[54] COMPUTER SYSTEM WITH AUTOMATIC INITIALIZATION OF PLUGGABLE OPTION CARDS
[75] Inventors: Chester A. Heath; John K. Langgood, both of Boca Raton, Fla.; Ronald E. Valli, Pittsburgh, Pa.

Assignee: International Business Machines Corp., Armonk, N.Y.
[21] Appl. No.: 296,387
[22] Filed:
Jan. 6, 1989
Related U.S. Application Data
[63] Continuation of Ser. No. 21,391, Mar. 13, 1987, abandoned.
[51] Int. Cl. ${ }^{5}$ \qquad G06F 13/00; G06F 7/04
[52] U.S. Cl \qquad 364/900; 364/948.5;
364/944.61; 364/975.2; 364/976.4; 364/945; 364/929.5; 364/929.2; 371/11.1
[58] Field of Search ... $364 / 200$ MS File, 900 MS File;
340/825.07, 825.06, 825.52, 825.06; 371/11.1, $11.2,11.3,66,7$

References Cited

U.S. PATENT DOCUMENTS

3,480,914	1/1969	Schlaeppi 364/200
3,510,843	5/1970	Bennett 364/200
3.573,741	4/1971	Gavril 364/200
3,818,447	6/1974	Craft 340/172.5
4,003,033	1/1977	O'Keefe 364
4,015,244	3/1977	Simpson 364/200

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0041406	$9 / 1981$	European Pat. Off. .
0087368	$8 / 1983$	European Pat. Off.
0121331	$3 / 1984$	European Pat. Off.
0121381	$10 / 1984$	European Pat. Off.
0136178	$4 / 1985$	European Pat. Off.
0179981	$6 / 1985$	European Pat. Off.
0171073	$2 / 1986$	European Pat. Off.
0182044	$5 / 1986$	European Pat. Off.
0200198	$11 / 1986$	European Pat. Off.

3508648 9/1986 Fed. Rep. of Germany . 50-120935 9/1976 Japan.
(List continued on next page.)

OTHER PUBLICATIONS
IBM TDB vol. 20, No. 7, Dec. 1977, Input/Output Device Address Recognition Mechanism.
(List continued on next page.)

Primary Examiner-Gareth D. Shaw Assistant Examiner-Paul Kulik
Attorney, Agent, or Firm-Winfield J. Brown, Jr.; Robert Lieber

Abstract

A data processing system includes a planar board having a central processing unit (CPU), a main memory unit, and input/output (I/O) sockets or slots, each adapted to receive a selected one of a plurality of different and/or similar option cards. each card contains (or is connected to) and controls a respective peripheral device; and each card is pre-wired with an ID value corresponding to its card type. Software programmable option registers on each card store parameters such as designated default (or alternate) address information, priority levels, and other system resource parameters. A setup routine, during initial power-on, retrieves and stores the appropriate parameters in the I/O cards and also in slot positions in main memory, one position being assigned to each slot on the board. Each slot position is adapted to hold the parameters associated with the card inserted in its respective slot and the card ID value. That portion of main memory containing the slot positions is adapted to maintain the parameter and ID information by means of battery power when system power fails or is disconnected, i.e., a nonvolatile memory portion. Subsequent power-on routines are simplified by merely transferring parameters from the table to the card option registers if the status of all the slots has not changed since the last power-down, system reset, or channel reset.

18 Claims, 7 Drawing Sheets

Page 2

U.S. PATENT DOCUMENTS

4,025,903	5/1977	Kaufman 364/200
4,027,108	5/1977	Moorehead
4,070,704	1/1978	Calle et al. 364/200
4,075,693	2/1978	Fox 364/200
4,155,117	5/1979	Mitchell,
4,177,511.12	12/1979	Taddei 364/200
4,191,996	3/1980	Chesley 364/200
4,236,207	11/1980	Rado
4,253,087	2/1981	Saal 340/147 R
4,253,144	2/1981	Bellamy 364/200
4,254,463	3/1981	Busby
4,268,901	5/1981	Subrizi 364/200
4,293,924	10/1981	Struger 364/900
4,303,993	12/1981	Panepinto 365/230
4,314,354	2/1982	Felder 364/900
4,335,426	6/1982	Maxwell 364/200
4,356,475	10/1982	Neumann
4,360,870	11/1982	McVey 364/200
4,363,094	12/1982	Kaul 364/200
4,373,181	2/1983	Chisholm et al. 364/200
4,400,775	8/1983	Nozaki 364/200
4,432,049	2/1984	Shaw et al. 364/200
4,437,157	3/1984	Witalka 364/200
4,442,504	4/1984	Dummermuth 364/900
4,454,596	6/1984	Wunsch
4,458,357	7/1984	Weymouth 377/2
4,491,913	1/1985	Calvignac 364/200
4,514,728	4/1985	Ahuja
4,521,847	6/1985	Ziehm et al. 371/7 X
4,556,953	12/1985	Caprio et al. 364/900
4,562,535	12/1985	Vincent et al. 364/200
4,563,736	1/1986	Boudreau 364/200
4,571,676	2/1986	Mantellina 364/200
4,578,773	3/1986	Desai 364/900
4,589,063	5/1986	Shah et al. 364/200
4,604,690	8/1986	Crabtree et al. 364/200
4,622,633	11/1986	Ceccon et al. $364 / 200$
4,626,634	12/1986	Brahm 379/28
4,633,392	12/1986	Vincent 364/200
4,654,857	3/1987	Samson 371/68
4,660,141	4/1987	Ceccon 364/200
4,670,855	6/1987	Caprio 364/900
4,701,878	10/1987	Günkel et al. 364/900
4,713,834	12/1987	Brahm 379/28
4,718,038	1/1988	Yoshida 364/900
4,750,136	6/1988	Arpin et al. 364/200 X
4,760,553	7/1988	Buckley et al. 364/900
4,787,025	11/1988	Cheselka 364/200
4,787,028	11/1988	Finfrock et al. 364/900 X
4,787,030	11/1988	Harter 364/200
4,870,704	9/1989	Matelan 364/200

FOREIGN PATENT DOCUMENTS

```
54-24314 3/1979 Japan
54-73531 6/1979 Japan
```

55-56235 4/1980 Japan. 56-46384 10/1982 Japan 2101370 1/1983 United Kingdom . 2137382 10/1984 United Kingdom 2166893 5/1986 United Kingdom 2175716 12/1986 United Kingdom .

OTHER PUBLICATIONS

IBM TDB vol. 20, No. 8, Jan. 1978, Initial Microprogram Load by Blocks Via Cycle Steal.
IBM TDB vol. 22, No. 2, Jul., 1979, Even/Odd Addresses to Allow Device Adapter Sharing by More Than One Processor.
IBM TDB vol. 22, No. 5, Oct. 1979, Satellite Station Address Assignment Method.
IBM TDB vol. 22, No. 10, Mar., 1980, Automatic Module Detection.
IBM TDB vol. 23, No. 8, Jan., 1981, Dynamic Device Address Assignment Mechanism.
Electronic Design, Sep. 3, 1981, pp. 141-156, Several Articles, "Functional Architecture Threatens Central CPUs", etc.
Paper in Euromicro, Input/Output Control 6f IBM System/370 Model 125 through Dedicated Input/Output Processors, by Assmuth et al., pp. 24-40.
Technical Disclosure Bulletin (IBM) vol. 27, No. 1B
"Automatic Domain Configuration Mechanism for a Multi-Device I/O Controller".
Wescon Technical Paper Oct. 30-Nov. 2, 1984, "A Standard Protocol for Host Computer-Peripheral Interface Allows Upgrading to the Latest Mass Storage Devices".
Technical Disclosure Bulletin (IBM) vol. 27, No. 2, Jul, 1984 "Input/Output Channel Address Assignment Mechanism".
JP Abstract vol. 10, No. 256 (P-493) (23312) Sep. 2, 1986.

JP Abstract vol. 9, No. 239 (P-391) (1962) Sep. 25, 1985.

JP Abstract vol. 9, vol. 9, No. 190 (P-378) (1913) Aug. 7, 1985.
EDN Magazine vol. 26 (1981) Feb., No. 3, Boston, MA. New Electronics 19(1986) Jul., No. 14, London, Great Britain.
vol. 22, No. 3, Aug. 1979, IBM Technical Disclosure Bulletin, Programmable Identification for I/O Device, J. M. McVey.
vol. 16, No. 1 Jun. 1973, IBM Technical Disclosure Bulletin, Program Controlled I/O Address Assignment, L. J. Rosenberg.

FIG. I

FIG. 2

FIG. 3

FIG. 4

IOR \square

FIG. 5

FIG. 6

FIG. 7

COMPUTER SYSTEM WITH AUTOMATIC INITIALIZATION OF PLUGGABLE OPTION CARDS

This is a continuation of co-pending application Ser. No. 07/021,391 filed on 03/13/87, now abandoned.

BACKGROUND OF THE INVENTION

Users of smaller computer systems typically do not have sophisticated programming skills, and user-transparent programmable parameter switches have been suggested to simplify configuration of the systems to the user's needs. However, the routines that are required to so configure such systems are complex, error prone, and time consuming. It is an objective of the present improvement to substantially reduce the time delay experienced by a user before he can do productive work on the system upon re-powering or resetting of the system after a power-down, so long as no cards are changed in, added to, or removed from the slots.

SUMMARY OF THE INVENTION

In the improved system, each card type is provided a unique ID, which value is hardwired on each card. A register is also provided on the card to store parameter data such as an address factor (to programmably change the I/O address space of the card where required), priority, status, and other system information providing for the efficient transfer of data between the system processor and the card, and between cards.
When two or more of the same card type are used in the system, parameter data may be used to permit use of the cards at different priority levels or to render redundant cards inactive.
One portion of main memory is provided with battery backup to power that portion when system power fails or is turned off. Positions in this nonvolatile portion of memory are provided (one for each I/O slot) to store the ID values of the cards inserted in the respective slots together with the respective card parameter data.
When the system is first configured and initialized, a complex routine is executed to create and/or fetch all of the parameter data required for the cards attached to the system, to resolve system resource conflicts and to store the data into the appropriate card registers and the memory slot positions.
However, if after a power-down, no change is made in the cards attached to the slots or in the slot positions of the cards, a simplified setup routine determines that no change has been made by comparing each card ID with the ID value stored in the respective slot position. Then the routine transfers the parameter data from the memory slot positions to the respective card registers; and the system is ready for normal operation.

After the system is configured and initialized, a feedback line is provided to signal the use of the select mechanism during normal operation. Routines are invoked to check the response of each card to given select resources to detect duplicate use of a select resource.

These and other features of the present improvement will be apparent from the following detailed description and accompanying drawings, in which:

FIG. 1 is a fragmentary block diagram of the improved system;

FIG. 2 illustrates the bus structure;
FIG. 3 show certain of the logic utilized by the setup routines; the system when the slot configuration has reduce the time the user has to wait to begin useful
applications after operating the system power-on switch, not shown, or after system or channel reset. This difference in complexity and number of steps required is illustrated by FIGS. 6 (initialization) and 7 (POST).

Details of card 5-7 are indicated as representative of the relevant logical organizations of all cards to the extent required for describing the present improvement. Driver circuits 20 are pre-wired at manufacture, and under conditions described below transmit a set of identity signals ID which uniquely identify that card type and its respective peripheral device.

Register 21 stores parameter information for controlling communications between the card and the system, including the address factor AD , the priority value $\mathrm{PR}, 1$ the state bit S , and other information O described with respect to module 10. This information is set by the central system during power-up initialization (FIG. 6). A feature of the system is that, if slot conditions have not changed since the last power-down of the system, 20 the information is simply transferred to register 21 from the nonvolatile memory 10 in a relatively fast operation (FIG. 7), whereas if slot conditions have changed the system is required to perform a lengthy program process (FIG. 6) to retrieve and/or develop some or all of 2 the information and then transfer it to both memory 10 and the card register 21.

Control logic 22 and decode logic 23 control response of the card 5-7 to I/O addresses appearing on bus 17. When power is applied to the system, the cards are addressable initially only through their sockets, and a portion of the address bus. But after the power-up process, the value AD in register 21 controls decoder 23 to detect a default or alternate I/O address associated uniquely to the card type and unrelated to the socket location. Upon such detection, the priority value PR and state bit S in conjunction with control logic 22 determine when data may be exchanged between the card and the bus 17. One manner in which an AD value, the decoder 23 and logic 22 detect an I/O address is shown and described in Interfacing to the IBM Personal Computer by L. Eggebrecht published 1983 at pages 130, 131.

In operation, during its power-up sequence the central system individually addresses the option sockets, by sending respective "slot address" signals on the bus which are uniquely detected by decoder 14 and result in separate activation of setup (or enable card) lines EC0EC7 extending to respective sockets 2-0 to 2-7 and through the sockets to attached cards 5-0 to 5-7. Upon 50 activation of one such line, if the respective socket is vacant the hexadecimal value of FFFF is returned to the system which terminates further operation relative to that socket. However, if the socket contains a card, the activated line in conjunction with additional address signals on the bus 17 condition logic 22 on the respective card to cause drivers 20 to transmit the ID signals mentioned above which identify the respective card and device type. The system CPU compares the returned ID signals with the ID value stored in the location in memory 10 allocated to the respective slot, and sets an indication denoting whether the compared values are the same or different. This indication serves effectively as a branch condition for subsequent program processes which determine the action to be taken relative to the respective slot.

If the indication just mentioned represents a matching comparison, and conditions of all other slots have not ponents 20 and 21 while a logical 1 signal on address line A2 provides the most significant digit value of 1.
signed an alternate I/O address at a different priority level.

The logic of FIG. 5 is then utilized during a diagnostic routine to ascertain whether each card properly responds to its respective I/O address. The address decode logic 23 decodes the address on bus $17 b$ if it corresponds to the alternate address when the appropriate alternate address factor AD is stored in parameter register 21 and the least significant bit is on (the card is 10 active). Similarly, a priority decode circuit 55 produces an output if the priority value on bus $17 a$ is equal to PR in register 21 and the card active bit is on. If outputs are produced by logic 23 and 55, an AND gate 56 produces a feedback signal on line 57 to set one bit in a register 58 5 on the board 1. The CPU8 under program control will read register 58 to determine that one and only one card properly responded to the I/O alternate address and reset register 58. Similar circuits on the other identical card will respond to the default I/O address and the 20 appropriate priority level to set another bit in register 58 for diagnostic purposes.
While there have been described what are at present considered to be a preferred embodiment of this invention, it will be obvious to those skilled in the art that 5 various changes and modifications may be made therein without departing from the invention, and it is, therefore, intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.

What is claimed is:

1. In a data processing system having a system processor and a plurality of I/O sockets to which peripheral control cards of various types are attachable, and in which means on at least one card permanently stores an 35 identity value corresponding to the respective card type, said system comprising:
nonvolatile memory means storing, in memory locations thereof assigned to respective I/O sockets, the identity value and parameter data of the at least one card connected to a respective socket when power was last applied to said system, said parameter data being representative of peripheral options for the attached card; and
means effective after power has been removed from and reapplied to said system for comparing the identity value on said card connected to the respective socket with the identity value stored in the corresponding nonvolatile memory location to determine if said card has been added, removed or moved since the previous removal of power from said system; and
means responsive to outputs of said comparing means indicating successful comparison of the identity value for transferring and storing into said card, parameter data stored in the corresponding memory location, thereby eliminating the need to create the parameter data.
2. A data processing system having a plurality of I/O sockets for attaching cards of different types, and in which the system during subsequent power-up retrieves parameter data for at least one card currently attached to the system by way of a respective socket and in which means is provided on the card for permanently storing an identity value corresponding to the card 65 type, said system comprising;
nonvolatile memory means storing, in memory locations thereof assigned to respective I/O sockets, the identity value and parameter data of the card
connected to the respective socket before the system is powered down;
means effective upon power-up of the system for comparing the identity value stored on the attached card with the identity value stored in the nonvolatile memory location corresponding to the socket to which the card is attached; and
means responsive to outputs of said comparing means indicating successful comparisons of identity values for writing and storing into each respective card the parameter data stored in its corresponding nonvolatile memory location.
3. The system of claim 2 further comprising
said comparing means including means interrogating each I/O socket to fetch and identity value of the card attached to the socket and to produce a unique null identity value when an interrogated socket is empty;
said nonvolatile memory storing the null identity value in each location corresponding to an I/O 20 socket found empty; and
said comparing means further effective upon powerup of the system for comparing the null identity value produced upon interrogating an empty socket with the identity value in the nonvolatile memory location corresponding to that socket for determining if that socket had contained a card when the system previously was powered down.
4. The system of claim 2 wherein the data processing system includes a system processing unit, the system 30 further comprising
a feedback line on the card,
means on the card responsive to a card select input signal and to parameter data stored on the card for effectively enabling the card to send a signal to the system processing unit by way of said feedback line indicating selection of the card.
5. The system of claim 2 further comprising
said comparing means including means interrogating each I/O socket to fetch the identity value of the 40 card attached to the socket and to produce a predetermined identity value to indicate when an interrogated socket is empty;
said nonvolatile memory storing the predetermined identity value in each location corresponding to an 45 empty I/O socket; and
said comparing means further effective upon powerup of the system for comparing the predetermined identity value produced upon interrogating an empty socket with the identity value in the nonvol- 5 atile memory location corresponding to that socket for determining if that socket had contained a card when the system previously was powered down.
6. In a computer system having attachment sockets into with peripheral control cards can be interchangeably inserted, and in which such cards have permanently stored thereon means for signalling an identity (ID) value indicating the respective card type, a method for automatically configuring such system comprising:
storing information associated with said sockets in nonvolatile randomly accessible form, such information including an ID value representing the identity of the card attached to the respective socket when the system was last powered down and address information associated with an I/O address uniquely assigned to said attached card;
at each powering up of the system, interrogating said sockets in succession and receiving back from each
means responsive to operation of said comparing means relative to any said interrogated occupied socket indicating a match between said compared identity information received back from the socket
and the card identity information stored relative to said socket, and to operation of said determining means indicating that a card is in the respective interrogated socket, for causing the card addressing information stored in said nonvolatile memory means to be transferred to the register on the respective interrogated card;
means responsive to operation of said comparing means indicating a mismatch between compared identity information received back from an interrogated occupied socket and the card identity information stored relative to that socket for invoking programmed operations of said system causing said system to selectively retrieve and temporarily store new card addressing information associated with said received back identity information from a source external to said system; and
means responsive to said programmed retrieval operations for causing said temporarily stored new card information to be transferred first to said nonvolatile memory means for storage in association with the respectively interrogated socket and subsequently to the register on the respective card.
7. A system in accordance with claim 7, wherein said register means on said cards and said nonvolatile memory means are to store card priority information retrievable initially in association with said invoked programmed operations of said system, and including:
means responsive to operation of said comparing means relative to all of said sockets for indicating if the condition of any socket has changed since power was last removed from the system;
means responsive to operations of said comparing means and interrogating means indicating a match between compared identities associated with any occupied one of said sockets, and to operation of said condition indicating means indicating that the conditions of all of said sockets are unchanged since power was last removed, for causing priority information contained in said nonvolatile memory means relative to said any occupied one socket to be transferred to the register on the card respectively attached to said one socket; and
means responsive to operations of said comparing and interrogating means indicating a mismatch between 4 compared identities associated with any occupied one of said sockets, and/or to operation of said condition indicating means indicating that the condition of at least one of said sockets has changed since last removal of power from said system, for 50 developing new card priority information for said any occupied one socket based on the identities of cards in all of the occupied sockets, and for causing said new priority information to be transferred in succession to said nonvolatile memory means in association with said any occupied one socket and to the register on the card attached to that socket.
8. A system in accordance with claim 7 wherein said register means on said cards and said nonvolatile memory means store a state information programmably de- 60 terminable by said system, and including:
means responsive to operation of said comparing means relative to all of said sockets for indicating if the condition of being vacant of any socket has changed since the system was last powered down;
means responsive to operations of said comparing means indicating a match between compared identities at any occupied one of said sockets and to
means in said at least one processing means for comparing the card identity signals returned from said cards with card identity information stored relative to the respective sockets in said nonvolatile memory means; and
means responsive at least in part to operations of said comparing means indicating matches between compared card identity signals and card identity information stored in said nonvolatile memory means for causing said system to transfer bus access control information from the location in said nonvolatile memory means associated with the respective interrogated socket to the register on the card attached to that socket.
9. A data processing system in accordance with claim 10 wherein said system can assign an I/O address to any card attached to said sockets which is related functionally to the card type and not related to the address of the socket to which the card is attached, wherein said bus access control information includes card address factor information logically related to said I/O address, and wherein said cards have control means responsive to card address information in the register of the respective card and presence of a logically related I/O address signal on the bus to enable the respective card to receive other information from said units via said bus.
10. A data processing system in accordance with claim 11 including:
means responsive to said comparing means indicating mismatch between the card identity signal returned by any occupied one of said sockets and the card identity information stored relative to that socket in said nonvolatile memory means for invoking programmed operations of said system for establishing a new address factor and a new I/O address for the card currently attached to the respective socket, said system transferring said new address factor to the nonvolatile memory means and the register on said card currently attached, said system thereafter using said new I/O address to initiate communications via said bus with said card currently attached.
11. A data processing system in accordance with claim 12 wherein said key bus access control information further includes priority level information which when transferred to said register on a card establishes a priority level relative to other attached cards for arbitrating for access to said bus.
12. A data processing system according to claim 13 wherein the system includes:
means responsive to mismatching indications of said comparing means for determining when two cards of the same type are attached to two of said sockets; and
means responsive to said determining that two cards of the same type are attached for assigning a predetermined default address factor and a first priority level to one of said cards and an alternate address factor and a second priority level to the other of said cards.
13. A data processing system having a plurality of I/O sockets for attaching cards of different types, and in which the system during an initial power-up creates parameter data for at least one card currently attached to the system by way of a respective socket and in which means is provided on the card for permanently
storing an identity value corresponding to the card type, said system comprising:
nonvolatile memory means storing, in memory locations thereof assigned to respective 1/O sockets, the identity value and parameter data of the card connected to the respective socket before the system is powered down;
means effective upon power-up of the system for comparing the identity value stored on the attached card with the identity value stored in the nonvolatile memory location corresponding to the socket to which the card is attached; and
means responsive to outputs of said comparing means indicating successful comparisons of identity values for writing and storing into each respective card the parameter data stored in its corresponding nonvolatile memory location.
14. In a computer system having at least one attachment socket into which peripheral control cards can be interchangeably inserted, and in which at least one card has permanently stored thereon means for signalling an identity (ID) value indicating the respective card type, apparatus for automatically configuring such system comprising:
means for storing information associated with said socket in nonvolatile form, such information including an ID value representing the identity of the card attached to the respective socket when the system was last powered down and address information associated with an I/O address uniquely assigned to said attached card;
at each powering up of the system, means for interrogating said socket and receiving back from said socket an ID signal representing either an empty condition or the identity of a card currently attached to the respective socket;
means for comparing said ID signal with the associated ID value of the respective socket which is stored in said nonvolatile form;
means for transferring the associated address information stored in nonvolatile form to a storage means on the card if the compared ID signal and stored ID value match, and if the compared signal and value do not match, means for developing new address information;
means for storing such new information together with the ID signal in nonvolatile form in place of the address information and ID value previously stored; and
means for transferring said new address information to the said storage means on said currently attached card.
15. In a computer system having at least one attachment socket into which peripheral control cards can be interchangeably inserted, and in which at least one card has permanently stored thereon means for signalling an identity (ID) value indicating the respective card type, apparatus for automatically configuring such system comprising:
means for storing information associated with said socket in nonvolatile form, such information including an ID value representing the identity of the card attached to the respective socket when the system was last powered down and priority information representing the priority of said attached card;
at each powering up of the system, means for interrogating said socket and receiving back from said

13

socket an ID signal representing either an empty condition or the identity of a card currently attached to the respective socket;
means for comparing said ID signal with the associated ID value of the respective socket which is stored in said nonvolatile form;
means for transferring the associated priority information stored in nonvolatile form to a storage means on the card if the compared ID signal and stored ID value match, and if the compared signal and value do not match, means for developing new priority information;
means for storing such new information together with the ID signal in nonvolatile form in place of 15 the priority information and ID value previously stored; and
means for transferring said new priority information to the said storage means on said currently attached card.
18. In a computer system having at least one attachment socket into which peripheral control cards can be interchangeably inserted, and in which at least one card has permanently stored thereon means for signalling an identity (ID) value indicating the respective card type, apparatus for automatically configuring such system comprising:
[54] COMPUTER SYSTEM WITH AUTOMATIC INITIALIZATION OF PLUGGABLE OPTION CARDS
[75] Inventors: Chester A. Heath; John K. Langgood, both of Boca Raton, Fla.; Ronald E. Valli, Pittsburgh, Pa.

Assignce: International Business Machines Corp., Armonk, N.Y.

Appl. No.: 296,387
[22] Filed:
Jan. 6, 1989

Related U.S. Application Data

[63] Continuation of Ser. No. 21,391, Mar. 13, 1987, abandoned.
[51] Int. Cl. ${ }^{5}$ \qquad G06F 13/00; G06F 7/04
U.S. Cl. 364/900; 364/948.5;

364/944.61; 364/975.2; 364/976.4; 364/945; 364/929.5; 364/929.2; 371/11.1
[58] Field of Search ... 364/200 MS File, 900 MS File; 340/825.07, 825.06, 825.52, 825.06; 371/11.1 $11.2,11.3,66,7$

References Cited

U.S. PATENT DOCUMENTS

	1/1969	
3,510,843	5/1970	Bennett 364/200
3,573,741	4/1971	Gavril 364/200
3,818,447	6/1974	Craft 340/172.5
4,003,033	1/1977	O'Keefe 364/200
4,015,	3/19	Sim

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0041406	$9 / 1981$	European Pat. Off.
0087368	$8 / 1983$	European Pat. Off.
0121331	$3 / 1984$	European Pat. Off.
0121381	$10 / 1984$	European Pat. Off.
0136178	$4 / 1985$	European Pat. Off.
0179981	$6 / 1985$	European Pat. Off.
0171073	$2 / 1986$	European Pat. Off.
0182044	$5 / 1986$	European Pat. Off.
0200198	$11 / 1986$	European Pat. Off. .

3508648 9/1986 Fed. Rep. of Germany 50-120935 9/1976 Japan. (List continued on next page.)

OTHER PUBLICATIONS

IBM TDB vol. 20, No. 7, Dec. 1977, Input/Output Device Address Recognition Mechanism.
(List continued on next page.)

Primary Examiner-Gareth D. Shaw
Assistant Examiner-Paul Kulik
Attorney, Agent, or Firm-Winfield J. Brown, Jr.; Robert Lieber

[57]
 ABSTRACT

A data processing system includes a planar board having a central processing unit (CPU), a main memory unit, and input/output (I/O) sockets or slots, each
adapted to receive a selected one of a plurality of different and/or similar option cards. each card contains (or is connected to) and controls a respective peripheral device; and each card is pre-wired with an ID yalue corresponding to its card type. Software programmable option registers on each card store parameters suth as designated default (or alternate) address information, priority levels, and other system resource parameters. A setup routine, during initial power-on, retrieves and stores the appropriate parameters in the I/O cards and also in slot positions in main memory, one position being assigned to each slot on the board. Each slot position is adapted to hold the parameters associated with the card inserted in its respective slot and the card ID value. That portion of main memory containing the slot positions is adapted to maintain the parameter and ID information by means of battery power when system power fails or is disconnected, i.e., a nonvolatile memory portion. Subsequent power-on routines are simplified by merely transferring parameters from the table to the card option registers if the status of all the slots has not changed since the last power-down, system reset, or channel reset.

18 Claims, 7 Drawing Sheets

FIG. 6
initicization setup

COMPUTER SYSTEM WITH AUTOMATIC INITIALIZATION OF PLUGGABLE OPTION CARDS

This is a continuation of co-pending application Ser. No. 07/021,391 filed on 03/13/87, now abandoned.

BACKGROUND OF THE INVENTION

Users of smaller computer systems typically do not 10 have sophisticated programming skills, and user-transparent programmable parameter switches have been suggested to simplify configuration of the systems to the user's needs. However, the routines that are required to so configure such systems are complex, error prone, and time consuming. It is an objective of the present im9 provement to substantially reduce the time delay expe4 rienced by a user before he can do productive work on the system upon re-powering or resetting of the system added to, or removed from the slots.

SUMMARY OF THE INVENTION

In the improved system, each card type is provided a unique ID, which value is hardwired on each card. A register is also provided on the card to store parameter data such as an address factor (to programmable change the I/O address space of the card where required), priority, status, and other system information providing for the efficient transfer of data between the system processor and the card, and between cards.

When two or more of the same card type are used in the system, parameter data may be used to permit use of the cards at different priority levels or to render redundint cards inactive.

One portion of main memory is provided with battery
$43 \times$ backup to power that portion when system power fails or is turned off. Positions in this nonvolatile portion of memory are provided (one for each I/O slot) to store the ID values of the cards inserted in the respective slots together with the respective card parameter data.

When the system is first configured and initialized, a complex routine is executed to create and/or fetch all of the parameter data required for the cards attached to the system, to resolve system resource conflicts and to store the data into the appropriate card registers and the memory slot positions.

However, if after a power-down, no change is made in the cards attached to the slots or in the slot positions of the cards, 2 simplified setup routine determines that no change has been made by comparing each card ID with the ID value stored in the respective slot position. Then the routine transfers the parameter data from the memory slot positions to the respective card registers; and the system is ready for normal operation.

After the system is configured and initialized, a feedback line is provided to signal the use of the select mechanism during normal operation. Routines are invoked to check the response of each card to given selectresources to detect duplicate use of a select resource.

These and other features of the present improvement will be apparent from the following detailed description and accompanying drawings, in which:
FIG. 1 is a fragmentary block diagram of the improved system;
FIG. 2 illustrates the bus structure;
FIG. 3 show certain of the logic utilized by the setup routines;

FIG. 4 shows timings for certain of the logic of FIG. 3;

FIG. 5 shows logic utilized by test routines to check the proper selection of an I/O card; and
FIGS. 6 and 7 are flowcharts which illustrate briefly the setup routines used in the present system.

DETAILED DESCRIPTION

FIG. 1 illustrates a preferred embodiment of the presint improvement in the form of an integrated circuit desktop type computer system featuring user-transparest establishment of addressing and other variable systom resource parameters for attached peripheral opions. Thus the user is not burdened with having to set 5 dip switches, follow complex setup procedures, etc. System resource conflicts are reduced or eliminated by reassigning of parameters. Other parameters include priority levels and a state bit which allows for coexistence of two identical option attachments.
System board 1 contains plural sockets or slots 2-0 to 2-7 into which 1/O option cards 5-0 to 5-7 may be interchangeably plugged. These cards control various types of peripheral devices (disk drives, printers, etc.) and add-on memory which are either integrally contained 5 on respective cards or attached thereto via external connectors, not shown. Board 1 also contains elements of the central processing system, including a central processor unit (CPU) 8, random access memory (RAM) main memory modules $9,10,11$, direct memory access (DMA) controls 12, timing controls 13 , slot address decoder 14, whose function is described below, other logical elements not relevant to the present discussion indicated collectively at 15 , power supply 16 , and bus 17 which links the central processing elements with each other and with attached peripherals. Darkened portions of the bus represent plural address lines $17 b$, data lines 17c, and control lines $17 a$ (FIG. 2).

A feature hereof is that slots 2.0 to $2-7$ can be addressed by "slot address" signals on the address lines of 0 bus 17 during setup routines, and cards residing in the slots can be separately addressed by "I/O address" signals on the address lines during normal program execution; where the slot addresses and I/O addresses are distinctly different values associated respectively with physical locations of the sockets and with the types of devices currently attached. Many different types of devices are each potentially attachable to any one of the few sockets of the system.

One of the memory modules, module 10 in the illustration, is nonvolatile, and stores information relative to each of the slots 2-0 to 2-7 and its associated card when the system is powered down. This module for example, may consist of an array of capacitive storage circuits, ie., known complimentary metal-oxide silicon (CMOS) type semiconductor circuits, configured to operate under system power while the system is powered up and under battery power 18 in the absence of system power. Within this module, a separately addressable space is allocated to each slot, for storing certain informotion relative to the slot. As shown, this information includes an identity value ID, an addressing factor AD, a priority value PR , a state bit S , and other information 0.

A feature to be described is the use of this information 65 in the nonvolatile memory to speed up initialization (FIG. 7) of the system when the slot configuration has not changed since the last power-down, and thereby reduce the time the user has to wait to begin useful
applications after operating the system power-on switch, not shown, or after system or channel reset. This difference in complexity and number of steps required is illustrated by FIGS. 6 (initialization) and 7 (POST).

Details of card 5-7 are indicated as representative of the relevant logical organizations of all cards to the extent required for describing the present improvement. Driver circuits 20 are pre-wired at manufacture, and under conditions described below transmit a set of identity signals ID which uniquely identify that card type and its respective peripheral device.

Register 21 stores parameter information for controlling communications between the card and the system, including the address factor AD , the priority value PR , the state bit S , and other information O described with respect to module 10. This information is set by the central system during power-up initialization (FIG. 6). A feature of the system is that, if slot conditions have not changed since the last power-down of the system, the information is simply transferred to register 21 from the nonvolatile memory 10 in a relatively fast operation (FIG. 7), whereas if slot conditions have changed the system is required to perform a lengthy program process (FIG. 6) to retrieve and/or develop some or all of the information and then transfer it to both memory 10 and the card register 21.

Control logic 22 and decode logic 23 control response of the card 5-7 to I/O addresses appearing on bus 17. When power is applied to the system, the cards are addressable initially only through their sockets, and a portion of the address bus. But after the power-up process, the value AD in register 21 controls decoder 23 to detect a default or alternate I/O address associated uniquely to the card type and unrelated to the socket location. Upon such detection, the priority value PR and state bit S in conjunction with control logic 22 determine when data may be exchanged between the card and the bus 17. One manner in which an AD value, the decoder 23 and logic 22 detect an I/O address is shown and described in Interfacing to the IBM Personal Computer by L. Eggebrecht published 1983 at pages 130, 131.

In operation, during its power-up sequence the central system individually addresses the option sockets, by sending respective "slot address" signals on the bus which are uniquely detected by decoder 14 and result in separate activation of setup (or enable card) lines ECOEC7 extending to respective sockets 2.0 to 2.7 and through the sockets to attached cards 5-0 to 5-7. Upon activation of one such line, if the respective socket is vacant the hexadecimal value of FFFF is returned to the system which terminates further operation relative to that socket. However, if the socket contains a card, the activated line in conjunction with additional address signals on the bus 17 condition logic 22 on the respective card to cause drivers 20 to transmit the ID signals mentioned above which identify the respective card and device type. The system CPU compares the returned ID signals with the ID value stored in the location in memory 10 allocated to the respective slot, and sets an indication denoting whether the compared values are the same or different. This indication serves effectively as a branch condition for subsequent program processes which determine the action to be taken relative to the respective slot.

If the indication just mentioned represents a matching comparison, and conditions of all other slots have not the board 1 and feature card 5-7 used during setup routines to read out a card ID and store parameters in the register 21. With respect to FIG. 3, the hexadecimal I/O address values assigned to certain of the components on each of the feature cards is as follows:

096 - socket select value (one byte)
100, 101 - ID drivers 20 (two bytes)
102, 103 - parameter register 21 (two bytes)
These are "dummy" addresses since they are used by 60 the processor 8 to access I / O cards and components via the slots during setup operations. The address 096 selects the logic (gates 38,39) of slot address decoder 14 for storing the card select value into slot register 40 and also for reading out the value, i.e., during diagnosis. 5 Address lines A0 and A1 of FIG. 3 form the lower address values $00,01,02$, and 03 for selecting the components 20 and 21 , while a logical 1 signal on address line A2 provides the most significant digit value of 1 .

A0, A1, and A2 are coupled to appropriate bit lines of address bus 17b, FIG. 2.
FIG. 3 shows in more detail certain of the logic of the slot address decoder 14 and of the control logic 22 of card 7 which are used in the setup routines of FIGS. 6 and 7. It will be assumed for simplicity of discussion, that addressing of two bytes at a time, i.e., one cycle, is available and that two byte data transfers occurs on busses. Hence, decoding address 101 gates both bytes for addresses 101 and 100.
.. Slot register 40 is program controlled to store a three bit value ($000-111$) corresponding to a slot (2-0 to 2-7) to be accessed. A decode circuit 41 changes this three bit binary value to a one in eight line output but only when it is gated by a signal on input line 42 . Each output line, such as EC7, is connected via the respective socket to the card held in the socket. When a decode circuit 43 decodes an address in the range 0100-0103 during a setup routine, it produces an output on line 42 to gate the value in 40 to cause an output (see FIG. 4) on a card setup line such EC7, one of the control lines $17 a$ of bus. 17.

This output on EC7 is applied to AND gates 44 and 45. The address line A. 2 is coupled to gates 44 and 45. An I/O read line IOR and an I/O write line IOW (decoded from control lines 17a) are coupled respectively to gates 44 and 45. An output 46 from gate 44 is coupled to a pair of decoder circuits 47 and 48. An output 49 from gate 45 is coupled to a decode circuit 50 . An output 51 from decode 48 is coupled to the ID driver cir- 30 cuit 20 and the output 52 from decode 50 is coupled to the parameter register 21.

During the post setup routine of FIG. 7, when an ID is being fetched from card 7, the processor 8 forces A2 negative (logical 1) and A1, A0 to logic 01 (address 101). EC7 is negative (FIG. 4). When IOR goes negative, the gate 44 produces an output at 46 to produce an output at 51 which gates the card ID value in 20 to data bus 17c. Processor 8 compares this ID with the ID in the respective slot position in memory module 10. If the IDs compare, processor 8 transfers the parameter values in the slot position 32 (FIG. 1) to data bus 17 c and forces A2, A1, A0 to logic 111 (address 103). Shortly thereafter, processor 8 issues an IOW to cause gate 45 to produce an output on 49 . This gates an output from 50 to register 21 via line 52 to gate the parameter values on bus $17 c$ into register 21. The output 53 of decode 47 is used during diagnostic routines to gate the output of parameter register 21 to bus $17 c$ via gate 54.

As discussed above with respect to a setup routine, an ID of hexadecimal value FFFF is returned during an ID fetch operation when the addressed socket is empty. One method of achieving this result is shown in FIG. 3. A pre-wired circuit 60 is gated to force bus 17 to all "l's" during the IOR cycle by a negative going signal on any one of the enable card lines EC1 to EC7 via OR circuit 61 and the negative going signal on IOR. If a card is in the socket which has been addressed, its ID is gated to bus 17 c at the same time and all logical 0 's in the ID override the logical 1 's from 60 to correctly 60 reproduce the ID on bus 17 c .

The logic of FIG. 3 is used in a similar manner during the initialization setup and the POST setup routines of FIGS. 6 and 7.

When two identical cards (same ID) are connected to two of the I/O slots and it is desired to render both active, the first card is assigned the standard I/O default address at one priority level and the other card is as-
signed an alternate I/O address at a different priority level.

The logic of FIG. 5 is then utilized during a diagnostic routine to ascertain whether each card properly responds to its respective I/O address. The address decode logic 23 decodes the address on bus $17 b$ if it corresponds to the alternate address when the appropriate alternate address factor AD is stored in parameter register 21 and the least significant bit is on (the card is 10 active). Similarly, a priority decode circuit 55 produces an output if the priority value on bus $17 a$ is equal to $P R$ in register 21 and the card active bit is on. If outputs are produced by logic 23 and 55, an AND gate 56 produces a feedback signal on line 57 to set one bit in a register 58 on the board 1. The CPU8 under program control will read register 58 to determine that one and only one card properly responded to the I/O alternate address and reset register 58. Similar circuits on the other identical card will respond to the default I/O address and the appropriate priority level to set another bit in register 58 for diagnostic purposes.

While there have been described what are at present considered to be a preferred embodiment of this invention, it will be obvious to those skilled in the art that 5 various changes and modifications may be made therein without departing from the invention, and it is, therefore, intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.

What is claimed is:

1. In a data processing system having a systemprocessor and a plurality of I/O sockets to which peripheral control cards of various types are attachable, and in which means on at least one card permanently stores an identity value corresponding to the respective card type, said system comprising:
nonvolatile memory means storing, in memory locations thereof assigned to respective I/O sockets, the identity value and parameter data of the at least one card connected to a respective socket when power was last applied to said system, said parameter data being representative of peripheral options for the attached card; and
means effective after power has been removed from and reapplied to said system for comparing the identity value on said card connected to the respective socket with the identity value stored in the corresponding nonvolatile memory location to determine if said card has been added, removed or moved since the previous removal of power from said system; and
means responsive to outputs of said comparing means indicating successful comparison of the identity value for transferring and storing into said card, parameter data stored in the corresponding memory location, thereby eliminating the need to create the parameter data.
2. A data processing system having a plurality of I / O sockets for attaching cards of different types, and in 60 which the system during subsequent power-up retrieves parameter data for at least one card currently attached to the system by way of a respective socket and in which means is provided on the card for permanently storing an identity value corresponding to the card 5 type, said system comprising;
nonvolatile memory means storing, in memory locations thereof assigned to respective I/O sockets, the identity value and parameter data of the card
