
V O L . 1 0 , N O . 9

n

by Jim Turley

Argonaut Technologies, on a quest to design the most
flexible 32-bit microprocessor core yet, has released its ARC
(Argonaut RISC core) design, a synthesizable core for ASIC
developers. Like many companies before it, Argonaut claims
to have achieved the optimal balance between performance,
small die size, and flexibility.

The definition of the ARC architecture is extremely
loose and extensible. At its most basic, the CPU has a simple
pipeline and only 16 basic opcodes. The core can be imple-
mented in a few as 16,000 logic gates, nearly half of which are
devoted to the register file. ARC’s advantages come from its
extensibility; licensees and users are encouraged to add regis-
ters, new instructions, and function units as they see fit.

The ARC design is delivered as a VHDL model rather
than a physical macro. Although no chips have ever been fab-
ricated, the company claims the basic ARC core can be syn-
thesized into just 4 mm2 in a 0.5-micron two-layer-metal
CMOS process and would run at 50–70 MHz.

Not Quite Like Other Microprocessor Cores
Realistically, Argonaut doesn’t expect its ARC design to com-
pete head-on with other licensed microprocessors such as
MIPS, SPARC, or ARM, primarily because of its limited fea-
ture set and tool support. Instead, the company is targeting
ASIC developers who need to add a limited amount of pro-
grammability to an application-specific device such as a
graphics accelerator or communications interface. This
strategy also plays into ARC’s strength: its extensibility.

ARC Core Gives ASIC
London-Based Argonaut Develops Yet A
© M I C R O D E S I G N R
Like any good RISC pro-
cessor, ARC has an orthogo-
nal set of 32 general-purpose
32-bit registers, as shown in
Figure 1. The last three regis-
ters (r29–r31) hold link ad-
dresses for returning from
branches or interrupts. The
core’s internally addressable
resources include another 32
registers, of which only four
(r60–r63) are defined. The
remaining 28 are left for user
extensions. The 24-bit loop-
count register, r60, is used
for loop overhead, similar to
the CX register on x86 chips.
A half-dozen registers for
control and status are also
defined.
E S O U R C E S J U L Y 8
Instruction Set Trimmed to the Bone
ARC uses a fixed, 32-bit word to encode all instructions, of
which the five most significant bits encode the operation, as
Figure 2 shows. This definition allows a total of 32 instruc-
tions. Of these, 16 base instructions (with 10 variations) are
permanently defined, and the remaining 16 are left to the
user’s imagination. The 26 architecturally defined instruc-
tions, listed in Table 1, use opcodes 0x00 through 0x0F.

Another five bits are used to encode conditions for the
conditional instructions. This supports 32 combinations of
conditions, of which the first 16 are defined, including the
usual tests for zero, sign, overflow, and carry. The 16 user-
defined condition codes could be used to test external signals
or the status of additional function units.

Like ARM, ARC can conditionally execute each instruc-
tion and can also optionally set the condition-code flags after
each instruction. A single bit (F) in the instruction word selects
the latter option. For branches, two bits (NN) conditionally
enable or disable the instruction in the branch-delay slot.

Most ARC instructions use three-operand addressing;
with a 64-register set, 6 bits are required for each register
address, usurping 18 bits from the instruction word. Instruc-
tions taking immediate data substitute the data literal for the
conditional-execution and flag fields.

Bounding Registers Allow Zero-Overhead Loops
ARC takes an unusual approach to looping constructs.
Rather than specifying the target address as part of the loop
instruction, as conventional processors do, ARC instead cur-
rentlybounds the parameters of a loop through two special-
purpose registers and r60. The two special registers are
loaded with the start and end addresses of the loop, respec-
tively, and r60 is loaded with the iteration count.

The LPcc instruction loads the special registers and ini-
tiates a loop if its condition is true; otherwise, execution
branches to a specified offset. Execution repeats between the
defined start and end addresses until the loop count is
exhausted or until a conditional instruction exits the loop.

The lone conditional branch instruction takes a signed
20-bit offset, allowing forward or backward branches of up
to one megabyte in either direction. Indirect branching (that
is, specifying the target address using a register) is not

s Programmability
other Synthesizable 32-Bit RISC Core
Opcode
[0:4]

Dest. Reg
[0:5]

Source 1
[0:5]

Source 2
[0:5] F Condition

[0:4]N NR

31 026 20 14 8 7 6 45

Figure 2. Most ARC instructions use three-operand addressing,
with 9-bit signed immediate data taking the place of the condition,
flag, reserved, and delay-slot bits.
Long immed. data

Loop counter

Branch link
Interrupt link
Interrupt link

(reserved for extensions)
0000

Short immed. w/flags

Short immed. w/o flags

r60

r31

r29
r30

r63

r28

r0
r1

31 0

Figure 1. The ARC architecture
includes 64 32-bit registers, of
which the first 32 are mostly
general-purpose in nature. An
additional 4 registers are used
for special cases, and 28 are
currently undefined.
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

2 A R C C O R E G I V E S A S I C S P R O G R A M

supported, although indirect jumps are. Branch-and-link
stores the flags and a 24-bit return address in the branch-link
register, r31. Nesting of branches requires software-con-
trolled stack management.

Loads and stores can use any general-purpose register
plus a signed 8-bit displacement as an address pointer. Loads
can also use a 32-bit displacement. Register scoreboarding
allows nonblocking loads, while a read buffer handles up to
four outstanding load operations before stalling the pipeline.
Operand size (byte, word, double) can be specified; short
operands can be sign-extended by the load instruction or
with the popular SEX operation.

Technically, there is no MOV instruction—the MOV

mnemonic doubles for the AND opcode, with the destination
register ANDed onto itself. Likewise, the NOP is actually an
XOR with all bits set; logical and arithmetic shifts to the left
are handled by ADD instructions.

Four-Stage Pipeline Supplies Sufficient Speed
Argonaut defines the ARC core as a four-stage pipeline
(fetch, decode, execute, write-back), with operands fetched
and aligned during the second stage. Condition codes, as well
as arithmetic and logical results, are written back during the
final stage. Like many processors, the result write-back
causes a dependence in the pipeline. Specifically, conditional
flow-control instructions cannot follow any instruction that
sets the condition codes.

Even with only about two-dozen defined opcodes, ARC
has a fairly complete instruction set. Still missing are multi-
© M I C R O D E S I G N R E S O U R C E S J U L Y 8
ply, multiply-accumulate, and divide operations, logical
comparison, multiple-bit shifts and rotates, and a rotate-left
operation that doesn’t use the carry bit. None of these oper-
ations is strictly necessary, of course, but would ease pro-
grammers’ tasks and lead to denser object code.

Third-Party Support Still Lacking
As a company, Argonaut Technologies has some history
behind it. The company is a wholly owned subsidiary of Arg-
onaut Software, which has developed graphics software and
hardware for a number of companies, including Nintendo.
The company has also carried out some preliminary work
with Chip Express (San Jose, Calif.) and LSI Logic. For soft-
ware support, the company has signed GNU tool-chain ven-
dor Cygnus.

The extensible register file and instruction set make
tool support problematic. Compilers, for example, must nec-
essarily support only the basic ARC definition with 16 basic
opcodes and 32 general-purpose registers. Any additions to
that feature set would, by definition, be application-specific
and nonportable.

ARC’s biggest advantage to the designer is the close-in
access to the core. Because it is distributed as a VHDL model
rather than a physical macro, new registers and special func-
tion units can be grafted on, taking advantage of decoding
logic and data paths already present. Such core-level modifi-
cations are not possible with ARM, SPARC, or MIPS designs
and allow very close cooperation between the CPU and user
logic. For example, an ARC core can share data with a new
function unit without explicitly loading or storing operands
over an external bus. Data can be captured from the internal
data path and status monitored with new condition codes. In
a conventional core-based ASIC design, the same operation
would use traditional load and store instructions, which are
much slower. With ARC, data transfers within the core hap-
pen almost for free.

Because Argonaut has no schemes to become a main-
stream CPU core supplier, the limitations of scarce develop-
ment-tool support may not affect ARC’s acceptance. For
ASIC designers who simply want to contract out the time,
risk, and effort of designing a basic programmable core, ARC
presents a viable alternative to some of the better-known
embedded CPU designs. But with little third-party support,
no discernible advantage in die size, and unknown perfor-
mance, Argonaut will have a tough time making ARC into
anything other than a niche curiosity. M
M A B I L I T Y V O L . 1 0 , N O . 9

F o r M o r e I n f o r m a t i o n

Argonaut Technologies (London, England) can be
reached by telephone at +44.181.358.2970, by fax at
+44.181.358.2920, by e-mail at techsales@argonaut.com,
or on the Web at www.argonaut.com.
Table 1. The basic ARC instruction set uses just 16 major opcodes;
opcode extensions, where used, replace the Source 2 field. Two
addressing modes are used for loads and one for stores. Sixteen
opcodes are reserved for enhancements.

00 LD Load indirect, register + register
01 LD Load indirect, register + signed offset
01, 10 LR Load from auxiliary register
02 ST Store indirect, register + signed offset
02, 10 ST Store to auxiliary register
03, 00 FLAG Set condition-code flags
03, 01 ASR Arithmetic shift right 1
03, 02 LSR Logical shift right 1
03, 03 ROR Rotate right 1
03, 04 RRC Rotate right through carry 1
03, 05 SEX Sign-extend 8 → 32
03, 06 SEX Sign-extend 16 → 32
03, 07 EXT Zero-extend 8 → 32
03, 08 EXT Zero-extend 16 → 32
04 Bcc Conditional branch
05 BLcc Conditional branch and link
06 LPcc Conditional enter loop mode
07 Jcc Conditional jump
08 ADD Add
09 ADC Add with carry
0A SUB Subtract
0B SBC Subtract with borrow
0C AND Logical AND
0D OR Logical OR
0E BIC Logical AND-invert
0F XOR Logical exclusive-OR
10–1F reserved User-defined extensions

DescriptionMnemonicOpcode
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	ARC Core Gives ASICs Programmability
	Not Quite Like Other Microprocessor Cores
	Figure 1. The ARC architecture includes 64 32-bit registers...
	Instruction Set Trimmed to the Bone
	Bounding Registers Allow Zero-Overhead Loops
	Figure 2. Most ARC instructions use three-operand...
	Four-Stage Pipeline Supplies Sufficient Speed
	Table 1. The basic ARC instruction set...
	Third-Party Support Still Lacking

	F o r M o r e I n f o r m a t i o n

