
SC to 8-Bit World
ips With Same Low Cost
by Jim Turley

Proving the adage that all technologies eventually filter
down into commodity products, Atmel has brought RISC
design philosophy to 8-bit microcontrollers. Dubbed AVR,
this new architecture provides all the usual benefits of RISC:
faster clock rates, better performance, and more efficient
compiler optimization. Atmel also promises better code den-
sity and lower cost than comparable 8-bit microcontrollers.

AVR competes with several well-established micro-
controller dynasties such as the 6805, 68HC11, and 8051.
Competition also comes from Microchip’s PIC family, a more
modern design that’s expanded rapidly in the past few years.
Atmel hopes AVR will appeal to embedded designers who are
willing to tackle a new architecture to get more performance
than the entrenched microcontroller families can provide.

AVR is the first in-house CPU design from Atmel, a
billion-dollar company better known for its flash memory
and E2PROM products. The company also sells a dozen
flash-based derivatives of the popular 8051 family, which it
produces under license from Intel.

Design Melds RISC and Microcontroller Ideas
The CPU resembles most RISC processors but has smaller
registers. It was originally developed by a pair of researchers
in Trondheim, Norway, before their consultancy was ac-
quired by Atmel in 1995. Core CPU development still takes
place in Norway, while memory and peripheral development
is centered in Atmel’s San Jose (Calif.) facility.

The core features 32 identical 8-bit registers, as Figure 1
shows. Any register can hold addresses or data. Since 8-bit
address pointers are fairly worthless even in an 8-bit device,
the last six registers can be used in pairs, as address pointers.

Atmel AVR Brings RI
Better Performance Than Other 8-Bit Ch
© M I C R O D E S I G N R E S O U R C E S J U L Y 1 4
Dubbed X, Y, and Z, these three meta-registers can be used
for any load or store operation. The pointers can be post-
incremented or predecremented at the programmer’s option.
Finally, a 6-bit displacement can be added to the contents of
the pointer, a useful option for addressing array elements.
This mode is not available for the X pointer; that opcode is
reserved for the LDI (load immediate constant) instruction.

As with many low-end microcontrollers, the register
file is mapped into the address space, and vice versa. The first
32 bytes of memory, 0x00–0x1F, correspond to registers
R0–R31. The chip’s status register—which contains the over-
flow, carry, sign, and other flags—as well as other “internal”
registers are also memory mapped. This allows any register
to be manipulated using standard memory references instead
of special control-register instructions.

For all intents and purposes, the CPU has no pipeline.
It retrieves both source operands, executes the instruction,
and stores the result in a single clock cycle. Branch latency is
one clock for taken branches. All operations are register-to-
register; the chip follows a strict load/store model.

The great majority of AVR instructions are 16 bits long.
Only four 32-bit instructions exist, allowing limited use of
absolute 16-bit addressing. AVR separates the program and
data spaces; although data pointers can be 16 bits, the PC
(program counter) is only 12 bits wide, for 8K of code space.

Instruction Set As Regular As Possible
The compact instruction set necessarily forces some compro-
mises, the first of which affects immediate values (literals).
Very few instructions accept immediate values, and those
that do (ADIW, SUBI, ORI, etc.) work only on the upper half
(R16–R31) of the register set, as Table 1 shows. Even after
shaving a bit from the operand-specifier field, these instruc-
tions sometimes have room for only 6-bit immediate values.

The ADIW and SBIW instructions (add/subtract imme-
diate from word) are even more restrictive, operating on only
the last eight registers, R24–R31. These instructions are
meant primarily to add small offsets (0–63 bytes) to the X, Y,
and Z pointers.

There is a wealth of conditional branch instructions:
namely, two for each of the eight flags in the status register.
With little 7-bit offsets, these instructions can deflect execu-
tion only 64 instructions in either direction. For bigger dis-
placements, RJMP can shift code by 2K, which is usually
plenty, given the chip’s small code space.

AVR also has a collection of interesting “skip” opera-
tions (SBRC, SBRS, SBIC, and SBIS) that skip over the next
instruction if any bit in any register is set or clear. If the
skipped instruction is a long-displacement jump, these skips
R0
R1
R2

R31
R30
R29
R28
R27

Z pointer

X pointer

Y pointer

R26

Carry
Zero
Negative
Overflow
Sign
Half carry
T bit
Interrupt enable

Status register
7 0

Figure 1. Unlike other 8-bit controllers, AVR has a set of 32 8-bit
registers. The last six registers can be paired to form three address
pointers.
, 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

2 A M T E L A V R B R I N G S R I S C T O 8 - B I T W O R L D
can be used to effectively create conditional long-displace-
ment branches. Alternatively, they can be used to skip a sin-
gle arithmetic or logical operation in a string of operations,
creating conditional operations somewhat similar to ARM’s.

None of the AVR chips has a native multiply opera-
tion—much less a divide—although one has been defined. As
defined, MUL multiplies any two 8-bit registers and deposits
the 16-bit result in R0 and R1. When implemented, MUL exe-
cutes in just two clock cycles, which is five times faster than
the 68HC11’s 10 clocks; even Motorola’s newer 68HC12
(see MPR 5/27/96, p. 1) needs 3 clocks. Atmel expects to
deploy its multiplier in future AVR chips as clock speeds
increase and the chips take on simple signal-processing tasks.

Instructions Are Rich in Bit Manipulation
As with most microcontrollers, the AVR family has a host of
bit-twiddling options, including 16 explicit instructions to set
and clear every flag in its status register. This seems like a lop-
sided use of opcode space; the same result could have been
achieved with normal logical operations. For deeply embed-
ded applications, however, this was probably the right choice.
Masking operations use precious address pointers and one or
more registers; the SEx/CLx instructions use neither.

The chip can also set or clear any bit in any general-
purpose or I/O register; SER and CLR wipe the contents of an
entire register at once. SBR and CBR, which set or clear mul-
tiple bits at a time, are aliases for ORI and ANDI, respectively.
© M I C R O D E S I G N R E S O U R C E S J U L Y 1
Initial Launch Includes Five Parts
Atmel launched its AVR product line with four basic chips:
the 90S1200, the ’2313, the ’4414, and the ’8515. The latter
three devices are very similar, differing mainly in the amount
of memory on the chip: 2K, 4K, or 8K of flash, with the
amount of on-chip SRAM and E2PROM also increasing.

The runt of the litter, the 1200, has only 1K of flash
memory, no SRAM, no peripherals, and a restricted instruc-
tion set. With neither SRAM nor an external bus, the 1200
must use on-chip flash for data storage, which will slow exe-
cution considerably unless programmers can get by with jug-
gling the register set alone. The 1200 is also the only chip in
the family currently in production. In 1,000-unit quantities,
the 20-pin 90S1200 sells for a paltry $1.65.

It’s not often that the number of data bits outnumbers
the pins on the package, but Atmel managed to get close with
its 1220 device, an 8-pin version of the 1200. After power,
ground, and crystal connections, only four pins are free for
I/O. Most AVR chips come in 20-pin DIP or SOIC packages,
which provide access to more I/O lines; only in a 40-pin
package do the chips bond out their address and data buses
for access to external memory.

All the parts are fabricated on Atmel’s four 0.8-micron
two-layer-metal fab lines in Colorado Springs and Rousset
(France). This is the same memory process Atmel uses for its
E2PROM and flash devices, and for its 8051 chips with inte-
grated flash. The 1200 measure about 24 mm2 overall, and as
Description

JMP Jump absolute (24-bit)
RJMP Branch relative (12-bit)
IJMP Jump indirect (Z)
RCALL Call subroutine
ICALL Call subroutine indirect (Z)
RET/RETI Return/from interrupt
CP/CPC Compare/with carry
CPI Compare with 8-bit immediate
CPSE Compare, skip if equal
SBRS/SBRC Skip if register bit set/clear
SBIS/SBIC Skip if I/O bit set/clear
BRcc Conditional branch

MOV Copy register to register
LD Load indirect through X/Y/Z
LD Load indirect with postincremnt
LD Load indirect with predecremnt
LDD Load indirect with 6-bit offset
LDI Load 8-bit immediate
LDS Load from 16-bit address
LPS Load from program space
ST Store indirect through X/Y/Z
ST Store indirect with postincremnt
ST Store indirect with predecremnt
STD Store indirect with 6-bit offset
STS Store to 16-bit address
IN/OUT Input/output to/from I/O space
PUSH/POP Push/pop stack element
BLD/BST Load/store T bit

ADD/ADC Add/with carry
ADIW Add 6-bit immediate
SUB/SUBC Subtract/with borrow
SBIW Subtract 6-bit immediate
SUBI/SBCI Subtract 8-bit imm/w borrow
INC/DEC Increment/decrement register
MUL Multiply 8 × 8 → 16

SEC/CLC Set/clear C flag (carry)
SEH/CLH Set/clear H flag (half carry)
SEN/CLN Set/clear N flag (negative)
SEZ/CLZ Set/clear Z flag (zero)
SEI/CLI Set/clear I flag (interrupt)
SES/CLS Set/clear S flag (sign)
SEV/CLV Set/clear V flag (overflow)
SET/CLT Set/clear T bit
SBR/CBR Set/clear bit in register
BSET/BCLR Set/clear bit in status register
SER/CLR Set/clear entire register
SBI/CBI Set/clear bit in I/O space
Arithmetic

Mnemonic Description Mnemonic Description

Bit ManipulationFlow Control

AND Logical AND
ANDI Logical AND 8-bit immediate
OR Logical OR
ORI Logical OR 8-bit immediate
EOR Logical exclusive-OR
LSL/LSR Logical shift left/right by 1 bit
ROL/ROR Rotate left/right by 1 bit
ASR Arithmetic shift right by 1 bit
COM/NEG One’s/two's complement
SWAP Swap nibbles
TST Test for zero or minus

Logical

NOP No operation
SLEEP Wait for interrupt
WDR Watchdog reset

Miscellaneous

Mnemonic

Load/Store

Can use R16–R31 only
Can use R24–R31 only

Not available on 90S1200, 1220
Future enhancement

Table 1. Atmel’s AVR 8-bit RISC instruction set follows a strict load/store model, with a few simple indirect addressing modes, including
postincrement and predecrement. The architecture also includes a number of individual bit-manipulation instructions.
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

3 A M T E L A V R B R I N G S R I S C T O 8 - B I T W O R L D
the die photo in Figure 2 shows, the chip is nearly all logic.
Memory processes typically don’t produce very compact (or
fast) logic, but most AVR chips will be dominated by mem-
ory and peripherals, and clock speeds aren’t very high.

For Once, RISC Techniques Improve Code Density
It’s sometimes hard to get excited about 8-bit processors, yet
Atmel’s AVR design is as different from others in its class as
the first RISC machine was from big systems more than a
decade ago. With its large register file and orthogonal instruc-
tion set, AVR is far more modern than its competitors.

Atmel’s new CPU will be particularly appealing to pro-
grammers moving down the microprocessor food chain
from 32-bit or 16-bit chips and who are accustomed to flex-
ible register sets. For programmers moving up from, say, the
8051, AVR will be a real eye-opener.

For example, the 8051, 6805, and PIC all make do with
a single accumulator; the 68HC11 and ’HC12 have just two.
This makes AVR easier to program at the assembly level and
easier to optimize with a compiler. The big register set
reduces dependence on memory, which improves speed and
shrinks data-storage requirements.

Counterintuitively, AVR’s RISC-like instruction set also
helps improve its code density over that of other 8-bitters,
© M I C R O D E S I G N R E S O U R C E S J U L Y 1
according to Atmel. Its CPI (compare immediate) instruc-
tion avoids the relatively awkward construct of loading,
subtracting, and checking flags used on the 6805 and PIC.
Adding two numbers on the 8051, 6805, or PIC usually
involves shuffling both operands through the accumulator
and storing the result; AVR simply adds two registers with
one instruction in one cycle.

AVR is not pure RISC—some instructions are longer
than others—nor is it the first 8-bit microcontroller with a
big register file. Zilog’s ever-popular Z8 has 16 banks of
16 registers and a very orthogonal instruction set. But at
5–15 clocks per instruction, the Z8 can’t match AVR’s speed.

Atmel Takes On Million Sellers
The 6805, 8051, and 68HC11 are the top-selling 8-bit families
in the world, shipping millions of units every month. Moto-
rola, for example, shipped its two-billionth 68HC05 in April.
While AVR will not instantly overthrow these titans, it does
provide substantial advantages over the entrenched leaders
and blurs the line between 8- and 16-bit performance.

Although “high-performance” seems misplaced here,
the AVR family should outperform other 8-bit microcon-
trollers and many 16-bit chips. At 20 MHz, its top clock rate
is easily double that of other chips in its class. More impor-
tant, almost all instructions execute in 1 or 2 clock cycles,
versus 5–10 cycles for 8051, 6805, 68HC11, and PIC chips.

There is no lack of alternatives for the 8-bit user looking
for more speed. Motorola’s 68HC12 is a step up from the
’HC11; Philips and Intel are enticing 8051 users with the
8051XA (see MPR 10/3/94, p. 17) or the 251 family. Of these,
Intel offers the smoothest upgrade path, with complete
binary compatibility between the 8051 and the 251. Philips
and Motorola both tout substantial size and speed advantages
for users willing to reassemble (or recompile) their code.

The ’HC12, 8051XA, and 251 are more accurately 16-
bit designs, with 16-bit internal data paths and 16-bit arith-
metic operations, but they still require three or more clocks
for even the simplest calculations and most basic register
operations. Moreover, the clock rates of these parts are not
substantially faster than Atmel’s and can’t make up for inher-
ently inefficient execution.

In short, AVR offers 16-bit performance at an 8-bit
price. For users who want on-chip memory but don’t need
16-bit data types or binary compatibility with a previous gen-
eration, Atmel offers better price/performance for designers
willing to let go of the older families’ apron strings.

With only one part in production, it’s far too early to
tell whether Atmel’s new family will make a dent in the mar-
ketplace. But at less than $1 in volume, the tiny 1220 should
certainly be attractive to designers of toys, control systems,
and consumer items. The cost of 8-bit microcontrollers is
historically determined by their peripherals, and with none
to speak of, the 1200 is probably not a good indicator of
future pricing. As Atmel rolls out the rest of the family this
year, the effect of its bold move will become clearer. M
Figure 2. The 90S1200 measures about 4.3 × 5.5 mm in Atmel’s
0.8-micron two-layer-metal flash-memory process.

Register
File

CPU

Fl
as

h
E2 P

R
O

M

Pe
ri

ph
er

al
s

C
on

cu
rr

en
t

R
ea

d/
W

ri
te

C
on

tr
ol
P r i c e & Av a i l a b i l i t y

Atmel’s AT90S1200 is in production now. In 1,000-unit
quantities, the part sells for $1.65; the 8-pin 1220 is less
than $1. The 8515, with 8K of flash and 512 bytes of
SRAM and E2PROM, is currently sampling; pricing has
been set at $5.95 in 1,000-piece quantities. For more infor-
mation, contact Atmel (San Jose, Calif.) at 408.487.2564
or access www.atmel.com.
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

http://www.atmel.com

	Atmel AVR Brings RISC to 8-Bit World
	Design Melds RISC and Microcontroller Ideas
	Figure 1. Unlike other 8-bit controllers, AVR has...
	Instruction Set As Regular As Possible
	Instructions Are Rich in Bit Manipulation
	Table 1. Atmel’s AVR 8-bit RISC instruction set...
	Initial Launch Includes Five Parts
	For Once, RISC Techniques Improve Code Density
	Figure 2. The 90S1200 measures about...
	Atmel Takes On Million Sellers

	Price & Availability

