%’ VOL. 10, NO. 14

LST’s TinyRisc Core Shrinks Code Size

Code-Compaction Technique Squeezes MIPS Instructions Into 16 Bits

by Jim Turley

With a nod to embedded designers concerned
about code density, LSI Logic and MIPS Tech-
nologies have together developed a special
MIPS core that uses 16-bit instructions. The new TinyRisc
core, which will be available late this year, slashes the MIPS
instruction word in half, giving ASIC customers a 32-bit
architecture with 16-bit instructions.

TinyRisc is similar in concept to ARM’s Thumb option
(see 090401.PDF). Like Thumb, TinyRisc compromises per-
formance and flexibility in order to improve its code density.
The many similarities between Thumb and the TinyRisc
instruction set (which the companies call MIPS-16) high-
light the technical limitations of such an effort. That two
such companies would undertake similar projects demon-
strates the increasing concern about code size in many
portable embedded applications.

Not Really Compression, Just Different Opcodes

Presenting at last week’s Microprocessor Forum, LSI’s Paul
Cobb described MIPS-16 as “compressed” instructions, but
it is actually a completely different instruction set encoded in
16 bits. TinyRisc chips include two instruction decoders,

6 26
J-Type ‘ opcode ‘ target
\ mode
5.1 10
op H/ target
target
6 5 5 16
I-Type ‘ opcode ‘ rs ‘ rt ‘ immediate
5. 3/ 8

‘ op | rs ‘ immediate ‘

6 5 5 5 5 6
R-Type ‘ opcode ‘ rs ‘ rt ‘ rd ‘ count‘ function‘

RR-Type\\‘ op | rs ‘ rt \‘/func ‘

5 3 3 3 2 func
RRR-Type ‘ op‘ rs ‘ rt ‘ rd

Figure 1. Conventional 32-bit MIPS instructions are simplified and
condensed into the new MIPS-16 instruction set. (J, |, and R for-
mats refer to jump, immediate, and register addressing modes.)

OMICRODESIGN RESOURCES \/ OCTOBER

one for conventional MIPS code and another for MIPS-16
instructions. TinyRisc chips can switch between these two
instruction formats using special branch instructions. Oth-
erwise, the two instruction sets cannot be intermixed.

Switching between the two instruction sets is necessary
because TinyRisc chips cannot operate entirely in 16-bit
mode. There are several operations that can only be executed
using the conventional 32-bit MIPS instruction set. For
example, there are no MIPS-16 instructions for exception
handling, system setup, floating-point math, or error recov-
ery. Programmers can decide when to switch to MIPS-16
mode for compactness and when to use 32-bit mode for
compatibility and flexibility.

Figure 1 shows how the three types of conventional 32-
bit MIPS instructions are broken into four 16-bit types for
MIPS-16. In the MIPS-16 instruction set, opcodes are re-
duced from six bits to five, instantly halving the number of
available operations. These operations are encoded entirely
differently than their 32-bit versions, not merely shaved from
one end of the normal opcodes. The MIPS-16 predecoder
maps its 5-bit opcodes to their 6-bit originals using a lookup
table. This strategy allowed TinyRisc’s designers to select the
operations they judged most vital, not necessarily the ones
that were missing, say, their most significant bit.

In jettisoning half the instruction map, MIPS-16
forces several compromises. Only eight of the processor’s
32 registers are available, most register-to-register opera-
tions are destructive, and both immediate data and offsets
have been severely truncated. Immediates are one byte, and
indirect branch offsets are restricted to 10 bits.

This last compromise would normally limit the extent
of MIPS-16 branches to 512 instructions, or 2K bytes, in
either direction. (Even though MIPS-16 instructions are
16 bits long, the architecture still requires 32-bit alignment
on branch targets.) To sidestep this harsh restriction, branch
instructions automatically concatenate the next 16-bit word
to the branch offset, enabling the full 26-bit offset MIPS pro-
grammers are used to.

New Instruction Set Is Fairly Complete
Table 1 lists the entire MIPS-16 instruction set, including
encoding options for many operations. The MIPS-16 prede-
coder can be grafted onto nearly any MIPS core, so the
resulting chip will support whatever instructions it originally
did, plus the new 16-bit ones. Thus, R3000-class devices will
have the capacity for only 32-bit operations, while R4000-
type chips will do both 32-bit and 64-bit math.

Nearly all the general-purpose MIPS-II and MIPS-III
instructions have MIPS-16 counterparts, the major omis-

28, 1996 \/ MICROPROCESSOR REPORT

sions being signed add and subtract, unconditional jump,
left- and right-justification, and all coprocessor operations.
This last restriction eliminates any hope of running floating-
point code with the MIPS-16 instruction set.

For arithmetic operations, MIPS-16 supports signed
and unsigned multiplication and division, but only unsigned
addition and subtraction. For bitwise logical operations, the
immediate forms are not supported. For example, AND, OR,
and XOR must use two registers (destroying the contents of
one source register with the result) rather than an immediate
mask. The unconditional jump was replaced with an uncon-
ditional (PC-relative) branch.

To switch between instruction-set modes, software
must jump or call the target module using JR, JALR, or a new
JALX (jump, link, and exchange) instruction. The two least
significant bits of the program counter are normally not
used. For TinyRisc chips, bit 1 becomes significant, and bit 0
stores the current instruction-set mode. A mode-switching

LSI’S TINYRISC CORE SHRINKS CODE SIZE

&7 VOL. 10, NO. 14

control-transfer toggles bit 0, reversing the current mode and
enabling or disabling the MIPS-16 predecoder.

The MIPS-16 designers cheated somewhat, creating a
new EXTEND instruction that bypasses the short 5-bit and
8-bit immediate data fields dictated by the MIPS-16 encod-
ing. Placing an EXTEND instruction immediately before
another MIPS-16 instruction extends the latter instruction’s
immediate data field to 16 bits, as in most conventional
MIPS instructions. It works by concatenating the 11-bit
immediate field of the EXTEND instruction itself with the
short immediate field of the subsequent MIPS-16 instruc-
tion. The concept is similar to the size-override prefix bytes
of x86 processors since the 386.

The extension prefix helps alleviate some of the switch-
ing between 16-bit mode and 32-bit mode that would other-
wise be required to generate long addresses or large immedi-
ate values. It is not compatible with all MIPS-16 instructions;

those that can be extended are indicated in Table 1.

Mnemonic Description Format
oad/Store --2EX
LB Load byte, sign extend []
LBU Load byte, zero extend o [
LH Load halfword, sign extend o]
LHU Load halfword, zero extend o [|
Lw Load word, sign extend o |
LWu Load word, zero extend (]]
LI Load 8-bit immediate data o
LD Load doubleword [|
SB Store byte o |
SH Store halfword () |
SW Store word () [|
SD Store doubleword () |
MOVE Move register to register o
MFHI Move from HI o
MFLO Move from LO ®

Arithmetic

ADDU Add, unsigned [J
ADDIU Add immediate, unsigned u
DADDU || Add doublewords, unsigned [)
DADDIU | Add imm. doublewords, unsigned [|
SUBU Subtract, unsigned o
DSUBU Subtract doublewords, unsigned [
MULT Multiply]
MULTU | Multiply, unsigned (}
DMULT || Multiply doublewords (}
DMULTU | Multiply doublewords, unsigned [J

DIV Divide Y

DIVU Divide, unsigned (]
DDIV Divide doublewords []
DDIVU Divide doublewords, unsigned o
Miscellaneous

EXTEND | Extend next immediate field o

BREAK Breakpoint trap o

Mnemonic Description Format
o &R

08 N - x|
AND Logical AND ()
OR Logical OR ()
XOR Logical exclusive-OR [
NOT Logical invert o
NEG Subtract without overflow o
SLT Set on less-than o
SLTU Set on less-than, unsigned o
SLTI Set on less-than, immediate (J [|
SLTIU Set on less-than, immediate, unsigned (J [
CMPI Compare with immediate [) |
Jump/Branch
JAL Jump and link []
JALX Jump and toggle MIPS-16 mode [)
JR Jump indirect via register (J
JALR Jump and link via register (]
BEQZ Branch if equal immediate (J |
BNEZ Branch if not equal immediate [J |
BTEQZ Branch if target equal immediate (J |
BTNEZ Branch if target not equal immediate (] [|
B Branch unconditionally [] |
Shift
SLL Logical shift left { |
SRL Logical shift right [J []
SRA Arithmetic shift right o |
SLLV Logical shift left, variable [)
SRLV Logical shift right, variable [}
SRAV Avrithmetic shift right, variable (J
DSLL Logical shift left doublewords (J |
DSRL Logical shift right doublewords o [|
DSRA Arithmetic shift right doublewords [) [
DSLLV Logical shift left doublewords, variable (J
DSRLV Logical shift right doublewords, variable (J
DSRAV Arithmetic shift right doublewords, variable (J

Table 1. The complete MIPS-16 instruction set includes most standard MIPS functions outside of system-control operations. The new
instruction set uses four formats, listed as J (jump), | (immediate), RR (two-register), and RRR (three-register). Several immediate-type
instructions can be prefixed with the special EXTEND opcode that can be used to extend the tiny MIPS-16 immediate field.

©MICRODESIGN RESOURCES % OCTOBER 28, 1996 </ MICROPROCESSOR REPORT

3 \/ LSI’S TINYRISC CORE SHRINKS CODE SIZE

Code Density Surpasses Even CISC
The effects of the MIPS-16 instruction set on performance,
code density, and cache efficiency are complex and inter-
related. Far from applying a simple 0.5% multiplier, code
tends to shrink by a variable amount. The shorter instruc-
tions are less flexible than their 32-bit counterparts, necessi-
tating more instructions for the same work. The net shrink-
age also depends on the proportion of code that can be run
in 16-bit mode. MIPS claims a 40% shrink on average for
code that is compressible. In other words, instruction size
decreases by 50% while instruction quantity increases by
20% compared with conventional MIPS code.

Obviously, data is not compressed at all. Neither are
system-level functions such as OS calls and interrupt han-
dlers. Applications with a low ratio of code to data, such as
high-end network routers, will see very lit-
tle improvement. On the other hand, sys-
tems with tiny data sets may see a substan-
tial improvement. The 40% overall goal is
certainly unattainable no matter what the
configuration, but double-digit percent-
ages are possible, given the right system.

MIPS ran a half-million lines of C
code through its MIPS-16 compiler and
compared the object-code density to that of
68K, ARM, Thumb, x86, and conventional
MIPS processors. The results are shown in
Figure 2. The test code included GSM, fiber-
channel, and networking routines.

Not surprisingly, MIPS-16 code was
smaller than any of the others and dead
even with Thumb. This latter statistic sug-

&7 VOL. 10, NO. 14

gle cache-line access, improving performance by increasing
bandwidth; fewer cache transactions may also reduce power
consumption slightly. Finally, because the cache tags and
associativity are not altered but the number of instructions
they map doubles, hit rates may suffer slightly.

Creative Register Mapping

With access to only eight registers, programmers (or their
compilers) are forced to be creative with register allocation.
That task is complicated somewhat by MIPS tradition and
architecture, which relies on certain registers for special
functions. Register r0, for example, is read-only and always
returns the value zero; r31 holds return addresses, and r29
holds the stack pointer. Unlike ARM’s Thumb, MIPS-16 can-
not simply restrict addressing to the first eight registers, or
stack addressing would collapse.

Instead, the program-visible registers
are mapped to the conventional register set.
Registers r1-r7 are mapped straight across,
but rather than try to use r0, the MIPS-16
logic applies a little modulo arithmetic,
mapping r0 onto r16 to provide another
usable register.

This solution still does not solve the
problem of stack and pointer addressing
through the higher registers. The MOVE
instruction has access to all 32 general-
purpose registers, so 16-bit programs can
copy data from invisible to visible registers.
There are also four new forms of SP-relative
load, store, and add, making it easier to
access constants and addresses of constants.

I
Q
2
£
1%
2
=]
gl
w
<
I
Q
=

At the Microprocessor Forum, LS
Logic’s Paul Cobb explains how
TinyRisc compacts MIPS code.

gests that a fundamental limit has been
reached for this method of compaction and that both MIPS
and ARM have reached this limit.

Hitachi’s SuperH, which also uses 16-bit instructions,
was not tested (or the results were not released), but its den-
sity should be nearly as good as TinyRisc’s or Thumb’s.
SuperH can’t fall back on a 32-bit instruction set and must
use precious opcodes for system functions, so its code den-
sity suffers a bit compared with that of the dual-mode chips.

Cache and Bus Performance Changed
As Thumb users have discovered, processor performance
may actually increase in systems with a 16-bit path to pro-
gram memory. TinyRisc chips will be able to fetch an entire
instruction in one cycle across a 16-bit bus, rather than need-
ing more cycles or a wider data path. Before TinyRisc, design-
ing a MIPS-based system with a 16-bit bus was foolhardy.
Cache effectiveness also changes in nonintuitive ways.
Twice as many 16-bit instructions will fit in the instruction
cache, yet because the number of instructions generally
increases, the effective capacity of the instruction cache is
not doubled. Depending on the cache implementation, the
CPU may be able to fetch two or more instructions in a sin-

OMICRODESIGN RESOURCES \:/ OCTOBER

MIPS-16 Richer Than Thumb

With only 16 bits for encoding, there aren’t many opcodes
left for frivolous instructions once the basics are out of the
way. MIPS and ARM were forced to make many of the same
choices when designing their minimalist instruction sets.
However, the MIPS-16 set includes a richer set of operations,
including 64-bit arithmetic, integer division, and a different
approach to conditional branching.

MIPS-II 1.00
ARM 0.91
x86 0.84
68K 0.70
Thumb 0.60
MIPS-16 0.60

I I I I I I I I I I
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 2. TinyRisc object code is more compact than that of other
RISCs and the leading CISCs. Code density was equal to an ARM7
with the Thumb code-compaction module, suggesting that both
MIPS and ARM have reached similar conclusions about com-
paction techniques. Relative sizes have been normalized for the
MIPS-II instruction set. (Source: MIPS Technologies)

28, 1996 \/ MICROPROCESSOR REPORT

4 X7 LSI’S TINYRISC CORE SHRINKS CODE SIZE

Even in 32-bit mode, ARM chips have never supported
integer division, relying instead on software to execute an
iterative loop. ARM’s approach to conditional execution and
condition codes often makes conventional conditional
branches superfluous. With no condition codes, MIPS-16
has only a limited set of compare-and-branch instructions,
all of which compare a register to an immediate value.

Where the MIPS-16 instruction set really differs from
Thumb is in its support for 64-bit add, subtract, multiply,
divide, and shift operations. These instructions all take their
operands from two contiguous registers, an option that
requires no additional addressing bits. In addition, the
MIPS-16 EXTEND instruction eliminates a lot of unneces-
sary mode switching.

The ARM/Thumb combination has an advantage in
memory-reference instructions. It can push and pop stack
operands and load or store multiple registers with one
instruction, a singularly non-RISC operation that MIPS
chips do not support.

TinyRisc Core Takes a Clock-Speed Hit

Embedded MIPS chips are noteworthy for their high clock
speeds, supposedly one of the seminal advantages of a RISC
architecture. This high clock rate is possible because each of
the pipeline stages is relatively simple.

But TinyRisc’s code compaction takes its toll. Inserting
the MIPS-16 predecoder into the first pipeline stage, along
with the usual decode logic, adds enough complexity to
compromise clock speed. LSI’s first TinyRisc processors are
expected to run at 80 MHz—or 70 MHz in 16-bit mode. The
increased decoding overhead adds more latency than the
12.5-ns period of an 80-MHz pipeline can handle. TinyRisc
customers will have to clock their parts at 70 MHz or below,
or else implement some elaborate scheme to slow the clock
when entering 16-bit mode.

ARM’s Thumb does not incur this penalty, but in fair-
ness, Thumb-equipped chips have never achieved 80-MHz
operation to begin with. Currently, ARM7 designs are lim-
ited to about 40 MHz; the ARM8 and StrongArm cores run
substantially faster but do not use Thumb.

ARMY7’s first pipeline stage comprises little more than a
latch, so adding the Thumb predecoder does not complicate
that portion of the pipeline enough to create a bottleneck.
Thus, while Thumb and TinyRisc add similar amounts of
complexity to their respective host CPUs, Thumb manages
to hide its effects with a longer cycle time.

First TinyRisc Core Ready in December

LST’s first TinyRisc core with the MIPS-16 predecoder is the
TR4101 (not to be confused with NEC’s VR4101 MIPS
microprocessor), which should be available for ASIC design
at the end of this year. The core measures just 2 mm? in
LST’s 0.35-micron three-layer-metal process. The company
expects the core to dissipate about 1 mW/MHz at 3.3V, a
negligible factor in the total power budget of most ASICs.

OMICRODESIGN RESOURCES \/ OCTOBER

&7 VOL. 10, NO. 14

Price & Availability

The TinyRisc core with the MIPS-16 instruction-set
predecoder will be available from LSI Logic for new ASIC
designs beginning in December. For more information,
contact LS| Logic (Milpitas, Calif.) at 800.574.4286 or
408.433.7700, or visit the Web at www./silogic.com.

Two derivatives are planned for 1998, one faster and
one smaller. The TR4120 will add two-way superscalar exe-
cution to the basic MIPS core but leave the MIPS-16 prede-
coder in place. The 4120’s core will measure about 5 mm? in
a newer process that lowers the supply voltage to 2.5 V. In the
same process, the 4102 should drop power dissipation to
about 30% below that of the 4101.

Size Matters

Obviously, the market pressure to reduce code size is increas-
ing across many embedded applications, or two important
microprocessor vendors would not have undertaken the task
of shrinking their instructions. The advantages long touted
by RISC adherents seem to be a mixed blessing in this envi-
ronment: embedded RISC chips have consistently led the
pack in performance, but they’ve also brought the burden of
bloated binaries.

RISC was designed with the general-purpose comput-
ing and workstation markets in mind, with the understand-
ing that memory is cheap. But while memory may be cheap,
less memory is always cheaper. For makers of cellular tele-
phones and other cost-constrained consumer items, a $5
difference in RAM or ROM space can make a big difference
in volume profits. Often, memory size is fixed and the prod-
uct’s feature set is variable. Tighter object code means more
autodial features, better voice recognition, or perhaps
clearer images on the screen.

The older CISC architectures have a new competitor
here. Their code density has always been the yardstick by
which others are measured, but that rule of thumb has now
been superseded by two different RISC designs. Now that
two major RISC vendors have taken the plunge, who’s
left? PowerPC and SPARC are possible future candidates;
SuperH is already there; Intel’s strategic plans make such
changes to the 1960 family unlikely. Recent emphasis on
embedding PowerPC processors may push either IBM or
Motorola to make the move. Hopefully, such changes would
be mediated and compatible across PowerPC implementa-
tions, but a breakaway attempt is also a possibility.

TinyRisc and Thumb show that for some users, code
size is an important factor in selecting an embedded micro-
processor. They also demonstrate some vendors’ willingness
to change their instruction sets to meet customer demands.
The years ahead will show just how far those demands will
push the boundaries of traditional CPU architecture.

28, 1996 \/ MICROPROCESSOR REPORT

	LSI’s TinyRisc Core Shrinks Code Size
	Not Really Compression, Just Different Opcodes
	Figure 1. Conventional 32-bit MIPS instructions...
	New Instruction Set Is Fairly Complete
	Table 1. The complete MIPS-16 instruction set...
	Code Density Surpasses Even CISC
	Cache and Bus Performance Changed
	Creative Register Mapping
	MIPS-16 Richer Than Thumb
	FIgure 2. TinyRisc object code is more compact...
	TinyRisc Core Takes a Clock-Speed Hit
	First TinyRisc Core Ready in December
	Size Matters

	Price & Availability

