
V O L . 1 0 , N O . 5

a’

■ V I E W P O I N T
by Brian Case

When I first learned that the Java language is compiled
to an abstract virtual machine (VM) to achieve portability
(see 100402.PDF), the microprocessor and system-software
designer in me immediately embraced the idea of building
new microprocessors and clever software implementations
of the Java VM. This kind of technical challenge is always
attractive.

At first glance, the popularity and pervasiveness of Java
seem to create an opportunity for investments in high-
performance Java VMs. Assuming that performance-hungry
Java applications will appear, the decision to build a micro-
processor implementation of the VM seems like a “no-
brainer.” In PCs and other systems that need a legacy micro-
processor for compatibility, high-performance software
implementations of the VM will be required.

The Java Paradigm Is Compelling
To understand the demand for Java and the derived demand
for Java execution environments, we need to understand
what makes Java valuable. In my opinion, the advantages of
the Java paradigm fall into two categories. First, there is the
VM-based execution model. The ability to use Java applets
and programs simply by porting the VM execution environ-
ment is what got the Java steamroller moving. Currently, a
Java applet can be run using the Netscape Internet browser,
for example, on platforms from PCs to Macs to workstations
from many different manufacturers. Netscape is even avail-
able for Linix. As a front-end for a corporate data-base appli-
cation, a single Java applet can solve many thorny accessibil-
ity problems. This ability is powerfully compelling.

The second category of advantages centers around the
safety of programming in Java. The Java language is object-

Java Virtual Machine
Hardware Not Needed To Serve Jav
© M I C R O D E S I G N R E S O U R C E S A P R I L 1
oriented with many built-in safety checks. There are no arbi-
trary pointers (as in C), array bounds are always checked,
and memory allocation is automatic. By eliminating several
of the most annoying and bug-producing problems of C,
Java proponents suggest that Java will displace C in many
cases. In addition, a degree of security for transmitted
applets is achieved by a verifier at the receiving end that tries
to make sure the applet code is not malicious.

I have no argument with the Java paradigm; I agree that
it is compelling in many application areas. I do not, however,
agree that Java microprocessors enhance in a unique way the
delivery of Java’s advantages. First, I believe that for those
applications where Java is compelling, Java will be chosen
independent of performance issues. Second, I believe that a
standard microprocessor coupled with an appropriate Java
VM implementation—emulator, dynamic compiler, or con-
ventional compiler—is technically as good as a Java micro-
processor and superior in other ways.

Many Ways to Run Java
Table 1 lists the basic categories from the broad spectrum of
possible Java implementations. In the category of dynamic
compilation, a variety of performance/memory-footprint
trade-offs is possible, though probably only a few will satisfy
the majority of uses. Sun, and possibly others, are working
on Java microprocessors. Another possible technique—
enhancing a conventional microprocessor to speed Java—
has not been the subject of any press releases to date.

Most of the techniques listed in Table 1 are based on the
Java VM, that is, Java programs are first compiled to the VM,
then VM instructions are executed in some manner. It is pos-
sible and desirable, however, to compile Java programs in the
conventional way to the native instruction set of a conven-
tional microprocessor. Excellent performance can be gained
with a compiler, but what’s lost is portability: the code can’t
be blindly distributed on the Internet, for example.

In an embedded product not connected to a communi-
cation medium, however, portability is not an issue, making
conventional compilation reasonable. Sun has mentioned
that Java might be used in consumer devices as common and
ubiquitous as shavers and cameras; it seems reasonable to
assume that these devices will not download applets from
Web sites. (I hope I’m not wrong about this!)

The performance and memory-footprint numbers in
Table 1 are only educated guesses that vastly oversimplify the
issues involved. In fact, each number in the table should be a
range, and the categories have significant overlap. Still, they
are probably accurate enough for my purposes. One point of

Should Stay Virtual
s Tantalizing Brew
Execution Method
Relative
Speed

Relative
Mem. Size

Pure emulation

Dynamic compilation

Static re-compilation

Conventional compilation

Java microprocessor

Pure emulation
Unaggressive
Aggressive
Unaggressive
Aggressive
Highly optimizing
Low-end
High-end

1
3
7
5
10
15
3
14

1
2
5
3
5
1
1
1

Table 1. This table compares estimates of the relative performance
and memory footprint of some possible Java implementations. The
conventional and Java processors are assumed to have comparable
internal designs and manufacturing technology.
5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

H
2 V I E W P O I N T : J A V A V I R T U A L M A C H I N E S

these numbers is to show that Java microprocessors appear
to combine the best performance with the best memory
footprint. Another point, however, is that high performance,
small memory footprint, and various compromises between
the extremes are possible without Java microprocessors.

The implementations of Java that exist today in Inter-
net browsers, for example, are pure software emulators, but I
expect this situation to change soon. Rumor has it that the
established suppliers of software development tools have
built very high-performance dynamic compilers, and con-
ventional optimizing compilers will likely eventually be
included in their Java development products.

I expect forthcoming development tools will provide a
variety of Java execution techniques including pure emula-
tion, dynamic compilation, static (just-in-time, or JIT)
recompilation, and conventional compilation. At least one of
these execution techniques will appropriate for deploying
Java programs in most standalone and embedded products.

Products Need Java, Not Java Chips
Embedded products whose designers want to use Java fall
into two categories: those products that will run applets and
those that will not. For those that don’t run applets, a con-
ventional Java compiler for a conventional, high-volume
microprocessor offers all the meaningful technical advan-
tages of Java plus the advantage of choosing any standard
microprocessor that meets the price, performance, and other
specific requirements of the design.

An embedded product that does need to run Java app-
lets would seem an obvious application for a Java chip, but
notice that the device’s applets are highly likely to be special-
ized; it probably doesn’t make sense to expect the same
device to run a tic-tac-toe and database front-end applet
from a Web site. Similarly, I doubt it makes sense to run an
applet for my shaver, camera, or laser-printer with my Web
browser. So, in this case, the advantage of distributing the
applet in the form of Java VM instructions is not compelling.
In fact, distributing the applet as a conventional micropro-
cessor binary—yes, even with the bounds-checking and
other Java-overhead included—will likely result in a smaller
file to transmit and store. Despite what Java proponents say,
some measurements indicate that Java VM code is not par-
ticularly small. A Java microprocessor is not needed here.

In general, each embedded application has a minimum
performance requirement, and any extra performance is
irrelevant. Most applications that require Java will be satis-
fied by a conventional microprocessor plus a software VM
(or compiler); the others, which require high performance,
won’t be satisfied by a Java microprocessor. Many applica-
tions, such as PostScript emulation and multimedia algo-
rithms, benefit from pointer arithmetic, which is missing
from the Java VM.

I have heard Java proponents claim that the existing
huge installed base of Java applets on the Web (28,000 by one
estimate) is an indicator of the viability of Java chips. First,
© M I C R O D E S I G N R E S O U R C E S A P R I L
O U L D S T A Y V I R T U A L V O L . 1 0 , N O . 5

these applets are irrelevant to embedded Java applications.
Second, these applets, by their existence today, don’t need
Java chips. Third, a Java applet that does need heavyweight
computing performance is probably not a generally useful
applet, just as an applet for a camera or shaver is not gener-
ally useful.

An applet requiring heavyweight performance can
probably suffer the overhead of a static recompiler or an
aggressive dynamic compiler. These techniques provide rela-
tive performance less than a factor of two below the best Java
chip, and given the investment required for high-end micro-
processor development today and tomorrow, I’m willing to
bet that the best commodity microprocessor at a comparable
price will have net performance better than the best Java
chip. Dynamic compilation has a much larger memory foot-
print, but in high-end devices, such as PCs, this is probably
not a problem.

Are there any areas where Java microprocessors make
sense? One possibility is in memory-starved applications
that must accept performance-critical Java applets; the appli-
cations won’t be able to stand the extra memory needed for a
dynamic compiler. Another possibility is for designers who
want to exploit the dynamic linking and garbage collection
of the Java VM but insist that a software solution isn’t accept-
able. Sun believes that a Java chip can be competitive in the
embedded market because designers won’t need to repeat the
work of implementing dynamic linking and garbage collec-
tion, and software overhead won’t be required.

We Might All Be Right
Recently, I have come to the realization that my biggest dis-
agreement is with product designers who, according to Sun,
are creating the demand for Java microprocessors. I believe
the engineers and managers at these companies should be
able to see that what’s adding value to their products is Java,
not Java chips; they should be able to see that there are many
other, better ways to tap Java's unique value. But if customers
really are ringing Sun’s phones off the wall wanting to buy
Java microprocessors, I guess Sun has a capitalistic duty to
satisfy the demand.

Sun claims it will produce Java microprocessors that
are competitive with any standard processor on the market
on a price and feature set basis, and that these Java chips will
deliver as good or better performance on Java code than even
a comparable standard processor compiling Java directly to
its native instruction set. If Sun can deliver on these pro-
mises, Java microprocessors may have a bright future, but
I just can’t see how it can happen.

Ultimately, it will be Sun’s customers who decide the
fate of Java microprocessors. If they design Java chips into
high-volume cell phones, cameras, or shavers, those products
alone could consume millions of chips and make Java micro-
processors successful. Even if Java chips achieve such vol-
umes, however, it still doesn’t mean they make sense; too
many other successful things don’t make sense, either. M
1 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	Java Virtual Machine Should Stay Virtual
	The Java Paradigm Is Compelling
	Table 1. This table compares estimates of the relative performance...
	Many Ways to Run Java
	Products Need Java, Not Java Chips
	We Might All Be Right

