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The name, Pentium III, belies the processor’s modest
changes. Extrapolating from the differences between Pen-
tium and Pentium II—out-of-order execution, long
pipeline, backside L2 cache, and a split-transaction bus—
one might have expected Pentium III to be a completely
new microprocessor. But the reality is less meaty; Katmai,
the first member of the Pentium III family, is essentially a
Pentium II with an enhanced multimedia capability. Con-
sumers, however, may not be so disappointed: Katmai’s new
features will enable improvements in multimedia perfor-
mance large enough to spawn new applications that are
simply intractable on the current generation of Pentium II
processors.

Katmai was announced at 450 and 500 MHz, an 11%
frequency boost over the 450-MHz Deschutes processor,
the current top-of-the-line Pentium II. A 550-MHz version
will come out in the second quarter and later this year the
second Pentium III, Coppermine, will surface. That proces-
sor will be implemented in Intel’s upcoming 0.18-micron
P858 process (see MPR 1/25/99, p. 22), boosting its fre-
quency to 600 MHz—and eventually to 733 MHz or
more—while also making space for at least 256K of on-
chip L2 cache.

The new processor uses the same pipeline, same caches,
same bus, and same IC process as Deschutes. So, not surpris-
ingly, it achieves the same per-cycle performance on existing
software. All of Katmai’s new features, save one, are focused
on multimedia, as Figure 1 shows. The new features, includ-
ing 70 new instructions (alias KNI) and a new memory-
streaming architecture, are officially dubbed the “Internet
streaming-SIMD extensions” (Internet SSE).

The Internet prefix is probably just a ploy by Intel mar-
keteers to catch the wave of Internet enthusiasm and transfer
its momentum to their chip. But, while SSE may have noth-
ing to do with the Internet per se, content providers are find-
ing it useful for building soft delivery mechanisms, like soft
ADSL modems, and for achieving high data-compression
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ratios with techniques like 3D NURBS (nonuniform rational
B-splines), which are impractical on Pentium II.

The only new feature—or misfeature, depending on
your view—in Katmai not related directly to multimedia is
the processor serial number (see MPR 2/15/99, p. 3). Con-
trary to some reports, Katmai does not implement a random-
number generator, which would have been a far more useful
feature than the serial number.

Streaming SIMD Increases Multimedia Capability
The SSE architecture is likely to be more significant to
multimedia performance than MMX ever was. SSE repre-
sents a major improvement over MMX for processing video,
sound, speech, and 3D graphics. As we pointed out earlier
(see MPR 10/5/98, p. 1), Intel did about as well as anyone
could expect in defining the architecture, given the x86
starting point (a hole).

What is disappointing about Katmai, however, is that it
implements only half of SSE’s 128-bit architectural width,
double-cycling the existing 64-bit data paths. This approach
limits Katmai to only half of the architecture’s potential per-
formance, leaving it with little advantage over the K6 III’s
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Figure 1. The first Pentium III, Katmai, is based on the same core
microarchitecture as Pentium Pro and Pentium II, adding SIMD
floating point, new MMX instructions, and memory-streaming
features, including prefetch and improved write combining (WC).
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(see MPR 3/8/99, p. 22) implementation of 3DNow, which
also delivers 4 FLOPS/cycle. Why Intel would sacrifice this
much performance for a few measly mm2 of silicon is a mys-
tery.

The cost of SSE is indeed small. At 128 mm2, Katmai is
only 15 mm2 larger than Deschutes. According to the MDR
Cost Model, the additional silicon adds only 7% to the manu-
facturing cost of a Katmai module—bringing it to $75. But a
full implementation of SSE might not have cost much more.
The four-wide AltiVec SIMD-FP unit on Motorola’s G4 (see
MPR 11/16/98, p. 17), for example, would occupy only 8 mm2

in Katmai’s process; even if it were added on top of Katmai’s
128 mm2, it would add only $3 to the manufacturing cost.

Surprisingly, Katmai’s 700,000 extra transistors do not
add to its power consumption. To the contrary, improve-
ments to the design actually reduced power dissipation by
7%, to 25 W (max at 450 MHz).

It Won’t Fly Without Software
The new chip has the potential to significantly outperform
Deschutes on everything multimedia. To realize that poten-
tial, however, Katmai must have software written expressly
for its new features. Intel has seen to it that the obvious
graphics APIs, such as Direct3D and OpenGL, are in place,
but the most significant benefits will depend on applications
being created or modified for the new features.

The last time Intel made a processor transition that
depended on software (when it added MMX to Pentium),
it failed to get a critical mass of applications ready in time,
blunting the appeal of the new feature. Fortuitously, Pen-
tium/MMX had larger L1 caches to power it through the tran-
sition. But such is not the case this time—if Intel wants its new
chip to look good, it must get applications in place.

To this end, Intel has, over the past year, mounted a
massive campaign—three times the size of any previous
Intel software-enablement program—to assist software ven-
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dors. The $300 million launch effort was clearly successful,
as more than 300 Pentium III–ready applications were
shown at the preview event in February. Most of these appli-
cations used SSE to some extent, although some just use the
serial number.

Last summer, Intel decided to pull in the Katmai launch
from June to February. The option to do so resulted from
better-than-expected silicon, but the impetus was probably a
desire to curb the growing software support for AMD’s
3DNow and to preempt the announcement of the K6 III.

Although the schedule pull-in is good for consumers, it
did foul Intel’s 133-MHz-bus plans. Katmai was initially
planned to sync up with the Camino chip set in June. But
now, without Camino, Katmai is stuck with the BX chip set,
limiting it to the same 100-MHz bus as Pentium II. The situ-
ation may be a blessing in disguise, as it allows Intel to intro-
duce a 550-MHz Katmai rather than the 533-MHz part it
would have been limited to with a 133-MHz bus. Sources
now indicate that Camino will be delayed until September,
presumably mating up with the 600-MHz Coppermine.

Seventy New Instructions
The SSE features in Katmai divide into two categories: new
SIMD instructions and new memory-streaming features.
The purpose of SIMD instructions is to increase the rate at
which vectorizable data—the kind most common in multi-
media applications—can be processed. SIMD instructions
give the software a way to express the parallelism that is
inherent in this type of data, so the hardware can easily pro-
cess it in parallel.

SSE introduces new integer and new floating-point
SIMD instructions. The integer instructions are really just
extensions to the MMX instruction set. Intel, however, refers
to these as “new-media instructions.” The name makes them
easier to explain to customers and avoids lending any cre-
dence to the notion that MMX had shortcomings, such as the
lack of video-compression capability that we pointed out
earlier (see MPR 3/5/96, p. 1).

The new-media instructions, listed in Table 1, will
accelerate important multimedia tasks that were poorly
served by MMX. For example, the PMAX and PMIN instruc-
tions, which are important to the Viterbi-search algorithm
used in speech recognition, were notably absent in MMX.
Average (PAVG) instructions were added to accelerate video
decoding, and Sum of Absolute Differences (PSADBW) was
added to speed motion-search in video encoding.

To save silicon, Intel used a clever trick to implement
PSADBW. The instruction is issued as three µops: the first com-
putes the differences (Ai–Bi) and carry-outs (Ci) of each of the
byte elements in the two source operands; the second com-
putes the absolute values (|Ai–Bi|) of the intermediate results;
and the third sums the eight absolute values (∑i=0…7|Ai–Bi|).
The trick was to use the Wallace tree in the SIMD multiplier to
perform the final summation. With this approach, PSADBW

added only 2% to the area of the SIMD integer unit.
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Figure 2. On the 3D WinBench 99 Transform and Lighting CPU
Test (rendering nulled out), Intel says that Katmai is 74% faster
than Deschutes (although we expect that the overall 3D WinBench
speedup will probably be less than 30%). (Source: Intel)
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Mnemonic Description
Floating-Point Instructions (use SIMD-FP registers)
ADD Add elements (Di = Di + Si, i = 0…3) • • • 1 4 2
SUB Subtract elements (Di = Di  – Si) • • • 1 4 2
MUL Multiply elements (Di = Di × Si) • • • 0 5 2
DIV Divide elements (Di = Di ÷ Si) • • • 0 18–36
SQRT Square root of elements (Di = ƒ(Si)) • • • 0 29–58
MAX Maximum of elements (Di = ƒ(Si)) • • • 1 4 2
MIN Minimum of elements (Di = ƒ(Si)) • • • 1 4 2
RSQRT Reciprocal square-root estimate

(12-bit accuracy) (Di = ƒ(Si))
• • • 1 2 2

RCP Reciprocal estimate (12-bit
accuracy) (Di = ƒ(Si))

• • • 1 2 2

CMP Compare elements using eq, lt, le,
unord, neq, nlt, or nle returning
Boolean mask

• • 1 4 2

COMISS/
UCOMISS

Ordered/unordered compare scalar
element setting condition flags

• • 1 1 1

ANDPS Bitwise logical AND of elements • • 1 2 2
ANDNPS Bitwise logical AND of elements

w/complement of one operand
• • 1 2 2

ORPS Bitwise logical OR of elements • • 1 2 2
XORPS Bitwise logical XOR of elements • • 1 2 2
New-Media Instructions (use MMX registers)
PINSRW Insert 16-bit value from general

register into one of four elements
(specified by immediate)

• • 0,1 4 1

PEXTRW Extract one of four elements
(specified by immediate) to a
general register

• • 0,1 2 2

PMULHU Multiply four 16-bit unsigned
elements returning most significant
16 bits of each

• • 1 3 1

PSHUFW Full shuffle of 16-bit elements
under control of 8-bit immediate
mask

• • 1 1 1

PMOVMSB Move 8-bit mask composed of
MSbs of byte elements to a
general register

• • 1 1 1

PAVGB Average of byte elements
(Di = –(Di + Si + 1)/2, i = 0…7)

• • 0,1 1 0.5

PAVGW Average of 16-bit elements
(Di = –(Di + Si + 1)/2, i = 0…3)

• • 0,1 1 0.5

PSADBW Sum of absolute value of
differences of 16-bit elements
(D1,0 = ∑i=0…3 |Di – Si|)

PMINSW Minimum of signed 16-bit
elements

• • 0,1 1 0.5

PMINUB Minimum of unsigned byte
elements

• • 0,1 1 0.5

PMAXSW Maximum of signed 16-bit
elements

• • 0,1 1 0.5

PMAXUB Maximum of unsigned byte
elements

• • 0,1 1 0.5

• • 0,1 5 2
*

•

Table 1. The SSE architecture introduces new SIMD floating-point inst
instructions. The SIMD floating-point instructions operate on four-e
eight-entry register file. The SIMD-FP instructions also have a scalar m
the SIMD integer instructions new-media instructions. SIMD-FP mult
with SIMD-FP adds, which are dispatched to port 1. Most of the new-m
as 0,1). *PSADBW requires three µops; the first two can execute on ei
port 2, while store instructions require both ports 3 and 4 (shown as 3/
per instruction. In scalar mode, floating-point instruction latencies are 
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Mnemonic Description
Type-Conversion Instructions (use MMX and SIMD-FP registers)
CVTSS2SI Convert FP scalar to integer in

MMX register
• • • 1,2 3 1

CVTTSS2SI Convert FP scalar to integer in
MMX register

• • • 1,2 3 1

CVTSI2SS Convert integer in MMX register
to FP scalar

• • • 1,2 4 2

CVTPS2PI Convert two FP elements to
integers in MMX register

• • • 1 3 1

CVTTPS2PI Convert two FP elements to
integers in MMX register

• • • 1 3 1

CVTPI2PS Convert two integers in MMX
register to FP scalars

• • • 1 3 1

Data-Movement Instructions (use SIMD-FP registers)
MOVA Load/store/move an aligned 128-

bit vector or 32-bit scalar (fault on
misaligned)

• • • 2
3/4

MOVUPS Load/store an unaligned 128-bit
vector from/to memory

• • 2
3/4

MOVLPS/
MOVHPS

Load/store 64-bit mem operand
to/from low/high half of register

• • 2
3/4

Move lower/upper 64 bits of src reg
into upper/lower 64 bits of dest reg

• • 0,1

MOVMSKPS Move 4-bit mask composed of
MSbs of four elements to a
general register

• • 0 1 1

SHUFPS Move any two elements from two
source registers to dest register
under control of 8-bit mask

• • 1 2 2

UNPCKHPS Interleave high two elements from
two source regs to dest register

• • 1 3 2

UNPCKLPS Interleave low two elements from
two source regs to dest register

• • 1 3 2

State Save/Restore Instructions (use SIMD-FP registers)
FXSAVE Save registers to memory • • µcode
FXRSTORE Load registers from memory • • µcode
STMXCSR Save the SIMD-FP status and

control register to memory
• • µcode

LDMXCSR Load the SIMD-FP status and
control register from memory

• • µcode

Streaming/Prefetching Instructions
MOVMSKQ Store MMX register to memory

under byte mask
• • 0,1

3/4
MOVNTQ Store MMX register to aligned

mem minimizing cache pollution
• • 3/4 3 1

MOVNTPS Store SIMD-FP register to aligned
memory minimizing cache

• • 3/4 4 2

PREFETCH Load cache line containing
addressed datum into specified
levels of the cache hierarchy

• • • • 2 2 1

SFENCE Ensure all prior stores are globally
visible (flush WC buffers)

3/4 3 1

0,1
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pollution

MOVLHPS/
MOVHLPS

ructions, new SIMD integer instructions, and new memory-streaming
lement vectors of IEEE-754 single-precision values in a new 128-bit
ode that operates on only the rightmost element of vectors. Intel calls
iplies are dispatched to port 0, allowing them to be issued in parallel

edia instructions can be dispatched to either port 0 or port 1 (shown
ther port 0 or 1, while the third requires port 0. Load instructions use
4). Instruction latencies are shown in cycles and throughputs in cycles
one cycle shorter than shown. (Source: Intel)
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SIMD-FP: the Main Attraction
The most significant new feature of Katmai is SIMD floating
point. Initially, the feature will be used mainly to accelerate
3D graphics, as Figure 2 shows. But Intel expects Katmai’s
high SIMD-FP performance to spur the use of floating-point
data in many other signal-processing algorithms as well,
making the feature broadly applicable.

Architecturally, the SIMD-FP feature introduces a new
register file containing eight 128-bit registers, each capable of
holding a vector of four IEEE single-precision floating-point
data elements. The SIMD-FP instructions perform arith-
metic on the respective elements in two registers, returning a
four-element result vector to one of the two registers. Thus,
the architecture allows four single-precision floating-point
operations to be carried out with a single instruction and, in
a full implementation, to achieve a throughput of four mul-
tiply or four add operations per cycle.

To avoid completely redesigning the core microarchi-
tecture, however, Intel had to shoehorn the new SIMD-FP
architecture into the Deschutes core. Since Katmai is built in
the same 0.25-micron process as Deschutes, it also had to
implement the feature using as little silicon as possible. To
achieve these goals, Intel implemented the 128-bit architec-
ture by double-cycling the existing 64-bit data paths and by
merging the SIMD-FP multiplier with the x87 scalar floating-
point multiplier into a single unit, as Figure 3 shows.

To utilize the existing 64-bit data paths, Katmai issues
each SIMD-FP instruction as two µops. To avoid the possibil-
ity of leaving the machine in an imprecise architectural state
between µops, Intel devised a check-next-µop mechanism to
hold off the register update from the first µop until it is deter-
mined that the second µop will complete without generating
an exception (e.g., overflow). The check-next-µop feature has
no effect on the execution pipeline but can block retirement
for an extra cycle. This potential penalty is avoided when
exceptions are disabled, which is the normal mode.

To partially compensate for implementing only half of
SSE’s architectural width, Katmai implements the SIMD-FP
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adder as a separate unit on the second dispatch port, as
Figure 3 shows. This organization allows half of a SIMD
multiply and half of an independent SIMD add to be issued
together, as Figure 4 shows, bringing the peak throughput
back to four floating-point operations per cycle—at least for
code with an even distribution of multiplies and adds.

Although this situation is common in DSP algorithms,
the adds are usually data dependent on the multiplies. Thus,
for Katmai to realize its peak throughput, the code will have
to be scheduled to cover the latencies. With only eight regis-
ters and a destructive two-operand (i.e., RD ← RD op RS)
instruction format, however, such a code schedule will be
difficult to achieve. To help with this problem, Katmai can
issue two register-move instructions simultaneously.

The Katmai implementation of the SIMD-FP architec-
ture adds new units for the shuffle instructions and recipro-
cal estimates. The new units increase the loading on the dis-
patch ports, which would have compromised frequency if
not for the enormous effort Katmai’s engineers put into tun-
ing critical circuit paths. Apparently they were successful, as
Katmai will actually be 50 MHz faster than Deschutes.

Although Katmai’s implementation leaves some of the
potential of the SSE architecture on the table, the tradeoff for
silicon area is understandable. But the danger with Katmai’s
method is that the hardware has implemented a different
model of parallelism than is implied by the architecture. This
sets up a code-scheduling dilemma: Should the code be
scheduled for Katmai to maximize near-term performance,
or would it be better to schedule for the architecture in anti-
cipation of a full implementation in a future processor?
Sources indicate that Coppermine will use the same core as
Katmai, so a full implementation of SSE is not likely until
Willamette, which isn’t expected until 2H00.

SIMD-FP Architecture Is Full IEEE-754
Pentium III’s SIMD-FP instructions adhere to the IEEE-754
specification, including all four rounding modes and the
maskable numeric exceptions. Unlike the x87 scalar FPU,
which implements numeric exceptions in microcode, Kat-
mai’s SIMD-FP units implement all exceptions in hardware,
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Figure 4. Katmai can execute a SIMD multiply (M1) and an inde-
pendent add (A1) every two cycles. A dependent add (A2←M1)
suffers a four-cycle delay.
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except underflows and denormalized results. This is crucial
to SIMD performance, since any exception within a four-
element vector can trigger a microcode-recovery routine.

To prevent microcode processing from hampering per-
formance, the architecture provides a mode to flush under-
flows to zero (FTZ). Although operation in this mode is not
IEEE-754 compliant, it is acceptable for most 3D-graphics
applications, and it will be useful in many other algorithms
where IEEE accuracy is less important than raw speed.

A new control-and-status register (the MXCSR) is pro-
vided to report the IEEE exception flags and to control the
FTZ mode, the directed-rounding modes, and the exception
enables. Unmasked exception traps are delivered through
interrupt 19, a new x86 interrupt assigned for that purpose.

More Than Just SIMD-FP Arithmetic
By performing operations on multiple data elements simul-
taneously, SIMD architectures impose difficulties not pre-
sent with scalar machines. Means must be provided to make
control-flow decisions on individual data elements, to per-
form operations on a subset of elements within a vector, and
to reorganize the data so the SIMD units can be fully utilized.

For data-dependent decisions, the architecture pro-
vides instructions that compare elements in two SIMD-FP
vectors according to one of the relations: equal, less-than,
less-than-or-equal, unordered, not-equal, not-less-than, or
not-less-than-or-equal. The result of a compare instruction
is a four-element Boolean-result vector (true = 0xFFFFFFFF,
false = 0x00000000) that can be manipulated with a set of
SIMD logical instructions (AND, ANDN, OR, XOR) to mask
elements within a vector. A MOVMSKPS instruction allows the
most significant bit of each Boolean element to be deposited
into an x86 general register. From there, control-flow deci-
sions can be made on any of these four bits.

The need often arises to transpose data elements from a
row to a column organization so the SIMD parallelism can
be exploited. Consider the example of 3D coordinates orga-
nized as WZYX vectors in memory, as Figure 5 shows. To
transpose these into vectors of like coordinates, the architec-
ture provides MOVHPS, MOVLPS, and SHUFPS instructions.
With these instructions, 3D transformations (without clip-
ping) can be performed with only a 25% overhead, com-
pared with data that has been preorganized and stored as
X3X2X1X0. Additional arithmetic operations further amor-
tize the overhead, typically into the 5–10% range.
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Memory Streaming Feeds Execution Engine
A downside of SIMD engines is that they can easily increase
the processing rate to a level above the memory system’s abil-
ity to supply data. When that happens, the execution units
stall or become poorly utilized, thus limiting the SIMD speed-
up. Such would have been the case for Katmai, as the 3D-
transform-and-lighting example in Figure 6(a) illustrates, had
Intel done nothing to improve memory performance.

But Intel increased the throughput of the memory sys-
tem and the P6 bus, as Figure 6(b) shows, with a set of fea-
tures it collectively calls memory streaming. These features
include prefetch instructions, streaming stores, and enhanced
write combining (WC). As with the SIMD code itself, the
effectiveness of these measures will depend on software’s use
of the new instructions and on a good code schedule.

Memory-streaming features have been used before in
RISC processors. Although they have proved effective in
many specific situations, they have suffered in general from
three problems: they do not lend themselves to use with the
random memory-access patterns found; they are notoriously
difficult to apply effectively due to the dynamics of the run-
time environment; and compilers have not been trained to
use them, so they do not have broad applicability.

Multimedia applications, however, rarely have random
access patterns, and Katmai’s prefetch cachability should
help control the dynamics. Rapid advances are also being
made in data prediction, allowing compilers to use prefetch
instructions more effectively than in the past.
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Store n…n+3

Execute n…n+3

Prefetch n…n+3 Store n-4…n-1 Prefetch n+4…
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Mem/Bus
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Ex Units

(a)  Without Memory Streaming

(b)  With Memory Streaming

Figure 6. Prefetch instructions allow memory fetches to overlap
execution, increasing bus and execution-unit utilization.
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Pentium IIIs can transpose vectors with only a small overhead.
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Prefetch Hides Latency, Frees Resources
For multimedia streams, loads have shortcomings. Because
they can fault (e.g., on a protection violation), loads cannot
generally be hoisted (moved up in the code sequence) far
enough to cover very much memory latency. When they are
hoisted, they often cause the machine’s in-order completion
resources (e.g., reorder-buffer entries) to fill up, limiting the
number of instructions that can be in flight, as Figure 7(a)
shows. Furthermore, loads give no clue to the temporal local-
ity of their data, so cache optimization is impossible.

Katmai’s prefetch instructions address these shortcom-
ings. Being only hints, prefetch instructions do not fault or
modify architectural state. As a result, they can be hoisted
arbitrarily far and retired before the memory access com-
pletes, as Figure 7(b) shows, freeing completion resources so
more instructions can be dispatched. Plus, Katmai’s prefetch
instructions provide suggestions to the hardware regarding
the cache level to which the addressed line should be allo-
cated. Options include all cache levels, L1 only, all levels above
L1, and cache bypass (fetching to a temporary read buffer).

Katmai also adds a streaming store, which, on a miss,
bypasses the cache without allocating a new line. This mech-
anism allows software to avoid polluting the caches when it
knows the data being stored will not be accessed again soon.

To improve the performance of streaming stores, Kat-
mai enhanced the write-combining (WC) feature that has
been in all P6-bus-based processors. Previous P6 processors
used a single cache-line buffer (32 bytes) to collect sequential
write-through stores so they could be pushed out as a single
bus transaction, improving bus efficiency. Katmai increases
to four the number of WC buffers, as Figure 8 shows, and
also improves the buffer-management policies to increase
their effectiveness. (Actually, Katmai doesn’t add new buffers;
it just uses Deschutes’ existing load buffers for double duty.)

The WC buffer allocation and flush policies were im-
proved to reduce the average buffer occupancy. In Deschutes,
the WC buffer was not flushed until a new request forced it to
be pushed out; Katmai, on the other hand, automatically
empties the buffer as soon as it fills. Intel insists that the new
WC structure is effective, citing simulations that show it
rarely, if ever, degrades load performance but often substan-
tially improves write-through performance. An SFENCE

instruction was also added to give software a means of man-
ually flushing the WC buffers when it is necessary to ensure
that all prior stores are globally visible (e.g., for screen
updates or for software-managed coherence).
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Not a New Core, But Not Chopped Liver Either
Intel’s choice of name set the expectation of a new micropro-
cessor core. Against that expectation, Katmai fails. But that
goal may have been wrong anyway. A new core may have—
with luck—gained a 50% speedup. While that speedup may
have made for faster word processors and spreadsheets, it
would hardly have enabled anything fundamentally new.

By focusing efforts on multimedia features instead of
a new core, however, Katmai will accelerate—by several
times—the critical underlying multimedia algorithms. In
one speech application, training time improved 60×. Real-
time MPEG-2 encoding, impossible on a Pentium II, is
achievable on Katmai. Such speedups can, and will, enable
new applications, a feat that no practical degree of super-
scalarity or frequency boost could have achieved.

From this perspective, it’s hard to argue that Intel made
a mistake. With SSE in Katmai, Intel has set the software
stage for the big frequency and memory-bandwidth im-
provements that will come with Coppermine. But if the
focus was on SSE, Intel should have gone all the way. By
shoehorning SSE into the existing 64-bit Deschutes core, and
by being so stingy with silicon, Intel sacrificed too much.

Unwillingness to revamp Deschutes’ instruction decoder
forced Intel to stick with the x86 instruction format, limiting
to eight the number of registers that could be included in SSE,
and constraining the instructions to a destructive two-
operand format. Reuse of Deschutes’ 64-bit data paths sacri-
ficed nearly half of Katmai’s multimedia-performance poten-
tial and set up a code-scheduling dilemma with long-term
consequences—all for marginal silicon savings.

Not Enough Distance Between P III and K6 III
Although processor architects may find Katmai underwhelm-
ing, it is sure to be a commercial success. On competitive
grounds, however, the chip may be somewhat of a tactical
blunder. In too many ways, AMD’s K6 III (see MPR 3/8/99, p.
22) is an even match for Katmai.

SSE does have advantages over 3DNow. SSE uses full
IEEE-754 arithmetic, allowing it to serve scientific applica-
tions that 3DNow can’t. And 3DNow lacks both SSE’s new-
media instructions, which boost video performance, and its
memory-streaming features, which, along with the P6 bus,
give Katmai substantially higher delivered bus bandwidth.
SSE’s new register file gives it a big theoretical advantage over
3DNow, although that advantage is diminished by the
destructive two-operand instruction format.

Despite Katmai’s half-wide implementation, SSE’s
largest advantage may still be its 128-bit architectural width.
This width allows twice the parallelism to be expressed per
instruction as with 3DNow—a fact that reduces the degree of
loop unrolling needed to expose parallelism and puts less
pressure on the register file, the instruction cache, and
instruction issue and reordering resources. This headroom
should allow Katmai to sustain higher throughput in prac-
tice, even though the K6 III may have the same peak rating.
× × × × × × × ×× × × × × × × ×× × × × × × × ×× × × × × × × ×
× × × × × × × ×

× × × × × × × ×× ×   × × ×  ×

 32 bytes (one cache line)Fully
written
WC buffer

Partially
written
WC buffers

Figure 8. Katmai reuses Deschutes’ load buffers for write combin-
ing. Intel says that, in practice, conflicts between the two uses
rarely occur.
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But while Katmai’s advantages are not insignificant,
they are also not overpowering. By not pulling out the stops
on the architecture and on Katmai’s implementation of it,
Intel may have blown its chance to knock out 3DNow and to
regain complete architectural control of the x86 platform.

Diffusion Key to Success
Katmai’s technical advantages do not seem so compelling
that they alone can overcome 3DNow’s 15-million-unit
installed-base head start. To complete that job, Intel must
rely on its persuasive powers to divert software developers’
attention from 3DNow. It must also—quickly—drive the
SSE architecture across its product line and down into the
Celeron space, where it can build a large enough installed
base to attract software developers on its own.

As it normally does with new microprocessors, Intel
introduced Pentium III at the top of its product line. The com-
pany has set the initial 1,000-unit list price of the 500-MHz
part at $696; $496 for the 450-MHz version. At the same time,
it dropped the Pentium II-450 price to $476, while the -400
and -300 fell to $264 and $192.

Thus, at the same frequency, Intel is charging only a $20
(4%) premium for SSE, indicating that it is serious about a
rapid transition to SSE-based Pentium IIIs. We expect the
SSE premium to disappear quickly and Pentium III to come
rapidly down Intel’s price curve, approaching $200 by year
end. By that time, the 600-MHz Coppermine will have
replaced Katmai at the higher price points.

The SSE architecture, however, will not make it into the
Celeron line until 2000. This should happen in the first quar-
ter, as we expect Intel to introduce a version of Coppermine,
possibly with half the on-chip cache, into that space. Once
the Celeron space is breached, SSE will serve as a powerful
differentiator that could leave AMD in the lurch.

All Hopes Riding on SSE
Even if SSE bests 3DNow, Katmai will still not claim the desk-
top-multimedia high ground. Apple, whose desktop market
share is once again on the rise, will this summer field G4-
based platforms. The G4 processor provides a full implemen-
tation of Motorola’s 128-bit AltiVec multimedia architecture
(see MPR 5/11/98, p. 1). With 32 registers, four-operand non-
destructive instructions, multiply-add, 32 × 16 bytewise
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permute, select, multistream prefetching, and a host of other
powerful features, the G4 should outperform Katmai on all
multimedia algorithms, regardless of frequency differential.
Although PowerPC is not a direct competitor, the pesky
Apple could sap some software development resources that
Intel would prefer to have on SSE and Katmai.

With the K6 III nipping at Katmai’s heels, Intel must
also contend with the K7 this summer. If AMD can execute,
which is not yet a sure thing, the K7 could actually grab the
performance lead on general applications, and possibly even
3D. Intel’s secret wish that AMD will stumble getting K7 into
production at frequency, as it did with K6, appears less likely
to come true with each passing day. AMD is probably breath-
ing a sigh of relief that Intel was not more aggressive with
Katmai. For the first time, it is possible that AMD could have
Intel surrounded. How this could happen is a question that
Intel execs are undoubtedly contemplating.

But Intel can potentially blunt the impact of the K7 by
getting quickly to a 0.18-micron process with Coppermine.
This move should allow Intel to stay ahead of the K7 on fre-
quency and within marketing distance of it on performance.
If Intel can avoid missteps, Katmai and Coppermine should
safely bridge the company to Willamette, with only a few
scrapes and bruises along the way. If it makes the transition
safely, we expect that the company will never again yield to
the complacency that, in this round, has allowed a competi-
tor to get so dangerously close.— M
Figure 9. The first Pentium III processor, Katmai, implements
9.5 million transistors and measures 12.3 × 10.4 mm in 0.25-micron
P856.5 with five layers of aluminum interconnect. (Source: Intel)
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The Pentium III processor (Katmai) is available now at
a quantity-1,000 list price of $696 for the 500-MHz ver-
sion and $496 for the 450-MHz version. Both are offered
in the SECC2 (Slot 1) module.

A Xeon version of Katmai, code-named Tanner, is
expected to be announced in March, with delivery a
month later. Intel has also disclosed that a 550-MHz Kat-
mai will be available in 2Q99.
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