
rs Better?
tware Limits Progress
Computers have certainly come a long
way during the past twenty years. Micro-
processors have become thousands of
times faster, memories have become
thousands of times larger, and programs
have become vastly more complex. Yet
applications aren’t getting the traction
that they should; very little of the im-

provements in speed and capacity typically translate into
comparable improvements in usefulness.

There is an enormous gap between the potential of
computing and what it delivers in practice. Computers are
far too often annoying and aggravating and too rarely do
everything we want them to do—and that they should, in
theory, be able to do. The spectacular, continuing increases
in semiconductor technology have given us a tool that is far
outpacing our ability to use it optimally.

At the heart of computing’s difficulties is the radically
different nature of hardware and software. Hardware is
based on underlying technologies that improve at impressive
and consistent rates. In addition, most hardware is indepen-
dent of a particular application: a microprocessor fetches
and executes instructions, a memory stores data, a display
presents colored dots. The pace of hardware improvements
creates an expectation among computer users (and in the
industry itself) that the value of the systems is increasing as
rapidly. Unfortunately, this is far from true.

Software gains great benefit, to be sure, from the
advances in hardware technology. But unlike hardware, there
is nothing in software that gets better at a geometric rate.
Programming tools improve, and faster computers make
programmers more productive, but the rate of improvement
is slow. Yet at the same time, the complexity of the tasks
being performed increases boundlessly.

Software is so much more difficult than hardware be-
cause of its intimate connection with the application and the
user. Writing great software requires a deep understanding of
the tasks to be performed and of effective ways to interface
with the user. It is not a technological problem, which makes
it far less amenable to technology-powered boosts.

We may have reached the end of the line in terms of
computer engineers designing great computer applications.
Any good programmer, for example, can figure out how to
write a spelling checker. To create a useful grammar checker,
however, requires a deep understanding of natural language
semantics—knowledge that programmers don’t have. (What
we have today in PC grammar checkers is an example of
what you get with a programmer’s view of grammar.) There

■ T H E S L A T E R P E R S P E C T I V E

Why Aren’t Compute
Hardware Keeps Getting Faster, But Sof
© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R
are probably enough CPU cycles available to run a truly use-
ful writing assistant, given the right software—but no one
today seems able to create that software.

Software must also take the blame for the poor reliabil-
ity of most computers. Software crashes are far more fre-
quent than hardware failures. Ultimately, every crash has the
same cause: a programmer made a mistake. As software
becomes more and more complex, ferreting out all the mis-
takes becomes daunting. This is one fundamental weakness
of computers that is hard to see a way past. As reliable and
predictable as the hardware may be, the software will always
wear the marks of creative human endeavor, which is often
wonderful but never perfectly reliable.

Better-designed software should be able to reduce the
waiting that is a big factor in making computers frustrating
to use. Faster processors certainly help, but it is amazing how
slow many functions still are. Any time the computer makes
you wait more than a fraction of a second, it slows you down
and makes the experience less productive and enjoyable.

Disk access is, in many cases, a bigger cause of delays
than actual processing. To some degree, these delays are
inherent in the disks, whose access times have not decreased
dramatically. All too often, however, starting a program or
loading a document takes far longer than the raw transfer
time from the disk. Today’s PC software systems just aren’t
very intelligent when it comes to handling storage and inter-
leaving multiple tasks. As DRAM capacities of hundreds of
megabytes become economical, it should be possible to hide
most of the disk delays by preloading programs and data
into DRAM and performing saves in the background—but
more sophisticated software is needed.

For computing to approach its potential, we need soft-
ware that is smarter, more automated, and less failure prone.
The challenge is to bridge the gap between the powerful but
general-purpose machines and the very specific things that
each of us wants them to do. The solutions will come not
from programmers but from experts in the application
domains, armed with tools that enable them to create pro-
grams. What is needed, more than any technology develop-
ment, is huge amounts of human creativity—and that will
occur on a human time scale, not on technology’s time scale.

The microprocessor industry, and Intel in particular, is
thus held back by forces over which it has little control.
Unfortunately, there is nothing on the horizon that will
change the fact that software is improving at a much slower
rate than is hardware.

See www.MDRonline.com/slater/better for more on this
subject. I welcome your feedback at mslater@mdr.zd.com.

M

 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

http://www.MDRonline.com/slater/better

