
United States Patent (19)
Bealkowski et al.

(54)

(75

73)

(21)
(22)
(51)
(52)

(58)

(56)

APPARATUS AND METHOD FOR
PREVENTING UNAUTHORIZED ACCESS
TO BIOS IN A PERSONAL COMPUTER
SYSTEM

Inventors: Richard Bealkowski, Delray Beach;
John W. Blackledge, Jr., Boca Raton;
Doyle S. Cronk, Boca Raton; Richard
A. Dayan, Boca Raton; Jerry D.
Dixon, Boca Raton; Scott G. Kinnear,
Boca Raton; George D. Kovach, Boca
Raton; Andrew B. McNeill, Deerfield
Beach, all of Fla.; Matthew S. Palka,
Jr., Raleigh, N.C.; Robert
Sachsenmaier; Edward I. Wachtel,
both of Boca Raton, Fla.; Kevin M.
Zyvoloski, Raleigh, N.C.

Assignee: International Business Machines
Corp., Armonk, N.Y.

Appl. No.: 398,820
Filed: Aug. 25, 1989
Int. Cl. ... HO4L 9/32
U.S. C. .. 380/4; 380/25;

380/50; 340/825.31; 340/825.34
Field of Search 364/200, 900; 380/4,

380/23, 24, 25, 49,50; 340/825.34, 825.31
References Cited

U.S. PATENT DOCUMENTS

3,931,504 8/1973 Jacoby 364/200
3,996,449 12/1976 Attanasio 235/431
4,446,519 5/1984 Thomas 364/200
4,491,914 1/1985 Sujaku 364/200

11 Patent Number: 5,022,077
(45) Date of Patent: Jun. 4, 1991

4,525,599 6/1985 Curran 380/4
4,562,306 12/1985 Chou 380/4
4,577,289 3/1986 Comerford 364/900
4,593,353 6/1986 Pickholtz. 364/200
4,685,055 8/1987 Thomas 364/200
4,685,056 8/1987 Barnsdale 364/200
4,688,169 8/1987 Joshi...... ... 364/200
4,747,139 5/1988 Taaffe 380/44
4,748,561 5/1988 Brown 364/300
4,757,533 7/1988 Allen et al. 380/25
4,757,534 7/1988 Matyas 380/25
4,785,361 1 1/1988 Brotby 360/60
4,796,220 1/1989 Wolfe 364/900
4,817,140 3/1989 Chandra 380/4

Primary Examiner-Stephen C. Buczinski
Assistant Examiner-Bernarr Earl Gregory
Attorney, Agent, or Firm-Winfield J. Brown, Jr.
57 ABSTRACT
An apparatus and method for protecting BIOS stored
on a direct access storage device into a personnal con
puter system. The personal computer system comprises
a system processor, a system planar, a random access
main memory, a read only memory, a protection means
and at least one direct access storage device. The read
only memory includes a first portion of BIOS and data
representing the type of system processor and system
planar I/O configuration. The first portion of BIOS
initializes the system and the direct access storage de
vice, and resets the protection means in order to read in
a master boot record into the random access memory
from a protectable partition on the direct access storage
device.

32 Claims, 13 Drawing Sheets

Sheet 1 of 13 5,022,077 June 4, 1991 U.S. Patent

F.G. 1

Sheet 2 of 13 5,022,077 June 4, 1991 U.S. Patent

U.S. Patent June 4, 1991 Sheet 3 of 13 5,022,077

70

POST STAGE

72
NITAL BOS LOAD

ROUTINE
74

DISKETTE

76
HARD FILE

78
VIDEO

80
OAGNOSTC
PANEL

HARDWARE
COMPATBUTY

DATA

82

ROM - BOS

FIG. 3

U.S. Patent June 4, 1991 Sheet 4 of 13 5,022,077

BL OVERVIEW
POST COLD START ENTRY POINT

STAGE POST (ROM BASED)
NITAZES AND TESS

SYSTEM FUNCTIONS NEEDED
FOR BL FROM MEDIA

100

102

04
B ROM ROUTINE

READS BOOT RECORD FROM
SELECTED MEDIA TO RAM
AND RANSFERS CONTROL

BL BOOT RECORD 106
READS STAGE H POST / BIOS
128K IMAGE FROM MEDIA T0

RAM AND TRANSFERS CONTROL

POST WARM START ENTRY POINT

STAGE H POST (RAM BASED)
NITAUZES AND TESTS

REST OF SYSTEM NEEDED
FOR PL SEQUENCE

08

110

12
ENTAL PROGRAN LOAD

LOADS OPERATING SYSTEM
BOOT RECORD FROM EDIA
AND TRANSFERS CONTROL

114

S. OPERATING SYSTEM

FIG. 4

U.S. Patent June 4, 1991 sheets of 13 5,022,077

122
MBR DENTIFIER

"ABC"

MASTER BOOT
RECORD CODE SECMENT

MODE SUBMODE. BYTES

120

124

126

28

130
132

134

136

138

LAST BLOCK POINTER

LAST BLOCK LENGTH

F.G. 5

U.S. Patent June 4, 1991 Sheet 6 of 13 5,022,077

150
NAZE HARD FE

152
COMPABLE
BL RECORD

g

DRIVE C
BL MEDIA

ERROR ERROR
INVAD DISK MASTER NCOMPABLE MASTER

BOOT RECORD BOOT RECORD

WALD
PASSWORD
N CMOS

g

NVOKE WASTER
BOOT RECORD

DRIVE A
BL MEDIA

g

NTAZE
DISKETE

170

ERROR
INVALD DISKETTE

MASTER BOOT RECORD

ERROR
DISKETTE

RECOVERY PREVENTED

F.G. 6A

U.S. Patent June 4, 1991 sheet 7 of 13 5,022,077

200

CET DRIVE PARAMETERS

202
IBL LOAD LOCATION =

LAST 3 SECTORS ON MEDIA

204

LOAD COUNT = 1
206 226

READ THREE SECTORSAT BL LOAD LOCATION =
IBL LOAD LOCATION BL LOAD LOCATION -

210

ERROR (AH=2)
DRIVE CBL LOAD FAILURE

220

INCREMENT LOAD
COUNT BY 1

LOAD
COUNT < 99

g

ERROR (AH=1)
BAD DRIVE CBL MEDIA

CLEAR CARRY FLAG SET CARRY FLAC

214 1 FIG. 6B

MEDIA
LOAD ERROR

g

BL
ID CHECKSUM

WAD
g

212

U.S. Patent June 4, 1991 Sheet 8 of 13 5,022,077

250

CET DRIVE PARAMETERs

BL LOAD LOCATION =
LAST 3 SECTORS ON MEDIA

READ THREE SECTORS AT
IBL LOAD LOCATION

236 238

MEDIA YES ERROR (AL=2)
LOADERROR DRIVE A BL LOAD FAILURE
N ?

NO

22

234

244

B
ID . CHECKSUM

VALIO
ERROR (AL=1)

BAD DRIVE A BL RECORD

40 2

SET CARRY FLAC

242

CLEAR CARRY FLAC

RETURN

F.G. 6C

U.S. Patent June 4, 1991 Sheet 10 of 13 5,022,077

300

UNIQUE
PATTERN IN

ROW

302

NO ERROR
NO PATTERN IN ROM

506

ERROR
INCOMPATIBLE BL
BOOT RECORD

COMPABLE
BL RECORD

g

LOAD POST / BIOS
MEDIA MAGE
NTO RAM

310

MEDIA
LOAD ERROR

g

NO

COMPUTE
CHECKSUM

316 ERROR
BAD POST / BIOS CHECKSUM

S> 305
YES HALT

SAVE SYSTEM
PARTITION TYPE rest; TO STAGE I

POINTER OST

F. G. 7

312

ERROR
POST / BIOS LOAD ERROR

314

322

U.S. Patent June 4, 1991 sheet 11 of 13 5,022,077

DATA /
NSTRUCTION

FIG. 8

U.S. Patent June 4, 1991 Sheet 12 of 13 5,022,077

O 40

RECEIVE
NSTRUCTION

402
RECEIVE
DATA IN
R8A

FORMAT

406 408

RBA X CONVERT
MAX RBA RBA-p-CHS

4 4. 41 O

WRITE DATA
TO DISKN

CHS

RECEIVE 420 422

READ RBA X CONVERT

ES As Re RBA-bCHS
FORMAT 426 424

READ DATA
FROM DISK
AT CHS

428

SET
MAX RBA

g

OTHER
INSTRUCTIONS

SET
MAX RBA

F.G. 9

U.S. Patent June 4, 1991 Sheet 13 of 13 5,022,077

450 462

COD START WARM
POWER - ON START

464

RESET
SIGNAL SENT

EFFECT
BL LOAD

POST STAGE

RESET SIGNAL
SENT

452

454

456

458

SET MAX RBA
BELOW IBL

MEDIA

460

BOOT
OPERATING
SYSTEM

FIG. 1 O

5,022,077
1.

APPARATUS AND METHOD FOR PREVENTING
UNAUTHORIZED ACCESS TO BIOS IN A

PERSONAL COMPUTER SYSTEM

CROSS REFERENCE TO RELATED PATENT
APPLICATIONS

The present patent application is one of a group of
copending applications which concern the same overall
personal computer system but which individually claim
different inventive concepts embodied in such personal
computer system. These related patent applications
were filed on the same date, namely Aug. 25, 1989, are
specifically incorporated by reference herein, and are
more particularly described as follows: 15

(1) Application Ser. No. 07/399,631, entitled "An
Apparatus and Method for Loading BIOS from a Dis
kette in a Personal Computer System', the inventors
being Bealkowski et al;

(2) Application Ser. No. 07/398,865, entitled "Initial 20
BIOS Load for a Personal Computer System', the in
ventors being Bealkowski et al; and

(3) Application Ser. No. 07/398,860, entitled "An
Apparatus and Method for Decreasing the Memory
Requirements for BIOS in a Personal Computer Sys- 25
tem', the inventors being Bealkowski et al.

FIELD OF THE INVENTION

This invention relates to personal computer systems
and in particular to a method and device for protecting 30
BIOS stored on a mass storage device in a personal
computer system.

BACKGROUND DISCUSSION
Personal computer systems in general and IBM per-35

sonal computers in particular have attained widespread
use for providing computer power to many segments of
today's modern society. Personal computer systems can
usually be defined as a desktop, floor standing, or por
table microcomputer that consists of a system unit hav- 40
ing a single system processor, a display monitor, a key
board, one or more diskette drives, a fixed disk storage,
and an optional printer. One of the distinguishing char
acteristics of these systems is the use of a motherboard
or system planar to electrically connect these compo- 45
nents together. These systems are designed primarily to
give independent computing power to a single user and
are inexpensively priced for purchase by individuals or
small businesses. Examples of such personal computer
systems are IBM's PERSONAL COMPUTER AT and 50
IBM's PERSONAL SYSTEM/2 Models 25, 30, 50, 60,
70 and 80.
These systems can be classified into two general fami

lies. The first family, usually referred to as Family I
Models, use a bus architecture exemplified by the IBM 55
PERSONAL COMPUTER AT and other "IBM co
patible' machines. The second family, referred to as
Family II Models, use IBM's MICROCHANNEL bus
architecture exemplified by IBM's PERSONAL SYS
TEM/2 Models 50 through 80. 60

Beginning with the earliest personal computer system
of the family I models, such as the IBM Personal Com
puter, it was recognized that software compatibility
would be of utmost importance. In order to achieve this
goal, an insulation layer of system resident code, also 65
known as "microcode', was established between the
hardware and software This code provided an opera
tional interface between a user's application program

10

2
/operating system and the device to relieve the user of
the concern about the characteristics of hardware de
vices. Eventually, the code developed into a BASIC
input/output system (BIOS), for allowing new devices
to be added to the system, while insulating the applica
tion program from the peculiarities of the hardware.
The importance of BIOS was immediately evident be
cause it freed a device driver from depending on spe
cific device hardware characteristics while providing
the device driver with an intermediate interface to the
device. Since BIOS was an integral part of the system
and controlled the movement of data in and out of the
system processor, it was resident on the system planar
and was shipped to the user in a read only memory
(ROM). For example, BIOS in the original IBM Per
sonal Computer occupied 8K of ROM resident on the
planar board.
As new models of the personal computer family were

introduced, BIOS had to be updated and expanded to
include new hardware and I/O devices. As could be
expected, BIOS started to increase in memory size. For
example, with the introduction of the IBM PER
SONAL COMPUTER AT, BIOS grew to require 32K
bytes of ROM.
Today, with the development of new technology,

personal computer systems of the Family II models are
growing even more sophisticated and are being made
available to consumers more frequently. Since the tech
nology is rapidly changing and new I/O devices are
being added to the personal computer systems, modifi
cation to the BIOS has become a significant problem in
the development cycle of the personal computer sys
te.

For instance, with the introduction of the IBM Per
sonal System/2 with MICROCHANNEL architecture,
a significantly new BIOS, known as advanced BIOS, or
ABIOS, was developed. However, to maintain software
compatibility, BIOS from the Family I models had to be
included in the Family II models. The Family I BIOS
became known as Compatibility BIOS or CBIOS.
However, as previously explained with respect to the
IBM PERSONAL COMPUTER AT, only 32K bytes
of ROM were resident on the planar board. Fortu
nately, the system could be expanded to 96K bytes of
ROM. Unfortunately, because of system constraints,
this turned out to be the maximum capacity available
for BIOS. Luckily, even with the addition of ABIOS,
ABIOS and CBIOS could still squeeze into 96K of
ROM. However, only a small percentage of the 96K
ROM area remained available for expansion. With the
addition of future I/O devices, CBIOS and ABIOS will
eventually run out of ROM space. Thus, new I/O tech
nology will not be able to be easily integrated within
CBIOS and ABIOS.
Due to these problems, plus the desire to make modi

fications in Family II BIOS as late as possible in the
development cycle, it became necessary to off load
portions of BIOS from the ROM. This was accom
plished by storing portions of BIOS on a mass storage
device such as a fixed disk. Since a disk provides writing
as well as reading capabilities, it became feasible to
modify the actual BIOS code on the disk. The disk,
while providing a fast and efficient way to store BIOS
code, nevertheless greatly increased the probability of
the BIOS code being corrupted. Since BIOS is an inte
gral part of the operating system, a corrupt BIOS could
lead to devastating results and in many cases to com

5,022,077
3

plete failure and non-operation of the system. Thus, it
became quite apparent that a means for preventing un
authorized modification of the BIOS code on the fixed
disk was highly desireable.

SUMMARY OF THE INVENTION

The present invention has been developed for the
purpose of solving the above mentioned problems. Ac
cordingly, the invention has as one of its objects a
means for preventing unauthorized changes to BIOS
stored on a direct access storage device in a personal
computer system.
Another objective of the present invention is to pro

vide protection for disk loaded BIOS which is inexpen
sive to implement and substantially transparent to the
end user so that it does not detract from the commercial
acceptance of the computer system.

Broadly considered, a personal computer system
according to the present invention comprises a system
processor, a random access memory, a read only mem
ory, and at least one direct access storage device. A
direct access storage device controller coupled between
the system processor and direct access storage device
includes a means for protecting a region of the storage
device. The protected region of the storage device in
cludes a master boot record and a BIOS image. In re
sponse to a reset signal, the protection means permits
access to the protected region to allow the master boot
record to be loaded into random access memory. In
operation, the master boot record further loads the
BIOS image into random access memory. BIOS, now in
random access memory, is executed and generates a
second signal which activates the protection means to
prevent access to the region on the disk containing the
master boot record and the BIOS image. BIOS then
boots up the operating system to begin operation of the
system.

In particular, the read only memory includes a first
portion of BIOS. The first portion of BIOS initializes
the system processor, the direct access storage device
and resets the protection means to read the master boot
record from the protected region or partition on the
direct access storage device into the random access
memory. The master boot record includes a data seg
ment and an executable code segment. The data seg
ment includes data representing system hardware and a
system configuration which is supported by the master
boot record. The first BIOS portion confirms the master
boot record is compatible with the system hardware by
verifying the data from the data segment of the master
boot record agrees with data included within the first
BIOS portion representing the system processor, sys
templanar, and planar I/O configuration.

If the master boot record is compatible with the sys
tem hardware, the first BIOS portion vectors the sys
tem processor to execute the executable code segment
of the master boot record. The executable code segment
confirms that the system configuration has not changed
and loads in the remaining BIOS portion from the direct
access storage device into random access memory. The
executable code segment then verifies the authenticity
of the remaining BIOS portion, vectors the system pro
cessor to begin executing the BIOS now in random
access memory. BIOS, executing in random access
memory, generates the second signal for protecting the
disk partition having the remaining BIOS and then
boots up the operating system to begin operation of the
personal computer system. The partition holding the

O

15

25

30

35

45

50

55

65

4.
remaining BIOS is protected to prevent access to the
BIOS code on disk in order to protect the integrity of
the BIOS code.

BRIEF DESCRIPTION OF THE DRAWINGS
The foreground aspects and other features of the

present invention are explained in the following written
description, taken in connection with the accompanying
drawings, wherein:
FIG. 1 illustrates a cut away view of a personal com

puter system showing a system planar board connected
to a plurality of direct access storage devices;
FIG.2 shows a system block diagram for the personal

computer system of FIG. 1;
FIG.3 is a memory map for the ROM BIOS included

on the planar board;
FIG. 4 is a flowchart describing the overall process

for loading a BIOS image from a direct access storage
device;
FIG. 5 illustrates the record format for the master

boot record;
FIG. 6A is a flowchart describing the operation of

the IBL routine;
FIG. 6B is a flowchart showing the steps for loading

a BIOS image from a fixed disk;
FIG. 6C is a flowchart showing the steps for loading

the BIOS image from a diskette;
FIG. 6D is a flowchart showing greater detail in

checking the compatibility between the master boot
record and the planar/processor;

FIG. 7 is a detailed flowchart showing the operation
of the executable code segment of the master boot re
cord;

FIG. 8 is a block diagram for the controller of the
direct access storage device;
FIG. 9 is a flow diagram showing the operation of a

disk controller to protect the IBL media stored on a
disk drive; and
FIG. 10 is a flowchart showing a method for protect

ing the BIOS image.
DESCRIPTION OF A PREFERRED

EMBODIMENT

The following detailed description is of the best pres
ently contemplated mode for carrying out the inven
tion. This description is not to be taken in a limiting
sense but is made merely for the purpose of illustrating
the general principles of the invention since the scope of
the invention is best defined by the appending claims.

Referring now to the drawings, and in particular to
FIG. 1, there is shown a cutaway version of a personal
computer system 10, having a plurality of DASD (Di
rect Access Storage Devices) 12-16 connected to a
system or planar board 24 through a plurality of I/O
slots 18. A power supply 22 provides electrical power
to the system 10 in a manner well known. The planar
board 24 includes a system processor which operates
under the control of computer instructions to input,
process, and output information.

In use, the personal computer system 10 is designed
primarily to give independent computing power to a
small group of users or a single user and is inexpensively
priced for purchase by individuals or small businesses.
In operation, the system processor operates under an
operating system, such as IBM's OS/2 Operating Sys
tem or PC-DOS. This type of operating system includes
a BIOS interface between the DASD 12-6 and the
Operating System. A portion of BIOS divided into

5,022,077
5

modules by function is stored in ROM on the planar 24
and hereinafter will be referred to as ROM-BIOS, BIOS
provides an interface between the hardware and the
operating system software to enable a programmer or
user to program their machines without an indepth
operating knowledge of a particular device. For exam
ple, a BIOS diskette module permits a programmer to
program the diskette drive without an indepth knowl
edge of the diskette drive hardware. Thus, a number of
diskette drives designed and manufactured by different
companies can be used in the system. This not only
lowers the cost of the system 10, but permits a user to
choose from a number of diskette drives.

Prior to relating the above structure to the present
invention, a summary of the operation in general of the
personal computer system 10 may merit review. Refer
ring to FIG. 2, there is shown a block diagram of the
personal computer system 10 FIG. 2 illustrates compo
nents of the planar 24 and the connection of the planar
24 to the I/O slots 18 and other hardware of the per
sonal computer system. Located on the planar 24 is the
system processor 26 comprised of a microprocessor
which is connected by a local bus 28 to a memory con
troller 30 which is further connected to a random access
memory (RAM) 32. While any appropriate micro
processor can be used, one suitable microprocessor is
the 80386 which is sold by Intel.
While the present invention is described hereinafter

with particular reference to the system block diagram
of FIG. 2, it is to be understood at the outset of the
description which follows, it is contemplated that the
apparatus and methods in accordance with the present
invention may be used with other hardware configura
tions of the planar board For example, the system pro
cessor could be an Intel 80286 or 80486 microprocessor.

Accessible by the processor is a planar identification
number (planar ID). The planar ID is unique to the
planar and identifies the type of planar being used. For
example, the planar ID can be hardwired to be read
through an I/O port of the system processor 26 or by
using switches. Additionally, another I/O port of the
system processor 26 can be used to generate a reset
signal using planar logic circuitry to the disk controller.
For instance, the reset signal can be initiated by soft
ware addressing the I/O port and activating planar
logic to generate the reset signal.
The local bus 28 is further connected through a bus

controller 34 to a read only memory (ROM) 36 on the
planar 24.
An additional nonvolatile memory (NVRAM) 58 is

connected to the microprocessor 26 through a serial/-
parallel port interface 40 which is further connected to
bus controller 34. The nonvolatile memory can be
CMOS with battery backup to retain information when
ever power is removed from the system. Since the
ROM is normally resident on the planar, model and
submodel values stored in ROM are used to identify the
system processor and the system planar I/O configura
tion respectively. Thus these values will physically
identify the processor and planar I/O configuration.
The NVRAM is used to store system configuration
data. That is, the NVRAM will contain values which
describe the present configuration of the system. For
example, NVRAM contains information describing the
capacity of a fixed disk or diskette, the type of display,
the amount of memory, time, date, etc. Additionally,
the model and submodel values stored in ROM are
copied to NVRAM whenever a special configuration

10

15

20

25

30

35

40

45

SO

55

65

6
program, such as SET Configuration, is executed. The
purpose of the SET Configuration program is to store
values characterizing the configuration of the system in
NVRAM. Thus for a system that is configured prop
erly, the model and submodel values in NVRAM will
be equal respectively to the model and submodel values
stored in ROM. If these values are not equal, this indi
cates that the configuration of the system has been mod
ified. Reference is made to FIG. 6D, where this feature
in combination with loading BIOS is explained in
greater detail.

Continuing, our discussion with reference to FIG. 2,
the bus controller 34 is further coupled to I/O slots 18,
the serial/parallel interface 40 and peripheral controller
42 by an I/O planar bus 43. The peripheral controller 42
is further connected to a keyboard 44, mouse 46, diag
nostic panel 47, and diskette controller 64. Beside the
NVRAM 58, the serial/parallel interface 40 is further
connected to a serial port 48 and parallel port 50 to
input/output information to a printer, hard copy device,
etc. As is well known in the art, the local bus 28 can also
be connected to a cache controller 52, a cache memory
68, a co-processor 54, and a DMA controller 56.
The system processor 26 controls its internal opera

tion as well as interfacing with other elements of the
personal computer system 10. For example, system
processor 26 is shown connected to a small computer
system interface (SCSI) I/O card 60 which is further
connected to a DASD, such as a fixed disk drive 62. It
is to be understood that other than a SCSI disk drive
can be used as a fixed disk in accordance with the pres
ent invention. In addition to the fixed disk 62, the sys
tem processor 26 can be interfaced to the diskette con
troller 64 which controls a diskette drive 66. With re
spect to terminology, it is also to be understood that the
term "hardfile' describes fixed disk drive 62 while the
term "floppy" also describes diskette drive 66.

Previous to the present invention, ROM 36 could
include all of the BIOS code which interfaced the oper
ating system to the hardware peripherals. According to
one aspect of the present invention, however, ROM 36
is adapted to store only a portion of BIOS. This portion,
when executed by the system processor 26, inputs from
either the fixed disk 62 or diskette 66 a second or re
maining portion of BIOS, hereinafter also referred to as
a BIOS image. This BIOS image supersedes the first
BIOS portion and being an integral part of the system is
resident in main memory such as RAM 32. The first
portion of BIOS (ROM-BIOS) as stored in ROM 36
will be explained generally with respect to FIGS. 3-4
and in detail with respect to FIGS. 6A-D. The second
portion of BIOS (BIOS image) will be explained with
respect to FIG. 5, and the loading of the BIOS image
with respect to FIG. 7. Another benefit from loading a
BIOS image from a DASD is the ability to load BIOS
directly into the system processor's RAM. 32. Since
accessing RAM is much faster than accessing ROM, a
significant improvement in the processing speed of the
computer system is achieved.
The explanation will now proceed to the operation of

the BIOS in ROM 36 and to the operation of loading the
BIOS image from either the fixed disk or diskette. In
general, a first program such as ROM-BIOS prechecks
the system and loads a BIOS master boot record into
RAM. The master boot record includes a data segment
having validation information and, being a loading
means, a code segment having executable code. The
executable code uses the data information to validate

5,022,077
7

hardware compatibility and system configuration. After
testing for hardware compatibility and proper system
configuration, the executable code loads the BIOS
image into RAM producing a main memory resident
program. The BIOS image succeeds ROM-BIOS and
loads the operating system to begin operation of the
machine. For purposes of clarity, the executable code
segment of the master boot record will be referred to as
MBR code while the data segment will be referred to as
MBR data.

Referring to FIG. 3 there is a memory map showing
the different code modules which comprise ROM
BIOS. ROM-BIOS includes a power on self test
(POST) stage I module 70, an Initial BIOS Load (IBL)
Routine module 72, a Diskette module 74, a hardfile

10

15
module 76, a video module 78, a diagnostic-panel mod
ule 80, and hardware compatibility data 82. Briefly,
POST Stage I70 performs system pre-initialization and
tests. The IBL routine 72 determines whether the BIOS
image is to be loaded from disk or diskette, checks com
patibility and loads the master boot record. Diskette
module 74 provides input/output functions for a dis
kette drive. Hardfile module 76 controls I/O to a fixed
disk or the like. Video module 78 controls output func
tions to a video I/O controller which is further con
nected to a video display. Diagnostic panel module 80
provides control to a diagnostic display device for the
system. The hardware compatibility data 82 includes
such values as a system model and submodel values
which are described later with respect to FIG. 5.

Referring now to FIG. 4, there is shown a process
overview for loading a BIOS image into the system
from either the fixed disk or the diskette. When the
system is powered up, the system processor is vectored
to the entry point of POST Stage I, step 100. POST
Stage I initializes the system and tests only those system
functions needed to load BIOS image from the selected
DASD, step 102. In particular, POST Stage I initializes
the processor/planar functions, diagnostic panel, mem
ory subsystem, interrupt controllers, timers, DMA sub
system, fixed disk BIOS routine (Hardfile module 76),
and diskette BIOS routine (Diskette module 74), if nec
essary.

After POST Stage I pre-initializes the system, POST
Stage I vectors the system processor to the Initial BIOS
Load (IBL) routine included in the Initial BIOS Load
module 72. The IBL routine first, determines whether
the BIOS image is stored on fixed disk or can be loaded
from diskette; and second, loads the master boot record
from the selected media (either disk or diskette) into
RAM, step 104. The master boot record includes the
MBR data and the MBR code. The MBR data is used
for verification purposes and the MBR code is executed
to load in the BIOS image. A detailed description of the
operation of the IBL routine is presented with respect
to FIGS. 6A-D.
With continuing reference to FIG. 4, after the IBL

routine loads the master boot record into RAM, the
system processor is vectored to the starting address of
the MBR code to begin execution, step 106. The MBR
code performs a series of validity tests to determine the
authenticity of the BIOS image and to verify the config
uration of the system. For a better understanding of the
operation of the MBR code, attention is directed to
FIG. 7 of the drawings wherein the MBR code is de
scribed in greater detail.
On the basis of these validity tests, the MBR code

loads the BIOS image into RAM and transfers control

20

25

30

35

45

50

55

60

65

8
to the newly loaded BIOS image in main memory, step
108. In particular, the BIOS image is loaded into the
address space previously occupied by ROM-BIOS.
That is if ROM-BIOS is addressed from EOOOOH
through FFFFFH, then the BIOS image is loaded into
this RAM address space thus superseding ROM-BIOS
Control is then transferred to POST Stage II which is
included in the newly loaded BIOS image thus aban
doning ROM-BIOS. POST Stage II, now in RAM,
initializes and tests the remaining system in order to
load the operating system boot, steps 110-114. Before
Stage II POST transfers control to the operating sys
tem, Stage II POST sets a protection means for prevent
ing access to the disk partition holding the BIOS image.
Reference is made to FIGS. 8-10 for a detailed discus
sion of this protection process. It is noted that during a
warm start, the processor is vectored to step 108, by
passing steps 100-106.

For clarity, it is appropriate at this point to illustrate
a representation for the format of the master boot re
cord. Referring to FIG. 5, there is shown the master
boot record. The boot record includes the executable
code segment 120 and data segments 122-138. The
MBR code 120 includes DASD dependent code respon
sible for verifying the identity of the ROM-BIOS,
checking that the IBL boot record is compatible with
the system, verifying the system configuration, and
loading the BIOS image from the selected DASD (disk
or diskette). The data segments 122-138 include infor
mation used to define the media, identify and verify the
master boot record, locate the BIOS image, and load
the BIOS image.
The master boot record is identified by a boot record

signature 122. The boot record signature 122 can be a
unique bit pattern, such as a character string "ABC", in
the first three bytes of the record. The integrity of the
master boot record is tested by a checksum value 132
which is compared to a computed checksum value
when the boot record is loaded. The data segments
further include at least one compatible planar ID value
134, compatible model and submodel values 136. The
master boot record's planar ID value defines which
planar that the master boot record is valid for. Simi
larly, the master boot record's model and submodel
values define the processor and planar I/O configura
tion respectively that the master boot record is valid
for. It is noted that the boot record's signature and
checksum identify a valid master boot record, while the
boot record's planar ID, boot record's model and boot
record's submodel comparisons are used to identify a
boot record compatible with the system and to deter
mine if the system configuration is valid. Another value,
boot record pattern 124 is used to determine the validity
of the ROM-BIOS. The boot record pattern 124 is com
pared to a corresponding pattern value stored in ROM.
If the values match this indicates that a valid ROM
BIOS has initiated the load of a BIOS image from the
selected media.
The following description further describes in greater

detail each of the values in the master boot record and
their functions:
MBRIdentifier (122): The first three bytes of the IBL

boot record can consist of characters, such as "ABC'.
This signature is used to identify a boot record.
MBR Code Seqment (120): This code verifies the

compatibility of the boot record with the planar and
processor by comparing corresponding planar id and
model/submodel values. If these values match, it will

5,022,077
9

load the BIOS image from the chosen media to system
RAM. If the system image (BIOS image loaded into
memory) checksum is valid and no media load errors
occur, the MBR code will transfer control to the POST
Stage II routine of the system image.
MBR Pattern (124): The first field of the IBL boot

record data segment contains a pattern, such as a char
acter string "ROM-BIOS 1989'. This string is used to
validate the ROM-BIOS by comparing the Boot Pat
tern value to the corresponding value stored in ROM
(ROM-Pattern).
MBR Version Date (126): The master boot record

includes a version date for use by an update utility.
System Partition Pointer (128): The data segment

contains a media pointer to the beginning of the media
system partition area for use by Stage II POST. On an
IBL diskette, the pointer is in track-head-sector format;
on disk the pointer is in Relative Block Address (RBA)
format.
System Partition Type (130): The system partition

type indicates the structure of the media system parti
tion. There are three types of system partition struc
tures-full, minimal and not present. The full system
partition contains the setup utility and diagnostics in
addition to the BIOS image and master boot record.
The minimal system partition contains just the BIOS
image and master boot record. It may occur where a
system does not have access to a hardfile having an IBL
image, in this circumstance the system partition type
indicates not present. In this instance, IBL will occur
from the diskette. These three system partition types
allow flexibility in how much space the system partition
takes up on the media.
Checksum value (132): The checksum value of the

data segment is initialized to generate a valid checksum
for the record length value (1.5 kbytes) of the master
boot record code.
MBR Planar ID Value (134): The data segment in

cludes a value, such as a string of words defining com
patible planar IDs. Each word is made up of a 16 bit
planar ID and the string is terminated by word value of
zero. If a system's planar ID matches the planar ID
value in the master boot record, such as one of the
words in the string, the IBL media image is compatible
with the system planar. If the system's planar ID does
not match any word in the string, the IBL media image
is not compatible with the system planar.
MBR model and submodel values (136): The data

segment includes values, such as a string of words defin
ing compatible processors. Each word is made up of a
model and submodel value and the string is terminated
by a word value of zero. If a system's model and sub
model value (stored in ROM) match one of the words in
the string, the IBL media image is compatible with the
system processor. If the ROM model and ROM sub
model values do not match any word in the string, the
IBL media image is not compatible with the system
processor.
MBR Map length (138): The IBL map length is ini

tialized to the number of media image blocks In other
words, if the BIOS image is broken into four blocks, the
map length will be four indicating four block pointer/-
length fields. Usually this length is set to one, since the
media image is one contiguous 128k block.
MBR Media Sector Size (138): This word value is

10

20

25

30

35

40

45

50

55

60

65

initialized to the media sector size in bytes per sector.
Media image block pointer (138): The media image

block pointer locates a system image block on the me

10
dia. Normally, there is only one pointer since the media
image is stored as one contiguous block. On an IBL
diskette, the pointers are in track-head-sector format; on
disk the pointers are relative block address format.
Media image block length (138): The media image

block length indicates the size (in sectors) of the block
located at the corresponding image block pointer. In the
case of a 128k contiguous media image, which includes
space for BASIC, this field is set to 256, indicating that
the BIOS image block takes up 256 sectors (512 bytes/-
sector) starting at the media image block pointer loca
tion.

Referring now to FIGS. 6A-D, there is shown a
detailed flow chart of the operation of the IBL routine.
Under normal circumstances, the IBL routine loads the
master boot record from the system fixed disk into
RAM at a specific address and then vectors the system
processor to begin executing the code segment of the
master boot record. The IBL routine also contains pro
visions for a diskette default mode in which the master
boot record can be loaded from diskette. However, the
IBL routine does not allow the diskette default mode to
be performed if the system contains the IBL media on
the system fixed disk and a valid password is present in
NVRAM. The user has the option of setting the pass
word in NVRAM. The purpose of preventing the dis
kette default mode from being effected is to prevent
loading an unauthorized BIOS image from diskette. In
other words, the diskette default mode is used only
when a system fixed disk is not operational and the user
has indicated (by not setting the password) the desire to
be able to load from the diskette. If the IBL routine is
not able to load the master boot record from either
media, an error message is generated and the system is
halted.

Referring now to FIG. 6A, under normal circum
stances the system will contain a system fixed disk
which the IBL routine initializes, step 150. Assume for
purposes of illustration that the fixed disk is configured
for Drive C of the personal computer system. Similarly,
assume Drive A is designated as the diskette drive. The
IBL routine then examines Drive C to determine
whether it contains IBL media, step 152. Attention is
directed to FIG. 6B which describes in detail this pro
cess. The IBL routine starts reading from the fixed disk
at the last three sectors and continues reading, decre
menting the media pointer, for 99 sectors or until a valid
master boot record is found. If a master boot record is
found, it is checked for system planar and processor
compatibility, step 156. If it is not planar or processor
compatible, then an error is reported, step 158. Refer
ring back to step 152, if no master boot record is found
on the last 99 sectors of the fixed disk (primary hardfile),
an error is reported, step 154.

Referring back to step 156, if a master boot record is
found, a series of validity checks are performed to de
termine if the master boot record is compatible with the
computer system. Additionally, the configuration of the
system is checked. Attention is directed to FIG. 6D
which discloses this process in greater detail. If the boot
record is compatible with the planar ID, model and
submodel, and if furthermore the system configuration
has not changed the master boot record is loaded and
the code segment of the master boot record is executed,
step 160.

Referring back to steps 154 and 158, if an error occurs
in loading the master boot record from the fixed disk or
if a fixed disk is not available, the IBL routine deter

5,022,077
11

mines if a valid password is included in NVRAM, step
162. This password determines whether the BIOS
image can be loaded from diskette. Note that the pass
word will exist only upon being installed by the user
running a set features utility. If a password is installed in
NVRAM, the BIOS image is prevented from being
loaded from diskette, step 164. This permits the user to
ensure the integrity of the operation of the system by
causing the system to be loaded only with the BIOS
image on the fixed disk. The password can take the form
of a string of characters stored in NVRAM.

Referring back to step 162, if a valid password in
NVRAM is not present, thus allowing BIOS image to
be loaded from diskette, the IBL routine initializes the
diskette subsystem, step 166. The IBL routine then
determines if Drive A includes the IBL media on a
diskette, step 168. If Drive A does not include IBL
media, an error is generated to notify the user that an
invalid diskette has been inserted in the drive, step 170.
The system then halts, step 172. Attention is directed to
FIG. 6C for a more detailed discussion of step 168.

Referring back to step 168, after Drive A is checked
for IBL media, the master boot record is loaded into
RAM and the code segment included in the master boot
record is executed, step 160. It is important to note that
for diskette the IBL routine does not include the valid
ity checks that are used with the fixed disk system. The
reason for the absence of the validity checks is for load
ing a non-compatible IBL image from diskette. For
example, if a new processor is added to the system, a
new BIOS image will be included on a diskette. Since a
new processor will cause validity errors when loading
from fixed disk, the IBL routine provides the ability to
bypass these tests by loading the BIOS image from
diskette.
To recapitulate, the master boot record is checked for

compatibility with the system through matching the
system planar ID and processor model/submodel val
ues to the boot record values. For disk, this check is
done first in the IBL routine 72 and then done again in
the IBL boot record. The first check (in the IBL rou
tine) is done to make sure the boot record is compatible
with the system; the second check (in the boot record)
is done to ensure a compatible ROM passed control to
the boot record. Notice that the check done in the disk
boot record will never fail for a compatible ROM since
the IBL routine will have already checked the compati
bility. In contrast, the first compatibility check is not
done for diskette. The planar/processor compatibility is
checked only during diskette boot record execution.
This method allows future modifications in loading a
new BIOS image from a reference diskette.

In view of the description of the IBL routine of FIG.
6A, the explanation will now proceed to a comprehen
sive and full understanding of the validity tests dis
cussed above. Referring to FIG. 6B, there is shown a
detailed flowchart of step 152 of FIG. 6A, to determine
if a valid master boot record is on drive C. The process
begins by obtaining the drive parameters to enable the
IBL routine to access drive C, step 200. An IBL load
location is set to the last three sectors from the disk (the
last three sectors normally contain the master boot re
cord), step 202. A load count indicating the number of
attempts to read a master boot record from disk is set to
l, step 204. Three sectors are read from disk at the IBL
load location, step 206. Any disk drive errors are de
tected and if a disk drive read error occurs it is reported,

O

5

20

25

30

35

45

50

55

65

12
steps 208-210. The process then returns with an error
indication, steps 212-24.

Referring back to step 208, if no drive error occurs,
the disk record is scanned for the master boot record
signature, step 216. The boot record signature, such as
the characters "ABC', are compared to the first three
bytes of the disk record. If the disk record does have a
valid boot record signature (characters "ABC') and the
checksum computed from the disk record loaded into
memory equals the boot record checksum, the disk
record is indicated as being a valid boot record with no
errors, step 218. The process then returns, step 214.

Referring back to step 216, if the boot record signa
ture or checksum is invalid, the load count is incre
mented by 1, step 220. The load count is then compared
to a predetermined constant such as 99, step 222. If 99
attempts to read a boot record have resulted in failure,
an error is indicated and the process returns, steps 224,
212 and 214. If less than 99 attempts to read a boot
record have occurred, the IBL load location is decre
mented by one and three new sectors are read from the
new load location, steps 226 and 206. Thus if a valid
IBL boot record cannot be loaded from the last 99
sectors (equivalent to 33 copies) then an error condition
is set and control returns to the IBL routine.

Referring now to FIG. 6C, there is shown a detailed
flow diagram for loading the master boot record from
diskette on drive A. First, the diskette drive parameters
to access drive A are retrieved, step 230. The IBL load
location is set to the last 3 sectors on diskette (cylinder,
head and sector format), step 232. The last 3 sectors are
read, step 234. If a diskette drive error is detected an
error is indicated, steps 236-238. An error condition is
set and control is returned to the IBL routine, steps
240-242.

Referring back to step 236, if no drive error is de
tected, the diskette record is checked for boot record
signature and the checksum is calculated, step 244. If
the boot record signature is missing or checksum is
invalid, an error is indicated and control returned to the
IBL routine, steps 244, 246, 240 and 242. If a valid boot
record signature and valid checksum are detected an
indication is set and control is returned to the IBL rou
tine, steps 248 and 242. It is noted that in a diskette load,
the IBL routine does not search through the media as in
the fixed disk load. Therefore, in a diskette load, the
IBL media must be stored in a specific location of the
diskette.

Finally, FIG. 6D shows how the IBL routines tests
for system planar and processor compatibility and for a
proper system configuration. The master boot record is
checked for compatibility with the system planar by
comparing the boot record planar ID value to the sys
templanar ID read by the system processor, step 260. If
the system planar ID does not match the boot record
planar ID value, this indicates this master boot record is
not compatible with this planar. An error is indicated
and control return to the IBL routine, steps 262, 264,
and 266.

If the master boot record is compatible with the pla
nar, the master boot record is checked for compatibility
with the processor, step 268. The boot record model
value and submodel value are compared to the model
value and submodel value stored in ROM respectively.
A mismatch indicates a new processor has probably
been inserted and this boot record is not compatible
with the new processor. An error is indicated and con
trol returned to the IBL routine, steps 270, 264 and 266.

5,022,077
13

If the master boot record is compatible with the planar
and processor, the process checks to determine if
NVRAM is reliable, step 272. If NVRAM is unreliable,
an error is indicated and control returned to the IBL
routine, steps 274 and 266. If NVRAM is reliable, the
system configuration is checked, step 276. A change in
system configuration is indicated if the model and sub
model values stored in NVRAM do not match the
model and submodel values stored in ROM. Note that
this last comparison will only indicate a configuration
error. If a configuration error is indicated, an error is
generated for the user. This error notifies the user that
the configuration of the system has changed since the
last time SET Configuration was run. The user is noti.
fied of the changed configuration and control passed
back to the IBL routine steps 278, 264, and 266. This
error is not fatal itself, but notifies the user that SET
Configuration (configuration program) must be exe
cuted. Referring back to step 276, if the system model/-
submodel values match, an indication of comparability
is set and the routine returns, steps 276, 274 and 266.
Thus, the compatibility between the master boot record
and the system are tested along with determining if the
system configuration has been modified.

After the IBL routine loads the master boot record
into RAM, it transfers control to the MBR code starting
address. Referring to FIG. 7, the executable code seg
ment of the master boot record first verifies the boot
record pattern to the ROM pattern, step 300. If the
pattern in the master boot record does not match the
pattern in ROM, an error is generated and the system
halts, steps 302 and 305. The check for equality between
ROM and boot record patterns ensures that the master
boot record loaded from either the disk or diskette is
compatible with the ROM on the planar board. Refer
ring back to step 300, if the pattern in ROM matches the
pattern in the boot record, the MBR code compares the
system planar ID value, model and submodel value
against the corresponding master boot record values,
step 304. This process was discussed in greater detail
with respect to FIG. 6D. If the values don't match, the
master boot record is not compatible with the system
planar and processor, or the system configuration has
changed, and an error is generated, step 306. The sys
tem will halt when the IBL record is incompatible with
planar, model or submodel values, step 305.

Referring back to step 304, if the system planar ID
value, model and submodel values match the corre
sponding master boot record values, the MBR code
loads the BIOS image from the selected media into the
system RAM, step 308. If a media load error occurs in
reading the data, step 310, an error is generated and the
system halts, steps 312 and 305. Referring back to step
310, if no media load error occurs, a checksum is calcu
lated for the BIOS image in memory, step 314. If the
checksum is invalid an error is generated and the system
halts, steps 318 and 305. Referring back to step 316, if
the checksum is valid, the system partition pointers are
saved, step 320, and the system processor is vectored to
POST Stage II to begin loading the system, step 322.

Referring to FIG. 8, there is shown a block diagram
of an intelligent disk controller 350 for controlling
movement of data between the disk drive 351 and the
system processor. It is understood that disk controller
350 can be incorporated into the adapter card 60 while
disk drive 351 can be included onto drive 62 of FIG. 2.
A suitable disk controller 350 is a SCSI Adapter having
a part number of 33F8740, which is manufactured by

10

20

25

30

35

45

55

60

65

14
International Business Machines Corporation. It is un
derstood that the disk controller 350 includes a micro
processor 352 operating under its own internal clock,
for controlling its internal operations as well as its inter
facing with the other elements of the disk subsystem and
the system processor. The microprocessor 352 is cou
pled by a instruction bus 354 to a read only memory
(ROM) 356 which stores instructions which the disk
controller 350 executes to process and control the
movement of data between the disk drive and the sys
tem processor. It is also understood that disk controller
350 can include random access memory coupled to
microprocessor 352 for the storage or retrieval of data.
The movement of data between disk controller 350 and
the system processor is effected by data bus 358 and
instruction bus 360. A reset signal on line 362 resets or
initializes the disk controller logic upon power-on se
quence or during a system reset. The reset signal is
generated by the planar board logic, and can take the
form of a channel reset signal as provided by IBM's
MICROCHANNEL architecture as described in "IBM
PERSONAL SYSTEM/2 Seminar Proceedings”, Vol
ume 5, Number 3, May 1987 as published by the Inter
national Business Machines Corporation Entry Systems
Division. Furthermore, the reset signal can be effec
tively initiated by BIOS outputting a particular bit con
figuration to an I/O port of the system processor in
which the planar logic is connected.
As is well known, the microprocessor 352 provides

all the interfacing and timing signals to effect the effi
cient transfer of data between the disk drive and the
system processor. For clarity, only those signals impor
tant for the understanding of the invention are pres
ented. It is understood that other signals and lines, such
as data bus 364, are used but are not presented here since
they are not important for the understanding of the
present invention. It is further understood that only
those programs or routines as stored in ROM 356 in
portant for the understanding of the present invention
are explained with respect to FIG. 9.

Referring now to FIG. 9, there is shown a flowchart
diagramming the read, write, and protect functions of
the disk controller which are effected by the operation
of routines stored in ROM 356. In operation, a disk
instruction is initiated by the system processor and
transferred to the disk controller 350. The disk control
ler receives and interprets the instruction to perform the
designated operation, step 400. The disk controller first
determines if this is a write operation in which data
from the system processor are stored on the disk drive
hardware, step 402. If the instruction is a write instruc
tion, data are received from the system processor in
relative block address (RBA) format.

Prior to continuing the discussion above, a brief ex
planation of the relative block address format applied to
a mass storage device, such as a disk, may merit review.
RBA is a scheme in which data in mass storage are
addressed in predetermined sized blocks by sequential
numbers, i.e. individual definable contiguous blocks of
data. For example, assuming a block size of 1024 bytes,
the system processor can approximately address 10,000
blocks for a 10 megabyte disk. That is, the system pro
cessor can address the disk media in terms of N blocks
where N ranges from 0 to 9,999. It has been discovered;
that the use of RBA provides a very fast and efficient
method for addressing mass storage in the type of oper
ating systems used for personal computer systems of the
present invention.

5,022,077
15

For convenience sake, the following assumptions will
be introduced: first, the disk can support a total of N
blocks; second, the system processor transfers a K
block, where K is greater than or equal to 0 and is less
than or equal to (N-1); third, the disk controller can set
a maximum addressable block M which permits access
to data blocks where K is less than M and denies access
to data blocks where K is greater than or equal to M.
Note, by setting M less than N a protectable region on
the disk is generated from M to N-1 blocks. This fea
ture permits the IBL media to be protected as will be
discussed below.

Continuing our discussion with reference to FIG. 9,
the data are received from the disk in RBA format, step
404. The disk controller then determines if the received
block K is less than the maximum block value M, where
M is less than N, step 406. If K is less than M then the
disk controller converts the RBA format into the partic
ular format for the mass storage device, such as cylin
der-head-sector (CHS) format for a fixed disk, step 408.
For instance, the disk controllier by using a look up table
could convert RBA addresses to unique cylinder-head
sector location. Another method is the use of a conver
sion formula to convert RBA to CHS. For example, for
a disk having one head, 64 cylinders, and 96 sectors:
Head=0, cylinders = quotient of RBA/(96), and sec
tors=remainder of RBA/(96). After converting the
RBA format to a CHS format the data are written to
disk at the converted CHS location, step 410. The disk
controller then waits for another instruction from the
system processor, step 412.

Referring back to step 406, if the received RBA is
greater than the maximum set RBA value, access is
denied, step 414. That is if K is greater than or equal to

O

5

20

25

30

M, the K block is not written to the disk. Please note, if 35
the IBL media is stored in the blocks from M to N-1,
then the IBL media will be protected from writing.

Referring back to step 402, if the instruction from the
system processor is not a write instruction, it is tested
for being a read instruction, step 416. If the instruction
is a read instruction, the system processor sends the
RBA format for the data requested, step 418. The disk
controller then determines if the desired RBA (K) is less
than the maximum set RBA (M). If the desired RBA
(K) is less than the maximum set RBA (M), then the disk
controller converts the RBA to the appropriate CHS
format and reads the data from the disk, steps 422 and
424. The data are then transferred to the system proces
sor, step 412.

Referring back to step 420, if the received RBA (K)
is greater than or equal to the maximum set RBA (M),
access is denied, step 426. If the IBL media is stored
between M blocks and (N-1) blocks, access is denied
to this area. Please note, that in this circumstance, the
IBL media is also protected from copying.

Referring back to step 416, if the instruction is not a
write or read instruction, it is tested for a set maximum
RBA instruction, step 428. This instruction allows the
disk controller to create a protectable area or partition
on the disk drive hardware. This instruction allows the
disk controller to set M between 0 and N blocks, step
430. It is important to note that when the disk controller
is reset (through the reset signal) that M is set so that the
maximum number of blocks are available. That is, when
the disk controller is reset, M=N. Essentially, protec
tion for the protectable area is eliminated upon resetting
the disk controller, allowing access to the area. How
ever, once the set maximum RBA instruction is exe

45

SO

55

65

16
cuted only a reset or another set maximum RBA in
struction will allow access to the protectable area. Con
ceptually, the setting of the maximum RBA can be
thought of as setting a fence which protects access to
the area above the fence while allowing access to the
area below the fence. The disk controller then returns
to wait for another instruction, step 412.

Referring back to step 428, if the instruction is not a
read, write, or set maximum RBA instruction, it is
tested for another disk controller instruction and exe
cuted, step 432. These instructions will use the set maxi
mum RBA value but are not important for the under
standing of the present invention and are not presented
here for brevity purposes. The disk controller then
returns to wait for another instruction, step 412.
The explanation will now proceed to the operation of

the loading in and protecting the IBL media in view of
the proceeding discussion. In general, from either a cold
start (power-on) or a warm start (alt-ctrl-del), the disk
controller having the IBL media is reset. This causes
the maximum RBA (M) to be set to N, i.e. the fence is
removed allowing access to the IBL media. This is
required to allow the system to load the IBL media to
begin operation. Once the IBL media is loaded and
executed the fence is erected (set maximum RBA below
IBL media) to prevent access to the IBL media stored
on disk.

Referring now to FIG. 10, there is shown a block
flow diagram effecting the protection of the IBL media.
From a power-on condition the system is initialized and
BIOS initiates activity in planar board logic to send a
reset condition to the disk controller, steps 450 and 452.
The reset signal drops the fence and allows the system
processor to access the IBL media previously stored on
the disk in the area from M blocks to N blocks. The
system loads the IBL media as previously described
with reference to FIG. 4–7, step 454. During the IBL
loading sequence Post Stage II is executed, step 456.
One of the tasks of POST Stage II is to execute the set
maximum RBA instruction with the maximum RBA set
to the first block of the IBL media which is designated
as M, step 458. M is dependent upon partition type
(none, partial or full) as previously explained. This in
effect sets the fence denying access to the IBL media
while allowing access to other regions of the disk. The
operating system is then booted up in a normal fashion,
step 460,

If the system is started from a warm start condition,
such as alt-ctrl-del, the planar logic is commanded to
reset the disk controller by POST Stage II, steps 462
and 464. This causes the fence to be dropped. In this
circumstance, since the IBL media is already present in
RAM, the IBL media is not loaded again. However,
since the protection for the IBL media is eliminated
POST Stage II must be executed to reset the fence,
steps 456 and 458. The fence is erected protecting the
IBL media and the system is then rebooted in a normal
manner, step 460.
Thus, there has been shown a method and apparatus

for protecting access to the IBL media stored on a mass
storage device, such as a disk drive. The IBL media is
protected by addressing mass storage in blocks and
setting a maximum block the system can access during
normal operation. The IBL media is stored consecu
tively in those blocks between the maximum block ac
cessible and the total number of blocks supported by the
disk drive. A reset signal sent to the disk controller
eliminates the maximum block accessible to permit the

5,022,077
17

system to address the IBL media. The reset signal is
generated during a power-on condition or a warm-start
condition to permit access to the IBL media to boot up
the system.
While the invention has been illustrated in connection

with a preferred embodiment, it should be understood
that many variations will occur to those of ordinary
skill in the art, and that the scope of the invention is
defined only by the claims appended hereto and equiva
lent.
We claim:
1. An apparatus for protecting BIOS in a personal

computer system, the personal computer system having
a system processor for executing an operating system, a
read only memory, a random access memory, and at
least one direct access storage device, said apparatus
comprising:

a direct access storage device controller having a
protection means for protecting a region of the at
least one direct access storage device, said protec
tion means allowing access to the protected region
in response to a reset signal;

a master boot record included in the protected region
of the at least one direct access storage device, said
master boot record including an executable code
segment having means for loading information
from the at least one direct access storage device;

a first portion of BIOS being included in the read
only memory, said first portion of BIOS initializing
the system processor and initiating generation of
the reset signal to the direct access storage device
controller to permit the system processor to access
said master boot record in order to load said master
boot record into the random access memory;

a remaining portion of BIOS being included in the
protected region of the at least one direct access
storage device, said remaining portion of BIOS
being loaded into the random access memory by
the executable code segment in response to said
first portion of BIOS transferring control to the
executable code segment, the executable code seg
ment transferring control to said remaining portion
of BIOS to boot the operating system, said remain
ing portion of BIOS activating said protection

10

20

25

30

35

means to prevent access to the protected region of 45
the at least one direct access storage device during
normal operations of the operating system.

2. The apparatus of claim 1, wherein the at least one
direct access storage device comprises a fixed disk.

3. The apparatus of claim 2, wherein said system
processor transfers data records to a disk controller in
blocks being in a format which numbers the blocks
sequentially, and further wherein said master boot re
cord and said remaining portion of BIOS are effectively
stored in a higher ordered numbered of blocks.

4. The apparatus of claim 3, wherein said protection
means comprises setting a maximum block addressable,
said maximum block addressable being a lowest order
numbered block of the master boot record and the re
maining portion of BIOS, said protection means pre
venting access to numbered blocks equal to or greater
than the maximum block addressable while permitting
access to numbered blocks less than the maximum block
addressable.

5. The apparatus of claim 1, wherein said first portion
of BIOS initiates the generation of the reset signal in
response to the personal computer system being pow
ered on.

50

55

60

65

18
6. The apparatus of claim 1, wherein said first portion

of BIOS initiates the generation of the reset signal in
response to a reset condition being applied to the per
sonal computer system.

7. The apparatus of claim 1, wherein the master boot
record further includes hardware configuration data,
the hardware configuration data representing a hard
ware configuration of the personal computer system
which is compatible with said master boot record, and
further wherein the read only memory, includes system
processor identification data representing a hardware
configuration of the system processor, wherein before
said remaining portion of BIOS is loaded into the ran
dom access memory, said first portion of BIOS com
pares the hardware configuration data from the master
boot record with the system processor identification
data from the read only memory to verify the master
boot record is compatible with the system processor.

8. The apparatus of claim 7, wherein the data segment
of the master boot record includes a value representing
a system planar which is compatible with the master
boot record and further wherein the system planar fur
ther includes a means for uniquely identifying the sys
templanar in order to verify that the master boot record
is compatible with the system planar.

9. The apparatus of claim 7, wherein the hardware
configuration data from the master boot record includes
a model value and a submodel value, wherein the model
value identifies a system processor which is compatible
with said master boot record and the submodel value
represent an I/O configuration of a system planer
which is compatible with the master boot record, and
further wherein said read only memory includes a cor
responding model value identifying the system proces
sor and a corresponding submodel value representing
the I/O configuration of the system planar, wherein
said model value and said submodel value of the master
boot record are compared to the corresponding model
and the submodel value of the read only memory re
spectively, in order to verify that the master boot re
cord is compatible with the system processor and the
I/O configuration of the system planar.

10. The apparatus of claim 1, wherein the personal
computer system further includes a nonvolatile random
access memory being electrically coupled to the system
processor, said nonvolatile random access memory in
cluding data representing a system configuration, said
data being updated when the system configuration is
changed, wherein said first portion of BIOS compares
said data in the nonvolatile random access memory to
corresponding data in the read only memory to deter
mine if the configuration of the system has changed.

11. An apparatus for protecting a system resident
program in a personal computer system, the personal
computer system having a system processor, a read only
memory, a main memory, and at least one direct access
storage device capable of storing a plurality of data
records, said apparatus comprising:

a first program being included in the read only men
ory, said first program initializing the system pro
cessor, said first program further initiating the gen
eration of a reset signal to the at least one direct
access storage device to permit access to the data
records; -

a loading means for loading data records from the at
least one direct access storage device into the main
memory, said loading means being stored in a pro
tectable partition of the at least one direct access

5,022,077
19

storage device, said loading means being read from
the at least one direct access storage device into the
main memory by said first program, wherein said
first program activates said loading means;

a main memory resident program image being stored
in the protectable partition of the at least on direct
access storage device, said main memory resident
program image being read from the at least one
direct access storage device into the main memory
by said loading means to produce a main memory
resident program;

means for protecting the protectable partition of the
at least one direct access storage device, said means
for protecting being activated by said main mem
ory resident program to prevent unauthorized ac
cess to said loading means and said main memory
resident program image.

12. The apparatus of claim 11, wherein said loading
means further includes a validation means for confirm
ing the personal computer system is compatible with the
main memory resident program.

13. The apparatus of claim 12, wherein said validation
means includes data representing a type of system pro
cessor and a configuration of a system planar coupled to
the system processor.

14. The apparatus of claim 12, wherein said loading
means comprises a master boot record having an exe
cutable code segment for effecting the loading of the
main memory resident program, wherein said first pro
gram transfers control to said executable code segment
to effect the loading of said main memory resident pro
gram image into the main memory,

15. The apparatus of claim 11, wherein said first pro
gram includes a power on self test routine, said power
on self test routine initializing and testing operating
functions of the personal computer system necessary to
load the main memory resident program.

16. The apparatus of claim 15, wherein said power on
self test routine initializes the system processor, the
main memory, and the at least one direct access storage
device.

17. The apparatus of claim 11, wherein the at least
one direct access storage device comprises a fixed disk
drive wherein said loading means loads data records
from said fixed disk drive into the main memory.

18. The apparatus of claim 17, wherein said fixed disk
drive includes a disk controller and further wherein said
system processor transfers data records to said disk
controller in blocks being in a format which numbers
the blocks sequentially, and further wherein said main
memory resident program image is effectively stored in
a higher ordered number of blocks.

19. The apparatus of claim 18, wherein said protec
tion means comprises setting a maximum block address
able, said maximum block addressable being a lowest
order numbered block of the main memory resident
program image, said protection means preventing ac
cess to numbered blocks greater than or equal to the
maximum block addressable while permitting access to
numbered blocks less than the maximum block address
able.

20. The apparatus of claim 11, wherein said first pro
gram initiates generation of the reset signal in response
to power being applied to the system.

21. The apparatus of claim 11, wherein said first pro
gram initiates generation of the reset signal in response
to a reset condition being applied to the system.

O

15

20

25

30

35

45

50

55

65

20
22. A device for preventing an unauthorized access of

BIOS stored in a mass storage device in a personal
computer system having a system processor, the mass
storage device capable of storing a plurality of data
blocks defined between a first and second data block
extreme, BIOS being accessible by the system processor
in the form of individual definable contiguous blocks of
data, BIOS extending from a third data block extreme
to a fourth data block extreme, the third and fourth
extremes being bounded by the first and second ex
tremes, said device comprising:

(a) controller device coupled between said system
processor and said mass storage device for trans
forming a communication request from the system
processor to physical characteristics of the mass
storage device, the input/output requests being in
the form of individual definable contiguous blocks
of data;

(b) first logic means for initiating the generation of a
reset signal;

(c) second logic means for generating a second signal
for preventing access to the BIOS; and

(d) protection means responsive to said reset signal
for permitting access to said BIOS, said protection
means being responsive to said second signal for
setting a boundary at the third data block extreme
to prevent access to the BIOS during normal exe
cution of authorized programs by the system pro
CeSSO.

23. The device of claim 22, wherein the mass storage
device comprises a fixed disk having input/output re
quests in the form of a cylinder, head and sector format,
and further wherein said controller converts from data
block format to cylinder, head and sector format.

24. The device of claim 22, wherein said controller
device includes an SCSI adapter card responsive to said
system processor.

25. The device of claim 22, wherein the first logic
means initiates generation of the reset signal in response
to a power on condition for the system processor.

26. The device of claim 22, wherein the first logic
means initiates generation of the reset signal in response
to an input from a keyboard connected to the system.

27. A method for protecting BIOS in a personal com
puter system, the system including a system processor, a
read only memory, a random access memory, and direct
storage access device, said method comprising the steps
of:

(a) storing a first portion of BIOS in the read only
memory, the first portion of BIOS including means
for initializing the system;

(b) storing a master boot record and a remaining
portion of BIOS in a protectable partition on the
direct access storage device, the remaining portion
of BIOS being resident in the random access mem
ory during normal operations of the personal com
puter system;

(c) initializing the system and initiating the generation
of a rest signal, said reset signal being effectively
applied to the direct access storage device;

(d) removing a protection to the protectable partition
to permit the system processor to access the master
boot record and the remaining portion of BIOS,
the protection being removed in response to the
reset signal;

(e) loading the master boot record into the random
access memory, the master boot record including
an executable code segment;

5,022,077
21

(f) transferring control the executable code segment
to load the remaining portion of BIOS into the
random access memory; and

(g) transferring control to the remaining portion of
BIOS in the random access memory, the remaining
portion of BIOS setting the protection on the pro
tectable partition to prevent unauthorized access to
the master boot record and the remaining portion
of BIOS stored in the protectable partition on the
direct access storage device.

28. The method of claim 27, further including the step
(h) of verifying the master boot record is compatible
with the system by comparing data stored in the first
portion of BIOS with corresponding data stored in the
master boot record.

29. The method of claim 27, further including the step
(i) of verifying the master boot record is compatible
with the system processor by comparing data in the
read only memory to corresponding data included in
the master boot record.

30. An apparatus for protecting a system resident
program in a personal computer system, the personal
computer system having a system processor, a random
access memory, and at least one direct access storage

5

O

20

22
a second module configured for initializing the at

least one direct access storage device to permit
access to the data records;

a third module configured for loading data records
from the at least one direct access storage device
into the random access memory, said third module
configured for effecting the loading of a random
access memory resident program image being
stored in a protectable partition of the at least one
direct access storage device, said random access
memory resident program image being read from
the at least one direct access storage device into the
random access memory to produce a random ac
cess memory resident program;

means for protecting the protectable partition of the
at least one direct access storage device, said means
for protecting being activated by said random ac
cess memory resident program to prevent unautho
rized access to said random access memory resi
dent program image.

31. The apparatus of claim 30, further including a
read only memory, said first, second and third module
being a portion of said read only memory.

32. The apparatus of claim 30, further including a
device capable of storing a plurality of data records, 25 validation means for confirming the personal computer
said apparatus comprising:

a first module configured for initializing and testing
the system processor;

30

35

45

50

55

system is compatible with the random access memory
resident program.

