

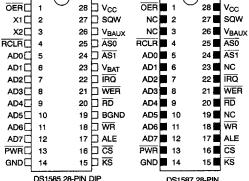
DS1585/DS1587/DS1587LPM Serialized Real-Time Clocks

FEATURES

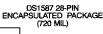
Incorporates industry standard DS1287 PC clock plus enhanced features:

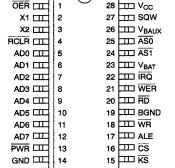
- · Optional low profile socketable module
 - Fits into a standard PLCC surface mountable socket
- 64-bit Silicon serial number
- Power control circuitry supports system power on from date/time alarm or key closure
- 114 bytes user NVRAM
- 8K bytes additional NVRAM
- Auxiliary battery input
- RAM clear input
- · Century register
- 32 KHz output for power management
- · Supports Intel timing mode
- Compatible with existing BIOS for original DS1287 functions
- Available as chip (DS1585) or stand-alone module (DS1587 or DS1587LPM) with embedded lithium battery and crystal

ORDERING INFORMATION

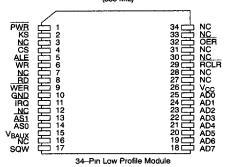

 DS1585
 RTC Chip; 28-pin DIP

 DS1585S
 RTC Chip; 28-pin SOIC


 DS1587
 RTC Module; 28-pin DIP


 DS1587L
 RTC Low Profile Module

PIN ASSIGNMENT



DS1585 28-PIN DIP (600 MIL)

DS1585S 28-PIN SOIC (330 MIL)

041994 1/29

Copyright © 1993 Dallas Semiconductor Corporation Printed in U.S.A.

2614130 0009135 902

PIN DESCRIPTION

OER - RAM output enable
X1 - Crystal input
X2 - Crystal output
RCLR - RAM clear input

AD0-AD7 - Mux'ed address/data bus

PWR - Power on interrupt output (open drain)

KS - Kickstart input

CS - RTC Chip select input
ALE - RTC address strobe
WR - RTC write data strobe
RD - RTC read data strobe
WER - RAM write data strobe

- Interrupt request output (open drain)

AS1 - RAM upper address strobe
AS0 - RAM lower address strobe
SQW - Square wave output

 V_{CC} - +5V supply GND - Ground

V_{BAT} - Battery + supply
V_{BAUX} - Auxiliary battery supply
BGND - Battery ground

DESCRIPTION

The DS1585, DS1587, and DS1587LPM are RAMified real—time clocks (RTC's) designed as upward-compatible successors to the industry standard DS1287, DS1387, DS1487, and DS1488 PC real—time clocks. As such, these devices incorporate a number of enhanced features including a silicon serial number, power on/off control circuitry, 114 bytes of user NVSRAM, and 8K bytes of additional NVSRAM. The DS1587LPM real time clock is functionally equivalent to the DS1587. The added feature of the DS1587LPM is that it is a low profile module that fits into a standard 52—pin PLCC surface mountable socket.

Each DS1585/DS1587/DS1587LPM is individually manufactured with a unique 64-bit serial number. The serial number is written by laser and tested at Dallas to insure that no two devices are alike. As a result, the serial number can be used to electronically identify a system for purposes such as establishment of a network node address, or for maintenance. Blocks of available

numbers from Dallas Sereconductor can be reserved by the customer.

The Serialized RTC's also incorporate power control circuitry which allows the system to be powered on via the keyboard or by a time and date (wake up) alarm. The PWR output pin can be triggered by one or either of these events, and can be used to turn on an external power supply. The PWR pin is under software control, so that when a task is complete, the system power can then be shut down.

The DS1585 is a clock/calendar chip with the features described above. An external crystal and battery are the only components required to maintain time-of-day and memory status in the absence of power. The DS1587/DS1587LPM incorporates the DS1585 chip, a 32.768 KHz crystal, and a lithium battery in a complete, self-contained timekeeping module. The entire unit is fully tested at Dallas such that a minimum of 10 years of timekeeping and data retention in the absence of V_{CC} is guaranteed.

OPERATION

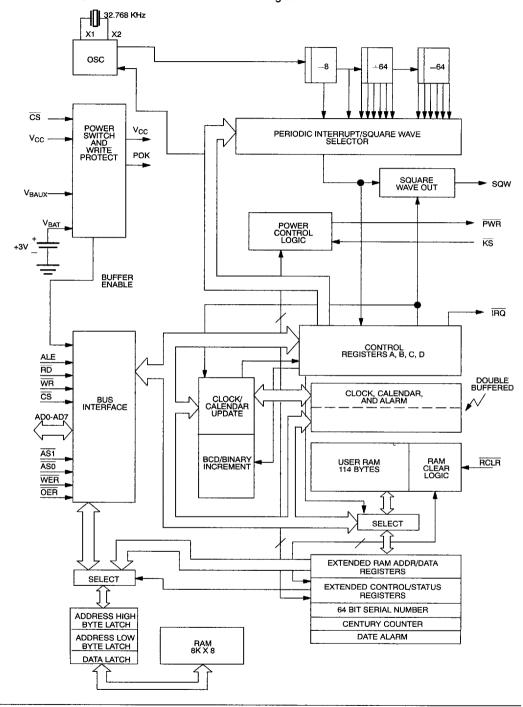
The block diagram in Figure 1 shows the pin connections with the major internal functions of the DS1585/DS1587/DS1587LPM. The following paragraphs describe the function of each pin.

SIGNAL DESCRIPTIONS

GND, V_{CC} - DC power is provided to the device on these pins. V_{CC} is the +5 volt input. When 5 volts are applied within normal limits, the device is fully accessible and data can be written and read. When V_{CC} is below 4.25 volts typical, reads and writes are inhibited. However, the timekeeping function continues unaffected by the lower input voltage. As V_{CC} falls below 3 volts typical, the RAM and timekeeper are switched over to lithium battery connected either to the V_{BAT} pin or V_{BAUX} pin in the case of the DS1585, or to the internal lithium battery in the case of the DS1587/DS1587LPM. The timekeeping function maintains an accuracy of ± 1 minute per month at 25°C regardless of the voltage input on the V_{CC} pin.

SQW (Square Wave Output) - The SQW pin can output a signal from one of 13 taps provided by the 15 internal divider stages of the real-time clock. The frequency of the SQW pin can be changed by programming Register A as shown in Table 2. The SQW signal can be turned on and off using the SQWE bit in Register B. A 32 KHz SQW signal is output when SQWE=1 and the Enable 32 KHz (E32K=1) in extended register 04BH and V_{CC} is above 4.25V. A 32 KHz square wave is also available when V_{CC} is less than 4.25 volts typical if E32K=1, SQWE=1, ABE=1, and voltage applied to V_{BAUX}.

ADC-AD7 (Multiplexed Bidirectional Address/Data Bus) - Multiplexed buses save pins because address information and data information time share the same signal paths. The addresses are present during the first portion of the bus cycle and the same pins and signal paths are used for data in the second portion of the cycle. Address/data multiplexing does not slow the access time of the DS1585/DS1587/DS1587LPM since the bus change from address to data occurs during the internal RAM access time. Addresses must be valid prior to the latter portion of ALE, ASO, or AS1, at which time the


DS1585/DS1587/DS1587LPM latches the address from AD0 to AD7. Valid write data must be present and held stable during the latter portion of the \overline{WR} or \overline{WER} pulses. In a read cycle the DS1585/DS1587/DS1587LPM outputs 8 bits of data during the latter portion of the \overline{RD} or \overline{OER} pulses. The read cycle is terminated and the bus returns to a high impedance state as \overline{RD} or \overline{OER} transitions high.

ALE (RTC Address Strobe Input) - A pulse on the address strobe pin serves to demultiplex the bus. The falling edge of ALE causes the RTC address to be latched within the DS1585/DS1587/DS1587LPM.

RD (RTC Read Input) - RD identifies the time period when the DS1585/DS1587/DS1587LPM drives the bus with RTC read data. The RD signal is an enable signal for the output buffers of the clock.

 \overline{WR} (RTC Write Input) -The \overline{WR} signal is an active low signal. The \overline{WR} signal defines the time period during which data is written to the addressed clock register.

DS1585/DS1587/DS1587LPM BLOCK DIAGRAM Figure 1

CS (RTC Chip Select Input) - The Chip Select signal must be asserted low during a bus cycle for the RTC portion of the DS1585/DS1587/DS1587LPM to be accessed. CS must be kept in the active state during RD and WR timing. Bus cycles which take place with ALE asserted but without asserting CS will latch addresses. However, no data transfer will occur.

 $\overline{\textbf{IRQ}}$ (Interrupt Request Output) - The $\overline{\textbf{IRQ}}$ pin is an active low output of the DS1585/DS1587/DS1587LPM that can be tied to the interrupt input of a processor. The $\overline{\textbf{IRQ}}$ output remains low as long as the status bit causing the interrupt is present and the corresponding interrupt-enable bit is set. To clear the $\overline{\textbf{IRQ}}$ pin, the application software must clear all enabled flag bits contributing to $\overline{\textbf{IRQ}}$'s active state.

When no interrupt conditions are present, the $\overline{\text{IRQ}}$ level is in the high impedance state. Multiple interrupting devices can be connected to an $\overline{\text{IRQ}}$ bus. The $\overline{\text{IRQ}}$ pin is an open drain output and requires an external pull-up resistor.

ASO (RAM Address Strobe Zero) - The rising edge of ASO latches the lower eight bits of the 8K x 8 extended RAM address.

AS1 (RAM Address Strobe One) - The rising edge of AS1 latches the upper five bits of the 8K x 8 extended RAM address.

OER (RAM Output Enable) - **OER** is active low and identifies the time period when the DS1585/DS1587/DS1587LPM drives the bus with 8K x 8 extended RAM read data.

WER (RAM Write Enable) - WER is an active low signal and defines the time period during which data is written to the 8K x 8 extended RAM portion of the DS1585/DS1587/DS1587LPM.

 \overline{PWR} - Power On Output; open drain; active low. The \overline{PWR} pin is intended for use as an on/off control for the system power. With V_{CC} voltage removed from the DS1585/DS1587/DS1587LPM, \overline{PWR} may be automatically activated from a Kickstart input via the \overline{KS} pin or from a Wake Up interrupt. Once the system is powered

on, the state of the PWR pin can be controlled via bits in the Dallas registers.

 $\overline{\text{KS}}$ - Kickstart input, active low. When V_{CC} is removed from the DS1585/DS1587/DS1587LPM, the system can be powered on in response to an active low transition on the $\overline{\text{KS}}$ pin, as might be generated from a key closure. V_{BAUX} must be present and ABE must be set to 1 if the kickstart function is used, and the $\overline{\text{KS}}$ pin must be pulled up to the V_{BAUX} supply. Do not apply positive voltage to the $\overline{\text{KS}}$ pin that exceeds V_{BAUX} while in battery-backed mode. While V_{CC} is applied, the $\overline{\text{KS}}$ pin can be used as an interrupt input.

RCLR - RAM Clear Input; active low. If enabled by software, taking RCLR low will result in the clearing of the 114 bytes of user RAM. When enabled, RCLR can be activated whether or not V_{CC} is present.

 V_{BAUX} - Auxiliary battery input required for kickstart and wake up features. Also supports clock/calendar and NVRAM function if V_{BAT} at lower voltage or not present. Standard +3 volt lithium cell or other energy source can be used. Battery voltage must be held between +2.5 and +3.7 volts for proper operation. If V_{BAUX} is not going to be used it should be grounded and auxiliary battery enable bit bank 1, register 01BH, should = 0.

(DS1585 ONLY)

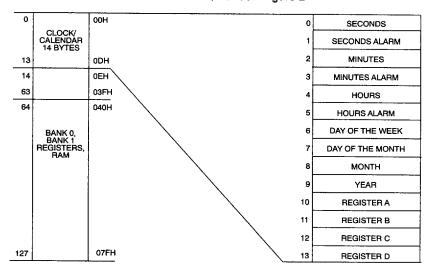
X1, X2 - Connections for a standard 32.768 KHz quartz crystal, Daiwa part number DT-26S or equivalent. When ordering, request a load capacitance of 6 pF. The internal oscillator circuitry is designed for operation with a crystal having a specified load capacitance (CL) of 6 pF.

 V_{BAT} - Battery input for any standard 3 Volt lithium cell or other energy source. Battery voltage must be held between 2.5 and 3.7 volts for proper operation. The nominal write protect trip point voltage is set by the internal circuitry and is 4.25 volts typical. A maximum load of 1 μA at 25°C and 3.0V on V_{BAT} should be used to size the external energy source. This pin is not present on the DS1587 or DS1587LPM as the battery supply is contained within the package.

BGND - Ground for battery inputs.

POWER-DOWN/POWER-UP CONSIDERATIONS

The real-time clock function will continue to operate and all of the RAM, time, calendar, and alarm memory locations remain nonvolatile regardless of the level of the V_{CC} input. When V_{CC} is applied to the DS1585/DS1587/DS1587LPM and reaches a level of greater than 4.25 volts, the device becomes accessible after 150 ms, provided that the oscillator is running and the oscillator countdown chain is not in reset (see Register A). This time period allows the system to stabilize after power is applied. When V_{CC} falls below 4.25 volts, the chip is internally disabled and is, therefore, writeprotected. With the possible exception of the KS, PWR. and SQW pins, all inputs are ignored and all outputs are high impedance state. When DS1585/DS1587/DS1587LPM is in a write-protected state, V_{CC} falls below a level of approximately 3 volts.


the external V_{CC} supply is switched off and either the internal lithium energy source or the auxiliary battery supplies power to the real-time clock and the RAM memory.

RTC ADDRESS MAP

The address map for the RTC registers of the DS1585/DS1587/DS1587LPM is shown in Figure 2. The address map consists of the 14 clock/calendar registers. Ten registers contain the time, calendar, and alarm data, and four bytes are used for control and status. All registers can be directly written or read except for the following:

- 1. Registers C and D are read-only.
- 2. Bit 7 of Register A is read-only.
- 3. The high order bit of the seconds byte is read-only.

REAL-TIME CLOCK ADDRESS MAP DS1585/DS1587 Figure 2

TIME, CALENDAR AND ALARM LOCATIONS

The time and calendar information is obtained by reading the appropriate register bytes shown in Table 1. The time, calendar, and alarm are set or initialized by writing the appropriate register bytes. The contents of the time, calendar, and alarm registers can be either Binary or Binary-Coded Decimal (BCD) format. Table 1 shows the binary and BCD formats of the twelve time, calendar, and alarm locations that reside in both bank 0 and in bank 1, plus the two extended registers that reside in

bank 1 only (bank 0 and bank 1 switching will be explained later in this text).

Before writing the internal time, calendar, and alarm registers, the SET bit in Register B should be written to a logic one to prevent updates from occurring while access is being attempted. Also at this time, the data format (binary or BCD), should be set via the data mode bit (DM) of Register B. All time, calendar, and alarm registers must use the same data mode. The SET bit in Reg-

041994 6/29

SINARY OR BCD INPUTS

ister B should be cleared after the data mode bit has been written to allow the real-time clock to update the time and calendar bytes.

Once initialized, the real-time clock makes all updates in the selected mode. The data mode cannot be changed without reinitializing the ten data bytes. The 24/12 bit cannot be changed without reinitializing the hour locations. When the 12-hour format is selected, the high order bit of the hours byte represents PM when it is a logic one. The time, calendar, and alarm bytes are always accessible because they are double buffered. Once per second the ten bytes are advanced by one second and checked for an alarm condition. If a read of the time and calendar data occurs during an update, a problem exists where seconds, minutes, hours, etc. may not correlate. The probability of reading incorrect time and calendar data is low. Several methods of avoiding any possible incorrect time and calendar reads are covered later in this text.

The four alarm bytes can be used in two ways. First, when the alarm time is written in the appropriate hours, minutes, and seconds alarm locations, the alarm interrupt is initiated at the specified time each day if the alarm enable bit is high. The second use condition is to insert a "don't care" state in one or more of the four alarm bytes. The "don't care" code is any hexadecimal value from C0 to FF. The two most significant bits of each byte set the "don't care" condition when at logic 1. An alarm will be generated each hour when the "don't care" bits are set in the hours byte. Similarly, an alarm is generated every minute with "don't care" codes in the hours and minute alarm bytes. The "don't care" codes in all three alarm bytes create an interrupt every second. The three alarm bytes may be used in conjunction with the date alarm as described in the Wakeup/Kickstart section. The century counter will be discussed later in this text.

TIME, CALENDAR AND ALARM DATA MODES Table 1

ADDRESS		DECIMAL	RANGE			
LOCATION	FUNCTION	RANGE	BINARY DATA MODE	BCD DATA MODE		
00H	Seconds	0-59	00-3B	00-59		
01H	Seconds Alarm	0-59	00-3B	00-59		
02H	Minutes	0-59	00-3B	00-59		
03H	Minutes Alarm	0-59	00-3B	00-59		
04H	Hours 12-hr. Mode	1-12	01-0C AM, 81-8C PM	01-12 AM, 81-92 PM		
	Hours 24-Hour Mode	0-23	00-17	00-23		
05H	Hours Alarm 12-hr. Mode	1-12	01-0C AM, 81-8C PM	01-12AM, 81-92 PM		
	Hours Alarm 24-hr. Mode	0-23	00-17	00-23		
06H	Day of Week Sunday=1	1-7	01-07	01-07		
07H	Date of Month	1-31	01-1F	01-31		
08H	Month	1-12	01-0C	01-12		
09H	Year	0-99	00-63	00-99		
BANK 1, 48H	Century	0-99	00-63	00-99		
BANK 1, 49H	Date Alarm	1-31	01-1F	01-31		

CONTROL REGISTERS

The four control registers; A, B, C, and D reside in both bank 0 and bank 1. These registers are accessible at all times, even during the update cycle.

NONVOLATILE RAM - RTC

The 114 general purpose nonvolatile RAM bytes are not dedicated to any special function within the DS1585/DS1587/DS1587LPM. They can be used by the application program as nonvolatile memory and are fully available during the update cycle. This memory is directly accessible when bank 0 is selected.

INTERRUPT CONTROL

The DS1585/DS1587/DS1587LPM includes six separate, fully automatic sources of interrupt for a processor:

- 1. Alarm interrupt
- 2. Periodic interrupt
- 3. Update-ended interrupt
- 4. Wake up interrupt
- 5. Kickstart interrupt
- 6. RAM clear interrupt

The conditions which generate each of these independent interrupt conditions are described in greater detail elsewhere in this data sheet. This section describes the overall control of the interrupts.

The application software can select which interrupts, if any, are to be used. There are a total of six bits including three bits in Register B and three bits in Extended Register B which enable the interrupts. The extended register locations are described later. Writing a logic 1 to an interrupt enable bit permits that interrupt to be initiated when the event occurs. A logic 0 in the interrupt enable bit prohibits the \overline{IRQ} pin from being asserted from that interrupt condition. If an interrupt flag is already set when an interrupt is enabled, \overline{IRQ} will immediately be set at an active level, even though the event initiating the interrupt condition may have occurred much earlier. As a result, there are cases where the software should clear these earlier generated interrupts before first enabling new interrupts.

When an interrupt event occurs, the relating flag bit is set to a logic 1 in Register C or in Extended Register A. These flag bits are set regardless of the setting of the corresponding enable bit located either in Register B or in Extended Register B. The flag bits can be used in a

polling mode without enabling the corresponding enable bits.

However, care should be taken when using the flag bits of Register C as they are automatically cleared to 0 immediately after they are read. Double latching is implemented on these bits so that bits which are set remain stable throughout the read cycle. All bits which were set are cleared when read and new interrupts which are pending during the read cycle are held until after the cycle is completed. One, two, or three bits can be set when reading Register C. Each utilized flag bit should be examined when read to ensure that no interrupts are lost.

The flag bits in Extended Register A are not automatically cleared following a read. Instead, each flag bit can be cleared to 0 only by writing 0 to that bit.

When using the flag bits with fully enabled interrupts, the \overline{IRQ} pin will be driven low when an interrupt flag bit is set and its corresponding enable bit is also set. \overline{IRQ} will be held low as long as at least one of the six possible interrupt sources has it s flag and enable bits both set. The IRQF bit in Register C is a 1 whenever the \overline{IRQ} pin is being driven low as a result of one of the six possible active sources. Therefore, determination that the DS1585/DS1587/DS1587LPM initiated an interrupt is accomplished by reading Register C and finding IRQF=1. IRQF will remain set until all enabled interrupt flag bits are cleared to 0.

SQUARE WAVE OUTPUT SELECTION

The SQW pin can be programmed to output a variety of frequencies divided down from the 32.768 KHz crystal tied to X1 and X2. The square wave output is enabled and disabled via the SQWE bit in Register B. If the square wave is enabled (SQWE=1), then the output frequency will be determined by the settings of the E32K bit in Extended Register B and by the RS3-0 bits in Register A. If the E32K=1, then a 32.768 KHz square wave will be output on the SQW pin regardless of the settings of RS3-0.

If E32K=0, then the square wave output frequency is determined by the RS3-0 bits. These bits control a 1-of-15 decoder which selects one of thirteen taps that divide the 32.768 KHz frequency. The RS3-0 bits establish the SQW output frequency as shown in Table 2. In addition, RS3-0 bits control the periodic interrupt selection as described below.

041994 8/29

If SQWE=1, E32K=1, the Auxiliary Battery Enable bit (ABE, bank 1; register 04BH) is enabled, and voltage is applied to V_{BAUX} then the 32 KHz square wave output signal will be output on the SQW pin in the absence of V_{CC} . This facility is provided to clock external power management circuitry. If any of the above requirements are not met, no square wave output signal will be generated on the SQW pin in the absence of V_{CC} .

OSCILLATOR CONTROL BITS

When the DS1587/DS1587LPM timekeeping module with crystal and lithium battery is shipped from the factory, the internal oscillator is turned off. This feature prevents the lithium battery from being used until it is installed in a system.

A pattern of 01X in the DV2, DV1, and DV0, bits respectively, will turn the oscillator on and enable the count-down chain. Note that this is different than the DS1287, which required a pattern of 010 in these bits. DV0 is now a "don't care" because it is used for selection between register banks 0 and 1.

A pattern of 11X will turn the oscillator on, but the oscillator's countdown chain will be held in reset, as it was in the DS1287. Any other bit combination for DV2 and DV1 will keep the oscillator off.

PERIODIC INTERRUPT SELECTION

The periodic interrupt will cause the $\overline{\text{IRQ}}$ pin to go to an active state from once every 500 ms to once every 122 μs . This function is separate from the alarm interrupt which can be output from once per second to once per day. The periodic interrupt rate is selected using the same RS3-0 bits in Register A which select the square wave frequency (see Table 2). Changing the bits affects both the square wave frequency and the periodic interrupt output. However, each function has a separate enable bit in Register B. The SQWE bit controls the square

wave output. Similarly, the periodic interrupt is enabled by the PIE bit in Register B. The periodic interrupt can be used with software counters to measure inputs, create output intervals, or await the next needed software function.

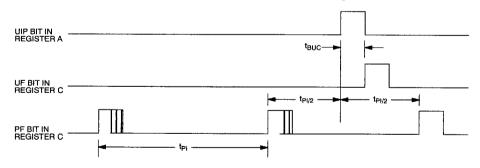
UPDATE CYCLE

The Serialized RTC executes an update cycle once per second regardless of the SET bit in Register B. When the SET bit in Register B is set to one, the user copy of the double buffered time, calendar, and alarm bytes is frozen and will not update as the time increments. However, the time countdown chain continues to update the internal copy of the buffer. This feature allows time to maintain accuracy independent of reading or writing the time, calendar, and alarm buffers and also guarantees that time and calendar information is consistent. The update cycle also compares each alarm byte with the corresponding time byte and issues an alarm if a match or if a "don't care" code is present in all three positions.

There are three methods that can handle access of the real-time clock that avoid any possibility of accessing inconsistent time and calendar data. The first method uses the update-ended interrupt. If enabled, an interrupt occurs after every up date cycle that indicates that over 999 ms are available to read valid time and date information. If this interrupt is used, the IRQF bit in Register C should be cleared before leaving the interrupt routine.

A second method uses the update-in-progress bit (UIP) in Register A to determine if the update cycle is in progress. The UIP bit will pulse once per second. After the UIP bit goes high, the update transfer occurs 244 μs later. If a low is read on the UIP bit, the user has at least 244 μs before the time/calendar data will be changed. Therefore, the user should avoid interrupt service routines that would cause the time needed to read valid time/calendar data to exceed 244 μs .

PERIODIC INTERRUPT RATE AND SQUARE WAVE OUTPUT FREQUENCY Table 2


EXT. REG. B	SE	LECT BITS	REGISTE	R A	t _{PI} PERIODIC	SQW OUTPUT	
E32K	RS3	RS2	RS1	RS0	INTERRUPT RATE	FREQUENCY	
0	0	0	0	0	None	None	
0	0	0	0	1	3.90625 ms	256 Hz	
0	0	0	1	0	7.8125 ms	128 Hz	
0	0	0	1	1	122.070 μs	8.192 KHz	
0	0	11	0	0	244.141 μs	4.096 KHz	
0	0	1	0	1	488.281 μs	2.048 KHz	
0	0	1	1	0	976.5625 μs	1.024 KHz	
0	0	1	7	1	1.953125 ms	512 Hz	
0	1	0	0	0	3.90625 ms	256 Hz	
0	1	0	0	1	7.8125 ms	128 Hz	
0	1	0	1	0	15.625 ms	64 Hz	
0	, 1	0	1	1	31.25 ms	32 Hz	
0	1	1	0	0	62.5 ms	16 Hz	
0	1	1	0	1	125 ms	8 Hz	
0	1	1	1	0	250 ms	4 Hz	
0	1	1	1	1	500 ms	2 Hz	
1	Х	Х	X	X	*	32.768 KHz	

^{*}RS3-RS0 determine periodic interrupt rates as listed for E32K=0.

The third method uses a periodic interrupt to determine if an update cycle is in progress. The UIP bit in Register A is set high between the setting of the PF bit in Register C (see Figure 3). Periodic interrupts that occur at a rate of greater than $t_{\rm BUC}$ allow valid time and date informa-

tion to be reached at each occurrence of the periodic interrupt. The reads should be complete within $(t_{Pl} / 2 + t_{BUC})$ to ensure that data is not read during the update cycle.

UPDATE-ENDED AND PERIODIC INTERRUPT RELATIONSHIP Figure 3

 t_{Pl} = PERIODIC INTERRUPT TIME INTERNAL PER TABLE 1 t_{BUC} = DELAY TIME BEFORE UPDATE CYCLE = 244 μ s

041994 10/29

REGISTER A

MSB							LSB
BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
UIP	DV2	DV1	DV0	RS3	RS2	RS1	RS0

UIP - The Update In Progress (UIP) bit is a status flag that can be monitored. When the UIP bit is a one, the update transfer will soon occur. When UIP is a zero, the update transfer will not occur for at least 244 μs . The time, calendar, and alarm information in RAM is fully available for access when the UIP bit is zero. The UIP bit is read only. Writing the SET bit in Register B to a one inhibits any update transfer and clears the UIP status bit.

DV0, DV1, DV2 - These bits are defined as follows:

DV2 = Countdown Chain

1 - resets countdown chain only if DV1=1

0 - countdown chain enabled

DV1 = Oscillator Enable

0 - oscillator off

1 - oscillator on

DV0 = Bank Select

0 - original bank

1 - extended registers

A pattern of 01X is the only combination of bits that will turn the oscillator on and allow the RTC to keep time. A pattern of 11X will enable the oscillator but holds the countdown chain in reset. The next update will occur at 500 ms after a pattern of 01X is written to DV2, DV1, and DV0.

RS3, RS2, RS1, RS0 - These four rate-selection bits select one of the 13 taps on the 15-stage divider or disable the divider output. The tap selected can be used to generate an output square wave (SQW pin) and/or a periodic interrupt. The user can do one of the following

Enable the interrupt with the PIE bit;

Enable the SQW output pin with the SQWE bit;

Enable both at the same time and the same rate; or

Enable neither.

Table 2 lists the periodic interrupt rates and the square wave frequencies that can be chosen with the RS bits.

REGISTER B

MSB							LSB
BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
SET	PIE	AIE	UIE	SQWE	DM	24/12	DSE

SET - When the SET bit is a zero, the update transfer functions normally by advancing the counts once per second. When the SET bit is written to a one, any update transfer is inhibited and the program can initialize the time and calendar bytes without an update occurring in the midst of initializing. Read cycles can be executed in a similar manner. SET is a read/write bit that is not modified by internal functions of the DS1585/DS1587/DS1587LPM.

PIE - The Periodic Interrupt Enable bit is a read/write bit which allows the Periodic Interrupt Flag (PF) bit in Register C to drive the IRQ pin low. When the PIE bit is set to one, periodic interrupts are generated by driving the IRQ pin low at a rate specified by the RS3-RS0 bits of Register A. A zero in the PIE bit blocks the IRQ output from being driven by a periodic interrupt, but the Periodic Flag (PF) bit is still set at the periodic rate. PIE is not modified by any internal DS1585/DS1587/DS1587LPM functions.

AIE - The Alarm Interrupt Enable (AIE) bit is a read/write bit which, when set to a one, permits the Alarm Flag (AF) bit in register C to assert \overline{IRQ} . An alarm interrupt occurs for each second that the three time bytes equal the three alarm bytes including a don't care alarm code of binary 11XXXXXX. When the AIE bit is set to zero, the AF bit does not initiate the \overline{IRQ} signal. The internal functions of the DS1585/DS1587/DS1587LPM do not affect the AIE bit.

UIE - The Update Ended Interrupt Enable (UIE) bit is a read/write that enables the Update End Flag (UF) bit in Register C to assert \overline{RQ} . The SET bit going high clears the UIE bit.

SQWE - When the Square Wave Enable (SQWE) bit is set to a one, a square wave signal at the frequency set by the rate-selection bits RS3 through RS0 and the E32K bit is driven out on the SQW pin. When the SQWE bit is set to zero, the SQW pin is held low. SQWE is a read/write bit.

2614130 0009145 851 1

DM - The Data Mode (DM) bit indicates whether time and calendar information is in binary or BCD format. The DM bit is set by the program to the appropriate format and can be read as required. This bit is not modified by internal functions. A one in DM signifies binary data while a zero in DM specifies Binary Coded Decimal (BCD) data.

24/12 - The 24/12 control bit establishes the format of the hours byte. A one indicates the 24-hour mode and a zero indicates the 12-hour mode. This bit is read/write.

DSE - The Daylight Savings Enable (DSE) bit is a read/write bit which enables two special updates when DSE is set to one. On the first Sunday in April the time increments from 1:59:59 AM to 3:00:00 AM. On the last Sunday in October when the time first reaches 1:59:59 AM it changes to 1:00:00 AM. These special updates do not occur when the DSE bit is a zero. This bit is not affected by internal functions.

REGISTER C

MSB							LSB
BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
IRQF	PF	AF	UF	0	0	0	0

IRQF - The Interrupt Request Flag (IRQF) bit is set to a one when one or more of the following are true:

Any time the IRQF bit is a one, the \overline{IRQ} pin is driven low. Flag bits PF, AF, and UF are cleared after Register C is read by the program.

PF - The Periodic Interrupt Flag (PF) is a read-only bit which is set to a one when an edge is detected on the selected tap of the divider chain. The RS3 through RS0 bits establish the periodic rate. PF is set to a one independent of the state of the PIE bit. When both PF and PIE are ones, the $\overline{\text{IRQ}}$ signal is active and will set the IRQF bit. The PF bit is cleared by a software read of Register C.

AF - A one in the Alarm Interrupt Flag (AF) bit indicates that the current time has matched the alarm time. If the

AIE bit is also a one, the \overline{IRQ} pin will go low and a one will appear in the IRQF bit. A read of Register C will clear AF.

UF - The Update Ended Interrupt Flag (UF) bit is set after each update cycle. When the UIE bit is set to one, the one in UF causes the IRQF bit to be a one which will assert the $\overline{\text{IRQ}}$ pin. UF is cleared by reading Register C.

BIT 0 THROUGH BIT 3 - These are unused bits of the status Register C. These bits always read zero and cannot be written.

REGISTER D

MSB							LSB
BIT 7	BIT 6	BiT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
VRT	0	0	0	0	0	0	0

VRT - The Valid RAM and Time (VRT) bit indicates the condition of the internal battery (the battery connected to the V_{BAT} pin in the case of the DS1585) or the battery connected to V_{BAUX} , whichever is at a higher voltage. This bit is not writable and should always be a one when read. If a zero is ever present, an exhausted lithium energy source is indicated and both the contents of the RTC data and RAM data are questionable.

BIT 6 THROUGH BIT 0 - The remaining bits of Register D are not usable. They cannot be written and, when read, they will always read zero.

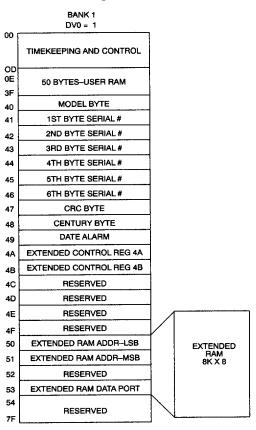
EXTENDED FUNCTIONS

The extended functions provided the by DS1585/DS1587/DS1587LPM that are new to the RA-Mified RTC family are accessed via a software controlled bank switching scheme, as illustrated in Figure 4. In bank 0, the clock/calendar registers and 50 bytes of user RAM are in the same locations as for the DS1287. As a result, existing routines implemented within BIOS. DOS, or application software packages can gain access to the DS1585/DS1587/DS1587LPM clock registers with no changes. Also in bank 0, an extra 64 bytes of RAM are provided at addresses just above the original locations for a total of 114 directly addressable bytes of user RAM.

When bank 1 is selected, the clock/calendar registers and the original 50 bytes of user RAM still appear as bank 0. However, the Dallas registers which provide

041994 12/29

control and status for the extended functions will be accessed in place of the additional 64 bytes of user RAM. The major extended functions controlled by the Dallas registers are listed below:


- 1. Silicon Revision byte
- 2. Serial Number
- 3. Century counter
- 4. 8 Kbyte Extended RAM access
- 5. Auxiliary Battery Control/Status

- 6. Wake Up
- 7. Kickstart
- 8. RAM Clear Control/Status

The bank selection is controlled by the state of the DV0 bit in register A. To access bank 0 the DV0 bit should be written to a 0. To access bank 1, DV0 should be written to a 1. Register locations designated as reserved in the bank 1 map are reserved for future use by Dallas Semiconductor. Bits in these locations cannot be written and will return a 0 if read.

DS1585/DS1587 EXTENDED REGISTER BANK DEFINITION Figure 4

	BANK 0 DV0 = 0
00	TIMEKEEPING AND CONTROL
OD OE 3F	50 BYTES-USER RAM
	64 BYTES-USER RAM
75	

041994 13/29

SILICON SERIAL NUMBER

A unique 64-bit lasered serial number is located in bank 1 registers 40H - 47H. This serial number is divided into three parts. The first byte in register 40H contains a model number to identify the device type and revision of the DS1585/DS1587/DS1587LPM. Registers 41H-46H contain a unique binary number. Register 47H contains a CRC byte used to validate the data in registers 40H-46H. All 8 bytes of the serial number are read only registers.

The DS1585/DS1587/DS1587LPM is manufactured such that no two devices will contain an identical number in locations 41H-47H. Blocks of numbers for these locations can be reserved by the customer. Contact Dallas Semiconductor for special ordering information for DS1585/DS1587/DS1587LPM's with reserved blocks of serial numbers.

CENTURY COUNTER

A register has been added in bank 1, location 48H, to keep track of centuries. The value is read in either binary or BCD according to the setting of the DM bit.

8K X 8 RAM

The DS1585/DS1587/DS1587LPM provides 8K x 8 of on-chip SRAM which is controlled as nonvolatile storage sustained from a lithium battery. On power-up, the RAM is taken out of write-protect status by the internal power OK signal (POK) generated from the write protect circuitry. The POK signal becomes active at 4.25 volts (typical).

The on-chip 8K x 8 nonvolatile SRAM is accessed via the eight multiplexed address/data lines AD7-AD0. Access to the SRAM is controlled by three on-chip latch registers. Two registers are used to hold the SRAM address, and the third register is used to hold read/write data. The SRAM address space is from 0000H to 1FFFH. A direct hardware interface to the SRAM as well as indirect access under software control is supported.

The hardware access uses four control signals, \overline{ASO} , \overline{ASI} , \overline{OER} , and \overline{WER} to access the extended SRAM. This access mode is identical to that supported by the DS1385/DS1387 and DS1485/DS1488. The address latches are loaded from the address/data bus in re-

sponse to rising edge signals applied to the Address Strobe 0 ($\overline{AS0}$) and Address Strobe 1 ($\overline{AS1}$) signals. $\overline{AS0}$ is used to latch the lower 8-bits of address, and $\overline{AS1}$ is used to latch the upper 5-bits of address. It is necessary to meet the setup and hold times given in the Electrical Specifications with valid address information in order to properly latch the address. If the upper or lower order address is correct from a prior cycle, it is not necessary to repeat the address latching sequence.

A write operation in the hardware access method requires valid data to placed on the bus (AD7-AD0) followed by the activation of the Write Enable RAM (WER) line. Data on the bus will be written to the RAM provided that the write timing specifications are met. During a read cycle, the Output Enable RAM (OER) signal is driven active. Data from the RAM will become valid on the bus provided that the RAM read access timing specifications are met. The WER and OER signals should never be active at the same time. In addition, access to the clock/calendar registers and user RAM (via CS) must not be attempted when the 8K x 8 RAM is being accessed. The RAM is enabled when either WER or OER is active. CS is only used for the access of the clock calendar registers (including the extended Dallas registers) and the 114 bytes of user RAM.

The software method allows access to the 8K x 8 RAM via three of the Dallas registers shown in Figure 2. The Dallas registers in bank 1 must first be selected by setting the DV0 to 1 in Register A. The 13-bit address of the RAM location to be accessed must first be loaded into the two RAM address registers located at 50H and 51H. The least significant address byte should be written to location 50H, and the most significant 5 bits (right-justified) should be loaded in location 51H. Data in the addressed location may be read by performing a read operation from location 53H, or written by performing a write operation to location 53H. Data in any addressed location may be read or written repeatedly without changing the address in locations 50H, 51H.

With the software method, the extended RAM may be accessed using only the control signals assigned to the clock/calendar and 114 byte user RAM; namely, ALE, \overline{CS} , \overline{WR} , and \overline{RD} . As a result, the RAM control signals $\overline{(AS1, AS0, WER, and \overline{OER})}$ do not have to be used and should be tied to their inactive levels.

AUXILIARY BATTERY

The V_{BAUX} input is provided to supply power from an auxiliary battery for the DS1585/DS1587/DS1587LPM's kickstart, wake up, and SQW output features in the absence of V_{CC} . This power source must be available in order to use these auxiliary features when no V_{CC} is applied to the device.

The Auxiliary Battery Enable (ABE; bank 1, register 04BH) bit in extended control register B is used to turn on and off the auxiliary battery for the above functions in the absence of V_{CC} . When set to a 1, V_{BAUX} battery power is enabled, and when cleared to 0, V_{BAUX} battery power is disabled to these functions. In the DS1587/DS1587LPM, this bit is shipped from the factory cleared to 0.

In the DS1585, this auxiliary battery may be used as the primary backup power source for maintaining the clock/calendar, user RAM, and extended RAM functions. This occurs if the V_{BAT} pin is at a lower voltage than V_{BAUX} . If the DS1585 is to be backed-up using a single battery with the auxiliary features enabled, then V_{BAUX} should be used and connected to V_{BAT} . If V_{BAUX} is not to be used, it should be grounded and ABE should be cleared to 0.

WAKE UP/KICKSTART

The DS1585/DS1587/DS1587LPM incorporates a wake up feature which can power the system on at a pre-determined date through activation of the PWR output pin. In addition, the kickstart feature can allow the system to be powered up in response to a low going transition on the KS pin, without operating voltage applied to the V_{CC} pin. As a result, system power may be applied upon such events as a key closure, or modem ring detect signal. In order to use either the wake up or the kickstart features, the DS1585/DS1587 must have an auxiliary battery connected to the VBAUX pin and the oscillator must be running and the countdown chain must not be in reset (Register A DV2, DV1, DV0 = 01X). If DV2, DV1, and DV0 are not in this required state, the PWR pin will not be driven low in response to a kickstart or wakeup condition, while in battery-backed mode.

The wake up feature is controlled through the Wake up Interrupt Enable bit in extended control register B (WIE, bank 1, 04BH). Setting WIE to 1 enables the wake up feature, clearing WIE to 0 disables it. Similarly, the kickstart feature is controlled through the Kickstart Interrupt

Enable bit in extended control register B (KSE, bank 1, 04BH).

A wake up sequence will occur as follows: When wake up is enabled via WIE = 1 while the system is powered down (no V_{CC} voltage), the clock/calendar will monitor the current date for a match condition with the date alarm register (bank 1, register 049H). In conjunction with the date alarm register, the hours, minutes, and seconds alarm bytes in the clock/calendar register map (bank 0, registers 05H, 03H, and 01H) are also monitored. As a result, a wake up will occur at the date and time specified by the date, hours, minutes, and seconds alarm register values. This additional alarm will occur regardless of the programming of the AIE bit (bank 0, register B, 0BH). When the match condition occurs, the PWR pin will automatically be driven low. This output can be used to turn on the main system power supply voltage provides V_{CC} DS1585/DS1587/DS1587LPM as well as the other maior components in the system. Also at this time, the Wake Up flag (WF, bank 1, register 04AH) will be set, indicating that a wake up condition has occurred.

A kickstart sequence will occur when kickstarting is enabled via KSE = 1. While the system is powered down, the $\overline{\text{KS}}$ input pin will be monitored for a low going transition of minimum pulse width t_{KSPW} . When such a transition is detected, the $\overline{\text{PWR}}$ line will be pulled low, as it is for a wake up condition. Also at this time, the Kickstart Flag (KF, bank 1, register 04AH) will be set, indicating that a kickstart condition has occurred.

The timing associated with both the wake up and kickstarting sequences is illustrated in the Wake Up / Kickstart Timing Diagram in the Electrical Specifications section of this data sheet. The timing associated with these functions is divided into 5 intervals, labeled 1-5 on the diagram.

The occurrence of either a kickstart or wake up condition will cause the \overline{PWR} pin to be driven low, as described above. During interval 1, if the supply voltage on the DS1585/DS1587/DS1587LPM V_{CC} pin rises above the V_{BAT} level before the power on timeout period (tpOTO) expires, then \overline{PWR} pin will remain at the active low level. If V_{CC} does not rise above V_{BAT} voltage in this time, then the \overline{PWR} output pin will be turned off and will return to its high impedance level. In this event, the \overline{IRQ} pin will also remain tri-stated. The interrupt flag bit (ei-

041994 15/29

ther WF or KF) associated with the attempted power on sequence will remain set until cleared by software during a subsequent system power on.

If V_{CC} is applied within the timeout period, then the system power on sequence will continue as shown in intervals 2-5 in the timing diagram. During interval 2, \overline{PWR} will remain active and \overline{IRQ} will be driven to its active low level, indicating that either WF or KF was set in initiating the power on. In the diagram \overline{KS} is assumed to be pulled up to the V_{BAUX} supply. Also at this time, the PAB bit will be automatically cleared to 0 in response to a successful power on. The \overline{PWR} line will remain active as long as the PAB remains cleared to 0.

At the beginning of interval 3, the system processor has begun code execution and clears the interrupt condition of WF and/or KF by writing zeroes to both of these control bits. As long as no other interrupt within the DS1585/DS1587/DS1587LPM is pending, the IRQ line will be taken inactive once these bits are reset. Execution of the application software may proceed. During this time, both the wake up and kickstart functions may be used to generate status and interrupts. WF will be set in response to a date, hours, and minutes match condition. KF will be set in response to a low going transition on KS. If the associated interrupt enable bit is set (WIE and/or KSE) then the IRQ line will driven active low in response to enabled event. In addition, the other possible interrupt sources within the DS1585/DS1587/DS1587LPM may cause IRQ to be driven low. While system power is applied, the on chip logic will always attempt to drive the PWR pin active in response to the enabled kickstart or wake up condition. This is true even if PWR was previously inactive as the result of power being applied by some means other than wake up or kickstart.

The system may be powered down under software control by setting the PAB bit to a logic 1. This causes the open-drain \overline{PWR} pin to be placed in a high impedance state, as shown at the beginning of interval 4 in the timing diagram. As V_{CC} voltage decays, the \overline{IRQ} output pin will be placed in a high impedance state when V_{CC} goes below V_{PF} . If the system is to be again powered on in response to a wake up or kickstart, then the both the WF

and KF flags should be cleared and WIE and/or KSE should be enabled prior to setting the PAB bit.

During interval 5, the system is fully powered down. Battery backup of the clock calendar and nonvolatile RAM is in effect, \overline{PWR} and \overline{IRQ} are tri-stated, and monitoring of wake up and kickstart takes place.

RAM CLEAR

The DS1585/DS1587/DS1587LPM provides a RAM clear function for the 114 bytes of user RAM. When enabled, this function can be performed regardless of the condition of the V_{CC} pin.

The RAM clear function is enabled or disabled via the RAM Clear Enable bit (RCE; bank 1, register 04BH). When this bit is set to a logic 1, the 114 bytes of user RAM will be cleared (all bits set to 1) when an active low transition is sensed on the RCLR pin. This action will have no effect on either the clock/calendar settings or upon the contents of the 8K x 8 Extended RAM. The RAM clear Flag (RF, bank 1, register 04BH) will be set when the RAM clear operation has been completed. If V_{CC} is present at the time of the RAM clear and RIE=1, the IRQ pin will also be driven low upon completion. The interrupt condition can be cleared by writing a zero to the RF bit. The IRQ pin will then return to its inactive high level provided there are no other pending interrupts. Once the RCLR pin is activated, all read/write accesses are locked out for a minimum recover time, specified as t_{REC} in the Electrical Characteristics section.

When RCE is cleared to zero, the RAM clear function is disabled. The state of the \overline{RCLR} pin will have no effect on the contents of the user RAM, and transitions on the \overline{RCLR} pin have no effect on RF.

EXTENDED REGISTERS

Two extended control registers are provided supply controls and status information for the extended features offered by the DS1585/DS1587/DS1587LPM. These are designated as extended control registers A and B and are located in register bank 1, locations 04AH and 04BH, respectively. The functions of the bits within these registers are described as follows:

EXTENDED CONTROL REGISTER 4A

 MSB
 LSB

 BIT 7
 BIT 6
 BIT 5
 BIT 4
 BIT 3
 BIT 2
 BIT 1
 BIT 0

 VRT2
 INCR
 *
 *
 PAB
 RF
 WF
 KF

VRT2 - This status bit gives the condition of the auxiliary battery. It is set to a logic 1 condition when the external lithium battery is connected to the V_{BAUX}. If this bit is read as a logic 0, the external battery should be replaced.

INCR - Increment in Progress status bit. This bit is set to a 1 when an increment is in progress to the time/date registers and the alarm checks are being made. INCR will be set to a 1 at 122 μs before the update cycle starts and will be cleared to 0 at the end of each update cycle.

PAB - Power Active Bar control bit. When this bit is 0, the PWR pin is in the active low state. This bit can be written to a logic 1 or 0 by the user. If either WF AND WIE = 1 OR KF AND KSE = 1, the PAB bit will be cleared to 0.

RF - Ram Clear Flag. This bit will be set to a logic 1 when a high to low transition occurs on the RCLR input pin if RCE=1. The RF bit is cleared by writing it to a logic 0. This bit can also be written to a logic 1 to force an interrupt condition.

WF - Wake up Alarm Flag - This bit is set to 1 when a wake up alarm condition occurs or when the user writes it to a 1. WF is cleared by writing it to a 0.

KF - Kickstart Flag - This bit is set to a 1 when a kickstart condition occurs or when the user writes it to a 1. This bit is cleared by writing it to a logic 0.

EXTENDED CONTROL REGISTER 4B

 MSB
 LSB

 BIT 7
 BIT 6
 BIT 5
 BIT 4
 BIT 3
 BIT 2
 BIT 1
 BIT 0

 ABE
 E32K
 *
 RCE
 *
 RIE
 WIE
 KSE

150

ABE - Auxiliary Battery Enable. This bit when written to a logic 1 will enable the V_{BAUX} pin for extended functions. On the DS1587/DS1587LPM with an embedded lithium cell, this bit is shipped from the factory set to a logic 0.

E32K - Enable 32.768 KHz output. This bit when written to a logic 1 will enable the 32.768 KHz oscillator frequency to be output on the SQW pin provided SQWE=1.

RCE - RAM Clear Enable bit. When set to a 1, this bit enables a low level on \overline{RCLR} to clear all 114 bytes of user RAM. When RCE = 0, \overline{RCLR} and the RAM clear function are disabled.

RIE - Ram Clear Interrupt Enable. When RIE is set to a 1, the \overline{IRQ} pin will be driven low when a RAM clear function is completed.

WIE - Wake Up Alarm Interrupt Enable. When V_{CC} voltage is absent and WIE is set to a 1, the \overline{PWR} pin will be driven active low when a wake up condition occurs, causing the WF bit to be set to 1. When V_{CC} is then applied, the \overline{IRQ} pin will also be driven low. If WIE is set while system power is applied, both \overline{IRQ} and \overline{PWR} will be driven low in response to WF being set to 1. When WIE is cleared to a 0, the WF bit will have no effect on the \overline{PWR} or \overline{IRQ} pins.

KSE - Kickstart Interrupt Enable. When V_{CC} voltage is absent and KSE is set to a 1, the \overline{PWR} pin will be driven active low when a kickstart condition occurs (\overline{KS} pulsed low), causing the KF bit to be set to 1. When V_{CC} is then applied, the \overline{IRQ} pin will also be driven low. If KSE is set to 1 while system power is applied, both \overline{IRQ} and \overline{PWR} will be driven low in response to KF being set to 1. When KSE is cleared to a 0, the KF bit will have no effect on the \overline{PWR} or \overline{IRQ} pins.

* Reserved bits. These bits are reserved for future use by Dallas Semiconductor. They can be read and written, but have no effect on operation.

041994 17/29

2614130 0009151 OS5 **=**

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground Operating Temperature Storage Temperature DS1587/DS1587LPM Storage Temperature DS1585 Soldering Temperature -0.3V to 7.0V 0°C to 70°C -40°C to +70°C -55°C to +125°C 260°C for 10 seconds

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

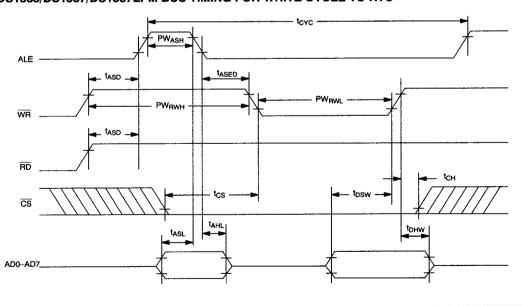
RECOMMENDED DC OPERATING CONDITIONS

(0°C to 70°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Voltage	V _{CC}	4.5	5.0	5.5	٧	1
Input Logic 1	V _{IH}	2.2		V _{CC} +0.3	V	1
Input Logic 0	V _{IL}	-0.3		+0.8	V	1
Battery Voltage	V _{BAT}	2.5		3.7	V	9
Auxiliary Battery Voltage	V _{BAUX}	2.5		3.7	V	

DC ELECTRICAL CHARACTERISTICS

(0°C to 70°C)

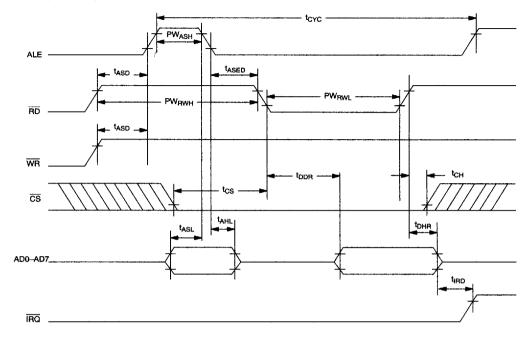

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply Current	I _{CC1}		35	50	mA	2
Standby Current CS = V _{CC} -0.3V	I _{CC2}		1	5.0	mA	6
Input Leakage	Ι _Ι Ε	-1.0		+1.0	μΑ	3
I/O Leakage	ΓO	-1.0		+1.0	μΑ	3, 4
Output @ 2.4V	l _{ОН}	-1.0			mA	1, 4
Output @ 0.4V	l _{OL}			2.0	mA	1
Power Fail Trip Point	V _{PF}		4.25		V	1
PWR Output @ 0.4V	I _{OLPWR}			10.0	mA	1

RTC AC TIMING CHARACTERISTICS

 $(0^{\circ}\text{C to } 70^{\circ}\text{C}; V_{\text{CC}} = 4.5\text{V to } 5.5\text{V})$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Cycle Time	tcyc	305		DC	ns	
Pulse Width, RD/WR Low	PW _{OWL}	125			ns	
Pulse Width, RD/WR High	PWRWH	150			ns	
Input Rise and Fall Time	t _R , t _F			30	ns	
Chip Select Setup Time Before WR, or RD	tcs	20			ns	
Chip Select Hold Time	t _{CH}	0			ns	
Read Data Hold Time	t _{DHR}	10		80	ns	
Write Data Hold Time	t _{DHW}	0			ns	
Muxed Address Valid Time to ALE Fall	t _{ASL}	30			ns	
Muxed Address Hold Time from ALE fall	t _{AHL}	10			ns	
RD or WR High Setup to ALE Rise	tasd	25			ns	
Pulse Width ALE High	PW _{ASH}	60			ns	
ALE Low Setup to RD or WR Fall	t _{ASED}	40			ns	
Output Data Delay Time from RD	t _{DDR}	20		120	ns	5
Data Setup Time	t _{DSW}	100			ns	
IRQ Release from RD	t _{IRD}			2	μs	

DS1585/DS1587/DS1587LPM BUS TIMING FOR WRITE CYCLE TO RTC



041994 19/29

444

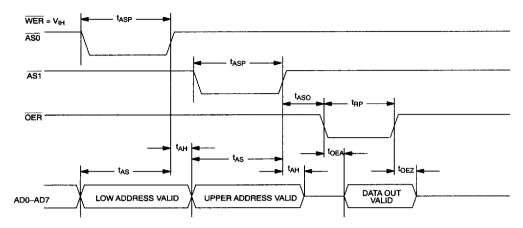
2614130 0009153 928 **=**

DS1585/DS1587/DS1587LPM BUS TIMING FOR READ CYCLE TO RTC

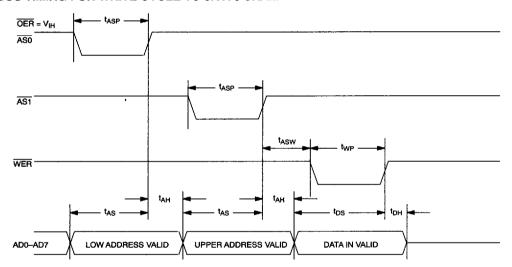
NOTE:

input Levels=0 volts and 3.0 volts.

Output Levels = 0.4 volts and 2.4 volts.

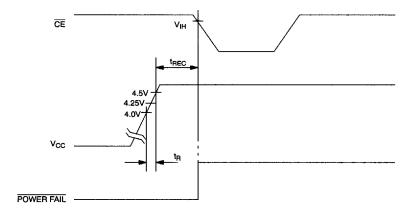

8K X 8 AC TIMING CHARACTERISTICS

 $(0^{\circ}\text{C to }70^{\circ}\text{C}; V_{\text{CC}} = 5\text{V} \pm 10\%)$

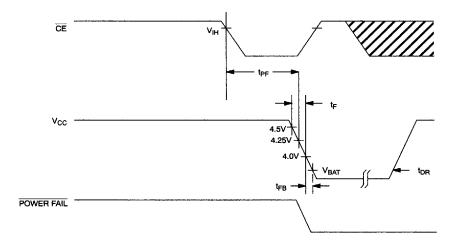

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Address Setup Time	t _{AS}	50			ns	
Address Hold Time	t _{AH}	0			ns	
Data Setup Time	t _{DS}	75			ns	
Data Hold Time	t _{DH}	0			ns	
Output Enable Access Time	tOEA			200	ns	7
Write Pulse Width	t _{WP}	125			ns	
OER to Output in High Z	t _{OEZ}			50	ns	
OER Pulse Width	t _{RP}	200			ns	
AS0, AS1 Pulse Width	t _{ASP}	75			ns	
ASO, AS1 High to OER Low	t _{ASO}	20			ns	
ASO, AS1 High to WER Low	t _{ASW}	20			ns	

041994 20/29

BUS TIMING FOR READ CYCLE TO 8K X 8 NV SRAM



BUS TIMING FOR WRITE CYCLE TO 8K X 8 SRAM



041994 21/29

POWER-UP CONDITION

POWER-DOWN CONDITION

041994 22/29

POWER-UP POWER-DOWN TIMING

 $(t_A = 25^{\circ}C)$

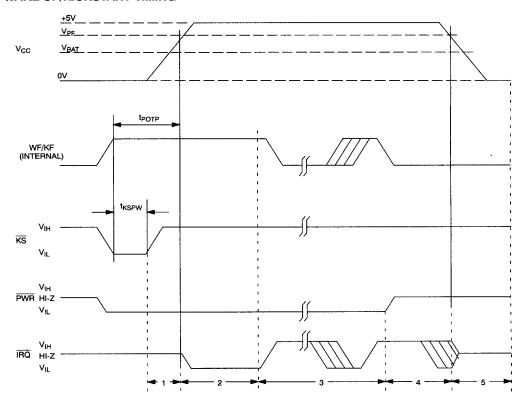
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
CE High to Power Fail	t _{PF}			0	ns	
Recovery at Power Up	t _{REC}		150		ms	
V _{CC} Slew Rate Power Down	t _F 4.0 ≤V _{CC} ≤ 4.5V	300			μS	
V _{CC} Slew Rate Power Down	t _{≓B} 3.0 <u>≤</u> V _{CC} ≤ 4.0V	10			με	
V _{CC} Slew Rate Power Up	t _R 4.5V≥V _{CC} ≥4.0V	0			μs	
Expected Data Retention	t _{DR}	10			years	8

WARNING:

Under no circumstances are negative undershoots, of any amplitude, allowed when device is in battery back-up mode.

CAPACITANCE

 $(t_A = 25^{\circ}C)$


PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C _{IN}			12	рF	
Output Capacitance	C _{OUT}			12	рF	

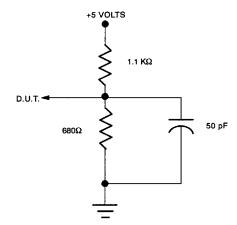
WAKE UP/KICKSTART TIMING

 $(t_A = 25^{\circ}C)$

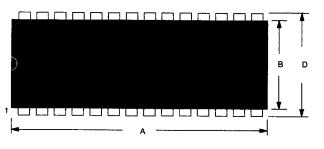
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Kickstart Input Pulse Width	tkspw	2			μs	
Wake up/Kickstart Power On Timeout	t _{POTO}	2			seconds	10

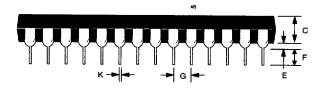
WAKE UP/KICKSTART TIMING

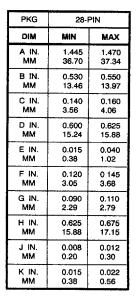
NOTE:

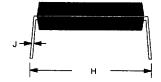

Time intervals shown above are referenced in Wake up/Kickstart section.

041994 24/29

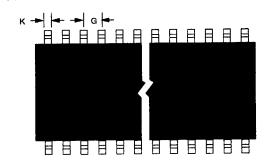

NOTES:

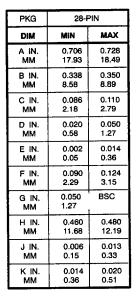

- 1. All voltages are referenced to ground.
- 2. All outputs are open.
- 3. Applies to the AD0-AD7 pins, and the SQW pin when each is in the high impedance state.
- 4. The IRQ pin is open drain.
- 5. Measured with a load as shown in Figure 5.
- 6. All other inputs at CMOS levels.
- 7. Measured with a load as shown in Figure 5.
- The real-time clock will keep time to an accuracy of ±1 minute per month during data retention time for the period of t_{DR}.
- 9. Applies to DS1585 only.
- Wake up/Kickstart timeout generated only when the oscillator is enabled and the countdown chain is not reset.

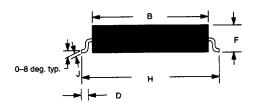

OUTPUT LOAD Figure 5



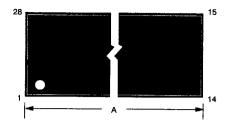
DS1585 28-PIN DIP

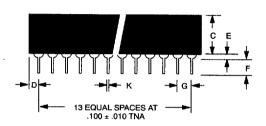


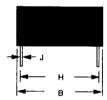




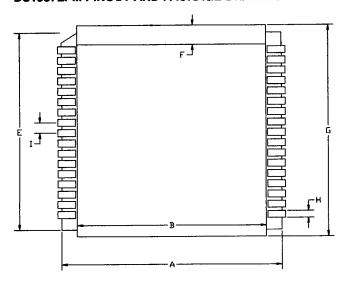
DS1585S 28-PIN SOIC



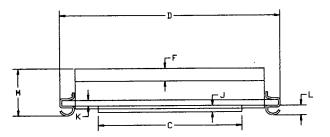




DS1587 28 PIN 720 MIL MODULE



PKG	28-PIN		
DIM	MIN	MAX	
A IN.	1.520	1.540	
MM	38.61	39.12	
B IN.	0.695	0.720	
MM	17.65	18.29	
C IN.	0.350	0.375	
MM	8.89	9.52	
D IN.	0.100	0.130	
MM	2.54	3.30	
E IN.	0.015	0.030	
MM	0.38	0.76	
F IN.	0.110	0.140	
MM	2.79	3.56	
G IN.	0.090	0.110	
MM	2.29	2.79	
H IN.	0.590	0.630	
MM	14.99	16.00	
J IN.	0.008 0.20	0.012 0.30	
K IN.	0.015 0.38	0.021 0.53	



NOTE: PINS 2, 3, 19 AND 23 ARE MISSING BY DESIGN.

DS1587LPM PINOUT AND PACKAGE DRAWING

PKG	INCHES			
DIM	MIN	NDM	MAX	
. А	.960	.970	.970	
В	.845	.850	.855	
С	.550	.650	.750	
D	. 9 80	.986	.995	
E	.920	.930	.930	
F	.065	.070	.075	
G	.955	.960	.965	
Н	.015	.020	.025	
I	.048	.050	.052	
J	.030	.035	.040	
К	.020	.025	.030	
L	.050	.055	.060	
М	.235	.240	.245	

