
J
Europaisches Patentamt

European Patent Office

Office europeen des brevets © Publication number: 0 6 6 1 6 3 8 A 1

E U R O P E A N PATENT A P P L I C A T I O N

© Application number: 94119721.2 © Int. CI.6: G06F 12 /08

@ Date of filing: 14.12.94

® Priority: 28.12.93 US 174547 Inventor: Genduso, Thomas Basilio
1240 Summerwood Circle

@ Date of publication of application: West Palm Beach,
05.07.95 Bulletin 95/27 Florida 33414 (US)

Inventor: Lenta, Eduardo Jorge
© Designated Contracting States: 549g Fqx Ho||ow Dr

DE FR GB n Boca Raton,
, — ̂ Florida 33486 (US)
yy Applicant: International Business Machines

Corporation
Old Orchard Road _
Armonk, N.Y. 10504 (US) ® Representative: Lettieri, Fabrizio

IBM SEMEA S.p.A.,
© Inventor: Chan, Fu Lam Direzione Brevetti,

9504 Majestic Way Ml SEG 024,
Boynton Beach, P.O. Box 137
Florida 33437 (US) I-20090 Segrate (Milano) (IT)

© Method and apparatus for transferring data in a computer.

00
00
CO

CO
CO

© In a computer with a local bus (34) connecting a
processor (32) to a main memory (36), a cache
memory (37) is connected to the local bus (34) and
to the main memory (36). All data that is written onto
the local bus (34) by the processor (32) is written to
the cache memory (37). Thus, all write hits (the
cache memory (37) has the address of the data) and
all write misses (the cache memory (37) does not
have the address) are written to the cache memory
(37). If a write miss is to be written to a data entry in
the cache memory (37) which contains valid data,
then the valid data is first written to the main mem-
ory (36), then the data on the local bus (34) is
written to the freed cache memory (37) data entry. In
addition, partial writes by the processor (32) on the
local bus (34) are written to the cache memory (37)
and not to the main memory (36), useful in Error
Correction Code (ECC) data schemes.

DATA A0RS CTRL

67 —
36-

A
L2 CACHE

MEMORY C0NTR0LER

BUS INTERFACE U— 35

FIG. 4

Rank Xerox (UK) Business Services
(3. 10/3.09/3.3.4)

1 EP 0 661 638 A1 2

The present invention relates to a method and
system for transferring data in a computer; in par-
ticular it relates to a computer having relatively fast
cache memories that are used to increase the
operational speed of memory read and write oper-
ations.

Personal computer systems in general and IBM
personal computers in particular have attained
widespread use for providing computer power to
many segments of today's modern society. Per-
sonal computer systems can usually be defined as
a desktop, floor standing, or portable microcom-
puter that consists of a system unit having a single
system processor and associated volatile and non-
volatile memory, a display monitor, a keyboard,
one or more diskette drives, a fixed disk storage,
and an optional printer. One of the distinguishing
characteristics of these systems is the use of a
motherboard or system planar to connect these
components together. These systems are designed
primarily to give independent computing power to a
single user and are inexpensively priced for pur-
chase by individuals or small businesses. Exam-
ples of such personal computer systems are IBM's
PERSONAL COMPUTER AT and IBM's PERSON-
AL SYSTEM/2 Models 25, 30, L40SX, 50, 55, 65,
70, 80, 90 and 95.

These systems can be classified into two gen-
eral families. The first family, usually referred to as
Family I Models, use a bus architecture exempli-
fied by the IBM PERSONAL COMPUTER AT and
other so-called "IBM compatible" machines. The
second family, referred to as Family II Models, use
IBM's MICRO CHANNEL bus architecture exempli-
fied by IBM's PERSONAL SYSTEM/2 Models 50
through 95. In the beginning, the Family I models
typically used the popular INTEL 8088 or 8086
microprocessors as the system processor. These
processors have the ability to address one
megabyte of memory. Later Family I models and
the Family II models typically use the higher speed
INTEL 80286, 80386, and 80486 microprocessors
which can operated in a real mode to emulate the
slower speed INTEL 8086 microprocessor or a
protected mode which extends the addressing
range from 1 megabyte to 4 Gigabytes for some
models. In essence, the real mode feature of the
80286, 80386, and 80486 microprocessors provide
hardware compatibility with software written for the
8086 and 8088 microprocessors.

Typically, the memory is provided by Dynamic
Random Access Memory (DRAM). DRAMs provide
a large amount of memory for a small amount of
physical space and expense. However, DRAMs
suffer from the disadvantage of being slow relative
to some processors, such as the 80386 and 80486
microprocessors. As a fast processor reads or
writes data to DRAMs over a local bus, it is com-

mon for wait states or cycles to occur, wherein
other processing and bus operations are suspend-
ed until the read or write is complete. Thus, the
speed of the processor is limited by the memory.

5 Use of a faster type of memory, such as Static
Random Access Memory (SRAM) would prevent
such wait cycles because the memory speed is
able to match the speed of the processor. How-
ever, SRAMs are expensive.

io In order to provide fast memory for fast pro-
cessors at economical prices, many computers uti-
lize cache memory that is located on the processor
integrated circuit chip. Cache memory contains a
small amount of SRAM (for example, 8 kilobytes).

75 All data is stored in the main memory, which con-
sists of DRAMs. The cache memory contains a
duplicate of some of the data in the DRAMs. Use
of cache memory reduces the amount of traffic on
the local bus, because many read and write mem-

20 ory operations occur internally within the processor
and its cache memory. When the processor reads
data, it checks the cache memory first. If the cache
memory has the data (referred to as a read hit),
then the data is read from the cache memory in

25 order to take advantage of the faster cache speed.
If the data is not in the cache memory (referred to
as a read miss), then the data is read from the
slower DRAMs.

When data is to be written from the processor,
30 the address of the data determines if the data is to

be written into the cache memory (referred to as a
write hit) or to the main DRAM memory (referred to
as a write miss). If the address is located within the
cache memory, then a write hit occurs and the data

35 is written to the cache memory. With a write
through (or store through) type of cache memory,
the data is also written to main memory. With a
write back (or store in) type of cache memory, the
data is not written to the main memory. However,

40 to prevent the main memory from having stale
data, the data in the write back type of cache
memory is eventually written back into the main
memory. If the address is not within the cache
memory, then a write miss occurs and the data is

45 written to the main memory, but not to the cache
memory (for both write through and write back type
of cache memories).

Thus, for a write through cache memory, all
write operations (whether a write hit or a write

50 miss) go to the main memory. For a write back
type of cache memory some write operations
(namely write miss) go to the main memory. Writ-
ing to main memory from the local bus typically
requires wait states. As the speed of processors

55 increase, the memory write cycles that leave a
processor on the local bus become a significant
portion of the local bus traffic due to the large
number of wait states incurred. This creates a

2

3 EP 0 661 638 A1 4

bandwidth problem and curtails the speed of the
processor. The large number of memory write cy-
cles on the local bus can also increase the elec-
trical power used by the main memory, which
becomes a significant power drain on battery-op-
erated computers.

In addition, the processor typically performs
many partial writes, wherein data is written to main
memory in two or more write operations. For exam-
ple, a 4 byte word may be partially written as
follows: 2 bytes are written during a first write
operation, with the remaining 2 bytes written during
a second write operation. However, computer sys-
tems that use Error Correction Codes (ECC) to
check the validity of data in memory require all
bytes of a data word to generate the code. A Read-
Modify-Write procedure is used for partial write
operations. For example, if 2 bytes of a 4 byte
word are written to the cache memory (which
cache memory supports ECC) by the processor,
the other 2 bytes must be read from the main
DRAM memory. Then, the partial write must be
modified to produce a full 4 byte word. Finally the
4 byte word is stored in the cache memory and the
correct ECC is generated. These Read-Modify-
Write cycles during a partial write require additional
processor cycles and create local bus traffic there-
by degrading system performance.

The above drawbacks of the prior art are over-
come by the invention as claimed.

In accordance with one aspect of the present
invention, there is provided a method of and ap-
paratus for transferring data in a computer. The
computer includes a processor, a main memory
and a local bus connecting the processor to the
main memory. A cache memory is connected to
the local bus. Data is written on the local bus by
the processor. The data has an address, with the
address being located in the main memory and
being absent from the cache memory. The data on
the local bus is written to the cache memory. The
data on the local bus is prevented from being
written to the main memory.

The cache memory of the present invention
complements a processor's internal cache mem-
ory. The processor's internal cache memory is
referred to as a first level or L1 cache memory.
The cache memory of the present invention is
referred to as a second level or L2 cache memory.
The present invention is particularly useful when
the processor's internal cache memory is a write
through cache. The L2 cache of the present inven-
tion is connected to the local bus. The L2 cache
reduces the number of memory cycles by caching
all of the data that is written by the processor on
the local bus and by allowing the processor to read
data that is in the cache memory. The number of
write cycles on the local bus is reduced because

every write operation by the processor is to the
relatively fast L2 cache memory and not to the
slower main memory. Because the number of write
cycles is reduced, local bus traffic is reduced,

5 enabling the processor to operate at faster speeds.
In addition, the power used by the main memory is
reduced because the number of read and write
operations to the main memory is reduced.

In one aspect of the present invention, the L2
io cache memory performs write miss-free operations.

The method determines if the data is to be written
to a location in the cache memory that is free. If
the location is free, then the data on the local bus
is written to the free location in the cache memory.

is In accordance with another aspect of the
present invention, the cache memory provides
write miss-valid operations. The method deter-
mines if the data is to be written to a location in the
cache memory that is free. If the location is not

20 free, because that location contains valid data, then
the data in that location is written to main memory
before the data on the local bus is written to that
location in the cache memory.

The present invention also provides write hit
25 operations, wherein an address of a data word is

present in the cache memory and also located in
main memory. That data word is written to cache
memory.

In another aspect of the present invention.the
30 cache memory provides read hit operations,

wherein the processor provides a read request for
a data word on the local bus. The address of the
data word is present in the cache memory and in
the main memory. The data word is provided on

35 the local bus from the cache memory.
In another aspect of the present invention, read

miss operations are provided by the cache mem-
ory. In a read miss operation, the processor pro-
vides on the local bus a read request for a data

40 word having plural bytes, with at least one byte of
the data word being located in the cache memory
and at least another byte of the data word being
located only in main memory. The one byte of the
data word located in cache memory is provided to

45 the local bus and the other word in main memory
is provided to the local bus.

In still another aspect of the present invention,
a method of writing data in a computer (such as to
a disk), wherein the data includes a plural number

50 of bytes, is provided. A partial number of the bytes
of the data is written on the local bus by the
processor. The partial number of bytes on the local
bus is written to the cache memory.

The cache memory benefits computers using
55 Error Correction Codes (ECC) during partial write

operations. During a partial write operation, a pro-
cessor writes only a few of the total number of
bytes to the local bus. With prior art cache memory

3

5 EP 0 661 638 A1 6

ECC schemes, Read-Write-Modify cycles must be
performed in order to have all of the bytes of the
data word before the data word is written to cache
memory. In these prior art schemes, because the
processor only provides a partial number of bytes,
the remaining number of bytes must be retrieved
from main memory, causing wait states and tying
up the local bus. With the present invention, the
partial number of bytes are written into the cache
memory. The remaining number of bytes are lo-
cated in the cache memory. When the data word is
written from the cache memory to main memory,
all of the bytes are written in order to fulfill the
error correction code scheme. The present inven-
tion provides then a cache memory that reduces
the frequency of partial write cycles in systems
using error correction codes.

Various embodiments of the invention will now
be described in detail by way of examples, with
reference to accompanying figures, where:

Fig. 1 is a perspective view of a personal com-
puter embodying this invention.
Fig. 2 is an exploded perspective view of certain
elements of the personal computer of Fig. 1
including a chassis, a cover, and a planar board
and illustrating certain relationships among
those elements.
Fig. 3 is a block diagram view of certain compo-
nents of the personal computer of Figs. 1 and 2,
which components include the second level (L2)
cache memory of the present invention, in ac-
cordance with a preferred embodiment.
Fig. 4 is a block diagram of the memory control-
ler and L2 cache system interfaces.
Fig. 5 is a schematic diagram of the L2 cache
organization.
Fig. 6 is a chart illustrating the operation of the
L2 cache.
Figs. 7-10 are timing diagrams illustrating var-
ious operations of the L2 cache.
While the present invention will be described

more fully hereinafter with reference to the accom-
panying drawings, in which a preferred embodi-
ment of the present invention is shown, it is to be
understood at the outset of the description which
follows that persons of skill in the appropriate arts
may modify the invention here described while still
achieving the favorable results of this invention.
Accordingly, the description which follows is to be
understood as being a broad, teaching disclosure
directed to persons of skill in the appropriate arts,
and not as limiting upon the present invention.

Referring now more particularly to the accom-
panying drawings, a microcomputer embodying the
present invention is there shown and generally
indicated at 10 (Fig. 1). The computer 10 may have
an associated monitor 11, keyboard 12 and printer
or plotter 14. The computer 10 has a cover 15 (see

Fig. 2) which cooperates whith a chassis 19 in
defining an enclosed, shielded volume for receiving
electrically powered data processing and storage
components for processing and storing digital data.

5 At least certain of these components are mounted
on a multilayer planar 20 or motherboard which is
mounted on the chassis 19 and provides a means
for electrically interconnecting the components of
the computer 10 including those identified above

io and such other associated elements as floppy disk
drives, various forms of direct access storage de-
vices, accessory cards or boards, and the like.

The chassis 19 has a base and a rear panel
and defines at least one open bay for receiving a

is data storage device such as a disk drive for mag-
netic or optical disks, a tape backup drive, or the
like. In the illustrated form, an upper bay 22 is
adapted to receive peripheral drives of a first size
(such as those known as 3.5 inch drives). A floppy

20 disk drive, a removable media direct access stor-
age device capable of receiving a diskette inserted
thereinto and using the diskette to receive, store
and deliver data as is generally known, may be
provided in the upper bay 22.

25 Referring to Fig. 3, there is shown a block
diagram of the computer 10 in accordance with the
present invention, including components mounted
on the planar 20 (shown in Fig. 2) and the connec-
tion of the planar to the I/O slots and other hard-

30 ware of the personal computer system. Connected
to the planar is the system Central Processing Unit
(CPU) 32. While any appropriate microprocessor
can be used as the CPU 32, one suitable micropro-
cessor is the 80486 which is sold by INTEL. The

35 80486 operational features, such as bus cycle op-
erations, are well known in the art and are de-
scribed in the Microprocessors, Intel Corporation,
1990, the disclosure of which is incorporated herein
by reference. In addition, the disclosure of the

40 80386 Hardware Reference Manual, Intel Corpora-
tion, 1987, is incorporated herein by reference.

The CPU 32 contains cache memory 33, typi-
cally in the form of Static Random Access Memory
(SRAM). In the preferred embodiment, the cache

45 memory 33 is of the write through (or store
through) type and is referred to as a first level
cache (L1) to distinguish it from the cache memory
37 of the present invention. The cache memory 37
of the present invention is referred to as a second

50 level cache (L2), and is located within a memory
controller unit 30 that is on a CPU local bus 34.
Alternatively, the cache memory 37 of the present
invention can operate with a first level write back
(or store in) cache memory. Further still, the cache

55 memory 37 of the present invention can operate
without a first level cache memory 33. Thus, the
cache memory 37 of the present invention operates
independently of any CPU cache memory.

4

7 EP 0 661 638 A1 8

The CPU 32 is connected by the high speed
CPU local bus 34 to a Bus interface Control unit
(BIC) 35, to the memory controller unit 30 and to
BIOS ROM 38 in which is stored instructions for
Basic Input/Output System (BIOS) to the CPU 32.
The memory controller unit 30 is in turn connected
to volatile Dynamic Random Access Memory
(DRAM) 36 here shown as Single Inline Memory
Modules (SIMMS). The BIOS ROM 38 includes the
BIOS that is used to interface between the I/O
devices and the operating system of the CPU 32.
Instructions stored in the BIOS ROM 38 can be
copied into the SIMMS 36 to decrease the execu-
tion time of BIOS.

While the present invention is described
hereinafter with particular reference to the system
block diagram of Fig. 3, it is to be understood at
the outset of the description which follows that it is
contemplated that the apparatus and methods in
accordance with the present invention may be used
with other hardware configurations of the planar
board. For example, the system processor could
be a PENTIUM microprocessor from Intel. (PEN-
TIUM is a trademark of Intel.)

Returning now to Fig. 3, the CPU local bus 34
(comprising data, address and control components)
also provides for the connection of the micropro-
cessor 32 with a numeric or math coprocessor 39
and a Small Computer Systems Interface (SCSI)
controller 40. The SCSI controller 40 may, as is
known to persons skilled in the art of computer
design and operation, be connected or connectable
with Read Only Memory (ROM) 41, Random Ac-
cess Memory (RAM) 42, and suitable external de-
vices of a variety of types as facilitated by the I/O
connection indicated to the right in Fig. 3. The
SCSI controller 40 functions as a storage controller
in controlling storage memory devices such as
fixed or removable media electromagnetic storage
devices (also known as hard and floppy disk
drives), electro-optical, tape and other storage de-
vices.

The Bus Interface Controller (BIC) 35 couples
the CPU local bus 34 with an (I/O) bus 44 and
functions as a protocol translator, memory control-
ler and DMA controller among other functions. By
means of the bus 44, the BIC 35 is coupled with an
optional feature bus such as a MICRO CHANNEL
bus having a plurality of I/O slots for receiving
MICRO CHANNEL adapter cards 45 which may be
further connected to an I/O device or memory (not
shown). The I/O bus 44 includes address, data, and
control components. The I/O bus 44 may be con-
figured to bus specifications other than the MICRO
CHANNEL specification.

Coupled along with the I/O bus 44 are a variety
of I/O components such as a video signal proces-
sor 46 which is associated with video RAM (VRAM)

for storing character based information (indicated at
48) and for storing graphic or image based in-
formation (indicated at 49). Video signals ex-
changed with the video signal processor (VSP) 46

5 may be passed through a Digital-to-Analog Con-
verter (DAC) 50 to a monitor or other display de-
vice. Provision is also made for connecting the
VSP 46 directly with what is here referred to as a
natural image input/output, which may take the

io form of a video recorder/player, camera, etc. The
I/O bus 44 is also coupled with a Digital Signal
Processor (DSP) 51 which has associated instruc-
tion RAM 52 and data RAM 54 available to store
software instructions for the processing of signals

is by the DSP 51 and data involved in such process-
ing. The DSP 51 provides for processing of audio
inputs and outputs by the provision of an audio
controller 55, and for handling of other signals by
provision of an analog interface controller 56. Last-

20 ly, the I/O bus 44 is coupled with an input/output
controller 58 with associated Electrical Erasable
Programmable Read Only Memory (EEPROM) 59
by which inputs and outputs are exchanged with
conventional peripherals including floppy disk

25 drives, a printer or plotter 14, keyboard 12 (shown
in Fig. 1), a mouse or pointing device (not shown),
and by means of a serial port.

Referring now to Fig. 4, the memory controller
unit 30 is shown. The memory controller unit 30

30 includes a memory controller 61, the L2 cache 37
and a transceiver (XCVER) 63. The L2 cache 37
and the memory controller 61 are connected to the
data (DATA), address (ADRS) and control (CTRL)
lines of the local bus 34. Data lines 65 connect the

35 L2 cache 37 to the memory controller 61. The
memory controller 61 is connected to the memory
(SIMMS) 36 by a bus 67 with data (D), address (A)
and control (C) lines. In addition, the memory con-
troller 61 is connected to the Bus Interface (BIC) 35

40 by a bus 69 with data (D), address (A) and control
(C) lines. The transceiver 63 bypasses the memory
controller 61 and connects the address lines of the
local bus 34 to the address lines of the bus 69 that
is connected with the BIC 35. The L2 cache in-

45 eludes a controller 71 and memory 73. The control-
ler 71 is a hard wired logic circuit made up of logic
gates which implements the operation as shown in
Fig. 6 and described hereinafter. Alternatively, the
controller 71 can be made up of programmable

50 logic. The memory 73 is made up of Static Ran-
dom Access Memory (SRAM).

The L2 cache memory 73 is, in the preferred
embodiment, a 256 byte - four way associative
memory. Fig. 5 illustrates the control and directory

55 organization of the L2 cache memory 73. The data
(or instructions) stored in the L2 cache memory is
saved in four groups of 32 bits (4 bytes) each.
These groups are designated Data-A, Data-B, Data-

5

9 EP 0 661 638 A1 10

C and Data-D. Each group has 16 Sets, thus pro-
viding a total of 256 bytes. Each data entry 75 (for
example Data-A, Set 0) has a corresponding ad-
dress. The most significant 26 address bits that
correspond to each data entry is saved in 4-26 bit
groups that are designated Address-A, Address-B,
Address-C and Address-D (shown as ADRS A,
ADRS B, ADRS C and ADRS D in Fig. 5). Each
byte for each data entry 75 has a corresponding
valid bit to indicate that the data is valid. The least
significant address bits are used as valid bits
(shown as VBITS A, VBITS B, VBITS C and VBITS
D in Fig. 5).

Three Least Recently Used (LRU) bits are used
to indicate which of the four data entries (Data-A,
Data-B, Data-C or Data-D) in the set will have its
data replaced by new data. When new data is
written to the cache, old data is frequently overwrit-
ten. The LRU bits provide that when new data is
written to one of the four data entries (Data-A,
Data-B, Data-C or Data-D) in a Set, then the oldest
data among the four data entries will be overwrit-
ten, thereby protecting the newest data. The use of
LRU algorithms and LRU bits in caches is conven-
tional and known to those skilled in the art.

The operation of the L2 cache 37 will be de-
scribed. When the CPU 32 (see Fig. 3) reads or
writes data to memory, it checks the L1 cache
memory 33 first. If the CPU can use the L1 cache
memory, then the local bus 34 is not used for the
read or write operation. If the CPU 32 cannot use
the L1 cache 33, then the local bus 34 is used.

Referring to Figs. 4 and 6, there is shown a
chart that illustrates the operation of the L2 cache
37. A general description of the operation will be
given first. When the CPU 32 reads data from the
local bus 34, the data is provided by either the L2
cache 37 (a read hit) or the SIMMS memory 36 (a
read miss). When the CPU 32 writes data to the
local bus 34, the data is written to the L2 cache 37.
If the address of the data to be written is already in
the L2 cache, then the write operation is a write hit.
If the address of the data to be written is not in the
L2 cache (or does not contain valid data), then the
write operation is a write miss. The controller 71
selects a set of data entries for the data to be
written to. The controller also uses an LRU al-
gorithm and the LRU bits (see Fig. 5) to select the
particular data entry to write the data. The opera-
tion is either a write miss-free operation or a write
miss-valid operation. A write miss-free operation
occurs when the particular LRU specified data en-
try in a set is free or empty of valid data (as
determined from the valid bits). A write miss-valid
operation occurs when the particular LRU specified
data entry in a set contains old valid data (as
determined from the valid bits). The old data in the
data entry must first be written to the SIMMS

memory 36 before any new data is written to the
data entry. This is to prevent the loss of the old
data.

The L2 cache operations will now be more
5 specifically described, beginning with a read hit

operation. Referring to Figs. 4-6, when a read hit
operation occurs the CPU 32 (see Fig. 4) places
the address of the data to be read on the address
lines (ADRS) of the local bus 34. The L2 cache

io controller 71 recognizes the address as a read hit
by examining the address bits and the valid bits of
the cache memory 73 (see Fig. 5), wherein the
data in the data entry 75 that has the address is
placed onto the data lines (DATA) of the local bus

is 34 by the controller 71. Thus, the data in the L2
cache 37 is read to the CPU 32 (as shown by the
row of Fig. 6 that is entitled L2 Cache Memory).
The L2 cache controller 71 signals the memory
controller 61 over a control line (CTRL) of the local

20 bus 34 to stop the memory read cycle (as shown
by the row of Fig. 6 that is entitled Memory Con-
troller) in order to prevent the SIMMS memory 36
from providing the data to the CPU 32. In addition,
during a read hit operation, the LRU bits (shown in

25 Fig. 5) for the set containing the pertinent data
entry are updated by the controller 71. For exam-
ple, if the data entry Data-A, Set 0 contains the
data that is read to the CPU, then the LRU bits for
Set 0 are updated to indicate that this data entry

30 was the most recently used.
Fig. 7 shows a timing diagram for an L2 cache

read hit operation. In the timing diagrams of Figs.
7-10, the leftmost columns are labels for data,
address and control lines on the local bus 34 of

35 Fig. 4 as well as internal L2 cache 37 lines. The
CLK2, ADS#, CPU ADDRESS AND CONTROLS,
DATA and READY# are lines on the local bus 34. A
more complete description of the data, address
and control lines for an 80386 processor can be

40 found in the Microprocessors reference, already
incorporated by reference into this specification.
The bus cycle starts when the ADS# line is driven
low and the CPU ADDRESS AND CONTROLS
lines contain valid information during the T1 bus

45 state of the CLK2 line. When the ADS# line is
driven low, the CPU indicates it is ready for a read
or write operation. The CACHE ADDRESS, CACHE
R/W# and CACHE CONTROLLER INTERNAL are
internal lines within the L2 cache 37. The CACHE

50 ADDRESS line indicates that the address is valid
and thus contained in the L2 cache 37. The
CACHE R/W# line indicates a read operation. The
CACHE CONTROLLER INTERNAL line indicates
processing of local bus control signals and internal

55 tag addresses by the controller 71 of Fig. 4. The
DATA lines of the local bus 34 have valid data
available from the L2 cache 37 during the T2 bus
state. The controller 71 causes the READY# line

6

11 EP 0 661 638 A1 12

from the L2 cache 37 to go low during the T2 bus
state, thereby indicating that the L2 cache is ready
for the read operation. Thus, during a read hit
operation, the L2 cache 37 provides the data to the
CPU at the next bus cycle after the CPU's request.
This is referred to as 0 wait states, because the
CPU did not have to wait to read the requested
data. Providing data to the CPU with 0 wait states
is the fastest service time possible.

A read miss operation will now be described.
During a read miss operation, the L2 cache 37 may
contain some of the requested bytes (for example,
for a 4 byte data word, the L2 cache could contain
2 bytes) or the L2 cache may contain none of the
requested bytes. The CPU 32 (see Fig. 4) places
the address of the data to be read on the address
lines (ADRS) of the local bus 34.

For a partial read miss, wherein the L2 cache
37 contains only some bytes of data, the L2 cache
controller 71 recognizes the address as a partial
read hit by examining the address bits and the
valid bits of the memory 73 (see Fig. 5). The L2
cache controller 71 causes the requested bytes
contained in the L2 cache memory 73 to be placed
onto the respective data lines (DATA) of the local
bus 34. The L2 cache controller 71 signals the
memory controller 61 (using one or more of the
control lines (CTRL) of the local bus 34) to provide
the remaining data bytes, wherein the memory
controller 61 places the remaining data bytes onto
the remaining data lines of the local bus 34.

For a full read miss, wherein the L2 cache 37
does not contain any bytes of data, the controller
71 recognizes this and passes control to the mem-
ory controller 61 , wherein all of the data bytes are
read from the main memory 36.

Thus, as shown in Fig. 6, during a read miss
operation, data is read to the CPU from both the L2
cache memory (if the L2 cache contains some
bytes of the data) and from the main memory
(SIMMS). Because data is read from the main
memory, the memory controller performs a mem-
ory read cycle.

Fig. 8 shows a timing diagram for an L2 cache
read miss operation, wherein the L2 cache contains
a portion of the requested data (a partial miss). The
bus cycle starts at the T1 bus state with the ADS#
line going low. The L2 cache 37 provides its data
byte or bytes to the data lines of the local bus 34
during the T2 bus cycle, as indicated by the DATA
(CACHE) lines. However, the main memory 36 pro-
vides its data byte or bytes to the data lines of the
local bus 34 at a later time, namely T2P, as in-
dicated by the DATA (MEMORY) lines. The
READY# control line goes low during the T2P bus
state, indicating that one wait state was encoun-
tered. The wait cycle occurred while waiting for the
main memory 36 to make the data available on the

data bus lines.
Fig. 8 shows the fastest main memory access.

Bus cycle T2P will be repeated for the extra wait
states. The extra wait states may be incurred if, for

5 example, the main memory must change SIMMS
memory modules in order to retrieve the data.

A write hit operation will now be described.
During a write hit operation, the CPU 32 (see Fig.
4) places the address of the data to be written on

io the address lines of the local bus 34. The L2 cache
controller 71 recognizes the address as a write hit
by examining the address bits and the valid bits of
the memory 73 (see Fig. 5), wherein the cache
controller 71 places the data that is on the data

is lines of the local bus 34 into the particular data
entry 75 that has the address on the local bus. In
addition, the cache controller 71 Sets the valid bits
in the address of the designated data entry to valid
and updates the LRU bits to indicate that the

20 designated data entry was most recently used. The
cache controller 71 signals the memory controller
61 over a control line of the local bus 34 to stop
the main memory write cycle. This prevents the
data on the local bus from being written to the

25 SIMMS 36. Such a write to the SIMMS would
create wait states.

Fig. 9 shows a timing diagram for an L2 cache
write hit operation. The CPU 32 puts the data on
the DATA lines at the beginning of the T2 bus

30 state. The CACHE R/W# line goes low, indicating a
write operation. During the T2 bus state (shown on
the CLK2 line), the READY# line goes low, indicat-
ing that the L2 cache is ready to receive the data.
Thus, the write hit operation is performed with 0

35 wait states just as in the case of a read hit opera-
tion.

The two types of write miss operations will now
be described. The term "write miss" is not used by
the present invention in the conventional sense,

40 wherein the data is written to the main memory and
not to the cache. With the L2 cache of the present
invention, the data is always written to the L2
cache, so that there is no "write miss" in the
conventional sense. Instead, a write miss to the L2

45 cache is used to indicate that the address of the
data that is to be written by the CPU is not in the
L2 cache 37 or else is not valid.

Referring to Fig. 6, a write miss operation will
be described. The CPU 32 (see Fig. 4) places the

50 address of the data to be written on the address
lines of the local bus 34. The L2 cache controller
71 recognizes that the address is valid, but the
data in memory is not valid or not in the L2 cache
memory 73 by examining the address bits and the

55 valid bits of the memory 73 (see Fig. 5). The
controller 71 utilizes the LRU algorithm and the
LRU bits to select a data entry 75 for receiving the
data. The controller 71 then determines from the

7

13 EP 0 661 638 A1 14

valid bits if the selected data entry is free of data. If
so, then a write miss-free operation is initiated. The
data is written to the selected data entry 75. The
write miss-free operation is the same as the write
hit operation, with the exception of updating the tag
or address directory for the new data during the
write miss-free operation (see Fig. 6). The timing
diagram of Fig. 9 applies to a write miss-free
operation.

If the selected data entry 75 is not free of valid
data (because the data entry contains valid data
according to the valid bits) then a write miss-valid
operation is initiated. A write miss-valid operation
requires creating space in the L2 cache before the
new data can be written. Thus, referring to Figs. 4
and 6, the controller 71 writes the old data in the
selected data entry 75 to the memory controller 61
over the data lines 65. The controller 71 signals the
memory controller 61 over a control line on the
local bus 34 to write to the main memory 36 . The
memory controller 61 writes the old data to main
memory 36 over the bus 67. This creates free
space in the selected L2 cache data entry, wherein
the cache controller 71 causes the CPU data on
the local bus 34 to be written to the selected L2
cache data entry, much as a write miss-free opera-
tion. The controller 71 updates the tag directory
and the LRU bits for the selected data entry. In
addition, the controller 71 Sets the appropriate val-
id bits to valid for the selected data entry.

Fig. 10 shows a timing diagram for a write
miss-valid operation. The CACHE R/W# line goes
low during the first T2P bus state of the CLK2 line,
indicating that the old data is written from the L2
cache 37 to main memory 36. The READY# line
goes low during the second T2P bus state, which
is after two wait states. The two wait states are the
number of local bus cycles needed to free the
selected L2 cache data entry. This is the fastest
available time. Slower times (with additional wait
states) may be incurred if the memory controller 61
operates more slowly by, for example, changing to
a different SIMMS memory module.

The L2 cache 37 also has a reset flush opera-
tion, shown in Fig. 6. Reset flush is used to clear
the L2 cache memory, as required, for example at
power on of the computer. This is accomplished by
setting all of the valid bits free, thereby indicating
that no data in the cache memory 73 is valid.

The CPU 32 may conduct partial write oper-
ations, wherein a few bytes of a data word are
placed on the respective data lines of the local bus
34 (see Fig. 4). The present invention is particularly
advantageous when used in conjunction with mem-
ory that uses Error Correction Codes (ECC). Prior
art systems using ECC perform Read-Modify-Write
cycles when performing partial writes to memory.
The Read-Modify-Write cycles retrieve the missing

data bytes (so as to make up a full data word) from
the main memory, thereby producing wait states.

With the L2 cache 37 of the present invention,
the partial writes are written to the L2 cache. When

5 a partial write occurs, the controller 71 determines
if the operation is to be a write hit, a write miss-free
or a write miss-valid and acts accordingly. A partial
write is treated the same as a full write. For exam-
ple, a partial write hit is treated in the same manner

io as a full write hit discussed above. Thus, if the
CPU 32 writes two bytes of a four byte data word,
the two bytes are written directly to the cache
memory 73 without retrieving the other bytes from
the main memory and without changes to the other

is two bytes in the cache word. When writing data to
the main memory, as during a write miss-valid
operation, all four bytes of the data word are typi-
cally written from the L2 cache. This is because
most partial writes to memory are consecutive

20 writes, wherein a first two bytes of a four byte data
word are written in a first write operation, followed
by the last two bytes of the data word being written
in the next write operation. Thus, the main memory
typically receives no partial writes. Instead, the L2

25 cache acts as a filter, effectively minimizing the
number of partial writes that reach the main mem-
ory.

Claims
30

1. A method of transferring data in a computer,
said computer comprising a processor (32), a
main memory (36) and a local bus (34) con-
necting said processor (32) to said main mem-

35 ory (36), comprising the steps of:
a) providing a cache memory (37) connect-
ed to said local bus (34);
b) writing data on said local bus (34) with
said processor (32), said data having an

40 address, said data address being located in
said main memory (36) and being absent
from said cache memory (37);
c) writing said data on said local bus (34) to
said cache memory (37); and

45 d) preventing said data on said local bus
(34) from being written to said main mem-
ory (36).

2. The method of claim 1 , further comprising the
50 steps of:

a) determining if said data is to be written to
a location in said cache memory (37) that is
free; and
b) if said location is free, then said step of

55 writing said data on said local bus (34) to
said cache memory (37) further comprises
the step of writing said data to said free
location in said cache memory (37).

8

15 EP 0 661 638 A1 16

3. The method of claim 2 wherein said step of
writing said data on said local bus (34) to said
cache memory (37) incurs zero wait states.

4. The method of claim 1 , further comprising the
steps of:

a) determining if said data is to be written to
a location in said cache memory (37) that is
free; and
b) if said location is not free, then writing
data in said location to said main memory
(36) before said step of writing said data on
said local bus (34) to said cache memory
(37) occurs.

5. The method of any claim from 1 to 4, wherein
said data comprises plural bytes, wherein:

a) said step of writing data on said local bus
(34) with said processor (32), further com-
prises the step of writing only a partial num-
ber of said plural bytes of said data on said
local bus (34) with said processor (32); and
b) said step of writing said data on said
local bus (34) to said cache memory (37)
further comprises the step of writing said
partial number of said plural bytes of said
data to said cache memory (37).

6. The method of any claim from 1 to 5, wherein
said data is first data, and said address is a
first address, further comprising the steps of:

a) writing second data with a second ad-
dress on said local bus (34) with said pro-
cessor (32), said second address being
present in said cache memory (37) and
being located in said main memory (36);
and
b) writing said second data to said cache
memory (37).

7. The method of any claim from 1 to 6, wherein
said data is first data, further comprising the
steps of:

a) providing on said local bus (34) with said
processor (32) a read request for third data
with a third address, said third address be-
ing present in said cache memory (37) and
in said main memory (36); and
b) providing said third data to said local bus
(34) and said processor (32) from said
cache memory (37).

8. The method of any claim from 1 to 7, wherein
said data is first data, further comprising the
steps of:

a) providing on said local bus (34) with said
processor (32) a read request for fourth data
having plural bytes, with at least one byte of

said fourth data being located in said cache
memory (37) and at least one other byte of
said fourth data being located only in said
main memory (36); and

5 b) providing said fourth data to said local
bus (34) and said processor (32) by reading
said one byte from said cache memory (37)
and said other byte from said main memory
(36) .

10
9. A method of writing data in a computer, said

data comprising a plural number of bytes, said
computer comprising a processor (32), mem-
ory and a local bus (34) connecting said pro-

15 cessor (32) to said memory, said memory
comprising cache memory (37) and main
memory (36), comprising the steps of:

a) writing a partial number of said bytes of
said data on said local bus (34) with said

20 processor (32); and
b) writing said partial number of said bytes
on said local bus (34) to said cache mem-
ory (37).

25 10. The method of claim 9, further comprising the
steps of:

a) determining if said data is to be written to
a location in said cache memory (37) that is
free; and

30 b) if said location in said cache memory
(37) is not free, then writing all data in said
location to said main memory (36) before
said step of writing said partial number of
said bytes on said local bus (34) to said

35 cache memory (37) occurs.

11. In a computer, an apparatus for transferring
data, said computer comprising a processor
(32), a main memory (36) and a local bus (34)

40 connecting said processor (32) to said main
memory (36), said processor (32) comprising
means for writing data on said local bus (34),
characterized by including:

a cache memory (37) connected to said
45 local bus (34), said cache memory (37) operat-

ing at a faster speed than said main memory
(36) ;

means for controlling said cache memory
(37) and said main memory (36), said means

50 for controlling comprising means (71) for writ-
ing said data on said local bus (34) to said
cache memory (37) when said data has an
address that is absent from said cache mem-
ory (37) but present in said main memory (36)

55 and means (61) for preventing said data on
said local bus (34) from being written to said
main memory (36).

9

17 EP 0 661 638 A1 18

12. The apparatus of claim 11 wherein said means
for controlling further comprises:

a) means for determining if said data is to
be written to a location in said cache mem-
ory (37) that is free; and 5
b) means for writing said data to said loca-
tion in said cache memory (37) if said loca-
tion is free.

13. The apparatus of claim 11 wherein said means 10
for controlling further comprises:

a) means for determining if said data is to
be written to a location in said cache mem-
ory (37) that is free; and
b) means for writing data in said location to is
said main memory (36) before writing said
data on said local bus (34) to said cache
memory (37) if said location is not free.

14. The apparatus of any claim from 11 to 13 20
wherein said data comprises plural bytes, said
processor (32) comprises means for writing
only a partial number of said plural bytes of
said data on said local bus (34), wherein said
means (71) for writing said data on said local 25
bus (34) to said cache memory (37) when said
data has an address that is absent from said
cache memory (37) further comprises means
for writing said partial number of said plural
bytes of said data to said cache memory (37). 30

15. The computer including the apparatus for
transferring data according to any claim from
11 to 14.

35
16. The computer of claim 15 wherein said cache

memory (37) is a second level cache memory,
said processor (32) further comprising a first
level cache memory (33).

40
17. The Computer of claim 16 wherein said first

level cache memory (33) further comprises a
write through cache memory.

18. The computer of claim 16 wherein said first 45
level cache memory (33) further comprises a
write back cache memory.

19. A memory controller unit (30) for a computer,
said computer having a processor (32), a local so
bus (34) connected to said processor (32), and
main memory (36), comprising:

a) a memory controller (61) connected to
said local bus (34) and to said main mem-
ory (36); and 55
b) a cache controller (71) with cache mem-
ory (73), said cache controller (71) coupled
to said local bus (34) and to said memory

controller (61), said cache controller (71)
comprising means for writing a partial num-
ber of bytes of data on said local bus (34)
to said cache memory (73), said partial
number of said bytes of said data on said
local bus (34) being written by said proces-
sor (32).

10

EP 0 661 638 A1

EP 0 661 638 A1

12

XD

o c rr n

EP 0 661 638 A1

32

CPU

3 o

DATA ADRS CTRL
-34

71 -73

L2 CACHE

-65
■37

61

MEMORY CONTROLER

D

6 7 -

36-

A

MEMORY

D|

XCVER

69

BUS INTERFACE |̂ — 35

FIG. 4

14

Li

n 7 1

uz £ x «a £ 3
£ LU LU LU " g

Q CC H 9 QC UJ 5=2 CC |_: ^ LU

U_ I — O ,

H-1 LU LU IrrlJULLI
o e r g " a - ^ S "
g 5 5 '

CO ^

cs
CD

LU >_ U_
LU LU 31 CC LU LU

CO

llT
CD >- L*-J pr- „ 111

! < o ? . < o ? < (- °. «=C cd
! cc ° or o t-J uj cc 'T

! o --3 . ^ £ Q LU
: <c o ? : \T °. <c ^5 < lu t— 9r ; cu ^ uj I CC ° • O uj cc g

CO
1 ' I

CD CC LU >- ZZL >- -~~ >-0C
■cc ~ 3: cc — cc ~f cc lu
I— Q c o o 2 o ^ o — >

m m oo ^ cc

o

16

LU LU ! cc ! ! ! : i U_ i < i ■
; — i ! i i ! 1

<

LU ^ LU _ >" ""H
£ =i £ LU LU LU O g » " w g o £

U_ 1 — CD -̂ ,

Q LU ^_ Hz Zi t- LU LU X g u j L u
Q > o e r g " a - S o z "
ZD LU ZD t— "5 '

CO CO ^

CO
CD

Q LU >_ U_
rZ 1 L U L U J-CCLUU-I

g 5 5 g ^ 5 c 5
CO CO ^

UJ CD >- L*-J pr- „ UJ ! i : Q zd ° zd | i S 9 _ ^ ! ! ! < O ? . < o ? ^ (- ° . < C c j
! ! ! lli i- lu h P; ^ n 5 ^ > : ! i ! cc ° az o t-J uj cc

LU v.

Q_ ' • CC • P uj cC ZD 1— -5 CO

zd go □ « cd cc lu >- z >- -~r- >-CC
cc h- <C — 3:cc — cn 2̂ cc lu

> 2 s s s ! s o U LU LU LU ^

o

16

I

EP 0 661 638 A1

CPU READ, L2 CACHE READ HIT OPERATION

CPU BUS STATE Ti

CACHE BUS STATE Ti

CLK2

ADS#

CPU ADDRESS
AND CONTROLS

T1
T1

T2
T2

T1
T1

T2
T2

CACHE ADDRESS | _

CACHE R/W#

CACHE CONTROLLER C
INTERNAL

DATA (CACHE)

READY! (CACHE)

R e f e r e n c e s : Ons

PH1 PH2 I PH1 PH2 I PH1 PH2 ' PH1 PH2 1

I I I I

VALID MEMR VALID MEMR

VALID VALID

RD RD RD RD

CPU-TAG-RMW C P U - T A G - R M W

CPU VALID CPU VALID

40ns 80ns 120ns 1 6 0 n s

FIG. 7

17

EP 0 661 638 A1

CPU READ , L2 CACHE READ MISS OPERATION

CPU BUS STATE
CACHE BUS STATE

CLK2

ADS#

CPU ADDRESS
AND CONTROLS

CACHE ADDRESS

CACHE R/W#

CACHE CONTROLLER
INTERNAL

DATA (CACHE)

DATA (MEMORY)

DATA (MUX)

READY# (MEMORY)

R e f e r e n c e s :

T i T1
T i T1

I
I PH1 I PH2

T2
T2

T2
T2P

T i
T i

T
T

PH1 I PH2 I PH1 I PH2 'PHI I PH2

VALID MEMR

I I I I I !

VALID

I I I I I I

RD RD RD
I I I I I !

CPU-TAG-RMW

VALID

VALID

VALID

Ons 40ns 80ns

FIG. 8

120ns 1 6 0 n s 200ns

18

EP 0 661 638 A1

CPU WRITE, L2 CACHE WRITE HIT/MISS-FREE OPERATION

CPU BUS STATE
CACHE BUS STATE

CLK2

ADS#

T1
T1

T2
T2

T1
T1

T2
T2

T
T

'PH1 PH2 I PH1 PH2 • PH1 PH2 ' PH1 PH2 ' PH1 PH2

CACHE R/W#

CACHE CONTROLLER
INTERNAL

READY# (CACHE)
I

R e f e r e n c e s : Ons

CPU ADDRESS VALID MEMW VALID MEMW
AND CONTROLS

I I I I I i

DATA VALID DATA VALID DATA

I I I I I !

CACHE ADDRESS VALID VALID

WR WR

I I

CPU-TAG-RMW C P U - T A G - R M W

4 0 n s 8 0 n s

I

1 2 0 n s 160ns 2 0 0 n s

FIG. 9

19

EP 0 661 638 A1

CPU READ, L2 CACHE WRITE MISS-VALID OPERATION

CPU BUS STATE
CACHE BUS STATE

CLK2

ADS#

CPU ADDRESS
AND CONTROLS

DATA

CACHE ADDRESS

CACHE R/W#

CACHE CONTROLLER
INTERNAL

ADDRESS/DATA
TO MEMORY

READY* (MEMORY)

R e f e r e n c e s :

T i
T i

T1
T1

PH1 PH2

T2
T2

VALID MEMW

RD

CPU-TAG-RMW

I

T2
T2P

T2
T2P

PH1 PH2 1 PH1 PH2 I PH1 PH2

VALID DATA

VALID

RD
WR

CHANGED ADDRESS/DATA

T i
T i

PH1 PH2

Ons 40ns 80ns 120ns 160ns 200ns

FIG. 10

20

European Patent EUROPEAN SEARCH REPORT A"B~*°B Numba
Office EP 94 11 9721

DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document with indication, where appropriate,
of relevant passages

Relevant
to claim

ULASSIKICAUUIN Ut 1H£ APPLICATION (lnt,CL6)

X

Y

EP-A-0 397 995 (MOTOROLA INC.)

* abstract *
* column 2, line 30 ■
* column 4, line 34 ■
* column 7, line 10 ■
* figure 1 *

1 ine 41 *
line 49 *
line 40 *

JS-A-5 146 573 (SATO ET AL.)

* abstract *
* column 5, line 26
* column 6, line 13
* figures 1,2 *

line 64 *
line 37 *

JS-A-5 247 642 (KADLEC ET AL.)
* abstract *
* column 6, line 24 - line 30 *
* figure 1 *

EP-A-0 470 739 (NCR CORPORATION)
* abstract *
* column 6, line 10 - line 32 *

W0-A-93 12484 (INTEL CORPORATION)
* abstract *
* page 9, line 14 - line 21 *
* page 17, line 6 - line 20 *
* figure 1 *

The present search report has been drawn up for all claims

L.2,4,6,
M l - 1 3 ,
15
*,5,
5-10,14,
L6-19

S06F12/08

3,9,10,
14,19

SEARCHED (Int.CI.6)
GObr

16-18

Place of March
BERLIN

Mt of crayMMaa of at ma
4 April 1995 Masche, C

CATEGORY OF CITED DOCUMENTS
X : particularly relevant if taken alone Y : particularly relevant if combined with another

document of the same category A : technological background O : non-written disclosure
P : intermediate document

T : theory or principle underlying the invention E : earlier patent document, but published on, or
after the filing date

D : document cited in the application L : document cited for other reasons
& : member of the same patent family, corresponding document

	bibliography
	description
	claims
	drawings
	search report

