
T H E I N S I D E R S ’ G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

MICROPROCESSOR
VOLUME 13, NUMBER 16

DECEMBER 6, 1999

REPORT
T for Alpha

struction- and Thread-Level Parallelism
by Keith Diefendorff

As it climbs rapidly past the 100-million-
transistor-per-chip mark, the micro-
processor industry is struggling with the

question of how to get proportionally more performance out
of these new transistors. Speaking at the recent Microproces-
sor Forum, Joel Emer, a Principal Member of the Technical
Staff in Compaq’s Alpha Development Group, described his
company’s approach: simultaneous multithreading, or SMT.

Emer’s interest in SMT was inspired by the work of
Dean Tullsen, who described the technique in 1995 while at
the University of Washington. Since that time, Emer has
been studying SMT along with other researchers at Washing-
ton. Once convinced of its value, he began evangelizing SMT
within Compaq. His efforts have apparently paid off, as
Compaq has officially adopted SMT for the Alpha 21464 (see
MPR 11/15/99, p. 13), code-named EV8, which is due to
appear in systems in 2003. That Compaq is talking about this
processor three full years in advance indicates great confi-
dence in SMT technology as well as a strong desire to estab-
lish that Alpha has a future.

SMT processors are similar to conventional superscalar
out-of-order processors, but they have additional hardware
resources that allow them to interleave the execution of mul-
tiple instruction streams, or threads, onto the execution
units, as Figure 1 shows. By more fully utilizing the execution
units in this way, SMT processors achieve higher sustained
throughput and improved tolerance of memory latency.

The Debate: ILP or TLP
Even with 100 million of them on a chip, transistors are not
free—yet. Hence, the question persists of how to deploy them
in a way that maximizes performance. One alternative is to
use them just to build larger on-chip memories, as Intel has
done with the new Pentium III (see MPR 10/25/99, p. 1). This
approach is effective, but only up to a point, beyond which
little is gained from adding more cache. At that point, perfor-
mance becomes limited by the speed of the processor core.

Compaq Chooses SM
Simultaneous Multithreading Exploits In
Given a full complement of on-chip memory, increas-
ing the clock frequency will increase the performance of the
core. One way to increase frequency is to deepen the pipeline.
But with pipelines already reaching upwards of 12–14 stages,
mounting inefficiencies may close this avenue, limiting future
frequency improvements to those that can be attained from
semiconductor-circuit speedup. Unfortunately this speedup,
roughly 20% per year, is well below that required to attain the
historical 60% per year performance increase. To prevent
bursting this bubble, the only real alternative left is to exploit
more and more parallelism.

Indeed, the pursuit of parallelism occupies the energy
of many processor architects today. There are basically two
theories: one is that instruction-level parallelism (ILP) is
abundant and remains a viable resource waiting to be tapped;
the other is that ILP is already tapped out, and it’s time to
move on to the richer vein of thread-level parallelism (TLP).

TLP proponents point to the rather depressing history
of ILP progress. Over the past 10 years, processors have
grown from simple single-issue machines with fewer than
Conventional
Superscalar

Simultaneous
Multithreading

 Time

Execution U
nits

Execution U
nits

Figure 1. By interleaving instructions from multiple threads (various
colors) onto a conventional superscalar pipeline, SMT processors
leave fewer empty execution slots (white). This resulting high
execution-unit utilization gives SMTs superior throughput for a
given amount of hardware resources.

2 C O M P A Q C H O O S E S S M T F O R A L P H A

e
u
Fo
1 million core transistors to four-wide out-of-order behe-
moths with 10-million-transistor cores. At the same time,
however, sustained ILP has done little better than double.
Professor John Hennessy of Stanford in his keynote speech at
the Forum showed data indicating that while the theoretical
ILP of an assortment of SPEC95 benchmarks ranges from
about 18 to 150 IPC, practical four-wide out-of-order super-
scalar processors rarely achieve even 2 IPC. ILP pessimists
further assert that progress will be more dismal in the future,
as diminishing returns will more severely curtail ILP gains.

No Lack of Ideas to Use Transistors
ILP proponents counter that with just a few
more tens of millions of transistors, mixed
with a little compiler magic, they can un-
leash this wealth of ILP. According to this
group, radical models of execution that
could not be considered in past are becom-
ing feasible. HP and Intel with Itanium (see
MPR 10/6/99, p. 1) are depending on static
instruction scheduling by a compiler, pred-
ication, and very large register files to
achieve a step-function increase in ILP.

Hal’s Sparc64 V (see MPR 11/15/99,
p. 1) is using trace processing and super-
speculation to achieve high ILP. Optimists
like Yale Patt at the University of Texas and
John Shen at Carnegie-Mellon believe that
such advanced superscalar techniques will
allow ILP to scale with transistor count,
ultimately enabling 16- or 32-wide proces-
sors with sustained ILP of 10 IPC or more on general-pur-
pose applications.

Even if they succeed in extracting this degree of paral-
lelism, such processors will all have one thing in common:
physically large monolithic cores. Many will also have stag-
geringly complex control mechanisms. Although transistors
will be plentiful enough to implement such machines, physics
will surely intervene to enforce its immutable rule that large
things are slow things. Furthermore, design and verification
will become ever more difficult and time consuming.

Compaq research
scribes simultaneo
at Microprocessor
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
These realities, along with less confidence in ILP, have
motivated IBM with Power4 (see MPR 10/6/99, p. 11) and
Sun with MAJC (see MPR 10/25/99, p. 18) to shift their
attention from ILP to explicit thread-level parallelism. These
companies are using their transistors to build chip multi-
processors (CMPs). They believe it is wiser to keep processor
cores small and fast, by limiting their issue widths, while rely-
ing on the parallelism between independent program threads
to achieve higher performance.

A major drawback of both high-ILP
processors and CMPs is that they suffer from poor transistor
utilization when the workload doesn’t match the processor.

High-ILP processors speculate poorly or
leave function units idle when faced with
programs having inherently low ILP. Simi-
larly, CMPs must leave entire processors
idle when enough threads aren’t available.

Enter SMT
Simultaneous multithreaded processors are
a cross between wide-issue superscalar pro-
cessors and fine-grain-multithread proces-
sors (see MPR 7/14/97, p. 13). Fine-grain
multithreading (FMT) was first imple-
mented by Seymour Cray in the peripheral-
processing unit of the CDC 6600 (circa
1964), then again in the late 1970s in Denel-
cor’s HEP, and more recently in Tera’s MTA.
FMTs maintain state information for sev-
eral active threads, and on each cycle they
issue one instruction from a different

thread. The advantage of this technique is that it fills pipeline
bubbles created by dependencies on long latency operations
(e.g., memory accesses) with instructions from known-inde-
pendent threads. This is far easier and more effective than
trying to fill bubbles by ferreting out and reordering inde-
pendent operations from a single thread.

If FMT were straightforwardly extended to superscalar
issue, as Figure 2 shows, it would address the problem of low
temporal utilization of execution units (pipeline bubbles),
but the problem of low spatial utilization (empty execution
slots) would remain, due to intrathread dependencies. Simul-
taneous multithreading, however, allows instructions to be
selected for issue from any ready thread, as Figure 1 shows. In
this way, SMT processors can fill unused execution slots with
useful work.

The real beauty of SMT is that as threads execute, the
machine can dynamically reallocate execution resources on
the basis of the mix of parallelism in the workload. A single
thread with a high degree of ILP can utilize the full resources
of the machine for maximum speed; alternatively, resources
can be distributed among several threads to achieve high
throughput, even in the face of low ILP. Indeed, any combi-
nation of workload types can execute concurrently, with per-
formance limited only by the total available resources.

r Joel Emer de-
s multithreading
rum.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

Fine-Grain
Multithreading

 Time

Superscalar
Fine-Grain
Multithreading

Figure 2. The precursor of SMT, fine-grain multithreading, fills
pipeline bubbles by alternating the issue of instructions from sev-
eral threads. Extending this idea to a superscalar pipeline would fill
temporal pipeline bubbles, but, unlike SMT, would not fill execu-
tion units in space.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 C O M P A Q C H O O S E S S M T F O R A L P H A
SMT’s ability to exploit parallelism in a wide variety
of workloads produces consistently high execution-unit
utilization, a fact that enables designers to consider wider
superscalar designs than could be justified on ILP alone.
Although Emer counts himself in the camp of ILP-opti-
mists and says that EV8 would have been eight-wide even
without SMT, he is less sanguine about ILP beyond that
which is exploitable by an eight-wide processor. With SMT
to take up the excess, however, even wider machines might
be effective.

Not That Different From Wide Superscalar
Conceptually, SMTs are similar to wide-issue dynamically
scheduled processors, as Figure 3 shows. In fact, no new
control mechanisms are needed to issue instructions from
multiple threads. The traditional register-renaming
scheme, for example, avoids false dependencies (register
name conflicts) between threads in the same way it does
within a single thread: by mapping architectural registers
from the active thread onto the processor’s pool of physical
registers.

This is not to say that no additional hardware is re-
quired for SMT. Thread identifiers, for example, must be
appended to each instruction so thread-specific opera-
tions, such as branch prediction and virtual address trans-
lation, can be performed as instructions flow through the
pipeline. Also, some processor resources must be dupli-
cated so that state information (registers, program counter,
etc.) can be maintained separately for each active thread
context.

Other hardware, such as
that required for recovering
from branch mispredictions,
handling program excep-
tions, maintaining precise
interrupts, returning from
subroutines, and retiring
instructions in order, must
either be replicated for each
thread or shared, which
requires more complex book-
keeping logic.

While the aforemen-
tioned additions are required
to achieve proper function,
even more hardware is prob-
ably needed to carry the
heavier load of multiple
threads. Instruction queues
must be deeper, and more
registers must be available in
the renaming pool. Caches,
translation-lookaside buffers
(TLBs), and branch-history
tables (BHTs), should also be

Program Ctr

Register
Alias
Table

Instru
Qu

QuRenameFetch

PC0

PC1

PC2

PC3

RAT0

RAT2

RAT3

Instru
Qu

RAT1

Instr. Cache

Instr. Cache

Figure 3. The SMT pipeline (b
(top) with the addition of a few
BHT and TLBs, and some extra
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
larger, be more associative, and have more ports. And
because the SMT’s execution units are shared among several
simultaneous threads, their number and symmetry may
have to be increased to prevent contention.

While these additional hardware resources do not
themselves add much complexity beyond that found in a
conventional superscalar processor, they do add size. To pre-
vent this size increase from impacting cycle time, steps must
be taken that do indeed increase complexity. The caches, for
example, may have to be partitioned into multiple smaller
banks; the register files and execution units may also have to
be partitioned, as they are in the 21264 (see MPR 10/28/96,
p. 11); and the pipeline may have to be lengthened, putting
pressure on the branch predictor, rename registers, and
reorder buffer.

Even though SMTs require incremental hardware to
support each thread, an SMT capable of running four simul-
taneous threads, for example, would be nowhere near four
times larger than a single-thread superscalar of the same
issue width. Two things account for this economy: first, SMT
threads exploit hardware that would otherwise be sitting
idle; second, the statistical variations in multiple threads
running asynchronously prevent excessive contention for
some hardware. Thus, a good deal of hardware—the execu-
tion units and caches, for example—can be effectively
shared, avoiding hardware increases for each thread. Indeed,
Compaq says that EV8’s resources are sized for a single-
thread and that additional SMT threads are treated as oppor-
tunistic. Future processors, however, may indeed have
beefed-up resources to reduce conflicts.
ction
eue

Registers

Registers

Retire

Data Cache

WritebackCacheExecuteReadeue

ction
eue

Registers

Registers

Data Cache

ottom) is similar to a conventional out-of-order superscalar pipeline
 thread-specific resources at the front of the pipeline, thread-sensitive
registers.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

4 C O M P A Q C H O O S E S S M T F O R A L P H A
Instruction Fetch Limits Throughput
Because the SMT has more independent instructions at its
disposal (from separate threads), it can issue instructions at a
far higher rate than a single-thread processor. This higher
issue rate puts severe pressure on the instruction fetcher. In
fact, instruction fetch is potentially the most severe bottle-
neck in an SMT processor. Therefore, it is necessary to mini-
mize branch mispredictions, to minimize fetching specula-
tive instructions when nonspeculative ones are available, and
to have an intelligent mechanism for selecting threads from
which to fetch.

Emer described one possible scheme in a paper he co-
authored for the Sept/Oct ’97 issue of IEEE Micro. In the
eight-wide SMT hypothesized in that paper, on every cycle
the instruction fetch unit fetched eight instructions from
each of two threads that were not currently processing an
instruction-cache miss. Instructions were selected for dis-
patch from the first thread until either a branch or an end-
of-cache line was encountered, at which time instructions
were selected from the second thread.

The two threads were selected using an Icount feedback
technique. This technique prioritizes fetch from threads that
currently have the fewest instructions in the front end of the
pipeline. The theory behind Icount is that it gives the highest
fetch priority to the fastest-moving threads and maximizes
interthread parallelism by maintaining an even distribution
of instructions from different threads in the instruction
queues. Icount also prevents thread starvation, since threads
with the fewest instructions in the pipeline are the first to get
new fetch cycles.

Icount scheduling has the fortuitous characteristic of
very low hardware cost; all that’s required is a simple up/
down counter for each thread and some comparators to
select the two threads with the smallest counts. In the Micro
paper, the researchers found Icount to be more effective than
alternative schemes that sought to fetch from threads in ways
that minimized branch mispredictions or load delays.
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
But Does It Work?
Apparently so. Although no one has yet built an SMT, simu-
lations show it to be promising. On the hypothetical eight-
wide machine in Emer’s Micro paper—which had six ALUs
(four of which can load or store) and four FPUs—Emer
reported a speedup of slightly more than 2× for four threads
over one. The speedup held for both multiprogrammed
single-thread applications and for single multithreaded pro-
grams. To simulate the worst case for multiprogramming
(most potential interthread contention), the same applica-
tion was executed for all four threads. Applications were
selected from the SPEC95 and Splash2 benchmark suites.

Performance gains flattened abruptly for more than four
threads; eight threads showed no appreciable benefit over
four. Presumably, four threads were able to saturate the execu-
tion resources of the hypothetical machine, limiting further
gains. This result was probably influential in Compaq’s deci-
sion to limit the eight-wide EV8 to four active threads.

To support more than four simultaneous threads, EV8’s
fetch, dispatch, and issue widths would probably have to be
increased along with the number of execution units. Since
EV8 is slated for a 0.125-micron process and a 250-
million-transistor budget, we doubt it was concern over tran-
sistor count that limited the width. Instead, it was probably
the complexity and cycle-time implications of going beyond
eight-wide superscalar. It could also have been the enormous
demand SMT puts on memory: just to support four threads,
EV8 will have a direct multichannel interface to RDRAM
main memory, and, although Compaq has not stated this, it
will probably have more than 3M of on-chip L2 cache.

At the Forum, Emer presented additional simulated-
benchmark results, further illustrating the speedup achievable
by an SMT processor. As Figure 4 shows, with a multi-
programming workload of mixed integer and floating-point
benchmarks, four-way SMT had nearly 125% higher through-
put on four threads than on one. On multithreaded programs,
four-way SMT achieved better throughput by an average of
0%

50%

100%

150%

200%

250%

Turb3D Swim
(SPECfp95)

Tomcatv Barnes Chess Sort TP GeoMean

1 Thread

2 Threads

4 Threads

R
el

at
iv

e
Pe

rf
or

m
an

ce

Figure 5. On applications that have been written to be multi-
threaded, Compaq found that its SMT design averaged nearly 75%
better throughput when running four threads. (Source: Compaq)
0%

50%

100%

150%

200%

250%

SPECint95 SPECfp95 Mixed Int/FP

1 Thread
2 Threads
3 Threads
4 Threads

R
el

at
iv

e
Pe

rf
or

m
an

ce

Figure 4. On a multiprogramming workload comprising a mixture
of SPECint95 and SPECfp95 benchmarks, Compaq claims the SMT
it simulated achieves a 125% higher throughput with four simul-
taneous threads than with just one thread. (Source: Compaq)
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

5 C O M P A Q C H O O S E S S M T F O R A L P H A
75%, as Figure 5 shows. The SPECfp95 benchmarks in this
suite were automatically decomposed into threads, and Emer
says a manual decomposition may produce better results.

These results are impressive, considering the modest
amount of hardware required to support three additional
threads. Compaq claims that for EV8 the additional silicon
area for its four-thread SMT core above the base eight-wide
superscalar core is less than 10%. In comparison, doubling
the silicon area of a single-thread processor typically boosts
performance by less than 50%—and that percentage is
trending down. We know of no other EPIC or advanced
superscalar approach that could double the performance of
an eight-wide superscalar Alpha processor for less than dou-
ble the silicon. Thus, the approximately 2× speedup Emer
reported would seem to make SMT a real bargain.

It is important to remember, however, that Emer’s
benchmarks measure speedup when thread-level parallelism
is present. In real systems, however, sometimes TLP will not
be present. Thus, in practice, the speedup from SMT will, on
average, be less than Emer’s benchmark results show.

It is also important to note that there is a big difference
in complexity and area between a four-wide and an eight-
wide superscalar. Therefore, these results cannot be used to
compare EV8 with the alternative of, for example, two four-
wide superscalar processors on a CMP (chip multiproces-
sor). In his Micro paper, however, Emer reported that a CMP
with two cores, each having roughly half the resources of the
hypothetical eight-wide SMT, showed similar speedups for
two threads, but it fell well short of SMT’s four-thread per-
formance. The SMT is also likely to have better single-thread
performance than the CMP when ILP is present.

The Pesky Matter of Software
As is frequently the case with techniques to speed up proces-
sors, SMT is not without software issues. Although SMT exe-
cutes single-thread programs with no difficulty, problems
creep in when you try to use its multithreading capability.

For multiprogramming workloads (workloads com-
prising multiple individual programs running simultane-
ously), the problems are tractable; the software implications
are minor and restricted to the operating system. For this
case, the OS simply needs to prioritize threads and to keep
the most important thread contexts resident on the proces-
sor. Multiprogramming speedup, however, is important
today only in server environments that are currently served
by symmetric multiprocessors (SMPs).

To fully justify SMT, however, it is necessary to also take
advantage of single-program multithreading. To enable this,
programs must be decomposed into multiple independent
threads that the SMT can execute in parallel. This requires
two things: the presence of thread-level parallelism in the
program and the ability to find and expose it.

Unfortunately, techniques for automatically decompos-
ing programs into parallel threads are in their infancy. Guri
Sohi at the University of Wisconsin is pursuing multiscalar
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
techniques in which a single thread is decomposed into mini-
“tasks” according to the program flow graph; multiple task
sequencers then use aggressive control and data-value specu-
lation to execute these tasks in parallel. Former graduate stu-
dent Scott Breach has shown that enhanced SMT hardware
can be used to run these minitasks in parallel.

But how effective compilers will be in automatically
creating parallel threads from a single program remains to be
seen. Today, the burden of parallelizing programs remains a
largely manual process. To make matters worse, debugging
multithreaded programs is notoriously difficult—a fact that
deters many programmers. Although multithreading is
becoming a more accepted style of programming, especially
with Java, today most programs are still single threaded, and
most programmers are still poorly trained to code for explicit
parallelism. This obstacle could prevent SMTs from realizing
their full potential for several years. Perhaps by 2003, when
EV8 systems are due to appear, things will have changed.

The architectural abstraction that Compaq has adopted
for programming EV8 is that of a CPU with four thread-
processing units (TPUs), as Figure 6 shows. This abstraction
creates a programming model of SMT as a sort of virtual
CMP. In fact, the SMT is functionally similar to CMP in many
ways. For example, both share data among threads without
going off chip, both exploit thread-level parallelism, and both
can switch thread contexts in about the same amount of time.

One difference between the two, one that Compaq’s
abstraction makes clear, is that SMT threads share data at the
L1 without the overhead of the cache-coherency actions
required by CMPs with separate L1s. This feature gives SMTs
the potential for slightly finer-grain threading and tighter
coupling between threads. On the other hand, because they
share data at the L2—and do not share L1s, BHTs, TLBs, exe-
cution units, or anything else—CMPs provide a higher
degree of thread isolation; that is, the performance of one
thread is less dependent on the characteristics of other
threads than it would be on an SMT. This isolation may be an
advantage in some situations, such as in critical real-time
applications.

To make the TPU model work, one problem Compaq
had to eliminate was the problem of spin loops. Whenever
TPU0 TPU1 TPU2 TPU3

L1 I-Cache TLB L1 D-Cache

L2/
Main Memory

Figure 6. The programming abstraction Compaq will use treats
EV8 as four virtual processors, called thread-processing units
(TPUs), which all share a common set of caches and TLBs.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

6 C O M P A Q C H O O S E S S M T F O R A L P H A
multiple threads cooperate, mechanisms are needed to syn-
chronize threads, communicate between threads, lock shared
resources, and protect critical software sections. These func-
tions are normally accomplished in software by low-level
semaphore operations that involve putting the processor
into spin loops while polling for semaphore changes. Spin
loops in an SMT, however, are a disaster because they con-
sume one of the TPUs while performing no real work.

To circumvent this problem, Compaq devised a method
for putting a thread to sleep and waking it when a given
memory location changes. Instructions are not fetched or
issued from a sleeping thread, allowing other active threads
to utilize more of the processor’s resources. The scheme was
inexpensive to implement, as it relies on the existing load-
with-lock/store-conditional semaphore mechanisms already
in the Alpha architecture and the cache-coherency mecha-
nisms that already exist to detect cache-line modifications.

Won’t Affect Cycle Time, Right?
According to Emer, SMT need not lengthen cycle time. Emer
believes that the cycle time of a CPU should be set according
to the highest speed that the ALU can evaluate and forward
results to subsequent instructions. The pipeline length
should then be established by dividing execution into stages
no longer than the ALU cycle time. But SMTs need more reg-
isters and thus longer operand-read times than a superscalar.
To prevent these factors from impacting the cycle time, it is
very likely that at least one additional pipeline stage will be
required, which would add to the branch-mispredict penalty.
Other SMT-specific resources, such as more instruction-
completion writeback ports, could impose additional stages.

As a result, it is likely that a single-thread application
will not perform as well on an eight-wide SMT as it would on
a superscalar of similar design. This loss of single-thread per-
formance, if indeed it is only one pipeline stage, probably
amounts to only a few percent. If SMT turns out to have other
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
resources or control complexities that add more pipeline
stages or increase cycle times, the net benefit of SMT will be
less clear. But Emer sees no reason to expect any cycle-time
penalties or any more than one or two extra pipeline stages.

Another potential performance limitation is resource
contention among threads. Even in a 0.125-micron process,
execution units will not be completely symmetric, and not
every structural hazard will be eliminated. Even worse, con-
tention for the caches, the BTB, and the TLB could increase
miss rates or, in the worst case, cause severe thrashing. Assum-
ing these resources are sufficiently associative, thrashing
should be avoidable, but cache miss rates will definitely go up,
due to increased conflicts. SMT’s greater ability to tolerate
memory latency should compensate to some degree—but to
what extent remains to be seen. Compaq says it has seen cases
of positive interference, such as prefetching system code, but
these cases are probably the exception rather than the rule.

Alternatives Abound
With transistor budgets soon to exceed 100 million transistors
per chip, a host of architects with ideas on how to spend those
transistors has emerged. The most popular ideas being
espoused for general-purpose microprocessors, aside from
SMT, include advanced superscalar processors (e.g., trace pro-
cessing, superspeculation, and multiscalar), EPIC (explicitly
parallel architectures), and CMP (chip multiprocessors).

These ideas are not necessarily mutually exclusive and
could conceivably be used in combination. In the near term,
however, sheer size and complexity will preclude most combi-
nations. Longer term, with say a billion-transistor budget,
nearly any combination could, in theory, be built. But many
hybrids will not bear fruit, regardless of the transistor budget.
SMT is likely to be incompatible with some of the advanced
superscalar techniques. These techniques, for example, fre-
quently depend on speculation. But SMT and speculation
both vie for the same resources, and both stress the fetch unit
to achieve their goal.

SMT is probably even less compatible with EPIC than it
is with advanced superscalars. Although Intel has alluded to
the possibility of eventually adding multithreading to future
IA-64 implementations, it is not clear that move will be feasi-
ble. SMT depends, by its very nature, on the dynamic-schedul-
ing hardware that is present in superscalars but is completely
lacking in EPIC. Adding these mechanisms on top of EPIC
would risk massive complexity, and it would defeat one of its
central tenets. Furthermore, the result may be disappointing.
EPIC, using predicated execution, attempts to fill idle function
units with speculative operations from the current program
thread. To the extent it succeeds in this objective, EPIC would
reduce the effectiveness of SMT by usurping the very execu-
tion units on which SMT thrives, as Figure 7 shows.

Since the techniques are not always synergistic, SMTs
will likely end up facing advanced superscalar and EPIC
processors in the market. Against these techniques, SMT will
have the powerful advantage of being able to evoke either
Predicated
Excecution
(e.g., EPIC)

Chip
Multiprocessor

 Time

µP
1

µP
2

Figure 7. Predicated-execution, such as in Intel and HP’s EPIC,
tries to fill unused execution slots with speculative operations but
often ends up throwing away results (×). Chip multiprocessors,
like SMTs, exploit TLP, but they have lower single-thread perfor-
mance than SMTs for a given amount of resources.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

7 C O M P A Q C H O O S E S S M T F O R A L P H A
thread-level or instruction-level parallelism at will. This
advantage will materialize only when enough total paral-
lelism is available, but this flexibility will allow the SMT to
perform well in many situations where these other tech-
niques would fail miserably.

SMT will have the disadvantage, however, that in
single-thread environments, programs must be explicitly
written to expose thread-parallel parallelism. If programs do
not migrate to multithreaded construction, then SMT’s
additional resources will go for naught, and its single-thread
performance is likely to be inferior to one of the other tech-
niques using equivalent resources.

In server environments, which are usually heavily
multiprogrammed, this disadvantage will not come into
play. But even in a multiprogrammed or multithreaded envi-
ronment, SMT will be of little benefit if individual programs
have high ILP. In such a case, the execution units will be kept
busy by the high-ILP thread, leaving few execution slots for
other threads.

SMT, CMP Square Off
SMT’s most serious long-term challenge will probably come
from CMPs, which have some compelling advantages of their
own. A CMP core, because it is typically smaller and less ILP-
aggressive than an SMT core, is likely to achieve a higher fre-
quency and/or have a shorter, more efficient pipeline. If ILP
turns out to be limited or to be hard to exploit with wide-
issue machines—and there is precious little hard evidence to
the contrary—then CMPs, which can also play the thread-
level-parallelism card, might perform as well as an SMT.

If performance is similar, then CMP construction wins.
Building one small, simple core and replicating it along with
a shared L2 is a far simpler and more expeditious task than
designing a large, complex, monolithic core. In addition,
CMPs introduce the potential for using partially-good die.
This possibility can reduce manufacturing scrap, thereby
reducing the average manufacturing cost of a CMP die.

Because an SMT shares more resources among threads,
it will probably have a physically smaller die than an equiva-
lent performance CMP. But this advantage may be less than it
seems. For one thing, given upcoming transistor budgets,
sharing resources may not save enough silicon to be worth the
control complexity needed to do so. Second, the high execu-
tion-unit utilization of SMTs could create longer queue delays
and longer latencies that would require additional hardware in
the SMT to ameliorate. Third, utilization is naturally higher
and therefore less of a problem on narrow-issue CMP cores.
SMTs, in a sense, create an artificially low utilization situation
by starting out with an excessively wide-issue engine.

In the future, CMP and SMT techniques might create
an interesting marriage. If low utilization is a problem even
for modest four-wide superscalar CMP cores—which, with a
throughput of less than 2 IPC, would seem to be the case—
then a simple four-wide/two-thread SMT core might elimi-
nate the problem. Arraying this core in CMP fashion might
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
provide a simple path for scaling beyond the four active
threads that are the limit of an EV8-class eight-wide SMT.
Architects of IBM’s Power4 CMP (see MPR 10/6/99, p. 11)
have already expressed a possible interest in multithreading
for the future.

Putting multiple EPIC or advanced-superscalar proces-
sors on a chip will be another way to exploit ILP and TLP; the
question is whether there is enough ILP to justify using these
more complex cores. Although this option may not be realis-
tic in the near term—say over the next three to four years,
while transistor budgets are limited to a measly 100 million
to 250 million transistors per chip—in the long term it could
pose a powerful alternative to SMT.

In the meantime, the one incontrovertible advantage of
SMT—and the characteristic that makes it attractive over all
other known forms of advanced superscalar, EPIC, CMP, or
combinations thereof—is its unique ability to shift resources
on the fly between ILP and TLP at a very fine grain. The ulti-
mate value of this advantage, however, will depend heavily
on software evolution.

To go beyond servers, either something like multimedia
must drive up the use of multiprogramming in PC environ-
ments, or a much broader range of applications must move
to multithreaded construction. This move could happen
quickly if compiler techniques evolve to automatically create
parallel threads, or if Java—which already has multithreaded
API classes and background tasks—takes hold. If either event
happens over the next three years, we may see more vendors
adopting the clever technique of SMT.

For multiprogrammed server environments, however,
SMT is readily applicable. And Compaq says the programs
used in many of Alpha’s key application areas, such as data
warehousing, graphics rendering, and government super-
computing, are already multithreaded. Assuming that Com-
paq remains committed to Alpha, and doesn’t let annoying
details such as IC process and system design stand in its way,
SMT should provide a solid basis for the company to retain
Alpha’s long-standing performance title over all comers.—M
F o r M o r e I n f o r m a t i o n

“Simultaneous Multithreading: Maximizing On-Chip
Parallelism,” Tullsen, Eggers, and Levy, ISCA95.

“Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreaded Processor,”
Tullsen, Eggers, Emer, Levy, Lo, and Stamm, ISCA96.

“Converting Thread-Level Parallelism to Instruction-
Level Parallelism via Simultaneous Multithreading,” Lo,
Eggers, Emer, Levy, Stamm, and Tullsen, ACM Transac-
tions on Computer Systems, August 1997.

“Simultaneous Multithreading: A Platform for Next-
Generation Processors,” Eggers, Emer, Levy, Lo, Stamm,
and Tullsen, IEEE Micro, October, 1997.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

	Compaq Chooses SMT for Alpha
	The Debate: ILP or TLP
	Figure 1. By interleaving instructions from multiple...
	No Lack of Ideas to Use Transistors
	Figure 2. The precursor of SMT, fine-grain multithreading...
	Enter SMT
	Not That Different From Wide Superscalar
	Figure 3. The SMT pipeline (bottom) is similar...
	Instruction Fetch Limits Throughput
	Figure 4. On a multiprogramming workload comprising...
	But Does It Work?
	Figure 5. On applications that have been written...
	The Pesky Matter of Software
	Figure 6. The programming abstraction Compaq...
	Won’t Affect Cycle Time, Right?
	Figure 7. Predicated-execution, such as in Intel...
	Alternatives Abound
	SMT, CMP Square Off

	For More Information

