
es of Age
roughput on Servers, Media Processors
by Peter Song

In their relentless quest for more performance, many
microprocessor designers are wondering, “What’s after
superscalar?” With out-of-order and speculative execution
seeming to have reached the point of diminishing returns,
many are looking for more ways to improve performance
without breaking binary compatibility. As faster processors
exacerbate memory-latency problems and new IC processes
allow more than 10 million transistors on a chip, these
designers are giving multithreading another look. Multi-
threading can significantly improve throughput without
huge investments in die size or design complexity. It can sim-
plify multimedia programming by hiding latency problems
from software. And unlike VLIW, multithreading maintains
full binary compatibility.

Like most advances in processor design, multithreading
is an idea that dates back to the 1950s. In the late 1970s,
the now defunct Denelcor’s HEP (heterogeneous element
processor) used processing elements that could support
16 instruction streams, or threads. By rotating among the
16 threads every cycle and by issuing and maintaining at
most one instruction from each thread in the eight-stage
pipeline, the processing elements were able to execute in-
structions correctly without any hardware interlocks.

The HEP used multithreading to simplify pipeline
design and improve system throughput at the expense of a
single thread’s execution speed. Recent studies, however,
claim that multithreaded processors can more than double
system throughput with little impact on single-thread perfor-
mance. They also claim a dramatic gain in system throughput
can come from multithreaded processors that are only incre-
mentally larger and more complex than today’s high-perfor-
mance superscalar processors.

The commercial success of multithreaded processors
clearly depends on the availability of operating systems that
support multithreading. Fortunately, Windows NT and most
Unix operating systems are designed to run on multiproces-
sor systems and support multithreaded applications. Run-
ning these operating systems on multithreaded processors
should require little or no software effort.

Multithreaded applications also need to be developed to
enable successful deployment of multithreaded processors.
The first mass-market multithreaded software is likely to
emerge from multimedia applications. The technical needs
for processing multiple and continuous media streams, cou-
pled with the market needs for delivering it at consumer-
price points, make multithreading a suitable design style for
multimedia processors.

Multithreading Com
Multithreaded Processors Can Boost Th
© M I C R O D E S I G N R E S O U R C E S J U L Y 1
Multithreading Reduces Idle Cycles
Multithreading can squeeze more performance from a pro-
cessor by utilizing otherwise idle cycles. Due to a thread’s
limited degree of parallelism and frequent dependencies on
long-latency operations, such as cache misses, a processor
can incur many idle cycles. Instead of wasting these idle
cycles, a multithreaded processor can use them to execute
instructions from other threads.

Figure 1 shows hypothetical threads A and B running
on conventional and multithreaded processors. By switching
to thread B1 while A1 is stalled, the multithreaded processor
is able to better use the idle cycles between A1 and A2. The
benefit is increased processor utilization and consequentially
higher throughput. Overall, the two threads complete in sub-
stantially less time on the multithreaded processor.

Figure 1 also illustrates several key performance issues
of multithreading (see sidebar, next page). First is thread-
switch overhead, which should be kept to a minimum, since
it accomplishes useless work. The amount of this overhead
determines which long-latency operations can profitably
trigger thread switching. Second is the number of threads the
processor can support. Note that the idle cycles between B1
and A2 could be better used by a third thread, since A2 is still
stalled. Finally, multithreading can lengthen execution time
of individual threads. Note that B2 resumed many cycles later
than it could have because thread A2 was running.

A multithreaded design can be classified into one of
three categories: coarse, fine, and simultaneous. A coarse
multithreaded design supports only one active thread—by
limiting instructions from only one thread in its execution
pipe. A fine multithreaded design supports multiple active
threads, but issues instructions from only one thread in a
cycle. The HEP falls into this category. A simultaneous multi-
threaded design issues and executes instructions from multi-
ple threads each cycle. As we will see, all three can be derived
from existing designs.
Thread-switch cycles
Context-switch cycles

Idle cycles

A1 B1 B2A2

Useful cycles

Sequential Execution:

A1 B1 B2A2

Multithreaded Execution:

Figure 1. When threads A and B are executed sequentially on a
conventional microprocessor, the idle cycles incurred while running
threads A and B are wasted. A multithreaded processor can detect
these idle cycles and switch to a thread that may have instructions
ready to execute.
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

© M I C R O D E S I G N R E S O U R C E S J U L Y 1

2 M U L T I T H R E A D I N G C O M E S O F A G E
Multiple Register Sets Speed Thread Switch
Conventional microprocessors provide only one set of archi-
tectural, or software-visible, registers. These are registers that
collectively represent a thread’s state when its execution is
interrupted. Architectural registers typically include the reg-
ister file (most RISC processors have 32 general-purpose reg-
isters in it) and a few special-purpose registers, such as the
program-counter, control registers, and status registers.

These single-threaded processors are used to support
multiple threads today. But before another thread can begin,
the current thread’s state must be saved in memory so it can
properly resume later. Depending on the number of registers
involved and cache misses incurred, a thread-switch opera-
tion involving saving and restoring registers can take hun-
dreds of cycles. Consequentially, it is unprofitable to support
thread switching on operations that take less than a hundred
or so cycles.

One way to reduce thread-switch overhead is to pro-
vide each thread with its own set of architectural registers.
This eliminates the need to save (and restore) a thread’s state
to run another thread, making a thread-switch on a long-
latency operation profitable. It does not, however, eliminate
the thread switching needed to execute operating-system
service calls or to run more threads than hardware supports.

Replicating a register file might not proportionally
increase its area. Because each bit in a register file needs a data
line and a word-select line for each port, beyond a certain num-
ber of ports its size is set by the width and height needed to
route the metal lines, not by the area needed to build the SRAM
cell. Using only 20% more area than that of a single-window
register file, Sun’s UltraSparc designers were able to pack eight
SRAM cells, one for each of eight SPARC register windows,
under the metal grid of a bit cell (see MPR 10/3/94, p. 7). By
having the threads share the ports, a coarse multithreaded pro-
cessor supporting up to eight threads could use a similar tech-
nique.

Coarse Multithreading Switches on Cache Miss
If the events that cause threads to switch are limited to long-
latency operations, such as a miss in the level-two (L2) cache,
the complexity of adding coarse multithreading to an exist-
ing pipeline can be kept to a minimum. An easy implemen-
tation is to wait for the instructions prior to the miss to com-
plete, then flush the pipeline and select the next active
thread. With a nonblocking cache design, the miss can be
serviced independently of the thread switch. When the
thread is resumed later, the second try is likely to result in a
cache hit. In effect, the miss spawns a prefetch.

A cache miss is a good candidate for causing a thread
switch because the instruction that incurs it can easily be
restarted. Other long-latency operations, such as divide, may
not be as good. It requires a sophisticated pipeline design to
have the divide operation continue while the rest of the
pipeline executes instructions from a new thread. Conditions
such as another divide instruction or an exception from the
U t i l i z a t i o n E x p l a i n e d

A simple analytical model can explain the increase in
utilization through multithreading. Assume that a proces-
sor spends its cycles doing one of three things: productive
work (P); idling due to a long-latency operation, when
the cycles can be made available to other threads (L);
idling, when the cycles are wasted (W). With only one
thread to execute, the average processor utilization is

P
U = ———–————

(P + W + L)

When multiple threads are present, the time spent
waiting for a long-latency operation (L) can be used to
run the other threads. Assuming that additional threads
have no effect on W or L, the average processor utiliza-
tion is

T × P
Ulinear = ———–————

(P + W + L)

provided that L ≥ T × (P + W + S) where T represents the
number of threads and S is the thread-switch overhead.
Notice that thread-switch overhead (S) is subsumed by L
in the utilization equation. The utilization is in the linear
region when adding more threads increases it linearly.

As more threads are added, the sum of P, W, and S for
running all threads becomes longer than L. This is known
as the saturation region, and adding more threads no
longer improves the utilization. The saturation region is
expressed as

P
Usat = ———–————

(P + W + S)

The upper limit of the utilization is set by the idle
cycles (W) and the thread-switch overhead (S). In real
systems, additional threads do affect W and L (causing a
higher cache-miss rate, for instance), and the utilization
decreases with more threads in the saturation region. The
figure below shows the linear region up to three threads
and the saturation region beyond the three threads.

Threads

U
ti

liz
at

io
n

■

■

■ ■ ■ ■

●

●

● ● ● ●

1 2 3 4 5 6
0

■ Asymptotic Limit

● Actual
0.2

0.4

0.6

0.8

P=20
W=5
S=4
L=62
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

3 M U L T I T H R E A D I N G C O M E S O F A G E
new thread complicate the pipeline-control and exception-
handling logic design.

Supporting only one active thread isolates multithread-
related design changes to a few places, keeping them man-
ageable. A context ID (CID) register could be used to select
the active set for every register access. The L2 cache-miss sig-
nal could be used by the instruction-completion-and-excep-
tion logic to interrupt the thread and flush the pipeline. Most
high-performance microprocessors already use nonblocking
cache designs to support multiple misses and prefetches.
Thread-selection logic could update the CID and cause
instructions to be fetched from the newly updated PC.

Multiple Threads Affect Large Caches Little
Some critics discount multithreading because, even in effi-
cient multithreaded designs that use only a thread’s idle
cycles, the additional threads significantly degrade single-
thread performance due to their detrimental effect on caches.
Eickemeyer[1] recently reported that, although additional
threads do increase the miss rate of small data caches (32K or
smaller), one or two additional threads have negligible effects
on reasonably sized caches (512K or larger).

The reported simulation results are based on TPC-C traces
running on a coarse multithreaded processor that switched
threads only on an L2 cache miss. For the results presented in
Figure 2, the model assumed 8 cycles for an L1 instruction or
data miss, 60 cycles for an L2 miss, and 4 cycles for a thread
switch. The model stalled the processor on an L1 miss.

For this OLTP (on-line transaction processing) appli-
cation, additional threads had very little effect on the L1
instruction-cache miss rate. The second thread increased the
miss rate of a 32K direct-mapped cache by only 0.9%. In
some cases, the miss rates actually decreased, due to code
sharing among the threads. As set associativity increased, the
increase in miss rates declined, as the conflict misses between
threads were reduced.

Additional threads had a more significant impact on
the L1 data-cache miss rate. The second thread increased the
miss rate by 10% on a 32K direct-mapped cache. With five
more threads, the miss rate increased by 31% for the same
cache. As expected, additional threads affected larger caches
less. Furthermore, the miss rate per thread was lower for a
32K cache with two threads than for a 16K cache with only
one thread, indicating that a larger shared cache was better
utilized than correspondingly smaller split caches.

For the larger L2 cache, the effect of multithreading was
even smaller. Adding the second thread to a direct-mapped
512K cache increased the miss rate by only 5%. For two- and
four-way set-associative caches, the second thread caused a
negligible change in miss rates. As L1 and L2 cache sizes con-
tinue to grow, effects of multithreading will get smaller.

Multithreading’s small effect on L2 cache-miss rates
implies that it should provide a significant performance gain
by hiding miss latency. With 32K L1 and 1M L2 caches,
adding the second thread increases throughput by 24%.
© M I C R O D E S I G N R E S O U R C E S J U L Y 1 4
With 8K L1 and 256K L2 caches, the increase in throughput,
at 41%, is even greater.

As L2 miss latency is increased from 50 to 70 cycles,
throughput decreases, but the relative gain in throughput
due to multithreading increases. Since multithreading has
little effect on a reasonably sized L2 cache and tolerates
longer latency well, it will scale well as CPU speeds outstrip
memory speeds, increasing apparent latency. The design
must provide enough bandwidth from the L2 to L1 caches to
account for the increased L1 cache-miss traffic, however.

This data is encouraging: a throughput gain of 30% to
50% on OLTP applications is possible with only two to
three threads. Transaction processing, however, may be an
ideal environment for multithreading, because a large
number of threads routinely execute the same programs.
Furthermore, a gain in throughput is more important than
a slight loss in single-thread’s performance in high-work-
load server environments.

Fine Multithreading Improves CPU Utilization
As CPUs reach higher frequencies, not only do memory
accesses take more cycles, but the longer pipeline causes
other common operations to take more cycles. For instance,
the 500-MHz Alpha 21264 needs 12–14 CPU cycles for an
off-chip L2 cache access, 8–16 cycles for an integer multiply,
and an average of 11 cycles to recover from a mispredicted
branch (see MPR 10/28/96, p. 11). These modest-latency
operations will cause short but frequent pipeline stalls, keep-
ing a single-threaded or even coarse multithreaded proces-
sor’s efficiency low. Fine multithreading attempts to boost
efficiency by using even these short and frequent idle cycles
to execute instructions from other threads.

The simplest scheme is to allocate one issue cycle to
each thread in rotation, as used by HEP and by MicroUnity’s
ill-fated MediaProcessor (see MPR 10/23/95, p. 11). The
Media-Processor rotates among five threads to issue one
instruction into its superlong 1-GHz pipeline. This five-way
0%

2%

4%

6%

8%

10%

12%

1 2 3 4 5 6
Number of Threads

8K L1 Data

16K L1 Data

32K L1 Data

512K L2 1-way

512K L2 2-way

M
is

s
R

at
e

32K L1 Inst

Figure 2. Multithreading effects on cache-miss rates for TPC-C
benchmark are shown. In general, multithreading affects larger
and set-associative caches less. (Source: 23rd Annual International
Symposium on Computer Architecture, pp. 203–212, May 1996)
, 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

4 M U L T I T H R E A D I N G C O M E S O F A G E
multithreading cuts the effective latency (as seen by an indi-
vidual thread) of a five-stage add to one, a ten-stage load to
two, and a fifteen-stage multiply-add to three. Its pipeline
control for dependency and forwarding is no more compli-
cated than in a single-threaded design, since each stage
knows which thread it is processing using a simple modulo-
five counter. The design does require up to five times more
latches and perhaps a scheme to selectively clock latches.

A somewhat more intelligent issue scheme is used in
Tera Computer’s MTA (Multithreaded Architecture). It can
support up to 128 active threads at once. On every cycle, the
thread-selection logic issues one instruction from a ready
thread. A thread is ready when its next instruction has no
dependency on instructions that are still in execution. For reg-
ister-to-register instructions that have fixed latencies, a cycle-
counting scheme makes the thread unavailable. The benefit is
that, since the stalled threads are not considered for issue, the
threads that are making progress are given more issue band-
width. With enough active threads to mask average pipeline
latency, the pipeline can be fully utilized at the expense of
stalling some ready threads for longer than necessary.

Interlocks Maintain Single-Thread’s Performance
Laudon[2] proposed adding hardware interlocks to HEP-
style fine multithreading to minimize the loss in single
© M I C R O D E S I G N R E S O U R C E S J U L Y 1 4
thread’s performance. Hardware interlocks allow instruc-
tions from one thread to be issued every cycle, thereby
achieving the same performance as a single-threaded proces-
sor. When multiple threads are present, instruction issue
rotates among the ready threads, reducing the effective
latency seen by each.

To hide latency longer than can be masked by thread-
rotating, a thread can use a BACKOFF instruction to specify
the number of cycles in which it will not be ready for issue.
By preventing the next instruction from prematurely
entering the pipeline, the BACKOFF instruction can reduce
pipeline blockage. The instruction is most useful for stal-
ling on a fixed-latency operation, such as a divide. On a
variable-latency operation, such as a load that may hit or
miss the cache, it poses the classical scheduling problem.
An optimistic scheduling could block the pipeline for
other threads, and a pessimistic one could unnecessarily
stall the thread. For checking a thread’s readiness after a
variable-latency operation, register scoreboarding is more
effective than the cycle-counting scheme or the BACKOFF

instruction.
Tullsen[3] described a simultaneous multithreading

(SMT) scheme that claims to achieve 5.4 instructions per
cycle (IPC) on an eight-issue design. Figure 3 depicts their
hypothetical SMT processor, without the 32K L1 data cache,
256K L2 cache, and 2M L3 cache. Their simulation studies
show that, without SMT, even aggressive superscalar tech-
niques cannot take full advantage of an eight-issue design.
Although it is difficult to generalize from their simulation
studies to real systems, SMT is likely to raise IPC by issuing
more instructions from multiple threads each cycle. In effect,
it takes advantage of the higher aggregate instruction-level
parallelism present in multiple threads.

Tullsen also reported two interesting findings. First,
simultaneous multithreading raises IPC significantly with a
minimal reduction in a single thread’s performance. The
SMT processor increased IPC by more than 30% with two
threads, from 2.1 to 2.8, and by 84% with six threads, to 3.9.
SMT support incurs a 2% drop in single-thread IPC, com-
pared with a superscalar processor without it. The drop
comes from adding an extra pipeline stage for register reads
and another for writes to compensate for the larger register
file. In the study, each thread ran 300 million instructions for
each of eight benchmarks (seven from SPEC92 and Tex),
arranged so no two threads ran the same benchmark at the
same time.

Second, fetching from the thread with the fewest in-
structions in the instruction queues each cycle gives the most
gain in throughput—23% with eight threads. It maximizes
the throughput of fixed-size queues with the instructions
that spend the least time in them. Two other policies, fetch-
ing from the thread with the fewest branches in the instruc-
tion queues and fetching from the thread with the fewest
outstanding data-cache misses, also perform better than the
round-robin scheme.
FPU IEU IEU/
LSU

32K Instruction Cache (Interleaved)

Eight-Wide Decoder/Issue

100 Rename Registers

In
st

r
C

om
pl

et
io

n
U

ni
t

0 1

Branch
Pred
Logic

0

Inst
Fetch
Unit
IQ

0 1

Branch
Pred
LogicIQ

Inst
Fetch
Unit

1

Register File Register File
0 1

8 instr

0–
31

0–
31

8 instr

In
st

r
C

om
pl

et
io

n
U

ni
t

Figure 3. A hypothetical two-way simultaneous multithreaded
processor has two register files, two instruction-completion units,
and two instruction-fetch mechanisms but shares the other
resources. Instructions from both threads can be issued together in
the same cycle.
, 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

5 M U L T I T H R E A D I N G C O M E S O F A G E
Second Thread Adds Little Complexity
A wide-issue superscalar design can be modified to support
simultaneous multithreading. A larger register file is needed
to support multiple register sets, which will lengthen its
access time, but this may not be the critical speed path. The
register file needs the same number of ports and rename
registers as in a single-threaded design with similar execu-
tion width.

Simultaneous multithreading also requires, for each
thread, mechanisms to retire instructions and to selectively
flush them when handling mispredicted branches and excep-
tions. A selective flush mechanism is easy to devise (e.g.,
internally tag each instruction and register with the thread
ID), but it complicates efficient and fast-access queue design
because it randomly leaves invalid entries.

As in other high-performance processor designs, the
most performance-critical design issues are in the instruc-
tion-fetch logic. Most, if not all, of the fetch-acceleration
mechanisms need to be duplicated to take advantage of the
wide-issue core. These include features like branch-predic-
tion logic and related tables, branch-target caches, and the
return-address stack. The instruction cache needs to be non-
blocking to handle multiple outstanding misses.

For just two threads, however, the added complexity of
simultaneous multithreading can be manageable. A non-
blocking instruction cache is easier to design than the non-
blocking data caches that today’s high-performance proces-
sors already support. Isolating thread-specific logic into
separate modules can ease replication. In fact, the bulk of
design and functional verification work can be done with a
design that supports only one thread. The modules needed
by the second thread can be added later, when the interac-
tions between the threads need to be tested or when physical
design and verification call for them.

Multiple Threads Raise Few Architectural Issues
One way to introduce multiple threads into an existing archi-
tecture is to make each thread appear as if it were a complete
processor. Doing so makes the existing system and software
solutions for symmetric multiprocessor (SMP) designs read-
ily applicable to multithreaded systems. In effect, this is one
way to build an SMP on a chip (see MPR 10/2/95, p. 16). Its
advantage over building an SMP by replicating entire CPUs
is that, with simultaneous multithreading, it can provide
flexible partitioning of CPU and memory bandwidth, as
needed by the threads. Traditional SMP uses permanently
fixed partitioning and relies on software to balance the CPU
bandwidth for each processor.

This symmetric multithreaded architecture duplicates
both user- and supervisor-mode states, including trap vec-
tors that specify the trap-handler addresses. This allows
simultaneous exceptions from multiple threads to occur and
simplifies the system programming model. The trap-handler
code can be—and is likely to be—shared by all threads. Pro-
viding a trap-vector-base register for each thread and defin-
© M I C R O D E S I G N R E S O U R C E S J U L Y 1
ing each trap vector as an offset from this base register could
make code sharing easier.

Making all threads behave identically simplifies proces-
sor design and verification and makes the architecture scal-
able. Asynchronous interrupts and reset can be treated in the
same manner. Instead of differentiating only one thread to
service asynchronous interrupts, the thread-selection logic
can interrupt the lowest-priority or an arbitrary thread.

Providing a separate reset vector for each thread main-
tains identical behavior for all threads and, at the same time,
provides the differentiation an operating system may need.
For instance, it is easier to have only one thread go through
the system-boot sequence. Today’s SMPs solve this problem
by keeping each processor’s boot code in its local memory.

To avoid using a busy-waiting loop for an idle thread,
an instruction to SLEEP and a mechanism to WAKE a sus-
pended thread are desirable. The Tera MTA provides the
STREAM_CREATE instruction for a thread to activate another
thread. This instruction passes the address of an instruction
stream, trap-vector-base address, mode and mask bits, and
up to three words of data. A thread executes the STREAM_QUIT

instruction to return to the idle state.

Multithreading Cheaply Boosts Server Throughput
If multithreading is so good and inexpensive, why hasn’t
anyone built a commercial success out of it? For one thing,
there hasn’t been a big demand for inexpensive multi-
processor servers. And for the small market that wanted
multiprocessors for throughput, the immense memory and
resilient disk storage required were far more expensive than
the CPUs used in these machines.

Due to the affordable Pentium/Windows NT combi-
nation and the explosive growth of the Internet, the de-
mand for inexpensive servers is growing rapidly. Computer
Intelligence estimates 227,900 units of Pentium/Windows
NT servers were shipped in 1996, up sharply from 96,200
units a year earlier. The nonworkstation server market for
Windows NT and Unix combined is projected to grow to
2.3 million units by 2001. Furthermore, due to the dramatic
drop in both DRAM and disk-storage costs, the cost of
CPUs has become a significant portion of these inexpensive
servers. A multithreaded microprocessor, with its addi-
tional threads, can boost these servers’ throughput at an
incremental CPU cost.

Only now are designers being given semiconductor
technology that gives the sense of “excess transistors.” Their
first urge may be to put these extra transistors in caches.
Undoubtedly, larger caches improve performance, but the
rate of improvement diminishes beyond a reasonable size;
the forthcoming PA-8500, for example, will contain 1.5M of
cache (see MPR 3/10/97, p. 4). Additional threads offer more
performance gain than do enormous caches. With an in-
creasingly larger fraction of chip area being devoted to cache,
the die-area cost of additional threads is small and will get
smaller over time.
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

6 M U L T I T H R E A D I N G C O M E S O F A G E
The shorter CPU cycle time and the greater speed dif-
ference between logic and memory devices have made the
latency problem worse. For the 1-GHz designs in progress,
DRAM access will take upwards of a hundred cycles. Other
common operations will take tens of cycles. The host of
latency-hiding techniques already being used in high-end
processors, some with enough hardware to execute up to 80
instructions out of order, may also have reached the point of
diminishing returns. A more general latency-tolerating tech-
nique, such as multithreading, is necessary as designers look
to deliver more performance.

PC Multimedia Can Provide Additional Threads
Multithreading is even better suited for multimedia PCs,
where modem, video, audio, and even 3D graphics data
streams may need to be processed simultaneously. The lack
of locality and the huge size of multimedia data streams
make caching less effective and latency a bigger problem. Yet
these data streams need to be processed within fixed time
limits to provide seamless and vivid multimedia experiences.

Media processors like Mpact, TriMedia, and the ill-
fated MSP use on-chip data memory instead of cache, along
with a host of prefetch, write-back, and DMA functions.
Software pipelining—prefetching (the next block of a data
stream) and storing (results of the previous block of the
data stream) while processing the current block of a data
stream—is their way of hiding latency. For the sake of sim-
ple hardware designs, these processors turn the latency
problem into difficult and unnatural programming.

A multithreaded approach, in which a data stream is
processed by one or more threads, simplifies programming.
The difficult task of writing software-pipelined programs
becomes easier when hardware can effectively hide latency
behind instructions that process other data streams. In fact,
latency ceases to be an application’s problem when each
thread is given enough CPU and memory bandwidth to pro-
cess its data stream in the allotted time—provided that hard-
ware supports multiple active threads or low-overhead
thread switching. For a thread processing a modem or audio
data stream, however, getting enough bandwidth doesn’t
necessarily guarantee that it will meet its real-time deadlines.

By no means do media processors have exclusive rights
to multithreaded multimedia processing. They simply have
more media-specific instructions (and integrated functions)
and fewer general-purpose instructions. Most existing archi-
tectures, with their multimedia extensions, have instruction
sets that are adequate for designing competitive multi-
threaded media processing.

A Multithreaded CPU to Appear by 2000
Multithreading is a latency-hiding technique that works
well with existing and new architectures. It can improve a
server’s throughput performance at an incremental CPU
cost. In OLTP environments that value throughput as well
as response time, a significant gain in throughput is worth
© M I C R O D E S I G N R E S O U R C E S J U L Y 1
more than a slight loss in response time. Multithreading can
also increase throughput as well as simplify writing multi-
media application programs.

Multithreading offers a range of implementation choices.
A coarse multithreaded processor can be a derivative of an
existing high-end design with little added die area and design
complexity. A fine or simultaneous multithreaded processor
can take advantage of short but increasingly frequent idle
cycles. It will have less impact on single-thread performance
than does a coarse multithreaded design. As more transistors
become available on a single die, the die area spent on sup-
porting additional threads will get smaller.

Merced, the first implementation of IA-64, is expected
to tape out early next year. Although we don’t anticipate it to
be a multithreaded design, we do expect future implementa-
tions of IA-64 to use this technique. As IA-64 is initially
aimed at workstations and servers, a multithreaded IA-64
design could provide multiprocessor performance without
additional CPUs.

AMD, Cyrix, and other x86 vendors may choose to
counter Merced with multithreaded designs that offer in-
creased system and multimedia performance without a new
instruction set. As superscalar design techniques reach a
point of diminishing returns, multithreading can provide yet
another dimension to improving x86 performance. Due to
the x86’s stack-based floating-point instruction set, however,
even a multithreaded x86 processor would fall short of
Merced’s floating-point performance.

The first multithreaded microprocessor is likely to be a
media processor. The need to process multiple data streams,
many with wide data-level parallelism but little locality, calls
for a wide execution core that can hide latency. In addition,
the absence of existing software and established develop-
ment tools calls for the simple programming model that a
multithreaded design can provide. A multithreaded vector
processor has a future in multimedia processing and could
appear by the end of this decade.

References and Bibliography
[1] Eickemeyer, R.; R. Johnson; et al. “Evaluation of Multithreaded

Uniprocessors for Commercial Application Environments.” In

23rd Annual International Symposium on Computer Architec-

ture, pp. 203–212, May 1996.

[2] Laudon, J.; A. Gupta; et al. “Architectural and Implementation

Tradeoffs in the Design of Multiple-Context Processors.” In

Multithreaded Computer Architectures: A Summary of the State

of the Art, edited by Guang Gao, et al, pp. 167–200. Kluwer Aca-

demic Publishers, Norwell, Mass., 1994.

[3] Tullsen, D.; S. Eggers; et al. “Exploiting Choices: Instruction

Fetch and Issue on an Implementable Simultaneous Multi-

threading Processor.” In 23rd Annual International Symposium

on Computer Architecture, pp. 191–202, May 1996.

[*] Moore, S. Multithreaded Processor Design. Kluwer Academic

Publishers, Norwell, Mass., 1996.

[*] Tera Computer Company, http://www.tera.com.

M

4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

http://www.tera.com

	Multithreading Comes of Age
	Multithreading Reduces Idle Cycles
	Figure 1. When threads A and B are executed sequentially...
	Multiple Register Sets Speed Thread Switch
	Coarse Multithreading Switches on Cache Miss
	Multiple Threads Affect Large Caches Little
	Figure 2. Multithreading effects on cache-miss rates...
	Fine Multithreading Improves CPU Utilization
	Figure 3. A hypothetical two-way simultaneous...
	Interlocks Maintain Single-Thread’s Performance
	Second Thread Adds Little Complexity
	Multiple Threads Raise Few Architectural Issues
	Multithreading Cheaply Boosts Server Throughput
	PC Multimedia Can Provide Additional Threads
	A Multithreaded CPU to Appear by 2000
	References and Bibliography

	Utilization Explained

