
V O L . 1 0 , N O . 7

v
 C
by Brian Case

Java got the computer industry’s attention because of
its superior integration with the Internet and the World-
Wide Web. With Java, it is easy to build a portable, GUI-
based applet that can be embedded in a Web page and then
used on any platform that has a Java-enabled Web browser.
The recent release of some good Java development environ-
ments makes it even easier to deploy Java applets.

But, as anyone who has done more than a cursory
investigation of Java applets on the Web will confirm, Java
currently suffers from two deficiencies: a complete lack of
substantive applets and dreadfully slow performance. Some
Java proponents have proposed building Java microproces-
sors that directly execute the Java VM (see 1005VP.PDF) to
achieve compelling Java performance and reduce memory
requirements. The early results of benchmarking just-in-
time compilers (JITs), however, indicate that Java integer
code on a standard microprocessor with a JIT is only about a
factor of two slower than optimized C code. As JITs mature,
this gap will likely narrow. Thus, Java microprocessors will
probably have only a small performance advantage over gen-
eral-purpose microprocessors unless Java chips can beat
optimized C performance, which seems unlikely.

Java Performance Is All Over the Map
Users of Windows 95 are the most affected by poor emula-
tion, as Table 1 shows. Netscape’s Java performance on Win-
dows 95 is so bad, in fact, that it almost seems intentional.
The current version of Netscape runs one of the programs—

Java Performance Ad
Just-In-Time Compilers Show Java Can
© M I C R O D E S I G N R E S O U R C E S M A Y 2 7
the Loop component of CaffeineMark—less than 1/70 the
speed of the fastest JIT. Results not included here indicate
that Netscape’s Java performance has actually declined com-
pared with previous versions of the browser.

There is good news for Java devotees, however. First, the
recent release of two commercial JIT compilers dramatically
improves Java performance. Second, the generally poor per-
formance of Java on Windows 95 appears to be due to over-
head in Windows 95’s implementation of the Win32 graph-
ics API. By using Windows NT instead, Java junkies can
reclaim some of the lost performance without sacrificing
access to the growing portfolio of Win32-based Java tools.

Third, the much-improved performance provided by
JITs makes it possible to develop useful Java applets and even
standalone applications. The widespread deployment of JITs
may take a few months, but it now seems indisputable that
Java has the potential to be a force across nearly the entire
spectrum of computer software. Netscape has licensed Bor-
land’s JIT, and as soon as a JIT-enabled version of Netscape is
released, the race will be on to develop commercial applica-
tions in Java.

Table 1 shows the results of running three different
benchmarks on 13 different combinations of Java VM imple-
mentations and operating systems. All benchmarks were run
on a fast Pentium machine (see sidebar), but such a machine
will be considered midrange by the end of 1996.

As the table shows, the performance of nongraphical
Java programs spans a wide range and is heavily dependent
on the quality of the VM implementation. The other striking
implication of the data shown in Table 1 is that the Win32

ancing Rapidly
ompete with Compiled Code
386
338
75
54
18

1116
809
90
60
34

64
47

936
1307

79
50
28

1247
2138

83
51
29

58
42

101
97
94
91
74

331
298
288
262
174

200
188

102
94
88
81
51

158
147
125
116
63

162
122

Ratio
CaffeineMark

64
75

610
980

1820
62
74

600
980

1830
34
67

950
1300

Symantec JIT
Borland JIT
Symantec VM
Sun JDK 1.0.1
Netscape Atlas
Symantec JIT
Borland JIT
Symantec VM
Sun JDK 1.0.1
Netscape Atlas
optimized C
Kaffe JIT 0.3p1
Sun JDK 1.0
Netscape Atlas

Windows 95

Windows NT 3.51

Linux 1.3.81

Execution Environment
Seconds Ratio

4.2
5.5
0.98
0.69
0.39
3.5
5.4
0.98
0.65
0.40

16.0
3.9*
0.60
0.52

11.0
14.0
2.5
1.8
1.0
9.0

14.0
2.5
1.7
1.0

41.0
10.0
1.5
1.3

MFlops Ratio
Linpack

Sieve Loop Graphics Image Mark

28.0
24.0
3.0
1.9
1.0

29.0
25.0
3.0
1.9
1.0

53.0
27.0
1.9
1.4

Average
Ratio

not directly portable from Java to C
won't run

Pentominoes

381
459
84
69
42

713
848
146
122
75

121
99

9.1
11.0
2.0
1.6
1.0

17.0
20.0
3.5
2.9
1.8

2.9
2.4

16.0
16.0
2.5
1.8
1.0

18.0
20.0
3.0
2.2
1.3

47.0
19.0
2.1
1.7

Table 1. This table summarizes the results for three Java benchmarks with five Java implementations on three operating systems. For Pen-
tominoes, a lower number of seconds is better; for the other benchmarks, a higher score is better. The Ratio columns show performance rel-
ative to Netscape under Windows 95. *The Kaffe Linpack result is suspect because this trial gave abnormal error statistics. (Source: MDR)
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

 R
graphics API is pitifully slow on Windows 95: the JITs pro-
vide only a meager improvement on the Graphics program
in the CaffeineMark suite.

JITs Shine on Integer Code
Not surprisingly, the authors of the current JITs seem to have
focused on improving the performance of integer code. As
© M I C R O D E S I G N R E S O U R C E S M A Y 2 7
A P I D L Y V O L . 1 0 , N O . 7

shown by the Pentominoes program, Symantec’s JIT delivers
the highest Java performance. Compared with Symantec’s
own interpreted VM implementation, which is already the
fastest of its kind, the JIT improves performance by roughly
a factor of 10. The Borland JIT is slower but not far behind.
Even the experimental Kaffe JIT performs very well.

The native C-language version of Pentominoes delivers
roughly twice the performance of the JITs, and while a factor
of two is a substantial margin, a couple of considerations
make this disparity less disappointing than it first seems.
First, the Gnu C compiler is mature and stable, while the
Symantec and Borland JITs have been available for only a few
weeks and will probably improve over the coming months.
Second, the Pentominoes benchmark makes heavy use of
array accesses, which are bounds-checked in Java; this situa-
tion probably puts the Java code at an unfair advantage.
There may be room to improve the JIT’s optimization of
bounds-checking code.

Floating-Point Performance Acceptable
Linpack has been a standard floating-point benchmark for
nearly two decades, so it’s not surprising that it is one of the
first benchmark to be ported to Java. The Java version does
not use loop unrolling (and is thus equivalent to using the
C-version’s “rolled” option) and uses double-precision float-
ing-point arithmetic (Java does not provide a single-preci-
sion FP data type).

Here, Borland’s JIT takes the prize, improving perfor-
mance over the fastest interpreted VM by more than a factor
of five. Even compared with the C-language version, the Bor-
land JIT is only a factor of three behind. As the JITs mature,
floating-point performance is likely to improve.

Graphics Programs Expose Windows 95 Overhead
CaffeineMark is a suite of four programs; higher scores are
better. The overall CaffeineMark is simply the average of the
four components. The Graphics program draws rectangles of
various sizes and colors in the applet window. The Image
program copies a small bit-mapped image (a coffee cup, of
course) to random locations in the applet window a large
number of times. Both programs run for a few seconds.
From its name, Sieve would appear to be a simple CPU-
intensive program—it always has been—but the improve-
ment provided by the JITs under Windows 95 does not track
the improvement on Pentominoes. On the other hand, the
improvement on Loop, which also appears to be a simple
CPU benchmark, gains more performance from the JITs
than does Pentominoes.

The quality of the graphics API and interfaces is directly
reflected in the Graphics and Image results. For the Graphics
component of CaffeineMark, simply moving to NT improves
performance by a factor of three; NT improves the Image
score by about 50%. Furthermore, notice that the score on
Graphics produced by Netscape—which uses an interpretive
2 J A V A P E R F O R M A N C E A D V A N C I N G

S y s t e m S e t u p

All benchmarks were run on a 166-MHz Pentium-
based PC with 512K pipelined-burst cache and 32M of
memory. The system used a relatively pedestrian PCI-
based ATI Graphics Xpression video card with 2M of
DRAM for the frame buffer; video resolution was set to
1280 × 1024 at 8 bits per pixel.

The benchmark numbers in Table 1 are the best result
produced from at least five trials of each combination of
benchmark and environment. Results varied by up to
10% on different runs, so all numbers shown are rounded
to two significant digits.

Since Java is still new, few benchmarks are available.
Two were found on the Web and one was ported from a
C program posted to a Usenet newsgroup. The bench-
marks are:

• Pentominoes: an integer-intensive puzzle-solving pro-
gram (ported from C to Java).

• Linpack: a standard floating-point intensive bench-
mark (see www.netlib.org/benchmark/linpackjava/).

• CaffeineMark: a mix of integer-intensive and graph-
ics-intensive programs (see www.webfayre.com/
pendragon/pscaffeine.html).
The Java environments consist of three different oper-

ating systems: Window 95, Windows NT Workstation
3.51, and Linux (kernel version 1.3.81). Five different Java
virtual-machine implementations were tested on the two
Windows versions: the Sun Java Development Kit (JDK)
version 1.0.1, Netscape's Atlas version pr2, the Symantec
Cafe interpreted VM, the Symantec Cafe JIT, and the Bor-
land JIT that ships with the Borland C++ 5.0 Development
Suite. To help gauge current state-of-the art performance,
C-language versions of the Pentominoes and Linpack
benchmarks were compiled using GCC with full optimiza-
tion enabled and run under Linux.

The Symantec JIT is an add-on to Symantec’s Cafe
Java development environment for Windows. This JIT can
also be plugged into Sun's JDK environment if desired.
Borland's JIT, called AppAccelerator, ships only with its full
C++ Development Suite product. The Kaffe JIT for Linux
is being developed by Tim Wilkinson as a spare-time pro-
ject and is far from complete. It is available on the Web at
web.soi.city.ac.uk/homes/tim/kaffe/kaffe.html.
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

R
3 J A V A P E R F O R M A N C E A D V A N C I N G

Java VM—under Linux/X-windows beats all Windows 95
scores, even those for the JITs.

Java VM: ANDF-2000?
A few years ago, there was an OSF initiative called ANDF
(architecture-neutral distribution format, see MPR 10/2/91,
p. 17) with the goal of producing a virtual machine that
could be used to distribute application programs in a com-
pletely portable format. While ANDF was technically com-
pelling, it had the drawback of inserting one more layer of
software that could contain bugs. Thus, from the application
developer’s point of view, ANDF offered a solution to the rel-
atively unimportant portability problem but exacerbated an
already difficult one of ensuring software quality.

The Java .class-file format (used for Java executable
files) is not a true ANDF because it lacks some key capabili-
ties, such as good support for a variety of languages. Nonethe-
less, there are efforts under way to compile other languages to
the Java VM, and some compilers are already available.

Java seems to be force-feeding the essential concepts of
ANDF down the throats of developers and users. Whether
developers will choke and reject Java because of support
issues—e.g., is a user’s problem caused by the program, the
operating system, or the Java VM?—remains to be seen.

It seems likely, however, that at least some off-the-shelf,
shrink-wrapped applications will become available in the
portable Java binary format. In the extreme case, it is possi-
ble that businesses and consumers will prefer applications
that are distributed as Java .class files and that developers will
be forced to develop Java versions of their popular applica-
tions to remain competitive. Indeed, perhaps Java will finally
give PC developers easy access to the workstation market,
assuming they still want it.

Given the ubiquity of x86-based PCs, the most proba-
ble scenario is that the Java .class file format will be preferred
for applications that must be cross-platform, while the native
x86-binary format will be sufficient for single-user PC appli-
cations. Java proponents and Internet visionaries would say
that all applications will need to be Internet-enabled and
cross platform, which may be true, but access to Java applets
will soon be available to every application regardless of its
heritage. Most OS vendors have committed to embedding
the Java VM into the operating-system structure, which
means even applications not written in Java can be Java-
enabled (i.e., able to run Java applets).

How all this plays out will be interesting to see. Carried
to its logical conclusion, this trend would result in an evolu-
tion toward the irrelevance of native instruction-set archi-
tecture, just as the ANDF dreamers (this author included)
once envisioned. Such a situation would presumably allow
the “best” microprocessor to be chosen for a product without
regard to its native instruction set. This extreme case seems
unlikely, at least in the short term, but the current pace of
Java activity makes predicting the outcome difficult.
© M I C R O D E S I G N R E S O U R C E S M A Y 2 7
Dynamic Compilation Finally Gets Attention
The viability of many potential Java applications depends on
high-performance VM implementations. Java JITs seem able
to provide the needed performance. JITs translate Java VM
code as it is run, every time it is run. Static recompilers, if
they existed, would translate Java applications once and save
the compiled code on disk, offering the potential of even
higher performance without any delay associated with on-
the-fly dynamic compilation.

Dynamic compilation has been waiting in the wings for
its chance to take center stage. The first hints that this tech-
nology was ready for widespread commercial deployment
came in the form of dynamic compilers for SmallTalk imple-
mentations and Connectix’s Speed Doubler upgrade to
Apple’s PowerPC-based 68000 emulator. With Java, dynamic
compilation can at last move into the mainstream.

The benchmark results summarized in Figure 1 de-
monstrate that one of the impediments to widespread Java
deployment—poor performance—can be addressed by JITs.
They also indicate that the potential performance advantage
of a Java microprocessor may be limited to a factor of two or
less. There is still much work to be done on both software
and hardware, but because of JITs and possible static compil-
ers, Java chips will be competing head-on with standard
microprocessors.

Now it is up to OS vendors to provide the promised
transparent support for Java applications, and up to applica-
tion developers to test the market to see if Java applications
appeal to businesses and consumers. Within the next year,
the market may decide if Java will be “just” an Internet lan-
guage or a force across the entire computing spectrum. M
A P I D L Y V O L . 1 0 , N O . 7

Java VM Java JIT C code

0

20

10

30

40

50

60

max

min

INT FP

KEY

R
el

at
iv

e
Pe

rf
or

m
an

ce

Figure 1. While Java JITs are an order of magnitude faster than vir-
tual machines (VMs), they trail optimized C code by a factor of
two. See Table 1 for details.
, 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	Java Performance Advancing Rapidly
	Java Performance Is All Over the Map
	Table 1. This table summarizes the results for three Java benchmarks...
	JITs Shine on Integer Code
	Floating-Point Performance Acceptable
	Graphics Programs Expose Windows 95 Overhead
	Java VM: ANDF-2000? min
	Figure 1. While Java JITs are an order of magnitude faster than...
	Dynamic Compilation Finally Gets Attention

	System Setup

