OVERVIEW

Features and Applications

Standard

e Implements proposed baseline JPEG standard for
image compression

High Performance

® Real-time compression and decompression of NTSC,
square PAL, and CCIR 601 video frames

¢ Up to 2 MBytes/second sustained compressed data
rate (CL550-35)

* Highly pipelined DCT/IDCT processor running at up
to 35 MHz (CL550-35)

Flexibility

e Support for 8-bit grayscale, RGB, CMYK or 4:4:4:4,
and YUV color space input/output

e User-accessible Quantizer and Huffman tables

e Frame-by-frame adjustment of compression ratio

Description

The C-Cube CL550° is a single-chip image compression/
decompression processor. It implements the proposed
baseline CCITT/ISO Joint Photographic Experts Group
(JPEG) International Standard algorithm for image com-
pression. The C-Cube CL550 processor is designed for
applications that manipulate high-quality digital pictures
and motion sequences.

The C-Cube CL550 processor can encode and decode
grayscale and color images at video rates. ‘The image
compression ratio is controlled by the on-chip quantiza-
tion tables. Images can be compressed from 8:1 to 100:1,
depending on the quality, storage, and bandwidth re-
quirements of each application.

The C-Cube CL550 has an on-chip video and host bus
interface. The video interface supports 8-bit grayscale,
RGB, CMYK or 4:4:4:4, and YUV (4:2:2 and 4:4:4) input
and output. The Host Bus Interface provides a direct
interface to the system bus for ease of system integration.

High Integration

e On-chip DCT/IDCT processor

¢ On-chip Quantizer and Huffman tables

e On-chip video interface

e On-chip 16-bit or 32-bit Host Bus Interface

e Standard 144-pin PGA package for C-Cube CL550-35
and CL550-30

e Standard 144-pin MQUAD package for C-Cube
CL550-30 and CL550-10

¢ CMOS: dissipates 3.4 watts maximum at 35 MHz

Applications

* Multimedia

* Video editing

e Color publishing and graphic arts

* Image processing, storage, and retrieval
¢ Color printers and scanners

* High-speed image transmission for LAN, modem, and
color facsimile

* Digital cameras

JPEG
Compression
Decompression ;
| Processor / 1 32
Pixel Bus | | | Host Bus | Data/
Interface | Interface || Addr
Dcr
1 |Coefficient]
Registers
G tl<+.13 Control |
n]
| Registers | 1
17
Control t
Quantizer| | Huffman Registers <
addr 16 Line Buffer Tables Tables
1Controller

Figure 1-1. C-Cube CL550 Functional Block Diagram

C-CUBE CLS50® JPEG IMAGE COMPRESSION PROCESSOR 1

C-CUBE MICROSYSTEMS

“This Page Intentionally Left Blank™

2 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

¢ CUBF MICROSYSTEMS

1.0 INTRODUCTION

The C-Cube CL550° is a high-performance image com-
pression/decompression processor. It implements the
proposed baseline CCITT/ISO JPEG International Standard.

Section 2 of this document describes the baseline JPEG
International Standard. The JPEG committee published a
draft proposal in March of 1990. The draft is expected to
be signed into an International Standard by the end of
1991.

Section 3 provides a functional overview of the C-Cube
CL550. The C-Cube CL550 can be run in compression or
decompression mode, as shown in Figure 1-2. In com-
pression mode, pixel data is taken from the video bus,
compressed, and made available on the host bus. In
decompression mode, compressed data is acquired from
the Host Bus Interface and decoded. Pixel data is made
available on the pixel bus.

Compression
CL550

Image Data ————] Pixel Bus Host Bus » Compressed
mee Interface Interface Image Data

Decompression
CL550

Decompressed g Pixel Bus Host Bus | g Compressed
Image Data Interface Interface

Figure 1-2. C-Cube CL550 Processor Data Flow

Section 4, “Hardware Designer's Guide," provides
C-Cube CL550 hardware specifications as well as guide-
lines on how to integrate the compression processor into:
a system. The C-Cube CL550 processor integrates most of
the interface functions, making it a cost-effective, easy-to-
implement image compression solution.

Section 5, “Programmer’s Guide," reviews the C-Cube
CL550 programming model, the JPEG data structure and
signaling parameters.

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 3

C-CUBE MICROSYSTEMS

- This Page Intentionally Left Blank™

£y

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

O CUBE MICROSYSTEMS

2.0 JPEG INTERNATIONAL STANDARD

2.1 Background of the JPEG Algorithm

2.2 Operation of the JPEG Algorithm

The obvious advantages of digital image compression led
to the formation of an international standards group: the
Joint Photographic Experts Group (JPEG). JPEG is a joint
ISO/CCITT technical committee (ISO/IEC JTC1/SC2/WG10,
Photographic Image Coding) whose goal has been to
develop a general-purpose international standard for the
compression of continuous-tone (grayscale or true color)
digital images. The overall standard sets requirements and
implementation guidelines for the image coding and
decoding processes and for the coded representation of
the compressed image data.

The standard defined by JPEG has usefulness in a broad
range of applications. Because each application has
different compression requirements, several processes
for compression and decompression are specified within
the JPEG standard. The processes fall into three general
categories: the Baseline Sequential Process, the Extended
DCT-Based Processes, and the Lossless Process. All JPEG
coders and decoders must support the Baseline Sequen-
tial Process. All other processes are optional extensions
that can be useful in specific applications. For detailed
information on each of the processes, refer to the ISO
Committee Draft document, ISO/IEC CD 10918-1.

The Baseline Sequential Process is based on the discrete
cosine transform (DCT) followed by variable-word-length
coding (Huffman coding). This process provides substan-
tial compression (up to 100:1) while maintaining a high
degree of visual fidelity in the reconstructed image. DCT-
based processes, however, are lossy processes. The re-
constructed images are not byte-for-byte equivalent to the
source images. Further, the level of loss in the image
varies with the compression ratio. Typically, the Baseline
Sequential Process can compress image data to about 1
bit/pixel or less with very good visual quality in the
reconstructed image. For example, a 24-bit RGB color
image can be compressed to 1 bit/pixel (less than 5% of
the original size), and the reconstructed image will be
nearly indistinguishable from the original. The C-Cube
CL550 is a VLSI implementation of the Baseline Sequential
Process.

The operation of the Baseline JPEG algorithm can be
divided into three basic stages:

1. The removal of the data redundancy by means of the
discrete cosine transform (DCT).

2. The quantization of the DCT coefficients using
weighting functions optimized for the human visual
system.

3. The encoding of the data to minimize the entropy of
the quantized DCT coefficients. The entropy encod-
ing is done with a Huffman variable-word-length
encoder, as shown in Figure 2-1.

RGB 0 YOV Forvard Qunizzton Facoding
A N >
Y0V 10 RGB Reverse De-Quanization Decuing
N Twdmin €] 0T N N

Figure 2-1. Basic Image Compression Scheme for Coder and
Decoder

Although color conversion is a part of the redundancy
removal process, it is not part of the JPEG algorithm. It is
the goal of JPEG to be independent of the color space.
JPEG handles colors as separate components. Therefore,
it can be used to compress data from different color
spaces, such as RGB, YUV, and CMYK.

However, the best compression results are achieved if the
color components are independent (noncorrelated), such
as in YUV, where most of the information is concentrated
in the luminance and less in the chrominance. RGB color
components can be converted via a linear transformation
into YUV components, as shown in Table 2-1.

Y 0299 0587 0114 R
U = -0.169 -0.3316 0.500 G
v 0.500 -0.4186 -0.0813 B

Table 2-1. Converting RGB Components to YUV Components

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 5

C-CUBE MICROSYSTEMS

Another advantage of using the YUV color space comes
from reducing the spatial resolution of the U and V
chrominance components. Because chrominance does
not need to be specified as frequently as luminance,
every other U element and every other V element can be
discarded. As a consequence, a data reduction of 3 to 2
is obtained by transforming RGB into YUV 4:2:2. The
conversion in color space is a first step toward compress-
ing the image.

2.2.1 Discrete Cosine Transform

For each separate color component, the image is broken
into 8x8 blocks that cover the entire image. These blocks
form the input to the DCT.

In the 8x8 blocks, typically the pixel values vary slowly.
Therefore, the energy is of low-spatial frequency. A
transform that can be used to concentrate the energy into
a few coefficients is the two-dimensional 8x8 DCT. This
transform, studied extensively for image compression, is
extremely efficient for highly correlated data.

Conceptually, a one-dimensional DCT can be thought of
as taking the Fourier Transform and retaining only the real
(the cosine) part. The two-dimensional DCT can be
obtained by performing a one-dimensional DCT on the
columns and then a one-dimensional DCT on the rows.
The transformed output from the two-dimensional DCT is
ordered such that the mean value, the DC coefficient, is
in the upper left corner of the 8x8 coefficient block and
the higher frequency coefficients progress by distance
from the DC coefficient. Higher vertical frequencies are
represented by higher row numbers, and higher horizon-
tal frequencies are represented by higher column
numbers.

2.2.2 Quantization

The next step is the quantization of the frequency
coefficients. The coefficients are quantized to reduce their
magnitude and increase the number of zero-value coef-
ficients. A uniform quantizer was selected for the JPEG
baseline method. The step size is varied according to the
coefficient location and tuned for each color component.
This is shown in Figures 2-2 and 2-3. Figure 2-3 illustrates
two functional matrices that have been optimized for
CCIR 601 imagery.

The coding model rearranges the quantized frequency
coefficients into a zigzag pattern, with the lowest frequen-
cies first and the highest frequencies last. The zigzag
pattern is used to increase the run-length of zero coeffi-

cients found in the block. The assumption is that the lower
frequencies tend to have larger coefficients and the higher
frequencies are, by the nature of most pictures, predomi-
nantly zero. As illustrated in Figure 2-4, the first coefficient
(0,0) is called the DC coefficient and the remaining
coefficients are AC coefficients. The AC coefficients are
traversed by the zigzag pattern from the (0,1) location to
the (7,7) location.

Quantized Output

,_J DCT Coefficient

s

Figure 2-2. Quantizer Stepping (Uniform Quantization)

8x8 DCT Coefficient Block

Y Component Matrix

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 58 68 109 103 77
24 35 55 64 81 104 113 92
499 64 78 8 103 121 120 101
72 92 95 98 112 100 103 99
Cb Cr Component Matrix
17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
2426 56 99 99 99 99 99
47 66 9 9 9 9 9 9
99 99 9 9 9 9 9 99
299 99 99 9 9 9 99 9P
299 99 99 9 99 99 99 99
99 9 9 9 9 9 99 99

Figure 2-3. The Psychovisual Weighting Functions for the
Luminance and Chrominance Components

6 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

DC Value . AC Coefﬁcxer71t Start
0
v +AC Coefficient End

Figure 2-4. The Zigzag Pattern for Reordering the 8x8 DCT
Coefficients

The DC coefficients of subsequent blocks often vary only
slightly. Therefore, differences between successive DC
coefficients are small. The coding of the DC coefficient
exploits this property through Differential Pulse Code
Modulation (DPCM). This technique codes the difference
(Delta) between the quantized DC coefficient of the
current block and the DC coefficient of the previous
block. The formula for the encoding of the DC code is:

Delta, = DC(0,0), - DC(0,0), ,
The inverse calculation takes place at the decoder.

2.2.3 Zero Run-Length Coding

The quantized AC coefficients usually contain runs of
consecutive zeros. Therefore, a coding advantage can be
obtained by using a run-length technique, where the
upper four bits of the code symbol indicate the number
of consecutive zeros before the next coefficient and the
lower four bits indicate the number of significant bits in
the next coefficient.

Following the code symbol are the significant bits of the
coefficient, the length of which can be determined by the
lower four bits of the code. The inverse run-length coder
translates the input coded stream into an output array of
AC coefficients. It takes the current code and appends to
the output array the number of zeros corresponding to the
four bits used for the run-length code. The coefficient
placed in the output array has the number of bits
determined by the lower four bits of the run-length code
and a value determined by the number of trailing bits.

C-CUBE MICROSYSTEMS

2.2.4 Entropy Encoding

The block codes from the DPCM and run-length models
can be further compressed using entropy encoding. For
the baseline JPEG method, the Huffman coder is used to
reduce entropy. One reason for using the Huffman coder
is that it is easy to implement by means of a look-up table
in hardware. To compress data symbols, the Huffman
coder creates shorter codes for frequently occurring
symbols and longer codes for occasionally occurring
symbols. Many applications may use predefined Huffman
tables. Therefore, the baseline encoder can operate as a
one-pass or two-pass system. In the one-pass system,
predetermined Huffman tables are used, whereas in the
two-pass system, Huffman tables are created that are
specific to the image to be encoded.

The first step in creating the Huffman codes is to create
a table assigning a frequency count to each symbol.
Symbols with a higher probability are assigned shorter
codes than the less frequently occurring symbols.

2.2.5 Summary of Baseline JPEG

The baseline system provides efficient lossy image com-
pression. It supports four color components simulta-
neously, with a maximum number of eight input bits for
each color pixel component.

The basic data entity is a block of 8x8 pixels. However,
this block can represent a large sub-sampled image area
(for example, sub-sampled by decimated chrominance
signals). The blocks of the different color components are
sent interleaved, thereby allowing the decoder to create
the decompressed image and translate back to the origi-
nal color space on the fly.

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 7

C-CUBE MICROSYSTEMS

" This Page Intentionally Left Blank ™

8 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

3.0 FUNCTIONAL OVERVIEW

3.1 Overview

This section describes the functional characteristics of
each unit within the C-Cube CL550® processor. Figure 3-
1 shows the processor's major functional blocks. The
CL550 is a highly pipelined machine: there are over 320
processing stages in the data path. Each stage in the JPEG
Baseline Sequential Process is implemented within this
pipeline.

In compression operations, pixel data is written to the
Pixel Bus Interface (PBI). The PBI handles raster-to-block
conversion, pixel formatting, optional YUV-to-RGB color
space conversion, and window sizing. Pixel data blocks
are stored in the Block Storage Unit where they are
sequenced onto the JPEG compression pipeline one
component biock at a time. Each component block is then
processed by the DCT unit. The resulting DCT coefficients
are quantized by the quantizer unit according to user-
programmable quantization matrices. Up to four 64-word
quantization matrices can be stored on-chip. Program-
mable sequence registers are used to select the appropriate
matrix for each component block. The Quantized terms in
each block are serialized by the Zig-Zag Scan Unit and the
AC terms run-length coded by the Zero Packer/Unpacker
Unit before being loaded into the FIFO. The FIFO serves
as an intermediate buffer between the Zero Packer/
Unpacker Unit and the Huffman Coder/Decoder (CODEC)
Unit. The Huffman CODEC draws the packed symbols
from the FIFO, performs DPCM calculations on the DC
terms, and performs Huffman coding of both DC and AC

C-CUBE MICROSYSTEMS

terms. The Huffman codes are finally sent to the Host Bus
Interface (HBD as JPEG-compressed data. The CL550
allows the user to specify a particular Huffman table by
providing on-chip table RAM that is loaded at initialization
time. The host processor then reads out compressed data
from the HBI in either 16-bit or 32-bit format.

Decompression operations follow the opposite procedure.
Compressed data is written to the Huffman CODEC. Data
is then Huffman decoded. The packed symbols are put
back into the FIFO. The Zero Packer/Unpacker Unit
accesses the FIFO symbols, generates the AC values, and
passes them to the Zig-Zag Scan Unit for reordering into
8x8 block format. The DC terms are treated separately.
Dequantization and Inverse DCT (IDCT) are then per-
formed on the re-assembled blocks before they are sent
back to the Block Storage Unit. The PBI takes the
reassembled pixel blocks and outputs them to the pixel
data bus.

With this architecture, it is possible to construct very-high-
performance compression systems for both video and still-
image applications. The CL550 can be reinitialized on a
frame-by-frame basis, allowing the programmer to change
compression ratios at the end of each frame or interleave
between compress frames and decompress frames for
half-duplex image communication applications. The fol-
lowing subsections describe some typical system con-
figurations followed by a more detailed description of
each functional block.

Zero

:IDD%TI{ Quantizer | Pack/ FIFO Huffman

Unpack CODEC
Pixel Host
Bus Bus

Interface Interface
| | Block Q Huffman
Storage Tables Tables
— | Utility Bus |

Figure 3-1. C-Cube CL550 Block Diagram

C-CUBE CL550” JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

3.2 Application Examples

There are two basic system configurations for the CL550
processor. In high-speed systems, used to compress
video or still frames, the pixel bus is connected directly to
the video buffer, as shown in Figure 3-2. Digitized pixel
data is stored in an intermediate buffer. This buffer can be
either a VRAM frame buffer or a bi-directional FIFO
buffer. The CL550 draws data asynchronously from this
buffer at rates of up to 17.5 million pixels/second (CL550-
35). The rate at which the CL550 inputs pixels is not
constant. For complex image blocks, the CL550 will stop
activity on the pixel bus in order to process the data. This
mechanism for stopping the pixel bus is implemented
using external circuitry (see Section 4.4.2.1). Once drawn
from the pixel buffer, the data must be converted from
raster line order into 8x8 block order for input to the
CL550. The CL550 provides a very simple mechanism for
this conversion using an external 8-line SRAM. The CL550
provides all of the address and control signals for the
SRAM and handles all transfers to and from the SRAM.
During compression, data from the pixel buffer is written
to the SRAM strip buffer under the control of the CL550.
During decompression the CL550 reads the data in block
order back into the SRAM. The strip buffer addressing is
such that only 8-lines of SRAM are required. (See Section
4.4.3.2 for more details on strip buffer addressing.)
Compressed data is delivered to the Host Bus Interface.
The HBI can operate in either a dedicated I/O fashion or
under the control of a DMA controller. The maximum
sustainable compressed data rate is approximately 2.0
MBytes/second at full clock rate (35 MHz).

CPU | 1 Strip
CL550 Butfer
| Pixel Video
Buffer [| o
Memory [
T
L,
pisk [7A
e

Figure 3-2. Typical Video Application Example

For more information concerning JPEG video system
design techniques, refer to the technical note entitied
“Designing JPEG Video Systems Using the C-Cube CL550.”

A low-cost compression coprocessor system is shown in
Figure 3-3. This system is useful for still-image compres-

sion applications, and it offers high compression/decom-
pression performance with a minimum of hardware. In
this configuration, a CL550 processor is used with both its
pixel data bus and host data bus connected to a single
system bus. The strip buffer is optional, as the host
software can handle the pixel reordering. In a typical
compression operation, the host writes pixel data to a
pixel data latch, where it can be read by the CL550. The
compressed data is read out of the HBI and taken by the
system. The CL550 is put into a stalled state between pixel
accesses and during host bus accesses.

|___| Strip
CL550 Buffer
16/32 ©pt) | 24

System Bus

Figure 3-3. Typical Still-Frame Application Example

3.3 Pixel Bus Interface (PBI)
3.3.1 Signal Groups

Figure 3-4 shows a block diagram of the CL550 Pixel Bus
Interface (PBD). Interface signals fall into the following
groups:

¢ Data PXDATI23:0]

e Block address PXADRI[15:0]

« Control PXRE#, PXWE#, PXIN#,
PXOUT#, STALL#

e Status VSYNC#, HSYNC#,
BLANK#

e Clocks PXCLK, PXPHSE, CLK3

The PXDATI{24:0] bus reads and writes pixels in the 8x8
block format required by the Baseline JPEG Sequential
Process. A variety of pixel data types are supported,
ranging from 8 bits/pixel to 32 bits/pixel. Transfers on this
bus always take place in groups of 16 or 24 bits.

The PXADR(15:0}, PXRE#, PXWE#, PXIN#, and PXOUT#
signals are used to support the CL550’s unique raster-to-
block conversion mechanism. Typical display systems
transfer pixel data one line at a time, whereas JPEG

10 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

CL550

PXDAT[23:0] |ett T >
PXADR[15:0] >
PXRE#
PXWE#
PXIN¢ [
PXOUT#
HSYNC#
VSYNC#
PXCLK fe——
PXPHSE
CLK3 fet—
STALL#
BLANK#

Line Buffer
SRAM

Figure 3-4. Pixel Bus Interface

requires input pixel data to be in 8x8 block order. The PBI
performs this conversion automatically, greatly reducing
the amount of system logic required to interface the CL550
to raster-oriented systems.

3.3.2 Window Management and Control

Several status signals, available on the PBI, are useful in
window management and control. These signals are
VSYNC#, HSYNC#, and BLANK#.

The VSYNC# and HSYNC# signals are bidirectional status
signals that are used to indicate the beginning of a frame
or field and the beginning of a new line, respectively. Note
that the VSYNC# and HSYNC# lines are merely asynchro-
nous reference signals, and they are not intended to be
synchronized directly to a raster display system.

Register Content/Function

HPeriod Number of pixels in a line

VPeriod Number of lines in an image

HDelay Horizontal delay (in pixels) to the first
active pixel

VDelay Vertical delay (in lines) to the first
active line

HActive Active window width (in blocks)

VActive Active window height (in blocks)

HSync Horizontal sync-pulse width (in
pixels)

VSync Vertical sync-pulse width (in lines)

Vertical Line Count| Active window vertical line count

Table 3-1. Video Field Control Registers

The BLANK# signal is asserted to indicate that no pixels
are being transferred to the external interface.

Window and frame parameters are programmed via a set
of control registers. These registers are listed in Table 3-1.
VPeriod and HPeriod are used to specify an image frame.
HDelay, VDelay, HActive, and VActive are used to specify
size and position of the active image area within the frame.
Figure 3-5 illustrates the function of the video field
registers.

HPeriod (P)
o
S
@
g
. HDelay (P)
~ HActive(B) |
(-9
¥)
1 e
: 3
>
(P) = Count in Pixels
(B) = Count in 8x8 Blo

Figure 3-5. Video Field Descriptions

3.3.3 Color Space Conversion and Chrominance
Sub-Sampling Mechanisms

The CL550 provides an internal RGB-to-YUV color space
conversion and sub-sampling mechanism. Although not a
part of the JPEG algorithm (JPEG is independent of color
space), this mechanism is particularly useful in computer
video and multimedia applications. For example, digitized
data from a frame grabber or video digitizer is often
presented in the 16-bit YUV4:2:2 format. This is the fomat
required by NTSC and PAL monitors. However, typical
computer graphics monitors require data to be presented
in 24-bit RGB format. The CL550 has the ability to translate
between these two color spaces by means of a matrix
multiplier and chrominance sub-sampler, thus minimizing
the need for external color space conversion logic and
reducing overall system complexity and cost.

Conversion between the RGB color space and the YUV
(also referred to as the Y, Cb, Cr) color space is accom-
plished using a matrix multiply operation. Nine registers
are provided in the CL550 processor to allow programma-
bility of the transform matrix (See Section 5).

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 11

In the RGB-to-YUV 4:2:2 pixel compression mode, for
example, the 24-bit RGB pixels are read into the PXDAT
bus. Once inside the CL550, they are transformed into 24-
bit YUV format (YUV 4:4:4) using the on-chip matrix
multiplier. Following this operation, the U and V compo-
nents are sub-sampled to obtain a 4:2:2 ratio between
luminance (Y) and chrominance (U and V). This is
illustrated in Figure 3-6.

RGB 4:4:4 YUV 4:4:4 YUV 4:2:2
RIRZR3R4 >> Y1Y2Y3Y4 >> Y1Y2Y3Y4

G1G2G3G4 > U1U2U3U4 >> UlV1U3V3
B1B2B3B4 >> V1V2V3V4

Figure 3-6. RGB-to-YUV 4:2:2 Conversion Operation

3.4 Block Storage Unit

The Block Storage Unit (BSU) provides on-chip storage
for up to four 8x8 component blocks. Because the JPEG
engine must operate on one 8x8 component block at a
time, the BSU serves as a buffer for separating the multi-
component input pixels into their individual component
blocks. They can then be processed in sequential fashion.
For example, in a CMYK compression operation, the PBI
is inputting 16-bit values in the following format:

PXDAT [7:0] cyc
MKM

cy YCcCyYycycCcy
PXDAT[15:8] M K KMKMEKMEK
Before the CL550 can begin to process this data, it must
assemble one 64-byte block each of C, M, Y, and K values.
When this is done, the DCT/IDCT unit operates on each

block in the following order.
C0...C63, MO...M63, Y0...Y63, KO...K63, CO...C63, MO...M63, ...
This feature of the CL550 is fundamental in allowing it to

process multiple component pixels in a continuous
fashion. In decompression, the process is reversed.

3.5 DCT/IDCT Unit

On compression, the DCT unit operates on data stored in
the BSU. Because the DCT is a two-dimensional process,
itis necessary to process the data in two passes: horizontal
and vertical. The second-pass DCT data are sent out to the

Quantizer Unit. In decompression, the process is re-
versed. The CL550 contains eight 16-bit registers for the
loading of the DCT coefficients used in either DCT or
IDCT operations. All multiply operations within this unit
are 16-bit signed integer multiplies with results rounded
to 16 bits.

3.6 Quantizer Unit and Q Table RAM

The Quantizer Unit, during compression operations,
accepts data from the DCT unit and multiplies it by 16-bit
quantization coefficients stored in one of four 64-word
on-chip quantization tables. The quantization table pro-
vides an individual quantizer value for each of the 64 DCT
terms. The quantization tables are loaded by the host
processor at the start of the compression or decompres-
sion operation. Four tables are provided to support each
of the four possible component blocks that are being
processed. All multiply operations in the quantizer are 16
x 16 bits. In the compression direction, the quantized
outputs are rounded and limited to 11 significant bits.

3.7 Zig-Zag Scan Unit

The next stage of the compression process requires the
quantized DCT data blocks to be serialized for processing
by the Zero Packer/Unpacker Unit. The Zig-Zag Scan Unit
performs the scanning function descibed in Figure 2-4.
For example, DCT data blocks come into the Zig-Zag Scan
Unit in left-to-right, top-to-bottom linear order:
(0,0),(0,1,(0,2),(0,3), ... (7,7). The Zig-Zag Scan Unit
buffers and reorders the data in the following order:
(0,0,(0,1),(1,0),(2,0),(1,1,(0,2),(0,3), ... ,(6,1),(7,6),(7, D).
This ordering of data provides the greatest probability of
long runs of zero terms, which makes possible effective
run-lengthcoding of the AC terms by the Zero Packer/
Unpacker Unit. For decompression, the Zig-Zag Scan Unit
reverses this process.

3.8 Zero Packer/Unpacker Unit

The Zero Packer/Unpacker Unit generates run-length
codes from the AC terms in the zig-zag scan data. Output
data is sent to the FIFO RAM on-chip to await processing
by the Huffman Coder/Decoder Unit. Output data from
this unit is 13 bits wide, with the two most significant bits
indicating the type of data as listed in Figure 3-7.

12 C-CUBE CL550" JPEG IMAGE COMPRESSION PROCESSOR

C CUBE MICROSYSTEMS

Bit 12 Bit 11 Data Type

Quantized DC value
Significant AC value
Run-length value (1 to 62)
End of block value

__0 0
= O = O

Figure 3-7. FIFO Data Types

As each block is processed by the Zero Packer/Unpacker
Unit, the DC term is sent directly to the FIFO memory with
‘00 appended to bits 11 and 12. The Zero Packer/
Unpacker will count the number of insignificant terms
(zeros) that precede each significant AC value and send
that count value to the FIFO. The significant AC value then
follows. At the end of the block, an EOB term is sent to
the FIFO. The data field of the EOB term (bits 10-0) is
always zero. If there are no significant AC values (all 63
AC terms are zero) in the block, only the EOB is written.

3.9 FIFO RAM

The FIFO RAM provides a 128 x 13 intermediate storage
buffer for data passing between the Zero Packer/Unpacker
Unit and the Huffman Coder/Decoder Unit. Status level
indicators are generated at empty, 1/4 full, 1/2 full, 3/4
full, and full. The FIFO level indicators can be read by
software via the Flags register. Also, two output pins,
NMRQ# and DRQ#, can be programmed to respond to
various flag states. Another output pin, HALF_FULL, is
hardwired directly to the 1/2 full level indicator.

During normal compression/decompression operations,
it is possible for the Zero Packer/Unpacker Unit to
generate data at a rate faster than the Huffman Coder/
Decoder Unit can handle. When this occurs, it is necessary
to halt the operation of the Zero Packer/Unpacker Unit to
prevent the FIFO from overflowing (compression) or
underflowing (decompression). This is accomplished by
asserting the STALL# input of the CL550. The STALL#
function halts all elements of the processing pipeline,
from the Zero Packer/Unpacker Unit through the Pixel
Bus Interface, in their current state. When STALL# is
asserted, however, it is still possible to service the FIFO on
the host end, allowing the host to maintain adequate FIFO
levels.

The FIFO can overflow or underflow very rapidly. For
instance, in a compression case in which all AC terms are
significant, there will be one entry loaded into the FIFO

for each PXCLK cycle, meaning that the FIFO can overflow
in as little as 128 PXCLKs. Because it is difficult to control
STALL# by software (because of the system latency), in
real-time systems it is necessary to use a hardware signal
such as NMRQ# to generate the STALL# input to the CL550.
More detailed descriptions of this hardware implementa-
tion are given in Section 4.

3.10 Huffman Coder/Decoder Unit

The last stage of the compression process is the generation
of the variable-length Huffman codes that create the JPEG
data stream from data stored in the FIFO RAM. The
Huffman Coder/Decoder (CODEC) module handles the
following tasks:

¢ DPCM coding of the DC values in the FIFO

e Huffman coding of DPCM data and AC values

* Generation of restart (RST) marker codes at user-
specified intervals

¢ Byte stuffing (padding) where needed

The CODEC has three main functional blocks: a Huffman
coder unit, a Huffman decoder unit, and a look-up table
RAM for the storage of data tables used in the coding and
decoding processes. Compressed data for both compres-
sion and decompression directions is buffered in a 32-bit
CODEC register that is accessible from the Host Bus
Interface in either 16-bit or 32-bit transfers.

3.10.1 Huffman Coder Unit

In compression operations, the Huffman coder unit acti-
vates when the FIFO level reaches 1/4 full. As the coder
reads an entry from the FIFO, it checks bits 11 and 12 to
see what type of entry it is. For DC entries, difference
values are first calculated by subtracting the DC value of
the previous block of the same component type, stored in
one of four DPCM registers (for the first block such value
is zero). Next, a 10-bit table index into one of the two on-
chip Huffman table RAMs is generated and the corre-
sponding table entry is appended to the outgoing JPEG
data in the CODEC register . (The process for generating
the Huffman codes is described in detail in the JPEG
specification document.)

Run-size values from the FIFO are handled by first
converting the run-size entries into proper JPEG run-
length codes. The maximum run-length allowed by JPEG
is 16. However, the run-size values in the FIFO can be in
the range of 1 through 62. In cases where the run-sizes are
greater than 16, the coder breaks them into smaller values
before coding them.

C-CUBE CL550" JPEG IMAGE COMPRESSION PROCESSOR 13

C-CUBE MICROSYSTEMS

AC values are coded directly as specified in the JPEG
standard specification. EOB values are treated as a special
case AC term, with a table index of zero.

In addition to the coding of the FIFO data, the JPEG
specification allows for the insertion of restart (RST)
marker codes at user-specified intervals. The CL550
Huffman coder unit automatically inserts these marker
codes into the compressed data stream.

3.10.2 Huffman Decoder Unit

For decompression operations, the decoder unit operates
on the 32-bit data value that is loaded in the CODEC
register. A marker code detector will automatically rec-
ognize and strip off RST markers from the code stream. If
marker codes other than RST are encountered in the
compressed data stream, the decoder will halt, the ‘mark’
bit in the Flags register will be set, and the marker code
value will be placed in the Decoder Marker Code register.
The host at that point must intervene in the decompres-
sion process and restart the Huffman decoder by writing
to the Decoder Resume register (see Section 5 for more
details). Note that within the JPEG scan field, only RST
markers are allowed. Other markers ahead of the scan
field are used to indicate decompression parameters and
data tables. It is the responsibility of the host software to
interpret and strip off this information and program the
CL550 accordingly. Only data in the actual scan field
should be sent to the CL550.

The decoder operates by taking two bits of JPEG data at
a time, each time generating an address into the Huffman
decode tables. The table values indexed are nine bits wide
and contain either the actual data (which requires no
further decoding) or a branch address in the Huffman
tables, which requires access to another location. Some
codes require several levels of indirection. The decoding
process takes place in compliance with the JPEG specifi-
cations. For a detailed description of this process, refer to
the JPEG standard document.

3.10.3 Huffman Table RAM

The Huffman table RAM is organized as a 736 x 18 SRAM
array. The memory is organized into four sections. The
Huffman Coder Unit accesses this memory in the address
ranges shown in Figure 3-8. The Huffman Decoder Unit
accesses this memory in the address ranges shown in
Figure 3-9.

Size Contents
000h
OFFh Y-AC Table
180h
18Ah Y-DC Table
200h
2FFh ° C-AC Table
380h

C-DC Table
38Ah

18 bits

Figure 3-8. Huffman Table Sizes (Compression)

Size Contents
000h
15Fn Y-AC Table
180h
18Fh Y-DC Table
200h

C-AC Table
35Fh
380h

C-DC Table
38Fh

18 bits

Figure 3-9. Huffman Table sizes (Decompression)

JPEG allows up to two Huffman code/decode tables for
any particular image, each containing one DC and one AC
table. The CL550 table RAM can contain two sets of these
tables. For example, when compressing a YUV image,
separate tables can be designated for either luminance (Y)
or chrominance (C) blocks. During compression or de-
compression operations, the CL550 uses a programmable
sequence register (Huffman Table Sequence Register) to
select the appropriate set of tables as each component
block is processed.

Each table entry is loaded from the Host Bus Interface in
9-bit halves from a 9-bit read/write port. Each 9-bit
location is aligned to a 32-bit address boundary. When
accessing the Huffman tables from the host interface, the
lower half of the 18-bit table location appears at the lower
address. Addressing for this port is given in Table 5-8.

The Huffman table RAM will support any JPEG-compliant
Huffman table.

14 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

3.11 Host Bus Interface (HBI)

The Host Bus Interface (HBI) provides a 32-bit address/
data path for transferring compressed data or reading and
writing the CL550’s internal control/status registers and
data tables. Figure 3-10 shows the interface signals that
make up the HBI. Detailed signal descriptions, functional
descriptions, timings, and operational considerations are
given in Section 4.

-l HBUS[31:0] CL550

~—— HBOUT (#)
—a—p| TMO#
-—p TM1#
- TM2#
-—— TMOUT (#)
—— e ID[3:0}#
~—— NMRQ#
~———p| RESET#
—»| START#
—————=| HBCLK
— TEST
-—]| DRa#
——»| DMA_MSTR#
«sl—— FRMEND#
~}———— HALF_FULL

Figure 3-10. Host Bus Interface

The HBI can be sized to either 16 or 32 bits for both
address and data. ID[3:0]# lines are used to specify address
format, and the HBUS_32# line specifies data width.
Transfers are accomplished using a Start/Acknowledge
protocol. Data on this bus is transferred in “little endian”
byte order, with the least significant byte on the low-order
byte of the HBUS. The HBI architecture is such that it can
be easily interfaced to most conventional 16-bit and 32-bit
microprocessor busses.

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 15

C-CUBE MICROSYSTEMS

This Page Intentionally Left Blank

16 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

4.0 HARDWARE DESIGNER’S GUIDE

This section provides the mechanical and electrical infor-
mation necessary to design the C-Cube CL550 processor
into a system.

4.1 Physical Dimensions

Figure 4-1 shows the CL550-35 and CL550-30 PGA physi-
cal dimensions. The CL550-35 and CL550-30 PGA come
in a 144-pin, Pin Grid Array (PGA), cavity down package.

Standoff]
Kovar

SN)
Bottom View Side View Top View

Figure 4-1. CL550-35 and CL550-30 Physical Dimensions

DIMENSIONS
SYMBOL

INCHES MM
Al 0.100 £ 0.10 254+ 0.25
A2 0.180 typ. + 0.005 457 typ. £ 0.13
A3 0.050 typ. + 0.005 1.27 typ. £ 0.13
D 1.560 sq. £ 0.016 39.6 £ 0.41
El 1.400 typ. 0.014 35.56 + 0.36
E2 0.050 dia. typ. 1.27 dia. typ.
E3 0.018 £ 0.002 0.46 + 0.05
d 0.065 dia. typ. 1.65 dia. typ.
e 0.100 typ. 2.54 typ.

Key to Figure 4-1

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 17

C-CUBE MICROSYSTEMS

Figure 4-2 shows the CL550-30 and CL550-10 MQUAD
physical dimensions. The CL550-30 and CL550-10 MQUAD
come in a 144-pin, Metal Quad Flat Pack (MQUAD), cavity
down package.

) | .
| I Al
-+ —3 — El
= = = |
“— — 3
= = s |
% = -a— 29)
[— 3~ 3 |
fp — —3 3
[y — — 3
— — > Non-Accum.
=] — 3=
fg — —= 3
e — — —
—_ — —
D = A‘ =4 'A =
fy — — —
=] —
fy T— — - —
g — —- L —3
g — — —
[“— — —
fp S— 3 —
g —= —
-] e manc
fp — —
— =5
-~ L —
= = =
= =
= = =
Figure 4-2. CL550-30 and CL550-10 MQUAD Physical Dimensions
SYMBOL DIMENSIONS
INCHES MM
A 0.130+ 0.012 3.30 £ 0.30
Al 0.015 = 0.008 0.38 £ 0.20
D 1.088 + 0.016 27.60 £ 0.40
. —t
0-10F= — = El (1)(2)?2 +0.016 21330 +0.40
Section A - A
ceHon E2 0.0256 typ. 0.65 typ.
E3 0.020 min. 0.50 min.
Figure 4-2A. E4 0.006 typ. 0.15 typ.
E5 0.031 £ 0.008 0.80 £ 0.2
r 0.010 typ R 0.25typ R
rl 0.010typ R 0.25typR
Key to Figures 4-2 and 4-2A
18 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C CUBE MICROSYSTEMS

4.2 C-Cube CL550 Pinout

Figure 4-3 is a pin-layout diagram of the CL550-35 and
CL550-30 PGA package. Figure 4-4 shows the pinout
labels.

A B CDEFGH J KL MNUPR

oloJo]o]o]ole)ole)olelololo)o)
OOOOOOOOOOOOOO
oJolole)ole)e)o)e)olololele]lo.
01610) 610]0)
000
OO0
OO0
oJololk
OO0
OO0
OO0

N

o N o o A W N =

- O
o

-
-

2 QOO ~ 000
KiololololololofololololoJololo,
14 @@@@@@@@@@888 ©

—
(8]

00000000006

Figure 4-3. CL550-35 and CL550-30 (PGA Package) Pin Layout (Bottom View)

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 19

C-CUBE MICROSYSTEMS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A VSS || PXADR[5] | PXADR[2] |PXDAT[23] [PXDAT[21]|PXDAT[19] | PXDAT[16]| VDD PXDA1'[14]|PXDATI11] PXDAT[9] | PXDAT[7] | PXDAT[4] | PXDAT[1]| TEST

g

B | PXADR{7] | PXADR{6]{ PXADR{3] | PXADR{0] [PXDAT[22]{ PXDAT[20]| PXDAT[17] [PXDAT[15} {PXDAT{13]| PXDAT[10]| PXDAT[8] | PXDATIS] | PXDATI2] PXDAT[0]

C | PxADR9)| PXADR8) vss PXADR([4] | PXADR[1] vss [PXDAT[18]| VDD |pxpAT[12)] VSS PXDATI6]| PXDATI3} VvSss RESET ™1

D |PXADR[12] {PXADR[11]] PXADR{10] NMRQ START

5

E | excix | Pxout | PxIN T™O HBCLK | FBOUT

F| PxmE PXWE | VDD VoD HBUSI[0] | HBUS[1)

G| vsynC | HSYNC | PxPHSE HBUS[2]| HBUS{3} | HBUSH4]
H vDD |PXADR[13] VSS vss HBUSI5] | HBUSI6]
J [PXADR[14]|PXADR[15] CLK3 HBUS[9] | HBUS[8] | HBUS[7]
K| stac | ez | voo vDD | HBUS[11) | HBUS[10]
L | FrmenD [HaLrFud Ne HBUS[14]| HBUS[13]] HBUS[12]
M NC NC NC HBUS[17]{ HBUS[16] | HBUS[15]
N NC NC VSS NC NC VSS ne | vop D[] vSS | HBUS[27) | HBUS23] | VvSS | HBUS[19] | HBUS18]
P| Nc NC NC NC NC NC HBUS 32 | DRQ D2} | HBUS[31] [HBUSI[29) | HBUS{26] |HBUS[24] | HBUS{21] | HBUS[20}
R VSS NC NC NC NC NC |DMA_MSTR| VDD ID[3] ID{0) |HBUS[30} |HBUS[28] | HBUS[25) | HBUS[22] | VSS

Figure 4-4. CL550-35 and CL550-30 Pinout Labels (Top View Through Chip)

20 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

Figure 4-5 is a pin-layout diagram of the CL550-30 and
CL550-10 MQUAD.

e PPERE| KT EEE L (T EFL TR ERE R ERE
$§93FPEEERIRaRRBRBRINSSRZETE2I T 28)

— 18| [T} Pxapri6)
 — 107 [PxADR(S]
—ls 106]] PxADRi4
 e— 0s{] vss
—11s 14f] PXADR{3)
{— | 13[] PxADRIZ)
/17 102|] PXADRIN)

NI [— |3 vop
[— 100l] PXADRIO}
{ 10 9 1[] pxpAT23)
C—in 9 [T] prxpATIZ2)
i 97 |1 PXDAT21]
)3 96 |[___] PXDATI20)

[Rt o5 {|] vss
| m——] 9 [T PXDATII9
SR m— 9 |1 pxpamus)
vob [1] 92] PpxpAM7)
HBUs32 [__]| 18 91 PXDATI16]
DMAMSTR [__]| 19 % |1 expamus
bRC || » 89 |7 pxpamiia
vss 1|2 88 {1 PXDATO3]
m3 |2 87|] PXDATIZ)

m]| =» 86 [1 PXDATIIY

m || 85 |1 PXDATIIO]

mo [1|2 84 [T PXDATII

HBUS3] (1| 26 8|1 vss
HBUSBOl [t 2 82 |1 pxoams)
HBUS(29] [___]| 28 81 {7 pxpATIN
HBUSI28) || » 80 [T77] rxoamis)
uBus7) [1| 30 79 |[___] PXDATIS]
HBUS[26] [___1| 3t 78 |[C—] PXDATH]
HBUS{2S) []j 32 7|1 PXDAT)
vob [___1| 3 76 |{_____] PXDATI2)

HBUS[24] [[___|| 34 75 |1 PXDATI)
HBUSI23) [___|| 35 74 |[T__] PXDATIOl
HBUS[22) [1] 36 |1 vbp

EEEEEEAEEEEIiGEREEEEREEiEiEA4444Q8

E8E235 T:EE8:Z 5E2EE3s2zEE E =

Figure 4-5. CL550-30 and CL550-10 MQUAD Pin Layout (Top View)

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 21

C-CUBE MICROSYSTEMS

4.3 Specifications

ABSOLUTE MAXIMUM RATINGS

Supply voltagecccoevvvvinierieiriieieen 05t 70V
Input voltagecccovevvinenieiiie e -1.5 to VDD
Output VOItagEeccevvvvrvrrrrriieieieiecereeve v -0.5 to VDD
Storage temperature range -65° to 150°C
Operating temperature range (case) 0° to 90°C

OPERATING CONDITIONS

Commercial
Parameter Test Conditions : Max Unit
V., Supply voltage 4.75 5.25 A
T,. Operating temperature 0 85 °C

Figure 4-6. Operating Conditions

DC ELECTRICAL CHARACTERISTICS

Parameter Test Conditions Commercial Unit
Min | Max
Vi High-level input voltage V.= MAX (Note 1) 2.4 \%
V. Low-level input voltage V= MIN (Note 1) 0.8 \%
V., High-level output voltage Vpp= MIN,I_ = -8.0 mA 2.4 v
Vo Low-level output voltage Vo= MIN, I = 12.0 mA 0.5 A%
L, High-level input current Vo= MAX, V| =V __ 10 HA
I Low-level input current Vo= MAX, V =0V -10 HA
I, High-level ouptut leakage current] Ouptut Disabled, Vo=V 10 HA
1. Low-level output leakage current | Output Disabled, V_ =0 V| -10 HA
I, HBUS output pull-up current Output Disabled, V_ =0V| -50 MA
I, Supply Current V.= MAX, f = 0 MHz 260 mA
V,,= MAX, f = 10 MHz 375 mA
V.= MAX, f = 30 MHz 590 mA
Vpp= MAX, f = 35 MHz . 670 mA
V,=0orV, VvV, .= Open
Capacitance C,=10tp, C_ =12 typ. pf
WARNING ! Remove power before insertion or removal.

Figure 4-7. DC Electrical Characteristics Over Recommended Temperature Range

Note 1: Guaranteed but not 100% tested logic level in noise-free environment.

22 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

4.4 Pixel Bus Interface

The following subsection describes the Pixel Bus Inter-
face (PBD. It includes detailed signal descriptions, a
simple design example, AC timing specifications, and
several timing diagrams that illustrate PBI operation.
The Pixel Bus Interface performs four major functions:
* Raster to/from 8x8 block pixel order conversion

¢ Blanking and active region control

e RGB-YUV conversion

¢ Interleaved pixel format conversion

4.4.1 Signal Descriptions

PXDAT[23:0]

PXDAT is a bidirectional 24-bit bus that handles the
uncompressed pixel data. The format of the pixel data bus
depends on the CL550 operating mode. This mode is
determined by a value programmed into the Configura-
tion register (see Section 5). In some modes, fewer than
24 bits of the PXDAT bus are used. The unused pins
should be tied to ground through 10K-ohm resistors. The
data formats supported by the CL550 are described in
Table 4-1. The labels C0, C2, ..., CN are PXCLK cycle
indices, and xx designates unused pins.The 0,1 ,2, ..., N
indices on the color components indicate the temporal
ordering of the information in the raster.

The PXDAT bus is multiplexed between RAM read and
write cycles. During compression, the CL550 reads strip
buffer data into the PBI and alternately writes external
pixel data into the line buffer.

During decompression, the line buffer data is read and
output to the external interface, and on the next cycle, the
PBI data is written to the line buffer.

In both cases, the read-then-write sequence uses the same
RAM address for read and write operations.

PXADR[15:0]

The PXADR bus is an output address bus for the line buffer
RAM. The 16 bits of address support a line buffer of up
to 64K entries. The addressing is a complex modulo
counting scheme that converts raster-scan-ordered pixels
into 8x8 blocks during compression and vice versa during

decompression. Figure 4-8 illustrates the data format of
one 8x8 block as it is ordered, zero being first or earliest.

Line0 O 1 2 3 4 5 6 7

Linel 8 9 10 11 12 13 14 15
Line2 16 17 18 19 20 21 22 23
Line3 24 25 26 27 28 29 30 31
Line4 32 33 34 35 36 37 38 39
Line5 40 41 42 43 44 45 46 47
Line6 48 49 50 51 52 53 54 55
Line7 56 57 58 59 60 61 62 63

Figure 4-8. 8x8 Pixels Block Ordering

PXWE#

The PXWE# output signal is designed to directly control
the write enable input to the line buffer RAMs. During
compression, PXWE# is active only during PXIN# cycles
when pixel data is being written from the active portion of
the video field into the line buffer RAM. During decom-
pression, PXWE# is active only when active pixels are
being written from the CL550 into the line buffer RAM.

PXRE#

The PXRE# output signal is designed to directly control the
output enable input of the line buffer RAMs. During
compression, PXRE# is active only when the CL550 is
reading pixel data from the line buffer RAM. During
decompression, PXRE# is active only when pixels are
being read from the line buffer RAM out to the pixel
destination.

PXIN#

PXIN# is an output signal designed to control the output
enable signal on an external tristate buffer. This signal is
active only when a pixel from the active region of the field
is to be written into the line buffer RAM from the external
pixel source.

PXouT#

The PXOUT# output signal can be used to load the active
pixel into a register as it is read out of the line buffer RAM.
It is active only when pixels from the active region of the
field are being read from the line buffer RAM.

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 23

C-CUBE MICROSYSTEMS

TWO PIXELS PER TWO PXCLKs

MODE Co C2 C4 Cc6
Single component (grayscale)
PXDATI23:16] XX XX XX XX
PXDATI15:8] X1[7:01 X3(7:0} X5[7:0] X7[7:0]
PXDATI7:0] X0[7:0] X2[7:0] X4{7:0] X6[7:0]
ONE PIXEL PER TWO PXCLKs
MODE co C2 C4 Cc6
YUV 4:2:2
PXDATI[23:16] XX XX XX XX
PXDATI[15:8] U0[7:0] VO[7:0} U1(7:0] V1[7:0]
PXDATI7:0] YO0[7:0] Y1[7:0] Y2(7:01 Y3[7:0]
YUV 4:4:4 to YUV 4:2:2
PXDATI[23:16] Vo[7:0) V1[7:0] V2[7:0] V3[7:0]
PXDATI[15:8] U0[7:0} U1[7:0] U2([7:0] U3[7:0]
PXDATI7:0] YO0[7:0] Y1([7:0] Y2(7:0] Y3(7:01
RGB 4:4:4 to YUV 4:2:2
PXDATI[23:16] BO[7:01 B1[7:0] B2{7:0] B3[7:0]
PXDATI15:8] GO[7:0} G1[7:01 G2(7:0] G3[7:0]
PXDATI(7:0] RO[7:0] R1[7:0] R2(7:0] R3[7:0]
ONE PIXEL EVERY FOURTH PXCLK
MODE Cco C4 C8 C12
4:4:4 (YUV pixel example)
PXDATI23:16] V0[7:0] V1[7:0] V2[7:0] V3[7:0)
PXDATI15:8} Uo[7:0] U1(7:0l U2[7:0] U3[7:0]
PXDATI(7:0) YO0[7:0] Y1([7:0] Y2[7:0] Y3[7:0]
4:4:4 (RGB pixel example)
PXDATI23:16] BO[7:0) B1[7:0] B2[7:0] B3[7:0]
PXDAT(15:8] GO[7:0] G1[7:0] G2[7:0] G3[7:0]
PXDATI7:0} RO[7:0] R1[7:0] R2[7:0} R3[7:0]
ONE PIXEL PER FOUR PXCLKs
MODE Co C2 C4 Cc6
4:4:4:4 (CMYK pixel example)
PXDATI[23:16] XX XX XX XX
PXDAT(15:8] MO[7:0] KO0[7:0] M1(7:0} K1[7:0]
PXDATI7:0] C0[7:0] YO0[7:01 C1[7:0] Y1([7:0]

Table 4-1. CL550 Color Modes and Pixel Data Configurations

24 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C- CUBE MICROSYSTEMS

PXCLK

The PXCLK input signal is the main clock for the compres-
sion processor. All circuits except those directly related
to the Host Bus Interface are driven by this clock. For
single-component mode, this clock is equal to the pixel
rate. For 4:2:2 modes, this clock is twice the actual pixel
rate. For 4:4:4 and 4:4:4:4 modes, this clock is four times
the actual pixel rate.

When the CL550 is used in single-component (grayscale)
mode or 4:4:4:4 mode, there is a restriction on the skew
between PXCLK and HBCLK when setting the configura-
tion register (See Figure 4-9). If this restriction is not
satisfied PXADRI15:0] output may not operate correctly
until a hardware or software reset is issued to the CL550.
In this invalid state, the CL550 is unable to correctly
convert raster-formatted pixels to/from block-formatted
pixels. (The designer must guarantee that the skew
between the falling edge of HBCLK and the rising edge of
PXCLK never falls in the failure window.)

Suggested Design Techniques:

For still-frame systems where HBCLK is equal to PXCLK
the designer must adjust the clock skew to avoid this
condition. Video system designers using YUV or RGB
color spaces are not affected.

Note: For correct operation HBCLK must be the same
rate or slower than PXCLK (see page 46).

PXPHSE

The value of the PXPHSE input signal indicates whether
a line buffer read or write operation is occurring on the
pixel bus. This signal should be one-half the frequency of
PXCLK. If PXPHSE is high during the rising edge of PXCLK,
the ensuing cycle will be a line buffer read operation. If
PXPHSE is low during the rising edge of PXCLK, the cycle
will be a line buffer write operation.

CLK3

The CLK3 clock input is one-half the frequency of
PXPHSE. This signal is used only in 4:4:4 and 4:4:4:4
modes. Inall other cases it can be tied to ground. In 4:4:4:4
video modes, CLK3 indicates which pair of components
from a 4:4:4:4 pixel mode is on the pixel data bus. If CLK3
is high during the rising edge of PXCILK, it indicates that
the first pair of components will be on the pixel bus. If
CLK3 is low during the rising edge of PXCLK, it indicates
that the second pair of components will be on the pixel
bus. In 4:4:4 video modes, a high on CLK3 during the rising
edge of PXCLK indicates that the cycle will be a line buffer
RAM read cycle. A low on CLK3 indicates that the cycle
will be a line buffer RAM write cycle.

HSYNC#

This bidirectional signal is used to indicate the start of a
line. When the CL550 is programmed for master mode
operation (Configuration register bit 3 = 1), the HSYNC#
signal functions as an output and will be asserted when the

><

G

o [[L[]
I I
PXCLK : |
| 1
START# 1 [
I l
T™V2# | |
1 I
HBUS(31:0] : X CONEIG Register | WiioDATA
|

Failure Window =T+3ns
mode T=27 ns
4444mode T=19ns

Figure 4-9. Host Bus Write Timing (Writing Configuration register)

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 25

C-CUBE MICROSYSTEMS

CL550 is about to begin a new line. The duration of the
pulse is programmed using the HSYNC# register.

When in slave mode (Configuration register bit 3 = 0), the
HSYNC# line functions as an input, and the external pixel
interface must assert this signal to begin the next line. The
HSYNC# input is negative-edge triggered.

Note: When STALL# is asserted, the counters that control
HSYNC# (master mode) are also halted. Thus, the HSYNC#
transitions are not periodic and should not be used to
synchronize directly to synchronous pixel interfaces.
When in slave mode, the external interface must delay
HSYNC# by the number of clock cycles that STALL# is
asserted in the previous line.

VSYNC#

This bidirectional signal is used to indicate the start of a
frame. When the CL550 is programmed for master mode
operation (Configuration register bit 3 = 1), the VSYNC#
signal functions as an output and will be asserted when
the CL550 is about to begin a compression or decompres-
sion operation. The duration of the pulse is programmed
using the VSync register.

When in slave mode (Configuration register bit 3 = 0), the
VSYNC# line functions as an input and the external pixel
interface must assert this signal after writing to the
HVEnable and Start registers to begin a compression or
decompression operation. The VSYNC# input is negative-
edge triggered.

Note: When STALL# is asserted, the counters that control
VSYNC# (master mode) are also halted. Thus, the VSYNC#
transitions are not periodic and should not be used to
synchronize directly to synchronous pixel interfaces.
When in slave mode, the external interface must delay
VSYNC# by the number of clock cycles that STALL# is
asserted in the previous frame.

STALL#

This input signal, when asserted, will stop all activity on
the Pixel Bus Interface in its current state. Signals affected
by STALL# include PXADRI16:0], PXDATI23:0], PXRE#,
PXWE#, PXIN#, PXOUT#, BLANK#, VSYNC#, and HSYNC#.
In addition, all internal logic modules in the JPEG process-
ing pipeline between the FIFO and the PBI are stopped
in their current state, so that no data transfers can take
place between the FIFO and the JPEG pipeline. The
Huffman CODEC is not affected by the assertion of
STALL#, so that the host can access the CODEC register.

When STALL# is negated, processing will resume when
the PXCLK, PXPHSE, and CLK3 signals have the same
phase relationship as when STALL# was asserted. STALL#
is sensed on the rising edge of PXCLK.

The STALL# signal must be used in the following cases:

1. On compression, STALL# is asserted to prevent the
CL550’s FIFO from overflowing. One of the CL550’s
FIFO status indicator pins (NMRQ#, DRQ#, or
HALF_FULL) is used to generate the STALL# when the
data in the FIFO reaches a certain threshold level,
typically 1/2 or 3/4 full. The pixel pipeline then will
halt, allowing the host to drain the FIFO below the
threshold.

2. On decompression, STALL# is asserted to prevent
the CL550’s FIFO from underflowing. One of the
CL550’s FIFO status indicator pins (NMRQ#, DRQ#, or
HALF_FULL) is used to generate STALL# when the data
in the FIFO falls below a certain threshold level,
typically 1/2 or 1/4 full. The pixel pipeline will then
halt, allowing the host to fill the FIFO above the
threshold.

3. During any compression or decompression opera-
tion, if the external pixel interface is not ready to
deliver a pixel to or receive a pixel from the CL550, the
STALL# signal should be asserted to hold off the CL550
processor.

BLANK#

BLANK# changes state at the same time as the PXADR bus,
that is, at the beginning of the line buffer read cycle
(PXPHSE high).

In compression, BLANK# negates one PXCLK before the
first pixel in a line is written to the line buffer; it asserts
after the last pixel is written.

In decompression, BLANK# negates simultaneously with
the first active pixel read; it asserts one PXCLK after the

last pixel read.

4.4.2 Pixel Bus Interface Example

4.4.2.1 CL550 Video System Design

The following example illustrates the use of the CL550 in
a video environment. The CL550-30 and CL550-35 can
handle either CCIR601, NTSC, or square PAL formats.
Because of large variances in the rate of the JPEG data

26 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

stream inside a given field, the CL550 Huffman CODEC
may not keep up with the peaks in the compressed data.
A peak in the data rate may cause the CL550's internal
FIFO to see an error condition, that is, full or empty
depending on the operating mode (compression or
decompression). To avoid these occurrences, pixel buff-
ering must be added to the pixel side of the CL550. Then,
in case of a threatening FIFO error condition, the pixel
pipeline can be stalled and the CODEC given time to
recover. The buffering allows a continuous video stream
to be maintained at all times. Time that the CL550 pixel
pipeline loses while stalled may be recovered during
blanking regions. A simplified block diagram is shown in
Figure 4-10.

CL550
Pixel — Pixel FIFO Huftman
—, FIFO Status (e.g. NMRQ)

STALL @ — ceomasmu

PXCLK

Figure 4-10. CL550 Video System Block Diagram

4.4.2.2 CL550 Still System Design

This subsection describes an example of an interface
between the CL550 pixel bus and a host processor bus
system. The CL550 is used as a coprocessor resource to the
main CPU for still image compression/decompression. A
block diagram of the system is shown in Figure 4-11.

Line Buffer

t CL550
PXADR
PXDAT

PXWE
PXRE

Buffer

PXIN
PXOUT

Host Bus

Cnti BLANK
STALL

Figure 4-11. Pixel Bus Interface Example

During compression operations, the host writes data
through the buffer to the CL550. Master-mode operation
isassumed so that the chip manages all of the video timing.
BLANK# inactive along with PXIN# active can be used to
indicate when the CL550 is ready to accept the next pixel
of data. If the host is not prepared to deliver the next pixel,
the STALL# signal is asserted. After the host delivers the
next pixel of data, STALL# is deasserted long enough to
advance the CL550 to the next active pixel. The same
control strategy is used for decompression, with the
difference that PXOUT# now indicates that a pixel is
available for reading. Until the host reads the pixel,
STALL# is asserted.

4.4.3 Operational Considerations

4.4.3.1 Operation Without a Line Buffer

In some cases it may be desirable to use the CL550 without
using the external line buffer RAM. For systems with a line
buffer RAM, the PXIN# and PXOUT# signals provide the
status required by the external pixel source or destination
to control pixel flow. For systems without a line buffer
RAM, during compression the interface circuitry must
provide data to the CL550 when it is expecting to read data
out of the nonexistent line buffer RAM. During decom-
pression, the interface circuitry must accept pixels from
the CL550 when it is expecting to write data into the line
buffer RAM.

The interface circuitry is similar to that required when
using the line buffer RAM, except that PXRE# is used
instead of PXIN# for output enable control for the source
data and PXWE# is used instead of PXOUT# to strobe pixel
data into a register.

The final issue that must be resolved is the format of the
pixel data. Since the line buffer RAM is no longer
reordering raster data for the CL550, the pixel data must
be handled in the 8x8 block format. For an image
compression/decompression coprocessor where the im-
age is stored in memory, this format is provided externally
by the CPU or DMA controller. Pseudo-code to perform
memory-to-coprocessor compression is shown in Figure
4-12.

C-CUBE CL550* JPEG IMAGE COMPRESSION PROCESSOR 27

C-CUBE MICROSYSTEMS

?

;IMAGE - pointer to image stored in memory
;PXBUS - address of PXDAT bus transfers
;LINE_OFFSET = (line_length) - 8
;BLOCK_OFFSET = 8 - (8 * (line_length))
;EOL_LINE_OFFSET = (7 * line_length)

LOOP:
MOVE.L (IMAGE)+, PXBUS
MOVE.L (IMAGE)+, PXBUS
MOVE.L (IMAGE)+, PXBUS
MOVE.L (MAGE)+, PXBUS
MOVE.L (IMAGE)+, PXBUS
MOVE.L (IMAGE)+, PXBUS
MOVE.L (IMAGE)+, PXBUS
MOVE.L (IMAGE)+, PXBUS

;After 8 pixels in line, point to first pixel in next
line
ADD LINE_OFFSET,IMAGE
REPEAT 8_TIMES
;After 8 lines in a block, point to first pixel in first
line of next block (note that this is a negative

offset)
ADD BLOCK_OFFSET,IMAGE
REPEAT TILL_END_OF_LINE

;After the end of a line of 8x8 blocks, point to the
beginning of the next line of 8x8 blocks.
ADD EOL_LINE_OFFSET, IMAGE
REPEAT TILL_END_OF_IMAGE
;Note: with additional code, the redundant
additions can be avoided

’

Figure 4-12. Pseudo-Code for Data Addressing in
Compression System Without a Line Buffer

4.4.3.2 Operation With a Line Buffer

The line buffer must be sized to accept an entire strip of
pixels.

Line buffer depth = 8 * (# pixels per line) Bytes
Line buffer width = (# components/pixels) Bytes

For video systems, a typical line buffer uses 8K x 8 SRAMs,
accommodating line sizes of up to 1K pixels. The CL550
will use the lowest order address space first. Thus if the
required line buffer depth is 4K, then 4K x 8 SRAMSs can
be used.

The line buffer addressing algorithm is a complex modulo
counting scheme that uses a read followed by a write to
the same address.

The address remains constant for each pixel read/write
pair, so that when a pixel is read into the CL550 from the
strip buffer, the next incoming pixel is written into the
vacated SRAM location. In this manner, the SRAM never
needs to be greater than 8 lines deep. The first 8 lines are
preloaded into the SRAM in linear memory locations as
follows (at this point, nothing is being read into the
CL550):

x(x): x = Line number
(x) = Pixel number

0@0)............. o7 0@®............ 0as) ...
10)......c..... 17 1@)............ 1aas ...
200).....oee. 2D 28)............. 215 ...
3(0)...ccvenen 37D 38............ 315 ...
40)............. 47) 408......... 415 ...
5(0).....nn.... 57 58)............ 515 ...
6(0)............. (7 6(8)............. 6(15) ...
FL(0) N 7 7@ 715) ...

Once the 8 lines are loaded into the SRAM, the CL550
begins to read the first block of 8x8 pixel from the SRAM,
replacing each pixel read with the next incoming pixel. At
the end of the first block, the data in the buffer will look
like:

x(x): x = Line number
(x) = Pixel number

8(0).....cconeeene. 8(7) 0(®............. oas ...
8(8)...ccovnnee 8(15) 1(®............. 15 ...
8(16)............. 8(23) 2(8)............. 215 ...
8(24)............. 83D 3(®............. 31s) ...
8(32)...cceeun. 8(39) 4(8)............. 415 ...
8(40)............. 8(47) 5(8)............. 515 ...
8(48)............. 8(55) 6(8)............. 615 ...
8(56)............. 8(63) 7(8)............. 715 ...

From this point, after each 8 line strip is read into the
buffer, the address patterns alternate from linear ad-
dresses to block-wise addresses. This addressing scheme
is very handy for re-ordering raster data using a minimum
of buffer space.

28 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

4.4.4 PBI AC Timing Characteristics

C-CUBE MICROSYSTEMS

PGA MQUAD
CL550-35 CL550-30 CL550-30 | CL550-10

Time| Fig.| Description Min | Max | Min | Max| Min | Max | Min | Max |Units| Note
T50 4-13 | PXCLK Pulse Width HIGH 13 15 15 30 ns 1
T51 4-13 | PXCIK Pulse Width LOW 13 15 15 30(23) ns 1,6
T52 4-13 | PXCIK Clock Period 29 34 34 100 ns 1
T53 4-13 | PXPHSE Setup Time 16 18 18 20 ns 1
T54 4-13 | PXPHSE Hold Time 5 5 5 7 ns 1
T55 4-13 | CLK3 Setup Time 16 18 18 20 ns 1
T56 4-13 | CLK3 Hold Time 5 5 5 7 ns 1
T57 | 4-14 | PXADR [15:0) Hold Delay 4 4 4 3 ns 1,5
T58 4-14 | PXADR [15:0] Delay Time 14 15 15 22 ns 1
T59 4-14 | PXDAT (23:0] Setup Time 3 4 4 6 ns 1,2,3
T60 | 4-14 | PXDAT (23:0] Hold Time 4 5 5 7 ns 1
T61 4-14 | PXRE Delay to LOW 12 13 13 18 ns 1
T62 4-14 | PXRE Delay to HIGH 12 13 13 18 ns 1
T63 4-14 | PXWE, PXRE Overlap -3 -3 -3 -4 ns 1,5
T64 4-14 | PXWE Delay to HIGH 12 13 13 18 ns 1
T65 | 4-14 | PXWE Delay to LOW 12 13 13 18 ns 1
T66 4-14 | PXIN Delay to HIGH 12 13 13 18 ns 1
T67 | 4-14 | PXIN Delay to LOW 12 13 13 18 ns 1
T68 4-14 | PXWE HIGH to Overlap -2 2 -2 2 -2 2 -4 4 ns 1,5
T69 | 4-14 | STALL Setup Time 14 15 15 20 ns 1
T70 4-14 | STALL Hold Time 7 8 8 12 ns 1
T71 4-14 | BLANK Delay Hold Time 4 4 4 3 ns 1,5
172 4-14 | BLANK Delay Time 13 15 15 18 ns 1
T73 4-14 | HSYNC,VSYNC Delay Hold Timg 4 4 4 3 ns 1,5
T74 4-14 | HSYNC, VSYNC Delay Time 24 26 26 30 ns 1
T75 4-14 | PXIN, PXRE Overlap -2 2 -2 2 -2 2 -4 4 ns 1,5
T76 | 4-14 | PXRE, PXIN Overlap -2 2 -2 2 -2 2 -4 4 ns 1,5
T77 4-14 | PXWE HIGH, PXADR Overlap 0 0 0 0 ns 1,5
T78 4-14 | HSYNC, VSYNC Setup 7 8 8 12 ns 1
T79 4-14 | HSYNC, VSYNC Hold 7 8 8 12 ns 1
T80 4-15 | PXDAT Delay to Hi-Z 23 24 24 28 ns 1,45
T81 | 4-15 | PXDAT (23:0] Delay Time 23 24 24 28 ns 1
T82 4-15 | PXDAT, PXRE Overlap -3 -3 -3 -4 ns 1,5
T83 4-15 | PXRE, PXDAT Overlap 3 12 3 12 3 12 2 13 ns 1,5
T84 | 4-15 | PXOUT to LOW Delay 12 13 13 18 ns 1
T85 4-15 | PXOUT to HIGH Delay 4 12 4 13 4 13 3 18 ns 1
T86 4-15 | PXOUT, PXRE Overlap -2 -2 -2 -4 ns 1,5
T87 4-15 | PXOUT, PXDAT Overlap 3 12 3 12 3 12 2 13 ns 1,5

Table 4-2. Pixel Bus Timing Table
Pixel Bus Timing Notes

1.

Inputs switch between 0 and 3.5 V at 1 V/ns.
Measurements were made at 1.5 V. CL = 50 pf.

2. PXDAT [23:0] is input-only during compression.
3. SRAM access time <= T_-T_-T_,.

Decompression parameter.
Not 100% tested Guaranteed by design characteristics.

Characteristics in parentheses apply to part number
CL550-10N, required for NuBus applications.

C-CUBE CL550% JPEG IMAGE COMPRESSION PROCESSOR

29

C-CUBE MICROSYSTEMS

4.4.5 Timing Diagrams

< r50->| fe—— 75—
PXCLK __J' \ |(_,5,_,|' \ ') ' \
e I | O | 77N A7

.y T I

755 T56

Figure 4-13. Pixel Bus Clock Timing

30 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MHCROSYSTEMS

SRAM SRAM SRAM SRAM
READ WRITE READ WRITE

ma | YT L
AN/ RN\ /R
s JIf VAN 1

758

PXADR[15:0] x])S X:

-

PXPHSE

=

7kl Ts9 T60 77151
PXDAT[23:0] \;_E;[B /_5;[D
761 762 >
PXRE# N }T b /
763 1y

764 _3)

PXWE#

U
F 9‘1 / \ [

PXIN#

T67

STALL#
(_)I 772
BLANK# X X X
7177 k
<->| 174
HSYNC# X X
MASTER A

(—-)l 174

VSYNC#

VSYNC#
SLAVE HSYNC#

Figure 4-14. Pixel Bus Timing: Compression, Full-Rate Mode.

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 31

C-CUBE MICROSYSTEMS

SRAM SRAM SRAM SRAM
READ WRITE READ WRITE

W | TER | A TW

T58

=

T64) <

PXWE#] - ‘_1
=
/

786

T84 785
PXOUT# (—q

STALL#

PXADR[15:0])\ X
757 |y
<— T81 ——P _{(— T80
Proat23:0] o8) o J (o)
783
» 761 762 > 't T82 A r——
PXRE# / b / \
763]
')1 177 —«9 e

-~
BLANK# X X X

T71 —»

HSYNC# X X

MASTER 173 | le- I—)] 774

VSYNC#

VSYNC#

SLAVE LsyncH

Figure 4-15. Pixel Bus Timing: Decompression, Full-Rate Mode.

32 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

PXCLK

PXPHSE

CLK3

PXADR[15:0]

PXDAT[23:0]

PXRE#

PXWE#

PXIN#

STALL#

BLANK#

HSYNC#

MASTER
VSYNC#

VSYNC#

SLAVE sync#

SRAM
READ

=

VAN

Juil,

/B

\

SRAM
WRITE

il

I/

758

A\

\\

1

I/

T66

TS7le»
759 T60
; DATA l
\ v)
761 762 —»| E_. 763 >
177 |
T64 _y T6s

776 1> 14—

T68

>

167

171

T73 >

(—)I T74

Figure 4-16. Pixel Bus Timing: Compression, Half-Rate Mode

Note: Half-rate modes apply to 4:4:4 modes only.

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

33

C-CUBE MICROSYSTEMS

PXCLK 4/_\4/_—__/___/__/—\
N //BIR\\\u ////// R\ \em //////BRR\\

wo] T [T

PXADR[15:0]

157
T80 —>»

PXDAT[23:0] -< o

782

e— 787 —|
DATA

X
(—»1
-\r_ VALID
J)] }“ 162 3 j T8 11 16 -
PXRE# \ f

(——){

e

/

-/

—f

161

765

64 3|

PXWE#

784 —»

PXOUT#

STALL#

T71

(—)]

BLANK# X X
e
(—)I

HSYNC# X X

MASTER 73> < o 7

VSYNC#

VSYNC#

SLAVE sync#

Figure 4-17. Pixel Bus Timing: Decompression, Half-Rate Mode
Note: Half-rate modes apply to 4:4:4 modes only.

34 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

4.4.5.1 Master-Mode Compression: 4:4:4 to 4:2:2 Format

The following set of diagrams (Figures 4-18 through 4-22)
describe master-mode compression in the 4:4:4 to 4:2:2
mode with the following video parameters:

Register | Value | Comments

HPeriod 56 57 pixels per line

HSync 9 HSync pulse is 10 pixels wide

HDelay 6 6-pixel delay from falling edge of
HSync to first active pixel

HActive 11 48 pixels per active line

VPeriod 53 53 lines

VSync 3 VSync pulse is 3 lines wide

VDelay 10 10-line delay from the falling edge
of VSync to the first active line

VActive 4 32 active lines

Table 4-3. Operating Conditions

The behavior of the Pixel Bus Interface (PBI) signals is
illustrated in different cases: beginning of frame, begin-
ning of active lines, middle of frame, end of active lines,
and end of frame.

4.4.5.1.1 Compression Overview

Figure 4-18 illustrates the phasing of the PXIN#, BLANK#,
PXRE#, and PXWE# signals with respect to the beginning,
middle, and end of the active window. At the beginning
of the frame, the first 8 lines of data are written into the
line buffer while no data is read out by the CL550. In the
middle of the frame, data is both written into the line
buffer by the external video source and read out of it by
the CL550. At the end of the frame, the last 8 active lines
are read out of the line buffer by the CL550 but no new
data is written into it.

PXADR Il
PXDAT - aaa
P I

pxour#

PXRE# I
P .

wset [LLTTTTTETTTTTTTTTTITTTTIT T ITTTTTETT T IO IT T I TT T T T
VSync#] I_
BLANKH [TETETTTTT T T T T I T T eI IoT

Figure 4-18. Compression Overview

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 35

C-CUBE MICROSYSTEMS

4.4.5.1.2 First Line With Active PXIN#

Figure 4-19 illustrates the signal activity around the
beginning of the first active line. The data driven onto the
line buffer is from an external buffer whose OE# is

controlled by the CL550 PXIN# output. Data is not read
out of the line buffer until the end of the eighth active line.
Therefore the PXRE# output is inactive.

wonse || || L] L

s [UULUUUTULUL
L

1
L

UL
UL

JUIUIUTUDL
UL

UL
L

L

CLK3

PXADR

0000

00020003

0005

0006{0007

PXDAT

PXIN#

L H]
L

iyl
L

H |
L

H H
15l

(HI)

PXOUT#

(HI)

PXRE#

PXWE#

HSync#

Juuuuuyy

(HI)

VSync#

BLANK#

Figure 4-19. First Active Line (Compression)

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

4.4.5.1.3 First Line With Active PXRE#

Figure 4-20 illustrates the signal activity around the = RAM by the video source and read out of it by the CL550.
beginning of the ninth active line, when the CL550 starts The black regions on PXDAT that occur while PXRE# is
reading data out of the line buffer and PXRE# becomes active indicate periods when unknown data is driven onto
active. On every other cycle, data is written into the static ~ the bus by the line buffer RAM.

woc - [TTANUUITUTAAAUUUUUUUULU
e | [T U UUUUUUUL
PXDAT [1_11_:[:'_:[[1
- L
PXRE# L__—‘:_:—l_—:—l__:j
PXWE# - __‘___J—L_ _|'-__.

Figure 4-20. First Active Line With Active PXRE# (Compression)

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 37

C-CUBE MICROSYSTEMS

4.4.5.1.4 Last Line With Active PXIN#

Figure 4-21 illustrates the signal activity around the last ~ written into the SRAM line buffer. PXWE# and PXIN#
line with PXIN#, PXRE#, and PXWE# active. Asthe CL550 become inactive, while PXRE# is still active as data is read
starts processing the last eight active lines, nonew datais out of the line buffer into the CL550.

PXCLK

PXPHSE ”mwmmmmﬂnﬂmmu M”mmmmuwmm .
CLK3 ﬂ ' ' \ ‘ ‘ | ‘ l l ‘ l j_ﬁ__;_—:_______—_—_____—___—Jlmm_:_—_—-
oo [l
eI O

PXOUTE ™

PXRE# IH ””l
PXWE# l . H”

HSync#

VSync# “

BLANK# |

Figure 4-21. Last Line With Active PXIN#

38 C-CUBE CL550" JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

4.4.5.1.5 Last Line With Active PXRE#

Figure 4-22 illustrates the signal activity around the last
active line. When the last line is read out of the line buffer,
the CL550 PXRE# signal becomes inactive.

s[RI

A

R N A
CLK3
HEEpEREREREREREREREYEES :

PXADR 0000
GOl || 111111
PXIN# (H)
pxour¥ ™
PXRE#
PXWE# (H
HSync#] [
VSync# n
BLANK# 0
Figure 4-22. Last Line With Active PXRE#
C-CUBE CL550°® JPEG IMAGE COMPRESSION PROCESSOR 39

C-CUBE MICROSYSTEMS

4.4.5.2 Master-Mode Decompression 4:4:4 to 4:2:2
Format

This set of Figures (figures 4-23 through 4-27) describe
master mode decompression in the 4:4:4 to 4:2:2 mode
with the following video parameters:

Register | Value |Comments

HPeriod 56 |57 pixels per line

HSync 9 HSync pulse is 10 pixels wide

HDelay 6 6-pixels delay from falling edge of
HSync to first active pixel

HActive 11 48 pixels per active line

VPeriod 53 53 lines

VSync 3 VSync pulse is 3 lines wide

VDelay 10 10-line delay from the falling edge
of VSync to the first line with
active PXWE

VActive 4 32 active lines

Table 4-4. Operating Conditions

4.4.5.2.1 Decompression Overview

Figure 4-23 illustrates the phasing of the PXOUT#, BLANK#,
PXRE#, and PXWE# signals with respect to the beginning,
middle, and end of the frame. The initial eight active lines
are written by the CL550 into the line buffer. The PXWE#
output is active, while PXRE# and PXOUT# are inactive.
On the ninth active line, PXOUT# and PXRE# become
active, allowing an external source to read data out of the
SRAM. After the last eight active lines of the frame are
written by the CL550 into the line buffer, PXWE# becomes
inactive while PXRE# and PXOUT# remain active, allow-
ing the line buffer to be drained.

PR T
PXOAT eeeeeeee————————
PXIN#)

PouTH N
PXREY N
pove N

Hynet LEELTETTETETTOTECTETTTTETTRTTRITTITTTTITITTTT T ITTTTTE T
Vsync# Ll |_
BLANKH [TTTTTTTTTTTT T TII I I e o oo

Figure 4-23. Decompression Overview

40 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

4.4.5.2.2 First Line With Active PXWE#

Figure 4-24 illustrates the signal activity around the first
data written to the line buffer RAM. The data driven onto
PXDAT is from the CL550. Note that the first group of
pixels written to the line buffer RAM is not bounded by
an HSYNC# interval. The decompression from the FIFO

C-CUBE MICROSYSTEMS

starts on one HSYNC and the data is written to the line
buffer after a delay of HDelay plus the CL550 video
pipeline latency. When the first line is completed, the
CL550 waits until the start of the next line of data to start
processing lines in sync with HSYNC#.

PXPHSE

CLK3

PXADR 0000

0000

PXDAT

(HI)

PXIN#

pxout# ™

PXRE# D

PXWE#

HSync#

VSync# (H)

BLANK#

Figure 4-24. First Active Line With Active PXWE#

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR M

C-CUBE MICROSYSTEMS

4.4.5.2.3 First Line With Active PXOUT#

Figure 4-25 illustrates the signal activity around the first
line with PXOUT#, PXRE#, and PXWE# active (ninth
active line). The black regions on PXDAT that occur while
PXRE# is active indicate periods when unknown data is
driven onto the bus by the line buffer RAM. The region

following a black area indicates a period when the stable
data is driven by the line buffer RAM onto PXDAT (and
out to an external register). The data driven onto PXDAT
while PXWE# is active is from the CL550.

wac [UUTUTUUULUUIUL
s || L LI L

Il

B A SRE ARRRI]S
UL

LU UL

CLK3

PXADR 0008

0000100010002\ 0003 0004| 0005|0006

PXDAT

PXIN#)

PXOUT#

PXRE#

PXWE#

HSync#

VSync# ")

BLANK#

Figure 4-25. First Active Line With Active PXOUT#

42 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C CUBE MICROSYSTEMS

4.4.5.2.4 Last Line With Active PXWE#

Figure 4-26 illustrates the signal activity around the last
line with PXOUT#, PXRE#, and PXWE# active.

st ({11111 [il
- - _ - _ - _ _
e JUIUULTUIUIUUTUUUULUUUUTUUU U TULL
L] L L | [LI L |
PXADR
|
proa7 (IR
PXIN# (H)
| 1 Il
Uuu Judbiubuauuustidsipudutgguudtuuguudsubouuubauuuauy
"‘ nnannnonnnnnnn nannnAonNnnNNnnNanannNnneo ANNOANNNAN)
1 1 1l
PXWER J—'—“JWTWJJ
uu uduuuududududuuduuduuuduyduuuddududududuuuduuuuud
HSync# l
VSync# (H1)
BLANK#

Figure 4-26. Last Line With Active PXWE#

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 43

C-CUBE MICROSYSTEMS

4.4.5.2.5 Last Line With Active PXOUT#

Figure 4-27 illustrates the signal activity around the last
line with PXIN#, PXRE#, and PXWE# active After the last
active line is read out of the strip buffer, both PXRE# and
PXOUT# become inactive.

PXCLK

ek

PXADR

0000

G || |11 LT

PXOUT#

PXIN# (H1)

PXRE#

_— ==

PXWE#

HSync#

VSync# (H1)

BLANK# |

Figure 4-27. Last Line With Active PXOUT#

44 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

4.4.5.5 STALL# Timing

Figure 4-28 illustrates the effect that STALL# has on the
pixel bus control signals when the CL550 is in RGB-to-
YUV 4:2:2 master-mode compression.

PXCLK |

PXPHSE |

CLK3

STALL#

PXADR

PXDAT

|
PXIN# J—

PXOUT#
—

PXRE#

PXWE#

HSync# (w

Vsynck#)

BLANK# ()

Figure 4-28. STALL# Timing

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 45

C-CUBE MICROSYSTEMS

4.5 Host Bus Interface

This subsection describes the CL550 Host Bus Interface
signals and data transfer procedures. It also includes AC
specifications and detailed timing diagrams.

4.5.1 Signal Descriptions

4.5.1.1 Utility Signals

The utility signals on the CL550 include HBCLK, RESET#,
ID[3:0)#, HBUS_32#, NMRQ#, and TEST.

HBCLK

The falling edge of HBCLK is used to sample the host bus
data and control signals, while the rising edge of HBCLK
is used to drive the output signals. Any duty cycle clock
can be used as long as the specifications in Table 4-8 are
met. For correct operation of the clock synchronization,
HBCLK must be the same rate or slower than PXCLK.

Note: Refer to PXCLK skew description (see page 25) for
HBCLK skew.

RESET#

The RESET# signal is an input that forces a hardware reset
of the CL550. When the signal is asserted, most of the
internal registers are forced to a known state. However,
the values in the Huffman tables, DCT table, and Quan-
tizer tables are unaffected. HBCLK must be running
during RESET. The CL550 will not acknowledge any
access until the end of the third cycle after RESET# is
deasserted.

ID[3:0]#

The address space identification signals, ID[3:0], are
inputs that select the address range of the chip. Setting ID
to 1h through Eh selects an address region for the CL550.
The ID signals enable placement of the CL550 in one of
fourteen locations in the upper 1/16th of memory. In this
range, the 32-bit address takes the form:

FSh (10xx)0 AA AA

where S is the value on the ID lines in the range 1h
through Eh and AA AA is the address of one of the on-chip
registers. Setting ID to Oh overrides the decoding of the
upper 16 bits of the address, effectively putting the CL550

into a 16-bit address mode. Setting ID to Fh disables the
Host Bus Interface.

HBUS_32#

HBUS_32# is a static signal used to configure the host bus
data path width during CODEC accesses. When HBUS_32#
is low, reads and writes to the CODEC register are 32 bits
wide. When HBUS_32# is high, reads and writes are 16
bits wide. The utility bus, that is, the data path to all on-
chip registers (except for the CODEC register) and tables,
is always 16 bits wide.

The ID[3:0}# and HBUS_32# signals control the address/
data mode as shown in Table 4-5.

ID{3:0]# | HBUS 32# | Description
0000 0 16-bit address. 32-bit data
0000 1 16-bit address, 16-bit data
1h-Eh 0 32-bit address, 32-bit data
1h-Eh 1 32-bit address, 16-bit data
1111 0/1 Chip disabled

Table 4-5. Address and Data Bus Configuration

NMRQ#

Interrupt request (NMRQ#) is an unlatched output signal,
synchronous to HBCLK, that provides an indicator for
both FIFO and video field status. This signal is open
collector and should be tied to VCC through a resistor of
at least 625 ohms. It can be programmed to selectively
indicate active status flags as specified in the Interrupt
Mask register. On power up, the CL550 should be
hardware reset to prevent the generation of spurious
interrupts.

TEST

The TEST signal is an input that forces all CL550 outputs
to tristate. This feature is provided to simplify board-level
diagnostics. TEST should be tied low for normal
operation.

4.5.1.2 Data Transfer Signals

The CL550 host bus is transaction oriented, each transac-
tion consisting of a start cycle and an acknowledge cycle.
Several signals are used to implement the bus handshake.

46 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

START#

The START# input signal begins a data transfer. When
asserted, it indicates that there is a valid address on the
host bus (HBUS [31:0]). START# is sampled on the falling
edge of HBCLK. START# should not be asserted for more
than one HBCILK period.

TM[O]#

The value of the TMIO}# signal is ignored during a start
cycle. In normal mode (bus slave mode) operation, the
TMIO}# line returns to 0 during the acknowledge cycle. In
bus master mode (entered by assertion of the DMA_MSTR#
signal during a start cycle), this signal (along with TM[11#)
is sampled during the assertion of TM[2}# (acknowledge
cycle) to determine whether a bus error has occurred.

TM[1]#

The TM[1}# signal is an input during a start cycle and
indicates whether the transaction is a read or a write. A
low (0) value indicates a write cycle and a high (1) value
indicates a read cycle. In normal operation (bus slave
mode), the TMI1}# signal returns to zero during the
acknowledge cycle. In bus master mode (entered by
assertion of the DMA_MSTR# signal during a start cycle),
the sense of this signal is inverted so that a low value
indicates a write cycle from CL550 to memory and a high
value indicates a read cycle from memory to CL550. In
bus master mode, this signal is sampled during the
assertion of TMI[2]# (acknowledge cycle) to determine
whether a bus error has occurred (refer to Table 4-7 for
details). Table 4-6 below illustrates the coding of the
TM[1}# signal during a start cycle.

TM([2]#

TM[2}# is the acknowledge signal that is driven active (0)
by the CL550 during a bus slave-mode ackowledge cycle.
In bus master mode, this signal is driven by an external
source to indicate that the transfer is complete.

HBUS[31:0]

HBUS is the multiplexed address and data port to the host.
The HBUS signal has several different modes of opera-
tion, which are determined by the state of HBUS_32# and
ID{3:0] as illustrated in Table 4-5.

HBOUT#

The HBOUT# output signal is for bus transceiver direction
control. If this signal is low (0), the transceiver direction
is from CL550 out to the host bus. If the signal is high (1),
the transceiver direction is from the host bus into the
CL550.

TMOUT#

The TMOUT# output signal provides transceiver direction
control for the transfer mode control lines (TM{2:0]). If this
signal is low (0), the transceiver direction is from CL550
outto the hostbus. If the signal is high (1), the transceiver
direction is from the host bus into the CL550.

4.5.1.3 DMA Signals
DRQ#

The DRQ# signal is an output, synchronous to HBCLK,
that provides chip status for DMA interface control. The
DRQ# output is also controlled by the Flag register bits,
including the CODEC busy (CODECB) and Bus Error
(Buser) flag bits. This signal is open collector and should
be tied to VCC through a resistor of at least 625 ohms.

DMA_MSTR#

The DMA_MSTR# signal is an input that allows the CL550
to work with a DMA controller functioning as a bus master
for CODEC register transfers. It is sampled on the falling
edge of HBCLK when the START# signal is active. Refer
to the Master Mode Transactions paragraph on page 49
and to the Operational Considerations on page 50 for
more details.

T™[1]# DMA_MSTR# Buffer Direction Operation
L H Host to CL550 Normal write cycle
H H CL550 to host Normal read cycle
L L CL550 to memory DMA write cycle
H L memory to CL550 DMA read cycle

Table 4-6. External Buffers Direction Control

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 47

C-CUBE MICROSYSTEMS

4.5.1.4 System Status Signals
HALF_FULL

The HALF_FULL signal is an output that indicates the
status of the internal FIFO. A value of 1 indicates that the
FIFO contains at least 64 entries out of 128. Transitions of
HALF_FULL are synchronous to PXCLK.

FRMEND#

The FRMEND# signal is an output that indicates that the
end of an image has been reached. For compression,
FRMEND# goes active when the Huffman coder has
removed the last word from the FIFO. Note that there may
be a delay before the last word can actually be removed
from the CL550. For decompression, FRMEND# indicates
when the last word is removed from the line buffer RAM.
This signal can be disabled by setting bit 1 of the
Configuration register to 0 (see Section 5). This signal is
open collector and should be tied to VCC through a
resistor of at least 625 ohms. Transitions of this signal are
synchronous to HBCLK.

4.5.2 Data Transfer Examples

Transfer Modes

The host bus supports both 16-bit and 32-bit data trans-
fers. Addresses can also be either 16 or 32 bits.

Data Transactions

The CL550 is capable of being a bus slave or cooperating
with an external DMA controller to be a bus master. The
host bus is transaction oriented, each transaction consist-
ing of a start cycle and an acknowledge cycle. When the
CL550 operates in bus slave mode, the bus master begins
a transaction by asserting START# while driving TM[1] to
indicate read/write and driving the address onto HBUS.
Transactions are complete when the CL550 drives the TM
signals to indicate status. For write transactions, the
master is responsible for presenting the data on HBUS
immediately following the start cycle until the acknowledge
cycle. For read transactions, the CL550 drives the HBUS
with the data during the Acknowledge cycle.

In bus master mode, the CL550 relies on an external DMA
controller to supply an address to the slave.

Read Transactions (Bus Slave Mode)

The following steps are involved in a read transaction (see
Figure 4-29):

1. The host places the address on HBUS and drives
TMI1}# high and START# low. TMI2}# must also be at
the high level at this time. In most applications, this
can be accomplished by using a pull-up resistor.

Acknowledge Cycle

\

CL550 TM[1:0]=00

‘ Start Cycle .
Wait State(s)
HBCLK
HBUS ‘< Host Address >< Invalid Ml Data >< CL550 Data
HBOUT# \
START# \ /
TM[2]#
™M[1:0]# —— Host TM[1:0]=1x X
TMOUT# \

A

Figure 4-29. Read Transaction (Bus Slave Mode)

48 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

2. On the falling edge of HBCLK, the CL550 samples
START#, TM[1}#, and TM[2}#. START# must not be
held low for longer than one HBCIK cycle. If TM[2]#
is not sampled high at this time, the CL550 will ignore
START# and not return an acknowledge.

3. When the CL550 has data available, it places the data
on the HBUS, the acknowledge on TM[2}#, and a
result code on TM[1:0}#.

4. The host samples the data on the falling edge of
HBCLK.

Wait states are implied between the start cycle and the
acknowledge cycle. No bus control signals are driven
during the wait states.

Write Transactions (Bus Slave Mode)

The following steps are involved in a write transaction

(see Figure 4-30):

1. The host places the address on HBUS and drives
TMI[1}# low and START# low. TM[2}# must also be at
the high level at this time. In most applications, this
can be accomplished by using a pull-up resistor.

2. On the falling edge of HBCLK, the CL550 samples
START#, TM[1l#, and TMI[2}#. START# must not be
held low for longer than one HBCLK cycle. If TM[2]#
is not sampled high at this time, the CL550 will ignore
START# and not return an acknowledge.

3. The host immediately places data on HBUS and waits
for an acknowledge from the CL550.

4. When the CL550 is ready for data, it puts the
acknowledge on TM[2}# and a result code on TM[1:0}#,
and it samples the data on HBUS on the falling edge
of HBCLK.

5. The host drives HBUS until the end of the acknowl-
edge cycle.

Wait states are implied between the start cycle and the
acknowledge cycle. Only HBUS is driven during the wait
states.

Master Mode Transactions

The CL550 is capable of acting as a bus master with an
external DMA controller (see Figure 4-31). The CL550
relies on the DMA controller to generate the start cycle,
including providing the address and R/W signals to a bus
slave. The CL550 then takes over as bus master, waiting
for an acknowledge from the slave. To select master
mode, the signal DMA_MSTR# must be asserted. In master
mode, the CL550 does not assert any signals during the
start cycle. The CL550 samples the R/W signal connected
to TM[1]# to determine whether the cycle is a read cycle
or a write cycle. Note that R/W is interpreted as the
opposite of its normal meaning, that is, a read on TM[1}#
indicates a read from the slave (which is a write to the
CL550) while a write on TMI[1}# indicates a write to the
slave (which is a read from the CL550). See Table 4-6.

| srcee | wait sty | AckOMIedoe Crce |

HeCLk |]
HBUS ~—— Hostaddress X CL550 Data Yoo
HBOUT#

START# ‘_— -/

TM[2]# __/—_
TM[1:0}# ———_ Host TM[1:0]=0x X CL550 TM[1:0]=00 I
TMOUT# \ Vo —

Figure 4-30. Write Transaction (Bus Slave Mode)

C-CUBE CL550" JPEG IMAGE COMPRESSION PROCESSOR 49

C-CUBE MICROSYSTEMS

If the CL550 senses a read from the bus slave, it waits for
an acknowledge from the slave, at which time it latches
the data provided by the slave. If the CL550 senses a write
to the bus slave, it provides the data on the cycle
immediately following the start cycle and holds that data
until it receives an acknowledge (TMI[2}# asserted) from
the slave. If more than one acknowledge occurs, a CL550
error condition is triggered, leading to incorrect
coding/decoding. The system designer must make sure
that, after a DMA_MSTR transfer is complete, the TM[2}#
signal is suppressed until either:

1. The next DMA Master transfer occurs (START# and
DMA_MSTR#) or

2. A CL550 access occurs (START# and valid CL550
address)

The CL550 also samples status bits during the acknowi-
edge cycle to determine whether the Bus Error status flag
(Buser) should be set.

All bus master transfers are to and from the CODEC
register. The DMA_MSTR# signal must be asserted only
when the CODEC register is prepared to accept or source
data. This canbe accomplished by asserting DMA_MSTR#
in response to an appropriately programmed DMA_REQ#
signal.

Bus Errors

The TM lines are used during the acknowledge cycle
(TMI2]# asserted) to transmit transaction status informa-
tion. In slave mode, the CL550 returns TM[1:0}# =00, that
is, transaction complete. In master mode, the CL550
samples the TM[1:0}# lines and it sets a Bus Error flag if a
bus error is indicated. The Bus Error flag status is
determined as follows:

TM[1:0}# | TMI[2}# Operation
00 0 Transaction Complete
01 0 Bus Error
10 0 Bus Error
11 0 Bus Error

Table 4-7. Bus Error Conditions

Operational Considerations

Address Space When the START# signal is active, the
address on HBUS is latched into the CL550 on the
falling edge of HBCLK. The address is decoded to
determine whether the cycle is intended for the
CL550. When in 32-bit address mode, the chip
responds to addresses of the form FS (10xx)0 AA AAh,
where § is the value on the ID lines in the range from
1h through Eh and AA AA is the address of one of the
chip registers. In 16-bit address mode (ID[3:0}# = 0),
the chip decodes only AA AA to determine which
register is being addressed. In 16-bit data mode,
HBUSI[31:16] remains disabled (tristated) at all times
and all transfers take place over HBUS{15:0].

Wait States An access to the CODEC register inside the
CL550 has a minimum of two HBCLK cycles: one for
the address and one for data (zero wait state). All
other registers within the CL550 are accessed in three
cycles (one wait state). In worst-case conditions
during an access to the CODEC register, the CL550
can insert wait states up to 70 pixel clocks in
duration.To prevent this condition one can poll the
Flags register or use the DRQ# signal to determine the
CODEC state.

Drive Capability The HBUS signals do not have enough
drive to meet the specifications of most system buses.
Therefore, an external transceiver must be used to
buffer HBUS from the system bus. HBOUT# is
provided to facilitate this interface.

Slave |

T™s < > s CL550
Pixel Bus \a—»
DATA 43‘74' HBUS Interface

4\ Read/Write
ADDR
MS TMs External
DMA
BUS HBUS Controller

Figure 4-31. Master Mode Operation

50 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

Compression Mode When in compression mode, the
CODEC register is read-only. If the host attempts to
write to this register, the CL550 will not return an
acknowledge on TM2 and the HBUS will remain in a
locked state until a hard reset is issued. When in
compression mode, the Huffman coder will not begin
to operate until the FIFO reaches the 1/4 full mark. If
the host attempts to read the CODEC register before
the FIFO level reaches 1/4 full, the data stream will
become corrupt.

Decompression Mode When in decompression mode,
the CODEC register is write-only. If the host attempts
to read from this register, the CL550 will not return an
acknowledge on TM2 and the HBUS will remain in a
locked state until a hard reset is issued. When in
decompression mode, if the FIFO is full and the host
attempts to write data to the CODEC register, the
acknowledge on TM2 will be delayed until FIFO is
not full (several hundred HBCILK cycles). Therefore,
the host must never fill the FIFO past 3/4 full. When
in decompression mode, the CL550 detects a marker
code (a hex value FFxx) in the compressed data, the
decoder will stop processing and the "mark" bit in the
Fs register will be set. If the host attempts to write to
the CODEC register before writing either a 0 or 1 to
the Decoder Resume register, the CL550 will not
return an acknowledge on TM2 and the HBUS will
remain in a locked state until a hard reset is issued.
Normally, the only marker codes that are allowed
within the JPEG data scan field are the RST markers
(FFDO through FFD7). These markers are automati-
cally detected and stripped off by the CL550 with no
external intervention required.

Handshake When performing any access to the CL550
host bus, the TM2 line must be at the logic one level
during the assertion of START#. If it is not, the CL550
will not recognize the access and no acknowledge
will be given on TM2. A pull-up resistor on TM2 could
be used for this purpose.

DMA_MSTR Mode The DMA_MSTR input on the CL550

allows the CL550 to behave as a bus master for
CODEC transfers. When a DMA_MSTR transfer occurs,
ACK from the addressed slave terminates the transfer.
However, a subsequent ACK from a non-CL550
access (a "foreign ACK") will cause the CODEC to
malfunction. The workaround is to prevent foreign
ACKs from reaching the CL550 after the DMA_MSTR
transfer completes. Once the DMA_MSTR transfer
ACK occurs, the ACK signal to the CL550 must be
suppressed until one of the following:

1. the next DMA_MSTR transfer (START and
DMA_MSTR);

2. a valid CL550 access (START and valid CL550
Address)

This workaround applies only if other devices be-
sides the CL550 and CL550 DMA slaves can drive
ACK.

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 51

C-CUBE MICROSYSTEMS

4.5.3 Interface Examples

Figure 4-32 shows an interface example between the The CL550 can be interfaced to multiplexed or non-

CL550 host bus and the NuBus. multiplexed buses. Figure 4-33 shows the interface to a
nonmultiplexed PC-type bus. The timing diagram in
Figure 4-34 illustrates the bus transactions.

BCIK
NUCLK HBCLK CL550 P CL550
640 ™
AD[31:0] (ed) HBUS p
SD[15:0] (x2) HBUS
Y Hsours
START# START#
TM[2:0]# +—] T™M[2:0]#
BALE & T™M[2:0}%
t Control
TMOUT# CHRDY
ID[3:0)# ID[3:0}# l_ D[3:0]
Figure 4-32. CL550 to NuBus Interface Example Figure 4-33. CL550 to PC-AT Bus Interface

Host Bus Signal
BCLK M LI LI 11 L LT 1
BALE ‘ | | | |
MEMR/MEMW) |
MEMCS16# | |
CHRDY | I
wze) 4] +—
SA[15:0] —_—] T
WRITEDATA 1 F—
$D[15:0]
READ DATA —
SD[15:0] —
CL550 Signals
START# | |
ACK(TM[2]) | |
TM[1:0]# MODE STATUS
WRITE CYCLE { _4apD_ H WRITE }
READ CYCLE ADD RD

Figure 4-34. PC-AT Interface Timing Diagram

52 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MHCROSYSTEMS

4.5.4 HBI AC Timing Characteristics

PGA MQUAD
CL550-35 | CL550-30 CL550-30 | CL550-10

Time| Fig. | Description Min | Max| Min| Max| Min | Max| Min | Max |Units Note
T1 | 4-35 |HBCLK Clock Period 84 100 100 100 ns 1
T2 | 4-35 |HBCLK Pulse Width HIGH 50 50 50 50 ns 1
T3 4-35 |HBCLK Pulse Width LOW 23 23 23 30(23) ns 1,13
T4 4-35 |RESET Setup Time 10 10 10 15 ns 1,23
T5 4-35 |RESET Pulse Width LOW 170 200 200 200 ns 1,2
T6 4-36 [START Setup Time 8 10 10 10 ns 1,4,5
T7 | 4-36 |START Hold Time 12 15 15 15 ns 1
T8 | 4-36 |TM2 Start Cycle Setup Time 8 10 10 10 ns 1,6
T9 | 4-36 |TM2 Start Cycle Hold Time 12 15 15 15 ns 1
T10 | 4-36 |TM2 Delay Hi-Z to HIGH 18 18 18 20 ns 1
T11 | 4-36 |TM2 Delay to LOW 18 18 18 20 ns 1
T12 | 4-36 |TM2 Delay Hold Time 5 5 5 4 ns 1,12
T13 | 4-36 |TM2 Delay to Hi-Z 18 18 18 20 ns 1,12
T14 | 4-36 |DMA_MSTR Setup Time 8 10 10 10 ns 1
T15 | 4-36 |DMA_MSTR Hold Time 12 15 15 15 ns 1
T16 | 4-36 |HBUS [31:0] Address Setup Time| 8 10 10 10 ns 1
T17 | 4-36 |HBUS [31:0] Address Hold Time | 12 15 15 15 ns 1
T18 | 4-36 |HBUS [31:0] Data Setup Time 8 10 10 10 ns 1
T19 | 4-36 |HBUS [31:0] Data Hold Time 12 15 15 15 ns 1
T20 | 4-36 {ID Setup Time 8 10 10 10 ns 1
T21 | 4-36 |ID Hold Time 12 15 15 15 ns 1
T22 | 4-36 |TMO, TM1 Start Cycle Setup Timg 8 10 10 10 ns 1
T23 | 4-36 |TMO, TM1 Start Cycle Hold Time| 12 15 15 15 ns 1
T24 | 4-36 |TMO, TM1 Hi-Z Hold Time 5 5 5 5 ns | 1,12
T25 | 4-36 |TMO, TM1 Hi-Z to LOW Delay 18 18 18 20 ns 1
T26 | 4-36 |TMO, TM1 Delay Hold Time 5. 5 5 5 ns 1,12
T27 | 4-36 |TMO, TM1 Delay to Hi-Z 18 18 18 20 ns 1,12
T28 | 4-36 |TMOUT Delay to LOW 22 22 22 26 ns 1,7
T29 | 4-36 |TMOUT Delay to HIGH 22 22 22 26 ns 1
T30 | 4-41 |NMRQ Hi-Z to LOW Delay 18 18 20 25 ns [1,89,11
T31 | 441 |NMRQ LOW to Hi-Z Delay 18 18 20 25 ns 1,12
T32 | 4-41 |NMRQ Delay Hold Time 3 3 3 3 ns 1,12
T33 | 440 |DRQ Hi-Z to LOW Delay 18 18 20 25 ns 1
T34 | 4-38 |DRQ LOW to Hi-Z Delay 18 18 20 25 ns 1,12
T35 | 4-38 |DRQ Delay Hold Time 3 3 3 3 ns 1,12
T36 | 4-42 |FRMEND Hi-Z to LOW Delay 23 25 25 28 ns 1
T37 | 4-42 |FRMEND LOW to Hi-Z Delay 23 25 25 28 ns 1,12
T38 | 4-42 |FRMEND Delay Hold Time 5 5 5 3 ns 1,12
T39 | 4-37 |HBUS [31:0] Hi-Z Hold Time 2 2 2 2 ns 1,12
T40 | 4-37 |HBUS [31:0] Delay Time 22 23 23 26 ns 1
T41 | 4-37 |HBUS [31:0] Delay to Hi-Z 22 23 23 26 ns 1,12
T42 | 4-37 [HBUS [31:0] Delay Hold Time 5 5 5 3 ns 1,12
T43 | 4-38 |HBOUT Delay to LOW 22 22 22 26 ns 1
T44 | 4-38 |HBOUT Delay to HIGH 22 22 22 26 ns 1,10
T45 | 4-38 |TM2 Acknowledge Cycle Setup 8 10 10 10 ns 1
T46 | 4-38 |TM2 Acknowledge Cycle Hold 5 5 5 5 ns 1,5
T47 | 4-38 |'TMO, TMI1 Status Cycle Setup 8 10 10 10 ns 1
T48 | 4-38 |TMO, TM1 Status Cycle Hold 12 15 15 15 ns 1
T88 | 4-42 |Half-Full Delay 20 22 22 25 |ns |1

Table 4-8. Host Bus Timing Table
C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 53

C-CUBE MICROSYSTEMS

Host Bus Timing Notes

1.

Inputs switch between 0 and 3.5 V at 1 V/ns, and
measurements are made at 1.5 V. CL = 50 pf.

RESET# is immediately seen when going low but is
removed on positive edge of HBCLK.

Two HBCLK cycles are required for internal reset
release.

START# should remain HIGH until transaction is
complete.

A valid start cycle implies START# low, TM2# high,
and the CS fields of HBUS [31:0] match the ID inputs.

TM2 is sometimes called ACK_ in design
documentatijon.Reference part number CL550-10x for
NuBus specifications

TMOUT# is direction control for I/O bus; when 1,
TM2,1,0 are expected to be inputs.

10.

11.

12.
13.

NMRQ#, DRQ#, and FRMEND# are all open-collec-
tor signals.

NMRQ#, DRQ#, and FRMEND# change on positive
edge of HBCLK and are not related to any specific
transaction phase.

HOSTOUT is bidirectional control for the 1/O
HOSTBUS; when 1, HOSTBUS is expected to be
inputs.

If DRQ# is LOW during a start cycle, it will go to
Hi-Z on next positive edge of HBCLK, if the access
is to the CODEC register.

Not 100% tested. Guaranteed by design characterization.

Characteristics in parentheses apply to part number
CL550-10N, required for NuBus applications.

e T] ——

HBCLK J!—'—_/

S AW A W

RESET#

T3>
j— T2
- - **)‘]L—>
T4

START#

2 HBCLK CYCLES (MIN)

Figure 4-35. Host Bus Reset Timing Diagram

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

Start Wait Data
Cycle States Cycle
HBCLK / / \ _\
[/ |/ \
76 < » 7 /L
START# \ | / s \
/L
DMA_MSTR#) ”
T14 I 118 t
T16P T17 r18|<—> /) '<—>1 T19
HBUS[31:0] { ADDRESS —(DATA DATA }
ID[3:0]#
i > 724 T27>1
TMO# i ; y F
> [s o 126> I
hi-Z T224—>j¢>| 723 127>
T™1# \ N\ y
> le 125 "
e e
TMZ# hi-Z 7 ‘ _L' 7/ { 713> F ,
—» Ti0 I(_
T12>
TMOUT#)] |
L "I ,I
> 128 129>
HBOUT# &) 1 £
RESET# /4

(Hl)

Figure 4-36. Host Bus Write Timing, Slave Mode

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 55

C-CUBE MICROSYSTENMS

Start Wait Data
Cycle States Cycle
HBCLK
B B Y B S B B
T6 > 17 Iy
START N/l -
/L
DMA_MSTR# / o
T4 T g5 o
|<~ T40 T41->
HBUS[31:0] DATA VALID

r‘r?

T42>
ID[3:0]#
hi-Z > 124 127>
TMO# ' g y
> 725 ” 726>
722 123
TM1# hi-Z J? 72751
-\' 'I ,I
> ke 125
78 9 —> T
TM2# piz 1f f T13 >
. > 10

T12->

/L

728 > T29 >

HBOUT#

ﬁﬁr? \ITTKT

.

TMOUT# X
m

\

e

743 T44 >

RESET# (HI)

Figure 4-37. Host Bus Read Timing, Slave Mode

56 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

Start Wait Data
Cycle States Cycle
HBCLK / / _//_/ / \
16 > 17 /)
START# \“) / - 7! \
T14 > T15 N
DMA_MSTR# 1 '/ 'I
mi«——»(—-»] 7 /) T42> g—
HBUS[31:0] (DONTCARE)_—-ﬁ / / DATA VALID
> T40 H /L_
74154
ID[3:0]#
hi-Z
TMO# s \7 STATUS >
122| » 123 47 748
hi-Z y 7 \l
TM1# \ { } \ STATUS)
<—>‘ T46
i
TM2# 7 < T45

TMOUT# (HI) e

HBOUT# \ y i
> e 143 T44—>

RESET# (H1) o

—> 734 hi-Z
DRQ# f /1

> l(- 135

Figure 4-38. Host Bus Write Timing, DMA Master Mode (CL550-to-Memory DMA Transfer)

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 57

C-CUBE MICROSYSTEMS

Start Wait Data
Cycle States Cycle
HBCLK ‘ \ ‘ \ / ‘
/]
T6 77 /1
START# TS
\ /111 __
T14 > T15 /0
DMA_MSTR# \] .
naﬁ: 17 718 < 19 :
HBUS[31:0] {Don'T care} / -< DATA Y
ID[3:0]#
TMO# hrZ T STATUS)
' R 4
122 723 47 748
TM1# i — / { STATUS
7
1—»’ 46
/L
TM2# ! \f_’ s
/]
TMOUT# (HI) o
/!
HBOUT# (HI) e
s
RESET# (HI) o
> T34 .
DRQ# }‘

> 735

Figure 4-39. Host Bus Read Timing, DMA Master Mode (Memory-to-CL550 DMA transfer)

58 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

HBCLK ’ _/ ’ \ ’ \ ’
START# /j /I /
/1
DMA_MSTR# 71 /
hi-z > [(— 733 —» |(~ T34 hi-Z
DRQ# \ /] 7
" > I(' 735

Figure 4-40. DRQ# Timing

HBCLK ' \ ' \ ’ \ ’
NMR 4 hi.-z > [« T30 > |(—T31 hi-Z
Q /] 7
" > }(» 732
Figure 4-41. NMRQ# Timing
Pxcik ’ \ R
| — /] \

<> 788 i e
HALF_FULL 7 o ‘
FRMEND# h-z > <736 e]

X //

-»| [738

Figure 4-42. HALF_FULL, FRMEND# Timing

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

59

C-CUBE MICROSYSTEMS

‘This Pag Intentionally Left Blank™

60 C-CUBE CL550% JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

5.0 PROGRAMMER'S GUIDE

This section provides the information necessary to pro-
gram the C-Cube CL550%® processor. It includes:

e Description of the CL550 internal registers and tables

* Description of CL5350 initialization routines (offered
free of charge to CL550 customers)

¢ Initialization values examples

¢ CL550 compression/decompression control inner
loop flow chart examples

e JPEG data structure and signaling parameters
overview

5.1 C-Cube CL550 Registers

The CL550 data path is configured via a set of control
registers. There are groups of registers and tables asso-
ciated with each stage of the JPEG pipeline that control
various aspects of the JPEG process.

The first group of registers is associated with the Pixel Bus
Interface (PBI). The PBI registers are used to describe the
horizontal and vertical image frame and window pa-
rameters. Tables used in the color transformation process
are also included in this block.

The second group of registers and tables controls the
operation of the JPEG Compression/Decompression Unit
(CDU). Tables in this block include DCT transform
coefficients, up to four quantizer tables, and Huffman
code tables. Sequence registers are used to select these
tables based on the input data sequence. In compression
mode, for example, each incoming 8x8 pixel block is
made up of 8x8 component subblocks (which can be
either R, G, and BorY, U, and V). The processing order
for these blocks depends on the mode of operation. For
4:2:2 mode compression, these subblocks are ordered
Y-Y-U-V-Y-Y-U-V. The sequence registers determine which
of the tables are in use on a block-by-block basis.

Other registers in this block are used to specify the
CL550’s general operating parameters and to reset and
start/stop the device. The Compression Monitor software,

provided with the CL550, will load each of the registers
and tables for the various modes of operation.

5.1.1 Pixel Bus Interface Unit Registers

HPeriod Register

Register Type: R/'W
Address: 8000,
Size: 14 bits

The HPeriod register serves two different functions de-
pending on the mode (master or slave) the CL550 is
operating in. In master mode it controls the number of
pixels between consecutive HSYNC#s. HPeriod should be
set to the number of pixels, minus 1, contained in one
horizontal screen line.

In slave mode, no HSYNC# inputs will be acknowledged
during the time interval starting at the falling edge of
HSYNC# and lasting until a number of pixels, equal to the
value stored in the HPeriod register, have been received
by the processor. A typical value stored in the HPeriod
register is the larger of the HDelay value and 90% of the
number of pixels contained in one horizontal line.

In master mode, the following formulas will be used.

NumPixel = Number of pixels between HSYNC# asser-
tions

Mode HPeriod Value

Single Component | NumPixel / 2 -1

RGB to YUV 4:2:2

YUV 4:2:2 NumPixel - 1
4:4:4 to 4:2:2

4:4:4

4:4:4:4 2 * NumPixel - 1
CMYK

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 61

C-CUBE MICROSYSTEMS

HSync Register

Register Type: R/W
Address: 8004,
Size: 14 bits

The HSync register performs two different functions
depending on the mode (master or slave) the CL550 is
operating in. In master mode, it is used to control the
width of the HSYNC# pulse. HSync should be set to the
number of pixels contained in one horizontal sync pulse
width, minus 1.

In slave mode, HSync is not used and its value is
insignificant.

HDelay Register

Register Type: R/W
Address: 8008,
Size: 14 bits

The HDelay register controls the delay from the falling
edge of HSYNC# to the first active pixel. The value of
HDelay depends on the video mode.

Note: If HDelay = 0, the first HSync will not occur until one
complete line after the first VSync.

Pixel Delay = number of pixels from falling edge of
HSYNC# to the first active video pixel

Mode HDelay Value

Single Component 1/2 * Pixel Delay
RGB to YUV 4:2:2
YUV 4:2:2

4:4:4 to 4:2:2

Pixel Delay

4:4:4
4:4:4:4

CMYK 2 * Pixel Delay

HActive Register

Register Type: R/W
Address: 800C,
Size: 12 bits

The HActive register controls the size of the active

horizontal line. The number of pixels on a horizontal line
must be a multiple of the minimum block size. In 4:4:4
modes, the minimum block width is 8 pixels, while in
4:2:2 modes it is 16 pixels (two 8x8 blocks).

NumActiveBlocks = (Number of active pixels in a
horizontal line)/8

Mode HActive Value

Single Component | NumActiveBlocks - 1

RGB to YUV 4:2:2

YUV 4:2:2 2 * NumActiveBlocks - 1
4:4:4 10 4:2:2

4:4:4

4:4:4:4

CMYK 4 * NumActiveBlocks - 1

Note: NumActiveBlocks must be a multiple of 2 for
the 4:2:2 modes.

VPeriod Register

Register Type: R/W
Address: 8010,
Size: 14 bits

In master mode, the VPeriod register is used to control the
number of lines in a frame. It should be set to the number
of lines between two consecutive falling edges of VSYNCx.
In slave mode, VPeriod is ignored.

VSync Register

Register Type: R/’W
Address: 8014,
Size: 11 bits

In master mode the VSync register controls the width
of the vertical sync pulse. It should be set to the
vertical sync pulse width in lines.

In slave mode, VSync is not used and its value is
insignificant.

62 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MHCROSYSTEMS

HPeriod (P)
Y
i
|« HDelay (P)

~ HActive (B) |
(-9
3 a
3 $

(P) = Count in Pixels
(B) = Count in 8x8 Blo

Figure 5-1. Video Field Registers
VDelay Register

Register Type: R/W
Address: 8018,
Size: 14 bits

The VDelay register controls the vertical delay for the
video compression/decompression process. For com-
pression operations, the value should be set to:

VDelay Register Value = Vertical Delay = number of lines
(HSYNC# pulses) from the falling edge of VSync to the
first active video line.

For decompression operations, the value depends on the
video mode and the horizontal video period. The mini-
mum value for VDelay is:

Minimum VDelay = 9 + trunc[(Video Latency + HActive
Clocks) / HPeriod Clocks]

Where: HActive Clocks = 2 * HActive * 8
HPeriod Clocks = 2 * HPeriod

The value that is loaded into the VDelay register is:
VDelay Register Value = Actual VDelay-Minimum VDelay

Note: The minimum Vertical Delay is 9. This minimum
is due to the fact that the strip buffer is filled 8 lines
before the start of the active region and there is at least
one line of latency internal to the CL550. For horizon-
tal periods less than 200 pixels, internal pipeline

latencies may be greater than one line and the mini-
mum Vertical Delay is adjusted upwards.

VActive Register

Register Type: R/W
Address: 801C,
Size: 11 bits

The VActive register controls the number of active
lines. It should be set to the vertical block count of
the active target window, that is, one eighth the
number of active lines.

Video Latency Register

Register Type: R/W
Address: C030,
Size: 14 bits

The Video Latency register controls internal pipelining
timings and depends on the video mode. The values to be
loaded into the Video Latency register are provided in the
initialization table in Appendix A.

Vertical Line Count Register

Register Type: R
Address: C03C,
Size: 14 bits

The Vertical Line Count register contains the vertical line
count of the active window. This register can be read from
the host bus by external devices that need to know the
vertical line count.

HControl Register

Register Type: R/'W
Address: C034,
Size: 14 bits

HControl is a decompression parameter that determines
the horizontal position at which the CL550 should stop
removing data for the current frame from the internal
FIFO. If the CL550 is being reset between frames, as in
most still and some video systems, the HControl value
should be set to 0x3FFFh. The equations for computing
HControl for other systems are provided in the Compression
Monitor. The HControl register is ignored in compression
mode.

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 63

C-CUBE MICROSYSTEMS

VControl Register

Register Type: R/W
Address: C038,
Size: 14 bits

VControl is a decompression parameter that determines
the vertical position at which the CL550 should stop
removing data for the current frame from the internal
FIFO. If the CL550 is being reset between frames as in
most still and some video systems, the VControl value
should be set to 0x3FFFh. The equations for computing
VControl for other systems are provided in the Compres-
sion Monitor. The VControl register is ignored in com-
pression mode:

Note: The functions of the video field registers, described
above, are illustrated in Figure 5-1.

HV Enable Register

Register Type: R/W
Address: 9010,
Size: 1 bit

The HV Enable register inhibits updates to the eight video
parameter registers and the Start register during target
window resizing. This function prevents partial updates
of the video parameter registers if a VSYNC# occurs
during the update. There are two sets of video parameter
registers: a shadow register set that is written from the
host bus, and an active register set that is used for the
current frame. The shadow registers can always be
updated by the host bus; however, the active register set
can be updated only on the falling edge of VSYNC#,

When set to 0, HV Enable prevents updates of the active
registers. When set to 1, the registers are updated on the
falling edge of VSYNC# (but only if the Start register is set
to 1 as well).

Important note: HV Enable must be 1 during the falling
edge of VSYNC# in order for the Start register to function,
both for starting and stopping the compression/decom-
pression process.

Note: The horizontal and vertical video registers can be
read back only after they have been loaded into the active
registers.

Color Transformation Matrix

Register Type: W
Address: C000-C020,
Size: 12 bits

There are nine 12-bit registers for loading the coefficients
of the RGB-to-YUV transformation matrix. The nine
register addresses are provided in Table 5-1.

Mij and M'ij (with i indicating the row number and j the
column number) are the coefficients of the M and M'
matrices for the RGB-to-YUYV color space transformations:

Y R R Y
Ul=M x |G and G|=Mx|U
Vv B B \Y
Where M and M’ are:
Compression Decompression
Address Mode Mode
C000h M,, (0133) M,' (0400)
C004h M,, (0259,) M,,' (0400,
C008h M,, (0074) M, (0400
C00Ch M, (0F54) M, (OFFE,)
C010h M,, (OEAD) M,, (OEA2)
Co14h M,, (01FF,) M, (071B)
C018h M,, (OIFF) M, (059C,)
CO1Ch M,, (OES3)) M, (0D23))
C020h M,, (OFAE,) M,,' (OFFD)

Table 5-1. Color Transformation Coefficients Addresses

These matrices can be used to implement a user defined
color space conversion with the following two con-
straints:

1. The matrices should be approximate inverses of one
another in order to minimize round-trip errors.

2. The forward matrix should produce pixel values in
the range of [0,255.37] for unsigned values or [-
128,127.37] for signed values.

Default values for the M and M' coefficients are provided
in parentheses in Table 5-1.

64 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

5.1.2 Compression/Decompression Unit Tables and
Registers

DCT Tables

Register Type: W
Address: 8800-881C,
Size: 16 bits

The DCT table consists of eight 16-bit entries. The HBI can
write directly to each entry. DCT values are used as
multiplication coefficients for the DCT/IDCT operation
during the video compression/decompression process.
The values loaded into the DC tables depend on whether
the CL550 is in compression or decompression mode and
are provided in the initialization tables in Appendix A.

Quantizer Tables

Register Type: R/W
Address: B800-BBFC,
Size: 16 bits

The Quantizer tables consist of two sets of 128 16-bit
entries that the HBI can read or write directly. These
values are used during the video compression/decompre-
sion process. Table entries can be used in double buffer
mode or four-table mode. When the CL550 operates in
double-buffer mode, one set of tables can be loaded while
the other set is active.

A Tables B Tables
B800, B800,
Luminance Luminance
(Table 1) (Table 1)
Chrominance Chrominance
(Table 2) (Table 2"
BOFC, BOFC,
Figure 5-2. Quantizer Tables Configuration (Double-Buffer
Mode)
A Tables B Tables
B800, BAOO,
Table 1 Table 3
Table 2 Table 4
B9FC, BBFC,

Figure 5-3. Quantizer Tables Configuration (Four-Table Mode)

The four-table mode is used only in 4:4:4 and 4:4:4:4
operating mode. Default Quantizer table values are
provided in the Compression Monitor.

Note that there is a pipeline register between the Quan-
tizer tables and the host bus. When reading data from the
Quantizer tables, two consecutive reads must be per-
formed for the first valid data to be presented to the host
bus.

Quantizer A/B Table Select Register

Register Type: W
Address: BC0O,
Size: 1 bit

The value in the Quantizer A/B Table Select register
selects the active Quantizer tables. When it is set to 1, the
A tables are selected and used by the Quantizer. Selected
tables cannot be loaded. When the CL550 is reset, the
Quantizer A/B Table Select register points to the B tables,
allowing the A tables to be loaded. When the CL550
operates in four-table mode, this register is not used.

Once the A tables are loaded, the Quantization A/B Table
Select register must be set to 1 to point to the A tables for
compression. However, the internal switch which con-
trols the selection of the A or B tables will not toggle until
the occurrence of VSYNC. Therefore, the B tables cannot
be loaded until after Start = 1 and VSYNC falling edge.

There is another way, however, to load the B tables while
the CL550 is not in active operation. Quantizer Sync
register (address BEQO) bits 8 and 9 control an internal test
sync signal which, when set to 1 then 0, will toggle the
table select switch in the same fashion as VSYNC.

Quantizer Y/C Table Sequence Register

Register Type: W
Address: BEO8,
Size: 14 bits

Both the Quantizer Y/C Table Sequence register and the
Quantizer A/B Table Sequence register allow the Quan-
tizer to select the proper quantization table in the com-
pression and decompression process. The value to be
loaded into this register depends on the operating mode
(compression/decompression) and data formats being
processed. Values for different operating modes and data
formats are provided in the initialization tables in Appen-
dix A.

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 65

C-CUBE MICROSYSTEMS

Quantizer A/B Table Sequence Register

Register Type: W
Address: BEOC,
Size: 10 bits

The value in the Quantizer A/B Table Sequence register
determines which tables (A or B) are active. This register
is used only when the CL550 operates in 4:4:4:4 and 4:4:4
mode. Register values for different operating modes and
data formats are provided in the initialization tables in
Appendix A.

Quantizer Sync Register

Register Type: W
Address: BE0OO,
Size: 14 bits

The Quantizer Sync register supports 4:4:4:4 mode (four-
table mode) and data synchronization.

Bits 13-11: Must be set to zero in normal operation.

Bit 10: This bit selects double-buffer versus four-table
mode. When setto 1, the CL550 operates in four-table
mode.

Bits 9-7: Must be set to zero in normal operation.

Bits 5-0: Data sync field. The proper value for this field
is provided in the initialization tables in Appendix A.

Coder/Decoder DPCM Registers Sequence Registers

Register Type: W
Address: A004, (RH) and A008, (RL)
Size: 10 bits each

The CL550 has two registers (RH and RL) to select the
active DPCM registers.

There are four DPCM registers specified by a two-bit
address. Register values for different operating formats
are provided in the Compression Monitor.

Decoder DPCM Reset Register

Register Type:W
Address: A818,
Size: 1 bit

By writing to the Decoder DPCM Reset register, the host
can reset the four DPCM registers. In decompression

mode, after the decoder has flagged the EOI (End of
Image) marker code, the host should reset the DPCM
registers before restarting the decoder.

Huffman Code Tables

Register Type: R/W
Address: E000-FC7C,
Size: 9 bits

There are two Huffman table layouts: one for coding and
another for decoding. The default Huffman code tables
for the baseline JPEG algorithm are defined in the JPEG
Draft Proposal. The tables loaded into the CL550 are
generated by processing the JPEG code table with the
CL550 initialization software. Default Huffman table val-
ues are provided in the Compression Monitor.

Note: Unused Huffman table entries must be initialized to
Zero.

Huffman Table Load Enable Register

Register Type: W
Address: 9004,
Size: 1 bit

The one-bit Huffman Table Load Enable register must be
asserted before the Huffman code look-up table can be
loaded. In normal compression and decompression
operations, this bit must be deasserted.

Huffman Table Sequence Register

Register Type: W
Address: A000,
Size: 10 bits

The Huffman Table Sequence register specifies the se-
quence in which the Huffman luminance (Y) and chromi-
nance (C) tables are used by the coder/decoder. Register
values for different operating modes and formats are
provided in the initialization tables in Appendix A.

Coder Attributes Register
Register Type: W
Address: AOOC,

Size: 7 bits

The contents of the Coder Attributes register affect the
coder function as follows:

Bit6, EOB: When EOBissetto 1,an EOB code is inserted

66 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

at the end of every block. When EOB is set to 0, an
EOB is inserted only when the last coefficient in a
block is equal to zero.

Bit 5, LSB: When LSB is set to 1, the coder outputs data
with the least significant bit first.

Bit 4, RST-EN: When RST-EN is set to 1, the coder will set
to 1 restart marker codes in the compressed data
stream at the end of each new coding interval.

Bits 3-0: These bits specify the number of blocks per
Mimimum Coded Unit (MCU).

Coder Coding Interval Registers

Register Type: W
Address: A010, (RH) and A014, (RL)
Size: 8 bits each

These two registers (RH and RL) define the number of
MCUs per coding interval. The largest number of MCUs
supported by the CL550 is 2!%-1, in accordance with the
proposed baseline JPEG standard specifications. Assuming
a coding interval of 15 MCUs, then the value of the RH and
RL must be set to:

RH [(o|Jo]JolofJo]lo]o] o]
RL |3]0]0|0|1|1|1|(1)|
7 0

The contents of these registers are used by the coder to
determine where to insert restart (RST) marker codes.

Start of Frame Register

Register Type: R/W
Address: 9020,
Size: 1 bit

By writing either 0 or 1 to the Start of Frame register , the
coder is reset. The host can use this register to reset the
coder when the end of frame output (FRMEND#) pin is
asserted and the host starts reading “FFFF...” data out of
the coder.

Decoder Table Sequence Length Register
Register Type: R/W

Address: A80C,
Size: 4 bits

The contents of the Decoder Table Sequence Length

register specify the number of significant bits in the
Huffman Table Sequence register when the CL550 is in
decompression mode.

Decoder Marker Register

Register Type: R
Address: A810,
Size: 8 bits

This register contains the actual Marker code generated
by the Decoder.

Note: No resync codes or fill bits will be stored in this
register.

Decoder Resume Flag

Register Type: W
Address: A814,
Size: 1 bit

When the decoder detects a marker code (except the RST
marker code), it writes it into the Decoder Marker
register. The Mark bit in the Flags register is set and the
decoder is stopped. By writing either 0 or 1 to the Decoder
Resume flag, the host can restart the decoder.

Decoder Code Order Register

Register Type: R/W
Address: A81C,
Size: 1 bit

This register must be set to 1.

Configuration Register

Register Type: R/W
Address: 9000,
Size: 9 bits

The values loaded into the Configuration register deter-
mine the CL550 operating mode and environment, as
shown in Table 5-2.

Bit Number
8 |7 6 5 4 3 2 1 0
dir | video mode select mstr | Interlace| End of | Undef.
Enable | Frame
Enable

Table 5-2. Configuration Register

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 67

C-CUBE MICROSYSTEMS

dir (8): This field defines the direction of the processing
path. When set to 0, the CL550 is in compression
mode. When set to 1, the CL550 is in decompression
mode.

video mode select (7-4): These four bits are used to
select the video mode format:

0000: invalid

0001: YUV 4:2:2 mode

0010: 4:4:4 to 4:2:2 mode

0011: RGB to YUV 4:2:2 mode

0100: 4:4:4 mode

0101: invalid

0110: 4:4:4:4 mode

0111: invalid

1000: Single-component (grayscale) mode

mstr (3): This field determines whether the CL550 is in
slave mode or master mode. When set to O, it
indicates that the CL550 is in slave mode. When set
to 1, it indicates that the CL550 is in master mode,
driving HSync and VSync.

Interlace Enable (2): In Master mode this bit should be
set to zero. In Slave mode this bit, when asserted,
enables the video interlace mode.

End of Frame Enable (1): When this bit is set to zero
the FRMEND# output pin is never asserted. When set
to 1, the FRMEND# output is equal to the logical
“nand” of the Video Inactive (Vnac) and FIFO-empty
(fi0e) bits in the Flags register.

(0): Bit zero is reserved and should be set to 0.

S-Reset Register

Register Type: W
Address: 9008,
Size: 1 bit

The S-Reset register is used to initiate a soft reset of the
CL550. When set to 1, the CL550 begins a soft reset
sequence, which automatically resets the S-Reset register
to zero. The soft reset sequence produces the same results
as the hardware reset. A hardware reset resets this register
to 0.

Start Register

Register Type: R/W
Address: 900C,
Size: 1 bit

The Start register is used to initiate the video compres-
sion/decompression process. In slave mode, when set to
1, video compression or decompression begins on the
next negative edge of VSync. In master mode decompres-
sion, setting this register to 1 causes the start of a frame
immediately. When returned to 0, the CL550 stops the
compression or decompression process after completing
the frame in progress.

Note: HV Enable register must also be set to 1 before the
CL550 can be started or stopped.

Version Register

Register Type: R
Address: 9024,
Size: 3 bits

The Version register contains the CL550 version number.
The current version number is 011 (3).

Init Registers

The Init registers configure the compression/decompres-
sion unit pipeline for each video mode. The values to be
loaded are provided in the initialization tables in Appen-
dix A.

Register Type Address Size
Init Register 1 W 9800, 7
Init Register 2 A4 9804, 7
Init Register 3 N4 B600, 11
Init Register 4 W CF00, 11
Init Register 5 w 8820, 16
Init Register 6 \4 8824, 16
Init Register 7 w D400, 16

Table 5-3. Init Registers

68 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

Flags Register

Register Type: R/'W
Address: 9014,
Size: 16 bits

The Flags register provides CL550 status information.
Except for the Late bit, which latches a late condition,
each flag indicates the current status of the CL550. Table
5-4 shows the layout of the Flags register.

fiOnf (15): When asserted, this field indicates that the
FIFO is not full.

fione (14): When asserted, this field indicates that the
FIFO is not empty.

CodecNB (13): When equal to 1, this field indicates that
the CODEC register is not busy.

Buser (12): When equal to 1, this field indicates that a bus
error has occurred during a CODEC DMA operation.

Mark (11): When equal to 1, this bit indicates that a
marker code has been detected in the data stream
being decompressed.

Vsyn (10): This field reflects the state of the VSync pin.
It is a 1 if the VSync pin is a 0.

Vnac (9): This field defines the state of the CL550
processor between the internal fifo and the pixel bus.
Similar to vertical blank, it is low when the pixel bus
is in the vertical active region. It is also low when any
processing activity is taking place in the video pipe-
line (between the PBI and the FIFO) of the CL550. In
compression, it will go low at the first active line of
the pixel bus and return high after the last active line,
plus the eight line strip buffer latency, plus the
CL550’s internal pipeline latency. In decompression,

it will go low eight lines, (plus the internal pipeline
latency), before the first active line of the pixel bus.
It will return high at the end of the first active line of
the pixel bus.

fldo (8): In Slave mode, this field indicates whether the
active pixels are in field O of an interlaced system.
When equal to 1, it indicates that active pixels are in
field 0. When equal to 0, it indicates that active pixels
are in field 1. For non-interlaced systems, this field is
not defined.

fi0e (7): When equal to 1, this field indicates that the FIFO
is empty.

filq(6): When equalto 1, this field indicates that the FIFO
is one-quarter full.

filh(5): When equal to 1, this field indicates that the FIFO
is one-half full.

fi3q (4): When equal to 1, this field indicates that the FIFO
is three-quarters full.

finlq (3): When equal to 1, this field indicates that the
FIFO is not one-quarter full.

finlh (2): When equal to 1, this field indicates that the
FIFO is not one-half full.

fin3q (1): When equal to 1, this field indicates that the
FIFO is not three-quarters full.

Late (0): This field indicates that the FIFO has overflowed
in compression or underflowed in decompression,
causing the compressed data stream to be corrupted.
Once set, the late flag must be cleared by software,
by writing a 1 followed by a 0 into the Late field.

Bit Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fionf | fiOne|{CodecNB|Buser | Mark | Vsyn | Vnac | fld0 | fi0e | filq | filh | fi3q | finlq | finlh] fin3q | Late

Table 5-4. Flags Register

C-CUBE CL550" JPEG IMAGE COMPRESSION PROCESSOR 69

C-CUBE MICROSYSTEMS

Interrupt Mask Register

Register Type: R/W
Address: 9018,
Size: 16 bits

The Interrupt Mask register defines the interrupt mask for
the CL550 NMRQ# output pin. The condition of the
NMRQ# output pin is determined by the following
equation:

NMRQ# = /(/flag[13] ® mask {13]) e /(flag[12] ® mask [12])e

((flag [0] * mask[OD

+ (flag [1] » mask[1]D

+ (flag [2] ® mask[2]

+ (flag [3] ® mask[3]

+ (flag [4] » mask[4D

+ (flag [5] ® mask[5D

+ (flag [6] » mask[6D

+ (flag [7} » mask[7D

+ (flag [8] » maskI8D

+ (flag [9] » mask[9D

+ (flag [10] ® mask[10])
+ (flag [11] ® mask[11D
+ (flag [14] » mask([14]D
+ (flag [15] * mask[15])

To mask (disable) an interrupt, that interrupt’s mask bit
must be set to 0. If an interrupt occurs and its correspond-
ing interrupt mask bit is set to 1, the CL550 asserts the
NMRQ# output. Asserting the RESET# input or the S-
Reset Flag register sets all fields in the Interrupt Mask
register to 0. Table 5-5 shows the fields of the Interrupt
Mask register.

fiOnf (15): This field enables the FIFO Not Full interrupt.

fione (14): This field enables the FIFO Not Empty
interrupt.

CodecNB (13): This field enables the CODEC Register
Not Busy interrupt.

Buser (12): This field enables the Bus Error interrupt.
Mark (11): This field enables the Marker Code interrupt.
Vsyn (10): This field enables the Vertical Sync interrupt.

Vnac (9): This field enables the Vertical Inactive inter-
rupt.

fend (8): In Slave mode, this field enables the FRMEND
interrupt.

fioe (7): This field enables the FIFO Empty interrupt.

filq (6): This field enables the FIFO One-Quarter Full
interrupt.

filh (5): This field enables the FIFO One-Half Full
interrupt.

fi3q (4): This field enables the FIFO Three-Quarters Full
interrupt.

finlq (3): This field enables the FIFO Not One-Quarter
Full interrupt.

fin1h (2): This field enables the FIFO Not One-Half Full
interrupt.

fin3q (1): This field enables the FIFO Not Three-Quarters
Full interrupt.

Late (0): This field enables the Data Late interrupt.

Bit Number

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

fionf { fiOne|{CodecNB|Buser [Mark | Vsyn | Vnac | fend

fioe | filq | filh | fi3q | finlq | finlh | fin3q | Late

Table 5-5. Interrupt Mask Register

70 C-CUBE CL550" JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

DMA Request Interrupt Mask Register

Register Type: R/W
Address: 901C,
Size: 16 bits

The DMA Request Interrupt Mask register defines the
operation of the CL550 DRQ# pin. The DRQ# pin is used
to implement DMA transfers. It can also be used as a
generic interrupt signal. The DMA Request Interrupt Mask
register is identical to the Interrupt Mask register. The
condition of the DRQ# output pin is determined by the
following equation:

DRQ# =/(/flag [13] ® mask [13]) e /(flag[12] ® mask [12])e

((flag [0] » mask[0D

+ (flag [1] » mask[1D

+ (flag [2] » mask[2])

+ (flag (3] » mask[3]

+ (flag [4] » maskl4])

+ (flag [5] ® mask{5]

+ (flag [6] * mask(6])

+ (flag [7] » mask(7D

+ (flag [8] » mask[8])

+ (flag [9] » mask[9])

+ (flag [10] » mask[10D
+ (flag [11] » mask[11])
+ (flag {14] » mask[14])
+ (flag [15] e mask[15])

The DRQ# output pin is always deasserted in the cycle
following the assertion of the START# signal.

Note: During a CODEC access, the DRQ# signal is suppressed.
flOnf (15): This field enables the FIFO Not Full interrupt.

fione (14): This field enables the FIFO Not Empty interrupt.

CodecNB (13): This field enables the CODEC Register
Not Busy interrupt. If DMA transfer is used, this field
should be set to 1.

Buser (12): This field enables the Bus Error interrupt.

Mark (11): This field enables the Marker Code interrupt.
Vsyn (10): This field enables the Vertical Sync interrupt.
Vnac(9): This field enables the Vertical Inactive interrupt.

fend (8): In Slave mode, this field enables the FRMEND
interrupt.

fi0e (7): This field enables the FIFO Empty interrupt.

filq (6): This field enables the FIFO One-Quarter Full
interrupt.

filh (5): This field enables the FIFO One-Half Full
interrupt.

fi3q (4): This field enables the FIFO Three-Quarters Full
interrupt.

finlq (3): This field enables the FIFO Not One-Quarter
Full interrupt.

fin1h (2): This field enables the FIFO Not One-Half Full
interrupt.

fin3q (1): This field enables the FIFO Not Three-Quarters
Full interrupt.

Late (0): This field enables the Data Late interrupt.

Bit Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fionf | fiOne|{CodecNB|Buser | Mark | Vsyn | Vnac | fend | fi0e | filq | filh | fi3q | finlq | finlh | fin3q | Late

Table 5-6. DMA Request Interrupt Mask Register

C-CUBE CL550* JPEG IMAGE COMPRESSION PROCESSOR 7

C-CUBE MICROSYSTEMS

CODEC Register

Register Type: R/'W
Address: 0000, - 7FFC,
Size: 32 or 16 bits

The CODEC register is the buffer between the Host Bus
Interface and the Huffman coder/decoder. During de-
compression operations, the host writes a sequence of
words into the CODEC register and the Huffman coder
processes each word. Until a word is processed, a new
word of data cannot be entered into the CODEC register.
If the host attempts to write 2 new word into this register,
the transfer acknowledge is withheld until the previous
word is processed and the transfer can finish. During
compression, the Huffman coder places compressed data
words into the CODEC register. If the host attempts to
read a new word from this register before the Huffman
coder completes a new word, the transfer acknowledge
is withheld until the transfer can finish. The size of the
CODEC register depends on the state of the HBUS_32#
pin: when HBUS_32# is tied low, the CODEC register is
32 bits, and when HBUS_32# is tied high, the CODEC
register is 16 bits.

Important: During decompression, there are two
restrictions placed upon writes to the CL550. Writes to
the CL550 registers (other than the CODEC register) are
prohibited while the CodecNB flag is not active (equal
to 0). Writes to the CL550 registers (other than the
CODEC register) while CodecNB is not active will
corrupt the previously written CODEC register data.
Furthermore, in 16-bit data mode, writes to the CODEC
register must always consist of two consecutive 16-bit
transfers. Other registers may not be written between
the two transfers. Note that the last word written may
need to be padded with 1’s to fullfill this requirement.

Register and Code Table Summary

Table 5-8 gives summary information about the CL550
registers and tables. All addresses are 32 bit boundaries.

5.2 Initialization Procedure

The initialization of the CL550 requires several steps. C-Cube
provides a set of C routines and object-code modules that
can be modified for use within the host process or driver
software. This section summarizes the operations per-
formed by the initialization software. Basic initialization
steps are as follows:

1. Reset the CL550 either by setting and resetting the S-
Reset register or by using the hardware reset pin. This
halts the chip and puts it in a known state, as shown
in Table 5-7.

2. Set up the Configuration register as appropriate for
compression/decompression, pixel input format, and
master/slave mode.

3. Initialize the constant and diagnostics registers. Sev-
eral of these values are based on system configuration
and operating mode. The algorithms to compute
these register values and constants are provided with
the CL550 initialization software.

4. Set the Huffman Table Load Enable register to 1 to
allow loading of the Huffman code look-up tables.

5. Write the Huffman code Y-AC, C-AC, Y-DC, and C-
DC data into the Huffman RAM. The values loaded
are specific to compression or decompression and
are loaded into a different range of addresses for each
operating mode.

6. Reset the Huffman Table Load Enable register to 0.

7. Write Color Transformation Matrix and DCT table
constants. These constants are specific to compres-
sion or decompression and are provided with the
CL550 initialization software.

8. Calculate Quantizer table values based on the desired
compression ratio. Write Quantizer table values.

9. Write video field definition registers (HPeriod, HSync,
HDelay, HActive, VPeriod, VSync, VDelay, and
VActive).

10. Initialize Interrupt Mask registers. If the host is to use
interrupt-driven service routines for reading/writing
the compressed data, these registers should be set to
generate interrupts when the FIFO fills/empties to
one-quarter, one-half, or three-quarters full/empty.
The level used is determined by the interrupt re-
sponse latency of the host, the compression ratio of
the data, and the pixel data rate.

After this procedure is completed, the CL550 can be
started by setting the HV Enable and Start registers to 1.
The HV Enable register should be reset to O after the
falling edge of Vsync.

72 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

The following registers are reset to 1s.

Register Reset Values
HPeriod All 1s
HSync All 1s
HDelay All 1s
HActive All 1s
VPeriod All 1s
VSync All 1s
VDelay All 1s
VActive All 1s
Video Latency All 1s
Horizontal Control All 1s
Vertical Control All 1s

The following registers are reset to 0s.

Reset Values

Register

Configuration

Huffman Table Load Enable

S-Reset

Start

HYV Enable

Interrupt Mask

DMA Request Interrupt Mask

Start of Frame

Decoder Code Order

Vertical Line Count

[=] [} (o] foo] [] fo) fer] fon) R} R Har)

Init Register 4

The following registers are set to:

Register

Reset Values

Flags

1000 0x10 1000 1110

Init Register 3

001 0000 0000

The remaining CL550 registers are unaffected by reset.

Table 5-7. CL550 Registers Reset Value

Note: In the Flags register, bit 10 (x) is set to the inverse

of the VSYNC pin.

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

73

C-CUBE MICROSYSTEMS

Starting Data Starting Data

Register/Table Name R/W Address Size Register/Table Name R/W Address Size
CODEC register R/W 0000-7FFC 32 or 16 Decoder Resume Flag register w a8l14 1
HPeriod register R/W 8000 14 Decoder DPCM Reset
HSync register R/'W 8004 14 register w a818 1
HDelay register R/W 8008 14 Decoder Code Order register R/W a8lc 1
HActive register R/'W 800c 12 Init Register 3 w b600 n
VPeriod register RIW 8010 1 (%gggglng:?leremode) R/W b80O-bofc 16
VSync register R/W 8014 11 Quantizer Table
VDelay register R/W 8018 14 (four table mode) R/W b800-bbfc 16
VActive register R/W 801c 11 Quantizer A/B Table Select reg. W bc00 1
DCT;coef0 of multil w 8800 16 Quantizer Sync register 7 be00 14
DCT;coefl of multil w 8804 16 Quantizer Y/C Table
DCT;coef2 of multil W 8808 16 Sequence register W be08 14
DCT:coef3 of multil W 880c 16 Quantizer A/B Table Sequence
DCT:coef0 of multi2 W 8810 16 Select register i belc 10
DCT-coefl of multiz v 3814 6 Color Transformation Matrix w c000-c020 12
DCT;coef2 of multi2 W 8818 16 Video Latency register RW <030 14
DCT.coef3 of multiz W B8 1c G HControl register R/W c034 14
Init Register 5 W 8820 6 VControl register R/W 038 14
Init Register 6 v 8824 6 Vertical Line Count register R c03c 14
Configuration register R/W 9000 9 Init Register 4 v cf0o 1
Huffman Table Load Enable Init Register 7 hd d400 16

register W 9004 1 FIFO memory R/W d800-do9fc 13
S-Reset register W 9008 1 Huffman Y-AC R/W e000-eafc 9
Start register T R/W 900c 1 Huffman Y-DC R/W ec00-ec7c 9
HV Enable register R/W 9010 1 Huffman C-AC R/W foo0-fafc 9
Flags register R/W 9014 16 Huffman C-DC R/W fc00-fc7c¢ 9
Interrupt Mask register R/W 9018 16
DMA Request Interrupt

Mask register R/W 901c 16
Start of Frame register R/W 9020 1
Version register R 9024 3
Init Register 1 W 9800
Init Register 2 w 9804 7
Huffman Table Sequence register W a000 10
DPCM register Sequence High w a004 10
DPCM register Sequence Low w a008 10
Coder Attributes register W a00c 7
Coding Interval register H w a010 8
Coding Interval register L W a014
Decoder Table Sequence

Length register R/W a80c 4
Decoder Marker register R a810

Table 5-8. CL550 Registers and Tables Summary

74 C-CUBE CL550* JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

5.3 Data Flow Control

Once the CL550 registers and tables have been initialized,
the actual compression and decompression of data can be
started. The following paragraphs provide an overview of
the flow of the control program managing the CL550 in
compression and decompression mode, respectively.

5.3.1 Compression Mode

In compression mode, the CL550 takes pixel data from the
pixel bus and produces a JPEG compressed data stream
for output to the host bus. A FIFO is used to isolate the
synchronous pixel bus side of the CL550 from the
asynchronous host bus side. (See Figure 5-4.)

The host reads compressed data out of the chip. By
reading from the host interface, the host causes the FIFO
to be read by the Huffman coder. The host is responsible
for preventing FIFO overflow. This condition can arise if
the host read transfer rate is less than the compression rate
for a sustained period. In order to prevent FIFO overflow
conditions, the video pipeline can be stopped by asserting
the STALL# signal. Data is processed by the Huffman
coder while STALL# is asserted. In real-time operation, it
is not possible to stop the video data input. While the
CL550 pixel pipeline is stalled, incoming pixels must be
stored in an external pixel buffer. Time that the CL550
pixel pipeline loses while stalled may be recovered
during the blanking regions.

Sample Compression Program

A flow chart of a program using the CL550 Flags register
to manage the flow of compressed data out of the CL550
is shown in Figure 5-5. The host starts the compression
process: it reads data out at a rate that keeps the FIFO from
underflowing or overflowing; when it recognizes the end
of image, it drains the remaining data from the FIFO.
Finally, it generates any header information required
before processing the next image.

The process is started by setting the Start register high and
waiting for the FIFO to start to fill. If the FIFO is more than
one-quarter full, the host processor reads data out. The
Vnac flag can be used by the host processor to indicate
that no transfers remain and thus the end of the image has
been reached. At this point, the program reads the
remaining data from the FIFO. Finally, the host can
compile any file information it may need, such as com-
pressed file size, and then wait for the next frame.

Pixel Synchronous Host
Bus P}ilxel FIFO Huffman Host Bus
. ™ Coder ™ Interface
Pipeline

Figure 5-4. Compression Data Flow

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 75

C-CUBE MICROSYSTEMS

1/4 Full interrupt.

Read data from host port if FIFO
is more than 1/4 full.

Wait for

Set
Start register

Wait for FIFO to fill as signaled by

This action starts the processing
of the video field.

&

Read CODEC

signal

If vnac goes active, continue to
read remaining data from FIFO
until finished.

After reading remaining data,
compile file info for the image
(if required), then process next
frame.

vnac or filq

If filq active,
continue the
read process.

Read CODEC

Done

filq

Empty remaining data
in the pipeline.

Figure 5-5. Compression Program Flow Example

76

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

5.3.2 Decompression Mode

In decompression mode, the CL550 takes JPEG com-
pressed data from the host bus and produces a pixel data
stream for output to the pixel bus. (See Figure 5-6.)

The host writes compressed data into the chip. The host
is responsible for preventing FIFO overflow or under-
flow. This condition can arise if the host write transfer rate
is different from the decompression rate for a sustained
period. The host must have enough bandwidth to keep
up with the basic decompression rate. In order to prevent
FIFO underflow conditions, the video pipeline can be
stopped by asserting the STALL# signal. Data is processed
by the Huffman coder while STALL# is asserted.

Sample Decompression Program

A flow chart of a program that uses the CL550 Flags
register to manage the flow of compressed data is shown
in Figure 5-7. The host starts the decompression process:
it writes data into the CL550 at a rate that keeps the FIFO
from underflowing or overflowing until it recognizes the
end of image.

The process is started by loading data into the processor
until the FIFO is three-quarters full. The Start register is

then set high. When the FIFO is more than three-quarters
full, the host processor stops writing data into the CL550.
It restarts writing data when the FIFO is less than three-
quarters full.

In general, the host can obtain status information from
interrupts or by polling. Some interrupts, such as the Late
Flag interrupt, should always be enabled and used to
detect error conditions, such as FIFO underflows. In

either case, only a single read is required to obtain status
for all of the flags.

Important: During decompression, there are two
restrictions placed upon writes to the CL550. Writes to
the CL550 registers (other than the CODEC register) are
prohibited while the CodecNB flag is not active (equal
to 0). Writes to the CL550 registers (other than the
CODEC register) while CodecNB is not active will
corrupt the previously written CODEC register data.
Furthermore, in 16-bit data mode, writes to the CODEC
register must always consist of two consecutive 16-bit
transfers. Other registers may not be written between
the two transfers. Note that the last word written may
need to be padded with 1’s to fullfill this requirement.

PIXEL

BUS SYNCHRONOUS
-— | PXEL FIFO
PIPELINE

HOST
HUFFMAN HOST BUS
CODER INTERFACE

Figure 5-6. Decompression Data Flow

C-CUBE CL550” JPEG IMAGE COMPRESSION PROCESSOR 77

C-CUBE MICROSYSTEMS

Write data into CODEC unitl Write CODEC -l ————

FIFO is 3/4 full.
fi3q active?
Start the pixel pipeline.
Set
Start register
Write data into host port until .
Write CODE! - ————

FIFO is 3/4 full or end of image. e c

When fi3q goes inactive,
continue the write process.

End of image?

Figure 5-7. Decompression Program Flow Example

78 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

5.4 Data Structure and Signaling
Parameters

This subsection describes the data structures for the
original and compressed data. It also defines the signaling
parameters contained in the compressed data streams.
For more detail, the reader should refer to the official 15-
March-1991, WG10 "JPEG" Committee Draft document
CD 10918-1.

Each component of the image (for example Y, U, or V) is
represented internally in-the compression/decompres-
sion system as a rectangular array of samples. The
relationship between this internal representation and the
placement of pixels in the physical image is defined by the
application.

5.4.1 Frames and Scans

A nonhierarchical JPEG image consists of one frame. A
frame consists of one or more scans through the image
data for each component.

Within each scan, two basic types of data ordering are
defined, interleaved and noninterleaved. With
noninterleaved data, each scan contains only one compo-
nent; with interleaved data, each scan contains data from
all of the components in the frame.

Minimum Coded Unit (MCU)

The minimum coded unit (MCU) is the smallest unit of
data that is allowed by the baseline JPEG compression
algorithm.

For noninterleaved data, the MCU is an 8x8 block of
samples. The 8x8 block units result from the division of
each component into contiguous 8x8 sample blocks for
purposes of computing the DCT. The upper left 8x8 block
is aligned with the upper left 8x8 group of pixels in the
array. The blocks in the component are processed from
left to right along block rows, and from top block row to
bottom block row of each component.

For interleaved data, the MCU is a block interleave. A
block interleave consists of a sequence of one or more 8x8
blocks of samples from each component in the frame. The
order of blocks and the number of blocks in a block
interleave are determined from the sampling ratio signal-
ing parameter. The sampling ratio defines the relative
frequency both horizontally and vertically for the sam-
pling of the individual components in the frame.

5.4.2 Compressed Data Organization and
Conventions

The compressed data stream contains delineated seg-
ments for each scan in the image. Each scan contains a
segment with signaling parameters and a compressed
data segment. The compressed data segments contain
data generated using the Huffman coding technique.
Special resynchronization codes can also be embedded
within the coded data segment.

The bit ordering and byte ordering conventions in the
compressed data are as follows:

1. The coded data is byte aligned.
2. Integers are sent most significant byte first.

3. Huffman code roots are placed toward the most
significant bit of the byte.

4. Integers associated with Huffman codes are appended
with the most significant bit adjacent to leaf of the
Huffman code.

5. If an integer is split between two or more bytes, the
byte containing the most significant bit of the intger
is sent first.

The frames and the segments within a frame are deline-
ated by unique byte aligned “marker” codes. The marker
codes and associated length fields allow the various
segments in the compressed data to be located without
decompression.

Marker Code Definitions

The marker codes consist of two byte-aligned 8-bit
integers. The first 8-bit integer is always X'’FF'. In the
compressed data stream, any nonzero value following a
XFF byte is defined to be a marker code.

The Huffman codes are constrained such that a marker
code cannot be created by any valid sequence of normal
coding operations. For Huffman coding, the constraint is
introduced by inserting (“stuffing”) a zero byte following
any XFF byte that is created by any combination of
Huffman codes or appended 1 bit. If these 1 bits happen
to create an X’FF byte, a zero byte is stuffed before
appending the X’FF prefix to the marker code. The
marker codes fall into two classes: codes without fields
and codes followed by a field whose length is specified

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR 79

C-CUBE MICROSYSTEMS

by an unsigned integer in the first two bytes of the field. contain an unsigned 16-bit integer giving the length of the
For those marker codes followed by a variable-length field in bytes. The marker codes are summarized in the
field (V), the first two bytes of the variable-length field following table,

Marker Field
Code Length Category
Frame signaling for non-hierarchical Huffman coding:
X'CcO’ \Y% SOFO - Baseline DCT frame
X'Cr’ \% S0S1 - Extended sequential DCT frame
X'C2 v SOF2 - Progressive DCT frame
X'C¥ \Y SOF3 - Spatial DPCM frame
Frame signaling for hierarchical Huffman coding:
X'Cs \% SOF5 - Differential sequential DCT
X'C6’ \Y SOF6 - Differential progressive DCT
X'C7 A% SOF7 - Differential spatial
Frame signaling for nonhierarchical arithmetic coding:
X'Csg - Reserved for JPEG extensions
XCy A% SOF9 - Extended sequential DCT frame
X'CA’ \% SOF10-Progressive DCT frame
X'CB’ \Y% SOF11-Spatial DPCM frame
Frame signaling for hierarchical arithmetic coding:
XCD’ \% SOF13-Differential sequential DCT
X'CE’ \% SOF14-Differential progressive DCT
X'CF \Y% SOF15-Differential spatial
Huffman table load:
XC4 \% DHT - Define Huffman table(s)
Arithmetic coding conditioning load:
X'cc \% DAC - Define arithmetic coding conditioning(s)
Restart interval termination:
X'DO-X'D7’ 0 RSTm - Restart with modulo 8 count “m”.
Other marker codes:
X'D8’ 0 SOI - Start of image
XD9’ 0 EQOI - End of image
X'DA’ \Y SOS - Start of scan
X'DB’ A% DQT - Define quantization table(s)
XDC \% DNL - Define number of lines
XDD’ \% DRI - Define restart interval
X'DE’ A% DHP - Define hierarchical progression
X'DF \% EXP - Expand reference image(s)
X’ EO-X’EF \Y APPn - Reserved for application signaling
X'FO-X'FD’ - JPGn - Reserved for JPEG extensions
XFE A% COM - Comment
X'FF 0 FIL - Fill byte

Table 5-9. Marker Codes

80 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MHCROSYSTEMS

The SOI (start of image) marker code always starts the
compressed data stream. Note that the SOI marker code
can be used to detect problems with either bit order or bit
sense of the data.

The DQT (define quantization table) marker code is used
to define quantization tables. It is followed by a two-byte
length and a field that specifies one or more quantization
tables.

The DRI (define restart interval) marker code provides a
mechanism for setting the restart interval. It is followed by
a two-byte length, which is always equal to 4, and a two-
byte value giving the number of MCUs in the restart
interval.

The SOFn (start of frame) marker codes start the signaling
parameter sequence for all scans within a given image
frame. The length field gives the length in bytes for this
portion of the signaling parameters. The SOF marker code
contains a four-bit field (n) in which it identifies the class
of compression algorithm used within a frame.

The DHT (define Huffman table) marker code is used to
define Huffman tables. It is followed by a two-byte length
and a field that specifies one or more Huffman tables.

The SOS (start of scan) marker code starts the signaling
parameter sequence for a scan within the image frame.
The length field gives the length in bytes for this portion
of the signaling field. Each scan in the frame must start
with this marker code.

The RST_ (restart) marker code can be added to the
compressed data at the start of each coding interval. If
used, it provides a unique byte-aligned code that can be
located by scanning the compressed data. A three-bit field
in this marker code provides a modulo 8 resynchroniza-
tion interval count.

The DNL (define number of lines) marker code provides
a mechanism for transmitting the line count at the end of
the scan. If the DNL marker code is used, it is added to the
compressed data at the end of the first scan of the frame.

The EOI (end of image) marker code terminates the
compressed data stream.

The FIL (filD marker code provides a mechanism for
extending the 1-byte sequence in the marker code prefix
(X’FF’). The FIL marker code must always be followed by
another marker code.

The APPn marker codes are marker code categories
reserved for application-specific use. Information con-
tained in these fields should not affect the decoding of the
compressed data. These codes and associated fields can
be inserted into the compressed data before the SOF and
SOS marker codes (which then occur immediately after
the inserted field). They can also be inserted immediately
after the scan signaling field. APPn marker codes and
associated fields can be followed by other APPn marker
codes and by any other marker codes that are allowed at
that position in the compressed data.

JPGn marker codes are reserved for future JPEG exten-
sions.

CL550 Handling of Marker Codes
Compression Mode

The only marker code the CL550 can generate is the restart
(RST) code.

If restart marker code generation is enabled (that is, bit 4
of the Coder Attributes register is asserted), the CL550 will
insert a restart code “FFDX” (where X is modulo 8 count)
after the coder encodes the last pixel data of the first MCU
of every coding interval.

If necessary, before an RST code is generated, the current
byte will be “1” filled to the byte boundary.

All of the other JPEG marker codes are inserted by
software.

Decompression Mode

The CL550 decoder can detect marker codes. If a restart
marker code is detected, the CL550 resets the DPCM
registers and then proceeds normally. If a different marker
code is detected, the CL550 coder completes the proceeding
decoding operation, asserts the Marker code flag bit in the
Flags register, writes the marker code byte to the marker
code register, and stops. If the marker code interrupt is
enabled, the host will be interrupted and software will
react accordingly. The decoder operation is resumed by
software by writing to the Decoder Resume Flag. The
decoder will reset the Marker Code Flag bit after the
decoder operation is resumed. If end of image (EOD
marker code is encountered by software in the interrupt
routine, the DPCM registers must be reset before the
Decoder Resume Flag is set.

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 81

C-CUBE MICROSYSTEMS

5.4.3 Structure of the Compressed Data Stream

The structure of a typical compressed data set is presented in Figure 5-8.

SOI
DRI, length, restart interval

DHT,

EOI

DQT, length, quantization table definition

SOFn, length, frame parameters
length, Huffman table definition
SOS, length, scan parameters

compressed data for restart interval, RSTO
...... , RST1

........ etc.
compressed data for final restart interval, RSTm

SOS, length, scan parameters

....... etc.
compressed data for final resart interval, RSTm

Figure 5-8. Compressed Data Structure

The coded data is the portion of the data stream created
by Huffman coding. Coded data segments are always
terminated by a marker code.

Sequential Control Structure for Encoding
an Image

The next paragraphs provide a detailed explanation of the
control structure necessary to create a compressed data
stream. The control structure for compression of an image
is shown in Figure 5-9.

Each frame in the image is coded independently. Only the
quantization matrices and code tables may be retained
from one frame to the next. Component identification

should also be consistent from frame to frame.

Control Structure for a Frame

The control structure for compression of a frame is
oriented around the scans in the frame. If noninterleaved
data ordering is used, each component is sent in a
separate scan. If interleaved data ordering is used, all of
the components in the frame are sent in a single scan.
Figure 5-10 provides a sketch of the frame control
structure.

| encode ima§e|

Y

[add SOl marker

Ll

encode frame

add EOI marker code |

| encode frame|

add SOF marker code
and generate frame
signaling information

encode scan

Figure 5-9. Encoder Control Structure for an Image

Figure 5-10. Encoder Control Structure for a Fframe

82 C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

Control Structure for a Scan

A scan is composed of a sequence of restart intervals.

An RST marker code can be placed in the coded data
between restart intervals. A scan is always terminated by
a SOS, SOF, or EOI marker code. The DNL marker code
can precede one of these marker codes at the end of the
first scan in the frame.

Figure 5-11 provides a simplified scan control structure.
The loop is terminated when the encoder has coded the
expected number of minimum coded units (MCUs).

encode scan |

Y

add SOS marker, generate
scan signaling information,
and initialize coder

Y
| encode data for next restart interval I

add RSTm
marker code

Iencode start interval |

Y
I reset encoder |

P

K |

encode scan

Figure 5-11. Encoder Control Structure for a Scan

Coding Interval Control Structure

Figure 5-12 provides a simplified version of the encoder
control structure for a restart interval. The loop is termi-
nated either when the encoder has coded the number of
lines of minimum coded units (MCUs) in the restart
interval or when it has completed the image frame.

Figure 5-12. Encoding of a Restart Interval

C-CUBE CL550% JPEG IMAGE COMPRESSION PROCESSOR

83

C-CUBE MICROSYSTEMS

“This Page Intentionally Left Blank~

84 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

6.0 Ordering Information

C-Cube CL550 Processor

(CL550-10N MQUAD package)

Part Description Temperature Range Order Number
35 MHz CL550 Processor Tcase = 0 to 85° C C0003
(CL550-35 PGA package)
30 MHz CL550 Processor Tcase = 0 to 85° C C0002
(CL550-30 PGA package)
30 MHz CL550 Processor Tcase = 0to 85° C C0004
(CL550-30 MQUAD package)
10 MHz CL550 Processor Tcase = 0t0 85° C C0005
(CL550-10 MQUAD package)
10 MHz CL550 NuBus Processor Tcase = 0 to 85° C C0006

C-CUBE CL550° JPEG IMAGE COMPRESSION PROCESSOR

85

C-CUBE MICROSYSTEMS

“This Page Intentionally Left Blank~

86 C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR

C-CUBE MICROSYSTEMS

Appendix A: Register Initialization Values

1 Table 2 Table 3 Table RGB >

BYPASS 422 444 444 444 4444 YUV_422 | 444 -> 422
Init_1 0x0002L 0x0042L 0x0040L 0x0040L 0x0040L 0x0042L 0x003CL 0x0042L
Init_2 0x0001L 0x0001L 0x0000L 0x0000L 0x0000L 0x0001L 0x003DL | 0x0001L
Init_3 0x0141L 0x0081L 0x007FL 0x007FL 0x007FL 0x0081L 0x007BL 0x0081L
Init_4 0x00F7L 0x00F7L 0x00F5L 0x00F5L 0x00FSL 0x00F7L 0x00F1L 0x00F7L
Lnit_5 0x0000L 0x0000L 0x000EL 0x000EL 0x000EL 0x0000L 0x000AL 0x0000L
Init_6 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L
Init_7 0x005DL | 0x001DL | 0x001BL 0x001BL 0x001BL 0x001DL | 0x0017L 0x001DL
QuantSync 0x0406L | Ox0406L | O0x0404L | O0x0404L | 0x0404L | Ox0406L | 0x0400L | 0x0406L
QuantYC 0x2000L 0x2099L 0x1800L 0x20CCL | 0x2044L 0x2055L 0x2099L 0x2099L
QuantAB 0x0000L 0x0000L 0x0000L 0x0000L 0x0088L 0x0099L 0x0000L 0x0000L
VideoLatency | 0x00BFL 0x017FL 0x0181L 0x0181L 0x0181L 0x017FL 0x0185L 0x017FL

Table A-1. Initialization Register Values for Compression

Init_1 0x003EL 0x003EL 0x003EL 0x003EL 0x003EL 0x003EL 0x003EL 0x003EL
Init_2 0x0037L 0x0037L 0x0037L 0x0037L 0x0037L 0x0037L 0x0037L 0x0037L
Init_3 0x01FFL Ox01FFL 0x01FFL 0x01FFL 0x01FFL OxO1FFL 0x01FFL Ox01FFL
Init_4 0x0049L 0x0049L 0x0049L 0x0049L 0x0049L 0x0049L 0x0049L 0x0049L
Init_5 0x0005L 0x0005L 0x0005L 0x0005L 0x0005L 0x0005L 0x0005L 0x0005L
Init_6 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L
Init_7 0x0022L 0x0022L 0x0022L 0x0022L 0x0022L 0x0022L 0x0022L 0x0022L
QuantSync 0x043EL | Ox043EL | OxO43EL | Ox043EL | Ox043EL | Ox043EL | O0x043EL | 0x043EL
QuantYC 0x2000L 0x2033L 0x1800L 0x2099L 0x2088L 0x20AAL | 0x2033L 0x2033L
QuantAB 0x0000L 0x0000L 0x0000L 0x0000L 0x0011L 0x0033L 0x0000L 0x0000L
VideoLatency | O0xO0BFL 0x017FL 0x017FL 0x017FL 0x017FL 0x017FL 0x017FL 0x017FL

Table A-2. Initialization Register Values for Decompression

Config 0x0080L 0x0010L 0x0040L 0x0040L 0x0040L 0x0060L 0x0030L 0x0020L
CodecSeq 0x0000L 0x00CCL | 0x0000L 0x0036L 0x0000L 0x0000L 0x00CCL | 0x00CCL
CodecCompH | 0x0000L 0x0088L 0x0024L 0x0024L 0x0024L 0x00CCL | 0Ox0088L 0x0088L
CodecCompL | 0x0000L 0x0044L 0x0012L 0x0012L 0x0012L 0x00AAL | 0x0044L 0x0044L
CoderAttr 0x0001L 0x0004L 0x0003L 0x0003L 0x0003L 0x0004L 0x0004L 0x0004L
CodingIntH 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L 0x0000L
| CodingIntL 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0008L 0x0001L
DecLength 0x0008L | 0x0008L | 0x0006L | Ox0006L | 0x0006L | 0Ox0008L | 0Ox0008L | 0x000SL
CodeOrder 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L
QuantSelect 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L 0x0001L

Table A-3. Configuration Register Values

C-CUBE CL550® JPEG IMAGE COMPRESSION PROCESSOR 87

