
V O L . 1 0 , N O . 1 4

 S
f e
ly
by Jim Turley

Adding some meat to the bone, Sun Micro-
electronics revealed the details of its first Java
processor core. Unlike other CPU designs,

PicoJava executes the Java programming language as its
native instruction set, offering solid Java performance with a
minimal memory footprint. Sun expects to see a new gener-
ation of chips based on the core accelerate Java-based appli-
cations before the end of 1997.

The PicoJava core will form the basis
of several Java microprocessors, including
Sun Microelectronics’ own MicroJava-1
processor. The four public Java-hardware
licensees (Mitsubishi, NEC, LG Semicon,
and Samsung) all plan to start designing
application-specific processors based on
PicoJava early next year. This outlook may
be overly aggressive, as Sun does not expect
to deliver the synthesizable model to its
partners before March.

With only simulated performance
benchmarks available, PicoJava appears to
speed past Pentium by as much as 8× when
running Java applications.

Running Java in Hardware
PicoJava is fundamentally different from
most microprocessors in that it is been optimized for a spe-
cific high-level language. It executes Java bytecodes (the
binary form of Java source code) directly as its native instruc-
tion set. Sun expects PicoJava-based microprocessors to
replace conventional CPUs in embedded systems that run
Java applications exclusively. Because no Java interpreter or
just-in-time compiler (JIT) is required, Java chips can reduce
the application’s overall memory requirements.

PicoJava executes all 227 Java bytecodes (plus a few
more, described later) using three methods: directly, with
microcode, or through emulation. The simplest Java instruc-
tions, such as logical and arithmetic operations, execute
directly in 1–3 clock cycles. The more complex operations,

Sun Reveals First Java
PicoJava Core Executes Some Java Instru

Robert Garner of
the advantages o
bytecodes native

M
IC

R
O
P

ROCESSOR

FORUM
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
such as “quick” method invocations (procedure calls) and
array accesses are also executed directly in hardware, though
with the help of on-chip microcode. Such instructions can
take 4–25 clocks to complete. The final class of instructions,
which includes the normal method invocation, is trapped
and emulated in software. From the user’s point of view, it
makes little difference how each Java bytecode is executed,
apart from variations in speed.

In all, 176 bytecodes are executed directly in hardware,
28 with microcode, and 23 through emula-
tion. Currently, Sun identifies the manner
in which specific bytecodes are executed
only to its hardware licensees.

Future PicoJava cores may divide the
instruction set differently, implementing
more bytecodes in hardware or moving
others to microcode. Because all PicoJava
licensees will receive the same synthesis
model, the first generation of Java micro-
processors will all have the same instruc-
tion set.

PicoJava extends beyond the defined
Java bytecodes with a handful of system-
level operations. These extended bytecodes
are for low-level OS functions, such as read-
ing from arbitrary memory addresses, clear-
ing or flushing cache lines, performing non-
cached loads and stores, and accessing the

core’s control and status registers.
The core consists of a fairly normal four-stage pipeline,

shown in Figure 1. The first stage fetches a four-byte group,
which may contain as many as four complete Java instruc-
tions. The second stage decodes one or two bytecodes at
once; if one of the bytecodes is a load, the unit may perform
some instruction folding (described later).

The simplest bytecodes are executed in a single pass
through the third stage; microcoded instructions require
multiple clock cycles to execute, effectively lengthening the
execute stage by a variable amount. No out-of-order execu-
tion is allowed. For complex operations, the nominal four-
stage pipeline stalls until the current bytecode executes to
completion. After the operation is finished, the result is writ-
ten to the top of the operand stack.

Accesses to the stack take just one clock cycle, as when a
conventional CPU accesses its register file. Loads and stores
remain in the execute stage for a minimum of two clock
cycles, assuming a cache hit. If the loaded data is required by
the immediately subsequent instruction, PicoJava incurs an
additional one-cycle load-use penalty.

 Processor Core
ctions Natively, Interprets Others

un describes
xecuting Java

 on PicoJava.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

Fetch Decode Execute Writeback

Figure 1. The PicoJava core has a nominal four-stage pipeline,
although the execute stage is often extended to multiple clock
cycles for Java bytecodes, such as method invocations, that do not
execute in a single cycle.
2 8 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

S
2 S U N R E V E A L S F I R S T J A V A P R O C E

On-Chip Stack Keeps Java Core Moving
From the programmer’s perspective, the Java virtual machine
stack resides in memory. For performance, part of that stack
is kept on-chip in PicoJava’s stack cache. The stack cache
holds the top 64 words of the stack. Conceptually, pushing a
65th item onto the stack would cause the bottom entry to be
flushed out to memory or—more likely—an on-chip data
cache. Likewise, when the last item is popped, the stack cache
would refill from memory (via the data cache, if present).

In practice, PicoJava applies some hysteresis to its fill
and flush logic. When the stack cache is nearly full, PicoJava
begins moving items from the bottom of the stack cache to
memory. Likewise, when the stack cache is nearly empty, the
chip starts loading from memory so that the stack cache
won’t run dry. Programmers can set the stack cache’s “high
water mark” through a five-bit field in a control register.

The number of words transferred between the stack
cache and memory is not fixed. Once an impending overflow
or underflow condition is detected, PicoJava continues to
load or empty the stack cache as long as the program contin-
ues to push or pop operands. These automatic fill and flush
operations are transparent to the user and independent of
pipeline operation.

Since accesses to the stack cache take only one clock
cycle, whereas accesses to PicoJava’s data cache take two
cycles, it is still possible for a program to overrun or under-
run the stack cache if it pushes or pops enough operands.

The basic PicoJava core consists of just the stack cache,
integer ALU, and instruction buffer/decode logic. As Figure 2
shows, the instruction and data caches and the FPU are
optional.

Opcode Distribution Stays Steady
Sun has simulated two Java applications running on Pico-
Java, a ray-tracing program and a Java compiler. The results
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
S O R C O R E V O L . 1 0 , N O . 1 4

are illuminating for the information they provide on instruc-
tion distribution for two (presumably) representative sam-
ples of nontrivial Java applications. Although the two bench-
marks are very different in size and intent, they display very
similar behavior in terms of bytecode distribution and aver-
age instruction size.

The Java compiler is Sun’s own JDK version 1.0.2, run-
ning natively on the simulated PicoJava system. JDK contains
about 25,000 lines of Java source code, which compiled into
422K of memory. According to Sun, the average instruction
length of JDK is 1.84 bytes per instruction (not counting
lookup tables), which implies that the static program size is
about 235,000 Java instructions. Dynamically, the simulated
system executed more than 25 million Java bytecodes.

The ray-tracing application is much smaller: 3,500 lines
of source, or about 21,000 Java bytecodes in 36K of memory.
At 1.76 bytes/instruction on average, the ray tracer makes
somewhat more use of smaller Java bytecodes. Although the
program itself is smaller, its execution thread is much longer,
with a run length of nearly 383 million Java instructions.

Figure 3 shows that the majority of both applications
consists of single-byte bytecodes, a characteristic Sun is
quick to tout. Both programs consist of more than 50% of
these bytecodes. The next-highest distribution is for three-
byte types, that is, byte codes with two extension bytes.

Distribution frequency, however, is only half of the
equation. The figure also shows that the static size of each
program is actually dominated by the three-byte bytecodes,
with more than 50% of each program’s memory space given
to three-byte operations. Next come the single-byte opera-
tions, which account for about 30% of program size.
1-Byte 2-Byte 3-Byte

1-Byte 2-Byte 3-Byte

4-Byte

20% 40% 60% 80% 100%

Ja
va

 C
om

pi
le

r 1-Byte 2-Byte 3-Byte

R
ay

 T
ra

ce
r

3-Byte2-Byte1-Byte

Opcode Distribution

Size Distribution

Size Distribution

Opcode Distribution

Figure 3. Bytecode distributions for JDK and ray-tracing applica-
tion show similar characteristics, with more than half the instruc-
tions using the single-byte format. However, as a percentage of
total code size, these two Java applications consist mainly of three-
byte Java bytecodes. (Source: Sun Microelectronics)
Bus Interface

Data
Cache

Instruction
Cache

Stack
Cache

Integer
Unit

Floating-
Point
Unit

Instruction
Buffer

32

32 32

96

32

32

32

Figure 2. The basic PicoJava core consists of a 64-entry stack
cache, integer unit, and instruction decoder. The FPU and caches
(in purple) are optional modules.
2 8 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

Figure 4 charts instruction frequency for the two appli-
cations by instruction type. Both programs are heavily depen-
dent on load operations, which rank first and second in order
of frequency. Loads alone make up 48% of the compiler and
52% of the ray tracer; loads and stores combined account for
58% and 64% of instructions for the two programs.

The heavy reliance on loads and stores evidenced by
these two samples should be fairly representative of other
Java applications. Many loads are not actually memory refer-
ences but stack manipulation. Stack entries must often be
reordered to bring the required operands to the top. Even a
perfectly efficient compiler must occasionally reorder stack
elements; in real applications, it often dominates the code, as
Sun’s two examples amply demonstrate.

Special Case Eliminates Some Stack Manipulation
In keeping with a stack-oriented philosophy, most Java
instructions can operate only on the one or two items at the
top of the stack. Typically, the top two items are replaced
with their result, as when two numbers are added together.
The operation pops two operands and pushes one back, leav-
ing the stack one operand smaller.
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
O R C O R E V O L . 1 0 , N O . 1 4

In practical terms, the two needed operands are
rarely on the top of the stack. Thus, Java programmers
often need to insert a load instruction before a two-
operand instruction to copy one of the operands to the
top of the stack.

PicoJava’s designers took advantage of this com-
mon construct and used it as an opportunity to imple-
ment simple instruction folding. When PicoJava de-
tects the combination of a load instruction followed by
a destructive two-operand computation, it effectively
executes both instructions simultaneously.

As Figure 5 shows, the contents of the source reg-
ister are routed directly to one input of the ALU instead
of to the top of the stack, eliminating the load. In other
hardware stack-machine implementations, such as
Patriot Scientific’s ShBoom (see 100501.PDF), the ALU

has a data path to only the top two stack elements. Because
PicoJava’s stack cache is implemented as a circular queue, the
design already contains complete datapath logic for all 64
elements. The happy side effect is that PicoJava can forward
operands from any two arbitrary stack elements or, in this
case, one arbitrary element and the top of the stack.

Sun’s simulations suggest a significant portion of a pro-
gram’s load instructions can benefit from this technique;
composite results are shown in Figure 6. Although each
folded load saves a clock cycle, the load instructions them-
selves are still part of the bytecode stream, so this technique
saves nothing in code size or transmission time.

Java Chips Could Outrun Others on Java Code
Table 1 presents Sun’s results for both PCs and the simulated
PicoJava core running at 100 MHz. Because the simulated
PicoJava system does not incur actual I/O, Sun added 0.8 sec-
onds for the JDK and 0.4 seconds for the ray tracer for I/O
overhead. These estimates were based on similar tasks run-
ning on a SparcStation system.

Sun’s results indicate that a PicoJava-based processor
running at 100 MHz would execute these applications about
three times faster than JIT-compiled code on a 166-MHz
Pentium, or a whopping 18 times faster than on a 486DX-33.

ws
are
3 S U N R E V E A L S F I R S T J A V A P R O C E S S

35%

30%

25%

20%

15%

10%

5%

40%

Lo
ca

l l
oa

ds

O
bj

ec
t

lo
ad

s

Br
an

ch
es

In
te

ge
r

Lo
ad

 c
on

st
an

t

Lo
ca

l s
to

re
s

C
al

ls

R
et

ur
ns

O
bj

ec
t

st
or

es

A
rr

ay
 lo

ad
s

St
ac

k

O
th

er

Ray Tracer

Java Compiler

Figure 4. The instruction distribution for two Java applications sho
roughly 66% of all operations are loads and stores; over 50% alone
loads. (Source: Sun Microelectronics)
+ +

Stack
Cache

Stack
Cache

Top of Stack Top of Stack

Lo
ad

Conventional Method PicoJava Implementation

Figure 5. PicoJava transparently eliminates the preparatory load
instruction before two-operand computation instructions, taking
one of the operands directly from its stack location.
Stack

Stack

Load/StoreCompute

Call/
Return

43% 28% 22% 7%

29% 36% 27% 8%
Compute Load/Store

After load folding

Before load folding

20% 40% 60% 80% 100%

Figure 6. PicoJava’s load-folding technique reduces the number of
stack-related operations by about one-third. (Source: Sun)
2 8 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

S
4 S U N R E V E A L S F I R S T J A V A P R O C E

The small differences between JIT-compiled and inter-
preted code do not jibe well with results from other sources.
Recent improvements in JIT compilers from Symantec, Bor-
land, Sun, and others have widened the gap between inter-
preted Java code and JIT-compiled code. Their performance
on a number of Java benchmarks differs by an order of mag-
nitude (see 100705.PDF). Sun’s position is that this difference
is much smaller when compiling or interpreting large appli-
cations rather than synthetic benchmarks.

Of course, Sun’s tests measure different processors all
running Java bytecode, which is equivalent to measuring a
PowerPC running 68000 binaries. Compiling the Java source
for different instruction sets should produce much more
even results. Such Java compilers are available for a number
of microprocessor architectures.

Borland reports a 2–3× expansion in code size when its
JIT converts Java bytecode to x86 object code; the expansion
factor for RISC targets is greater. This is one of the advantages
of native execution that Sun pushes. Java chips need no inter-
preter or JIT, and they don’t need to convert bytecodes. The
size of PicoJava’s emulation and trap library is only about 8K,
far smaller than even a rudimentary interpreter. For a target
system that will execute Java bytecodes (as opposed to code
compiled from Java source), a native Java implementation
should bring significant savings in memory, reducing the
cost, power, and physical size of a Java-based device.

Complex Instruction Set Leads to Bulky Die Size
Although a PicoJava integer core has never been created, Sun
conservatively estimates it will usurp 8 mm2 in a 0.35-
micron ASIC process; the FPU adds another 5.5 mm2. For its
benchmarks, Sun simulated a core, a 4K instruction cache,
and an 8K data cache, bringing the total to 21 mm2.

At 8 mm2 for an integer core (or 13.5 mm2 for the core
with an FPU), PicoJava is far larger than contemporary 32-
bit RISC or CISC cores in equivalent processes. Recent ARM
and MIPS cores, for example, come in at under 3 mm2, IBM’s
PowerPC 401 measures just 4.5 mm2, and even the relatively
complex ColdFire core uses less than 6 mm2. In terms of
CPU cores, PicoJava is about as bulky as they come.

One could argue, however, that PicoJava is more com-
plex than any of those competitors, executing high-level con-
structs natively (more or less) rather than register-level
machine code. By the time PicoJava is integrated in an ASIC,
the few extra millimeters won’t amount to much of a penalty.

Java Chips Make Sense for Java Applications
For designers debating the relative merits of Java processors
versus general-purpose processors, the decision tree focuses
on software: Will the application be written in Java? If so, will
it always be converted into bytecode? If so, is that bytecode
the exclusive software-delivery mechanism?

If the answer to any of these is no, native Java execution
doesn’t make sense. New code, whether it’s written in Java or
another language, can be compiled for nearly any processor
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
architecture. Even Sun admits that Java chips can’t keep up
with conventional microprocessors on conventional code.

Java bytecodes can obviously be executed on a number
of different microprocessors, although with some penalty in
memory usage and, perhaps, speed. But these systems have
the ability to run other operating systems and applications,
vastly broadening their horizons. Although the performance
of early JITs was abysmal, the competition among Java tool
developers has forced them to improve dramatically. As the
performance of JITs improves, any speed penalty for using a
non-Java chip decreases.

If the system needs to run anything besides bytecodes,
Java chips will fall flat. The definition of the Java virtual
machine allows Java applets to run on non-Java processors;
the reverse condition does not exist. If the system will down-
load and execute nothing but Java bytecodes, then a native
Java implementation makes sense. PicoJava-based chips
should be able to turn bytecodes into useful work more effi-
ciently than any other CPU design.

Java has been enthusiastically embraced by companies
large and small because of its portability and reliability fea-
tures. For systems that run only Java, a Java processor may be
the obvious choice. But with chip details and pricing still
months away, comparisons with other CPUs are premature.

The success of Java chips obviously rides on the success
of Java itself—not just as a language, but as a distribution
format. If, as today, there are no significant Java applications,
there will be no demand for native Java processors. Sun and
its licensees are betting that if they build the chips, the appli-
cations will come. M
82.8
46.0×
772.0
59.4×

12.3
6.8×

105.0
8.0×

32.5
18.0×
331.9
25.5×

5.6
3.1×
38.8
3.0×

1.0 + 0.8
1.0×

12.6 + 0.4
1.0×

PicoJava
100 MHz

InterpretJIT

486DX
33 MHz

Pentium
166 MHz

Time
Ratio
Time
Ratio

JDK 1.0.2

Ray Tracer

NativeMethod InterpretJIT

Table 1. Comparing two Java applications running on PCs and a
simulated PicoJava processor indicates that PicoJava runs faster
than either interpreted or compiled code. For the PCs, the inter-
preter is Sun’s JDK 1.0.2 for Windows 95; the JIT compiler is
Symantec’s Cafe 1.5 for Windows 95. The 486 system has a 256K
cache and 16M of RAM. The Pentium system contains 256K of
cache and 32M of RAM. (Source: Sun Microelectronics)
S O R C O R E V O L . 1 0 , N O . 1 4

P r i c e & Av a i l a b i l i t y

The PicoJava-1 synthesizable model is scheduled to
be delivered to licensees in March. Sun is expecting work-
ing PicoJava-based ASICs to be available before the end
of 1997. For more information, contact Sun Microelec-
tronics (Mountain View, Calif.) at 415.336.5714 or check
the Web at www.sun.com/sparc/java.
2 8 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	Sun Reveals First Java Processor Core
	Running Java in Hardware
	Figure 1. The PicoJava core has a nominal four-stage pipeline...
	On-Chip Stack Keeps Java Core Moving
	Opcode Distribution Stays Steady
	Figure 2. The basic PicoJava core...
	Figure 3. Bytecode distributions for JDK...
	Figure 4. The instruction distribution for two Java applications...
	Special Case Eliminates Some Stack Manipulation
	Figure 5. PicoJava transparently...
	Java Chips Could Outrun Others on Java Code
	Figure 6. PicoJava’s load-folding technique...
	Complex Instruction Set Leads to Bulky Die Size
	Java Chips Make Sense for Java Applications
	Table 1. Comparing two Java applications...

	Price & Availability

