can be loaded from diskette. However, the
BL routine does not allow the diskette default mode to

be performed if the system contains the IBL media on
the system fixed disk and a valid password is present in
NVRAM. The user has the option of setting the pass
word in NVRAM. The purpose of preventing the dis
kette default mode from being effected is to prevent
loading an unauthorized BIOS image from diskette In
other words, the diskette default mode is used only
when a system fixed disk is not operational and the user
has indicated (by not setting the password) the desire to
be able to load from the diskette. If the BL routine is
not able to load the master boot record from either
media, an error message is generated and the system is
halted.

Referring now to FIG. 6A, under normal circum
stances the system will contain a system fixed disk
which the IBL routine initializes, step 150. Assume for
purposes of illustration that the fixed disk is configured

5

O

15

20

25

30

35

45

55

12
for Drive C of the personal computer system. Similarly,
assume Drive A is designated as the diskette drive. The
IBL routine then examines Drive C to determine
whether it contains IBL media, step 152. Attention is
directed to FIG. 6B which describes in detail this pro
cess. The IBL routine starts reading from the fixed disk
at the last three sectors and continues reading, decre
menting the media pointer, for 99 sectors or until a valid
master boot record is found. If a master boot record is
found, it is checked for system planar and processor
compatibility, step 156. If it is not planar or processor
compatible, then an error is reported, step 158. Refer
ring back to step 152, if no master boot record is found
on the last 99 sectors of the fixed disk (primary hardfile),
an error is reported, step 154.

Referring back to step 156, if a master boot record is
found, a series of validity checks are performed to de
termine if the master boot record is compatible with the
computer system. Additionally, the configuration of the
system is checked. Attention is directed to FIG. 6D
which discloses this process in greater detail. If the boot
record is compatible with the planar ID, model and
submodel, and if furthermore the system configuration
has not changed the master boot record is loaded and
the code segment of the master boot record is executed,
step 160.

Referring back to steps 154 and 158, if an error occurs
in loading the master boot record from the fixed disk or
if a fixed disk is not available, the IBL routine deter
mines if a valid password is included in NVRAM, step
162. This password determines whether the BIOS
image can be loaded from diskette. Note that the pass
word will exist only upon being installed by the user
running a set features utility. If a password is installed in
NVRAM, the BIOS image is prevented from being
loaded from diskette, step 164. This permits the user to
ensure the integrity of the operation of the system by
causing the system to be loaded only with the BIOS
image on the fixed disk. The password can take the form
of a string of characters stored in NVRAM.

Referring back to step 162, if a valid password in
NVRAM is not present, thus allowing BIOS image to
be loaded from diskette, the IBL routine initializes the
diskette subsystem, step 166. The IBL routine then
determines if Drive A includes the IBL media on a
diskette, step 168. If Drive A does not include IBL
media, an error is generated to notify the user that an
invalid diskette has been inserted in the drive, step 170.
The system then halts, step 172. Attention is directed to
FIG. 6C for a more detailed discussion of step 168.

Referring back to step 168, after Drive A is checked
for IBL media, the master boot record is loaded into
RAM and the code segment included in the master boot
record is executed, step 160. It is important to note that
for diskette the IBL routine does not include the valid
ity checks that are used with the fixed disk system. The
reason for the absence of the validity checks is for load
ing a non-compatible IBL image from diskette. For
example, if a new processor is added to the system, a
new BIOS image will be included on a diskette. Since a
new processor will cause validity errors when loading
from fixed disk, the IBL routine provides the ability to
bypass these tests by loading the BIOS image from
diskette.
To recapitulate, the master boot record is checked for

compatibility with the system through matching the
system planar ID and processor model/submodel val
ues to the boot record values. For disk, this check is

5,128,995
13

done first in the IBL routine 72 and then done again in
the IBL boot record. The first check (in the IBL rou
tine) is done to make sure the boot record is compatible
with the system; the second check (in the boot record)
is done to ensure a compatible ROM passed control to
the boot record. Notice that the check done in the disk
boot record will never fail for a compatible ROM since
the IBL routine will have already checked the compati
bility. In contrast, the first compatibility check is not
done for diskette. The planar/processor compatibility is
checked only during diskette boot record execution.
This method allows future modifications in loading a
new BIOS image from a reference diskette.

In view of the description of the IBL routine of FIG.
6A, the explanation will now proceed to a comprehen
sive and full understanding of the validity tests dis
cussed above. Referring to FIG. 6B, there is shown a
detailed flowchart of step 152 of FIG. 6A, to determine
if a valid master boot record is on drive C. The process
begins by obtaining the drive parameters to enable the
IBL routine to access drive C, step 200. An IBL load
location is set to the last three sectors from the disk (the
last three sectors normally contain the master boot re
cord), step 202. A load count indicating the number of
attempts to read a master boot record from disk is set to
l, step 204. Three sectors are read from disk at the IBL
load location, step 206. Any disk drive errors are de
tected and if a disk drive read error occurs it is reported,
steps 208-210. The process then returns with an error
indication, steps 212-214.

Referring back to step 208, if no drive error occurs,
the disk record is scanned for the master boot record
signature, step 216. The boot record signature, such as
the characters "ABC", are compared to the first three
bytes of the disk record. If the disk record does have a
valid boot record signature (characters "ABC") and the
checksum computed from the disk record loaded into
memory equals the boot record checksum, the disk
record is indicated as being a valid boot record with no
errors, step 218. The process then returns, step 214.

Referring back to step 216, if the boot record signa
ture or checksum is invalid, the load count is incre
mented by 1, step 220. The load count is then compared
to a predetermined constant such as 99, step 222. If 99
attempts to read a boot record have resulted in failure,
an error is indicated and the process returns, steps 224,
212 and 214. If less than 99 attempts to read a boot
record have occurred, the IBL load location is decre
mented by one and three new sectors are read from the
new load location, steps 226 and 206. Thus if a valid
IBL boot record cannot be loaded from the last 99
sectors (equivalent to 33 copies) then an error condition
is set and control returns to the IBL routine.

Referring now to FIG. 6C, there is shown a detailed
flow diagram for loading the master boot record from
diskette on drive A. First, the diskette drive parameters
to access drive A are retrieved, step 230. The IBL load
location is set to the last 3 sectors on diskette (cylinder,
head and sector format), step 232. The last 3 sectors are
read, step 234. If a diskette drive error is detected an
error is indicated, steps 236-238. An error condition is
set and control is returned to the IBL routine, steps
240-242.

Referring back to step 236, if no drive error is de
tected, the diskette record is checked for boot record
signature and the checksum is calculated, step 244. If
the boot record signature is missing or checksum is
invalid, an error is indicated and control returned to the

5

O

15

20

25

30

35

45

SO

55

65

14
IBL routine, steps 244, 246, 240 and 242. If a valid boot
record signature and valid checksum are detected an
indication is set and control is returned to the IBL rou
tine, steps 248 and 242. It is noted that in a diskette load,
the IBL routine does not search through the media as in
the fixed disk load. Therefore, in a diskette load, the
IBL media must be stored in a specific location of the
diskette.

Finally, FIG. 6D shows how the IBL routines tests
for system planar and processor compatibility and for a
proper system configuration. The master boot record is
checked for compatibility with the system planar by
comparing the boot record planar ID value to the sys
templanar ID read by the system processor, step 260. If
the system planar ID does not match the boot record
planar ID value, this indicates this master boot record is
not compatible with this planar. An error is indicated
and control returns to the IBL routine, steps 262, 264,
and 266.

If the master boot record is compatible with the pla
nar, the master boot record is checked for compatibility
with the processor, step 268. The boot record model
value and submodel value are compared to the model
value and submodel value stored in ROM respectively.
A mismatch indicates a new processor has probably
been inserted and this boot record is not compatible
with the new processor. An error is indicated and con
trol returned to the IBL routine, steps 270,264 and 266.
If the master boot record is compatible with the planar
and processor, the process checks to determine if
NVRAM is reliable, step 272. If NVRAM is unreliable,
an error is indicated and control returned to the IBL
routine, steps 274 and 266. If NVRAM is reliable, the
system configuration is checked, step 276. A change in
system configuration is indicated if the model and sub
model values stored in NVRAM do not match the
model and submodel values stored in ROM. Note that
this last comparison will only indicate a configuration
error. If a configuration error is indicated, an error is
generated for the user. This error notifies the user that
the configuration of the system has changed since the
last time SET Configuration was run. The user is noti
fied of the changed configuration and control passed
back to the IBL routine steps 278, 264, and 266. This
error is not fatal itself, but notifies the user that SET
Configuration (configuration program) must be exe
cuted. Referring back to step 276, if the system model/-
submodel values match, an indication of comparability
is set and the routine returns, steps 276, 274 and 266.
Thus, the compatibility between the master boot record
and the system are tested along with determining if the
system configuration has been modified.

After the IBL routine loads the master boot record
into RAM, it transfers control to the MBR code starting
address. Referring to FIG. 7, the executable code seg
ment of the master boot record first verifies the boot
record pattern to the ROM pattern, step 300. If the
pattern in the master boot record does not match the
pattern in ROM, an error is generated and the system
halts, steps 302 and 305. The check for equality between
ROM and boot record patterns ensures that the master
boot record loaded from either the disk or diskette is
compatible with the ROM on the planar board. Refer
ring back to step 300, if the pattern in ROM matches the
pattern in the boot record, the MBR code compares the
system planar ID value, model and submodel value
against the corresponding master boot record values,
step 304. This process was discussed in greater detail

5,128,995
15

with respect to FIG. 6D. If the values don't match, the
master boot record is not compatible with the system
planar and processor, or the system configuration has
changed, and an error is generated, step 306. The sys
ten will halt when the IBL record is incompatible with 5
planar, model or submodel values, step 305.

Referring back to step 304, if the system planar ID
value, model and submodel values match the corre
sponding master boot record values, the MBR code
loads the BIOS image from the selected media into the 10
system RAM, step 308. If a media load error occurs in
reading the data, step 310, an error is generated and the
system halts, steps 312 and 305. Referring back to step
310, if no media load error occurs, a checksum is calcu
lated for the BIOS image in memory, step 314. If the 15
checksum is invalid an error is generated and the system
halts, steps 318 and 305. Referring back to step 316, if
the checksum is valid, the system partition pointers are
saved, step 320, and the system processor is vectored to
POST Stage II to begin loading the system, step 322. 20

Referring to FIG. 8, there is shown a block diagram
of an intelligent disk controller 350 for controlling
movement of data between the disk drive 351 and the
system processor. It is understood that disk controller
350 can be incorporated into the adapter card 60 while 25
disk drive 351 can be included onto drive 62 of FIG. 2.
A suitable disk controller 350 is a SCSI Adapter having
a part number of 33F8740, which is manufactured by
International Business Machines Corporation. It is un
derstood that the disk controller 350 includes a micro- 30
processor 352 operating under its own internal clock,
for controlling its internal operations as well as its inter
facing with the other elements of the disk subsystem and
the system processor. The microprocessor 352 is cou
pled by a instruction bus 354 to a read only memory 35
(ROM) 356 which stores instructions which the disk
controller 350 executes to process and control the
movement of data between the disk drive and the sys
tem processor. It is also understood that disk controller
350 can include random access memory coupled to 40
microprocessor 352 for the storage or retrieval of data.
The movement of data between disk controller 350 and
the system processor is effected by data bus 358 and
instruction bus 360. A reset signal on line 362 resets or
initializes the disk controller logic upon power-on se- 45
quence or during a system reset. The reset signal is
generated by the planar board logic, and can take the
form of a channel reset signal as provided by IBM's
Micro Channel architecture as described in "IBM PER
SONAL SYSTEM/2 Seminar Proceedings", Volume 50
5, Number 3, May 1987 as published by the Interna
tional Business Machines Corporation Entry Systems
Division. Furthermore, the reset signal can be effec
tively initiated by BIOS outputting a particular bit con
figuration to an I/O port of the system processor in 55
which the planar logic is connected.
As is well known, the microprocessor 352 provides

all the interfacing and timing signals to effect the effi
cient transfer of data between the disk drive and the
system processor. For clarity, only those signals impor- 60
tant for the understanding of the invention are pres
ented. It is understood that other signals and lines, such
as data bus 364, are used but are not presented here since
they are not important for the understanding of the
present invention. It is further understood that only 65
those programs or routines as stored in ROM 356 im
portant for the understanding of the present invention
are explained with respect to FIG. 9.

16
Referring now to FIG. 9, there is shown a flowchart

diagramming the read, write, and protect functions of
the disk controller which are effected by the operation
of routines stored in ROM 356. In operation, a disk
instruction is initiated by the system processor and
transferred to the disk controller 350. The disk control
ler receives and interprets the instruction to perform the
designated operation, step 400. The disk controller first
determines if this is a write operation in which data
from the system processor are stored on the disk drive
hardware, step 402. If the instruction is a write instruc
tion, data are received from the system processor in
relative blockaddress (RBA) format.

Prior to continuing the discussion above, a brief ex
planation of the relative block address format applied to
a mass storage device, such as a disk, may merit review.
RBA is a scheme in which data in mass storage are
addressed in predetermined sized blocks by sequential
numbers, i.e. individual definable contiguous blocks of
data. For example, assuming a block size of 1024 bytes,
the system processor can approximately address 10,000
blocks for a 10 megabyte disk. That is, the system pro
cessor can address the disk media in terms of N blocks
where N ranges from 0 to 9,999. It has been discovered,
that the use of RBA provides a very fast and efficient
method for addressing mass storage in the type of oper
ating systems used for personal computer systems of the
present invention.
For conveniencesake, the following assumptions will

be introduced: first, the disk can support a total of N
blocks; second, the system processor transfers a K
block, where K is greater than or equal to 0 and is less
than or equal to (N-1); third, the disk controller can set
a maximum addressable block M which permits access
to data blocks where K is less than M and denies access
to data blocks where K is greater than or equal to M.
Note, by setting M. less than N a protectable region on
the disk is generated from M to N-1 blocks. This fea
ture permits the IBL media to be protected as will be
discussed below.

Continuing our discussion with reference to FIG. 9,
the data are received from the disk in RBA format, step
404. The disk controller then determines if the received
block K is less than the maximum block value M, where
M is less than N, step 406. If K is less than M then the
disk controller converts the RBA format into the partic
ular format for the mass storage device, such as cylin
der-head-sector (CHS) format for a fixed disk, step 408.
For instance, the disk controller by using a look up table
could convert RBA addresses to unique cylinder-head
sector location. Another method is the use of a conver
sion formula to convert RBA to CHS. For example, for
a disk having one head, 64 cylinders, and 96 sectors:
Head=0, cylinders = quotient of RBA/(96), and sec
tors = remainder of RBA/(96). After converting the
RBA format to a CHS format the data are written to
disk at the converted CHS location, step 410. The disk
controller then waits for another instruction from the
system processor, step 412.

Referring back to step 406, if the received RBA is
greater than the maximum set RBA value, access is
denied, step 414. That is if K is greater than or equal to
M, the K block is not written to the disk. Please note, if
the IBL media is stored in the blocks from M to N-1,
then the IBL media will be protected from writing.

Referring back to step 402, if the instruction from the
system processor is not a write instruction, it is tested
for being a read instruction, step 416. If the instruction

5,128,995
17

is a read instruction, the system processor sends the
RBA format for the data requested, step 418. The disk
controller then determines if the desired RBA (K) is less
than the maximum set RBA (M). If the desired RBA
(K) is less than the maximum set RBA (M), then the disk
controller converts the RBA to the appropriate CHS
format and reads the data from the disk, steps 422 and
424. The data are then transferred to the system proces
sor, step 412.

Referring back to step 420, if the received RBA (K)
is greater than or equal to the maximum set RBA (M),
access is denied, step 426. If the IBL media is stored
between M blocks and (N-1) blocks, access is denied
to this area. Please note, that in this circumstance, the
IBL media is also protected from copying.

Referring back to step 416, if the instruction is not a
write or read instruction, it is tested for a set maximum
RBA instruction, step 428. This instruction allows the
disk controller to create a protectable area or partition
on the disk drive hardware. This instruction allows the
disk controller to set M between 0 and N blocks, step
430. It is important to note that when the disk controller
is reset (through the reset signal) that M is set so that the
maximum number of blocks are available. That is, when
the disk controller is reset, M=N. Essentially, protec
tion for the protectable area is eliminated upon resetting
the disk controller, allowing access to the area. How
ever, once the set maximum RBA instruction is exe
cuted only a reset or another set maximum RBA in
struction will allow access to the protectable area. Con
ceptually, the setting of the maximum RBA can be
thought of as setting a fence which protects access to
the area above the fence while allowing access to the
area below the fence. The disk controller then returns
to wait for another instruction, step 412,

Referring back to step 428, if the instruction is not a
read, write, or set maximum RBA instruction, it is
tested for another disk controller instruction and exe
cuted, step 432. These instructions will use the set maxi
mum RBA value but are not important for the under
standing of the present invention and are not presented
here for brevity purposes. The disk controller then
returns to wait for another instruction, step 412.
The explanation will now proceed to the operation of

the loading in and protecting the IBL media in view of
the proceeding discussion. In general, from either a cold
start (power-on) or a warm start (Ctrl-Alt-Del), the disk
controller having the IBL media is reset. This causes
the maximum RBA (M) to be set to N, i.e. the fence is
removed allowing access to the IBL media. This is
required to allow the system to load the IBL media to
begin operation. Once the IBL media is loaded and
executed the fence is erected (set maximum RBA below
IBL media) to prevent access to the IBL media stored
on disk.

Referring now to FIG. 10, there is shown a block
flow diagram effecting the protection of the IBL media.
From a power-on condition the system is initialized and
BIOS initiates activity in planar board logic to send a
reset condition to the disk controller, steps 450 and 452.
The reset signal drops the fence and allows the system
processor to access the IBL media previously stored on
the disk in the area from M blocks to N blocks. The
system loads the IBL media as previously described
with reference to FIG. 4-7, step 454. During the IBL
loading sequence Post Stage II is executed, step 456.
One of the tasks of POST Stage II is to execute the set
maximum RBA instruction with the maximum RBA set

O

5

20

25

30

35

45

50

55

60

65

18
to the first block of the IBL media which is designated
as M, step 458. M is dependent upon partition type
(none, partial or full) as previously explained. This in
effect sets the fence denying access to the IBL media
while allowing access to other regions of the disk. The
operating system is then booted up in a normal fashion,
step 460.

If the system is started from a warm start condition,
such as Ctrl-Alt-Del, the planar logic is commanded to
reset the disk controller by POST Stage II, steps 462
and 464. This causes the fence to be dropped. In this
circumstance, since the IBL media is already present in
RAM, the IBL media is not loaded again. However,
since the protection for the IBL media is eliminated
POST Stage II must be executed to reset the fence,
steps 456 and 458. The fence is erected protecting the
IBL media and the system is then rebooted in a normal
manner, step 460.
The IBL media is protected by addressing mass stor

age in blocks and setting a maximum block the system
can access during normal operation. The IBL media is
stored consecutively in those blocks between the maxi
mum block accessible and the total number of blocks
supported by the disk drive. A reset signal sent to the
disk controller eliminates the maximum block accessible
to permit the system to address the IBL media. The
reset signal is generated during a power-on condition or
a warm-start condition to permit access to the IBL
media to boot up the system.

Referring now to FIG. 11, the flowchart describes
the process by which POST Stage II follows to load the
system reference diskette image from the system parti
tion on the fixed disk 62. Prior to booting an operating
system, such as DOS or IBM's OS/2, POST will ascer
tain the type of system partition present on the IBL
media, step 500. POST will then query the fixed disk 62
for the value of the last block address, step 502. POST
will then adjust the value obtained as the last block
address to account for the size of the system partition,
step 504. This is done by subtracting from the physical
last block address of the fixed disk 62 the amount of
blocks in the system partition. POST saves the adjusted
value as the logical last block address, step 506. By
doing so POST has provided BIOS a mechanism to
boot from the system partition instead of the beginning
of the fixed disk partition. Reference is made to FIG. 13
for a more detailed discussion of the above.

Proceeding further, with respect to FIG. 11, POST
Stage II examines, the current contents of the POST
Path Flag, step 508. The POST Path Flag is one mecha
nism used by POST to keep track of the type of path
through POST. For example, an initial power on path
versus a warm reboot path. A warm reboot is typically
enabled by a Ctrl-Alt-Del keystroke sequence. If the
current value of the POST Path Flag indicates override
system partition boot procedures, POST Stage II sets
the System Partition Boot Flag to false, indicating not
to boot the system partition, step 510. POST Stage II
then protects the system partition by instructing BIOS
to activate the protection means on the boot fixed disk
based on the value calculated in step 506, step 511. That
is, the fence is set to address pointer calculated in step
506. Thus, the system partition is protected to prevent
inadvertent destruction. Afterwards, POST Stage II
invokes the Bootstrap Loader, INT 19H, to initiate
operating system boot, step 512.

Referring back to step 508, if the POST Path Flag
does not indicate an override of the system partition

19
boot sequence, then the POST Path Flag is examined
for a warm boot path, POST indicating a Ctrl-Alt-Del
key sequence was entered, step 520. If the Path Flag
does not indicate a warm boot, POST Stage II deter
mines if any errors were detected during a cold startup
execution, step 522. If no errors were detected, POST
Stage II sets a flag indicating not to boot the System
Partition, step 510. POST Stage II now protects the
system partition by instructing BIOS to activate the
protection means as shown in step 511, followed by
invoking the Bootstrap Loader, step 512.

Referring back to step 522, if POST Stage II detects
any errors during its execution, it sets the System Boot
Partition Flag to true, step 526. POST Stage II then
protects the system partition by instructing BIOS to
activate the protection means as shown in step 511.
Afterwards, POST Stage II invokes the Bootstrap
Loader 512 to initiate the operating system boot.

Referring back to step 520, if Ctrl-Alt-Del key se
quence was entered, POST Stage II checks to see if the
user has entered the keystroke sequence Ctrl-Alt-Ins.
The Ctrl-Alt-Ins keystroke instruction invokes the
booting of the system reference diskette image 524. This
sequence permits a user to force a bootup procedure
from the system partition. If not, POST Stage II sets the
System Partition Boot Flag to false and protects the
system partition by instructing BIOS to activate the
protection means as shown in step 511. Afterwards,
POST Stage II invokes the Bootstrap Loader, INT
19H, to initiate operating system boot, step 512.

Referring back to step 524, if POST Stage II detects
the user entered keystroke sequence of Ctrl-Alt-Ins, it
sets the System Partition Boot Flag to true, indicating
boot the system partition, step 526. POST Stage II then
protects the system partition by instructing BIOS to
activate the protection means as shown in step 511;
followed by invoking the Bootstrap Loader, step 512.
At this point, POST Stage II has established if either

a normal boot sequence or a boot of the system refer
ence diskette image in the system partition is to occur.
Also, POST has established the beginning of the system
partition as though it is a logical bootable partition and
has activated the protection means to prevent access to
the system partition by a program not considered to be
trusted. A logical bootable partition appears to POST as
the first partition on the disk and is therefore bootable.
POST Stage II now invokes the Bootstrap Loader.
The Bootstrap Loader is used to select the appropri

ate boot device and read in the boot record from the
active partition. The priority of the boot drives are the
first diskette drive followed by the first fixed disk, such
as the boot fixed disk. However, the priority of the
default boot device sequence can be changed by using a
utility on the system reference diskette or system refer
ence diskette image in the system partition. The Boot
strap Loader then turns control over to the executable
code in the boot record. This in turn boots the desired
operating system or control program.

Continuing the discussion with respect with FIG. 12,
there is shown a flowchart describing the logic flow
inside the Bootstrap Loader, INT 19H. To begin, the
Bootstrap Loader checks for the actual presence of the
system reference diskette in the first diskette drive, step
600. The presence of a system reference diskette in the
first diskette drive overrides all other reference dis
kettes. In other words, invoking the system reference
diskette overrides the system reference diskette image
in the system partition or a direct request by the user to

5,128,995

O

15

20

25

30

35

45

65

20
boot the operating system if POSTerrors are detected.
Next, the System Partition Boot Flag is checked, step
620. Since the system reference diskette is present the
System Partition Boot Flag is false.

Being that the System Partition Boot Flag is false, the
Bootstrap Loader determines if a Reference Diskette
Boot is required, step 630. Since a system reference
diskette is present in the first diskette drive, the Boot
strap Loader first instructs BIOS to deactivate the pro
tection means for the system partition, step 640. Then
the Bootstrap Loader establishs the system partition as
the origin of the boot fixed disk by using the value
calculated in step 506 as the logical starting block ad
dress, step 650. The system partition is now unpro
tected. The Bootstrap Loader then fetches the boot
record from the system reference diskette and passes
control to it, step 660. The boot record then boots up
the system reference diskette. For example, a user may
be adding a new feature I/O adapter to the system and
wants to install its adapter description file in the system
partition.

Referring back to step 600, if no system reference
diskette is present in the first diskette drive, the Boot
strap Loader checks the System Partition Boot Flag,
step 612. If the flag indicates an operating system boot,
the Boot Strap Loader transfers control to the select
able boot routine, step 614. The selectable boot routine
then decides the physical device to boot from and pro
ceeds to step 620.
The System Partition Boot Flag is then accessed to

determine if it is set, step 620. If a system partition boot
is not requested, the Bootstrap Loader determines if a
system reference diskette boot is required, step 630. For
instance, a system reference diskette may be in a boota
ble diskette drive other than the first physical diskette
drive. If no system reference diskette is present, the
Bootstrap Loader fetches the operating system boot
record and passes control to it, step 660. The system
partition remains protected and the BIOS will access
another partition, namely the operating system partition
on the boot fixed disk.

Referring back to step 630, if a system reference dis
kette boot is required, the Bootstrap Loader instructs
BIOS to deactivate the protection means for the system
partition and to establish the system partition as the
origin of the boot fixed disk by using the value calcu
lated in step 506 as the logical starting block address,
step 650. The Bootstrap Loader fetches the boot record
from the reference diskette (in this case, a system refer
ence diskette is present) and boots up the systern refer
ence diskette, step 660. The system partition is unpro
tected and is now the active partition on the fixed disk.
This is done to allow access by the reference diskette.
As previously explained, a user may be adding a new
feature I/O adapter to the system and wants to install its
adapter description file in the system partition.

Referring back to step 620, if the System Partition
Boot Flag is true, the Bootstrap Loader instructs BIOS
to deactivate the protection means for the system parti
tion step 640 and establish the system partition as the
origin of the boot fixed disk by using the value calcu
lated in step 506 as the logical starting block address,
step 650. The Bootstrap Loader then fetches the boot
record from the system reference diskette image in the
system partition and boots up the system reference dis
kette image, step 660. The system partition is unpro
tected and is now the active partition on the boot fixed
disk.

5,128,995
21

Referring back to step 612, if the System Partition
Boot Flag indicates a system partition boot, the Boot
strap Loader checks for a valid boot record on the
system partition, step 616. This step includes validating
that the system partition is a full system partition; the
boot record signature is valid; and a system reference
diskette signature is present. If valid, the Bootstrap
Loader queries the System Partition Boot Flag, step
620. Since it is true, the Bootstrap Loader instructs
BIOS to deactivate the protection means for the system
partition and establish the system partition as the origin
of the boot fixed disk by using the value calculated in
step 506 as the logical starting block address, steps 640
and 650. The Bootstrap Loader fetches the boot record
from the system partition and boots up the system refer
ence diskette image, step 660. The system partition is
unprotected and is now the active partition on the boot
fixed disk.

Referring back to step 616, if a valid boot record is
not present, the Bootstrap Loader prompts the user to
insert a system reference diskette in a diskette drive and
press the 'Y' key on the keyboard, step 617. The Boot
strap Loader then waits for the key to be entered, step
618. Once entered, the Bootstrap Loader checks that a
valid system reference diskette is present, step 619. If
not, the Bootstrap Loader repeats the process starting at
step 617.

Referring back to step 619, if the Bootstrap Loader
finds a valid system reference diskette, it instructs BIOS
to deactivate the protection means for the system parti
tion and establish the system partition as the origin of
the boot fixed disk by using the value calculated in step
506 as the logical starting block address steps 640 and
650. The system partition is now unprotected, the Boot
strap Loader fetches the boot record from the system
reference diskette and passes control to it, step 660. The
boot record boots up the system reference diskette.
FIG. 13 shows the BIOS modification required to

support booting of the system reference diskette image
from the system partition of the boot fixed disk or to
allow access to the image when a system reference
diskette is booted. When BIOS receives a request to
perform a data transfer operation it determines if this is
the boot fixed disk as shown in step 700. The boot fixed
disk is the first physical fixed disk on the fixed disk
adapter. If the fixed disk is not the boot fixed disk, BIOS
performs the requested operation, step 730.

Referring back to step 700, if the fixed disk is the boot
fixed disk, BIOS checks to see if the System Partition
Boot Flag is true or a system reference diskette is being
booted, step 710. If neither is true, BIOS performs the
requested operation, step 730.

Referring back to step 710, if the System Partition
Boot Flag is true or a system reference diskette is being
booted, the fixed disk block address calculated in step
506 is added to any block address, after converted from
the user supplied cylinder, head and sector parameters
provided with the request for a fixed disk data transfer
function, step 720. This makes the system partition ap
pear as the first block on the fixed disk. Thus the system
partition appears to be the active partition on the boot
fixed disk. Afterwards, BIOS performs the requested
operation, step 730.
Thus, there has been shown a method and apparatus

for booting the system reference diskette image from
the system partition from a mass storage device, such as
a fixed disk drive. The system partition is provided by
protecting an area on the disk drive. The system parti

10

15

20

25

30

35

45

50

55

65

22
tion is made bootable by storing the starting address of
system partition on the disk drive and indicating to
BIOS to use this as the fixed disk origin when a boot of
the system reference diskette image is requested or
required. By providing this capability, the system refer
ence diskette utilities are automatically available any
time the configuration is changed, a system utility is
desired or an error is encountered during the execution
of POST. Thus enhancing the usability of the system.
While the invention has been illustrated in connection

with a preferred embodiment, it should be understood
that many variations will occur to those of ordinary
skill in the art, and that the scope of the invention is
defined only by the claims appended hereto and equiva
lent.
We claim:
1. An apparatus for protecting system utilities in a

personal computer system, the personal computer sys
tem having a system processor for executing an operat
ing system, a read only memory, a random access mem
ory, and at least one direct access storage device, said
apparatus comprising:

a direct access storage device controller having a
protection means for protecting a region of the
direct access storage device, said protection means
allowing access to the protected region in response
to a reset signal;

a portion of BIOS being included in the protected
region of the direct access storage device, said
portion of BIOS being loaded into random access
memory to boot the operating system, said portion
of BIOS activating said protection means to pre
vent access to the protected region of the direct
access storage device during normal operations of
the operating system; and

a portion of system utilities included in the protected
region of the direct access storage device, said
system utilities being automatically executed upon
detecting an error condition in the loading of the
operating system and further wherein said portion
of system utilities comprises a program for modify
ing the configuration of the system.

2. The apparatus of claim 1, wherein the direct access
storage device comprises a fixed disk.

3. An apparatus for protecting a system utility pro
gram in a personal computer system, the personal con
puter system having a system processor, a read only
memory, a main memory, and at least one direct access
storage device capable of storing a plurality of data
records, said apparatus comprising:
a first program being included in the read only mem

ory, said first program initializing the system pro
cessor, said first program further initiating the gen
eration of a reset signal to the direct access storage
device to permit access to the data records;

a loading means for loading data records from the
direct access storage device into main memory,
said loading means being stored in a protectable
partition of the direct access storage device, said
loading means being read from the direct access
storage device into main memory by said first pro
gram, wherein said first program activates said
loading means;

a main memory resident program image being stored
in the protectable partition of the direct access
storage device, said main memory resident pro
gram image being read from the direct access stor
age device into main memory by said loading

5,128,995
23

means to produce a main memory resident pro
gran;

means for protecting the protectable partition of the
direct access storage device, said protection means
being activated by said main memory resident pro
gram to prevent unauthorized access to said load
ing means and said main memory resident program
image; and a system utility program image being
stored in the protectable partition of the direct

O

5

20

25

30

35

45

50

55

65

24
access storage device, said system utility program
being read automatically from the direct access
storage device into main memory for execution
upon said main memory resident program detect
ing an error in the system wherein said system
utility program image includes a program for mod
ifying the configuration of the system.

k k k

